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Abstract. Property graphs are becoming widespread when modeling
data with complex structural characteristics and enhancing edges and
nodes with a list of properties. In this paper, we focus on the approxi-
mate evaluation of counting queries involving recursive paths on property
graphs. As such queries are already difficult to evaluate over pure RDF
graphs, they require an ad-hoc graph summary for their approximate
evaluation on property graphs. We prove the intractability of the opti-
mal graph summarization problem, under our algorithm’s conditions.
We design and implement a novel property graph summary suitable for
the above queries, along with an approximate query evaluation module.
Finally, we show the compactness of the obtained summaries as well as
the accuracy of answering counting recursive queries on them.

1 Introduction

A tremendous amount of information stored in the LOD can be inspected, by
leveraging the already mature query capabilities of SPARQL, relational, and
graph databases [14]. However, arbitrarily complex queries [2,3,7], entailing
rather intricate, possibly recursive, graph patterns prove difficult to evaluate,
even on small-sized graph datasets [4,5]. On the other hand, the usage of these
queries has radically increased in real-world query logs, as shown by recent empir-
ical studies on SPARQL queries from large-scale Wikidata and DBPedia corpuses
[8,17]. As a tangible example of this growth, the percentage of SPARQL prop-
erty paths has increased from 15% to 40%, from 2017 to beginning 2018 [17], for
user-specified Wikidata queries. In this paper, we focus on regular path queries
(RPQs) that identify paths labeled with regular expressions and aim to offer
an approximate query evaluation solution. In particular, we consider counting
queries with regular paths, which are a notable fragment of graph analytical
queries. The exact evaluation of counting queries on graphs is #P−complete
[21] and is based on another result on enumeration of simple graph paths.
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Due to this intractability, an efficient and highly-accurate approximation of these
queries is desirable, which we address in this paper.

Approximate query processing on relational data and the related sampling
methods are not applicable to graphs, since the adopted techniques are based on
the linearity assumption [15], i.e., the existence of a linear relationship between
the sample size and execution time, typical of relational query processing. As
such, we design a novel query-driven graph summarization approach tailored for
property graphs. These significantly differ from RDF and relational data models,
as they attach data values to property lists on both nodes and edges [7].

To the best of our knowledge, ours is the first work on approximate prop-
erty graph analytics addressing counting estimation on top of navigational graph
queries. We illustrate our query fragment with the running example below.

Example 1 (Social Network Advertising). Let GSN (see Fig. 1) be a property
graph (see Sect. 2) encoding a social network, whose schema is inspired by the
LDBC benchmark [12]1. Entities are people (type Person, Pi) that know (l0)
and/or follow (l1) either each other or certain forums (type Forum, Fi). These
are moderated (l2) by specific persons and can contain (l3) messages/ads (type
Message, Mi), to which persons can author (l4) other messages in reply (l5).

We focus on a RPQ [3,23] dialect with counting, capturing following query
types (Q1 − Q7) (see Fig. 2): (1) Simple/Optional Label. The number of pairs
satisfying Q1, i.e., ()−→ l5(), counts the ad reactions, while that for Q2, i.e.,
()−→ l2?(), indicates the number of potential moderators. (2) Kleene Plus/Kleene
Star. The number of the connected/potentially connected acquaintances is the
count of node pairs satisfying Q3, i.e., () ← l+0 (), respectively, Q4, i.e., () ← l∗0().
(3) Disjunction. The number of the targeted subscribers is the sum of counting
all node pairs satisfying Q5, i.e., () l4←−() or () l1←−(). (4) Conjunction. The direct
reach of a company via its page ads is the count of node pairs satisfying Q6, i.e.,
() l4←−()−→ l5(). (5) Conjunction with Property Filters. Recommendation systems
can further refine the Q6 estimates. Thus, one can compute the direct demo-
graphic reach and target people within an age group, e.g., 18–24, by counting all
node pairs that satisfy Q7, i.e. (x) l4←−()−→ l5(), s.t x.age ≥ 18 and x.age ≤ 24.

Contributions. Our paper provides the following main contributions:

– We design a property graph summarization algorithm for approximately eval-
uating counting regular path queries (Sect. 3).

– We prove the intractability of the optimal graph summarization problem
under the conditions of our summarization algorithm (Sect. 3).

– We define a query translation module, ensuring that queries on the initial
and summary property graphs are expressible in the same fragment (Sect. 4).

– Based on this, we experimentally exhibit the small relative errors of various
workloads, in the expressive query fragment from Example 1. We measure
the relative response time between estimating counting recursive queries on

1 One of the few benchmarks currently available for generating property graphs.
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summaries and on the original graphs. For non-recursive queries, we compare
with SumRDF [19], a baseline graph summary for RDF datasets (Sect. 5).

In Sect. 2, we revisit the property graph model and query language. We present
related work in Sect. 6 and conclude the paper in Sect. 7.
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Fig. 1. Example social graph GSN

Forum Message Reply Person

knows (l0) follows (l1) moderates (l2) contains (l3)

authors (l4) replies (l5) reshares (l6)

Q1(l5) Ans(count( )) ← l5( , )
Q2(l2) Ans(count( )) ← l2?( , )
Q3(l0) Ans(count( )) ← l+0 ( , )
Q4(l0) Ans(count( )) ← l∗0( , )
Q5(l4, l1) Ans(count( )) ← l4 + l1( , )
Q6(l4, l5) Ans(count( )) ← l−4 · l5( , )
Q7(l4, l5) Ans(count(x)) ← l−4 · l5(x, ),≥ (x.age, 18),

≤ (x.age, 24).

Fig. 2. Targeted advertising queries

2 Preliminaries

Graph Model. We take the property graph model (PGM) [7] as our founda-
tion. Graph instances are multi-edge digraphs; its objects are represented by
typed, data vertices and their relationships, by typed, labeled edges. Vertices
and edges can have any number of properties (key/value pairs). Let LV and LE

be disjoint sets of vertex (edge) labels and G = (V,E), with E ⊆ V × LE × V , a
graph instance. Vertices v ∈ V have an id label, lv, and a set of property labels
(attributes, li), each with a (potentially undefined) term value. For e ∈ E, we
use the binary notation e = le(v1, v2) and abbreviate v1, as e.1, and v2, as e.2.
We denote the number of occurrences of le, as #le, and the set of all edge labels
in G, as Λ(G). Other key notations henceforth used are given in Table 1.

Clauses C ::= A ← A1, . . . , An | Q ← A1, . . . , An

Queries Q ::= Ans(count( )) | Ans(count(lv)) | Ans(count(lv1 , lv2))
Atoms A ::= π(lv1 , lv2) | op(lv1 .li, lv2 .lj) | op(lv1 .li, k), op ∈ {<, ≤, >, ≥}, k ∈ R

Paths π ::= ε | le | le? | l−1
e | l∗e | le1 · le2 | π + π

Fig. 3. Graph query language
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Graph Query Language. To query the above property graph model, we rely
on an RPQ [10,11] fragment with aggregate operators (see Fig. 3). RPQs cor-
respond to SPARQL 1.1 property paths and are a well-studied query class
tailored to express graph patterns of one or more label-constrained reachabil-
ity paths. For labels lie and vertices vi, the labeled path π, corresponding to
v1 −→ l1ev2 . . . vk−1 −→ lkevk, is the concatenation l1e · . . . · lke . In their full gen-
erality, RPQs allow one to select vertices connected via such labeled paths in
a regular language over LE . We restrict RPQs to handle atomic paths – bi-
directional, optional, single-labeled (le, le?, and l−e ) and transitive single-labeled
(l∗e) – and composite paths – conjunctive and disjunctive composition of atomic
paths (le · le and π +π). While not as general as SPARQL, our fragment already
captures more than 60% of the property paths found in practice in SPARQL
query logs [8]. Moreover, it captures property path queries, as found in the large
Wikidata corpus studied in [9]. Indeed, almost all the property paths in the con-
sidered logs contain Kleene-star expressions over single labels. In our work, we
enrich the above query classes with the count operator and support basic graph
reachability estimates.

3 Graph Summarization

We introduce a novel algorithm that summarizes any property graph into one
tailored for approximately counting reachability queries. The key idea is that,
as nodes and edges are compressed, informative properties are iteratively added
to the corresponding newly formed structures, to enable accurate estimations.

The grouping phase (Sect. 3.1) computes Φ, a label-driven G-partitioning
into subgroupings, following the connectivity on the most frequent labels in G. A
first summarization collapses the vertices and inner-edges of each subgrouping
into s-nodes and the edges connecting s-nodes, into s-edges. The merge phase
(Sect. 3.2), based on further label-reachability conditions, specified by a heuristic
mode m, collapses s-nodes into h-nodes and s-edges into h-edges.

Table 1. Notation table

G, Φ, v, V, e, E � Graph, graph partitioning, vertex (set), edge
(set)

G∗, v∗, V ∗, e∗, E∗ � S-graph, s-node (set), s-edge (set)

Ĝ, v̂, V̂ , ê, Ê � H-graph, h-node (set), h-edge (set)

λ(G) � label on which a graph G is maximally
l-connected

Λd(v∗), d ∈ {1, 2} � set of edge labels with direction d w.r.t v∗

(1-incoming, 2-outgoing)
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3.1 Grouping Phase

For each frequently occurring label l in G, in descending order, we iteratively
partition G into Φ, containing components that are connected on l, as below.

Definition 1 (Maximal L-Connectivity). A G-subgraph2, G′ = (V ′, E′),
is maximally l-connected, i.e., λ(G′) = l, iff (1) G′ is weakly-connected, (2)
removing any l-labeled edge from E′, there exists a V ′ node pair not connected
by a l+-labeled undirected path, (3) no l-labeled edge connects a V ′ node to V \V ′.

Example 2. In Fig. 1, G1 is maximally l0-connected, since it is weakly-connected,
not connected by an l0-labeled edge to the rest of G, and such that, by removing
P8 −→ l0P9, no undirected, l+0 -labeled path unites P8 and P9.

We call each such component a subgrouping. The procedure (see Algorithm 1)
computes, as the first grouping, all the subgroupings for the most frequent label,
l1, and then identifies those corresponding to the rest of the graph and to l2. At
the end, all remaining nodes are collected into a final subgrouping. We illustrate
this in Fig. 4, on the running example below.

Example 3 (Grouping). In Fig. 1, #l0 = 11, #l1 = 3, #l2 = 2, #l3 = 6, #l4 =
#l5 = 7, #l6 = 1, and

−−−→
Λ(G) = [l0, l5, l4, l3, l1, l2, l6], as #l4 = #l5 allows arbi-

trary ordering. We add the maximal l0-connected subgraph, G1, to Φ. Hence, V =
{Ri∈1,7,Mi∈1,6, F1, F2}. Next, we add G2, regrouping the maximal l5-connected
subgraph. Hence, V = {F1, F2}; we add G3 and output Φ = {G1,G2,G3}.

Algorithm 1. GROUPING(G)
Input: G – a graph; Output: Φ – a graph partitioning

1: n ← |Λ(G)|, −−−→
Λ(G) ← [l1, . . . , ln], Φ ← ∅, i ← 1 �Descending frequency label list

−−−→
Λ(G)

2: for all li ∈ −−−→
Λ(G) do �Label-driven partitioning computation

3: Φ ← Φ ∪ {G∗
k = (V ∗

k , E∗
k) ⊆ G | λ(G∗

k) = li} �Maximally li-Connected Subgraphs

4: V ← V \ {v ∈ V ∗
k | k ∈ N} �Discard Already Considered Nodes

5: i ← i + 1

6: Φ ← Φ ∪ {Gi = (V ∗
i , E∗

i ) ⊆ G | V ∗
i = V \ V ∗} �Collect Remains in Final Subgroup

7: return Φ

A G-partitioning Φ (see Fig. 4a) is transformed into a s-graph G∗ = (V ∗, E∗)
(see Fig. 4b). As such, each s-node gathers all the nodes and inner edges of a
Φ-subgrouping, G∗

j , and each s-edge, all same-labeled cross-edges (edges between
pairwise distinct s-nodes). During this phase, we compute analytics concerning
the regrouped entities. We leverage PGM’s expressivity to internalize these as
properties, e.g., Fig. 5 (right)3. Hence, to every s-edge, e∗, we attach EWeight,
2 G′ is a G-subgraph iff V ′ ⊆ V and E′ ⊆ E and is weakly connected iff there exists an

undirected path between any pair of vertices.
3 All corresponding formulas are provided in the additional material.
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Fig. 4. Summarization phases for GSN

its number of compressed edges, e.g., in Fig. 4b, all s-edges have weight 1, except
e∗(v∗

4 , v
∗
1), with weight 2. To every s-node, v∗, we attach properties concerning:

(1) Compression. VWeight and EWeight store its number of inner vertices/edges.
(2) Inner-Connectivity. The percentage of its l-labeled inner edges is LPercent
and the number of its vertex pairs, connected with an l-labeled edge, is LReach.
These first two types of properties will be useful in Sect. 4, for estimating Kleene
paths, as the labels of inner-edges in s-nodes are not unique, e.g., both l0 and
l1 appear in v∗

1 . (3) Outer-Connectivity. For pairs of labels and direction indices
with respect to v∗ (d = 1, for incoming edges, and d = 2, for outgoing ones), we
compute cross-connectivity, CReach, as the number of binary cross-edge paths
that start/end in v∗. Analogously, we record that of binary traversal paths, i.e.,
formed of an inner v∗ edge and of a cross-edge, as TReach. Also, for a label l
and given direction, we store, as VF , the number of frontier vertices on l, i.e.,
that of v∗ nodes at either endpoint of a l-labeled s-edge.

We can thus record traversal connectivity information, LPart, dividing the
number of traversal paths by that of the frontier vertices on the cross-edge label.
Intuitively, this is due to the fact that, traversal connectivity, as opposed to cross
connectivity, also needs to account for the “dispersion” of the inner-edge label
of the path, within the s-node it belongs to. For example, for a traversal path
lc · li, formed of a cross-edge, lc, and an inner one, li, not all frontier nodes lc
are endpoints of li labeled inner-edges, as we will see in the example below.

Example 4 (Outer-Connectivity). Figure 5 (left) depicts a stand-alone example,
such that circles denote s-nodes, labeled arrows denote the s-edges relating
them, and crosses represent nameless vertices, as we only label relevant ones,
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VWeight v∗
1 10, v∗

{2,3,5,6,7} 2,
v∗
4 3, v∗

{8,9} 1
EWeight v∗

1 14, v∗
{2,3,5,6,7} 1,

v∗
4 3, v∗

{8,9} 0
LReach (v∗

1 , l0) 11, (v∗
1 , l1) 3

LPercent (v∗
1 , l0) 79, (v∗

1 , l1) 21

Fig. 5. Selected properties for Fig. 4b (right); Frontier vertices (left)

for simplicity. We use this configuration to illustrate analytics regarding cross
and traversal connectivity on labels l1 and l2. For instance, as we will see in
Sect. 4, when counting l1 · l−2 cross-edge paths, we will look at the CReach s-
node properties mentioning these labels and note that there is a single such
one, i.e., that corresponding to l1 and l2 appearing on edges incoming v∗

1 , i.e.,
CReach(v∗

1 , l1, l2, 1, 1) = 1. When counting l1 · l2 traversal paths, for the case
when l1 appears on the cross-edge, we will look at the properties of s-nodes con-
taining l2 inner-edges. Hence, for v∗

2 , we note that there is a single such path,
formed by an outgoing l2 edge and incoming l1 edge, as TReach(v∗

2 , l1, l2, 1, 1) =
1. To estimate the traversal connectivity we will divide this by the number of
frontier vertices on incoming l1 edges. As, VF (v∗

2 , l1, 1) = {v2, v3}, we have that
LPart(v∗

2 , l1, l2, 1, 1) = 0.5.

3.2 Merge Phase

We take as input the graph computed by Algorithm1, and a label set and out-
put a compressed graph, Ĝ = (V̂ , Ê). During this phase, sets of h-nodes, V̂ ,
and h-edges, Ê, are created. At each step, as previously, Ĝ is enriched with
approximation-relevant precomputed properties (see Sect. 4).

Each h-node, v̂, merges all s-nodes, v∗
i , v∗

j ∈ V ∗, that are maximally label
connected on the same label, i.e., λ(v∗

i ) = λ(v∗
j ), and that have either the

same set of incoming (source-merge) or outgoing (target-merge) edge labels, i.e.,
Λd(v∗

i ) = Λd(v∗
j ), d ∈ {1, 2} (see Algorithm 2). Each h-edge, ê, merges all s-edges

in E∗ with the same label and orientation, i.e., e∗
i .d = e∗

j .d, for d ∈ {1, 2}.

Algorithm 2. MERGE(V ∗, Λ, m)

Input: V ∗ – s-nodes; Λ – labels; m – heuristic mode; Output: V̂ – h-nodes

1: for all v∗ ∈ V ∗ do
2: Λd(v∗) ← {l ∈ Λ | ∃e∗ = l( , ) ∈ E∗ ∧ e.d = v∗} �Labels Incoming/Outgoing v∗

3: for all v∗
1 , v∗

2 ∈ V ∗ do �Pair-wise S-node Inspection

4: bλ ← λ(v∗
1)

?
= λ(v∗

2), bd ← Λd(v∗
1)

?
= Λd(v∗

2), d ∈ {1, 2} �Boolean Conditions

5: if m = true then v̂ ← {v∗
1 , v∗

2 | bλ ∧ b1 = true} �Target-Merge

6: else v̂ ← {v∗
1 , v∗

2 | bλ ∧ b2 = true} �Source-Merge

7: V̂ ← {v̂k | k ∈ [1, |V ∗|]} �H-node Computation

8: return V̂
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To each h-node, we attach properties, whose values, except LPercent, are
the sum of those corresponding to each of its s-nodes. For the label percentage,
these values record the weighted percentage mean. Next, we merge s-edges into
h-edges, if they have the same label and endpoints, and attach to each h-edge, its
number of compressed s-edges, EWeight. We also record the avg. s-node weight,
V∗Weight, to estimate how many nodes a h-node compresses.

To formally characterize the graph transformation corresponding to our sum-
marization technique, we first define the following function.

Definition 2 (Valid Summarization). For G = (V, E), a valid summariza-
tion function χΛ : V → N assigns vertex identifiers, s.t., any vertices with the
same identifier are either in the same maximally l-connected G-subgraph, or in
different ones, not connected by an l-labeled edge.

A valid summary is thus obtained from G, by collapsing vertices with the same
χΛ into h-nodes and edges with the same (depending on the heuristic, ingo-
ing/outgoing) label into h-edges. We illustrate this below.

Example 5 (Graph Compression). The graphs in Fig. 4c are obtained from G∗ =
(V ∗, E∗), after the merge phase. Each h-node contains the s-nodes (see Fig. 4b)
collapsed via the target-merge (left) and source-merge (right) heuristics.

We study our summarization’s optimality, i.e., the size of the obtained com-
pressed graph, to graphs its tractability. Specifically, we investigate the follow-
ing MinSummary problem, to establish whether one can always minimize the
number of nodes of an input graph, when constructing its valid summary.

Problem 1 (Minimal Summary). Let MinSummary be the problem that, for a
graph G and an integer k′ ≥ 2, decides if there exists a label-driven partitioning
Φ of G, |Φ| ≤ k′, such that χΛ is a valid summarization.

Each MinSummary h-node is thus intended to regroup as many nodes from
the original graph as possible, while ensuring these are connected by frequently
occurring labels. This condition (see Definition 2) reflects the central idea of our
framework, namely that the connectivity of such prominent labels can serve to
both compress a graph and to approximately evaluate label-constrained reacha-
bility queries. Next, we establish the difficulty of solving MinSummary.

Theorem 1 (MinSummary NP-completeness). Even for undirected
graphs, |Λ(G)| ≤ 2, and k′ = 2, MinSummary is NP-complete4.

The intractability of constructing an optimal summary thus justifies our
search for heuristics with good performance in practice.

4 Proof given at: http://web4.ensiie.fr/∼stefania.dumbrava/SUM19 appx.pdf.

http://web4.ensiie.fr/~stefania.dumbrava/SUM19_appx.pdf
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4 Approximate Query Evaluation

Query Translation. For G and a counting reachability query Q, we approxi-
mate [[Q]]G , the evaluation of Q over G. We translate Q into a query QT , evaluated
over the summarization Ĝ of G, s.t [[QT ]]Ĝ ≈ [[Q]]G . The translations by input
query type are given in Fig. 6, with PGQL as concrete syntax. (1) Simple and
Optional Label Queries. A label l occurs in Ĝ either within a h-node or on a cross-
edge. Thus, we either cumulate the number of l-labeled h-node inner-edges or the
l-labeled cross-edge weights. To account for the potential absence of l, we also
estimate, in the optional-label queries, the number of nodes in Ĝ, by cumulating
those in each h-node. (2) Kleene Plus and Kleene Star Queries. To estimate l+,
we cumulate the counts within h-nodes containing l-labeled inner-edges and the
weights on l-labeled cross-edges. For the former, we distinguish whether the l+
reachability is due to: (1) inner-connectivity – we use the property counting the
inner l-paths; (2) incoming cross-edges – we cumulate the l-labeled in-degrees
of h-nodes; or (3) outgoing cross-edges – we cumulate the number of outgoing
l-paths. To handle the ε-label in l∗, we also estimate the number of nodes in Ĝ.
(3) Disjunction. We treat each possible configuration, on both labels. Hence, we
either cumulate the number of h-node inner-edges or that of cross-edge weights,
with either label. (4) Binary Conjunction. We distinguish whether the label pair
appears on an inner h-node path, on a cross-edge path, or on a traversal one.

Example 6. We illustrate the approximate evaluation of these query types on
Fig. 4. To evaluate the number of single-label atomic paths, e.g., QT

L(l5), as
l5 only occurs inside h-node v̂2, [[l5]]Ĝ is the amount of l5-labeled inner edges
in v̂2, i.e., EWeight(v̂2, l5) ∗ LPercent(v̂2, l5) = 7. To estimate the number of
optional label atomic paths, e.g., QT

O(l2), we add to QT
L(l2) the total number

of graph vertices,
∑

v̂∈V̂ V∗Weight(v̂) ∗ VWeight(v̂) (empty case). As l2 only
appears on a h-edge of weight 2 and there are 25 initial vertices, [[l2?]]Ĝ is 27. To
estimate Kleene-plus queries, e.g., QT

P (l0), as no h-edge has label l0, we return
LReach(v̂1, l0), i.e., the number of l0-connected vertex pairs. Thus, [[l+0 ]]Ĝ is 15.
For Kleene-star, we add to this, the previously computed total number of vertices
and obtain that [[l∗0]]Ĝ is 40. For disjunction queries, e.g., [[l4 + l1]]Ĝ , we cumulate
the single-labeled atomic paths on each label, yielding 14. For binary conjunc-
tions, e.g., [[l−4 · l5]]Ĝ , we rely on the traversal connectivity, LPart(v∗, l4, l5, 2, 2),
as l4 appears on a h-edge and, l5, inside h-nodes; we thus count 7 node pairs.
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QL(l) SELECT COUNT(*) MATCH () -[:l]-> ()

QT
L(l) SELECT SUM(x.LPERCENT_L * x.EWEIGHT) MATCH (x)

SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()

QO(l) SELECT COUNT(*) MATCH () -[:l?]-> ()

QT
O

SELECT SUM(x.LPERCENT_L * x.EWEIGHT) MATCH (x)
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()
SELECT SUM(x.AVG_SN_VWEIGHT * x.VWEIGHT) MATCH (x)

QP (l) SELECT COUNT(*) MATCH () -/:l+/-> ()

QT
P (l) SELECT SUM(x.LREACH_L) MATCH (x) WHERE x.LREACH_L > 0

SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()

QS(l) SELECT COUNT(*) MATCH () -/:l*/-> ()

QT
S (l)

SELECT SUM(x.LREACH_L) MATCH (x) WHERE x.LREACH_L > 0
SELECT SUM(e.EWEIGHT) MATCH () -[e:l]-> ()
SELECT SUM(x.AVG_SN_VWEIGHT * x.VWEIGHT) MATCH (x)

QD(l1, l2) SELECT COUNT(*) MATCH () -[:l1|l2]-> ()

QT
D(l1, l2) SELECT SUM(x.LPERCENT_L1 * x.EWEIGHT + x.LPERCENT_L2 * x.EWEIGHT) MATCH (x)

SELECT SUM(e.EWEIGHT) MATCH () -[e:l1|l2]-> ()

QC(l1, l2, 1, 1) SELECT COUNT(*) MATCH () -[:l1]-> () <-[:l2]- ()

QC(l1, l2, 1, 2) SELECT COUNT(*) MATCH () -[:l1]-> () -[:l2]-> ()

QC(l1, l2, 2, 1) SELECT COUNT(*) MATCH () <-[:l1]- () <-[:l2]- ()

QC(l1, l2, 2, 2) SELECT COUNT(*) MATCH () <-[:l1]- () -[:l2]-> ()

QT
C(l1, l2, d1, d2)

SELECT SUM((x.LPART_L2_L1_D2_D1 * e.EWEIGHT)/(x.LPERCENT_L1 * x.VWEIGHT))
MATCH (x) -[e:l2] -> () WHERE x.LPERCENT_L1 > 0
SELECT SUM((y.LPART_L1_L2_D1_D2 * e.EWEIGHT)/(y.LPERCENT_L2 * y.VWEIGHT))
MATCH () -[e:l1] -> (y) WHERE y.LPERCENT_L2 >0
SELECT SUM(x.CREACH_L1_L2_D1_D2) MATCH (x)
SELECT SUM(x.EWEIGHT * min(x.LPERCENT_L1, x.LPERCENT_L2)) MATCH (x)

Fig. 6. Query translations onto the graph summary.

5 Experimental Analysis

In this section, we present an empirical evaluation of our graph summariza-
tion, recording (1) the succinctness of our summaries and the efficiency of the
underlying algorithm and (2) the suitability of our summaries for approximate
evaluation of counting label-constrained reachability queries.

Setup, Datasets and Implementation. The summarization and approxima-
tion modules are implemented in Java using OpenJDK 1.85. As the underlying
graph database backend, we have used Oracle Labs PGX 3.1, which is the only
property graph engine allowing for the evaluation of complex RPQs.

To implement the intermediate graph analysis operations (e.g., weakly con-
nected components), we used the Green-Marl domain-specific language and mod-
ified the methods to fit the construction of node properties required by our
summarization algorithm. We base our analysis on the graph datasets in Fig. 7,
encoding: a Bibliographic network (bib), the LDBC social network schema [12]
(social), Uniprot knowledge graphs (uniprot), and the WatDiv schema [1] (shop).

We obtained these datasets using gMark [5], a synthetic graph instance and
query workload generator. As gMark tries to construct the instance that best fits

5 Available at: https://github.com/grasp-algorithm/label-driven-summarization.

https://github.com/grasp-algorithm/label-driven-summarization
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Dataset |LV | |LE | ∼ 1K ∼ 5K ∼ 25K ∼ 50K ∼ 100K ∼ 200K
|V | |E| |V | |E| |V | |E| |V | |E| |V | |E| |V | |E|

bib 5 4 916 1304 4565 6140 22780 3159 44658 60300 88879 119575 179356 240052
social 15 27 897 2127 4434 10896 22252 55760 44390 110665 88715 223376 177301 450087
uniprot 5 7 2170 3898 6837 18899 25800 97059 47874 192574 91600 386810 177799 773082
shop 24 82 3136 4318 6605 10811 17893 34052 31181 56443 57131 93780 109205 168934

Fig. 7. Datasets: no. of vertices |V |, edges |E|, vertex |LV | and edge labels |LE |.

the size parameter and schema constraints, the resulting sizes vary (especially for
the very dense graphs social and shop). Next, on the same datasets, we generated
workloads of varying sizes, for each type in Sect. 2. These datasets and related
query workloads have been chosen since they provide the most recent benchmarks
for recursive graph queries and also to ensure a comparison with SumRDF [19]
(as shown next) on a subset of those supported by the latter. Studies [8,17] have
shown that practical graph pattern queries formulated by users in online query
endpoints are often small: 56.5% of real-life SPARQL queries consist of a single
edge (RDF triple), whereas 90.8% use 6 edges at most. Hence, we select small-
sized template queries with frequently occurring topologies, such as chains [8],
and formulate them on our datasets, for workloads of ∼600 queries.

Experiments ran on a cloud VM with Intel Xeon E312xx, 4 cores, 1.80 GHz
CPU, 128 GB RAM, and Ubuntu 16.04.4 64-bit. Each data point corresponds to
repeating an experiment 6 times, removing the first value from the average.

Summary Compression Ratios. First, we evaluate the effect that using the
source-merge and target-merge heuristics has on the summary construction time
(SCT). We also assess the compression ratio (CR) on the original graph’s vertices
and edges, by measuring (1 − |V̂|/|V|) ∗ 100 and, respectively, (1 − |Ê|/|E|) ∗ 100.

Next, we compare the results for source and target merge. In Fig. 8(a-d), the
most homogeneous datasets, bib and uniprot, achieve very high CR (close to
100%) and steadily maintain it with varying graph sizes. As far as heterogeneity
significantly grows for shop and social, the CR becomes eagerly sensitive to
the dataset size, starting with low values, for smaller graphs, and stabilizing
between 85% and 90%, for larger ones. Notice also that the most heterogeneous
datasets, shop and social, although similar, display a symmetric behavior for the
vertex and edge CRs: the former better compresses vertices, while the latter,
edges. Concerning the SCT runtime in Fig. 8(e-f), all datasets keep a reasonable
performance for larger sizes, even the most heterogeneous one shop. The runtime
is, in fact, not affected by heterogeneity, but is rather sensitive, for larger sizes,
to |E| variations (up to 450K and 773K, for uniprot and social). Also, while
the source and target merge SCT runtimes are similar, the latter achieves better
CRs for social. Overall, the dataset with the worst CR for the two heuristics is
shop, with the lowest CR for smaller sizes. This is also due to the high number of
labels in the initial shop instances, and, hence, to the high number of properties
its summary needs: on average, for all considered sizes, 62.33 properties, against
17.67, for social graph, 10.0, for bib, and 14.0, for uniprot. These experiments
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Fig. 8. CRs for vertices and edges, along with SCT runtime for various dataset sizes,
for both source-merge (a-c-e), and target-merge (b-d-f).

show that, despite its high complexity, our summarization provides high CRs
and low SCT runtimes, even for large, heterogeneous graphs.

Approximate Evaluation Accuracy. We assess the accuracy and efficiency
of our engine with the relative error and time gain measures, respectively. The
relative error (per query Qi) is 1 − min(Qi(G), QT

i (Ĝ))/ max(Qi(G), QT
i (Ĝ)) (in

%), where Qi(G) computes (with PGX) the counting query Qi, on the original
graph, and QT

i (Ĝ) computes (with our engine) the translated query QT
i , on the

summary. The time gain is: tG − tĜ/max(tG , tĜ) (in %), where tG and tĜ are the
query evaluation times of Qi on the original graph and on the summary.

For the Disjunction, Kleene-plus, Kleene-star, Optional and Single Label
query types, we have generated workloads of different sizes, bound by the num-
ber of labels in each dataset. For the concatenation workloads, we considered
binary conjunctive queries (CQs) without disjunction, recursion, or optionality.
Note that, currently, our summaries do not support compositionality.

Figure 9(a) and (b) show the relative error and average time gain for the
Disjunction, Kleene-plus, Kleene-star, Optional and Single Label workloads. In
Fig. 9(a), we note that the avg. relative error is kept low in all cases and is bound
by 5.5%, for the Kleene-plus and Kleene-star workloads of the social dataset.
In all the other cases, including the Kleene-plus and Kleene-star workloads of
the shop dataset, the error is relatively small (near 0%). This confirms the effec-
tiveness of our graph summaries for approximate evaluation of graph queries. In
Fig. 9(b), we studied the efficiency of approximate evaluation on our summaries
by reporting the time gain (in %) compared with the query evaluation on the
original graphs for the four datasets. We notice a positive time gain (≥75%)
in most cases, but for disjunction. While the relative approximation error is
still advantageous for disjunction, disjunctive queries are time-consuming for
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(a) Avg. Rel. Error/Workload (b) Avg. Time Gain/Workload

Fig. 9. Rel. Error (a), Time Gain (b) per Workload, per Dataset, 200K nodes.

ID Query Body Approx. Answer Rel. Error (%) Runtime (ms)
SumRDF APP SumRDF APP SumRDF APP

Q1 (x0)-[:producer]->()<-[:paymentAccepted]-(x1) 75 76 1.32 0.00 136.30 38.2
Q2 (x0)-[:totalVotes]->()<-[:price]-(x1) 42.4 44 3.64 0.00 50.99 17
Q3 (x0)-[:jobTitle]->()<-[:keywords]-(x1) 226.7 221 2.51 0.18 463.85 12.8
Q4 (x0)<-[:title]-()-[:performedIn]->(x1) 19.5 20 2.50 0.00 831.72 8.8
Q5 (x0)-[:artist]->()<-[:employee]-(x1) 143.3 133 7.19 0.37 196.77 10.6
Q6 (x0)-[:follows]->()<-[:editor]-(x1) 524 528 0.38 0.48 1295.83 19

Fig. 10. Performance Comparison: SumRDF vs. APP (our approach): approx. eval. of
binary CQs, SELECT COUNT(*) MATCH Qi, on the summaries of a shop graph instance
(31K nodes, 56K edges); comparing estimated cardinality (no. of computed answers),
rel. error w.r.t the original graph results, and query runtime.

approximate evaluation on our summaries, especially for extremely heteroge-
neous datasets, such as shop (having the most labels). This is due to the over-
head introduced by considering all possible connectivity combinations on the
disjunctive labels. The problem of scaling our method, without prohibitive accu-
racy loss, to queries involving multiple labels and further compositionality, e.g.,
Kleene-star over disjunctions [22], is challenging and falls under the scope of
future work.

Baseline for Approximate Query Evaluation Performance. The clos-
est system to ours is SumRDF [19] (see Sect. 6), which, however, operates on
a simpler edge-labeled model rather than on property graphs and is tailored for
estimating the results of conjunctive queries only. As a performance baseline, we
considered the shop dataset in gMark [5], simulating the WatDiv benchmark [1]
(also a benchmark in [19]). From this dataset with 31K nodes and 56K edges,
we generated the corresponding SumRDF and our summaries. We obtained a
better CR than SumRDF, with 2737 nodes vs. 3480 resources and 17430 edges
vs. 29621 triples. This comparison is, however, tentative, as our approach com-
presses vertices independently of the edges, while SumRDF returns triples. We
then considered the same CQ types as in Fig. 10. Comparing our approach vs.
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SumRDF (see Fig. 10), we recorded an average relative error of estimation of only
0.15%. vs. 2.5% and an average query runtime of only 27.55 ms vs. 427.53
ms. As SumRDF does not support disjunctions, Kleene-star/plus queries and
optional queries, further comparisons were not possible.

6 Related Work

Preliminary work on approximate graph analytics in a distributed setting has
recently been pursued in [15]. They rather focus on a graph sparsification tech-
nique and small samples, in order to approximate the results of specific graph
algorithms, such as PageRank and triangle counting on undirected graphs. In
contrast, our approach operates in a centralized setting and relies on query-
driven graph summarization for graph navigational queries with aggregates.

RDF graph summarization for cardinality estimation has been tackled in [19],
albeit for a less expressive data model than ours (plain RDF vs. property graphs).
They focus on Basic Graph Patterns (BGP), hence their considered query frag-
ment has limited overlap with ours. As shown in Sect. 5, our approximate eval-
uation is faster and more accurate on a common set of (non recursive) queries.

An algorithm for answering graph reachability queries, using graph simu-
lation based pattern matching, is given in [13], to construct query preserving
summaries. However, it does not consider property graphs or aggregates.

Aggregation-based graph summarization [16] is at the heart of previous
approaches, the most notable of which is SNAP [20]. This method is mainly
devoted to discovery-driven graph summarization of heterogeneous networks and
is unsuitable for approximate query evaluation.

More recently, Rudolf et al. [18] have introduced a graph summary suitable
for property graphs based on a set of input summarization rules. However, it does
not support the label-constrained reachability queries in this paper. Graph sum-
maries for answering subgraphs returned by keyword queries on large networks
are studied in [24]. Our query classes significantly differ from theirs.

7 Conclusion

Our paper focuses on a novel graph summarization method that is suitable for
property graph querying. As the underlying MinSummary decision problem is
NP-complete, this technique builds on an heuristic that compresses label fre-
quency information in the nodes of the graph summary. We show the practical
effectiveness of our approach, in terms of compression ratios, error rates and
query evaluation time. As future work, we plan to investigate the feasibility of
our graph summary for other query classes, such as those described in [22]. Also,
we aim to apply formal methods, as described in [6], to ascertain the correctness
of our approximation algorithm, with provably tight error bounds.
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