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Abstract. We apply a selection of 19 inconsistency measures from the
literature on artificially generated knowledge bases and study the dis-
tribution of their values and their pairwise correlation. This study aug-
ments previous analytical evaluations on the expressivity and the pair-
wise incompatibility of these measures and our findings show that (1)
many measures assign only few distinct values to many different knowl-
edge bases, and (2) many measures, although founded on different theo-
retical concepts, correlate significantly.

1 Introduction

An inconsistency measure I is a function that assigns to a knowledge base K
(usually assumed to be formalised in propositional logic) a non-negative real
value I(K) such that I(K) = 0 iff K is consistent and larger values of I(K)
indicate “larger” inconsistency in K [3,5,12]. Thus, each inconsistency measure
I formalises a notion of a degree of inconsistency and a lot of different concrete
approaches have been proposed so far, see [11–13] for some surveys. The quest
for the “right” way to measure inconsistency is still ongoing and many (usually
controversial) rationality postulates to describe the desirable behaviour of an
inconsistency measure have been proposed so far [2,12].

Our study aims at providing a new perspective on the analysis of exist-
ing approaches to inconsistency measurement by experimentally analysing the
behaviour of inconsistency measures. More precisely, our study provides a quan-
titative analysis of two aspects of inconsistency measures:

A1 the distribution of inconsistency values on actual knowledge bases, and
A2 the correlation of different inconsistency measures.

Regarding the first item, [11] investigated the theoretical expressivity of incon-
sistency measures, i. e., the number of different inconsistency values a measure
attains when some dimension of the knowledge base is bounded (such as the
number of formulas or the size of the signature). One result in [11] is that e. g.
the measure IΣ

dalal (see Sect. 3) has maximal expressivity and the number of dif-
ferent inconsistency values is not bounded if only one of these two dimensions
is bounded. However, [11] does not investigate the distribution of inconsistency
values. It may be the case that, although a measure can attain many different
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values, most inconsistent knowledge bases are clustered on very few inconsistency
values. Regarding the second item, previous works have shown—see [12] for an
overview—that all inconsistency measures developed so far are “essentially” dif-
ferent. More precisely, for each pair of measures one can find a property that is
satisfied by one measure but not by the other. Moreover, for each pair of incon-
sistency measures one can find knowledge bases that are ordered different wrt.
their inconsistency. However, until now it has not been investigated how “sig-
nificant” the difference between measures actually is. It may be the case that
two measures order all but just a very few knowledge bases differently (or the
other way around). In order to analyse these two aspects we applied 19 different
inconsistency measures from the literature on artificially generated knowledge
bases and performed a statistical analysis on the results. After a brief review of
necessary preliminaries in Sect. 2 and the considered inconsistency measures in
Sect. 3, we provide some details on our experiments and our findings in Sect. 4
and conclude in Sect. 5.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of
propositions, and let L(At) be the corresponding propositional language con-
structed using the usual connectives ∧ (and), ∨ (or), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K

be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X. Semantics to a propositional language is given by
interpretations and an interpretation ω on At is a function ω : At → {true, false}.
Let Ω(At) denote the set of all interpretations for At. An interpretation ω satisfies
(or is a model of) an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true.
The satisfaction relation |= is extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define furthermore the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for every
formula or set of formulas X. By abusing notation, a formula or set of formulas
X1 entails another formula or set of formulas X2, denoted by X1 |= X2, if
Mod(X1) ⊆ Mod(X2). Two formulas or sets of formulas X1,X2 are equivalent,
denoted by X1 ≡ X2, if Mod(X1) = Mod(X2). If Mod(X) = ∅ we also write
X |=⊥ and say that X is inconsistent.

3 Inconsistency Measures

Let R
∞
≥0 be the set of non-negative real values including ∞. Inconsistency mea-

sures are functions I : K → R
∞
≥0 that aim at assessing the severity of the

inconsistency in a knowledge base K. The basic idea is that the larger the incon-
sistency in K the larger the value I(K). We refer to [11–13] for surveys.
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Fig. 1. Definitions of the considered measures

The formal definitions of the considered inconsistency measures can be found
in Fig. 1 while the necessary notation for understanding these measures follows
below. Please see the above-mentioned surveys and the original papers referenced
therein for explanations and examples.

A set M ⊆ K is called minimal inconsistent subset (MI) of K if M |=⊥
and there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MIs of
K. Let furthermore MC(K) be the set of maximal consistent subsets of K, i. e.,
MC(K) = {K′ ⊆ K | K′ �|=⊥ ∧∀K′′

� K′ : K′′ |=⊥}, and let SC(K) be the set of
self-contradictory formulas of K, i. e., SC(K) = {φ ∈ K | φ |=⊥}.

A probability function P is of the form P : Ω(At) → [0, 1] with∑
ω∈Ω(At) P (ω) = 1. Let P(At) be the set of all those probability functions and

for a given probability function P ∈ P(At) define the probability of an arbitrary
formula φ via P (φ) =

∑
ω|=φ P (ω).
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A three-valued interpretation υ on At is a function υ : At → {T, F,B} where
the values T and F correspond to the classical true and false, respectively. The
additional truth value B stands for both and is meant to represent a conflicting
truth value for a proposition. Taking into account the truth order ≺ defined
via T ≺ B ≺ F , an interpretation υ is extended to arbitrary formulas via
υ(φ1∧φ2) = min≺(υ(φ1), υ(φ2)), υ(φ1∨φ2) = max≺(υ(φ1), υ(φ2)), and υ(¬T ) =
F , υ(¬F ) = T , υ(¬B) = B. An interpretation υ satisfies a formula α, denoted
by υ |=3 α if either υ(α) = T or υ(α) = B.

The Dalal distance dd is a distance function for interpretations in Ω(At) and
is defined as d(ω, ω′) = |{a ∈ At | ω(a) �= ω′(a)}| for all ω, ω′ ∈ Ω(At). If
X ⊆ Ω(At) is a set of interpretations we define dd(X,ω) = minω′∈X dd(ω′, ω)
(if X = ∅ we define dd(X,ω) = ∞). We consider the inconsistency measures
IΣ
dalal, Imax

dalal, and Ihit
dalal from [4] but only for the Dalal distance. Note that in [4]

these measures were considered for arbitrary distances and that we use a slightly
different but equivalent definition of these measures.

For every knowledge base K, i = 1, . . . , |K| define MI(i)(K) = {M ∈
MI(K) | |M | = i} and CN(i)(K) = {C ⊆ K | |C| = i ∧ C �|=⊥}. Fur-
thermore define Ri(K) = 0 if |MI(i)(K)| + |CN(i)(K)| = 0 and otherwise
Ri(K) = |MI(i)(K)|/(|MI(i)(K)| + |CN(i)(K)|). Note that the definition of IDf

in Table 1 is only one instance of the family studied in [9], other variants can be
obtained by different ways of aggregating the values Ri(K).

A set of maximal consistent subsets C ⊆ MC(K) is called an MC-cover [1] if⋃
C∈C C = K. An MC-cover C is normal if no proper subset of C is an MC-cover.

A normal MC-cover is maximal if λ(C) = |⋂C∈C C| is maximal for all normal
MC-covers.

For a formula φ let φ[a1, i1 → ψ1; . . . , ak, ik → ψk] denote the formula φ
where the ijth occurrence of the proposition aj is replaced by the formula ψj ,
for all j = 1, . . . , k.

A set {K1, . . . ,Kn} of pairwise disjoint subsets of K is called a conditional
independent MUS (CI) partition of K [6], iff each Ki is inconsistent and MI(K1∪
. . . ∪ Kn) is the disjoint union of all MI(Ki).

An ordered set P = {P1, . . . , Pn} with Pi ⊆ MI(K) for i = 1, . . . , n is called
an ordered CSP-partition [7] of MI(K) if 1.) MI(K) is the disjoint union of all
Pi for i = 1, . . . , n, 2.) each Pi is a conditional independent MUS partition of
K for i = 1, . . . , n, and 3.) |Pi| ≥ |Pi+1| for i = 1, . . . , n − 1. For such P define
furthermore W(P) =

∑n
i=1 |Pi|/i.

4 Experiments

In the following, we give some details on our experiments, the evaluation method-
ology, and our findings.

4.1 Knowledge Base Generation

Due to the lack of a dataset of real-world knowledge bases with a significantly rich
profile of inconsistencies, we used artificially generated knowledge bases. In order
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to avoid biasing our study on random instances of a specific probabilistic model
for knowledge base generation, we developed an algorithm that enumerates all
syntactically different knowledge bases with increasing size and considered the
first 188900 bases generated this way. For example, the first five knowledge bases
generated this way are ∅, {x1}, {¬x1}, {¬¬x1}, {x1, x2} and, e. g., number 72793
is {x1, x2,¬x2,¬(¬x2 ∧ ¬¬x2)}. From the 188900 generated knowledge bases,
127814 are consistent and 61086 are inconsistent. For the remainder of this paper,
let K̂ denote the set of all 188900 knowledge bases and let K̂⊥ ⊆ K̂ be only the
inconsistent ones.

The implementation1 for this algorithm is available in the Tweety project2

[10]. The generated knowledge bases and their inconsistency values wrt. each of
considered inconsistency measures are available online3.

4.2 Evaluation Measures

In order to evaluate A1, we apply the entropy on the distribution of inconsistency
values of each measure. For K ⊆ K let I(K) = {I(K) | K ∈ K} denote the image
of K wrt. I.

Definition 2. Let K be a set of knowledge bases and I be an inconsistency
measure. The entropy HK(I) of I wrt. K is defined via

HK(I) = −
∑

x∈I(K)

|I−1(x)|
|K| ln

|I−1(x)|
|K|

where ln x denotes the natural logarithm with 0 ln 0 = 0.

For example, if a measure I∗ assigns to a set K∗ of 10 knowledge bases 5 times
the value X, 3 times the value Y , and 2 times the value Z, we have

HK∗(I∗) = − 5
10

ln
5
10

− 3
10

ln
3
10

− 2
10

ln
2
10

≈ 1.03

The interpretation behind the entropy here is that a larger value HK(I) indicates
a more uniform distribution of the inconsistency values on elements of K, a
value HK(I) = 0 indicates that all elements are assigned the same inconsistency
value. Thus, the larger HK(I) the “more use” the measure makes of its available
inconsistency values.

In order to evaluate A2, we use a specific notion of a correlation coefficient.
For two measures I1 and I2 and two knowledge bases K1 and K2 we say that I1

and I2 are order-compatible wrt. K1 and K2, denoted by I1 ∼K1,K2 I2 iff

I1(K1) > I1(K2) ∧ I2(K1) > I2(K2)
or I1(K1) < I1(K2) ∧ I2(K1) < I2(K2)
or I1(K1) = I1(K2) ∧ I2(K1) = I2(K2)

1 http://mthimm.de/r/?r=tweety-ckb.
2 http://tweetyproject.org.
3 http://mthimm.de/misc/exim mt.zip.

http://mthimm.de/r/?r=tweety-ckb
http://tweetyproject.org
http://mthimm.de/misc/exim_mt.zip
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Table 1. Entropy values of the investigated measures wrt. K̂⊥ (rounded to two deci-
mals and sorted by increasing entropy).

Id ICC Ihit
dalal Ic Imc Iforget IMI Iis Imax

dalal ICSP

HK̂⊥(I) 0 0.08 0.09 0.12 0.13 0.18 0.24 0.28 0.29 0.29

Ihs Iη IΣ
dalal IMIC Imv Imcsc Ip Inc IDf

HK̂⊥(I) 0.29 0.33 0.36 0.37 0.45 0.48 0.51 0.52 0.78

Table 2. Correlation coefficients CK̂⊥(·, ·) of the investigated measures wrt. K̂⊥

(rounded to two decimals).

Id IMI I
MIC

Iη Ic Imc Ip Ihs IΣ
dalal Imax

dalal Ihit
dalal IDf

Imv Inc Imcsc ICSP Iforget ICC Iis

Id 1 0.69 0.44 0.5 0.86 0.87 0.35 0.52 0.47 0.52 0.9 0.22 0.48 0.33 0.37 0.68 0.76 0.92 0.67

IMI 1 0.54 0.37 0.72 0.74 0.65 0.38 0.41 0.38 0.76 0.28 0.41 0.47 0.52 0.99 0.7 0.75 0.99

I
MIC

1 0.72 0.47 0.51 0.53 0.7 0.73 0.7 0.52 0.49 0.41 0.43 0.84 0.55 0.51 0.5 0.55

Iη 1 0.47 0.48 0.36 0.98 0.93 0.98 0.49 0.53 0.39 0.33 0.84 0.37 0.48 0.5 0.37

Ic 1 0.85 0.4 0.49 0.53 0.49 0.88 0.25 0.45 0.38 0.42 0.72 0.88 0.87 0.72

Imc 1 0.45 0.48 0.48 0.48 0.95 0.26 0.45 0.39 0.39 0.75 0.8 0.94 0.75

Ip 1 0.36 0.39 0.36 0.43 0.25 0.32 0.43 0.5 0.64 0.42 0.41 0.64

Ihs 1 0.95 0.99 0.51 0.52 0.4 0.32 0.85 0.38 0.5 0.52 0.38

IΣ
dalal 1 0.95 0.51 0.53 0.4 0.34 0.89 0.42 0.54 0.5 0.42

Imax
dalal 1 0.5 0.52 0.4 0.32 0.85 0.38 0.5 0.52 0.38

Ihit
dalal 1 0.26 0.46 0.4 0.41 0.77 0.85 0.98 0.77

IDf
1 0.53 0.19 0.56 0.29 0.29 0.26 0.29

Imv 1 0.25 0.39 0.41 0.43 0.46 0.41

Inc 1 0.39 0.47 0.4 0.39 0.47

Imcsc 1 0.53 0.44 0.4 0.53

ICSP 1 0.71 0.76 0.99

Iforget 1 0.82 0.71

ICC 1 0.76

Iis 1

Let ‖A‖ be the indicator function, which is defined as ‖A‖ = 1 iff A is true and
‖A‖ = 0 otherwise.

Definition 3. Let K be a set of knowledge bases and I1, I2 be two inconsistency
measures. The correlation coefficient CK(I1, I2) of I1 and I2 wrt. K is defined
via

CK(I1, I2) =

∑
K,K′∈K,K
=K′ ‖I1 ∼K,K′ I2‖

|K|(|K| − 1)

In other words, CK(I1, I2) gives the ratio of how much I1 and I2 agree on
the inconsistency order of any pair of knowledge bases from K.4 Observe that
CK(I1, I2) = CK(I2, I1).

4 Note that CK is equivalent to the Kendall’s tau coefficient [8] but scaled onto [0, 1].
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4.3 Results

Tables 1 and 2 show the results of analysing the considered measures on K̂⊥ wrt.
the two evaluation measures from before5.

Regarding A1, it can be seen that Id has minimal entropy (by definition).
However, also measures Ihit

dalal and ICC and to some extent most of the other
measures are quite indifferent in assigning their values. For example, out of 61086
inconsistent knowledge bases, ICC assigns to 58523 of them the same value 1.
On the other hand, measure IDf

has maximal entropy among the considered
measures.

Regarding A2, we can observe some surprising correlations between mea-
sures, even those which are based on different concepts. For example, we have
CK̂⊥(Imax

dalal, Ihs) ≈ 0.99 indicating a high correlation between Imax
dalal and Ihs

although Imax
dalal is defined using distances and Ihs is defined using hitting sets.

Equally high correlations can be observed between the three measures IMI, ICSP,
and Iis. Further high correlations (e. g. above 0.8) can be observed between many
other measures. On the other hand, the measure IDf

has (on average) the small-
est correlation to all other measures, backing up the observation from before.

5 Conclusion

Our experimental analysis showed that many existing measures have low entropy
on the distribution of inconsistency values and correlate significantly in their
ranking of inconsistent knowledge bases. A web application for trying out all
the discussed inconsistency measures can be found on the website of Tweety-
Project6, cf. [10]. Most of these measures have been implemented using naive
algorithms and research on the algorithmic issues of inconsistency measure is
still desirable future work, see also [13].
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