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Abstract. Besides ecological issues, the recycling of plastics involves
economic incentives that encourage industrial firms to invest in the field.
Some of them have focused on the waste sorting phase by designing
optical devices able to discriminate on-line between plastic categories.
To achieve both ecological and economic objectives, sorting errors must
be minimized to avoid serious recycling problems and significant qual-
ity degradation of the final recycled product. Even with the most recent
acquisition technologies based on spectral imaging, plastic recognition
remains a tough task due to the presence of imprecision and uncertainty,
e.g. variability in measurement due to atmospheric disturbances, age-
ing of plastics, black or dark-coloured materials etc. The enhancement
of recent sorting techniques based on classification algorithms has led
to quite good performance results, however the remaining errors have
serious consequences for such applications. In this article, we propose
an imprecise classification algorithm to minimize the sorting errors of
standard classifiers when dealing with incomplete data, by both integrat-
ing the processing of classification doubt and hesitation in the decision
process and improving the classification performances. To this end, we
propose a relabelling procedure that enables better representation of the
imprecision of the learning data, and we introduce the belief functions
framework to represent the posterior probability provided by a classifier.
Finally, the performances of our approach compared to existing imprecise
classifiers is illustrated on the sorting problem of four plastic categories
from mid-wavelength infra-red spectra acquired in an industrial context.

Keywords: Machine learning - Imprecise classification - Reliable
classification - Belief functions - Plastic separation

1 Introduction

Plastic recycling is a promising alternative to landfills for dealing with the
fastest growing waste stream in the world [8]. However, for physiochemical rea-
sons related to non-miscibility between plastics, most plastics must be recycled
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separately. Plastic category identification is therefore a major challenge in the
recycling process. With the emergence of hyperspectral imaging, some indus-
trial firms have designed sorting devices able to discriminate between several
categories of plastics based on their absorption or transmittance spectra. The
sorting process is generally performed using supervised classification, which has
been well developed with the emergence of computer sciences and data science
[18,22,38]. The classification performance might be affected by several issues
such as noise or overlapping regions in the feature space [21,34]. The latter
problem occurs when samples from different classes share very similar char-
acteristics. We are particularly faced with these problems when attempting to
classify industrially acquired spectra. Indeed, in an industrial context, the acqui-
sition process is subject to technical and financial constraints to ensure through-
put and financial competitiveness. For this reason one cannot expect the same
quality of data as for equivalent laboratory measures. Several issues imply the
presence of imprecision and uncertainty in the acquired spectra: (i) the avail-
able spectral range might be insufficient; (ii) the plastic categories to be recycled
are chemically close; (iii) atmospheric perturbations may cause noise; (iv) plastic
ageing and plastic additives are known to change spectral information; (v) impu-
rities like dust deposits or remains of tags will also produce spectral noise. As
in solving many other decision-making problems, classification errors may have
serious consequences, e.g., medical diagnosis applications. Regarding plastic sort-
ing, identification errors will cause serious recycling difficulties and significant
degradation of the secondary raw material performances and thus quality degra-
dation of the recycled products. Usually, the problem of plastic identification
is treated using standard classification algorithms that are designed to produce
point predictions, i.e., a single plastic category. In cases of imperfect data, stan-
dard classifiers become confused and inevitably commit errors. This brings us
to consider alternative representations of the information that take into account
imprecision and uncertainty to achieve more accurate classification. Modern the-
ories of uncertainty such as fuzzy subsets [35], possibility theory [14], imprecise
probabilities [33] or belief functions [26,30] offer better representations of the
data-imperfection of information. Several classification algorithms have been
proposed in these frameworks. Most of them are extensions of standard algo-
rithms. We can cite the fuzzy version of the well known k-means algorithm [15],
fuzzy and evidential versions of k-Nearest Neighbour (k-NN) [10,19] or some
fuzzy and evidential revisions of neural network algorithms [4,11].

In this paper we consider the case where the original imperfections come from
data features only. Available training example labels are precise and considered
trustworthy, e.g., based on laboratory measures and expertise. In order to bet-
ter represent all available information, we think that labels should conform with
the feature imprecision. If an object of class #; has its vector of features = in
the overlapping region 6, and 65, then the example should be relabelled by the
set {01,02}. In order to achieve such representation we propose to relabel each
training example in accordance with their discriminatory nature. New labels are
therefore subsets of the original set of classes. This imprecise relabelling would
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better represent the learning data by mapping overlaps in the feature space. The
resulting imprecise label can be naturally treated in the belief functions theory
context. Indeed, belief functions theory [26] is an interesting framework for rep-
resenting imprecise and uncertain data by allowing the allocation of a probability
mass for imprecise data. Thus, imprecision and ignorance is better captured in
this framework compared to the probability framework where equiprobability
and imprecision are confused. The recent growing interest in this theory has
allowed techniques to be developed for resolving a diverse range of problems
such as estimation [12,17], standard classification [10,32], or even hierarchical
classification [1,23].

Our proposed approach, called Evidential CLAssification of incomplete data
via Imprecise Relabelling (ECLAIR), is based on a relabelling procedure of the
training examples that enables better representation of the missing information
about some data features. Then a classifier is trained on the relabelled data
producing a posterior mass function. With imprecise relabelling we try to quan-
tify, using a mass function, the extend to which a subsets of classes is reliable
and relevant as output for a new data. In other words, we look for the set of
classes which any more precise subset output would lead inevitably to an error.
The resulting classification algorithm can enhance the classification accuracy as
well as cope with difficult examples by allowing less precise but more reliable
classification output which will optimize the recycling process.

The remainder of this paper is organized as follows: Sect.2 sets down the
main notations and provides a reminder on supervised classification and elements
of belief functions theory; in Sect.3 we present the proposed approach; Sect. 4
briefly describes the related works; Sect.5 presents results of experimentation
on the sorting problem of four plastics.

2 Theoretical Background

Classification is a technique allowing to assign objects to categories from the
observations of several of their characteristics. A classifier is a function that maps
an object represented by its values of characteristics on a finite set of variables,
to a category represented by a value of a categorical variable. More precisely, let
us consider a set of n categories represented by a set @ = {61,0s,...,0,}, also
refereed as a set of labels or classes. In the framework of belief functions @ is
called a frame of discernment. Each 6;, j € {1,...,n} denotes a singleton which
represents the lowest level of discernible information in ©. Let us denote by
X1,Xa,...,X,, pvariables where the taken values represent the characteristics,
also called attributes or features, of the objects, to be classified. In the rest of
the paper we refer to © as a set of classes and to (X1, X2,...,X,) as a vector
of features where Vi € {1,...,p}, X; refers both to the name of the feature and
to the space of the values taken by the feature, i.e., X; C R. For an object x

P
belonging to X = [ X; C RP, let (x) € O denote the unknown label that
i—1

i=
should be associated to .
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In this article, we focus on a supervised classification problem. The specificity
of the considered data, referred to as incomplete data, is that some features of
some examples are missing due to technological aspects. Therefore, only part of
the data of these examples is obtained. The proposed classification approach,
qualified as imprecise, integrates the incompleteness of the data in its process to
predict subsets of classes comprising the true class when standard counterpart
classifier would have predicted the wrong class. To this aim we diverted standard
probabilistic classifiers from their natural use for computing probability on sets of
classes. Such uncertain resulting information is then captured by belief functions.
The following subsections, briefly recalls the notions discussed.

2.1 Supervised Classification

To determine #(z) in a supervised classification manner, a standard classifier
do : X — O is trained on a set of examples (z;,0;)1<i<n such that for all
1 <i < N, z; belongs to X and 6; to ©. By standard classifier we mean a classi-
fier that assigns to x a single class 6(z) = 6;, j € {1,...,n}. In some cases when
the input data is too voluminous or redundant, it may be appropriate to perform
some extraction features before the training of dg. By reducing the dimension
of X, and thus, working with a reduced feature space X’ C RP with p < p,
the extraction such as Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA) or Independent Component Analysis (ICA) facilitates the
learning and may enhance the classification performance. When feature extrac-
tion is designed taking into account the labels of the training examples it is
termed as supervised feature extraction. For instance LDA also known as Fisher
discriminant analysis reduces the number of features to n—1 by looking for a lin-
ear combination of the variables maximizing the within-groups and minimizing
between-groups variance.

2.2 Probabilistic Classifier and Decision Rule

When dg can also provide for x a posterior probability distribution p(.|z) : © —

[0, 1], it is called a probabilistic classifier. Many classifier algorithms base their deci-

sion only on p(.|z) as follows: 0(z) = arg max p(0,|z). For more sophisticated
7j=1,....,n

decisions, one can use the decision rule technique classically used in decision the-
ory. Let A = {a1,as2,...,a,} be a finite set of actions that can be taken. In the
case of a standard classifier, an action a € A corresponds to assign a class 6 € 6 to
an object x. In such case, we simplify by setting A = ©. In order to compare deci-
sions in A or to compare the classifier g to another decision rule, two functions
are introduced: loss function and risk function. A loss function L : A x © — R is
considered to quantify the loss L(a, #) incurred when choosing the action a € A
while the true state of natureis § € ©. A risk functionrs, : A — Risdefined as the
following expectation: 75, (a) = Ep(.|2)(L(a,0)). In the case of discrete and finite

probability distribution, we have 75, (0;) = > L(0;,0k) p(6i|z), 5 € {1,...,n}.
k=1

Thus, considering the decision rule dg, the class 6; minimizing the risk r5, (6;) over
© should be chosen.



126 L. Jacquin et al.

2.3 Elements of Belief Functions Theory

Due to the additivity constraint inherent to the definition of a probability distri-
bution, one cannot built a probability distribution when measures, observations,
etc. are imprecise. Belief functions theory, as an extension of probability the-
ory, allows masses to be assigned to imprecise data. Two levels are considered
when introducing belief functions: credal and pignistic levels. At the credal level,
beliefs are captured and quantified by belief functions, while at the pignistic level
or decision level, beliefs are quantified using probability distributions.

Credal Level. A mass function, also called basic belief assignment (bba), is
a set function m : 2 — [0,1] satisfying > m(A) = 1. For a set A C O,
ACo

the quantity m(A) is interpreted as a measure of evidence committed exactly
to the set A and not to any more specific subsets of A. The elements A € 2°
such that m(A4) > 0 are called focal elements and they form a set denoted F.
(m,T) is called body of evidence. The total belief committed to A is measured
by the sum of all masses of A’s subsets. This is expressed by the belief function

Bel : 29 — [0,1], Bel(A) = > m(B). Furthermore the plausibility of
BCO,BCA
A, Pl:2° — [0,1], quantifies the maximum amount of support that could be
allocated to A, PI(A) = > m(B).
BCO,BNA£D

Pignistic Level. In the transferable belief model [29], the decision is made in
the pignistic level. The evidential information is transferred into a probabilistic
framework by means of the pignistic probability distribution betP,,, for § € O,

betP,(0) = > m(A)/|A|, where |A| denotes the number of elements in A.
ACO,A30

Decision Rule. The risk associated with a decision rule is adaptable for the
evidential framework [9,13,27]. In the case of imprecise data, the set of actions
A is 29\ {0}. In order to decide between the elements of A according to the
chosen loss function L, it is possible to adopt different strategies. Two strategies
are proposed in the literature: the optimistic strategy by minimizing rs_ or the
pessimistic strategy by minimizing 75, which are defined as follows:

r(A) = Z m(B) géig L(A,0), T(A) = Z m(B) Ieneaé(L(A, 0). (1)
BCO BCO
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3 Problem Statement and Proposed Approach

3.1 Imprecise Supervised Classification

For a new example x, the output of an imprecise classifier is a set of classes,
all its elements are candidates for the true class 6 and the missing information
prevent more precise output. In this case a possible output of the classifier is
the information: “¢ € A”, A C ©. To perform an imprecise classification, two
cases need to be distinguished related to the training examples: (case 1) learn-
ing examples are precisely labelled, i.e., only a single class is assigned to each
example; (case 2) one or more classes are assigned to each training example. In
the first case described in the Subsect. 2.1, standard classifiers give a single class
as prediction to a new object x but some recent classifiers [6,7,36] give a set of
classes as prediction of z. Some of these recent classifiers base their algorithm
on the posterior probability provided by standard classifiers. More precisely, if
we denote by P(.|x) the probability measure associated to the posterior prob-
ability distribution p(.|z), P(4]z) = > p(f|z), A C O is used to determine
0cA

the relevant subset of classes to be assigned to x. In the second case when the
imprecision or doubt is explicitly expressed by the labels, [2,5,37], a classifier
S0 1 X — 29\ {0} is trained on a set of examples (z;, A4;)1<i<n such that for
all 1 <4 < N, x; belongs to X and ) # A; C ©. This case is refereed in our
paper as imprecise supervised classification.

3.2 Problem Statement

Let us consider the supervised classification problem where the available training
examples that are precisely labelled (case 1) (z;,0;)1<i<n, i € X and 0; € O are
such that (i) the labels 6,—;  n are trusted. They may derive from expertise on
other features #;_;  y which contain more complete information than x;—1,..n,
(ii) this loss of information induces overlapping on some examples. In other
words, Ji,5 € {1,..., N} such that the characteristics of x; are very close to
those of x; but 0; # 6;. When a standard classifier is trained on such data, it
will commit inevitable errors. The problem that we handle in this paper is how
to improve the learning step to better consider this type of data and get better
performances and reliable predictions.

3.3 The Imprecise Classification Approach

The proposed approach of imprecise classification is constituted by three steps:
(i) the relabelling step which consists in analysing the training example in
order to add to the class that is initially associated to an example the classes
associated to the other examples having characteristics very close. Thus a new
set of examples is built: (z;, 4;)1<;<n such that for all 1 < ¢ < N, z; belongs
to X and ) # A; C ©; (ii) the training step which consists on the training of
probabilistic classifier dye : X — 2€ \ {#}. The classifier 550 provides for a new
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object € X a posterior probability distribution on 2° which is also a mass
function denoted m(.|x). The trained classifier ignores the existence of inclusion
or intersection between subsets of classes. This unawareness of relations between
the labels may seem counter intuitive, but is compatible with the purpose of
finding a potentially imprecise label associated to a new incoming example; (iii)
the decision step which consists of proposing a loss function adapted for the
case of imprecise classification that calculates the prediction that minimize the
risk function associated to the classifier d50. Figure 1 illustrates the global process
and the steps of relabelling, classification and decision are presented in detail
below.

Treatment of a new un-

Training phase labelled example =z € R?
4 N O N
. z € RP
Preprocessings
Second LDA
(zi,0:)i=1,.,.n ERP x O extraction
First LDA extraction g’ e R
Application
(2},0:)i=1,..N ER*" ' x O s
iy Vi )i= ,, 4 Training L _ ()l( (52<—)
Rela‘billmg L, of 6,0 on —_
procedure noaAN.
A1, .Nn€AC 20 (@, Addi=t,...n Decision
: problem
Second LDA
extraction 0 # A e 29
S T, N € RIAI-1 D
\_ 2N /

Fig. 1. Steps of evidential classification of incomplete data

Relabelling Procedure. First we perform LDA extraction on the training
examples (cf Fig.1) in order to reduce complexity. The resulting features are
2 € R""1 i =1,..,N where n = |©|. Then we consider a set of C' standard
classifiers 03, ...,55 where on each classifier g : R"™t — O, ¢ € {1,...,C} we
compute leave-one-out (LOO) cross validation predictions for the training data
($2,91)i:1,“.,N~

The relabelling of the example (z},6;) is based on a vote procedure of the
LOO predictions of the C classifiers. The vote procedure is the following: when
more than 50% majority of the classifiers predict a class 6,,,4;,, the example is
relabelled as the union A; = {6;, 0pq;, }. Note that when 6,,,;, = 0; the original
label remains, i.e., A; = 6;. If none of the predicted classes from the C' classifiers
gets the majority, then the ignorance is expressed for this example by relabelling
it as A; = ©. Note that the new labels are consistent with the original classes
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that were trusted. The fact that several (C') classifiers are used to express the
imprecision permits a better objectivity on the real imprecision of the features,
i,e, the example is difficult not only for a single classifier. We denote by A C 2€
the set of the new training labels A;,¢ =1,..., V.

Note that we limited the new labels A; to have at most two elements except
when expressing ignorance A; = ©. This is done for avoiding too unbalanced
training sets, but more general relabelling could be considered. Once all the
training examples are relabelled, a classifier d50 can be trained.

Learning 40 . As indicated throughout this paper, dyo is learnt using the new
labels ignoring the relations that might exist between the elements of A. Rein-
forcing the idea of independence of treatment between the classes, LDA is applied
to the relabelled training set (z;, A;);=1,... n. This results to the reduction of the
space dimension from p to |A| — 1 which better expresses the repartition of rela-
belled training examples. For the training example i € {1,..., N}, let 2/ € RI4I=1
be the new projection of x; on this |A| — 1 dimension space. The classifier dq0 is
finally taught on (z, A;)i=1.... N-

Decision Problem. As recalled in Subsects. 2.2 and 2.3, the decision to assign a
new object = to a single class or a set of classes usually relies on the minimisation
of the risk function which is associated to a loss function L : 29\ {0} x © — R.
As mentioned in the introduction to this paper, the application of our work
concerns situations where errors may have serious consequences. It would then
be legitimate to consider the pessimistic strategy by minimizing 75, . Further-
more, in the definition of 75, , Eq. (1), the quantity max L(A,0) concerns the loss

incurred by choosing A C @, when the true nature is comprised in B C 6. On
the basis of this fact, we proposed a new definition of the loss function, L(A, B),
A, B C O, which directly takes into account the relations between A and B.
This is actually a generalisation of the definition proposed in [7] that is based
on F-measure, recall and precision for imprecise classification. Let us consider
A, B € 29\ {0}, where A = () is the prediction for the object z and B is its
state of nature. Recall is defined as the proportion of relevant classes included
in the prediction §(z). We define the recall of A and B as:

|AN B

R(A.B) =

(2)
Precision is defined as the proportion of classes in the prediction that are rele-
vant. We define the precision of A and B as:

_l4nB

P(A,B) = i (3)

Considering these two definition, the F-measure can be defined as follows:

(1+B8*)PR  (1+?)|An B
BP+R  B%B|+|A4]

Fs(A,B) =
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Note that § = 0, induce Fg(A, B) = P(A, B), whereas when § — oo,
Fs(A,B) ﬂ—> P(A,B). Let us comment on some situations according to the

“true set” B and the predicted set A. The worse scenario of prediction is when
there is no intersection between A and B. This would always be sanctioned by
F3(A, B) = 0. On the contrary, when A = B, Fg(A, B) = 1 for every (3. Between
those extreme cases, the errors of generalisation i.e., B C A, are controlled by
the precision while the errors of specialisation i.e., A C B, are controlled by the
recall. Finally, the loss function Lg : 26 \ {#} x 2° \ {#} — R is extended:

Lﬁ(A7B):17Fﬂ(A7B)' (5)

For an example x to be classified, whose mass function m(.|z) has been calculated
by d,e, we predict the set A minimizing the following risk function:

Riskg(A) = > m(B)Lg(A, B). (6)
BCeO

4 Related Works

Regarding relabelling procedures, much research has been carried out to identify
suspect examples with the intention to suppress or relabel them into a concurrent
more appropriate class [16,20]. This is generally done to enhance the performance.
Other approaches consist in relabelling into imprecise classes. This has been done
to test the evidential classification approach on imprecise labelled data in [37]. But,
as already stated, our relabelling serves a different purpose, better mapping over-
laps in the feature space. Concerning the imprecise classification, several works
have been dedicated to tackle this problem. Instead of the term “imprecise clas-
sification” that is adopted in our article, authors use terms like “nondeterminis-
tic classification” [7], “reliable classification” [24], “indeterminate classification”
[6,36], “set-valued classification” [28,31] or “conformal prediction” [3] (see [24] for
a short state of the art). In [36], the Naive Credal Classifier (NCC) is proposed as
the extension of Naive Bayes Classifier (NBC) to sets of probability distributions.
In [24] the authors propose an approach that starts from the outputs of a binary
classification [25] using classifier that are trained to distinguish aleatoric and epis-
temic uncertainty. The outputs are epistemic uncertainty, aleatoric uncertainty
and two preference degrees in favor of the two concurrent classes. [24] generalizes
this approach to the multi-class and providing set of classes as output. Closer to
our approach are approaches of [5] and [7]. The approach in [7] is based on a poste-
rior probability distribution provided by a probabilistic classifier. The advantage of
such approach and ours is that any standard probabilistic classifier may be used to
perform an imprecise classification. Our approach distinguishes itself by the rela-
belling step and by the way probabilities are allowed on sets of classes. To the best
of our knowledge existing works algorithms do not train a probabilistic classifier
on partially labelled data to quantify the body of evidence. Although we insisted
for the use of standard probabilistic classifier ;0 unaware of relations between the
sets, it is possible to run our procedure with an evidential classifier as the evidential
k-NN [5].
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5 Illustration

5.1 Settings

We performed experiments on the classification problem of four plastic categories
designated plastics A, B, C and D on the basis of industrially acquired spectra.
The total of 11540 available data examples is summarized in Table 1. Each plastic
example was identified by experts on the basis of laboratory measure of atten-
uated total reflectance spectra (ATR) which is considered as a reliable source
of information for plastic category’s determination. As a consequence, original
training classes are trusted and were not questioned. However data provided by
the industrial devices may be challenged. These data consist in spectra composed
of the reflectance intensity of 256 different wavelengths. Therefore and for the
enumerated reasons in Sect. 1, the features are subject to ambiguity. Prior to
experiments, all the feature vectors, i.e., spectra, were corrected by the standard
normal variate technique to avoid light scattering and spectral noise effects. We
implemented our approach and compared it to the approaches in [5] and [7]. The
implementation is made using R packages, using existing functions for the appli-
cation of the following 8 classifiers naive Bayes classifier: (nbayes), k-Nearest
Neighbour (k-NN), decision tree (tree), random forest (rf), linear discriminant
analysis (lda), partial least squares discriminant analysis (pls-da), support vector
machine (svm) and neural networks (nnet).!

Table 1. Number of spectra of each original class in learning and testing bases.

Classes Category A | Category B | Category C | Category D
Learning base | 1416 1412 1425 1434
Testing base | 1469 1458 1454 1472

5.2 Results

In order to apply our procedure, we must primary choose a set of classifiers
to perform the relabelling. These classifiers are not necessarily probabilistic
but producing point prediction. Thus, for every experimentation, our algorithm
ECLAIR was performed with the ensemble relabelling using 7 classifiers: nbayes,
k-NN, tree, rf, lda, svm, nnet?. Then, we are able to perform the ECLAIR impre-
cise version of a selected probabilistic classifier. Figure 2, shows the recall and
precision scores of the probabilistic classifier nbayes to show the role of 3. We see
the same influence of 3 as mentioned in [7]. Indeed, (cf Subsect. 3.3), with small

! Experiments concerning these learning algorithm rely on the following functions
(and R packages) : naiveBayes (e€1071), knn3 (caret), rpart (rpart), randomForest
(randomForest), 1da (MASS), plsda (caret), svmm (e1071), nnet (nnet).

2 In order to limit unbalanced classes, we choose to exclude form the learning base
examples which new labels count less than 20 examples.
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Fig. 2. Recall and precision of ECLAIR using nbayes, i.e. d,0 is nbayes, against 3.

values of § we have good precision, traducing the relevance of prediction, i.e.,
the size of the predicted set is reasonable; while high values of 8 give good recall,
meaning reliability, i.e., better chance to have true class included in the predic-
tions. The choice of § should then result form a compromise between relevance
and reliability requirement.

Table 2. Precision P of ECLAIR compared with nondeterministic with 3s chosen such
that recalls equal to 0.90.

nbayes | k-NN | tree rf 1da pls-da | svm | evidential k-NN
Nondeterministic | 86.70 | 86.94 |85.00 | 86.52 | 83.41 | 85.35 |88.20 | 86.58
ECLAIR 87.78 | 87.89 83.88 | 87.45|82.94 | 86.33 | 88.31 | 86.69

In order to evaluate the performances of ECLAIR, we compared our results
to the classifier proposed in [7] that is called here nondeterministic classifier.
As nondeterministic classifier and ECLAIR are set up for a parameter 3, we
decided to set (s such that global recalls equal to 0.90, and compare global
precisions on a fair basis. For even more neutrality regarding the features used
in both approach, we furnish to the nondeterministic classifier, the same reduced
features z7,i = 1,..., N, that those used by ECLAIR in the training phase (see
Fig.1). The 7 first columns of Table2 shows the so obtained precisions for 7
classifiers. These results show the competitiveness of our approach for most of
the classifiers, especially nbayes, k-NN, rf and pls-da. However, these results are
only partial since they do not show the general trend for different (s that are
generally in favour of our approach. Therefore we present more complete results
for nbayes and svm in Fig. 3, showing evaluation of precision score against recall
score for several values of § varying in [0, 6]. On the same figure, we also present
the results of nondeterministic classifier with different input feature (in black):
raw features, i.e., z; € RP, LDA reduced features, i.e., 2, € R""! and the
same features as those used for ECLAIR, i.e., 2/ € RI*~1 (see Fig. 1 for more
details). Doing so, we show that the good performances of ECLAIR are not only
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Fig. 3. Precision vs recall of Nondeterministic (ND) and ECLAIR

attributable to extraction phase. To facilitate the understanding of the results
plotted in Fig.3, one should understand that the best performances are those
illustrated by points on the top right of the plots, i.e., higher precision and recall
scores. We observe that ECLAIR, generally makes a better compromise between
the recall and precision scores for the used classifiers. Regarding the special case
when ECLAIR is performed with an evidential classifier performing example
imprecise labelled training (see Sect.4), the comparison is less straightforward.
We considered the evidential k-NN [10] for imprecise labels by minimizing the
error suggested in [39]. Using this evidential k-NN as a classifier 6 in ECLAIR
procedure is straightforward. Concerning the application of nondeterministic
classifier, we decided to keep the same parameter and turn the classifier into
probabilistic by applying the pignistic transformation to the mass output of the
k-NN classifier (see column of Table 2). ECLAIR obtains a slightly better results.

6 Conclusion

In this article, a method of evidential classification of incomplete data via impre-
cise relabelling was proposed. For any probabilistic classifier, our approach pro-
poses an adaptation to get more cautious output. The benefit of our approach
was illustrated on the problem of sorting plastics and showed competitive per-
formances. Our algorithm is generic it can be applied in any other context where
incomplete data on the features are presents. In future works we plan to exploit
our procedure to provide cautious decision-making for the problem of plastic
sorting. This application requires high reliability of the decision for preserving
the physiochemical properties of the recycle product. At the same time, the deci-
sion shall ensure reasonable relevance to guarantee financial interest, indeed the
more one plastic category is finely sorted the more benefice the industrial gets.
We also plan to strengthen our approach evaluation by confronting it with other
state of the art imprecise classifiers and by preforming experiments on several
datasets from machine learning repositories.
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