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Abstract. The field of Inconsistency Measurement is concerned with
the development of principles and approaches to quantitatively assess
the severity of inconsistency in knowledge bases. In this survey, we give
a broad overview on this field by outlining its basic motivation and dis-
cussing some of these core principles and approaches. We focus on the
work that has been done for classical propositional logic but also give
some pointers to applications on other logical formalisms.

1 Introduction

Inconsistency is a ubiquitous phenomenon whenever knowledge! is compiled in
some formal language. The notion of inconsistency refers (usually) to multiple
pieces of information and represents a conflict between those, i.e., they cannot
hold at the same time. The two statements “It is sunny outside” and “It is not
sunny outside” represent inconsistent information and in order to draw meaning-
ful conclusions from a knowledge base containing these statements, this conflict
has to be resolved somehow. In applications such as decision-support systems,
a knowledge base is usually compiled by merging the formalised knowledge of
many different experts. It is unavoidable that different experts contradict each
other and that the merged knowledge base becomes inconsistent. The field of
Knowledge Representation and Reasoning (KR) [7] is the subfield of Artificial
Intelligence (Al) that deals with the issues of logical formalisations of informa-
tion and the modelling of rational reasoning behaviour, in particular in light
of inconsistent or uncertain information. One paradigm to deal with inconsis-
tent information is to abandon classical inference and define new ways of rea-
soning. Some examples of such formalisms are, e.g., paraconsistent logics [6],
default logic [34], answer set programming [15], and, more recently, computa-
tional models of argumentation [1]. Moreover, the fields of belief revision [21] and
belief merging [10,28] deal with the particular case of inconsistencies in dynamic
settings.

The field of Inconsistency Measurement—see the seminal work [20] and the
recent book [19]—provides an analytical perspective on the issue of inconsis-
tency. Its aim is to quantitatively assess the severity of inconsistency in order

! We use the term knowledge to refer to subjective knowledge or beliefs, i.e., pieces of
information that may not necessary be true in the real world but are only assumed
to be true for the agent(s) under consideration.
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to both guide automatic reasoning mechanisms and to help human modellers in
identifying issues and compare different alternative formalisations. Consider the
following two knowledge bases Ky and Ky formalised in classical propositional
logic (see Sect. 2 for the formal background) modelling some information about
the weather:

K1 = {sunny, —sunny, hot, —hot}
Ko = {—hot, sunny, sunny — hot, humid}

Both K7 and K9 are classically inconsistent, i. e., there is no interpretation satis-
fying any of them. But looking closer into the structure of the knowledge bases
one can identify differences in the severity of the inconsistency. In Ky there are
two “obvious” contradictions, i. e., {sunny, —sunny} and {hot, —hot} are directly
conflicting formulas. In Cy, the conflict is a bit more hidden. Here, three for-
mulas are necessary to produce a contradiction ({—hot,sunny,sunny — hot}).
Moreover, there is one formula in /o (humid), which is not participating in any
conflict and one could still infer meaningful information from this by relying on
e.g. paraconsistent reasoning techniques [6]. In conclusion, one should regard
K1 as more inconsistent than Ko. So a decision-maker should prefer using /o
instead of ;.

The analysis of the severity of inconsistency in the knowledge bases 7 and
ICo above was informal. Formal accounts to the problem of assessing the severity
of inconsistency are given by inconsistency measures and there have been a lot
of proposals of those in recent years. Up to today, the concept of severity of
inconsistency has not been axiomatised in a satisfactory manner and the series
of different inconsistency measures approach this challenge from different points
of view and focus on different aspects on what constitutes severity. Consider the
next two knowledge bases (with abstract propositions a and b)

Ks = {a,—a,b} Kis={aVb-aVbaV-b -aV-b}

Again both K3 and Ky are inconsistent, but which one is more inconsistent
than the other? Our reasoning from above cannot be applied here in the same
fashion. The knowledge base K3 contains an apparent contradiction ({a,-a})
but also a formula not participating in the inconsistency ({b}). The knowledge
base K4 contains a “hidden” conflict as four formulas are necessary to produce a
contradiction, but all formulas of /4y are participating in this. In this case, it is
not clear how to assess the inconsistency of these knowledge bases and different
measures may order these knowledge bases differently. More generally speaking,
it is not universally agreed upon which so-called rationality postulates should
be satisfied by a reasonable account of inconsistency measurement, see [3,5,41]
for a discussion. Besides concrete approaches to inconsistency measurement the
community has also proposed a series of those rationality postulates in order
to describe general desirable behaviour and the classification of inconsistency
measures by the postulates they satisfy is still one the most important ways to
evaluate the quality of a measure, even if the set of desirable postulates is not
universally accepted. For example, one of the most popular rationality postulates
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is monotony which states that for any X C K’, the knowledge base K cannot
be regarded as more inconsistent as K'. The justification for this demand is
that inconsistency cannot be resolved when adding new information but only
increased?. While this is usually regarded as a reasonable demand there are also
situations where monotony may be seen as counterintuitive, even in monotonic
logics. Consider the next two knowledge bases

Ks = {a,—a} K¢ = {a,—a,bi, ..., boos}

We have K5 C Kg and following monotony, Kg should be regarded as least as
inconsistent as /5. However, when judging the content of the knowledge bases
“relatively”, s may seem more inconsistent: K5 contains no useful information
and all formulas of 5 are in conflict with another formula. In /Cg, however, only
2 out of 1000 formulas are participating in the contradiction. So it may also be
a reasonable point of view to judge K5 more inconsistent than Kg.

In this survey paper, we give a brief overview on formal accounts to inconsis-
tency measurement. We focus on approaches building on classical propositional
logic but also briefly discuss approaches for other formalisms. A more technical
survey of inconsistency measures can be found in [41] and the book [19] captures
the recent state-of-the-art as a whole. An older survey can also be found in [22].

The remainder of this paper is organised as follows. In Sect. 2 we give some
necessary technical preliminaries. Section 3 introduces the concept of inconsis-
tency measures formally and discusses rationality postulates. In Sect.4 we dis-
cuss some of the most important concrete approaches to inconsistency mea-
surement for classical propositional logic and in Sect.5 we give an overview on
approaches for other formalisms. Section 6 concludes.

2 Preliminaries

Let At be some fixed set of propositions and let £(At) be the corresponding
propositional language constructed using the usual connectives A (conjunction),
V (disjunction), — (implication), and — (negation).

Definition 1. A knowledge base K is a finite set of formulas K C L(At). Let K
be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X.

Semantics for a propositional language is given by interpretations where an
interpretation w on At is a function w : At — {true,false}. Let 2(At) denote
the set of all interpretations for At. An interpretation w satisfies (or is a model
of) a proposition a € At, denoted by w |= a, if and only if w(a) = true. The
satisfaction relation |= is extended to formulas in the usual way.

2 At least in monotonic logics; for a discussion about inconsistency measurement in
non-monotonic logics see [9,43] and Sect. 5.3.
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For & C L(At) we also define w |= @ if and only if w | ¢ for every ¢ € .
A formula or set of formulas X, entails another formula or set of formulas Xs,
denoted by X; | Xo, if and only if w E X; implies w = Xs. If there is no w
with w = X we also write X =1 and say that X is inconsistent.

3 Measuring Inconsistency

Let R be the set of non-negative real values including infinity. The most general
form of an inconsistency measure is as follows.

Definition 2. An inconsistency measure 7 is any function 7 : K — RZ,.

The above definition is, of course, under-constrained for the purpose of provid-
ing a quantitative means to measure inconsistency. The intuition we intend to
be behind any concrete approach to inconsistency measure 7 is that a larger
value Z(K) for a knowledge base K indicates more severe inconsistency in K
than lower values. Moreover, we wish to reserve the minimal value (0) to indi-
cate the complete absence of inconsistency. This is captured by the following
postulate [23]:

Consistency Z(K) = 0 iff K is consistent.

Satisfaction of the consistency postulate is a basic demand for any reasonable
inconsistency measure and is satisfied by all known concrete approaches [39,
41]. Beyond the consistency postulates a series of further postulates has been
proposed in the literature [41]. We only recall the basic ones initially proposed
in [23]. In order to state these postulates we need two further definitions.

Definition 3. A set M C K is a minimal inconsistent subset of K iff M L
and there is no M’ C M with M’ =1. Let MI(K) be the set of all minimal
inconsistent subsets of K.

Definition 4. A formula o € K is called free formula if o ¢ (JMI(K). Let
Free(K) be the set of all free formulas of K.

In other words, a minimal inconsistent subset characterises a minimal conflict in
a knowledge base and a free formula is a formula that is not directly participating
in any derivation of a contradiction. Let Z be any function Z : K — R,
K,K" € K, and «, 8 € L(At). The remaining rationality postulates from [23] are:

Normalisation 0 < Z(K) < 1.
Monotony If K C K’ then Z(K) < Z(K').
Free-formula independence If o € Free(K) then
T(00) = T(K \ {a}).
Dominance If a £ and o = § then Z(K U {a}) > Z(K U {5}).
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The postulate normalisation states that the inconsistency value is always in
the unit interval, thus allowing inconsistency values to be comparable even if
knowledge bases are of different sizes. Monotony requires that adding formulas
to the knowledge base cannot decrease the inconsistency value. Free-formula
independence states that removing free formulas from the knowledge base should
not change the inconsistency value. The motivation here is that free formulas do
not participate in inconsistencies and should not contribute to having a certain
inconsistency value. Dominance says that substituting a consistent formula o by
a weaker formula ( should not increase the inconsistency value. Here, as 0 carries
less information than « there should be less opportunities for inconsistencies to
occur.

The five postulates from above are independent (no single postulates entails
another one) and compatible (as e. g. the drastic measure Z;, see below, satisfies
all of them). However, they do not characterise a single concrete approach but
leave ample room for various different approaches. Moreover, for all rationality
postulates (except consistency) there is at least one inconsistency measure in
the literature that does not satisfy it [41] and there is no general agreement on
whether these postulates are indeed desirable at all [3,5,41]. We already gave
an example why monotony may not be desirable in the introduction. Here is
another example for free-formula independence taken from [3].

Ezxample 1. Consider the knowledge base K7 defined via
Kz ={aNc,bA—c,—aV b}

Notice that K7 has a single minimal inconsistent subset {a A ¢,b A =c} and
—aV-bis a free formula. If 7 satisfies free-formula independence we have Z(KC7) =
Z(K7\ {—aV —b}). However, —a V —b adds another “conflict” about the truth of
propositions a and b.

We will continue the discussion on rationality postulates later in Sect.6. But
first we will have a look at some concrete approaches.

4 Approaches

There is a wide variety of inconsistency measures in the literature, the work [41]
alone lists 22 measures in 2018 and more have been proposed since then?. In this
paper we consider only a few to illustrate the main concepts.

The measure Zg is usually referred to as a baseline for inconsistency measures
as it only distinguishes between consistent and inconsistent knowledge bases.

3 Implementations of most of these measures can also be found in the Tweety
Libraries for Artificial Intelligence [40] and an online interface is available at http://
tweetyproject.org/w/incmes.
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Definition 5 ([24]). The drastic inconsistency measure Zy : K — RZ is
defined as

1ifK L

0 otherwise

Za(K) = {

for K e K.

While not being particularly useful for the purpose of actually differentiating
between inconsistent knowledge bases, the measure Z; already satisfies the basic
five postulates from above [24].

In [22] several dimensions for measuring inconsistency have been discussed.
A particular observation from this discussion is that inconsistency measures
can be roughly divided into two categories: syntactic and semantic approaches.
While this distinction is not clearly defined? it has been used in following works
to classify many inconsistency measures. Using this categorisation, syntactic
approaches refer to inconsistency measures that make use of syntactic objects
such as minimal inconsistent sets (or maximal consistent sets). On the other
hand, semantic approaches refer to measures employing non-classical semantics
for that purpose. However, there are further measures which fall into neither (or
both) categories. In the following, we will look at some measures from each of
these categories.

4.1 Measures Based on Minimal Inconsistent Sets

A minimal inconsistent subset M of a knowledge base IC represents the “essence”
of a single conflict in IC. Naturally, a simple approach to measure inconsistency
is to take the number of minimal inconsistent subsets as a measure.

Definition 6 ([24]). The Ml-inconsistency measure Zy : K — R, is defined
as Imi(K) = [MI(K)| for K € K.

The above measure complies with the postulates of consistency, monotony,
and free-formula independence but fails to satisfy dominance and normalisation
(although a normalised variant that suffers from other shortcomings can easily
be defined). Table 2 below gives an overview on the compliance of the measures
formally considered in this paper with the basic postulates from above, see [41]
for proofs or references to proofs. The idea behind the Ml-inconsistency measure
can be refined in several ways, taking e.g. the sizes of the individual minimal
inconsistent sets and how they overlap into account [13,25,26]. One example
being the following measure.

Definition 7 ([24]). The Ml‘-inconsistency measure Zyc : K — R, is
defined as B

1
T = —_—
MIC (IC) MEXM:I(K:) |M|
for K e K.

4 And in this author’s opinion also a bit mislabelled.
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The MI¢-inconsistency measure takes also the sizes of the individual minimal
inconsistent subsets into account. The intuition here is that larger minimal incon-
sistent subsets represent less inconsistency (as the conflict is more “hidden”) and
small minimal inconsistent subsets represent more inconsistency (as it is more
“apparent”).

Example 2. Consider again knowledge bases K and Ko from before defined via

K1 = {sunny, —~sunny, hot, —=hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

Imi(Ky) =2 Imi(K2) =1
Imic (K1) =1 Imic(K2) =1/3

Observe that, while Zyy and Zyc disagree on the exact values of the inconsistency
in K; and Ky they do agree on their order (K is more inconsistent than Ks).
This is not generally true, consider

Ks = {a,—a}
IC9 = {al, —al V bl,ﬁbl V C1, V dl, _\dl \Y —aq,
a2, 1Ay V bg, _|b2 V Co, Vv dg, _\dg V _\(ZQ}

Tun(Ks) = 1 Tan(Ko) = 2
Imic(Ks) = 1/2 e (Ko) = 2/5

where KCg is less inconsistent than g according to Zy and the other way around
fOI' IM|C .

4.2 Measures Based on Non-classical Semantics

Measures based on minimal inconsistent subsets provide a formula-centric view
on the matter of inconsistency [22]. If a formula (as a whole) is part of a conflict, it
is taken into account for measuring inconsistency. Another possibility is to focus
on propositions rather than formulas. Consider again the knowledge base 7 =
{aAc,bA—¢,—aV —b} from Example 1 which possesses one minimal inconsistent
subset {a A ¢,b A —c}. However, it is clear that there is also a conflict involving
the propositions a and b, which is not “detected” by measures based on minimal
inconsistent subsets. Thus, another angle for measuring inconsistency consists
in counting how many propositions participate in the inconsistency. A possible
means for doing this is by relying on non-classical semantics. The contension
measure [17] makes use of Priest’s logic of paradox, which has a paraconsistent
semantics that we briefly recall now. A three-valued interpretation v on At is a
function v : At — {T, F, B} where the values T and F correspond to the classical
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true and false, respectively. The additional truth value B stands for both and is
meant to represent a conflicting truth value for a proposition. The function v is
extended to arbitrary formulas as shown in Table 1. An interpretation v satisfies
a formula «, denoted by v =3 « if either v(a) =T or v(a) = B. Define v =3 K
for a knowledge base K accordingly. Now inconsistency can be measured by
seeking an interpretation v that assigns B to a minimal number of propositions.

Definition 8 ([17]). The contension inconsistency measure Z. : K — RZ} is
defined as

Z.(K) = min{[v"(B) N At| | v E* K}
for K e K.

Note that Z. is well-defined as for every knowledge K there is always at least
one interpretation v satisfying it, e.g., the interpretation that assigns B to all
propositions.

Table 1. Truth tables for propositional three-valued logic.

a fluo(aAB)u(aV )
TT
TB
TF
BT
BB
BF
FT
FB
FF

v(-a)

o
T
B
F

— @ ™

oo liesBiesiies oo Rive e oo B |
MWW w A A

A further approach—that is in contrast to Z, still formula-centric—is to make
use of probability logic to define an inconsistency measure [27]. A probability
function P on L(At) is a function P : 2(At) — [0,1] with - ¢ oa Plw) = 1.
We extend P to assign a probability to any formula ¢ € L(At) by defining

P(¢) =) Pw)

W
Let P(At) be the set of all those probability functions.

Definition 9 ([27]). The n-inconsistency measure Z, : K — RS is defined as

Z,(K) =1 —max{¢{ | 3P € P(At) : Va € K : P(«) > £}

for K e K.
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The measure Z,, looks for a probability function P that maximises the minimum
probability of all formulas in . The larger this probability the less inconsistent
K is assessed (if there is a probability function assigning 1 to all formulas then
K is obviously consistent).

Ezxample 3. Consider again knowledge bases K1 and Ko from before defined via

K1 = {sunny, —sunny, hot, —hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

T.(Ky) = 2 T.(Ky) = 1
7,(K1) = 0.5 T,(Ks) = 1/3

where, in particular, Z. also agrees with Zy (see Example 2). Consider now

K10 = {a,~a} Kii={aAbAc,maA-bA—c}
where
(K1) =1 Z.(K2) =3
Z,(Ki)=0.5 Z,(K2) =0.5
Imi(Ky) =1 Z.(Ky) =1

So Z. looks inside formulas to determine the severity of inconsistency.

While Z. makes use of paraconsistent logic and Z, of probability logic other
logics can be used for that purpose as well. In [38] a general framework is estab-
lished that allows to plugin any many-valued logic (such as fuzzy logic) to define
inconsistency measures.

4.3 Further Measures

There are further ways to define inconsistency measures that do not fall strictly
in one of the two paradigms above. We have a look at some now.

A simple approach to obtain a more proposition-centric measure (as Z..) while
still relying on minimal inconsistent sets is the following measure.

Definition 10 ([44]). The mv inconsistency measure Z,, : K — Ry s
defined as

N Unremige) At(M))]
BT

for K e K.
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In other words, Z,,,(K) is the ratio of the number of propositions that appear
in at least one minimal inconsistent set and the number of all propositions.

Another approach that makes no use of either minimal inconsistent sets or
non-classical semantics is the following one. A subset H C (2(At) is called a
hitting set of K if for every ¢ € K there is w € H with w = ¢.

Definition 11 ([37]). The hitting-set inconsistency measure Zj; : K — RS, s
defined as

Ins(K) = min{|H| | H is a hitting set of K} — 1

for K € K with min () = co.

So Tps seeks a minimal number of (classical) interpretations such that for each
formula there is at least one model in this set.

Example 4. Consider again knowledge bases K1 and Ko from before defined via

K1 = {sunny, —sunny, hot, —=hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

Imq)(lcl) 1 qu;(’CQ) = 2/3
Ihs(lcl) =1 Ihs(ICQ) =1

Moreover, Grant and Hunter [18] define new families of inconsistency mea-
sures based on distances of classical interpretations to being models of a knowl-
edge base. Besnard [4] counts how many propositions have to be forgotten—i. e.
removed from the underlying signature of the knowledge base—to turn an incon-
sistent knowledge base into a consistent one.

Table 2. Compliance of inconsistency measures with rationality postulates consistency
(CO), normalisation (NO), monotony (MO), free-formula independence (IN), and dom-
inance (DO)

7 CO|NO|MO |IN|DO
Za |V |V |V VS
I |V X |V /X
Tyc v X |V /X
. |V X |V /I /
I, v |/ v /v
Iow |V |V X X | X
Ins |V | X |V V|V
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5 Beyond Propositional Logic

While most work in the field of inconsistency measurement is concerned with
using propositional logic as the knowledge representation formalism, there are
some few works, which consider measuring inconsistency in other logics. We will
have a brief overview on some of these works now, see [19] for some others.

5.1 First-Order and Description Logic

In [16], first-order logic is considered as the base logic. Allowing for objects and
quantification brings new challenges to measuring inconsistency as one should
distinguish in a more fine-grained manner how much certain formulas contribute
to inconsistency. For example, a formula VX : bird(X) — flies(X)—which mod-
els that all birds fly—is probably the culprit of some inconsistency in any knowl-
edge base. However, depending on how many objects actually satisfy/violate
the implication, the severity of the inconsistency of the overall knowledge base
may differ (compare having a knowledge base with 10 flying birds and 1 non-
flying bird to a knowledge base with 1000 flying birds and 1 non-flying bird).
[16] address this challenge by proposing some new inconsistency measures for
first-order logic.

There are also several works—see e.g. [29,45]—that deal with measuring
inconsistency in ontologies formalised in certain description logics.

5.2 Probabilistic Logic

In probabilistic logic, classical propositional formulas are augmented by prob-
abilities yielding statements such as (sunny A humid)[0.7] meaning “it will be
sunny and humid with probability 0.7”. Semantics are given to such a logic by
means of probability distributions over sets of propositions. Inconsistencies in
modelling with such a logic can appear, in particular, when “the numbers do
not add up”. In addition to the previous formula consider (humid)[0.5] which
states that “it will be humid with probability 0.5”. Both formulas together are
inconsistent as it cannot be the case the probability of being humid is at least
0.7 (which is implied by the first formula) and 0.5 at the same time. Measures
for probabilistic logic, see the recent survey [12], focus on measuring distances of
the probabilities of the formulas to a consistent state or propose weaker notions
of satisfying probability distributions and measure distances between those and
classical probability distributions.

5.3 Non-monotonic Logics

In non-monotonic logics, inconsistency in a knowledge base may be resolved by
adding formulas. Consider e. g. the following rules in answer set programming [8]:
{b «, —b < not a}. Informally, these rules state that b is the case and that if a is
not the case, —b is the case. The negation “not” is a negation-as-failure and the
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whole program is inconsistent as both b and —=b can be derived. However, adding
the rule a «+ stating that a is the case, makes the program consistent again as the
second rule is not applicable any more. An implication of this observation is that
consistent programs may have inconsistent subsets, which make the application
of classical measures based on minimal inconsistent sets useless. In [9] a stronger
notion for minimal inconsistent sets for non-monotonic logics is proposed that
is used for inconsistency measurement in [43], and, in particular, for answer set
programming in [42].

6 Summary and Discussion

In this paper we gave a brief overview on the field of inconsistency measurement.
We motivated the field, discussed several rationality postulates for concrete mea-
sures, and surveyed some of its basic approaches. We also gave a short overview
on approaches that use formalisms other than propositional logic as the base
knowledge representation formalism.

Inconsistency measures can be used to compare different formalisations of
knowledge, to help debug flawed knowledge bases, and guide automatic repair
methods. For example, inconsistency measures have been used to estimate reli-
ability of agents in multi-agent systems [11], to allow for inconsistency-tolerant
reasoning in probabilistic logic [33], or to monitor and maintain quality in
database settings [14].

Inconsistency measurement is a problem that is not easily defined in a formal
manner. Many approaches have been proposed, in particular in recent years, each
taking a different perspective on this issue. We discussed rationality postulates
as a means to prescribe general desirable behaviour of an inconsistency mea-
sure and there have also been a lot of proposals in the recent past, [41] lists an
additional 13 compared to the five postulates we discussed here. Many of them
are mutually exclusive, describe orthogonal requirements, and are not generally
accepted in the community. Besides rationality postulates, other dimensions for
comparing inconsistency measures are their expressivity and their computational
complezity. Expressivity [36,41] refers to the capability of an inconsistency to dif-
ferentiate between many inconsistent knowledge base. For example, the drastic
inconsistency measure—which assigns 1 to every inconsistent knowledge base—
has minimal expressivity as it can only differentiate between consistency and
inconsistency. On the other hand, the contension measure Z. can differentiate
up to n + 1 different states of inconsistency, where n is the number of propo-
sitions appearing in the signature. As for computational complexity, it is clear
that all problems related to inconsistency measurement are coNP-hard, as the
identification of unsatisfiability is always part of the definition. In fact, the deci-
sion problem of deciding whether a certain value is a lower bound for the actual
inconsistency value of a given inconsistency measure, is coNP-complete for many
measures such as 7. [35,41]. However, the problem is harder for other measures,
e. g., the same problem for Z,,, is already X%-complete [44].

This paper points to a series of open research questions that may be inter-
esting to pursue. For example, the discussion on the “right” set of postulates
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is not over. What is needed is a characterising definition of an inconsistency
measure using few postulates, as the entropy is characterised by few simple
properties as an information measure. However, we are currently far away from
a complete understanding of what an inconsistency measure constitutes. More-
over, the algorithmic study of inconsistency measurement has (almost) not been
investigated at all. Although straightforward prototype implementations of most
measures are available®, those implementations do not necessarily optimise run-
time performance. Only a few papers [2,30-32,37] have addressed this challenge
previously, mainly by developing approximation algorithms. Besides more work
on approximation algorithms, another venue for future work is also to develop
algorithms that work effectively on certain language fragments—such as certain
description logics—and thus may work well in practical applications.

Acknowledgements. The research reported here was partially supported by the
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