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Abstract. The paper first examines the contours of artificial intelli-
gence (AI) at its beginnings, more than sixty years ago, and points out
the important place that machine learning already had at that time. The
ambition of AI of making machines capable of performing any informa-
tion processing task that the human mind can do, means that AI should
cover the two modes of human thinking: the instinctive (reactive) one
and the deliberative one. This also corresponds to the difference between
mastering a skill without being able to articulate it and holding some
pieces of knowledge that one can use to explain and teach. In case a
function-based representation applies to a considered AI problem, the
respective merits of learning a universal approximation of the function
vs. a rule-based representation are discussed, with a view to better draw
the contours of AI. Moreover, the paper reviews the relative positions of
knowledge and data in reasoning and learning, and advocates the need
for bridging the two tasks. The paper is also a plea for a unified view of
the various facets of AI as a science.

1 Introduction

What is artificial intelligence (AI) about? What are the research topics that
belong to AI? What are the topics that stand outside? In other words, what
are the contours of AI? Answers to these questions may have evolved with time,
as did the issue of the proper way (if any) of doing AI. Indeed over time, AI
has been successively dominated by logical approaches (until the mid 1990’s)
giving birth to the so-called “symbolic AI”, then by (Bayesian) probabilistic
approaches, and since recently by another type of numerical approach, artificial
neural networks. This state of facts has contributed to developing antagonistic
feelings between different schools of thought, including claims of supremacy of
some methods over others, rather than fostering attempts to understand the
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potential complementarity of approaches. Moreover, when some breakthrough
takes place in some sector of AI such as expert systems in the 1980’s, or fuzzy
logic in the 1990’s (outside mainstream AI), or yet deep learning [51] nowadays,
it is presented through its technological achievements rather than its actual
scientific results. So we may even - provocatively - wonder: Is AI a science, or
just a bunch of engineering tools? In fact, AI has developed over more than sixty
years in several directions, and many different tools have been proposed for a
variety of purposes. This increasing diversity, rather than being a valuable asset,
may be harmful for an understanding of AI as a whole, all the more so as most
AI researchers are highly specialized in some area and are largely ignoring the
rest of the field.

Besides, beyond the phantasms and fears teased by the phrase ‘artificial
intelligence’, the meaning of words such as ‘intelligence’, ‘learning’, or ‘reason-
ing’ has a large spectrum and may refer to quite different facets of human mind
activities, which contributes to blur the meaning of what we claim when we
are using the acronym AI. Starting with ‘intelligence’, it is useful to remember
the dichotomy popularized in [44] between two modes of thinking: “System 1”
which is fast, instinctive and emotional, while “System 2” is slower, more delib-
erative, and more logical. See [76] for an illustration of similar ideas in the area
of radiological diagnosis, where “super-experts” provide correct diagnosis, even
on difficult cases, without any deliberation, while “ordinary experts” may hesi-
tate, deliberate on the difficult cases and finally make a wrong diagnosis. Yet, a
“super-expert” is able to explain what went wrong to an “ordinary expert” and
what important features should have been noticed in the difficult cases.

Darwiche [21] has recently pointed out that what is achieved by deep leaning
corresponds to tasks that do not require much deliberation, at least for a top
expert, and is far from covering all that may be expected from AI. In other words,
the system is mastering skills rather than being also able to elaborate knowledge
for thinking and communicating about its skills. This is the difference between
an excellent driver (without teaching capability) and a driving instructor.

The intended purpose of this paper is to advocate in favor of a unified view
of AI both in terms of problems and in terms of methods. The paper is orga-
nized as follows. First, in Sect. 2 a reminder on the history of the early years of
AI emphasizes the idea that the diversity of AI has been there from its incep-
tion. Then Sect. 3 first discusses relations between a function-based view and a
rule-based view of problems, in relation with “modeling versus explaining” con-
cerns. The main paradigms of AI are then restated and the need for a variety of
approaches ranging from logic to probability and beyond is highlighted. Section 4
reviews the roles of knowledge and data both in reasoning and in machine learn-
ing. Then, Sect. 5 points out problems where bridging reasoning and learning
might be fruitful. Section 6 calls for a unified view of AI, a necessary condition
for letting it become a mature science.
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2 A Short Reminder of the Beginnings of AI

To have a better understanding of AI, it may be useful to have a historical view
of the emergence of the main ideas underling it [53,54,64]. We only focus here
on its beginnings. Still it is worth mentioning that exactly three hundreds years
before the expression ‘artificial intelligence’ was coined, the English philoso-
pher Thomas Hobbes of Malmesbury (1588–1679) described human thinking
as a symbolic manipulation of terms similar to mathematical calculation [39].
Indeed, he wrote “Per Ratiocinationem autem intelligo computationem.” (or in
English one year later “By ratiocination I mean computation.”) The text con-
tinues with “Now to compute, is either to collect the sum of many things that
are added together, or to know what remains when one thing is taken out of
another. Ratiocination, therefore, is the same with addition and subtraction;”
One page after one reads: “We must not therefore think that computation, that
is, ratiocination, has place only in numbers, as if man were distinguished from
other living creatures (which is said to have been the opinion of Pythagoras) by
nothing but the faculty of numbering; for magnitude, body, motion, time, degrees
of quality, action, conception, proportion, speech and names (in which all the
kinds of philosophy consist) are capable of addition and subtraction.” Such a
description appears retrospectively quite consonant with what AI programs are
trying to do!

In the late 1940’s with the advent of cybernetics [96], the introduction of
artificial neural networks [56]1, the principle of synaptic plasticity [37] and the
concept of computing machines [91] lead to the idea of thinking machines with
learning capabilities. In 1950, the idea of machine intelligence appeared in a
famous paper by Turing [92], while Shannon [89] was investigating the possibility
of a program playing chess, and the young Zadeh [97] was already suggesting
multiple-valued logic as a tool for the conception of thinking machines.

As it is well-known, the official birthday act of AI corresponds to a research
program whose application for getting a financial support, was written in the
summer of 1955, and entitled “A proposal for the Dartmouth summer research
project on artificial intelligence” (thus putting the name of the new field in the
title!); it was signed by the two fathers of AI, John McCarthy (1927–2011),
and Marvin Minsky (1927–2016), and their two mentors Nathaniel Rochester
(1919–2001) (who designed the IBM 701 computer and was also interested in
neural network computational machines), and Claude Shannon (1916–2001) [55]
(in 1950 he was already the founder of digital circuit design theory based on
Boolean logic, the founder of information theory, but also the designer of an
electromechanical mouse (Theseus) capable of searching through the corridors
of a maze until reaching a target and of acquiring and using knowledge from
past experience). Then a series of meetings was organized at Dartmouth College
(Hanover, New Hampshire, USA) during the summer of 1956. At that time,
McCarthy was already interested in symbolic logic representations, while Minsky

1 One would notice the word ‘logical’ in the title of this pioneering paper.
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had already built a neural network learning machine (he was also a friend of
Rosenblatt [79] the inventor of perceptrons).

The interests of the six other participants can be roughly divided into rea-
soning and learning concerns, they were on the one hand Simon (1916–2001),
Newell (1927–1992) [63] (together authors with John Clifford Shaw (1922–1991)
of a program The Logic Theorist able to prove theorems in mathematical logic),
and More [60] (a logician interested in natural deduction at that time), and
on the other hand Samuel (1901–1990) [81] (author of programs for checkers,
and later chess games), Selfridge (1926–2008) [84] (one of the fathers of pattern
recognition), and Solomonoff (1926–2009) [90] (already author of a theory of
probabilistic induction).

Interestingly enough, as it can be seen, these ten participants, with differ-
ent backgrounds ranging from psychology to electrical engineering, physics and
mathematics, were already the carriers of a large variety of research directions
that are still present in modern AI, from machine learning to knowledge repre-
sentation and reasoning.

3 Representing Functions and Beyond

There are two modes of representation of knowledge, that can be called respec-
tively functional and logical. The first mode consists in building a large, often
numerical, function that produces a result when triggered by some input. The
second mode consists of separate, possibly related, chunks of explicit knowledge,
expressed in some language. The current dominant machine learning paradigm
(up to noticeable exceptions) has adopted the functional approach2, which
ensures impressive successes in tasks requiring reactiveness, at the cost of los-
ing explanatory power. Indeed, we can argue that what is learnt is know-how
or skills, rather than knowledge. The other, logical, mode of representation, is
much more adapted to the encoding of articulated knowledge, reasoning from
it, and to the production of explanations via deliberation, but its connection to
learning from data is for the most part still in infancy.

A simple starting point for discussing relationships between learning and
reasoning is to compare the machineries of a classifier and a rule-based expert
system, for diagnosis for instance. In both cases, a function-based view may
apply. On the one hand, from a set of examples (of inputs and outputs of the
function, such as pairs (symptoms, disease)) one can easily predict the disease
corresponding to a new case via its input symptoms, after learning some function
(e.g., using neural nets). On the other hand, one may have a set of expert rules
stating that if the values of the inputs are such and such, the global evaluation
should be in some subset. Such rules are mimicking the function. If collected
from an expert, rules may turn out to be much less successful than the function
learned from data. Clearly, the first view may provide better approximations
and does not require the elicitation of expert rules, which is costly. However,
the explanatory power will be poor in any case, because it will not be possible
2 Still this function-based approach is often cast in a probabilistic modeling paradigm.
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to answer “why not” questions and to articulate explanations based on causal
relations. On the contrary, if causal knowledge is explicitly represented in the
knowledge base, it has at least the merit of offering a basis for explanations (in a
way that should be cognitively more appropriate for the end-user). It is moreover
well-known that causal information cannot easily be extracted from data: only
correlations can be laid bare if no extra information is added [66].

The fuzzy set literature offers early examples of the replacement of an auto-
matic control law by a set of rules. Indeed Zadeh [98] proposed to use fuzzy
expert rules for controlling complex non linear dynamic systems that might be
difficult to model using a classical automatic control approach, while skilled
humans can do the job. This was rapidly shown to be successful [52]. The fact of
using fuzzy rules, rather than standard Boolean if-then rules, had the advantage
of providing a basis for an interpolation mechanism, when an input was firing
several rules to some degree. Although the approach was numerical and quite
far from the symbolic logic-based AI mainstream trend in those times, it was
perceived as an AI-inspired approach, since it was relying on the representation
of expert know-how by chunks of knowledge, rather than on the derivation of a
control law from the modeling of the physical system to be controlled (i.e., the
classical control engineering paradigm). After some time, it was soon recognized
that fuzzy rules could be learnt rather than obtained from experts, while keeping
excellent results thanks to the property of universal approximation possessed by
sets of fuzzy rules. Mathematical models of such fuzzy rules are in fact closely
related to neural network radial basis functions. But, fuzzy rules thus obtained
by learning may become hardly intelligible. This research trend, known under
the names of ‘soft computing’ or ‘computational intelligence’, thus often drifted
away from an important AI concern, the explainability power; see [27] for a
discussion.

The long term ambition of AI is to make machines capable of performing any
information processing task the human mind can perform. This certainly includes
recognition, identification, decision and diagnosis tasks (including sophisticated
ones). They are “System 1” tasks (using Kahneman terminology) as long as
we do not need to explain and reason about obtained results. But there are
other problems that are not fully of this kind, even if machine learning may
also play a role in their solving. Consider for instance the solving of quadratic
equations. Even if we could predict, in a bounded domain, by machine learning
techniques, whether an equation has zero, one or two solutions and what are their
values (with a good approximation) from a large amount of examples, the solving
of such equations by discovering their analytical solution(s), via factorization
through symbolic calculations, seems to be a more powerful way of handling of
the problem (the machine could then teach students).

AI problems cannot always be viewed in terms of the function-based view
mentioned above. There are cases where we do not have a function, only a one-to-
many mapping, e.g., when finding all the solutions (if any) of a set of constraints.
Apart from solving combinatorial problems, tasks such as reasoning about static
or dynamical situations, or building action plans, or explaining results, commu-
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nicating explanations pertaining to machine decisions in a meaningful way to
an end-user, or analyzing arguments and determining their possible weakness,
or understanding what is going on in a text, a dialog in natural langage, in an
image, a video, or finding relevant information and summarizing it are examples
that may require capabilities beyond pure machine learning. This is why AI, over
the years, has developed general representation settings and methods capable of
handling large classes of situations, while mastering computation complexity.
Thus, at least five general paradigms have emerged in AI:

– Knowledge representation with symbolic or numerical structured settings
for representing knowledge or preferences, such as logical languages, graph-
ical representations like Bayesian networks, or domain ontologies describing
taxonomy of concepts. Dedicated settings have been also developed for the
representation of temporal or spatial information, of uncertain pieces of infor-
mation, or of independence relations.

– Reasoning and decision Different types of reasoning tasks, beyond classical
deduction, have been formalized such as: non monotonic reasoning for deal-
ing with exception-tolerant rules in the presence of incomplete information,
or reasoning from inconsistent information, or belief revision, belief updating,
information fusion in the presence of conflicts, or formal argumentation han-
dling pros and cons, or yet reasoning directly from data (case-based reasoning,
analogical reasoning, interpolation, extrapolation). Models for qualitative (or
quantitative) decision from compact representations have been proposed for
decision under uncertainty, multiple criteria, or group decisions.

– General algorithms for problem solving This covers a panoply of generic
tools ranging from heuristic ordered search methods, general problem solver
techniques, methods for handling constraints satisfaction problems, to effi-
cient algorithms for classical logic inference (e.g., SAT methods), or for deduc-
tion in modal and other non-classical logics.

– Learning The word ‘learning’ also covers different problems, from the clas-
sification of new items based on a set of examples (and counter-examples),
the induction of general laws describing concepts, the synthesis of a function
by regression, the clustering of similar data (separating dissimilar data into
different clusters) and the labelling of clusters, to reinforcement learning and
to the discovery of regularities in data bases and data mining. Moreover, each
of these problems can often be solved by a variety of methods.

– Multiple agent AI Under this umbrella, there are quite different problems
such as: the cooperation between human or artificial agents and the organi-
zation of tasks for achieving collective goals, the modeling of BDI agents
(Belief, Desire, Intention), possibly in situations of dialogue (where, e.g.,
agents, which have different information items at their disposal, do not pur-
sue the same goals, and try to guess the intentions of the other ones), or the
study of the emergence of collective behaviors from the behaviors of elemen-
tary agents.
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4 Reasoning with Knowledge or with Data

In the above research areas, knowledge and data are often handled separately.
In fact, AI traditionally deals with knowledge rather than with data, with the
important exception of machine learning, whose aim can sometimes be viewed
as changing data into knowledge. Indeed, basic knowledge is obtained from data
by induction, while prior background knowledge may help learning machineries.
These remarks suggest that the joint handling of knowledge and data is a general
issue, and that combining reasoning and learning methods should be seriously
considered.

Rule-based systems, or ontologies expressed by means of description logics,
or yet Bayesian networks, represent background knowledge that is useful to make
prediction from facts and data. In these reasoning tasks, knowledge as well as
data is often pervaded with uncertainty. This has been extensively investigated.

Data, provided that they are reliable, are positive in nature since their exis-
tence manifests the actual possibility of what is observed or reported. This con-
trasts with knowledge that delimit the extent of what is potentially possible by
specifying what is impossible (which has thus a negative flavor). This is why
reasoning from both knowledge and data goes much beyond the application of
generic knowledge to factual data as in expert systems, and even the separate
treatment of knowledge and data in description logics via ‘TBox’ and ‘ABox’
[4]. It is is a complex issue, which has received little attention until now [93].

As pointed out in [71], reasoning directly with data has been much less stud-
ied. The idea of similarity naturally applies to data and gives birth to specific
forms of reasoning such as case-based reasoning [45], case-based decision [35], or
even case-based argumentation. “Betweenness” and similarity are at the basis
of interpolation mechanisms, while analogical reasoning, which may be both a
matter of similarity and dissimilarity, provides a mechanism for extrapolation.
A well-known way of handling similarity and interpolation is to use fuzzy rules
(where fuzzy set membership degrees capture the idea of similarity w.r.t. the
core value(s) of the fuzzy set) [67]. Besides, analogical reasoning, based on ana-
logical proportions (i.e., statements of the form “a is to b as c is to d”, where
items a, b, c, d are represented in terms of Boolean, nominal or numerical vari-
ables), which can be logically represented [28,58,72], provides an extrapolation
mechanism that from three items a, b, c described by complete vectors, amounts
to inferring the missing value(s) in incomplete vector d, providing that a, b, c, d
makes an analogical proportion component-wise on the known part of d; this was
successfully applied to classification [14,18,57], and more recently to preference
learning [13,32].

Lastly, the ideas of interpolation and extrapolation closely related to analogi-
cal proportion-based inference seem to be of crucial importance in many numeri-
cal domains. They can be applied to symbolic settings in the case of propositional
categorization rules, using relations of betweenness and parallelism respectively,
under a conceptual spaces semantics [83]; see [82] for an illustration.
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5 Issues in Learning: Incomplete Data and Representation
Formats

The need for reasoning from incomplete, uncertain, vague, or inconsistent infor-
mation, has led to the development of new approaches beyond logic and prob-
ability. Incompleteness is a well-known phenomenon in classical logic. However,
many reasoning problems exceed the capabilities of classical logic (initially devel-
oped in relation with the foundations of mathematics where statements are true
or false, and there is no uncertainty in principle). As for probability theory,
single probability distributions, often modeled by Bayesian networks are not
fully appropriate for handling incomplete information nor epistemic uncertainty.
There are different, but related, frameworks for modeling ill-known probabilities
that were developed in the last 50 years by the Artificial Intelligence community
at large [95]: belief functions and evidence theory (which may be viewed as a
randomization of the set-based approach to incomplete information), imprecise
probability theory [3,94] (which uses convex families of probability functions)
and quantitative possibility theory (which is the simplest model since one of the
lower and the upper probability bounds is trivial).

The traditional approach for going from data to knowledge is to resort to sta-
tistical inferential methods. However, these methods used to assume data that
are precise and in sufficient quantity. The recent concern with big data seems
to even strengthen the relevance of probability theory and statistics. However
there are a number of circumstances where data is missing or is of poor quality,
especially if one tries to collect information for building machines or algorithms
supposed to face very complex or unexpected situations (e.g., autonomous vehi-
cles in crowded areas). The concern of Artificial Intelligence for reasoning about
partial knowledge has led to a questioning of traditional statistical methods when
data is of poor quality [19,38,42,43].

Besides, the fact that we may have to work with incomplete relational data
and that knowledge may also be uncertain has motivated the development of
a new probabilistic programming language first called “Probabilistic Similarity
Logic”, and then “Probabilistic Soft Logic” (PSL, for short) where each ground
atom in a rule has a truth value in [0, 1]. It uses the �Lukasiewicz t-norm and
co-t-norm to handle the fuzzy logical connectives [5,33,34]. We are close to rep-
resentation concerns of fuzzy answer set programs [61]. Besides, there is a need
for combining symbolic reasoning with the subsymbolic vector representation
of neural networks in order to use gradient descent for training the neural net-
work to infer facts from an incomplete knowledge base, using similarity between
vectors [16,17,78].

Machine learning may find some advantages to use advanced representation
formats as target languages, such as weighted logics [26] (Markov logic, proba-
bilistic logic programs, multi-valued logics, possibilistic logic, etc.). For instance,
qualitative possibility theory extends classical logic by attaching lower bounds of
necessity degrees and captures nonmonotonic reasoning, while generalized possi-
bilistic logic [30] is more powerful and can capture answer-set programming, or
reason about the ignorance of an agent. Can such kinds of qualitative uncertainty
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modeling, or yet fuzzy or uncertain description logics, uncertainty representa-
tion formalisms, weighted logics, be used more extensively in machine learning?
Various answers and proposals can be found in [48–50,86,88]. This also raises
the question of extending version space learning [59] to such new representation
schemes [41,73,75].

If-then rules, in classical logic formats, are a popular representation format in
relational learning [80]. Association rules have logical and statistical bases ; they
are rules with exceptions completed by confidence and support degrees [1,36].
But, other types of rules may be of interest. Mining genuine default rules that
obey Kraus, Lehmann and Magidor postulates [47] for nonmonotonic reasoning
relies on the discovery of big-stepped probabilities [8] in a database [9]. Multiple
threshold rules, i.e., rules describing how a global evaluation depends on multiple
criteria evaluations on linearly ordered scales, such as, e.g., selection rules of the
form “if x1 ≥ a1 and · · · and xn ≥ an then y ≥ b” play a central role in ordinal
classification [46] and can be represented by Sugeno integrals or their extensions
[15,74]. Gradual rules, i.e., statements of the form “the more x is A, the more y is
B”, where A, and B are fuzzy sets, are another representation format of interest
[65,87]. Other types of fuzzy rules may provide a rule-based interpretation [20]
for neural nets, which may be also related to non-monotonic inference [7,22]. All
these examples indicates the variety of rules that makes sense and be considered
both in reasoning and in learning.

Another trend of research has been also motivated by the extraction of sym-
bolic knowledge from neural networks [22] under the form of nonmonotonic rules.
The goal of a neuro-symbolic integration has been pursued with the proposal of
a connectionist modal logic, where extended modal logic programs are trans-
lated into neural network ensembles, thus providing a neural net view of, e.g.,
the muddy children problem [24]. Following a similar line of thought, the same
authors translate a logic program encoding an argumentation network, which is
then turned into a neural network for arguments [23]. A more recent series of
works [25,85,86] propose another form of integration between logic and neural
nets using a so-called “Real Logic”, implemented in deep Tensor Neural Net-
works, for integrating deductive reasoning and machine learning. The semantics
of the logical constants is in terms of vectors of real numbers, and first order
logic formulas have degrees of truth in [0, 1] handled with �Lukasiewicz multiple-
valued logic connectives. Somewhat related is a work on ontology reasoning [40]
where the goal is to generate a neural network with binary outputs that, given a
database storing tuples of the form (subject, predicate, object), is able, for any
input literal, to decide the entailment problem for a logic program describing the
ontology. Others look for an exact representation of a binarized neural network
as a Boolean formula [62].

The use of degrees of truth multiple-valued logic raises the question of
the exact meaning of these degrees. In relation with this kind of work, some
have advocated a non-probabilistic view of uncertainty [11], but strangely
enough without any reference to the other uncertainty representation frame-
works! Maybe more promising is the line of research initiated a long time ago by
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Pinkas [68,69] where the idea of penalty logic (related to belief functions [31]) has
been developed in relation with neural networks, where penalty weights reflect
priorities attached to logical constraints to be satisfied by a neural network
[70]. Penalty logics and Markov logic [77] are also closely related to possibilistic
logic [30].

Another intriguing question would be to explore possible relations between
spikes neurons [12], which are physiologically more plausible than classical artifi-
cial neural networks, and fire when conjunctions of thresholds are reached, with
Sugeno integrals (then viewed as a System 1-like black box) and their logical
counterparts [29] (corresponding to a System 2-like representation).

6 Conclusion

Knowledge representation and reasoning on the one hand, and machine learning
on the other hand, have been developed largely as independent research trends
in artificial intelligence in the last three decades. Yet, reasoning and learning
are two basic capabilities of the human mind that do interact. Similarly the two
corresponding AI research areas may benefit from mutual exchanges. Current
learning methods derive know-how from data in the form of complex functions
involving many tuning parameters, but they should also aim at producing artic-
ulated knowledge, so that repositories, storing interpretable chunks of informa-
tion, could be fed from data. More precisely, a number of logical-like formalisms,
whose explanatory capabilities could be exploited, have been developed in the
last 30 years (non-monotonic logics, modal logics, logic programming, probabilis-
tic and possibilistic logics, many-valued logics, etc.) that could be used as target
languages for learning techniques, without restricting to first-order logic, nor to
Bayes nets.

Interfacing classifiers with human users may require some ability to provide
high level explanations about recommendations or decisions that are understand-
able by an end-user. Reasoning methods should handle knowledge and informa-
tion extracted from data. The joint use of (supervised or unsupervised) machine
learning techniques and of inference machineries raises new issues. There is a
number of other points, worth mentioning, which have not be addressed in the
above discussions:

– Teachability A related issue is more generally how to move from machine
learning models to knowledge communicated to humans, about the way the
machine proceeds when solving problems.

– Using prior knowledge Another issue is a more systematic exploitation of
symbolic background knowledge in machine learning devices. Can prior causal
knowledge help exploiting data and getting rid of spurious correlations? Can
an argumentation-based view of learning be developed?

– Representation learning Data representation impacts the performance of
machine learning algorithms [10]. In that respect, what may be, for instance,
the role of vector space embeddings, or conceptual spaces?
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– Unification of learning paradigms Would it be possible to bridge learning
paradigms from transduction to inductive logic programming? Even including
formal concept analysis, or rough set theory?

This paper has especially advocated the interest of a cooperation between two
basic areas of AI: knowledge representation and reasoning on the one hand and
machine learning on the other hand, reflecting the natural cooperation between
two modes, respectively reactive and deliberative, of human intelligence. It is also
a plea for maintaining a unified view of AI, all facets of which have been present
from the very beginning, as recalled in Sect. 2 of this paper. It is time that AI
comes of age as a genuine science, which means ending unproductive rivalries
between different approaches, and fostering a better shared understanding of the
basics of AI through open-minded studies bridging sub-areas in a constructive
way. In the same spirit, a plea for a unified view of computer science can be found
in [6]. Mixing, bridging, hybridizing advanced ideas in knowledge representation,
reasoning, and machine learning or data mining should renew basic research in
AI and contribute in the long term to a more unified view of AI methodology.
The interested reader may follow the work in progress of the group “Amel”
[2] aiming at a better mutual understanding of research trends in knowledge
representation, reasoning and machine learning, and how they could cooperate.
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32. Fahandar, M.A., Hüllermeier, E.: Learning to rank based on analogical reasoning.
In: Proceedings 32th National Conference on Artificial Intelligence (AAAI 2018),
New Orleans, 2–7 February 2018 (2018)

33. Fakhraei, S., Raschid, L., Getoor, L.: Drug-target interaction prediction for drug
repurposing with probabilistic similarity logic. In: SIGKDD 12th International
Workshop on Data Mining in Bioinformatics (BIOKDD). ACM (2013)

34. Farnadi, G., Bach, S.H., Moens, M.F., Getoor, L., De Cock, M.: Extending PSL
with fuzzy quantifiers. In: Papers from the 2014 AAAI Workshop Statistical Rela-
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