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Abstract. In classification problems, it happens that the training set
remains scarce. Given a data set, described in terms of discrete, ordered
attribute values, we propose an interpolation-based approach in order
to predict new examples useful for enlarging the original data set. The
proposed approach relies on the use of continuous analogical proportions
that are statements of the form “a is to x as x is to c”. The prediction
is made on the basis of pairs of examples (a, c) present in the data set,
for which one can find a value for x for each attribute value as well as
for the corresponding class label of the example thus created. The first
option that we consider is to select x as the midpoint between a and c,
attribute by attribute. To extend the search space, we may also choose
x as any randomly selected value between the values of a and c. We first
propose a basic algorithm implementing these two interpolation defini-
tions, then we extend it to two improved algorithms. In the former, we
only consider the nearest neighbor pairs (a, c) to x for prediction, while,
in the latter, we further restrict the search to those pairs (a, c) having
the same class label. The experimental results, for classical ML classifiers
applied to the enlarged data sets built by the proposed algorithms, show
the effectiveness of analogical interpolation methods for enlarging data
sets.

1 Introduction

Analogical proportions are statements of the form “a is to b as c is to d”. In the
Nicomachean Ethics, Aristotle makes an explicit parallel between such state-
ments and geometric proportions of the form “a

b = c
d”, where a, b, c, d are num-

bers. It also parallels arithmetic proportions, or difference proportions, which
are of the form “a− b = c−d”. The logical modeling of an analogical proportion
as a quaternary connective between four Boolean items appears to be a logical
counterpart of such numerical proportions [15]. It has been extended to items
described by vectors of Boolean, nominal or numerical values [2].

A particular case of such statements, named continuous analogical propor-
tions, is obtained when the two central components are equal, namely they are
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statements of the form “a is to b as b is to c”. In case of numerical propor-
tions, if we assume that b is unknown, it can be expressed in terms of a and
c as b =

√
a · c in the geometric case, and as a+c

2 in the arithmetic case. Note
that similar inequalities hold in both cases: min(a, c) ≤ √

a · c ≤ max(a, c) and
min(a, c) ≤ a+c

2 ≤ max(a, c). This means that the continuous analogical propor-
tion induces a kind of interpolation between a and c in the numerical case by
involving an intermediary value that can be obtained from a and c.

General analogical proportions when d is unknown provides an extrapolation
mechanism, which with numbers yields d = b·c

a and d = b+c−a in the geometric
and arithmetic cases respectively. We recognize the expression of the well-known
Rule of Three in the first expression. Analogical proportions-based inference [2]
offers a similar extrapolation device relying on the parallel between (a, b) and
(c, d) stated by “a is to b as c is to d”.

The analogical proportions-based extrapolation has been successfully applied
to classification problems. It may be used either directly as a new classification
paradigm [2,12], or as a way of completing a training set on which classical
classification methods are applied once this set has been completed [1,4]. This
paper investigates the effectiveness of the simpler option of using only continuous
analogical proportions that involve pairs instead of triples of items, in order to
enlarge a training set.

The paper is organized as follows. Section 2 provides a short background on
analogical proportions and more particularly on continuous ones. Then Sect. 3
surveys related work on analogical interpolation or extrapolation. Section 4
presents different variants of algorithms for completing a training set based on
the idea of continuous analogical proportions. Section 5 reports the results of the
use of different classical classification techniques on the corresponding enlarged
training sets for various benchmarks.

2 Background: Continuous Analogical Proportion

The statement “a is to b as c is to d”, here denoted a : b :: c : d, expresses that
“a differs from b as c differs from d, and b differs from a as d differs from c”. The
logical counterpart of the latter statement, where a, b, c, d are Boolean variables,
is given by:

a : b :: c : d = (¬a ∧ b ≡ ¬c ∧ d) ∧ (¬b ∧ a ≡ ¬d ∧ c)

See [13,16] for justifications. This expression is true for only 6 patterns of values
for abcd, namely {0000, 0011, 0101, 1111, 1100, 1010}. This extends to nominal
values where a : b :: c : d holds true if and only if abcd is one of the following
patterns ssss, stst, or sstt, where s and t are two possible distinct values of
items a, b, c and d.

Regarding continuous analogical proportions, it can be easily checked that
the unique solutions of equations 1 : x :: x : 1 and 0 : x :: x : 0 are respectively
x = 1 and x = 0, while 1 : x :: x : 0 or 0 : x :: x : 1 have no solution in the
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Boolean case. This somewhat trivializes continuous analogical proportions in the
Boolean case. The situation for nominal values is the same.

The case of numerical values is richer. a, b, c, d are now supposed to be
normalized values in the real interval [0, 1]. The reader is referred to [6] for a
general discussion of multiple-valued logic extensions of analogical proportions.
They can be associated with the following expression:

a : b :: c : d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− | (a − b) − (c − d) |,
if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1 − max(|a − b |,|c − d |),
if a ≤ b and c≥ d, or a ≥ b and c ≤ d

(1)

It coincides with a : b :: c : d on {0, 1}. As can be seen, a : b :: c : d is
equal to 1 if and only if (a − b) = (c − d). For instance, 0.2 : 0.5 :: 0.6 : 0.9,
or 0.2 : 0.5 :: 0.2 : 0.5 holds true. Because |a − b| = |(1 − a) − (1 − b)|, it is
easy to check that the code independence property: a : b :: c : d = (1 − a) :
(1− b) :: (1− c) : (1− d) holds (0 and 1 play symmetric roles, and it is the same
to encode an attribute positively or negatively).

Then the corresponding expression for continuous analogical proportions
is [16]:

a : b :: b : c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− | a + c − 2b |,
if a ≥ b and b ≥ c, or a ≤ b and b ≤ c

1 − max(|a − b |,|b − c |),
if a ≤ b and b≥ c, or a ≥ b and b ≤ c

(2)

As can be seen a : b :: b : c = 1 if and only if b = (a + c)/2 (which includes
the case a = b = c). The proportions 0 : 1

2 :: 1
2 : 1 or 0.3 : 0.6 :: 0.6 : 0.9

are examples of continuous analogical proportions. Moreover, 1 : 3 :: 3 : 5 is an
example of continuous analogical proportion between nominal ordered grades.
Thus this extension captures the idea of betweenness implicit in statements of
the form “a is to b as b is to c”. Note that we have 0 : 1 :: 1 : 0 = 0 and
1 : 0 :: 0 : 1 = 0, as expected.

Analogical proportions extend to vectors in a component-wise manner. Let
a = (a1, . . . , am), where each ai belongs to {0, 1} (Boolean case), or to a finite
set with more than 2 elements (nominal case), or to [0, 1] (numerical case).
b, c,d are defined similarly. Then a : b :: c : d has a truth value which is just
minm

i=1 ai : bi :: ci : di.
In this paper, we deal with classification. So each vector a in a training set

is associated with its class cl(a). Thus saying that the continuous analogical
proportion a : x :: x : c holds true amounts to say:

a : x :: x : c = 1 iff
aj : xj :: xj : cj = 1 for each attribute j and cl(a) : cl(x) :: cl(x) : cl(c) = 1

(3)

Moreover, since continuous analogical proportions are trivial for a Boolean or a
nominal variable, we shall also use a more liberal extension of betweenness for
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the vectorial case [10] in this paper. Namely, we shall say x is between a and c
defined as:

between(a,x, c) = 1 iff aj ≤ xj ≤ cj or cj ≤ xj ≤ aj for each attribute j. (4)

Then we can define the set Between(a, c) of vectors between two vectors a and
c. For instance, we have Between(01000, 11010) = {01000, 11000, 01010, 11010}.
Note that in case of Boolean values, the betweenness condition can also be
written as ∀i = 1, · · · ,m, (ai ∧ ci → xi) ∧ (xi → ai ∨ ci) = 1.

3 Related Work

The idea of generating, or completing, a third example from two examples can be
encountered in different settings. An option, quite different from interpolation, is
the “feature knock out” method [23], where a third example is built by modifying
a randomly chosen feature of the first example with that of the second one. A
somewhat related idea can be found in a recent proposal [3] which introduces
a measure of oddness with respect to a class that is computed on the basis of
pairs made of two nearest neighbors in the same class; this amounts to replace
the two neighbors by a fictitious representative of the class.

Reasoning with a system of fuzzy if-then rules provides an interpolation
mechanism [14], which, from these rules and an input “in-between” their con-
dition parts, yields a new conclusion “in-between” their conclusion parts, by
taking advantage of membership functions that can be seen as defining fuzzy
“neighborhoods”.

Moreover, several approaches based on the use of interpolation and analog-
ical proportions have been developed in the past decade. In [17], the problem
considered is to complete a set of parallel if-then rules, represented by a set of
condition variables associated to a conclusion variable. The values of the vari-
ables are assumed to belong to finite sets of ordered labels. The basic idea is
to apply analogical proportion inference in order to induce missing rules from
an initial set of rules, when an analogical proportions hold between the variable
labels of several parallel rules. Although this approach may seem close to the
analogical interpolation-based approach proposed in this paper, our goal is not to
predict just the conclusion part of an incomplete rule, but rather a whole exam-
ple including its attribute-based description and its class. Moreover, we restrict
our study to the use of pairs of examples for this prediction, while in [17] the
authors use both pairs or triples of rules for completing rules. An extended ver-
sion of the above-mentioned work has been presented in [22] where the authors
also propose a more cautious method that makes explicit the basic assumptions
under which rule conclusions are produced from analogical proportions. Along
the same line, see also [21] on interpolation between default rules.

Let us also mention the general approach proposed by Schockaert and Prade
[20] to interpolative and extrapolative reasoning from incomplete generic knowl-
edge represented by sets of symbolic rules, handled in a purely qualitative man-
ner, where labels are represented in conceptual spaces. This work is an extended
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version of [19] in which only interpolative inference is considered. The same
authors present an illustrative case study in [18] in the music domain. In the
context of natural language modeling, Derrac and Schockaert [5] have proposed
a data-driven approach that exploits betweenness and a fortiori inference to
derive semantic relations within conceptual spaces.

Besides, some previous works have considered, discussed and experimented
the idea of an analogical proportion-based enlargement of a training set, based
on triples of examples. In [1], the authors proposed an approach to generate
synthetic data to tune a handwritten character classifier. Couceiro et al. [4]
presented a way to extend a Boolean sample set for classification using the
notion of “analogy preserving” functions that generate examples on the basis of
triples of examples in the training set. The authors only tested their approach
on Boolean data.

In a more recent work, Lieber et al. [10] have extended the paradigm of classi-
cal Case-Based Reasoning to link the current case to either pairs of known cases
by performing a restricted form of interpolation, or to triples of known cases by
exploiting extrapolation, taking advantage of betweenness and analogical pro-
portion relations.

Lastly, in the context of deep learning, Goodfellow et al. [7] invented the
idea of a generative adversarial network (GAN) as a class of machine learning
systems. Given a training set, two neural networks, contesting with each other in
a game, are learnt in order to generate new data with the same statistics as the
training set. More recently, Inoue [9] presented a data augmentation technique
for image classification that mix two randomly picked images to train a classifier.

4 Analogical Interpolation-Based Predictor (AIP)

Analogical proportions have been recently applied to classification problems and
have shown their efficiency for classifying a variety of datasets [2]. In this paper,
we aim to investigate if continuous analogical proportions could be useful for a
prediction purpose, namely enlarging a training set with made examples, and if
standard classification methods applied to this enlarged set can compete with
the direct application of analogical proportions-based inference for classification.
As said before, the basic idea of the paper is to apply an interpolation method
for predicting new examples not present in the original data set which is just
enlarged.

In the following, we describe the basic principle of our predicting approach.

4.1 Basic Procedure

Consider a set E of n classified examples i.e., E =
{
(x1, y1), ..., (xi , yi), ...,

(xn , yn)
}

such that the class label yi = cl(xi) is known for each i ∈ 1, ..., n.
The goal is to predict a new set of examples S = {(xk , yk) /∈ E} by interpolat-
ing examples from the set E. The new set S will serve for enlarging E.
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The basic idea is to find pairs of examples (a, c) ∈ E2 with known labels such
that the analogical proportion (3) is solvable attribute by attribute i.e., there
exists x such that aj : xj :: xj : cj = 1 for each attribute j = 1, ...,m, and the
class equation has cl(x) as a solution, i.e., cl(a) : cl(x) :: cl(x) : cl(c) = 1.

As mentioned before in Sect. 2, the solution for the previous equation aj :
xj :: xj : cj = 1 in the numerical case is just the midpoint xj = (aj + cj)/2 for
each attribute j = 1, ...,m. We are interested in the case of ordered nominal val-
ues in this paper. Moreover, we assume that the distances between any two suc-
cessive values in such an ordered set of values are the same. Let V = {v1, · · · , vk}
be an ordered set of nominal values, then, vi will be regarded as the midpoint of
vi−j and vi+j with j ≥ 1, provided that both vi−j and vi+j exist. For instance,
if V = {1, · · · , 5}, the analogical proportions 1 : 3 :: 3 : 5 or 2 : 3 :: 3 : 4 hold,
while 2 : x :: x : 5 = 1 has no solution. So it is clear that some pairs (a, c) will
not lead to any solution since we restrict the search space to the pairs for which
the midpoint (attribute by attribute) exists.

This condition may be too restrictive especially for datasets with high number
of attributes which may reduce the set of predicted examples. In case of success,
the predicted example x = {x1, ..., xj , ...xm} will be assigned to the predicted
class label cl(x) and saved in a candidate set.

Since different voting pairs may predict the same example x more than once
(x may be the midpoint of more than one pair (a, c)), a candidate example may
have different class labels. Then has to perform a vote on class labels for each
candidate example classified differently in the candidate set. This leads to the
final predicted set of examples where each example is classified uniquely.

This process can be described by the following procedure:

1. Find solvable pairs (a, c) such that Eq. 3 has a unique non null solution x.
2. In case of ties (an example x is predicted with different class labels), apply

voting on all its predicted class labels and assign to x the success label.
3. Add x to the set of predicted examples (together with cl(x)).

In the next section, we first present a basic algorithm applying the process
described above, then we propose two options that may help to improve the
search space for the voting pairs.

4.2 Algorithms

The simplest way is to systematically consider all pairs (a, c) ∈ E2, for which
Eq. 3 is solvable, as candidate pairs for prediction. Algorithm 1 implements a
basic Analogical Interpolation-based Predictor, denoted AIPstd, without applying
any filter on the voting pairs.

Considering all pairs (a, c) for prediction may seem unreasonable especially
when the domain of attribute values is large since this may blur prediction
results. A first improvement of Algorithm 1 is to restrict the search for pairs to
those that are among the nearest neighbors (in terms of Hamming distance) to
the example to be predicted.
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Algorithm 1. Analogical Interpolation-based Predictor (AIPstd)
Input: A set E of classified instances
CandidatesSet = ∅
S = ∅
for each pair (a, c) in E2 do

if cl(a) : cl(x) :: cl(x) : cl(c) = 1 has solution l then
if a : x :: x : c = 1 has solution b then

cl(b) = l
CandidatesSet.add(b)

end if
end if

end for
S = VoteOnclasses(CandidatesSet )
Comp(E)= E + S
return (Comp(E))

Let us consider two different pairs (a, c) and (d,e) ∈ E2. We assume that
a : x :: x : c = 1 produces as solution an example b and d : x :: x : e = 1
produces an other example b′ �= b. If b′ is closest to (d,e) than b is to (a, c)
in terms of Hamming distance, it is more reasonable to consider only the pair
(d,e) for prediction. This means that example b′ will be predicted while b will be
rejected. We denote AIPNN this second improved Algorithm 2 in the following.

Algorithm 3 (that we denote AIPNN,SC) is exactly the same as Algorithm 2 in
all respects, except that we look for only pairs (a, c) belonging to the same class
in this case. Note that the two algorithms only differ for non binary classification
problems, since s : x :: x : t = 1 has no solution in {0, 1} for s �= t.

4.3 Another Option

As can be seen in the next section, searching for the best pairs (described in
Algorithms 2 and 3) limits the number of accepted voting pairs. Moreover, there
is a second constraint to be satisfied, that is limiting the solutions of Eq. 3 to
the values of x that are the midpoint of a and c which is hard to be satisfied
in the ordered nominal setting. To relax this last constraint, we may think to
use the “betweenness” definition given in Eq. 4. In this definition, the equation
between(a,x, c) = 1 has, as a solution, any x such that x is between a and c
for each attribute j ∈ 1, ...,m. This last option is implemented by the algorithm
denoted AIPBtw which is exactly the same as Algorithm 3 except that we use
the definition (4) to solve the analogical interpolation.
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Algorithm 2. Analogical Interpolation-based Predictor using Nearest Neigh-
bors pairs for prediction (AIPNN )

Input: A set E of classified instances
CandidatesSet = ∅
PredictedSet = ∅
MinHD = NbrAttribute
for each pair (a, c) in E2 do

if cl(a) : cl(x) :: cl(x) : cl(c) = 1 has solution l then
if a : x :: x : c = 1 has solution b then

cl(b) = l
HD = Max(HammingDistance(b,a), HammingDistance(b,c))
if HD < MinHD then

MinHD = HD
CandidateSet.clean()
CandidatesSet.add(b)

else if HD =MinHD then
CandidatesSet.add(b)

end if
end if

end if
end for
S = VoteOnclasses(CandidatesSet )
Comp(E)= E + S
return (Comp(E))

5 Experimentations and Discussion

In this section, we aim to evaluate the efficiency of the proposed algorithms for
predicting new examples. For this purpose, we first run different standard ML
classifiers on the original dataset, then we apply each AI-Predictor to generate a
new set of predicted examples that is used to enlarge the original data set. This
leads us to four different enlarged datasets, one for each proposed algorithm.
Finally, we re-evaluate again ML classifiers on each of these completed datasets.
For both original and enlarged datasets, we apply the testing protocol presented
in the next sub-section.

In this experimentation, we tested with the following standard ML classifiers:

• IBk: a k-NN classifier, we use the Manhattan distance and we tune the
classifier on different values of the parameter k = 1, 2, ..., 11.

• C4.5: generating a pruned or unpruned C4.5 decision tree. We tune the
classifier with different confidence factors used for pruning C = 0.1, 0.2, ..., 0.5.

• JRip: propositional rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER). We tune the classifier for different values of
optimization runs O = 2, 4, ...10 and we apply pruning.
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Algorithm 3. Analogical Interpolation-based Predictor using Nearest Neigh-
bors pairs in the same class for prediction (AIPNN,SC)

Input: A set E of classified instances
CandidatesSet = ∅
PredictedSet = ∅
MinHD = NbrAttribute
for each pair (a, c) in E2 do

if cl(a) = cl(c) then
if a : x :: x : c = 1 has solution b then

cl(b) = cl(a) //or cl(c)
HD = Max(HammingDistance(b,a), HammingDistance(b,c))
if HD < MinHD then

MinHD = HD
CandidateSet.clean()
CandidatesSet.add(b)

else if HD =MinHD then
CandidatesSet.add(b)

end if
end if

end if
end for
S = VoteOnclasses(CandidatesSet )
Comp(E)= E + S
return (Comp(E))

5.1 Datasets for Experiments

The experimental study is based on several datasets taken from the U.C.I.
machine learning repository [11]. A brief description of these data sets is given
in Table 1.

To apply the analogical interpolation, we have chosen to deal only with
ordered nominal datasets in this study (the extension to the numerical case
is the topic of a future work). Table 1 includes 10 datasets with ordered nom-
inal or Boolean attribute values. In terms of classes, we deal with a maximum
number of 5 classes.

– Balance, Car, Hayes-Roth and Nursery are multiple classes datasets.
– Monk1, Monk2, Monk3, Breast Cancer, Voting and W. B. Cancer datasets

are binary class problems. Monk3 has noise added (in the sample set only).
Voting data set contains only binary attributes and has missing attribute
values. As a missing value, in this dataset, simply means that this value is
not “yes” nor “no”, we replace each missing value by a third value other than
0 and 1. These data sets are described in Table 1.

5.2 Testing Protocol

To test ML classifiers, we apply a standard 10 fold cross-validation technique.
As usual, the final accuracy is obtained by averaging the 10 different accuracies
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(computed as the ratio of the number of correct predictions to the total number
of test examples) for each fold. However, each ML classifier requires a parameter
to be tuned before performing this cross-validation.

Table 1. Description of datasets

Datasets Instances Nominal Att. Binary Att. Classes

Balance 625 4 0 3

Car 743 6 0 4

Monk1 432 4 2 2

Monk2 432 4 2 2

Monk3 432 4 2 2

Breast Cancer 286 6 3 2

Voting 435 0 16 2

Hayes-Roth 132 5 0 3

W. B. Cancer 699 9 0 2

Nursery 1102 8 0 5

In order to do that, we randomly choose a fold (as recommended by [8]), we
keep only the corresponding training set (i.e. which represents 90% of the full
dataset). On this training set, we again perform a 10-fold cross-validation with
diverse values of the parameters. We then select the parameter values providing
the best accuracy. These tuned parameters are then used to perform the initial
cross-validation. As expected, these tuned parameters change with the target
dataset. To be sure that our results are stable enough, we run each algorithm
(with the previous procedure) 10 times so we have 10 different parameter opti-
mizations. The displayed parameter p is the average value over the 10 different
values (one for each run). The results shown in Table 2 are the average values
obtained from 10 rounds of this complete process.

5.3 Experimental Results

In the following, we first provide a comparative study of the overall accuracies
for ML classifiers obtained with original and enlarged datasets. This study aims
to check if examples predicted by the AIP are of good quality (namely labeled
with the suitable class). In such case, the efficiency of ML classifiers should
be improved when applied to enlarged datasets. Then we also report the main
characteristics of these predicted datasets. Finally, we compare ML classification
results with enlarged datasets to the ones obtained by directly applying Analogy-
based Classification [2] to the original datasets. In this last study, we wonder if
using ML classifiers with enlarged datasets may perform similarly as Analogy-
based Classification [2] to the original datasets while maintaining a reduced
complexity.
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Results of ML-Classifiers. Accuracy results for IBk, C4.5 and JRIP are
obtained by using the free implementation of Weka software to the enlarged
datasets obtained from AI-Predictors. To run IBk, C4.5 and JRIP, we first opti-
mize the corresponding parameter for each classifier, using the meta CVPa-
rameterSelection class provided by Weka using a cross-validation applied to the
training set only. This enables us to select the best value of the parameter for
each dataset, then we train and test the classifier using this selected value of this
parameter.

Table 2 provides classification results of ML classifiers obtained with a 10-
fold cross validation and for the best/optimized value of the tuned parameter
(denoted p in this table).

Results in the previous table show that:

Table 2. Results for ML classifiers obtained with the enlarged datasets

Datasets KNN C4.5 JRIP

Accuracy p Accuracy p Accuracy p

Balance AIPNN,SC 85.7±2.13 1 74.15±2.42 0.5 76.05±2.85 9

AIPNN 85.31± 3.24 1 73.73± 4.12 0.5 75.09± 3.23 6

AIPStd 78.16± 1.15 3 65.92± 2.73 0.5 68.45± 3.73 6

AIPBtw 83.04± 3.42 3 75.44± 3.89 0.5 75.21± 4.64 7

Orig. 84.05± 2.6 11 63.79± 4.33 0.3 72.74± 3.48 6

Car AIPNN,SC 91.4± 1.84 1 92.78± 1.28 0.4 88.6± 2.82 8

AIPNN 91.5± 1.95 1 93.14±1.95 0.5 89.13±2.55 8

AIPStd 91.51± 1.91 3 92.26± 1.85 0.3 89.09± 1.93 6

AIPBtw 86.74± 2.71 4 88.74± 1.99 0.4 85.61± 2.38 8

Orig. 92.38±2.51 1 90.84± 3.61 0.5 86.58± 3.67 8

Monk1 AIPNN,SC 94.58± 2.7 5 94.11± 2.88 0.2 93.75±2.48 2

AIPNN 94.82± 2.37 3 94.53± 2.35 0.1 93.62± 1.9 2

AIPStd 87.07± 4.48 3 87.35± 2.49 0.1 83.21± 4.34 6

AIPBtw 85.34± 3.91 3 88.15± 4.78 0.3 89.46± 3.66 4

Orig. 98.37±2.78 2 99.36±0.64 0.4 90.99± 13.15 2

Monk2 AIPNN,SC 82.41± 4.77 1 72.44± 0.19 0.1 71.91± 3.32 5

AIPNN 82.49±7.56 1 72.44± 0.19 0.1 71.87± 3.8 3

AIPStd 76.12± 4.28 3 77.03± 0.0 0.1 76.6± 0.43 4

AIPBtw 80.86± 0.79 3 80.79±0.78 0.1 80.56±0.82 3

Orig. 65.29± 1.74 11 67.13± 0.61 0.1 64.64± 3.69 4

Monk3 AIPNN,SC 98.38± 1.31 3 98.41± 1.31 0.1 98.24± 1.49 2

AIPNN 98.38± 1.41 3 98.41± 1.41 0.1 98.27± 1.42 2

AIPStd 92.91± 2.47 3 93.58± 3.09 0.1 92.09± 2.63 4

AIPBtw 97.75± 1.76 3 97.71± 1.76 0.1 97.87± 1.79 2

Orig. 99.14±1.49 1 99.82±0.18 0.2 98.95±1.48 2

(continued)
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Table 2. (continued)

Datasets KNN C4.5 JRIP

Accuracy p Accuracy p Accuracy p

Breast Cancer AIPNN,SC 75.57± 8.31 4 74.01± 7.29 0.2 71.9± 8.6 4

AIPNN 75.59± 4.95 5 73.68± 6.85 0.2 71.0± 7.49 5

AIPStd 83.0±3.19 6 82.47±3.93 0.1 80.3±7.01 3

AIPBtw 75.86± 5.27 4 75.94± 5.99 0.2 72.61± 5.84 4

Orig. 72.81± 7.65 9 71.58± 6.55 0.2 70.11± 8.59 2

Voting AIPNN,SC 93.32± 3.58 4 95.65± 2.67 0.2 95.62± 2.85 3

AIPNN 93.05± 3.17 3 95.79± 3.59 0.3 95.67± 3.07 3

AIPStd 93.89±2.31 2 96.12± 2.02 0.3 96.1±2.04 3

AIPBtw 93.22± 3.84 2 95.45± 2.37 0.2 95.73± 2.13 2

Orig. 92.5± 3.59 4 96.38±2.63 0.2 95.84± 2.39 4

Hayes-Roth AIPNN,SC 74.62±8.84 1 74.4± 9.63 0.2 84.79± 7.65 4

AIPNN 73.91± 8.0 1 74.13± 7.65 0.2 85.12± 6.58 5

AIPStd 60.45± 11.59 3 70.62± 9.3 0.4 78.78± 9.67 4

AIPBtw 69.87± 7.77 1 80.43±12.53 0.1 88.52±8.8 2

Orig. 61.41± 10.31 3 68.2± 6.66 0.2 83.26± 9.04 4

W. B. Cancer AIPNN,SC 95.92± 1.69 1 94.38± 3.38 0.4 94.57± 2.15 5

AIPNN 96.12± 2.47 1 94.05± 2.82 0.3 94.5± 2.31 4

AIPStd 96.82±1.22 3 97.37±1.23 0.5 96.56±2.19 5

AIPBtw 95.99± 1.17 2 94.43± 1.49 0.4 94.44± 2.16 5

Orig. 96.7± 1.73 3 94.79± 3.19 0.2 95.87± 2.9 4

Nursery AIPNN,SC 98.23± 0.96 1 98.69± 0.56 0.4 97.78± 1.12 6

AIPNN 98.25±0.78 1 98.74±0.64 0.5 97.83±1.25 5

AIPStd 97.73± 0.88 1 98.0± 0.96 0.5 97.74± 0.99 5

AIPBtw 95.9± 0.97 3 96.51± 1.34 0.4 95.78± 1.5 6

Orig. 97.45± 1.34 3 97.7± 1.36 0.5 95.58± 2.04 4

Average AIPNN,SC 89,01 – 86,90 – 87,32 –

AIPNN 88,94 – 86,86 – 87,21 –

AIPStd 85,76 – 86,07 – 85,89 –

AIPBtw 86,45 – 87,35 - 87,57 –

Orig. 86,01 – 84,96 – 85,46 –

– The accuracy results have been improved when applying ML classifiers on
the new predicted data instead of the original data. This is noticed for all
datasets except for Monk1 and Monk3 datasets. The highest improvement
percentage was noticed with the IBk classifier for the dataset Monk2 (17%),
Hayes-Roth (13%) and Breast Cancer (11%).

– Regarding the two artificial datasets Monk1 and Monk3, it is known in the
original dataset, that only two attributes among 6 are involved to define the
class label for each example. We may think that using the midpoint value for
each attribute as well as the class label, applied in the proposed analogical
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interpolation which treat equally all attributes, is not compatible with this
kind of classification.

– The good improvement observed for Monk2 dataset confirms our previous
intuition since, contrary to Monk1 and Mon3, in Monk2 all attributes are
involved in defining the class label in this dataset.

– The standard Algorithm 1 outperforms other algorithms in case of Cancer and
Breast Cancer datasets. It is important to note that only these two datasets
include attributes with large range of values (with maximum of 10 different
values for Cancer and 13 different values for Breast Cancer). Moreover the
number of attributes is also high if compared to other datasets. We expect
that, in case ordered nominal data is represented by a large scale, using only
nearest neighbor pairs for prediction seems too restrictive and leads to a local
search for new examples.

– There is no particular algorithm that provides the best results for all datasets.
– We computed the average accuracy for each proposed algorithm and for each

ML classifier over all datasets. Results are given at the end of Table 2. We can
note that IBk classifier performs the best accuracy when using the enlarged
data built from the AIPNN,SC Algorithm. While C4.5 and JRIP perform
better when applied to the dataset built from AIPBtw Algorithm.

– Overall, the IBK classifier shows the highest classification accuracy over all
datasets.

In this first study, the improved results of ML classifiers when applied to enlarged
datasets show the ability of the proposed algorithms (especially, AIPNN,SC and
AIPBtw) to predict examples that are labeled with the suitable class.

Characteristics of the Predicted Datasets. To have a better understanding
of the previous shown results, in this subsection we aim to investigate more
the new predicted datasets. For this end, we compute the number of predicted
examples for each dataset and the proportion of these examples that are assigned
to the correct/suitable class label. This proportion is computed on the basis of
the predicted examples that are compatible with the original set. For this new
experimentation, we only consider examples predicted by Algorithm AIPNN,SC

(and AIPStd for some datasets). We save these additional results in Table 3.
From these results, we can see that:

– In seven among ten datasets, the proportion of predicted examples that are
successfully classified is 100%. This means that all predicted examples that
match the original set are assigned to the correct class label and thus are
fully compatible with the original set (see for example Monk2, Breast Cancer,
Hayes Roth and Nursery).

– Predicting accurate examples in these datasets may explain why ML classi-
fiers show high classification improvement when applied to the new enlarged
dataset.

– Although AIPNN,SC Algorithm succeeds to predict accurate examples, the
number of predicted examples is very reduced for some datasets such as for
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Breast Cancer, Voting and Cancer. This due to the fact that we restrict the
search for only nearest neighbors pairs belonging to the same class in this
Algorithm. It is important to note that these datasets contains large number
of attributes which make the process of pairs filter more constraining.

– As can be seen in Table 3, the size of the predicted sets is considerably
increased, for these three datasets, when applying AIPStd Algorithm which is
less constraining than AIPNN,SC (520 examples instead of 46 are predicted
for Cancer dataset). In Table 2, we also noticed that, only for these three cited
datasets, IBK performs considerably better when applied to the datasets built
from the standard algorithm AIPStd (producing larger sets). It is clear that
in case the predicted set is very reduced, the enlarged dataset remains similar
to the original set that’s why the improvement percentage of ML classifiers
cannot be clearly noticed in the case of datasets predicted from AIPNN,SC

Algorithm.
– Lastly for some datasets such as Monk1 and Monk3, the proportion of pre-

dicted examples that are compatible with the original set is low if compared
to other datasets. As explained before, in the original sets, the classification
function involves only 2 among 6 attributes which seems incompatible with
continuous analogical interpolation assuming that all attributes as well as
class label are the midpoint of the attributes and the class label of the pair
used for prediction.

Table 3. Nbr. of predicted examples, proportion of predicted examples that are com-
patible with the original set

Datasets Nbr. predicted Prop. of success

Balance 529 85.82

Car 630 93.44

Monk1 288 87.5

Monk2 221 100

Monk3 320 96.25

Breast Cancer-AIPNN,SC 14 100

Breast Cancer-AIPStd 152 83.78

Voting-AIPNN,SC 38 100

Voting-AIPStd 95 100

Hayes-Roth 27 100

Cancer-AIPNN,SC 46 100

Cancer-AIPStd 520 100

Nursery 883 99.89
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Comparison with AP-Classifier [2]. Finally, we provide a comparative study
of ML classifiers results, reported in Sect. 5.3, to the results obtained with a
direct application of analogical proportions for a classification purpose [2]. Note
that in [2], analogical proportions-based extrapolation has been directly applied
to define a new classification paradigm while in this paper we exploit analog-
ical proportions-based interpolation to enlarge datasets on which classical ML
classifiers are applied. Classification accuracies of analogical proportions-based
classifiers [2] are given in Table 4 and compared to the best result of each ML
classifier applied to the enlarged datasets. Results in Table 4 shows that AP-
Classifier outperforms classic ML classifiers on five datasets especially on the
three Monks datasets. However enlarged datasets, using analogical interpola-
tion, helped to reduce the gap between AP-Classifier and other ML classifiers
once they were applied to these enlarged data. On the other side, ML classifiers
provides better accuracies on four other datasets (see for example the Breast
cancer (resp. Hayes-Roth) dataset for which the IBK (resp. JRIP) is largely
better than AP-Classifier).

Table 4. Results for ML classifiers obtained with the enlarged datasets and comparison
with AP-Classifier [2]

Datasets AP-Classifier [2] KNN C4.5 JRIP

Accuracy p Accuracy p Accuracy p Accuracy p

Balance 86.35±2.27 11 85.7± 2.13 1 74.15± 2.42 0.5 76.05± 2.85 9

Car 94.16±4.11 11 91.5± 1.95 1 93.14± 1.95 0.5 89.13± 2.55 8

Monk1 99.77±0.71 7 94.82± 2.37 3 94.53± 2.35 0.1 93.75± 2.48 2

Monk2 99.77±0.7 11 82.49± 7.56 1 80.79± 0.78 0.1 80.56± 0.82 3

Monk3 99.63±0.7 9 98.38± 1.41 3 98.41± 1.41 0.1 98.27± 1.42 2

Breast Cancer 73.68± 6.36 10 83.0±3.19 6 82.47± 3.93 0.1 80.3± 7.01 3

Voting 94.73± 3.72 7 93.89± 2.31 2 96.12±2.02 0.3 96.1± 2.04 3

Hayes-Roth 79.29± 9.3 7 74.62± 8.84 1 80.43± 12.53 0.1 88.52±8.8 2

W. B. Cancer 97.01± 3.35 4 96.82± 1.22 3 97.37±1.23 0.5 96.56± 2.19 5

This comparison firstly shows the interest of analogical proportions as a clas-
sification tool for some datasets and secondly as way for enlarging datasets for
other cases. Identifying on which dataset each of these methods may be better
applied should be deeply investigated in future.

In terms of complexity, the proposed Analogical Interpolation approaches
(which are quadratic due to the use of pairs of examples) if combined with the
IBK classifier for example (which is linear), leads to a improved classifier. This
latter shows better classification accuracy and enjoining reduced complexity if
compared to the AP-classifier having cubic complexity (that may be computa-
tionally costly for large datasets [2]).
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6 Conclusion

This paper has studied the idea of enlarging a training set using analogical
proportions as in [4], with two main differences: we only consider pairs of exam-
ples by using continuous analogical proportions which contribute to reduce the
complexity to be quadratic instead of cubic, and we test with ordered nominal
datasets instead of Boolean one.

On the one hand the results obtained by classical machine learning methods
on the enlarged training set generally improve those obtained by applying these
methods to the original training sets. On the other hand, these results, obtained
with a smaller level of complexity, are often not so far from those obtained by
directly applying the analogical proportion-based classification method on the
original training set [2].
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