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Preface

These are the proceedings of the 13th International Conference on Scalable Uncertainty
Management (SUM 2019) held during December 16-18, 2019, in Compiegne, France.
The SUM conferences are annual events which gather researchers interested in the
management of imperfect information from a wide range of fields, such as artificial
intelligence, databases, information retrieval, machine learning, and risk analysis, and
with the aim of fostering the collaboration and cross-fertilization of ideas from different
communities.

The first SUM conference was held in Washington DC in 2007. Since then, the
SUM conferences have successively taken place in Napoli in 2008, Washington DC in
2009, Toulouse in 2010, Dayton in 2011, Marburg in 2012, Washington DC in 2013,
Oxford in 2014, Québec in 2015, Nice in 2016, Granada in 2017, and Milano in 2018.

The 25 full, 4 short, 4 tutorial, 2 invited keynote papers gathered in this volume
were selected from an overall amount of 44 submissions (5 of which were desk-rejected
or withdrawn by the authors), after a rigorous peer-review process by at least 3 Pro-
gram Committee members. In addition to the regular presentations, the technical
program of SUM 2019 also included invited lectures by three outstanding researchers:
Cassio P. de Campos (Eindhoven University of Technology, The Netherlands) on
“Scalable Reliable Machine Learning Using Sum-Product Networks,” Jérdme Lang
(CNRS, Paris, France) on “Computational Social Choice,” and Wolfgang Gatterbauer
(Northeastern University, Boston, USA) on “Algebraic approximations of the Proba-
bility of Boolean Functions.”

An originality of the SUM conferences is the care for dedicating a large space
of their programs to invited tutorials about a wide range of topics related to uncertainty
management, to further embrace the aim of facilitating interdisciplinary collaboration
and cross-fertilization of ideas. This edition includes five tutorials, for which we thank
Christophe Gonzales, Thierry Denceux, Marie-Jeanne Lesot, Maximilian Schleich, and
the Kay R. Amel working group for preparing and presenting these tutorials (four
of these tutorials have a companion paper included in this volume).

We would like to thank all of the authors, invited speakers, and tutorial speakers for
their valuable contributions. We in particular also express our gratitude to the members
of the Program Committee as well as to the external reviewers for their constructive
comments on the submissions. We would like to extend our appreciation to all par-
ticipants of SUM 2019 for their great contribution and the success of the conference.
We are grateful to the Steering Committee for their suggestions and support, and to the
Organization Committee for their support in the organization for the great work
accomplished. We are also very grateful to the Universit¢é de Technologie de
Compiégne (UTC) for hosting the conference, to the Heudiasyc laboratory and the
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MS2T laboratory of excellence for their financial and technical support, and to Springer
for sponsoring the Best Paper Award as well as for the ongoing support of its staff in
publishing this volume.

December 2019 Nahla Ben Amor
Benjamin Quost
Martin Theobald



General Chair

Benjamin Quost

Organization

Université de Technologie de Compi¢gne, France

Program Committee Chairs

Nahla Ben Amor

Martin Theobald

Steering Committee

Didier Dubois

Lluis Godo

Eyke Hiillermeier
Anthony Hunter
Henri Prade

Steven Schockaert
V. S. Subrahmanian

Program Committee

Nahla Ben Amor (PC Chair)

Martin Theobald (PC Chair)
Sébastien Destercke

Henri Prade

John Grant

Leila Amgoud

Benjamin Quost

Thomas Lukasiewicz
Pierre Senellart
Francesco Parisi
Davide Ciucci
Fernando Bobillo
Salem Benferhat
Silviu Maniu

LARODEC - Institut Supérieur de Gestion Tunis,
Tunisia
University of Luxembourg, Luxembourg

IRIT-CNRS, France

MIA-CSIC, Spain

Universitit Paderborn, Germany
University College London, UK
IRIT-CNRS, France

Cardiff University, UK
University of Maryland, USA

Institut Supérieur de Gestion de Tunis and LARODEC,
Tunisia

University of Luxembourg, Luxembourg

CNRS, Heudiasyc, France

CNRS-IRIT, France

Towson University, USA

CNRS-IRIT, France

Université de Technologie de Compiégne, Heudiasyc,
France

University of Oxford, UK

DI, Ecole Normale Supérieure, Université PSL, France

DIMES, University of Calabria, Italy

Universita di Milano-Bicocca, Italy

University of Zaragoza, Spain

UMR CNRS 8188, Université d’Artois, France

Université Paris-Sud, France



viii Organization

Rafael Penaloza
Fabio Cozman
Umberto Straccia
Lluis Godo

Philippe Leray

Zied Elouedi

Olivier Pivert

Didier Dubois

Olivier Colot
Leopoldo Bertossi
Manuel Gémez-Olmedo
Andrea Pugliese
Alessandro Antonucci
Maurice van Keulen
Thierry Denceux
Sebastian Link
Christoph Beierle
Cassio De Campos
Andrea Tettamanzi
Rainer Gemulla
Daniel Deutch
Raouia Ayachi

Imen Boukhris

University of Milano-Bicocca, Italy

University of Sdo Paulo, Brazil

ISTI-CNR, Italy

Artificial Intelligence Research Institute, IIIA-CSIC,
Spain

LINA/DUKe, Université de Nantes, France

Institut Supérieur de Gestion de Tunis, Tunisia

IRISA Laboratory, ENSSAT, France

CNRS-IRIT, France

Université Lille I, France

Relational Al Inc. and Carleton University, Canada

University of Granada, Spain

University of Calabria, Italy

IDSIA, Switzerland

University of Twente, The Netherlands

Université de Technologie de Compiegne, France

University of Auckland, New Zealand

FernUniversitit Hagen, Germany

Utrecht University, The Netherlands

Université de Nice-Sophia-Antipolis, France

Universitdit Mannheim, Germany

Tel Aviv University, Israel

LARODEC, Institut Supérieur de Gestion de Tunis,
Tunisia

LARODEC, Institut Supérieur de Gestion de Tunis,
Tunisia

Organization Committee

Yonatan Carlos Carranza
Alarcon
Sébastien Destercke

Marie-Héléne Masson

Benjamin Quost
(General Chair)

David Savourey

Université de Technologie de Compiégne, France

CNRS, Université de Technologie de Compiégne,
France

Université de Picardie Jules Verne, France

Université de Technologie de Compiégne, France

Université de Technologie de Compiégne, France



Contents

Matthias Thimm

Inconsistency Measurement . . . .. ... ... v vvn et 9
Matthias Thimm

Using Graph Convolutional Networks for Approximate Reasoning
with Abstract Argumentation Frameworks: A Feasibility Study. .......... 24
Isabelle Kuhlmann and Matthias Thimm

The Hidden Elegance of Causal Interaction Models. . . . ............... 38
Silja Renooij and Linda C. van der Gaag

Computational Models for Cumulative Prospect Theory: Application
to the Knapsack Problem Under Risk . .......... ... .. ... ......... 52
Hugo Martin and Patrice Perny

On a New Evidential C-Means Algorithm with Instance-Level Constraints. . . 66
Jiarui Xie and Violaine Antoine

Hybrid Reasoning on a Bipolar Argumentation Framework . ............ 79
Tatsuki Kawasaki, Sosuke Moriguchi, and Kazuko Takahashi

Active Preference Elicitation by Bayesian Updating
on Optimality Polyhedra .. ....... ... ... .. . .. .. . .. .. ... 93
Nadjet Bourdache, Patrice Perny, and Olivier Spanjaard

Selecting Relevant Association Rules From Imperfect Data . . ... ........ 107
Cécile L’Heritier, Sébastien Harispe, Abdelhak Imoussaten,
Gilles Dusserre, and Benoit Roig

Evidential Classification of Incomplete Data via Imprecise Relabelling:

Application to Plastic Sorting . . .. ... .. .. .. 122
Lucie Jacquin, Abdelhak Imoussaten, Frangois Trousset,
Jacky Montmain, and Didier Perrin

An Analogical Interpolation Method for Enlarging a Training Dataset . . . . . . 136
Myriam Bounhas and Henri Prade

Towards a Reconciliation Between Reasoning and Learning -
A Position Paper. . . ... ... 153
Didier Dubois and Henri Prade



X Contents

CP-Nets, n-pref Nets, and Pareto Dominance . . ... .................. 169
Nic Wilson, Didier Dubois, and Henri Prade

Measuring Inconsistency Through Subformula Forgetting. . . ... ......... 184
Yakoub Salhi

Explaining Hierarchical Multi-linear Models. . . ... ....... ... ... .... 192
Christophe Labreuche

Assertional Removed Sets Merging of DL-Lite Knowledge Bases. . . ... ... 207
Salem Benferhat, Zied Bouraoui, Odile Papini, and Eric Wiirbel

An Interactive Polyhedral Approach for Multi-objective Combinatorial
Optimization with Incomplete Preference Information . . ... ............ 221
Nawal Benabbou and Thibaut Lust

Open-Mindedness of Gradual Argumentation Semantics. . . .. ........... 236
Nico Potyka
Approximate Querying on Property Graphs . . ...................... 250

Stefania Dumbrava, Angela Bonifati, Amaia Nazabal Ruiz Diaz,
and Romain Vuillemot

Learning from Imprecise Data: Adjustments of Optimistic
and Pessimistic Variants. . . . . ... ... .. L 266
Eyke Hiillermeier, Sébastien Destercke, and Ines Couso

On Cautiousness and Expressiveness in Interval-Valued Logic . . ... ...... 280
Sebastien Destercke and Sylvain Lagrue

Preference Elicitation with Uncertainty: Extending Regret Based
Methods with Belief Functions . . .. ........... ... ... .. ... ...... 289
Pierre-Louis Guillot and Sebastien Destercke

Evidence Propagation and Consensus Formation in Noisy Environments . ... 310
Michael Crosscombe, Jonathan Lawry, and Palina Bartashevich

Order-Independent Structure Learning of Multivariate Regression
Chain Graphs . . . . ... 324
Mohammad Ali Javidian, Marco Valtorta, and Pooyan Jamshidi

Comparison of Analogy-Based Methods for Predicting Preferences . . . ... .. 339
Myriam Bounhas, Marc Pirlot, Henri Prade, and Olivier Sobrie

Using Convolutional Neural Network in Cross-Domain Argumentation
Mining Framework . . . .. ... .. 355
Rihab Bouslama, Raouia Ayachi, and Nahla Ben Amor



Contents xi

ConvNet and Dempster-Shafer Theory for Object Recognition . .. ........ 368
Zheng Tong, Philippe Xu, and Thierry Denceux

On Learning Evidential Contextual Corrections from Soft Labels Using
a Measure of Discrepancy Between Contour Functions . .. ............. 382
Siti Mutmainah, Samir Hachour, Frédéric Pichon, and David Mercier

Efficient Mobius Transformations and Their Applications to D-S Theory. ... 390
Maxime Chaveroche, Franck Davoine, and Véronique Cherfaoui

Dealing with Continuous Variables in Graphical Models . ... ........... 404
Christophe Gonzales

Towards Scalable and Robust Sum-Product Networks . . ... ............ 409
Alvaro H. C. Correia and Cassio P. de Campos

Learning Models over Relational Data: A Brief Tutorial . .............. 423
Maximilian Schleich, Dan Olteanu, Mahmoud Abo-Khamis,
Hung Q. Ngo, and XuanLong Nguyen

Subspace Clustering and Some Soft Variants . .. .................... 433
Marie-Jeanne Lesot

Invited Keynotes

From Shallow to Deep Interactions Between Knowledge Representation,

Reasoning and Machine Learning . . . . ....... ... ... ... ... ... ..... 447
Kay R. Amel
Algebraic Approximations for Weighted Model Counting . ............. 449

Wolfgang Gatterbauer

Author Index . ... ... .. ... . ... . . 451



®

Check for
updates

An Experimental Study on the Behaviour
of Inconsistency Measures

Matthias Thimm &)

University of Koblenz-Landau, Koblenz, Germany
thimm@uni-koblenz.de

Abstract. We apply a selection of 19 inconsistency measures from the
literature on artificially generated knowledge bases and study the dis-
tribution of their values and their pairwise correlation. This study aug-
ments previous analytical evaluations on the expressivity and the pair-
wise incompatibility of these measures and our findings show that (1)
many measures assign only few distinct values to many different knowl-
edge bases, and (2) many measures, although founded on different theo-
retical concepts, correlate significantly.

1 Introduction

An inconsistency measure Z is a function that assigns to a knowledge base K
(usually assumed to be formalised in propositional logic) a non-negative real
value Z(K) such that Z(K) = 0 iff K is consistent and larger values of Z(K)
indicate “larger” inconsistency in K [3,5,12]. Thus, each inconsistency measure
7 formalises a notion of a degree of inconsistency and a lot of different concrete
approaches have been proposed so far, see [11-13] for some surveys. The quest
for the “right” way to measure inconsistency is still ongoing and many (usually
controversial) rationality postulates to describe the desirable behaviour of an
inconsistency measure have been proposed so far [2,12].

Our study aims at providing a new perspective on the analysis of exist-
ing approaches to inconsistency measurement by experimentally analysing the
behaviour of inconsistency measures. More precisely, our study provides a quan-
titative analysis of two aspects of inconsistency measures:

A1 the distribution of inconsistency values on actual knowledge bases, and
A2 the correlation of different inconsistency measures.

Regarding the first item, [11] investigated the theoretical expressivity of incon-
sistency measures, i.e., the number of different inconsistency values a measure
attains when some dimension of the knowledge base is bounded (such as the
number of formulas or the size of the signature). One result in [11] is that e.g.
the measure Z3,,,, (see Sect. 3) has maximal expressivity and the number of dif-
ferent inconsistency values is not bounded if only one of these two dimensions
is bounded. However, [11] does not investigate the distribution of inconsistency
values. It may be the case that, although a measure can attain many different

© Springer Nature Switzerland AG 2019
N. Ben Amor et al. (Eds.): SUM 2019, LNAI 11940, pp. 1-8, 2019.
https://doi.org/10.1007/978-3-030-35514-2_1
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2 M. Thimm

values, most inconsistent knowledge bases are clustered on very few inconsistency
values. Regarding the second item, previous works have shown—see [12] for an
overview—that all inconsistency measures developed so far are “essentially” dif-
ferent. More precisely, for each pair of measures one can find a property that is
satisfied by one measure but not by the other. Moreover, for each pair of incon-
sistency measures one can find knowledge bases that are ordered different wrt.
their inconsistency. However, until now it has not been investigated how “sig-
nificant” the difference between measures actually is. It may be the case that
two measures order all but just a very few knowledge bases differently (or the
other way around). In order to analyse these two aspects we applied 19 different
inconsistency measures from the literature on artificially generated knowledge
bases and performed a statistical analysis on the results. After a brief review of
necessary preliminaries in Sect. 2 and the considered inconsistency measures in
Sect. 3, we provide some details on our experiments and our findings in Sect. 4
and conclude in Sect. 5.

2 Preliminaries

Let At be some fixed propositional signature, i.e., a (possibly infinite) set of
propositions, and let £(At) be the corresponding propositional language con-
structed using the usual connectives A (and), V (or), and — (negation).

Definition 1. A knowledge base K is a finite set of formulas I C L(At). Let K
be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X. Semantics to a propositional language is given by
interpretations and an interpretation w on At is a function w : At — {true, false}.
Let £2(At) denote the set of all interpretations for At. An interpretation w satisfies
(or is a model of) an atom a € At, denoted by w = a, if and only if w(a) = true.
The satisfaction relation |= is extended to formulas in the usual way.

For @ C L(At) we also define w = @ if and only if w | ¢ for every ¢ € &.
Define furthermore the set of models Mod(X) = {w € 2(At) | w = X} for every
formula or set of formulas X. By abusing notation, a formula or set of formulas
X, entails another formula or set of formulas X5, denoted by X; = X, if
Mod(X;) C Mod(X3). Two formulas or sets of formulas X, Xy are equivalent,
denoted by X7 = Xo, if Mod(X;) = Mod(X5). If Mod(X) = () we also write
X E1L and say that X is inconsistent.

3 Inconsistency Measures

Let R, be the set of non-negative real values including co. Inconsistency mea-
sures are functions Z : K — R, that aim at assessing the severity of the
inconsistency in a knowledge base K. The basic idea is that the larger the incon-
sistency in K the larger the value Z(K). We refer to [11-13] for surveys.
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1ifK =L
0 otherwise

Za(K) = {

T () = [MI(K)]|
1

Zyc(K) = MEEM:KK) I

Z,(K) =1—max{¢ | IP € P(At) : Va € K : P(a) > £}

Z.(K) = min{|o~ ' (B)| | v E* K}
Zpne(K) = [MC(K)| + [SC(K)| — 1

K= U M

MeMI(K)

Zne(K) = min{|H| | H C Q(At),V¢ € KIw € H : w |= ¢} — 1
Ziga(K) = min{ %ddwodmw | w e 2(AD)}

Tam (K) = min{mea))ct da(Mod(),w) | w € 2(At)}
«@

i (K) = min{|{a € K | da(Mod(a),w) > 0} | w € 2(At)}
Ip,(K) =1 - 15 (1 - Ri(K) /)

Waremoe) AtMD]

Tno(K) = [AL(K)]

Tne(K) = |K| = max{n |VK' CK: |K'|=n=> K L1}
Tinese (K) = |K] = X(C)
Zesp(K) = max{W(P) | P € Pumix)}

é; €{L,T}}
Zce(K) = max{n | {Ky,..., K} isaCI partition of K}
Tis(K) = log [{M C MI(K) | M is pairwise disjoint} |

Fig. 1. Definitions of the considered measures

The formal definitions of the considered inconsistency measures can be found
in Fig.1 while the necessary notation for understanding these measures follows
below. Please see the above-mentioned surveys and the original papers referenced
therein for explanations and examples.

A set M C K is called minimal inconsistent subset (MI) of K if M =1
and there is no M’ € M with M’ 1. Let MI(K) be the set of all Mls of
K. Let furthermore MC(KC) be the set of maximal consistent subsets of KC, i.e.,
MC(K) = {K' CK | K' L AVK” 2 K" : K” =1}, and let SC(K) be the set of
self-contradictory formulas of K, i.e., SC(K) ={p € K | ¢ E=L}.

A probability function P is of the form P : 2(At) — [0,1] with
>wennay Pw) = 1. Let P(At) be the set of all those probability functions and
for a given probability function P € P(At) define the probability of an arbitrary
formula ¢ via P(¢) =3_,_, P(w).
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A three-valued interpretation v on At is a function v : At — {T, F', B} where
the values T and F' correspond to the classical true and false, respectively. The
additional truth value B stands for both and is meant to represent a conflicting
truth value for a proposition. Taking into account the truth order < defined
via T < B < F, an interpretation v is extended to arbitrary formulas via
0(é1 Ad2) = min(v(91), v(62)), V(61 Vz) = max~(v(n), v(9)), and v(~T) =
F, v(=F) =T, v(—-B) = B. An interpretation v satisfies a formula «, denoted
by v 2 a if either v(a) =T or v(a) = B.

The Dalal distance dq is a distance function for interpretations in {2(At) and
is defined as d(w,w’) = |{a € At | w(a) # W'(a)}] for all w,w’ € N2(At). If
X C N2(At) is a set of interpretations we define dq(X,w) = min, ex dq(w’,w)
(if X = 0 we define dgq(X,w) = oo). We consider the inconsistency measures
T30 Ihax and ZHi | from [4] but only for the Dalal distance. Note that in [4]
these measures were considered for arbitrary distances and that we use a slightly
different but equivalent definition of these measures.

For every knowledge base K, i = 1,...,|K| define MID(K) = {M €
MI(K) | |[M] = i} and CNO(K) = {C C K | |C] = i AC L}, Fu-
thermore define R;(K) = 0 if [MI¥(K)| + |[CNP(K)| = 0 and otherwise
Ri(K) = IMID)|/(IMIP ()| + [CN(K)]). Note that the definition of Zp,
in Table 1 is only one instance of the family studied in [9], other variants can be
obtained by different ways of aggregating the values R;(K).

A set of maximal consistent subsets C C MC(K) is called an MC-cover [1] if
Ucee € = K. An MC-cover C is normal if no proper subset of C is an MC-cover.

A normal MC-cover is maximal if A\(C) = |[)o¢e €| is maximal for all normal
MC-covers.
For a formula ¢ let ¢[ar,i1 — 1;...,ak,ix — x| denote the formula ¢

where the ¢;th occurrence of the proposition a; is replaced by the formula 15,
forall j=1,... k.

A set {K,...,K,} of pairwise disjoint subsets of K is called a conditional
independent MUS (CI) partition of K [6], iff each K is inconsistent and MI(K; U
...UK,) is the disjoint union of all MI(Kj;).

An ordered set P = {Py,...,P,} with P, C MI(K) for i = 1,...,n is called
an ordered CSP-partition [7] of MI(K) if 1.) MI(K) is the disjoint union of all
P; for i = 1,...,n, 2.) each P; is a conditional independent MUS partition of
Kfori=1,...,n,and 3.) |P;| > |Pit1] for i = 1,...,n — 1. For such P define
furthermore W(P) = >, |P;|/i.

4 Experiments

In the following, we give some details on our experiments, the evaluation method-
ology, and our findings.

4.1 Knowledge Base Generation

Due to the lack of a dataset of real-world knowledge bases with a significantly rich
profile of inconsistencies, we used artificially generated knowledge bases. In order
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to avoid biasing our study on random instances of a specific probabilistic model
for knowledge base generation, we developed an algorithm that enumerates all
syntactically different knowledge bases with increasing size and considered the
first 188900 bases generated this way. For example, the first five knowledge bases
generated this way are 0, {z1}, {-x1}, {-—x1},{z1, 22} and, e. g., number 72793
is {x1, x2, 7w, 7(—2x3 A 7x2)}. From the 188900 generated knowledge bases,
127814 are consistent and 61086 are inconsistent. For the remainder of this paper,
let K denote the set of all 188900 knowledge bases and let K+ C K be only the
inconsistent ones.

The implementation' for this algorithm is available in the T'weety project?
[10]. The generated knowledge bases and their inconsistency values wrt. each of
considered inconsistency measures are available online?.

4.2 Evaluation Measures

In order to evaluate A1, we apply the entropy on the distribution of inconsistency
values of each measure. For K C Klet Z(K) = {Z(K) | K € K} denote the image
of K wrt. 7.

Definition 2. Let K be a set of knowledge bases and I be an inconsistency
measure. The entropy Hyx (Z) of T wrt. K is defined via

Iz I~ Yz
PRI S L C)
z€Z(K)

where Inx denotes the natural logarithm with 0ln0 = 0.

For example, if a measure Z* assigns to a set K* of 10 knowledge bases 5 times
the value X, 3 times the value Y, and 2 times the value Z, we have
N 5 5 3 3 2 2
Hg-(T*) = —Elnl—o — 101nﬁ — Elnﬁ ~ 1.03

The interpretation behind the entropy here is that a larger value Hg (Z) indicates
a more uniform distribution of the inconsistency values on elements of K, a
value Hg (T) = 0 indicates that all elements are assigned the same inconsistency
value. Thus, the larger Hx (Z) the “more use” the measure makes of its available
inconsistency values.

In order to evaluate A2, we use a specific notion of a correlation coefficient.
For two measures Z; and Z5 and two knowledge bases K and Ky we say that Z;
and Z, are order-compatible wrt. Ky and Ko, denoted by I; ~, x, T2 iff

Ti(K1) > Ta (ko) A To(K) > To(Ko)
or Ty(K1) < Ti(Ka) A Ta(Ky) < To(Ks)
or I (K1) =T1(Ke) AN I2(K1) = T2(Ke)

! http://mthimm.de/r/?r=tweety-ckb.

2 http://tweetyproject.org.
3 http://mthimm.de/misc/exim_mt.zip.
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Table 1. Entropy values of the investigated measures wrt. Kt (rounded to two deci-
mals and sorted by increasing entropy).

Ta | ZTeo | I8 1 Ze | Tme | Ztorget | Im | T dalal | Zosp
Hp.(Z) 0 0.080.09 0.12/0.13 0.18 |0.24/0.28 0.29 | 0.29
Tns | Iy | ZTima | Zwc | Tmo | Imese | Ip | Ine |Ip;

Hy. (Z)0.29 0.330.36 0.37/0.45 0.48 | 0.510.52 0.78

Table 2. Correlation coefficients Cx . (-,-) of the investigated measures wrt. K+
(rounded to two decimals).

Id IMI IM|C In Ze | Ime Ip Ihs Idzalal Ig;"};‘l Igfflal IDf Zmv|Zne|Tmese ICSP Iforget ICC Ii

Z4 1 |0.69/0.44 (0.5 |0.86|0.87/0.35/0.52/0.47 [0.52 (0.9  |0.22|0.48(0.33/0.37 [0.68 [0.76 [0.92(0.67
Imi 1 |0.54|0.37/0.72/0.74|0.65/0.38/0.41 [0.38 |0.76 |0.28|0.41/0.47|0.52 |0.99 0.7 0.75/0.99
ZyC 1 |0.72/0.47/0.51/0.53/0.7 [0.73 (0.7 |0.52 |0.49|0.41|0.43/0.84 |0.55 [0.51 (0.5 |0.55
I, 1 0.47/0.48|0.36/0.98/0.93 |0.98 [0.49 [0.530.39/0.33/0.84 [0.37 [0.48 |0.5 |0.37
Ze 1 0.85/0.4 |0.49/0.53 [0.49 [0.88 |0.25|0.450.38/0.42 [0.72 |0.88 |0.87/0.72
Tme 1 |0.45/0.48/0.48 [0.48 |0.95 |0.26/0.45|0.39/0.39 |0.75 |0.8 0.94/0.75
Iy 1 ]0.36/0.39 [0.36 |0.43 0.25(0.32|0.43/0.5 |0.64 [0.42 |0.41|0.64
Ths 1 095 |0.99 [0.51 |0.52[0.4 [0.32/0.85 [0.38 |0.5 0.52/0.38
I3 1 0.95 |0.51 [0.53|0.4 [0.34/0.89 [0.42 [0.54 [0.5 [0.42
e 1 0.5 0.52{0.4 |0.32/0.85 [0.38 |0.5 0.52/0.38
Thit | 1 0.26 |0.46 (0.4 (0.41 |0.77 [0.85 [0.980.77
Ip, 1 |0.53/0.19/0.56 [0.29 [0.29 |0.26|0.29
Imov 1 0.25/0.39 |0.41 |0.43 |0.460.41
Tne 1 |0.39 |0.47 |0.4 0.39/0.47
Timese 1 0.53 [0.44 |0.4 |0.53
Zcsp 1 0.71 |0.76/0.99
Ttorget 1 0.82/0.71
Ice 1 |0.76
Tis 1

Let ||A|| be the indicator function, which is defined as ||A| = 1 iff A is true
||Al| = 0 otherwise.

and

Definition 3. Let K be a set of knowledge bases and I1,Z, be two inconsistency
measures. The correlation coefficient Ck (Z1,Z2) of Iy and Iy wrt. K is defined

Via

Ck(11,13) =

Yxer e 1T~k Ll

[K|(|K] 1)

In other words, Ck(Z1,Z2) gives the ratio of how much Z; and Z, agree on
the inconsistency order of any pair of knowledge bases from K.* Observe that
Ck(11,Ty) = Ok (T2, Th).

* Note that Ck is equivalent to the Kendall’s tau coefficient [8] but scaled onto [0, 1].
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4.3 Results

Tables 1 and 2 show the results of analysing the considered measures on K+ wrt.
the two evaluation measures from before®.

Regarding Al, it can be seen that Z; has minimal entropy (by definition).
However, also measures Zht = and Zcc and to some extent most of the other
measures are quite indifferent in assigning their values. For example, out of 61086
inconsistent knowledge bases, Zcc assigns to 58523 of them the same value 1.
On the other hand, measure Zp, has maximal entropy among the considered
measures.

Regarding A2, we can observe some surprising correlations between mea-
sures, even those which are based on different concepts. For example, we have
Cro (I, Ihs) ~ 0.99 indicating a high correlation between Z13% and Ty
although Z}11% is defined using distances and Zj, is defined using hitting sets.
Equally high correlations can be observed between the three measures Zy, Zcsp,
and Zis. Further high correlations (e. g. above 0.8) can be observed between many
other measures. On the other hand, the measure Zp, has (on average) the small-
est correlation to all other measures, backing up the observation from before.

5 Conclusion

Our experimental analysis showed that many existing measures have low entropy
on the distribution of inconsistency values and correlate significantly in their
ranking of inconsistent knowledge bases. A web application for trying out all
the discussed inconsistency measures can be found on the website of TWEETY-
PROJECT®, cf. [10]. Most of these measures have been implemented using naive
algorithms and research on the algorithmic issues of inconsistency measure is
still desirable future work, see also [13].

Acknowledgements. The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant DE 1983/9-1).
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Abstract. The field of Inconsistency Measurement is concerned with
the development of principles and approaches to quantitatively assess
the severity of inconsistency in knowledge bases. In this survey, we give
a broad overview on this field by outlining its basic motivation and dis-
cussing some of these core principles and approaches. We focus on the
work that has been done for classical propositional logic but also give
some pointers to applications on other logical formalisms.

1 Introduction

Inconsistency is a ubiquitous phenomenon whenever knowledge! is compiled in
some formal language. The notion of inconsistency refers (usually) to multiple
pieces of information and represents a conflict between those, i.e., they cannot
hold at the same time. The two statements “It is sunny outside” and “It is not
sunny outside” represent inconsistent information and in order to draw meaning-
ful conclusions from a knowledge base containing these statements, this conflict
has to be resolved somehow. In applications such as decision-support systems,
a knowledge base is usually compiled by merging the formalised knowledge of
many different experts. It is unavoidable that different experts contradict each
other and that the merged knowledge base becomes inconsistent. The field of
Knowledge Representation and Reasoning (KR) [7] is the subfield of Artificial
Intelligence (Al) that deals with the issues of logical formalisations of informa-
tion and the modelling of rational reasoning behaviour, in particular in light
of inconsistent or uncertain information. One paradigm to deal with inconsis-
tent information is to abandon classical inference and define new ways of rea-
soning. Some examples of such formalisms are, e.g., paraconsistent logics [6],
default logic [34], answer set programming [15], and, more recently, computa-
tional models of argumentation [1]. Moreover, the fields of belief revision [21] and
belief merging [10,28] deal with the particular case of inconsistencies in dynamic
settings.

The field of Inconsistency Measurement—see the seminal work [20] and the
recent book [19]—provides an analytical perspective on the issue of inconsis-
tency. Its aim is to quantitatively assess the severity of inconsistency in order

! We use the term knowledge to refer to subjective knowledge or beliefs, i.e., pieces of
information that may not necessary be true in the real world but are only assumed
to be true for the agent(s) under consideration.

© Springer Nature Switzerland AG 2019
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to both guide automatic reasoning mechanisms and to help human modellers in
identifying issues and compare different alternative formalisations. Consider the
following two knowledge bases Ky and Ky formalised in classical propositional
logic (see Sect. 2 for the formal background) modelling some information about
the weather:

K1 = {sunny, —sunny, hot, —hot}
Ko = {—hot, sunny, sunny — hot, humid}

Both K7 and K9 are classically inconsistent, i. e., there is no interpretation satis-
fying any of them. But looking closer into the structure of the knowledge bases
one can identify differences in the severity of the inconsistency. In Ky there are
two “obvious” contradictions, i. e., {sunny, —sunny} and {hot, —hot} are directly
conflicting formulas. In Cy, the conflict is a bit more hidden. Here, three for-
mulas are necessary to produce a contradiction ({—hot,sunny,sunny — hot}).
Moreover, there is one formula in /o (humid), which is not participating in any
conflict and one could still infer meaningful information from this by relying on
e.g. paraconsistent reasoning techniques [6]. In conclusion, one should regard
K1 as more inconsistent than Ko. So a decision-maker should prefer using /o
instead of ;.

The analysis of the severity of inconsistency in the knowledge bases 7 and
ICo above was informal. Formal accounts to the problem of assessing the severity
of inconsistency are given by inconsistency measures and there have been a lot
of proposals of those in recent years. Up to today, the concept of severity of
inconsistency has not been axiomatised in a satisfactory manner and the series
of different inconsistency measures approach this challenge from different points
of view and focus on different aspects on what constitutes severity. Consider the
next two knowledge bases (with abstract propositions a and b)

Ks = {a,—a,b} Kis={aVb-aVbaV-b -aV-b}

Again both K3 and Ky are inconsistent, but which one is more inconsistent
than the other? Our reasoning from above cannot be applied here in the same
fashion. The knowledge base K3 contains an apparent contradiction ({a,-a})
but also a formula not participating in the inconsistency ({b}). The knowledge
base K4 contains a “hidden” conflict as four formulas are necessary to produce a
contradiction, but all formulas of /4y are participating in this. In this case, it is
not clear how to assess the inconsistency of these knowledge bases and different
measures may order these knowledge bases differently. More generally speaking,
it is not universally agreed upon which so-called rationality postulates should
be satisfied by a reasonable account of inconsistency measurement, see [3,5,41]
for a discussion. Besides concrete approaches to inconsistency measurement the
community has also proposed a series of those rationality postulates in order
to describe general desirable behaviour and the classification of inconsistency
measures by the postulates they satisfy is still one the most important ways to
evaluate the quality of a measure, even if the set of desirable postulates is not
universally accepted. For example, one of the most popular rationality postulates
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is monotony which states that for any X C K’, the knowledge base K cannot
be regarded as more inconsistent as K'. The justification for this demand is
that inconsistency cannot be resolved when adding new information but only
increased?. While this is usually regarded as a reasonable demand there are also
situations where monotony may be seen as counterintuitive, even in monotonic
logics. Consider the next two knowledge bases

Ks = {a,—a} K¢ = {a,—a,bi, ..., boos}

We have K5 C Kg and following monotony, Kg should be regarded as least as
inconsistent as /5. However, when judging the content of the knowledge bases
“relatively”, s may seem more inconsistent: K5 contains no useful information
and all formulas of 5 are in conflict with another formula. In /Cg, however, only
2 out of 1000 formulas are participating in the contradiction. So it may also be
a reasonable point of view to judge K5 more inconsistent than Kg.

In this survey paper, we give a brief overview on formal accounts to inconsis-
tency measurement. We focus on approaches building on classical propositional
logic but also briefly discuss approaches for other formalisms. A more technical
survey of inconsistency measures can be found in [41] and the book [19] captures
the recent state-of-the-art as a whole. An older survey can also be found in [22].

The remainder of this paper is organised as follows. In Sect. 2 we give some
necessary technical preliminaries. Section 3 introduces the concept of inconsis-
tency measures formally and discusses rationality postulates. In Sect.4 we dis-
cuss some of the most important concrete approaches to inconsistency mea-
surement for classical propositional logic and in Sect.5 we give an overview on
approaches for other formalisms. Section 6 concludes.

2 Preliminaries

Let At be some fixed set of propositions and let £(At) be the corresponding
propositional language constructed using the usual connectives A (conjunction),
V (disjunction), — (implication), and — (negation).

Definition 1. A knowledge base K is a finite set of formulas K C L(At). Let K
be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X.

Semantics for a propositional language is given by interpretations where an
interpretation w on At is a function w : At — {true,false}. Let 2(At) denote
the set of all interpretations for At. An interpretation w satisfies (or is a model
of) a proposition a € At, denoted by w |= a, if and only if w(a) = true. The
satisfaction relation |= is extended to formulas in the usual way.

2 At least in monotonic logics; for a discussion about inconsistency measurement in
non-monotonic logics see [9,43] and Sect. 5.3.
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For & C L(At) we also define w |= @ if and only if w | ¢ for every ¢ € .
A formula or set of formulas X, entails another formula or set of formulas Xs,
denoted by X; | Xo, if and only if w E X; implies w = Xs. If there is no w
with w = X we also write X =1 and say that X is inconsistent.

3 Measuring Inconsistency

Let R be the set of non-negative real values including infinity. The most general
form of an inconsistency measure is as follows.

Definition 2. An inconsistency measure 7 is any function 7 : K — RZ,.

The above definition is, of course, under-constrained for the purpose of provid-
ing a quantitative means to measure inconsistency. The intuition we intend to
be behind any concrete approach to inconsistency measure 7 is that a larger
value Z(K) for a knowledge base K indicates more severe inconsistency in K
than lower values. Moreover, we wish to reserve the minimal value (0) to indi-
cate the complete absence of inconsistency. This is captured by the following
postulate [23]:

Consistency Z(K) = 0 iff K is consistent.

Satisfaction of the consistency postulate is a basic demand for any reasonable
inconsistency measure and is satisfied by all known concrete approaches [39,
41]. Beyond the consistency postulates a series of further postulates has been
proposed in the literature [41]. We only recall the basic ones initially proposed
in [23]. In order to state these postulates we need two further definitions.

Definition 3. A set M C K is a minimal inconsistent subset of K iff M L
and there is no M’ C M with M’ =1. Let MI(K) be the set of all minimal
inconsistent subsets of K.

Definition 4. A formula o € K is called free formula if o ¢ (JMI(K). Let
Free(K) be the set of all free formulas of K.

In other words, a minimal inconsistent subset characterises a minimal conflict in
a knowledge base and a free formula is a formula that is not directly participating
in any derivation of a contradiction. Let Z be any function Z : K — R,
K,K" € K, and «, 8 € L(At). The remaining rationality postulates from [23] are:

Normalisation 0 < Z(K) < 1.
Monotony If K C K’ then Z(K) < Z(K').
Free-formula independence If o € Free(K) then
T(00) = T(K \ {a}).
Dominance If a £ and o = § then Z(K U {a}) > Z(K U {5}).
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The postulate normalisation states that the inconsistency value is always in
the unit interval, thus allowing inconsistency values to be comparable even if
knowledge bases are of different sizes. Monotony requires that adding formulas
to the knowledge base cannot decrease the inconsistency value. Free-formula
independence states that removing free formulas from the knowledge base should
not change the inconsistency value. The motivation here is that free formulas do
not participate in inconsistencies and should not contribute to having a certain
inconsistency value. Dominance says that substituting a consistent formula o by
a weaker formula ( should not increase the inconsistency value. Here, as 0 carries
less information than « there should be less opportunities for inconsistencies to
occur.

The five postulates from above are independent (no single postulates entails
another one) and compatible (as e. g. the drastic measure Z;, see below, satisfies
all of them). However, they do not characterise a single concrete approach but
leave ample room for various different approaches. Moreover, for all rationality
postulates (except consistency) there is at least one inconsistency measure in
the literature that does not satisfy it [41] and there is no general agreement on
whether these postulates are indeed desirable at all [3,5,41]. We already gave
an example why monotony may not be desirable in the introduction. Here is
another example for free-formula independence taken from [3].

Ezxample 1. Consider the knowledge base K7 defined via
Kz ={aNc,bA—c,—aV b}

Notice that K7 has a single minimal inconsistent subset {a A ¢,b A =c} and
—aV-bis a free formula. If 7 satisfies free-formula independence we have Z(KC7) =
Z(K7\ {—aV —b}). However, —a V —b adds another “conflict” about the truth of
propositions a and b.

We will continue the discussion on rationality postulates later in Sect.6. But
first we will have a look at some concrete approaches.

4 Approaches

There is a wide variety of inconsistency measures in the literature, the work [41]
alone lists 22 measures in 2018 and more have been proposed since then?. In this
paper we consider only a few to illustrate the main concepts.

The measure Zg is usually referred to as a baseline for inconsistency measures
as it only distinguishes between consistent and inconsistent knowledge bases.

3 Implementations of most of these measures can also be found in the Tweety
Libraries for Artificial Intelligence [40] and an online interface is available at http://
tweetyproject.org/w/incmes.
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Definition 5 ([24]). The drastic inconsistency measure Zy : K — RZ is
defined as

1ifK L

0 otherwise

Za(K) = {

for K e K.

While not being particularly useful for the purpose of actually differentiating
between inconsistent knowledge bases, the measure Z; already satisfies the basic
five postulates from above [24].

In [22] several dimensions for measuring inconsistency have been discussed.
A particular observation from this discussion is that inconsistency measures
can be roughly divided into two categories: syntactic and semantic approaches.
While this distinction is not clearly defined? it has been used in following works
to classify many inconsistency measures. Using this categorisation, syntactic
approaches refer to inconsistency measures that make use of syntactic objects
such as minimal inconsistent sets (or maximal consistent sets). On the other
hand, semantic approaches refer to measures employing non-classical semantics
for that purpose. However, there are further measures which fall into neither (or
both) categories. In the following, we will look at some measures from each of
these categories.

4.1 Measures Based on Minimal Inconsistent Sets

A minimal inconsistent subset M of a knowledge base IC represents the “essence”
of a single conflict in IC. Naturally, a simple approach to measure inconsistency
is to take the number of minimal inconsistent subsets as a measure.

Definition 6 ([24]). The Ml-inconsistency measure Zy : K — R, is defined
as Imi(K) = [MI(K)| for K € K.

The above measure complies with the postulates of consistency, monotony,
and free-formula independence but fails to satisfy dominance and normalisation
(although a normalised variant that suffers from other shortcomings can easily
be defined). Table 2 below gives an overview on the compliance of the measures
formally considered in this paper with the basic postulates from above, see [41]
for proofs or references to proofs. The idea behind the Ml-inconsistency measure
can be refined in several ways, taking e.g. the sizes of the individual minimal
inconsistent sets and how they overlap into account [13,25,26]. One example
being the following measure.

Definition 7 ([24]). The Ml‘-inconsistency measure Zyc : K — R, is
defined as B

1
T = —_—
MIC (IC) MEXM:I(K:) |M|
for K e K.

4 And in this author’s opinion also a bit mislabelled.
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The MI¢-inconsistency measure takes also the sizes of the individual minimal
inconsistent subsets into account. The intuition here is that larger minimal incon-
sistent subsets represent less inconsistency (as the conflict is more “hidden”) and
small minimal inconsistent subsets represent more inconsistency (as it is more
“apparent”).

Example 2. Consider again knowledge bases K and Ko from before defined via

K1 = {sunny, —~sunny, hot, —=hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

Imi(Ky) =2 Imi(K2) =1
Imic (K1) =1 Imic(K2) =1/3

Observe that, while Zyy and Zyc disagree on the exact values of the inconsistency
in K; and Ky they do agree on their order (K is more inconsistent than Ks).
This is not generally true, consider

Ks = {a,—a}
IC9 = {al, —al V bl,ﬁbl V C1, V dl, _\dl \Y —aq,
a2, 1Ay V bg, _|b2 V Co, Vv dg, _\dg V _\(ZQ}

Tun(Ks) = 1 Tan(Ko) = 2
Imic(Ks) = 1/2 e (Ko) = 2/5

where KCg is less inconsistent than g according to Zy and the other way around
fOI' IM|C .

4.2 Measures Based on Non-classical Semantics

Measures based on minimal inconsistent subsets provide a formula-centric view
on the matter of inconsistency [22]. If a formula (as a whole) is part of a conflict, it
is taken into account for measuring inconsistency. Another possibility is to focus
on propositions rather than formulas. Consider again the knowledge base 7 =
{aAc,bA—¢,—aV —b} from Example 1 which possesses one minimal inconsistent
subset {a A ¢,b A —c}. However, it is clear that there is also a conflict involving
the propositions a and b, which is not “detected” by measures based on minimal
inconsistent subsets. Thus, another angle for measuring inconsistency consists
in counting how many propositions participate in the inconsistency. A possible
means for doing this is by relying on non-classical semantics. The contension
measure [17] makes use of Priest’s logic of paradox, which has a paraconsistent
semantics that we briefly recall now. A three-valued interpretation v on At is a
function v : At — {T, F, B} where the values T and F correspond to the classical
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true and false, respectively. The additional truth value B stands for both and is
meant to represent a conflicting truth value for a proposition. The function v is
extended to arbitrary formulas as shown in Table 1. An interpretation v satisfies
a formula «, denoted by v =3 « if either v(a) =T or v(a) = B. Define v =3 K
for a knowledge base K accordingly. Now inconsistency can be measured by
seeking an interpretation v that assigns B to a minimal number of propositions.

Definition 8 ([17]). The contension inconsistency measure Z. : K — RZ} is
defined as

Z.(K) = min{[v"(B) N At| | v E* K}
for K e K.

Note that Z. is well-defined as for every knowledge K there is always at least
one interpretation v satisfying it, e.g., the interpretation that assigns B to all
propositions.

Table 1. Truth tables for propositional three-valued logic.

a fluo(aAB)u(aV )
TT
TB
TF
BT
BB
BF
FT
FB
FF

v(-a)

o
T
B
F

— @ ™

oo liesBiesiies oo Rive e oo B |
MWW w A A

A further approach—that is in contrast to Z, still formula-centric—is to make
use of probability logic to define an inconsistency measure [27]. A probability
function P on L(At) is a function P : 2(At) — [0,1] with - ¢ oa Plw) = 1.
We extend P to assign a probability to any formula ¢ € L(At) by defining

P(¢) =) Pw)

W
Let P(At) be the set of all those probability functions.

Definition 9 ([27]). The n-inconsistency measure Z, : K — RS is defined as

Z,(K) =1 —max{¢{ | 3P € P(At) : Va € K : P(«) > £}

for K e K.
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The measure Z,, looks for a probability function P that maximises the minimum
probability of all formulas in . The larger this probability the less inconsistent
K is assessed (if there is a probability function assigning 1 to all formulas then
K is obviously consistent).

Ezxample 3. Consider again knowledge bases K1 and Ko from before defined via

K1 = {sunny, —sunny, hot, —hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

T.(Ky) = 2 T.(Ky) = 1
7,(K1) = 0.5 T,(Ks) = 1/3

where, in particular, Z. also agrees with Zy (see Example 2). Consider now

K10 = {a,~a} Kii={aAbAc,maA-bA—c}
where
(K1) =1 Z.(K2) =3
Z,(Ki)=0.5 Z,(K2) =0.5
Imi(Ky) =1 Z.(Ky) =1

So Z. looks inside formulas to determine the severity of inconsistency.

While Z. makes use of paraconsistent logic and Z, of probability logic other
logics can be used for that purpose as well. In [38] a general framework is estab-
lished that allows to plugin any many-valued logic (such as fuzzy logic) to define
inconsistency measures.

4.3 Further Measures

There are further ways to define inconsistency measures that do not fall strictly
in one of the two paradigms above. We have a look at some now.

A simple approach to obtain a more proposition-centric measure (as Z..) while
still relying on minimal inconsistent sets is the following measure.

Definition 10 ([44]). The mv inconsistency measure Z,, : K — Ry s
defined as

N Unremige) At(M))]
BT

for K e K.
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In other words, Z,,,(K) is the ratio of the number of propositions that appear
in at least one minimal inconsistent set and the number of all propositions.

Another approach that makes no use of either minimal inconsistent sets or
non-classical semantics is the following one. A subset H C (2(At) is called a
hitting set of K if for every ¢ € K there is w € H with w = ¢.

Definition 11 ([37]). The hitting-set inconsistency measure Zj; : K — RS, s
defined as

Ins(K) = min{|H| | H is a hitting set of K} — 1

for K € K with min () = co.

So Tps seeks a minimal number of (classical) interpretations such that for each
formula there is at least one model in this set.

Example 4. Consider again knowledge bases K1 and Ko from before defined via

K1 = {sunny, —sunny, hot, —=hot}
K2 = {—hot, sunny, sunny — hot, humid}

Here we have

Imq)(lcl) 1 qu;(’CQ) = 2/3
Ihs(lcl) =1 Ihs(ICQ) =1

Moreover, Grant and Hunter [18] define new families of inconsistency mea-
sures based on distances of classical interpretations to being models of a knowl-
edge base. Besnard [4] counts how many propositions have to be forgotten—i. e.
removed from the underlying signature of the knowledge base—to turn an incon-
sistent knowledge base into a consistent one.

Table 2. Compliance of inconsistency measures with rationality postulates consistency
(CO), normalisation (NO), monotony (MO), free-formula independence (IN), and dom-
inance (DO)

7 CO|NO|MO |IN|DO
Za |V |V |V VS
I |V X |V /X
Tyc v X |V /X
. |V X |V /I /
I, v |/ v /v
Iow |V |V X X | X
Ins |V | X |V V|V
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5 Beyond Propositional Logic

While most work in the field of inconsistency measurement is concerned with
using propositional logic as the knowledge representation formalism, there are
some few works, which consider measuring inconsistency in other logics. We will
have a brief overview on some of these works now, see [19] for some others.

5.1 First-Order and Description Logic

In [16], first-order logic is considered as the base logic. Allowing for objects and
quantification brings new challenges to measuring inconsistency as one should
distinguish in a more fine-grained manner how much certain formulas contribute
to inconsistency. For example, a formula VX : bird(X) — flies(X)—which mod-
els that all birds fly—is probably the culprit of some inconsistency in any knowl-
edge base. However, depending on how many objects actually satisfy/violate
the implication, the severity of the inconsistency of the overall knowledge base
may differ (compare having a knowledge base with 10 flying birds and 1 non-
flying bird to a knowledge base with 1000 flying birds and 1 non-flying bird).
[16] address this challenge by proposing some new inconsistency measures for
first-order logic.

There are also several works—see e.g. [29,45]—that deal with measuring
inconsistency in ontologies formalised in certain description logics.

5.2 Probabilistic Logic

In probabilistic logic, classical propositional formulas are augmented by prob-
abilities yielding statements such as (sunny A humid)[0.7] meaning “it will be
sunny and humid with probability 0.7”. Semantics are given to such a logic by
means of probability distributions over sets of propositions. Inconsistencies in
modelling with such a logic can appear, in particular, when “the numbers do
not add up”. In addition to the previous formula consider (humid)[0.5] which
states that “it will be humid with probability 0.5”. Both formulas together are
inconsistent as it cannot be the case the probability of being humid is at least
0.7 (which is implied by the first formula) and 0.5 at the same time. Measures
for probabilistic logic, see the recent survey [12], focus on measuring distances of
the probabilities of the formulas to a consistent state or propose weaker notions
of satisfying probability distributions and measure distances between those and
classical probability distributions.

5.3 Non-monotonic Logics

In non-monotonic logics, inconsistency in a knowledge base may be resolved by
adding formulas. Consider e. g. the following rules in answer set programming [8]:
{b «, —b < not a}. Informally, these rules state that b is the case and that if a is
not the case, —b is the case. The negation “not” is a negation-as-failure and the
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whole program is inconsistent as both b and —=b can be derived. However, adding
the rule a «+ stating that a is the case, makes the program consistent again as the
second rule is not applicable any more. An implication of this observation is that
consistent programs may have inconsistent subsets, which make the application
of classical measures based on minimal inconsistent sets useless. In [9] a stronger
notion for minimal inconsistent sets for non-monotonic logics is proposed that
is used for inconsistency measurement in [43], and, in particular, for answer set
programming in [42].

6 Summary and Discussion

In this paper we gave a brief overview on the field of inconsistency measurement.
We motivated the field, discussed several rationality postulates for concrete mea-
sures, and surveyed some of its basic approaches. We also gave a short overview
on approaches that use formalisms other than propositional logic as the base
knowledge representation formalism.

Inconsistency measures can be used to compare different formalisations of
knowledge, to help debug flawed knowledge bases, and guide automatic repair
methods. For example, inconsistency measures have been used to estimate reli-
ability of agents in multi-agent systems [11], to allow for inconsistency-tolerant
reasoning in probabilistic logic [33], or to monitor and maintain quality in
database settings [14].

Inconsistency measurement is a problem that is not easily defined in a formal
manner. Many approaches have been proposed, in particular in recent years, each
taking a different perspective on this issue. We discussed rationality postulates
as a means to prescribe general desirable behaviour of an inconsistency mea-
sure and there have also been a lot of proposals in the recent past, [41] lists an
additional 13 compared to the five postulates we discussed here. Many of them
are mutually exclusive, describe orthogonal requirements, and are not generally
accepted in the community. Besides rationality postulates, other dimensions for
comparing inconsistency measures are their expressivity and their computational
complezity. Expressivity [36,41] refers to the capability of an inconsistency to dif-
ferentiate between many inconsistent knowledge base. For example, the drastic
inconsistency measure—which assigns 1 to every inconsistent knowledge base—
has minimal expressivity as it can only differentiate between consistency and
inconsistency. On the other hand, the contension measure Z. can differentiate
up to n + 1 different states of inconsistency, where n is the number of propo-
sitions appearing in the signature. As for computational complexity, it is clear
that all problems related to inconsistency measurement are coNP-hard, as the
identification of unsatisfiability is always part of the definition. In fact, the deci-
sion problem of deciding whether a certain value is a lower bound for the actual
inconsistency value of a given inconsistency measure, is coNP-complete for many
measures such as 7. [35,41]. However, the problem is harder for other measures,
e. g., the same problem for Z,,, is already X%-complete [44].

This paper points to a series of open research questions that may be inter-
esting to pursue. For example, the discussion on the “right” set of postulates
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is not over. What is needed is a characterising definition of an inconsistency
measure using few postulates, as the entropy is characterised by few simple
properties as an information measure. However, we are currently far away from
a complete understanding of what an inconsistency measure constitutes. More-
over, the algorithmic study of inconsistency measurement has (almost) not been
investigated at all. Although straightforward prototype implementations of most
measures are available®, those implementations do not necessarily optimise run-
time performance. Only a few papers [2,30-32,37] have addressed this challenge
previously, mainly by developing approximation algorithms. Besides more work
on approximation algorithms, another venue for future work is also to develop
algorithms that work effectively on certain language fragments—such as certain
description logics—and thus may work well in practical applications.

Acknowledgements. The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant DE 1983/9-1).
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Abstract. We employ graph convolutional networks for the purpose
of determining the set of acceptable arguments under preferred seman-
tics in abstract argumentation problems. While the latter problem is
complexity-wise one of the hardest problems in reasoning with abstract
argumentation problems, approximate methods are needed here in order
to obtain a practically relevant runtime performance. This first study
shows that deep neural network models such as graph convolutional net-
works significantly improve the runtime while keeping the accuracy of
reasoning at about 80% or even more.

Keywords: Neural network - Reasoning - Abstract argumentation

1 Introduction

Computational models of argumentation [3] are approaches for non-monotonic
reasoning that focus on the interplay between arguments and counterarguments
in order to reach conclusions. These approaches can be divided into either
abstract or structured approaches. The former encompass the classical abstract
argumentation frameworks following Dung [9] that model argumentation sce-
narios by directed graphs, where vertices represent arguments and directed links
represent attacks between arguments. In these graphs one is usually interested
in identifying extensions, i.e., sets of arguments that are mutually acceptable
and thus provide a coherent perspective on an outcome of the argumentation.
On the other hand, structured argumentation approaches consider arguments
to be collections of formulas and/or rules which entail some conclusion. The
most prominent structured approaches are ASPIC+ [21], ABA [26], DeLP [13],
and deductive argumentation [4]. These approaches consider a knowledge base
of formulas and/or rules as a starting point.

In this paper, we are interested in approximate methods to reasoning with
abstract argumentation approaches. Previous works on reasoning with abstract
argumentation focus mostly on sound and complete methods, see e.g. [5] for
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a recent survey and the International Competition on Computational Models
of Argumentation! (ICCMA) [12,25] for actual implementations. To the best
of our knowledge, the only incomplete algorithms for abstract argumentation
are [22,24] that use stochastic local search. Here, we use deep neural networks
to model the problem of deciding (credulous) acceptability of arguments wrt.
preferred semantics as a classification problem. We train a graph convolutional
neural network [17]—a special form of a convolutional neural network that is
tailored towards processing of graphs—with data obtained by random generation
of abstract argumentation frameworks and annotated by a sound and complete
solver (in our case CoQuiAAS [19]). After training, the obtained classifier can be
used to solve the acceptability problem in constant time. However, the obtained
classifier provides only an approximation to the actual answer. Our experiments
showed that approximation quality is about 80% in general, while it can be up to
99% in certain cases.

The remainder of this paper is structured as follows. In Sect. 2, the basic
concepts of abstract argumentation and artificial neural networks are recalled.
Section 3 explains the approach of representation the acceptability problems as
a classification problem. Section4 describes our experimental evaluation and
discusses its results. We conclude in Sect. 5 with a discussion and summary.

2 Preliminaries

In the following, we recall basic definitions of abstract argumentation and arti-
ficial neural networks.

2.1 Abstract Argumentation

An abstract argumentation framework [9] AF is a tuple AF = (Arg, —) where
Arg is a set of arguments and — C Arg x Arg is the attack relation.

Semantics are given to abstract argumentation frameworks by means of
extensions. A set of arguments E C Arg is called an extension if it fulfils cer-
tain conditions. There are various types of extensions, however this paper will
be focused on the four classical types proposed by Dung [9]. Namely, these are
complete, grounded, preferred, and stable semantics. All of these types of exten-
sions must be conflict-free. A set of arguments £ C Arg in an argumentation
framework AF = (Arg, —) is conflict-free, iff there are no arguments A58 € FE
with A — B.

Moreover, an argument A is called acceptable with respect to a set of argu-
ments E C Arg iff for every B € Arg with B — A there is an argument A’ € E
with A" — B. Based on these definitions, the four different types of extensions
are defined for an argumentation framework AF = (Arg, —) as follows:

1. Complete extension: A set of arguments E C Arg is called a complete
extension iff it is conflict-free, all arguments A € FE are acceptable with

! http://argumentationcompetition.org.


http://argumentationcompetition.org

26 I. Kuhlmann and M. Thimm

Fig. 1. Artificial neuron, adapted from https://inspirehep.net/record/1300728/plots

respect to E and there is no argument B € Arg \ E that is acceptable with
respect to E.
2. Grounded extension: A set of arguments £ C Arg is called a grounded
extension iff it is complete and E is minimal with respect to set inclusion.
3. Preferred extension: A set of arguments £ C Arg is called a preferred
extension iff it is complete and F is maximal with respect to set inclusion.
4. Stable extension: A set of arguments F C Arg is called a stable extension
iff it is complete and V.A € Arg\E : 3B € FE with B — A.

2.2 Artificial Neural Networks and Graph Convolutional Networks

An artificial neural network (henceforth also referred to as neural network or sim-
ply network) generally consists of multiple artificial neurons that are connected
with each other. In biology, a neuron is a nerve cell that occurs, for example,
in the brain or in the spinal cord. Neurons are specialised on conducting and
transferring stimuli [23]. In computer science, (artificial) neurons denote a data
structure that was developed to work similarly to their biological example. It
is to be noted that there exist different models of artificial neurons and neural
networks. Due to its contextual relevance in this paper, solely the structure and
functionality of the multilayer perceptron model [14] will be described.

An artificial neuron can have multiple inputs z; € R with ¢ € {1,...,n} that
form the input vector = (z1,...,2,) . Each of the n inputs is multiplied by
a weight w;. In addition to the regular inputs, there are so-called bias inputs b.
They serve the purpose of stabilising the computation. As visualised in Fig. 1, an
activation function f(-) is applied to the sum of all weighted inputs. The result
of the function is the neuron’s output [8,16].

Analogously to the biological prototype, artificial neurons are connected to
networks. Such networks are usually arranged in layers that consist of at least
one neuron. There is one input layer, one or more so-called hidden layers, and
one output layer. It is to be noted that the input layer is considered a layer only
for convenience, because it only passes the input values to the next layer with-
out further processing [16,20]. Neural networks can be understood as graphs,
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with neurons as nodes and their connections as edges. For training neural net-
works, the back-propagation algorithm is used in most cases. Back-propagation
is a supervised learning method, meaning that at all times during training, the
output corresponding to the current input must be known. The goal is to find
the most exact mapping of the input vectors to their output vectors. This is
realised by adjusting the weights on the edges of the graph, see [16] for details.

In the context of graph theory, Kipf et al. [17] introduce graph convolutional
networks that are able to directly use graphs as input instead of a vector of reals.
More precisely, they introduce a layer-wise propagation rule for neural networks
that operates directly on graphs. It is formulated as follows:

B0 = o (D=3 AD~HOWD) (1)

H® ¢ RN*P denotes the matrix of activations in the I*" layer. o(-) is an
activation function, such as ReLU (Rectified Linear Units) [18]. Moreover,
D;; = Ej A;j and A = A+Iy, where A is the adjacency matrix of the graph and
Iy is the identity matrix. W) denotes a layer-specific trainable weight matrix.
Spectral convolutions on graphs are defined as

goxx=UggU . (2)

A signal € RN (a scalar for every node) is multiplied by a filter gy = diag(#),
which is parameterised by # in the Fourier domain. U is the matrix of Eigenvec-
tors of the normalised graph Laplacian L = Iy — D 2AD2 = UAUT, where
A is a diagonal matrix of the Laplacian’s Eigenvalues. U z is the graph Fourier
transform of x [17].

For a number of reasons, evaluating Eq. (2) is computationally expensive. For
example, computing the Eigendecomposition of L might become rather expensive
for large graphs. Hammond et al. [15] suggest that gg(A) can be approximated
by a truncated expansion in terms of Chebyshev polynomials in order to avoid
this problem:

K
gor(A) = > 0. Ti(A) 3)
k=0

Ty (x) denotes the Chebyshev polynomials up to K th order. The matrix A is
rescaled to A = A — Iy, where Ay describes the largest Eigenvalue of

2
Amax
L. Besides, 8’ € RE is now a vector of Chebyshev coefficients. Integrating this
approximation into the definition of a convolution of a signal z with a filter gy

yields
K

go vz~ S 0T (D), (4)
k=0

with L = )\jaxL — Iy [17]. Because this convolution is a K* -order polynomial
in the Laplacian, it is K-localized. This means, it depends only on a certain
neighbourhood—more specifically: it only depends on nodes which are at maxi-
mum K steps away from the central node.



28 I. Kuhlmann and M. Thimm

Stacking multiple convolutional layers in the form of Eq. (4) (each layer fol-
lowed by a point-wise non-linearity) leads to a neural network model that can
directly process graphs.

3 Casting the Acceptability Problem as a Classification
Problem

In abstract argumentation there are several interesting decision problems with
varying complexity [10]. For example, the problem CRED, with ¢ being either
complete, grounded, preferred, or stable semantics, asks for a given AF = (Arg, —)
and an argument A € Arg, whether A is contained in at least one o-extension
of AF. For preferred semantics this is an NP-complete problem [10]. For our first
feasibility study here, we will focus on this problem, i.e., CREDpp.

In order to represent CREDpg as a classification problem, we assume that for
any given input argumentation framework AF = (Arg, —) we have an arbitrary
but fixed order of the arguments, i.e., Arg = {A1,...,A,}. Moreover, let 2
denote the set of all abstract argumentation frameworks and V the set of all
vectors with values in [0,1] of arbitrary dimension. Conceptually, our classifier C
then will be a function of the type C : 2 — V with |C'(Arg, —)| = |Arg], i.e., on
an input argumentation framework with n arguments we get an n-dimensional
real vector as the result.?2 The interpretation of this output then is that the i-th
entry of C'(Arg, —) denotes the likelihood of argument .4; being credulously
accepted wrt. preferred semantics. Of course, a sound and complete classifier C'
should output 1 whenever this is true and 0 otherwise. However, as we will only
approximate the true solution, all values in the interval [0,1] are possible.

The function C, in our case represented by a graph convolutional network,
will be trained on benchmark graphs where the gold standard, i.e. the true
solutions, is available, e.g., by means of asking a complete oracle solver. Given
enough and diverse benchmark graphs for training, our main hypothesis is that
C approximates the intended behaviour.

4 Experimental Evaluation

The framework for graph convolutional networks (GCNs) offered by Kipf et al.
[17], which is realised with the aid of Google’s TensorFlow [1], is designed to
find labels for certain nodes of a given graph and is thus a reasonable starting
point for examining if it is possible to decide whether an argument is credulously
accepted wrt. preferred semantics by the use of neural networks.

2 Note that implementation-wise this is not completely true as the size of the output
vector has to be fixed.
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4.1 Datasets

An essential part of any machine learning task is collecting sufficient training
and test data. The probo® [7] benchmark suite can be used to generate graphs
with different properties. A solver such as CoQuiAAS [19] can then be used
to compute the corresponding extensions. The suite offers three different graph
generators that each yield graphs with different properties. The first one, the
GroundedGenerator, produces graphs that have a large grounded extension. The
SccGenerator produces graphs that are likely to have many strongly connected
components. Lastly, the StableGenerator generates graphs that are likely to have
many stable, preferred, and complete extensions. To provide even more diversity
in the data, we use AFBenchGen* [6] as a second graph generator. It generates
random scale-free graphs by using the Barabdsi-Albert model [2], as well as graphs
using the Watts-Strogatz model [27], and the Erdds-Rényi model [11].

In order to examine the impact of the training set size on the classification
results, a number of different-sized datasets is generated. It is to be noted that
each dataset contains the next smaller dataset in addition to some new data. This
strategy is supposed to keep changes in the character of the dataset minimal.
The test set is, of course, an exception from this rule. Moreover, each dataset
(including the test set) is composed of equal shares of all six previously described
types of graphs, and all graphs have between 100 and 400 nodes. Table 1 gives
an overview.

In addition to the specifically generated test set, a fraction of the bench-
mark dataset used in the International Competition on Computational Models
of Argumentation (ICCMA) 2017 [12] is used in order to examine how a trained
model performs on external data. Said fraction consists of 45 graphs of group B
(the only one designated for solvers of CREDpp) that were chosen from all five
difficulty categories.

Table 1. Dataset overview.

D Number of graphs | Total number of nodes
5-of-each 30 5,461
10-of-each 60 12,056
25-of-each | 150 32,026
50-of-each | 300 73,717
75-of-each | 450 108,050
100-of-each | 600 149,130
Test 120 30,603

3 https://sourceforge.net/projects/probo/.
4 https:/ /sourceforge.net /p/afbenchgen /wiki/Home/.
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4.2 Experimental Setup

The GCN framework [17] was designed to perform node-wise classification on
a single large graph in a semi-supervised fashion. In order to use the GCN
framework in its intended way, three different matrices need to be provided: an
N x N adjacency matrix (N: number of nodes), an N x D feature matrix (D:
number of features per node), and an N x F' binary label matrix (F: number of
classes).

For this work, the training process should be supervised rather than semi-
supervised. However, the set of unlabeled nodes can be left empty. Because all
nodes consequently have a known label, the training process becomes supervised
instead of semi-supervised. Besides, instead of one single graph with some nodes
to be classified, entire sets of graphs are supposed to provide the training and
test sets. To realise this, the graphs in both training and test set are considered
one big graph. This yields an adjacency matrix that essentially contains the
adjacency matrices of all graphs. The graphs belonging to the test set make up
the set of nodes that are to be classified.

The feature matrix can be used to provide additional information on the con-
tent of the nodes that could be used to improve classification. However, defining
an appropriate feature matrix is a rather difficult matter in our application sce-
nario, because the nodes do not contain any information, in contrast to, for
example, social networks or citation networks. In Sect. 4.3, two different solu-
tions are explored. The first one is a simple IV x 1 matrix that contains the same
constant for every node (which means that no additional features are provided
for the nodes). For the second option, the number of incoming and outgoing
attacks per argument are used as features, resulting in an N x 2 matrix (one
column for each incoming and outgoing attacks).

4.3 Results

When dealing with artificial neural networks, quite a few parameters can influ-
ence the outcome of the training process. The following section describes various
experimental results in which the impact of different factors on the quality of
the classification process is examined. Those factors include, for instance, the
size and nature of the training set, the learning rate, and the number of epochs
being used to train the neural network model. Finally, we report on some runtime
comparison with a sound and complete solver.

Feature Matrix. As explained in Sect.4.2, there are two different types of
feature matrix that may be used in the training process. While training with
the feature matrix that does not contain any features (henceforth referred to
as FM1) always results in an accuracy of 77.0%, training with the matrix that
encodes incoming and outgoing attacks as features (henceforth referred to as
FM2) offers slightly better results (up to 80.3%). Accuracy is measured by divid-
ing the number of correct predictions by the total number of predictions. The
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Table 2. Accuracy per class for both feature matrix types.

FM1 FM2

Accuracy YES | Accuracy NO | Accuracy YES | Accuracy NO
0.0000 1.0000 0.1499 0.9846
0.0000 1.0000 0.2025 0.9810
0.0000 1.0000 0.2083 0.9803

31

Table 3. Training results for individual graph types and parameter settings for train-
ing. Additional parameters were set as follows: number of epochs: 500, learning rate:
0.001, dropout: 0.05.

Barabési-Albert | Erdés-Rényi | Grounded | Scc Stable | Watts-Strogatz
Accuracy YES |1.0000 0.0000 0.0771 0.00000.0000 | 0.0000
Accuracy No |0.0000 1.0000 0.9950 1.0000 | 1.0000 | 1.0000
Accuracy total|0.8421 0.8152 0.7109 0.9886|0.8421|0.9988
F1 Score 0.0000 0.0000 0.1417 0.0000|0.0000 | 0.0000

accuracy value for class YES can also be viewed as the recall value, which is cal-
culated by dividing the number of true positives by the sum of true positives and
false negatives. Moreover, by calculating the precision (true positives divided by
the sum of true positives and false positives), the FI score can be obtained as

follows:
Precision - Recall

F, ()

Moreover, because it seems unusual that multiple different training setups
all return the same value, it is important to also look into the class-specific
accuracies. Table 2 reveals that the network only learned to classify all nodes as
No when trained with FM1. Incorporating FM2 into the training process leads
to an accuracy of class YES of up to 20.8%. Whereas this result still needs
optimisation, it shows that using FM2 is the more promising approach. In all
following experiments, FM2 is used.

" Precision + Recall

Graph Types. In order to further investigate the background of the prior
results, the different graph types are examined. Six additional datasets that
consist of one graph type each, are created. Each one contains 100 graphs for
training and 20 graphs for testing. Essentially, the 100-of-each training set and
the test set are split into six subsets consisting of only one graph type per set.
In Table3, the training results, alongside the settings that were used to
retrieve these values, are presented. Several observations can be made from the
results. Firstly, a set of parameter settings does not work equally well on all graph
types. While four out of six graph types only learn to decide on one class for
all instances, Grounded and Stable graphs show first signs of a deeper learning
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Table 4. Classification results after training with different-sized training sets. Param-
eter settings: epochs: 500, learning: 0.01, dropout rate: 0.05. However, a difference in
training set size might require different settings. For example, a larger dataset might
need more epochs to converge than a smaller ones.

Dataset Accuracy YES | Accuracy NO | Accuracy total | F1 score
5-of-each 0.0000 1.0000 0.7701 0.0000
10-of-each | 0.1869 0.9795 0.7972 0.2976
25-of-each | 0.2025 0.9810 0.8020 0.3199
50-of-each | 0.2170 0.9797 0.8043 0.3377
75-of-each |0.2174 0.9793 0.8041 0.3380
100-of-each | 0.2210 0.9786 0.8044 0.3419

process. Increasing the number of epochs to 1000 yields exactly the same accu-
racies for Barabdsi-Albert, Erdés-Rényi, Scc, and Watts-Strogatz graphs, but
improves the values for Grounded and Stable. This leads to the assumption that
the graph types are of different difficulty for the network to learn. The fact that
98.86% (Scc) or even 99.89% (Watts-Strogatz) of the graphs’ nodes belong to
one class supports this assumption. Classifying such unevenly distributed classes
is quite a difficult task for a neural network.

Another observation is that the set of Barabasi-Albert graphs is the only one
where the majority of instances is in the class YES. This might help creating
a dataset with more evenly distributed classes. Generally, it is certainly helpful
to have some graphs with more YES instances in a dataset in order to generate
more diversity. Having a diverse dataset is a vital aspect when training neural
networks. Otherwise, the network might overfit to irrelevant features or might
not work for some application scenarios.

Dataset Size. Besides the influence of a dataset’s diversity, the amount of data
also has an impact on the training process. Table4 shows some classification
results for the different datasets described in Sect.4.1. As expected, it indicates
that bigger training sets have a greater potential to improve classification results.
Nonetheless, utilizing more training data does not automatically mean better
results. As displayed in Table 4, adding more than 50 graphs of each type does
not yield a significant increase in accuracy. The values for overall accuracy and
accuracy for class NO do not change much at all (both less than 3.5%) when
adding more training data. It is, however, crucial to look into the accuracy of
class YES as well as the F1 scores, because it indicates that the network actually
learned some features of a preferred extension, instead of guessing No for all
instances. Training with 25 graphs per type (150 in total) already results in
20.25% accuracy of class YEs—only 1.85% less than a training with a total of 600
graphs yields. Training with 50 graphs per type increases the accuracy for YES
by another 1.45%, which may still be regarded as significant when considering
that the difference to the next bigger training set is merely 0.04%. In summary,
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Table 5. Classification results after training with a more balanced dataset in regard
to instances per class.

Number of Learning Dropout | Accuracy Accuracy Accuracy F1 score
epochs rate YES No total

500 0.1 0.05 0.2488 0.9705 0.8045 0.3693
500 0.01 0.05 0.2589 0.9669 0.8041 0.3781
500 0.001 0.05 0.2372 0.9735 0.8042 0.3578
250 0.01 0.05 0.2659 0.9644 0.8037 0.3839
750 0.01 0.05 0.2728 0.9622 0.8037 0.3899
500 0.01 0.01 0.2682 0.9637 0.8038 0.3859
500 0.01 0.1 0.2494 0.9697 0.8041 0.3693

the increase in accuracy for class YES rather quickly starts stagnating when
more data is added.

Optimisation. Training a neural network is a task that demands careful adjust-
ment of various parameters and other aspects. This section describes several
approaches that may optimise the results gathered so far.

The main problem with the previous results is that the model seems to under-
fit. A reason for that might be that the training set is badly balanced in terms
of number of instances per class. A dataset where the two classes are about
equally distributed might lead to an improvement. Therefore, an additional
training set is generated, which consists of 100 Barabési-Albert graphs and a
total of 100 graphs of the other types (20 graphs of each). The results for train-
ing with this dataset under different parameter settings (regarding the learning
rate, number of epochs, and dropout rate) are displayed in Table5. It becomes
clear that the overall accuracy does not improve significantly in comparison to
the previous results. Nevertheless, the accuracy of class YES increased to values
between 23.72% (500 epochs, learning rate 0.001, dropout 0.05) and 27.28% (750
epochs, learning rate 0.01, dropout 0.05). So, these results might be considered
a slight improvement, because they are more evenly distributed than the former
ones. Another observation is that changes in number of epochs, learning rate, or
dropout rate do not lead to any significant improvements in total accuracy. In
fact, most alterations in parameter settings yield slightly worse results.

Looking into the actual numbers of instances of YES and NO reveals that
instances of the latter class are still the majority (54.4%). To further equalize the
number of instances per class, the training set is augmented by 27 more Barabasi-
Albert graphs (7300 arguments). The distribution of ground truth labels is now
50.6% YES and 49.4% No, respectively. Training the neural network with this
dataset (parameters are set to 500 epochs, a learning rate of 0.01, and a dropout
rate of 0.05) results in a total accuracy of 80.0%. However, the accuracy of class
YES increased to 29.7%, while the corresponding value for class NO marginally
decreased to 95.0%. This demonstrates that using a more balanced training set
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Fig. 2. Results for testing with benchmark data.

(in respect of instances per class) also leads to more balanced results. Since the
test set consists of 77.0% instances of class NO, the total accuracy does not
increase, though.

Competition Data. In order to get a sense of how the training results transfer
to other data, two differently trained models are tested on the competition data
(see Sect. 4.1). The first model is trained with the 50-of-each dataset. The learn-
ing rate is set to 0.01, dropout to 0.05, and number of epochs to 500. The second
model uses the same settings, but is trained with the more balanced dataset con-
taining 127 Barabasi-Albert graphs and 100 others as illustrated above. Figure 2
displays a comparison of the results. The overall accuracy is very similar for both
training sets: about 17% lower than for the regular test set, and the class-specific
accuracy values are lower, too. This might be due to the benchmark dataset con-
taining graphs that are smaller or larger than the ones in the training set. Also,
additional types of graphs are included in the benchmark dataset.

Runtime Performance. Aside from the quality of the classification results,
another aspect that needs to be considered is the time efficiency. In order to put
GCN’s efficiency into perspective, it is compared to CoQuiAAS, the SAT-based
argumentation solver used to provide ground truth labels for the training and
test sets.

For the GCN approach, only the time for evaluating the test set is mea-
sured, since a neural network can, once it is trained, classify as many arguments
as one wishes. Both methods are evaluated on classifying the entire test set
(see Sect.4.1) using the same hardware. The difference is enormous: While the
GCN classifies the entire test set within <0.5s, CoQuiAAS needs about an hour
(60.98 min). It is to be noted that the value for testing using a trained GCN
varies a bit depending on the training conditions. For example, a measurement
taken after training with the biggest training set (600 graphs) is 0.22s. Training
with half the data lead to 0.13s.

Table 6 reveals the big fluctuations in the amounts of time CoQuiAAS needs
to decide for a single argument whether it is included in a preferred extension



Using Graph Convolutional Networks for Abstract Argumentation 35

Table 6. Time measurements in comparison.

Method Property | Time in seconds
CoQuiAAS | Maximum | 19.274452

CoQuiAAS | Mean 0.119561
CoQuiAAS | Minimum | 0.002222
GCN Mean 0.000007

or not. While the lowest value is at 0.002s, the highest one is at 19.27 s—which
is about 8674 times as much. It is also worth noting that, if evaluating the
whole test set takes the GCN 0.22s, it takes an average of 7-10~6 = 0.000007 s.
That means, the minimal amount of time CoQuiAAS needed to evaluate an
argument is still 317 times as much as the average amount of time the GCN takes.
We only report on the mean runtime for the GCN approach as classification is
independent of the instance, it is only polynomial in the size of the trained
network. It follows that the GCN approach has constant runtime wrt. the size
of the instance.

Of course, one needs to consider that a neural network also needs time for
training and possibly for preprocessing. Using the GCN framework, the training
process took approximately between 20 min and two hours—depending on the
dataset size and the parameter settings such as number of epochs or learning
rate. For other network models and frameworks, training might take a lot longer.
Nonetheless, once sufficient data is provided and the network is trained, it can
be used for any test set and it is extremely fast.

5 Conclusion

All in all, the attempt of training a graph-convolutional network on abstract
argumentation frameworks in order to decide whether an argument is included
in a preferred extension or not was rather moderate. The overall accuracy did
under no circumstances exceed 80.5%. When testing with benchmark data, it
was even lower (63%). However, extending the diversity of the training set, for
instance, by adding different-sized graphs or by adding new types of graphs,
might improve this result.

Furthermore, training a neural network model involves adjusting a great
number of parameters. Also, some of these parameters depend on each other.
Considering that training a neural network requires careful adaption of the train-
ing data, the parameter settings, and the network architecture itself, and that
some aspects also affect others, examining all reasonable possibilities exceeds the
extent of this work.

The training results are moderate: On the one hand, the overall classifica-
tion accuracy does not exceed 80.5%, which is not good enough for practical
applications, but on the other hand, it proves that the network learned at least
some rudimental features of a preferred extension. The fact that instances from
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both classes can be classified correctly reinforces this statement. The accuracy
for class YES is far lower (<30%) than the accuracy for class No (>90%) in all
training procedures. A reason for this effect may be that the majority of the
training data is not included in an extension and thus labelled as No. Using
a training set where the distribution of instances per class is more balanced,
counteracts this effect to some degree. Using benchmark data for testing leads
to an overall accuracy of about 63%. The decrease in accuracy in comparison to
the specifically generated test set might be due to graph sizes and types that are
unknown to the network model, as they were not included in the training data.

Moreover, a GCN’s classification process is very time efficient: the entire test
set (30,603 arguments) is classified in <0.5s. For comparison: the SAT solver
CoQuiAAS takes about an hour for the same dataset.

Generally, neural networks seem to be suited to perform the task of classi-
fying arguments as “included in a preferred extension” or “not included in a
preferred extension”. After all, it did work to a certain degree. Nevertheless,
the chosen network architecture seems to be inadequate for the task of abstract
argumentation. It is quite possible that a different network architecture leads
to better results. For example, an increased number of layers in a network or
more neurons per layer may increase the network’s ability to learn more com-
plex features. The results gathered in this paper show signs of underfitting, so
a deeper network would be a plausible strategy. Besides, GCNs were originally
constructed to process undirected graphs, yet argumentation frameworks are
represented as directed graphs. If a better suited neural network is found, the
next step could be to expand the classification problem to a regression prob-
lem by training the network to predict entire extensions, or even all possible
extensions of an argumentation framework.
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Abstract. Causal interaction models such as the noisy-OR model, are
used in Bayesian networks to simplify probability acquisition for vari-
ables with large numbers of modelled causes. These models essentially
prescribe how to complete an exponentially large probability table from a
linear number of parameters. Yet, typically the full probability tables are
required for inference with Bayesian networks in which such interaction
models are used, although inference algorithms tailored to specific types
of network exist that can directly exploit the decomposition properties
of the interaction models. In this paper we revisit these decomposition
properties in view of general inference algorithms and demonstrate that
they allow an alternative representation of causal interaction models that
is quite concise, even with large numbers of causes involved. In addition
to forestalling the need of tailored algorithms, our alternative represen-
tation brings engineering benefits beyond those widely recognised.

Keywords: Bayesian networks + Causal interaction models -
Maintenance robustness

1 Introduction

The use of causal interaction models has become popular as a technique for
simplifying probability acquisition upon building Bayesian networks for real-
world applications. These interaction models essentially impose specific patterns
of interaction among the causal influences on an effect variable, by means of a
parameterised conditional probability table for the latter variable. The number
of parameters involved in this table typically is linear in the number of causes
involved, where the full table itself is exponentially large in this number. Vari-
ous different causal interaction models have been designed for use in Bayesian
networks, the best known among which are the (leaky) noisy-oR model and its
generalisations (see for example [4,11,17]).

While a causal interaction model describes a conditional probability table
for the effect variable in a causal mechanism by a linear number of parame-
ters, most software packages for inference with the embedding Bayesian network
© Springer Nature Switzerland AG 2019
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require the fully specified table. This full probability table is then generated
from the parameters and the definition of the interaction model used, prior to
the inference. Using fully expanded probability tables is associated with two
serious disadvantages, however. Firstly, the size of the full table is exponential
in the number of cause variables involved in a causal mechanism, which induces
both the specification size of the network and the runtime complexity of infer-
ence to increase substantially. Secondly, using full tables has the engineering
disadvantage that the modelling decision to impose a specific pattern of causal
interaction is no longer explicit in the representation, as a consequence of which
the intricate dependencies between the cells of the table are effectively hidden.

For richly-connected Bayesian networks with large numbers of cause variables
per effect variable, as found for example from probabilistic relational models [7],
inference scales poorly and quickly becomes infeasible. Over the last decades
therefore, researchers have addressed ways to ameliorate the representational
and inferential complexity of using fully expanded probability tables with causal
interaction models. One such approach has focused on the design of tailored
inference algorithms for noisy-OrR Bayesian networks, which trade off general
applicability and runtime efficiency; these algorithms in essence exploit the struc-
tured specification of the noisy-OR model for all variables upon inference (see
for example [5,6,8,12,15]). While experimental results underline their scalability
for noisy-OR networks, these tailored algorithms are not easily integrated with
current algorithms for probabilistic inference in general. Another approach to
tackling the representational and inferential complexity of using fully expanded
probability tables for causal interaction models, has focused on the design of
more concise representations of causal mechanisms; these alternative represen-
tations in essence are distilled automatically from the interaction models at hand
and allow use of general inference algorithms (see for example [9,10,16,18,19]).

In this paper we reconsider and integrate some of the early work in which
causal mechanisms with interaction models are represented by alternative graph-
ical structures and probability tables. We demonstrate that interaction models
with specific decomposition properties can be represented efficiently by an alter-
native structure with associated small tables that have an intuitively appeal-
ing semantics. This alternative structure can be readily embedded in a general
Bayesian network and thereby allows for inference without the necessity of pre-
processing tables or using tailored algorithms. We further argue that this alter-
native representation induces elegant properties from an engineering perspective
which allow more ready maintenance and safer fine-tuning of parameters than
the use of fully expanded probability tables in causal mechanisms.

The paper is organised as follows. In Sect. 2, we briefly review causal inter-
action models, and the (leaky) noisy-OR model more specifically. In Sect. 3, we
reconsider the partition of causal interaction models into a deterministic function
and associated independent noise variables, and demonstrate when and how the
underlying deterministic function can be decomposed. Based on these insights,
we derive our alternative cascading representation and study its properties in
Sect. 4. We conclude the paper in Sect. 5.
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c [ Pr(e | ¢)

C1,C2,C3 0

€1,C2,C3 | P1

C1,C2,C3 | p2

C1,C2,C3 | P3

c1,¢2,C3 | 1= (1 —p1)-( )

01,52,63 1-— ( ) ( )

C1,C2,C3 1—(1—p2)~(1—p3)
( ) ( )

C1,C2,C3 1-— 1—p1 .

Fig. 1. A causal mechanism M(n) with n cause variables C; and the effect variable E
(left); a conditional probability table imposed by the noisy-OR model, for n = 3 (right).

2 Preliminaries

We briefly review causal interaction models for Bayesian networks and thereby
introduce our notational conventions. In this paper, we focus on binary random
variables, which are denoted by (possibly indexed) capital letters X. The values
of such a variable X are denoted by small letters; more specifically, we write T
and x to denote absence and presence, respectively, of the concept modelled by
X. (Sub)sets of variables are denoted by bold-face capital letters X and their
joint value combinations by bold-face small letters x; (X) is used to denote
the domain of all value combinations of X. We further consider joint probability
distributions Pr over sets of variables, represented by a Bayesian network.

Within Bayesian networks, we consider causal' mechanisms M (n) composed
of a single effect variable E' and one or more cause variables C;, ¢ = 1,...,n, with
arcs pointing to E; Fig. 1 (left) illustrates the basic idea of such a mechanism.
For the effect variable E of a causal mechanism, a conditional probability table is
specified, with distributions Pr(E | C) over E for each joint value combination ¢
for its set C of cause variables; this table thus specifies a number of distributions
that is exponential in the number of cause variables involved.

A causal interaction model for a causal mechanism M(n) takes the form of
a parameterised probability table for the effect variable involved. The noisy-OR
model [17], which is the best known among these interaction models, defines the
conditional probability table for the effect variable E of M(n) through

— the conditional probability Pr(e | ¢1,...,¢,) = 0;

— the parameters p; = Pr(e | ¢1,...,Ci—1,¢i,Cit1,...,Cn), foralli=1,... n;

— the definitional rule Pr(e [ ¢) =1 — [];c; (1 —p;) for the probabilities given
the remaining value combinations c involving the presence of two or more
causes, where I is the set of indices of the present causes ¢; in c.

Figure 1 (right) illustrates the parameterised table of the noisy-OR model for a
mechanism with three cause variables. For a causal mechanism M(n), the model

1 Although we do not make any claim with respect to causal interpretation, we adopt
the terminology commonly used.
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defines a full probability table over n 4+ 1 variables, specifying a total of 2-2"
probabilities; half of these are derived from Pr(e | ¢) + Pr(e| c) = 1 and, hence,
are redundant. Of the 2™ non-redundant probabilities, the noisy-OR model allows
the values of only the n parameter probabilities p; to be chosen freely. The model
further forces the distribution Pr(E | ¢1,...,¢,) to be degenerate.

Since its introduction, the noisy-OR model has given rise to several variants
and generalisations (see [4] for an overview). Of these, we briefly review here
the leaky noisy-OR model. This model differs from the noisy-OrR model in that
it includes an additional leak parameter p;, = Pr(e | é1,...,¢,) that captures
the probability of the effect e occurring in the absence of all modelled causes.
Different interpretations of the noisy-OR parameters in view of this leak proba-
bility have given rise to different definitional rules for the remaining probabilities
[4,11]. Without loss of generality, we adopt in this paper the interpretation pro-
posed by Diez [4], and use the rule Pr(e | ¢) =1 — (1—pr)-[[;c;. (1 —p;) for the
probabilities given arbitrary joint value combinations ¢ with multiple present
causes, where I again is the set of indices of the causes present in c.

3 Decomposition of Causal Interaction Models

Causal interaction models are often viewed as combining a deterministic function
f with independent noise variables Z; per cause variable (see for example [10, 14,
17]); Fig. 2 (left) illustrates this view for the (leaky) noisy-OR model. The noise
variables Z; are associated with the probabilities Pr(z; | ¢;) = pi, Pr(z; | ;) = 0,
where the p; are the model’s parameters; in the leaky variant of the noisy-Or
model, the prior probability Pr(zy) = py, for the designated noise variable Z,
is the leak parameter. The deterministic function f equals the logical OR and
is encoded in the probability table Pr(E | Z) for the effect variable E through
degenerate distributions. The variable E thereby is a deterministic variable and,
by convention, is indicated by a double border in our figure. Slightly abusing
notation, we will further write E = f(Z).

The representation in Fig. 2 (left) was introduced originally to indicate how a
causal interaction model could ease the task of knowledge acquisition for causal
mechanisms involving large numbers of variables [9]: by making independence
of the causal influences explicit, the partition into a deterministic part and a
probabilistic noise part underlines the requirement of actually just a limited
number of parameters. While indeed easing the task of knowledge acquisition for
practical applications, the partition of a causal interaction model does not reduce
the actual size of its representation for use with general inference algorithms. In
fact, embedding the partition of a causal mechanism M(n) in a Bayesian network
will increase the total number of variables involved by n and still require the
specification of exponentially many probabilities for the effect variable E.

Specific types of causal interaction model however, actually do allow a
reduced representation [10]. More formally, it are specific decomposability prop-
erties of the deterministic function f that provide for a reduction of the size of the
conditional probability table(s) for the effect variable(s) in a causal mechanism.
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noise

deterministic

12,...2,2,)

Fig. 2. Partition of a causal interaction model into a probabilistic noise part and a
deterministic functional part (left); a chain decomposition for a commutative and asso-
ciative deterministic function (right).

Such decomposability properties of functions are widely used in mathematics
and computing science to simplify functions by their hidden structure: a function
f(-) on a set of entities is called self-decomposable if, for any two disjoint subsets
X,Y, the property f(XUY) = f(X) ¢ f(Y) holds, for some commutative
and associative merge operator ¢ (cf. [13]). Commutative and associative logical
operators, such as AND and OR, are self-decomposable Boolean functions. Now,
if the deterministic function f modelled for the effect variable E in the partition
in Fig. 2 (left) is self-decomposable, it can be split into a sequence of function
applications, each to a subset of E’s cause variables. Each such application can
then be described by an auxiliary effect variable F; with fewer parents than E.
The set of auxiliary variables resulting from such a functional decomposition
can be organised in various different graphical structures. In this paper the
chained organisation from Fig. 2 (right) will be used and referred to as a chain
decomposition. We would like to note that the idea of introducing additional
variables to reduce the number of parents for a variable is a general modelling
technique for Bayesian networks, known as parent divorcing [16].

We consider again the partition of a causal interaction model into a proba-
bilistic part with noise variables Z;, i = 1,...,n, and a deterministic part £ =
f(Zy,...,Z,) for some self-decomposable deterministic function f. The chain
decomposition of the model replaces the effect variable E of this partition by n
auxiliary variables F;, ¢ = 1,...,n, such that

— F, has the noise variable Z,, for its single parent and encodes the function
application F,, = f(Z,,I), where the variable I captures identity under f;

— forall i =1,...,n — 1, the variable E; has Z; and F;;; for its parents and
encodes E; = f(Z;, Eiy1).

If the interaction model includes a leak variable Z; the identity variable I in
the function application f(Z,,I) is replaced by Zp, to give E,, = f(Z,,ZL).
We note that the number of variables in the chain decomposition has increased,
from 2-n+1 in the original partition, to 3-n. The total number of non-redundant
probabilities required for the probability tables for the variables F; in the chain
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(E)(&)- (&)

Fig. 3. The cascading representation of a causal interaction model, which results from
marginalising out the noise variables Z; from its chain decomposition.

equals 4-n — 2 however, instead of the 2" probabilities required for the effect
variable F in the original partition. For an interaction model with a leak variable,
the number of required probabilities for the effect variable(s) is reduced from
27+ to 4.n. We will return to these observations in further detail in Sect. 4.

While the original motivation for partitioning causal interaction models was
to underline their induced ease of knowledge acquisition, Heckerman noted that
the introduction of the hidden noise variables Z; in fact made probability elic-
itation harder rather than easier, as “assessments are easier to elicit (and pre-
sumably more reliable) when a person makes them in terms of observable vari-
ables” [9]. Following this insight, he proposed a temporal interpretation of inde-
pendence of causal influences for causal interaction models in which a cause C; is
assumed to occur (or not) at time ¢ and has associated its own effect variable E;
indicating the effect after the presence or absence of the first ¢ causes have been
observed. With this temporal interpretation, the hidden noise variables are no
longer required and the effect variables F; have in fact become observable vari-
ables with a clear semantics supporting probability elicitation. As noted already
by Heckerman himself, this temporal interpretation for causal interaction models
has reduced applicability for its main drawback [9,10].

4 Properties of a Cascading Representation

We propose a representation of causal interaction models that is quite similar to
Heckerman’s temporal representation, yet without the temporal interpretation.
We will argue that our representation has a clear semantics and in addition
allows for easy maintenance in the event of changes in the parameters of the
represented interaction model. Before demonstrating the latter in Sect. 4.2, we
now first detail our cascading representation of causal interaction models.

4.1 The Cascading Representation and Its Equivalence Property

We focus on causal mechanisms with an underlying self-decomposable determin-
istic function f as reviewed in the previous section, and consider their chain
decomposition as illustrated in Fig. 2 (right). Instead of building on a tempo-
ral interpretation as suggested by Heckerman, we propose to sum out the noise
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variables Z; by marginalisation. We note that, by doing so, the effect variables
E;,i1=1,...,n, become stochastic rather than deterministic. The resulting rep-
resentation, called the cascading representation of a causal interaction model, is
illustrated for a mechanism M(n) in Fig. 3, where

— the variable E,, with the cause variable C,, for its single parent, has the
probability table derived from the chain decomposition as

Prie, |Cn) = Y Pr(en|2,) Pr(z, | Cn) (1)
2zl €QUZn)

or, in the presence of a leak probability, as

Pr(e, | Cn) = pr- >, Pr(en|z,,z1) Pr(z), | Cpn)
2 €Q(Zn)
+ (1 =pr)- > Prlen|z,,7zr) Pr(z, | Cn) (2)
25, €Q(Zn)

— the variables E;, i = 1,...,n — 1, with the parents C; and FE,;;1, have the
probability table derived as

Pr(e; | CiyEip1) = Yy Pr(es | 2, Ei) - Pr(z} | Cy) 3)
€2

We note that all probabilities conditioned on a value of a noise variable originate
from the degenerate distributions modelling the deterministic function f of the
interaction model. We further note that the inclusion of a leak probability affects
only the cells of the probability table for the variable F,,, whereas it affects,
through the definitional rule of the interaction model at hand, all cells in the
fully expanded table for the variable E in the causal mechanism.

To ensure that our cascading representation of an interaction model is equiv-
alent to its original representation in a causal mechanism, the variable F in our
representation should represent the exact same information as the effect variable
E in a mechanism M (n). Any probability Pr(e | ¢) = 1 — Pr(e | ¢) specified in
the full probability table for E should therefore be the same as the probability
Pr(e; | ¢) that is computed from the cascading representation as

n—1
Pr(ey [c) = Y Pr(e|ci,ep)- [[ Pr(er | chéinr) - Priel [ ) (4)
e~ €Q(E~) k=2

where Q(E™) is the domain of the variable set E- = {Fs,..., F,}, and where
e, € Q(Eg), k=2,...,n, is consistent with e~ and ¢}, € Q(Cy), k =1,...,n,
is consistent with c. We emphasize that we focus on the value €; of the variable
E rather than on the value e, to simplify our arguments in the sequel.

We now illustrate the derivation of the probability tables for the cascading
representations of the noisy-OR and leaky noisy-OR models, and demonstrate
their equivalence to the standard causal-mechanism representation.
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The cascading noisy-OR. We begin with constructing the conditional probability
tables to be specified for the noisy-OrR model in its cascading representation. For
the variables F;, i =1,...,n — 1, we find from Eq. 3 that

Pr(e; | ¢,€i41)=1-0+0-1=0
Pr(e; | ¢i,€i41) = 1-pi +0- (1 —p;) = p;
Pr(e; | € ei41) =1-0+1-1=1
Pr(e; [ ciyeip1) =1-pi+1-(1—p;) =1

where p; = Pr(e | ¢1,...,Gi—1,¢Ci, Cit1, - - -, Cn) coincides with a regular noisy-ORr
parameter. For the variable E,, we similarly find from Eq. 2 that

Pr(en|En):1-0+O~1:0
Pr(en|Cn):1'pn+0'(1_pn):pn

where p,, is again a regular noisy-OR parameter. We observe that each parameter
pi, @ = 1,...,n, occurs in the specification of exactly one table, which is the table
for the variable F;. In addition to this single associated noisy-OR parameter, the
probability table for the variable F; further specifies just zeroes and ones.

We now show that the cascading representation, with the probability specifi-
cation above, correctly captures the noisy-Or model. To this end, we observe that
for a summand of Eq. 4 to actually contribute to the computation of Pr(e; | ¢),
it should be a product composed of just non-zero terms. Such non-zero terms
are found only with the following probabilities:

— Pr(e, | ¢n) or Pr(e], | ¢,), for the variable E,;
— Pr(e; | ¢, eiq1), Pr(e; | ¢,e41), and Pr(e; | ¢;,€41), for the variable E;,
1=1,...,n—1;

with e} € Q(E;) and ¢, € Q(C;), i = 1,...,n. Close examination of these non-
zero probabilities shows that for the value €; of E; under consideration, only
value combinations e~ for E= = {E,,..., E,} consistent with € can possibly
contribute a non-zero term to a summand of Eq. 4. By iteratively applying this
argument to the variables Fjs,..., E,, we conclude that only the value com-
bination e~ = €s,...,€, contributes a non-zero summand to the probability
Pr(e; | c). For the cascading representation of the noisy-OR model therefore,
Eq. 4 reduces to:

n—1

Pr(e; | c) = H Pr(e; | ¢, €iv1) - Pr(e, | c,) (5)
i=1
To show that the cascading representation correctly captures the noisy-OR
model, we now consider the three different cases distinguished by this model:

— Where the noisy-ORrR model has Pr(e | ¢) = 0 for ¢ =¢1,...,¢,, we find in the
cascading representation from Pr(e; | ¢;,€;11) =1for j =1,...,n—1 and
Pr(e, | ¢,) = 1, that Pr(e; | ¢) = 1 and, hence, Pr(e; | c) = 0.
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Table 1. For the two representations of the noisy-OR model for a causal mechanism
M(n): the number of variables (#wvariables), the number of non-redundant probabilities
for the effect variable(s) (#probabilities), and of those, the number of free parameters
to be acquired (#free) and the number of zeroes and ones (#0/1).

Representation | #variables | #probabilities | #free | #0/1
Full table n+1 2" n 1
Cascade 2:n 4-n—2 n 3n—2

— Where the noisy-OR model has Pr(e | ¢) = p; for ¢ including the single
present cause c¢;, we have in the cascading representation that the product
term contributed for the variable E; has the probability Pr(e; | ¢;,€;4+1) =
1—p; or, in case i = n, Pr(e, | ¢,) = 1 —py. As all other terms in the product
of Eq.5 equal 1, we find that Pr(e; | ¢) = 1 — p; and, hence, Pr(e; | ¢) = p;.

— For any value combination ¢ including multiple present causes, with their
indices in I, the noisy-OrR model has Pr(e | ¢) = 1 — [[;c; (1 — pi). In
the cascading representation, the product term contributed by any E; with
j ¢ I. equals 1 and the term by any E; with ¢ € I is 1 — p;. We thus find
that Pr(e; | ¢) = [[;c;, (1 — pi) and, hence, Pr(er [¢) =1 —[[;c; (1 —pi).

From the three cases above, we conclude that the cascading representation indeed
correctly captures the noisy-Or model and, hence, that the cascading representa-
tion is equivalent with the fully expanded probability table for the effect variable
F in a causal mechanism with a noisy-OR model.

The cascading representation of the noisy-OrR model is a more efficient rep-
resentation than a causal mechanism M (n) with a full probability table for the
effect variable F, despite the increase in number of variables to 2-n compared
to the n + 1 variables in the standard representation. More specifically, the cas-
cading representation requires 4-(n — 1) + 2 conditional probability distributions
in total for the variables E;, of which 3-(n — 1) 4+ 1 are degenerate. For ease of
reference, Table 1 summarises a comparison of the size of the cascading repre-
sentation with that of the standard representation. We note that the cascading
representation is more concise when a causal mechanism would include n > 4
cause variables for the effect variable of interest.

The cascading leaky noisy-OR. We now briefly address the cascading represen-
tation of the noisy-OR model in the presence of a leak probability, which differs
from that of the standard noisy-OR model only in the specification of the prob-
ability table for the variable E,,, which is derived from Eq.2 as

Pr(en | En) =PL
Pr(en | Cﬂ) =pL +Dn- (1_pL) =1- (l_pL) : (1_pn)

where p,, is again a regular noisy-OR parameter and py is the leak probabil-
ity. To show that the cascading representation with this specification correctly
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captures the leaky noisy-OR model, we use Eq.5 again, now for the different
cases distinguished by the leaky noisy-OR model. We observe that, while with
the noisy-OR model, the variable F, would contribute to the product either
Pr(e, | ¢,) = 1 or Pr(e, | ¢n) = 1 —py, it contributes either Pr(e, | ¢,) = 1—py,
or Pr(e, | ¢,) = (1 —pr) - (1 — py,) in the cascading representation of the leaky
noisy-OR model. As a consequence

— With the leaky model having Pr(e | ¢) = py, for ¢ = ¢, ...,¢,, we find Pr(e; |
¢) =1 — pr, and, hence, Pr(e; | ¢) = pr from the cascading representation.

— For any value combination ¢ with an arbitrary number of present causes with
indices in I, the leaky model has Pr(e | ¢) = 1—(1—pr) - [[;c; (1 —pi). Using
the observation above, we find in the cascading representation that Pr(e; |
) = (1-pr)-Ile;.(1—pj;) and, hence, Pr(er | ¢) = 1—(1—pr)-[[;c;. (1—pj).

We conclude that the probabilities computed from the cascading representation
indeed coincide with the probabilities in the full probability table in a causal
mechanism with the leaky noisy-OR model. We thus can construct an efficient
representation for a causal mechanism M (n) with the leaky noisy-OrR model. Of
the 4-(n — 1) + 2 conditional distributions required in total by the cascading
representation, now 3-(n — 1) are degenerate. We note that the difference of one
compared with the cascading representation of the noisy-OR model originates
from the inclusion of the leak probability as a parameter.

4.2 Additional Engineering Benefits

Causal mechanisms are typically modelled straightforwardly in Bayesian net-
works, as in Fig. 1 (left). The different partitions and decompositions of causal
interaction models proposed, are mostly seen as alternative representations to
support probability elicitation and are hardly ever used in a network directly.
Table1 clearly illustrates the reduction in specification size that would be
achieved by choosing a cascading representation for causal mechanisms with
large numbers of cause variables; as this representation limits the number of
parents per effect variable, it also has the potential to reduce the runtime com-
plexity of probabilistic inference, dependent of the graphical structure of the
embedding Bayesian network [10,14]. In this section, we now argue that the cas-
cading representation further has clear engineering benefits beyond those widely
recognised.

Clear semantics. Alternative representations of causal interaction models typi-
cally rely on the introduction of additional variables. Although introducing such
additional variables is commonly used for reducing the number of parents for an
effect variable, it is often quite undesirable from a knowledge engineering per-
spective. While the additional variables have a clear meaning from a mathematics
point of view, they often are quite meaningless from the perspective of the appli-
cation domain and thereby hamper the interpretation of the model as a domain
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representation. The lack of a clear meaning is especially problematic if the prob-
abilities for these additional variables need be elicited from experts. Now, in our
cascading representation of a causal interaction model, the additional variables
do have a clear intuitive meaning, as a consequence of the decomposability prop-
erties of the underlying deterministic function: in the cascading representation of
a causal mechanism M (n), any variable E; can be viewed as the effect variable
in the causal mechanism M(n —i+ 1) involving the subset of causes C;, ..., C,,.
This claim is readily seen by replacing F; by E; in Eq. 4:

n—1
Pr(ei|c)= Y Pr@|cei)- [ Prleh | ¢ eipn) - Prie, | )
e €Q(E) k=i+1

where Q(E™) now is the domain of E- = {E;14,..., E,}, and €}, ¢}, are defined
as before. As each variable F; in the cascading representation represents the
effect variable in a (leaky) noisy-OR model with the cause variables C;, ..., Cp, it
has an intuitive meaning that allows for explicit embedding of the representation
in a network without hampering interpretation and probability elicitation.

Maintenance robustness. The cascading representation of a causal interaction
model brings yet another advantage from an engineering perspective. When
using fully expanded probability tables for the effect variables in a Bayesian net-
work, any modelling decision to employ a causal interaction model is no longer
explicitly visible in the network’s representation. More specifically, the depen-
dency of multiple cells of the table on the parameters of the model employed is
hidden. When a network is maintained and adapted to its changing context of
application over a period of years therefore, inopportune changes to the speci-
fied probabilities can disrupt the modelled interaction pattern and, thereby, the
original modelling decision. We illustrate this observation by means of a causal
mechanism with a noisy-Or model for the effect variable, and show that the cas-
cading representation of the interaction model used is more robust by preventing
the occurrence of such unintended disruptions.

We address the engineering task of studying the effects, on a network’s output
probabilities, of changing a single probability from one of the network’s prob-
ability tables. Such a sensitivity analysis is usually part of the encompassing
task of fine-tuning the network’s specification to attain a desired effect on the
output (see for example [1-3]). In view of a causal mechanism M(n), we now
consider the output probability of interest Pr(e|c;, ck), for some 1 <i < k < n,
and address how this probability changes with a change of the probability
x=Pr(e|c,...,Ci—1,Ci,Cit1,...,Cn) of the full probability table of the effect
variable F; we note that this probability is one of the parameters of the noisy-Or
model. The function [Pr(e | ¢;, ¢x)] (z) describing the sensitivity of Pr(e | ¢;, k)
to changes in x would be constant if the modelling choice of imposing a noisy-Or
interaction for the mechanism at hand is not taken into consideration:
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[Pr(e| ¢, cp)] () =a, with a= Z Pr(e| ¢iycx,¢7) - Pr(c™ | ¢iyer) (6)
c—eQ(C)

where Q(C™) is the domain of the set C~ = {Cy,...,Cp} \ {C;, Ck} of cause
variables for which no value is fixed by the probability of interest. We note
that the computation of Pr(c™ | ¢;, ¢x) does not involve any probabilities from
the probability table of E; in contrast, the first term in the product for each
summand in a corresponds directly to a cell from the full table for E. Since the
summation does not involve parameter x directly, the analysis reveals that the
output probability is not sensitive to variations of the parameter. This result
however, does not correctly reflect the true sensitivity of the output probability
to variations in the parameter under study: the parameter x is actually included
in various cells of the full probability table of E' by the definitional rule from the
noisy-oR model, and thereby hidden in various summands of a.

We now consider the same sensitivity analysis in view of the cascading repre-
sentation of the noisy-OR model, for essentially the same probability of interest
and essentially the same parameter probability. Recall that in the cascading rep-
resentation, any posterior probability distribution over the variable F; equals the
posterior distribution given the same evidence over the original variable E with
the full probability table; we therefore take the probability Pr(ey | ¢;,cx) for the
probability of interest. The parameter p; = Pr(e | €1,...,C—1,Ci,Cit1s---,Cn)
of the noisy-OR model moreover occurs as p; = Pr(e; | ¢;,€+1) in the model’s
cascading representation; we thus take x = Pr(e; | ¢;,€;41) as the probability
that will be varied. The sensitivity analysis will in essence establish the same
result as presented in Eq.6, but now the probabilities Pr(e | ¢;,cx,c™) follow
from the cascading representation using Eq.5, and depend explicitly on x:

[Pr(e | civere)] (@)= [(L—pi)- (L—p)- [] QA=pj)| (2)

jel -

(1=a)-(1—pr)- J] 0 —py)

jel, -

where I.- indexes all present causes in C~ and, for ease of exposition, we again
focus on the value €; for variable F;. As a result, we find that

[Pre | coen)l (@)= > (1—a) - (1—pp)-[] A =p;) Pr(c” | ciyen)
c—eQ(C) JeI

and conclude that the function [Pr(ey | ¢;, ¢x)] (2) is in fact a linear function of
the form a - x + b with constants a, b, where

a=1-p)- >, Pr(c |ee) [ 0-py)
c—eQ(C) Jel —
b=1-a
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The cascading representation of the noisy-OR model performs, during inference,
the computation of the probabilities of the effect e given possible combinations of
causes. That is, application of the definitional rule is in essence left to inference,
resulting in the dependency of the output probability of interest on the noisy-Or
parameter now being correctly taken into consideration. This observation fur-
ther demonstrates that, when changing a single parameter of the noisy-OR model
specification upon fine-tuning a Bayesian network, in the cascading representa-
tion just a single cell of the conditional probability table for the appropriate effect
variable E; needs to be adapted; in contrast, in the representation with a full
conditional probability table, various cells that are specified using the model’s
definitional rule will need adaptation. The cascading representation is therefore
easier to adapt without the risk of violating the properties of the underlying
causal interaction model.

5 Conclusions and Further Research

In this paper we revisited part of the large volume of work on causal interaction
models, and focused thereby on the representational complexity of such models.
We built on this early work for the purpose of demonstrating that some of these
models allow for a representation with various elegant properties that have not
been recognised until now. More specifically, by exploiting the property of self-
decomposability of the deterministic function underlying a causal interaction
model, we arrived at an alternative cascading representation that has a clear
intuitive semantics in terms of the causal mechanism itself, not requiring the
inclusion of artificial unobservable variables. In addition to well-known complex-
ity benefits of such alternative representations, this specific cascading representa-
tion has important knowledge engineering benefits, allowing easier maintenance
and more robust fine-tuning of parameters. As the compactness of the cascading
representation can be exploited directly by standard inference algorithms more-
over, we conclude all in all that this representation of causal interaction models
is quite suitable for explicit embedding in Bayesian networks.

While we used the (leaky) noisy-ORrR model for our example causal interaction
model throughout the paper, the presented properties of the cascading represen-
tation apply straightforwardly to any interaction model involving binary-valued
variables and having an underlying self-decomposable deterministic function,
such as the (leaky) noisy-AND model. For our further research we aim at extend-
ing our results to causal interaction models involving multi-valued variables, such
as the noisy-MAX model [5], and to other types of decomposable function.
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Abstract. Cumulative Prospect Theory (CPT) is a well known model
introduced by Kahneman and Tversky in the context of decision mak-
ing under risk to overcome some descriptive limitations of Expected
Utility. In particular CPT makes it possible to account for the fram-
ing effect (outcomes are assessed positively or negatively relatively to a
reference point) and the fact that people often exhibit different risk atti-
tudes towards gains and losses. We study here computational aspects
related to the implementation of CPT for decision making in combi-
natorial domains. More precisely, we consider the Knapsack Problem
under Risk that consists of selecting the “best” subset of alternatives
(investments, projects, candidates) subject to a budget constraint. The
alternatives’ outcomes may be positive or negative (gains or losses) and
are uncertain due to the existence of several possible scenarios of known
probability. Preferences over admissible subsets are based on the CPT
model and we want to determine the CPT-optimal subset for a risk-averse
Decision Maker (DM). The problem requires to optimize a non-linear
function over a combinatorial domain. In the paper we introduce two
distinct computational models based on mixed-integer linear program-
ming to solve the problem. These models are implemented and tested
on randomly generated instances of different sizes to show the practical
efficiency of the proposed approach.

Keywords: Cumulative Prospect Theory - Knapsack Problem - Risk
aversion + Mixed-integer linear programming

1 Introduction

The increasing use of intelligent systems to support human decision-making or to
drive the actions of autonomous artificial agents shows the importance of devel-
oping expressive and adaptable models to support decision making activities in
complex environments. One of the major challenges is to improve our under-
standing and control over Al-based decisions, and also their relevance, fairness,
and alignment with the organisation’s values and risk proneness. In the field of
decision under risk, the main problem to overcome is to compare alternatives
the outcomes of which are known in probabilities, and to provide a control of

risk in the selection of optimal actions.
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Various mathematical models have been developed in Economics to account
from observed human behaviors in decision making under risk, since the seminal
works of von Neumann and Morgenstern [24] and Savage [19] on the foundations
of Expected Utility Theory (EU). Despite the intuitive appeal of EU theory, sev-
eral experiments have shown that sophisticated rational human behaviors are not
always explainable by EU theory. In particular the experiments conducted by
Kahneman and Tversky [7] have shown that violations of the Von Neumann and
Morgenstern independence axiom or violations of Savage’s Sure Thing Principle
are frequently observed, making it impossible to explain or simulate the observed
behaviors using EU. This has led to alternative models, relying on a deformation
of cumulative probabilities allowing to account for violations of the above men-
tionned independence axioms. For example, Yaari [25] proposed a dual model
to EU, based on a weighting function transforming probabilities rather than
a utility function transforming payoffs. A second example is Rank-dependent
Utility Theory (RDU) where both transformations (probabilities and payoff)
co-exist, thus providing a more general model including EU and Yaari as special
cases. Although these models provide more flexibility to model preferences and
decisions, they are more complex to handle for optimization purposes due to
their non-linearity (w.r.t probabilities and/or payoffs) and their parameters are
more complex to elicit. This issue has been considered in Al, in various topics
such as sequential decision making [5,6], state space search under risk [14], and
incremental preference elicitation [4,15].

Another aspect that is worth considering is that, in the field of decision under
risk, decision makers tend to think of outcomes relative to a certain reference
point (often the status quo). They care generally more about negative outcomes
(i.e. outcomes below the reference point) than positive ones (i.e. outcomes above
the reference point) and may exhibit different attitudes towards gains and losses.
This observation has motivated the development of Prospect Theory [7] and
Cumulative Prospect Theory (CPT) [23] that provide decision models able to
account for this phenomenon. CPT theory includes a sophistication where the
overall utility of a risky prospect is decomposed as the difference between an
aggregate of utilities of positive outcomes and an aggregate of utilities of negative
outcomes. The aggregation operation used for the positive side can be different
from the one used for the negative side, thus letting the possibility to describe
more sophisticated behaviors. Although the theory is well established, the use
of such models for optimization tasks under risk received less attention.

The aim of this paper is to contribute to fill the gap by proposing compu-
tational models based on CPT for the effective computation of CPT-optimal
solutions on combinatorial domains. For the sake of illustration we will con-
sider the problem of selecting projects under a budget constraint and under risk
(knapsack problem with multiple scenarios).

The paper is organized as follows: In Sect. 2, we briefly survey some related
work. Then, in Sect. 3, we recall some background on CPT and some important
results on modeling strong risk-aversion in CPT. In Sect.4 we propose a first
linearization for the CPT model, relying on the notion of core of a capacity.
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This leads us to propose a MIP formulation for the Knapsack problem under
risk. This model is tested on families of instances of different sizes. In Sect. 5 we
consider a special case where the probability weighting functions used in CPT
are piecewise linear with a bounded number of pieces. Under this assumption,
we propose another MIP formulation, more compact and easier to solve, for the
same problem.

2 Related Work

CPT was already used in Al, e.g., for developing a risk sensitive reinforcement
learning in a traffic signal control application [16]. CPT has also been used in a
number of decision support applications. For example, an application of CPT for
the multi-objective optimization of a bus network is proposed in [9]. However, in
this case study, the set of alternatives is explicitly defined and does not require
optimization techniques.

The Knapsack Problem (KP) under consideration in this paper consists in
selecting a subset of items under a budget constraint. This problem has some
links with the portfolio selection problem that can be seen as the continuous
relaxation of KP under risk. The application of CPT to portfolio selection and
insurance demand have been studied in finance (see e.g. [3]) with a computa-
tional model solvable under some specific assumptions (S-Shaped functions, risk
free reference point and/or linear utility functions). Beside CPT, several LP-
computational measures of dispersion are introduced to control the risk attached
to portfolios: let us mention the mean absolute deviation, the Gini’s mean dif-
ference (GMD) as basic LP computable risk measures, the worst realization
(Minimax) and the Conditional Value-at-Risk (CVaR) as basic LP computable
safety measures [10,11]. Moreover, in the latter reference, computational issues
related to the solution of portfolio models with integrity constraints are investi-
gated and a matheuristic called Kernel Search is proposed. These contributions
do not consider the use of bipolar valuation scales as in CPT.

In multicriteria analysis there is also an increasing interest for modeling dif-
ferent attitudes in the aggregation depending on whether evaluations are on the
positive or negative side. For example, the Choquet integral has been extended
to the bipolar case in [2,8] but optimization aspects attached to general bipo-
lar Choquet integral have not been investigated. Very recently, some LP-solvable
models have been proposed [12] for a subclass of bipolar Choquet integrals named
biOWA (for bipolar ordered weighted average). However, biOWA are symmetric
functions of their argument and do not allow to account for decision under risk
when scenarios have different probabilities. Finally an LP-solvable model was
proposed for a weighted extension of OWA operators [13] but does not consider
the case of bipolar scales. In this paper, we are going to introduce computational
models solvable by mixed-integer linear programming to determine CPT-optimal
solutions in implicit decision spaces.



Computational Models for CPT 55

3 CPT and Strong Risk Aversion

Let us consider a problem of decision making under risk with a finite set of states
of nature N = {s1,...,5,}. The states represent possible scenarios under con-
sideration, impacting differently the outcomes of the alternatives. Let p; denote
the probability of state s;. Any feasible alternative is seen as an act in the sense
of Savage. It is therefore characterized by a vector ¢ = (x1,...,x,) where z; € R
denotes the outcome of x in state s;. In this context, the Rank-Dependent Utility
(RDU) model introduced in [17] is defined as follows:

Definition 1. Let x € R™ be the outcome vector of an alternative, the RDU
model is defined by the following rank-dependent expected value:

n

[ i) — (> pw)]ulee) (1)
k=i

k=i+1

|

fo (@)

i=1

I

(@) — u(zi-1)] Zp(m (2)

=1

where ¢ : [0,1] — [0,1] is a non-decreasing probability weighting function, w :
R — R is a non-decreasing real-valued utility function, and (.) is a permutation
defined on N and such that Ty S22 <. STy

Ezample 1. We consider three different scenarios s = (s1, 2, s3) of probability
p= (27 ;, é) and we want to select the best solution in the set of alternatives
composed of z = (9,4,1), y = (4,4,4) and z = (1,16,1). We assume that
the preferences of the DM can be represented by RDU with o(p) = p? and

u(r) = /(). We have the following RDU value for the three alternatives:

- fe(@) =1+ (u(4) —u(1) x p(§) + (u(9) —u(d)) x p(3) =1+ + 1 =155
= fe(y) = u(d) + (u4) — u(4)) x ¢(§) + (u(d) — u(4)) x (3) = ( )+0= 2
- fo(2) = u(l) + (u(1) = u(1)) x @(3) + (u(16) — u(1)) x s@(%) =1+3x5=73

Thus, we have the following ranking of alternatives y > = > z where > is the
preference relation induced by fZ.

This model clearly generalizes the Expected Utility model that can be
obtained for ¢(p) = p for all p € [0,1]. Moreover it also includes the dual
model of EU known as Yaari’s model [25] as special case (when u is linear).
Nonetheless, this model is not always sufficient to account for decision behaviors
observed when decision makers think of outcomes relative to a certain reference
point. The utility scale is treated as an interval scale and preferences are not
impacted by positive affine transformations. Thus, 0 has no specific status in
the valuation scale, nor any other constant. This may prevent to account for
some sophisticated decision behaviors as illustrated in the following:

Ezxample 2. We look for an optimal path from a source node to a sink node in a
network represented by a directed graph. The arcs of the graph are endowed with
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vectors representing the algebraic payoff attached to the arc (which can represent
a gain or a loss) under two possible scenarios of equal probability. For example, the
valuation (—2, 3) means that the outcome will be a loss of 2 in scenario 1 and a
gain of 3 in scenario 2. Outcomes are assumed to be additive along a path and we
assume that u(z) = z. This problem can represent several situations (e.g., a path
planning problem or investment planning problem, both under uncertainty).
Let us consider two different instances of this problem, characterized by two
different graphs with nodes {s,a,b,t} and {s’,¢,d,t'} respectively. The graphs
are presented below (Fig. 1).

s m @ t < (—1,0) (0> o
5.0 (0,5) (=5,0) d (0,-5)

)

Fig. 1. Graphs considered in Example 2

On the left handside, the upper and lower s-t-paths have utilities (9, 3) and
(5,5) respectively. We assume here that the DM prefers the former path because
she maximizes the expected outcome when all evaluations are positive. In the
instance given on the right handside, the upper and lower s’-t’-paths respectively
have utilities (—1, —7) and (=5, —5). Here the DM may exhibit a more cautious
attitude towards risk due to the presence of negative outcomes. Let us assume
that she prefers the latter solution due to the fact that the outcome in the worst
case scenario is better. Hence, to model these preferences with RDU we must ful-
fill the following constraints: f,(9,3) > f,(5,5) and f,(=7,—1) < f,(—5,—5).
The former inequality implies that 3+(3) x (9—3) > 5 and therefore (3) > 3.
Moreover the latter inequality implies —7 + ¢(3) x (—1+7) < —5 and therefore
<p(%) < % which yields a contradiction. Hence RDU is not able to represent the
observed preferences.

To overcome the descriptive limitations illustrated in the above example,
we consider now the Cumulative Prospect Theory model (CPT for short), first
introduced in [7].

Definition 2. Let x € R™ be the outcome vector such that ) < ... Swjoy <
0 <y <...<xp) with j € {0,...,n}, the Cumulative Prospect Theory is
characterized by the following evaluation function:

" o> pw) =2 Y pu) i ()= ()
ggﬂb(x) = szu(%) with w; = k=i k=i+1

7 i—1
b i) = pw) i (i) < ()
k=1 k=1
(3)
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where ¢ and ¢ are two real-valued increasing functions from [0,1] to [0,1] that
assign 0 to 0 and 1 to 1, and u is a continuous and increasing real-valued utility
function such that w(0) =0 (hence u(x) and = have the same sign).

It can easily be checked that whenever ¢(p) =1 — (1 — p) for all p € [0, 1]
(duality) then CPT boils down to RDU. The use of non-dual probability weight-
ing functions ¢ and ¥ depending on the sign of the outcomes under consideration
enables to model shifts of behavior relatively to the reference point (here 0). Let
us come back to Example 2 under the assumption that u(z) = z for all z € R,
we have: g,.(9,3) = [p(1) — p(1)]3+ [p(2) — 0(0)]9 = 3+ 6p(L) since (0) = 0
and (1) = 1. Similarly g, 4 (5,5) = [p(1) — 0(3)]5 + [¢(3) — ©(0)]5 = 5. Hence
9@77#(973) > 9@4&(5,5) implies 90(%) > % (*)-

On the other hand we have g, (—7,—1) = [(3) — ¥ (0)](=7) + [¥(1) —
¥(3)](=1) = =1—6¢(3) since ¢(0) = 0 and ¢(1) = 1. Similarly g, (=5, —5) =
—5. Hence g,,(—7,—1) < gy, (—5,—5) implies 1(1) > 2, which does not yield
any contradiction. Thus, the DM’s preferences can be modeled with g .

As CPT boils down to RDU when ¢(p) = 1 — (1 — p) for all p € [0,1] it

is interesting to note that under this additional constraint w(%) > 2 implies

3
¢(3) < + which is incompatible with the constraint denoted (*) above, derived
from gy 4 (9,3) > gp.(5,5). This again illustrates the fact that RDU is not able

to describe such preferences.

Strong Risk Aversion in CPT. In many situations decision makers are risk-
averse. It is therefore useful to further specify CPT for risk-averse agents. We
consider here strong risk-aversion that is standardly defined from second-order
stochastic dominance. For any random variable X, let G x be the tail distribution
defined by Gx(z) = P(X > z), with P a probability function. Let X,Y be two
random variables, X stochastically dominates Y at the second order if and only
ifforallz € X, [*_ Gx(t)dt > [*_ Gy (t)dt. From this dominance relation, the
concept of mean-preserving spread standardly used to define risk aversion can
be introduced as follows. Y is said to derive from X using a mean preserving
spread if and only if F(X) = E(Y) and X stochastically dominates Y at the
second order. We have then the following definition of strong risk aversion [18]:

Definition 3. Let - be a preference relation. Strong risk aversion holds for =
if and only if X 7Y for all X andY such thatY derives from X using a mean
preserving spread.

We recall now the set of conditions that CPT must fulfill to model strong
risk aversion. These conditions were first established in [21].

Theorem 1. Strong risk aversion holds in CPT if and only if ¢ is convex, ¥
18 concave, u is concave for losses and also concave for gains, and the following
equation is satisfied:

[M@—u@—%ﬂ@@+@—w@)z@@+§%ﬂ@ﬂ@@+ﬂ—wm)M)

forallz >0>y andp, q, 7, s suchasp+q+r+s<1,p,q¢q>0andr,s>0.



58 H. Martin and P. Perny

We remark that, when u(z) = z for all z, condition (4) can be rewritten in
blats)—b(s) -

the following simpler form: et =e() for all p, g, r, s such as
p+qg+r+s<1,p, q>0andr, s>0.In terms of derivative, this means that
' (s) > ¢'(r) for all r,s > 0 such that r + s < 1.

The above characterization of admissible forms of CPT for a risk-averse deci-
sion maker will be used in the next section to propose computational models for
the determination of CPT-optimal solutions on implicit sets. We conclude the
present section by making explicit a link between CPT and RDU model.

Linking RDU and CPT. Interestingly, CPT can be expressed as a difference
of two RDU values respectively applied to the positive and negative part of
the outcome vector x, using the two distinct probability weighting functions ¢
and . This reformulation is well known in the literature on rank-dependent
aggregation functions (see e.g., [2]) and reads as follows:

u ut U —
Jow(@) =fg @)= fi (@) ()
where T = max(z,0), z~ = max(—=z,0), ut(z) = u(z) if z > 0 and 0 otherwise,
u” (—z) = —u(z) if 2 < 0 and 0 otherwise. This formulation will be useful in the

next sections to propose linear reformulations of the CPT model.
The next sections are dedicated to the effective computation of CPT-optimal
solutions on an implicit set of alternatives using linear programming techniques.

4 A First Linearization for CPT Optimization

We present here a first mixed-integer program to maximize function gg’w(x)
under linear admissibility constraints for a risk-averse agent. By Theorem 1, we
know that ¢ must be convex and 1 must be concave to model risk aversion. These
properties will be useful to establish a linearization of the CPT model. For the
simplicity of presentation, we will also assume that u(z) = z and notations like
[z and gg , will be simplified into f,, and g, . We will briefly explain later how
the proposed approach can be extended to the case of a piecewise linear utility
u. Let us first recall some notions linked to capacities and related concepts.

Capacities are set functions that are well known in decision theory for their
ability to describe non-additive representations of beliefs or importance in deci-
sion models. Let us recall the following:

Definition 4. A set function v : P(N) — [0,1] is said to be a capacity if it ver-
ifies: v(0) = 0 and for all A;B C N, A C B = v(A4) <wv(B). It is a normalized
capacity if v(N) = 1.

Among all existing capacities, some are of particular interest. In particular,
a capacity v is said to be:

— convex if v(AUB) +v(ANB) > v(A)+v(B) VA, BC N
— additive if v(AUB) +v(ANB) =v(4) +v(B) YA, BC N
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When v is an additive capacity it can be simply characterized by a vector
(v1,...,vy) of non-negative weights such that v(S) = >, gv; for all S C N. In
the sequel we will indifferently use the same notation v for the capacity and for
the weighting vector characterizing the capacity.

Let P be any probability measure on 2V (N being the set of scenarios) and
© any probability weighting function (continuous, non-decreasing and such that
»(0) = 0 and (1) = 1), then the set function defined by v(S) = (¢ o P)(S) =
©(>_;cq Pi) is a capacity. It is well known that v is convex if and only if ¢ is
convex [1]. When v is convex, a useful property is that there exists an additive
measure A(S) that dominates function v [22]. The set of all additive capacities
dominating v is known as the core of v, formally defined as follows:

Definition 5. The core of a capacity v is the set of all additive capacities domi-
nating v, defined by core(v) = {\: 2N — [0,1] additive | A(S) > v(S) VS C N}.

Hence when ¢ is convex, v = ¢ o P has a non empty core and v(S) =
Minecore(v) (A(S)). In this case, a useful result due to Schmeidler [20] that holds
for general Choquet integrals used with a convex capacity implies that they can be
rewritten as the minimum of a set of linear aggregation functions. When applied to
fo(x) (which is an instance of the Choquet integral) the result writes as follows:

Proposition 1. If ¢ is conver we have f,(x) = min Az
AEcore(poP)

where f,, is the Yaari’s model obtained from fg when u(z) = z for all 2. Similarly,

for a concave weighting function v the dual defined by v (p) = 1 — ¢ (1 — p) for
all p € [0,1] is convex and has a non-empty core. Hence Proposition 1 can be
used again to establish the following result:

Proposition 2. If 1) is concave we have fy(r) = max Az
A€core(yoP)
Proof. fy(z) = —f;(—x)=— min A(-z)= max A
AEcore(yoP) AEcore(yoP)

Using Propositions 1 and 2 and Eq. (5) we obtain a new formulation of CPT,
when ¢ and ¢ are convex and concave respectively.

Proposition 3. Let x € R". If p is convex and v is concave then we have:

) = min M-zt — max M-z~
9507"/’( ) AEcore(poP) A€core(poP)

Now, let us show that this new formulation can be used to optimize g ()
using linear programming. From Propositions 1 and 2 the values of f,(x) and
fu(x) for any outcome vector z € R™ can be obtained as the solutions of the two
following linear programs respectively:

min Y Ax; max Y A\
i=1 i=1
p(P(A)) < 2 MVACN Y(P(A) > 3> M VACN
icA i€A
)\iZO,i:L..,n )\iZO,i:L..,n
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The left LP given above directly derives from Proposition 1. The right LP
given above derives from Proposition 2 after observing that the constraints VB C
N,Y.cp i = ¥(P(B)) are equivalent to VA C N,> .., A\ < ¥(P(A)) (by
setting A = N \ B). Now, if we consider z as a variable vector, we consider the
dual formulations of the above LPs to get rid of the quadratic terms:

max Y. @(P(A)) x da min 3 ¢(P(A)) x da
ACN ACN
B <z i=1... da>x; 1=1,..,n
AQNZ:ieA Ga <2 i=1,.m Ag%ieA
da >0VACN da>0VACN

Finally, we obtain program P; given below to optimize g, 4, with the assump-
tions that ¢ is convex, 1 is concave and that u(z) = z for all z € R™.

max Y, p(P(A)) x dj — 3 »(P(A)) x dy

ACN ACN
>ooodh<af t=1,....n
ACN:ueA
>oody >z 1=1,...,n
ACN:i€A

(P1) T =af —a; t1=1,...,n
0<azf<zxM i=1,...,n
0<z; <(1—-z)xMi=1,...,n
zeX

Tab,did;>0i=1,.,n, VACN
ZiE{O,l}i:L...,’I’L

o

The integer variables z;,7 = 1,...,n are used to decide whether z; is positive or
not. The M constant is used as usual to model disjunctive constraints depending
on the sign of ;. P; has 2"*! continuous variables, n binary variables and 5n
constraints. It can be specialized to solve any CPT-optimization problem, by
inserting the needed variables and constraints to define the set X. For example,
to solve the knapsack problem under risk, we have to insert m boolean variables
y; (set to 1 iff object j is selected) subject to the constraint Z;nzl wiy; < C,
for weights w;,j = 1,...,m and the knapsack capacity C. Then variables z;
are linked to variables y; by equations of type z; = Z;nzl u;;y; defining x; as a
linear utility over sets of objects for any scenario i € {1,...,n}.

We implemented the above model using the Gurobi 7.5.2 solver on a computer
with 12 GB of RAM, a Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz processor.
Table 2 gives the results obtained for the CPT-knapsack problem modeled as fol-
lows: m represents the number of objects, n the number of voters; utilities u;; and
weights w; were randomly generated in the range [—10, 10] (resp. [—100,100]),
the capacity is set to C' = (327", w;)/2, ¢ and ¢ are randomly drawn to satisfy
the conditions of Proposition 1. Average times given in Table2 are computed
over 20 runs, with a timeout set to 1200s. We observe that this computational
model is able to solve instances with a large number of objects in a few seconds.
Nonetheless, it has an exponential number of continuous variables, which may
limit its applicability when the number of scenarios becomes larger. To over-
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Table 1. Times (s) obtained by MIP P; for the CPT-knapsack

m n=3n=5/n="7
100]0.03 |0.21 0.67
500{0.05 |1.31 45.60
750(0.08 |0.87 |125.72

1000|0.13 |3.28 |150.48

come this limitation, we will know present a second computational model with a
polynomial number of variables and constraints, which optimizes g, ,(2) under
some additional assumptions concerning ¢ and ¢ (Table 1).

5 The Case of Piecewise Linear Weighting Functions

From now on, we assume that ¢ and v are piecewise-linear functions with
respectively the breakpoints 0 = ap < a1 < a2 < ... < oy = 1 and
0=0y <P <Py <...< B =1. This assumption is often made in differ-
ent contexts of elicitation and optimization. For example, Ogryczack [13] uses a
similar assumption to propose an efficient linearization of the WOWA operator.
We will follow a similar idea to propose a linearization for CPT.

A piecewise-linear function has its derivative constant on each interval. Thus
we define ¢'(u) = d; for all u € [a;_1, ;] and ¢’ (u) = d for all u € [B;_1, Bi].
Moreover we assume that d;,; = 0 and d, 1 = 0 for convenience. For any given
solution z, we define the cumulative function F,, for all a € [0, 1], by:

1if ZT; <«
0 otherwise

Fp(e) =) pidi() with §;(a) = {
i=1

Then we have Fgg_l)(u) = inf{y : F,(y) > u} returns the minimum perfor-
mance y such that the probability of scenarios whose performance is lower than
or equal to y is greater than or equal to u. Then, we define the tail function G,
for all a € [0, 1], by:

- . Lif 2; >
Gala) = ;piéi(a) with 9;(cr) = {0 otherwise
and Gg_l)(u) = inf{y : G4(y) < u} returns the minimum performance y such
that the probability of scenarios whose performance level is greater than y is
lower than or equal to w. First, we observe that the following relation holds
between G4V and F{ V.

Proposition 4. For all z € R" and u € [0, 1], G(Jl)(u) = anfl)(l —u)
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Proof. According to the definition of F and G, we have G, (u) =1 — F,(u). We

have then the following result i ( —u) =inf{y : Fy(y) > 1 —u} =inf{y :

L~ Fy(y) < up =inf{y: Culy) <up =GV (u) 0
Then, let us show that these notions allow a new formulation of g ,:

Proposition 5

t 17047;
gtPUJ Z z+1 /0 Fag 1( )dU z 1+1 / G 1) d?} (6)

Proof. Let () be a permutatlon of scenarios such that z() <z < ... < 2y

and m; = Y. pk)- Let E(x fo ( T+ o' (u) — G;ﬁl)(u)w’(u)) du. First,
we show that E(z) = g, (2 )

P = [ (65D e ) — Gy () da

= Z /m G;;l)(u)gpl(u)du — Z /m‘ G;il)(u)l//(u)du

= i=1 it+1

with 7,41 = 0. We notice that G(_l)( )= +. for all u € [m;41, m;]. We have:

_me/ du—Zwu/ W' (u

= Zw@ (s@(Zmﬂ — o Z p<k>)> *Zx&) (d)(ZM)) —p( > p<k))>
i=1 k=i k=i+1 i=1 k=1 k=i+1
= gw,w(iﬂ)

Then, the desired result can be obtained from another formulation of F(X):

E(z) = / 1 (G;f)(u)so'(u) =GV @ (w)) du

0
Dy, %
= Z/ G.: @' (u)du — G~ (u)' (u)du
/gi—l
We recall that ¢’ (u) = d; for all u € [a;_1, ;] (and d;f, | = 0 for convenience)
and ¥'(u) =d; for all u € [61_1, Bi] (and d; |, = 0 for convenience). We have:

[ o Bi
=>"|df / GV (w)du — dy G;‘”(u)du]
Q-1

t [ a; Bi
= Z df / F;Il)(l —u)du —dj G;_l)(u)du:| (see Prop. 4)
i=1 L o1 Bi—1

t l—aj_1 Bi
= Z df / Fz(ll)(v)dv —d; / Gil)(u)du:| (withv =1 —u)
Bi—1

i=1 L 1-oy
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I T—ai1 1—ay Bi
; </ F;;l)(v)dvf/ F;;l)(u)dv) —d; G;_”(u)du]
0 0 Bi—1
gy D, H e
F 7 (v)dv — (/ G, / G, (u )du)]
0

11—y Bi
(df, — d+)/0 FSD (w)dv — (dy —d;l)/o Giﬁ”(v)dv} O
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i=1 =

Now we introduce the two following linear programs to optimize

fol_a'“ Fé‘l)( )dv and [ GS Y (v)dv, for a fixed o and k. The lineariza-

tion of fop z )( )dv has been first proposed in [13] and is here extended to
Iy G (v)do:

n n
min Y x;m; max » x;m;
i=1 i=1
n n
> mi = (1—a) > m; = g
i=1 i=1
m; < p; t=1,...,n m; < p; 1=1,...,n
m; >0, i=1,...,n m; >0, i=1,...,n

Then we consider their respective dual formulations:

n n
max(l — ag)r — > pib; min air + Y pib;

i=1 i=1
r—b; <z i=1,...,n r+b >z i=1,...,n
b;>0,i=1,....n b;>0,i=1,....n

Using these formulations, we propose a mixed integer program (Ps) to max-
imize g, (x) for any = belonging to a set X:

’

t , t n
max kz d;‘((l —ag) X rk lZp ) >ody (g x T + lz P, bk)
-1 -1

= k=1
r;—bl‘-zgm? i=1,....,n, k=1,...,t
T, b >x; i=1,....,n, k=1,...,t
xlzxj—x; t1=1,...,n
(P) 0<xi+<zi><M t=1,...,n
0<z; <(1—-z)xM i=1,...,n
:cEX
o, b >0, i=1,....,n, k=1,...,t

ZiE{O,l}, 1=1,...,n

with d;ﬁ = d:+1 — d$ and d;; =d; —dy,, forall k =1,...,t. The integer
variables z;,7 = 1,...,n are used to demde whether z; is posmve or not. The
M constant is used as usual to model disjunctive constraints depending on the
sign of x;. Ps contains 2nt + 3n constraints, n binary variables and 2nt + 2n + 2t
continuous variables. It can be specialized to solve any CPT-optimal problem, by
inserting the needed variables and constraints to define the set X, as shown for
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P;1. Table2 gives the results obtained for the CPT-optimal knapsack problem.
Functions ¢ and 1 are chosen piecewise linear with n breakpoints; these functions
are randomly drawn to satisfy the conditions of Proposition 1. Average times
given in Table 2 are computed over 20 runs, with a timeout set to 1200s.

Table 2. Times (s) obtained by MIP P, for the CPT-knapsack

m n=3n=5n=7n=10
100 0.01 |0.03 |0.07 0.12
500/0.04 |0.13 |0.19 28.22
750/0.03 |0.18 |2.76 |107.36

1000 | 0.04 |0.27 |9.027 | 191.84

The linearization presented here for the case where u(z) = z for all z can
easily be extended to deal with piecewise linear concave utility functions u for
gains and for losses (admitting a bounded number of pieces). In this case, the
utility function can indeed be defined on gains as the minimum of a finite set of
linear utilities which enables a linear reformulation (the same holds for losses).
Note also that having a concave utility over gains and over losses is consistent
with the risk-averse attitude under consideration in the paper.

6 Conclusion

CPT is a well known model in the context of decision making under risk used
to overcome some descriptive limitations of both EU and RDU. In this paper,
we have proposed two mixed integer programs for the search of CPT-optimal
solutions on implicit sets of alternatives. We tested these computational mod-
els on randomly generated instances of the Knapsack problem involving up to
1000 objects and 10 scenarios. The second MIP formulation proposed performs
significantly better due to the additional restriction to piecewise linear utility
functions.

A natural extension of this work could be to address the exponential aspect of
our first formulation with a Branch&Price approach. Another natural extension
of this work could be to propose a similar approach for a general bipolar Choquet
integral where the capacity is not necessarily defined as a weighted probability.
It can easily be shown that the first linearization proposed in the paper still
applies to bi-polar Choquet integrals.
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Abstract. Clustering is an unsupervised task whose performances can
be highly improved with background knowledge. As a consequence, sev-
eral semi-supervised clustering approaches have proposed to integrate
prior information in the form of constraints, generally at the instance-
level. Amongst them, evidential semi-supervised clustering algorithms,
such as CECM or SECM algorithm, rely on the theoretical foundation
of belief function which extends the probabilistic theory and allows us
to express many types of uncertainty about the assignment of an object
to a cluster. In this framework, no evidential clustering algorithm has
ever mixed different types of instance-level constraints. We propose here
to combine pairwise constraints and labeled data constraints in order
to better retrieve information from the background knowledge. The new
algorithm, called LPECM, shows good performances on synthetic and
real data sets.

Keywords: Labeled data constraints - Pairwise constraints -
Instance-level constraints - Belief function - Evidential clustering -
Semi-supervised clustering

1 Introduction

Clustering is a classical data analysis method that aims at creating natural
groups from a set of objects by assigning similar objects into the same cluster
while separating dissimilar objects into different clusters. Clustering solutions
can be expressed in the form of a partition. Amongst partitional clustering meth-
ods, some produce hard [6,18], fuzzy [10,19] and credal partitions [2—4,14]. A
hard partition assigns an object to a cluster with total certainty whereas a fuzzy
partition allows us to represent the class membership of an object in the form
of a probabilistic distribution. The credal partition, developed in the framework
of belief function theory, extends the concepts of hard and fuzzy partition. It
makes possible the representation of both uncertainty and imprecision regarding
the class membership of an object.

Clustering is a challenging task since various clustering solutions can be
valid although distinct. In order to lead clustering methods towards a specific
© Springer Nature Switzerland AG 2019
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and desired solution, semi-supervised clustering algorithms integrate background
knowledge, generally in the form of instance-level constraints. In [2,3,19], labeled
data constraints are taken into account to improve the performances of the clus-
tering. In [4,6,10,18], two less informative constraints are introduced: the must-
link constraint, which specifies that two objects have to be in the same cluster
and the cannot-link constraint, which indicates that two objects should not be
assigned in the same cluster.

The combination of the three types of instance-level constraints can help
to retrieve as most information as possible and thus can achieve better per-
formances. However, there exists currently very few methods able to deal with
such constraints [17], more particularly, none generates a credal partition. In this
paper, we propose to associate two evidential semi-supervised clustering algo-
rithms, the first one handling pairwise constraints and the second one dealing
with labeled data constraints. The goal is to create a more general algorithm
that can obtain a large number of constraints from the background knowledge
and that can generate a credal partition.

The rest of the paper is organized as follows. Section 2 recalls the neces-
sary backgrounds about belief function, credal partition and evidential clustering
algorithms. Section 3 introduces the new algorithm named LPECM and presents
the objective function as well as the optimization steps. Several experiments are
produced in Sect. 4. Finally, Sect. 5 makes a conclusion about the work.

2 Background

2.1 Belief Function and Credal Partition

Evidence theory [15] (or belief function theory) is a mathematical framework
that enables to reflect the state of partial and uncertainty knowledge. Let X
be a data set composed of n objects such that x; € RP corresponds to the it"
object. Let 2 = {wy,...,w.} be the set of possible clusters. The mass function
mg, : 2 — [0,1] applied on the instance x; measures the degree of belief that
the real class of x; belongs to a subset Ay C 2. It satisfies:

Z mi = 1. (1)

The collection M = [my, ..., m,] such that m; = (m;;) forms a credal partition
that is a generalization of a fuzzy partition. Indeed, any subset Aj such that
m;x > 0 is named a focal set of m;. When all focal elements are singletons, the
mass function is equivalent to a probability distribution. If such situation occurs
for all objects, the credal partition M can be seen as a fuzzy partition.

Several transformations of a mass function m; are possible in order to extract
particular information. The plausibility function pl(A) : 2 — [0, 1] defined in
Eq. (2) corresponds to the maximal degree of belief that could be given to subset
A:

plA) = > m(A), VAC Q. (2)
ApNAH#Q
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To make a decision, a mass function can also be transformed into a pignistic
probability distribution [16]. Finally, a hard credal partition can be obtained by
assigning each object to the subset of cluster with the highest mass. This allows
us to easily detect objects located in an ambiguous region.

2.2 Evidential C-Means Algorithm

Evidential C-Means (ECM) [14] is the credibilistic version of Fuzzy C-Means
algorithm (FCM) [5]. In the FCM algorithm, each cluster is represented by a
point called centroid or prototype. The ECM algorithm, which generates a credal
partition, generalizes the cluster representation by considering a centroid vy in
RP for each subset Aj C 2. The objective function is:

Jeem(M, V) Z 7 A md, +Z pPmb, (3)

i=1 Ap#£0

subject to

Z mig+mig =1 and my >0 Vie{l,...,n}. (4)
AR C QAR #0

where |Ag| corresponds to the cardinality of the subset Ay, V is the set of
prototypes and dfk represents the squared Euclidean distance between x; and
the centroid vi. Outliers are handled with masses m;p,Vi € 1,...,n, allocated
to the empty set and with the p? > 0 parameter. The two parameters o > 0 and
B > 1 are introduced to penalize the degree of belief assigned to subsets with
high cardinality and to control the fuzziness of the partition.

An extension of the ECM algorithm has been proposed in order to deal
with a Mahalanobis distance [4]. Such metric is adaptive and handles various
ellipsoidal shapes of clusters, giving more flexibility for the algorithm to better
find the inherent structure of the data. Mahalanobis distance d%, between a point
x; and a subset Aj, is defined as follows:

42, = |xi — villg, = (xi = vi)" Sk (i — Vi), (5)

where Sj; represent the evidential covariance matrix associated to subset Ay
and is calculated as the average of the covariance matrices of the singletons
included in subset Ay. Finally, objective function (3) has to be minimized with
the respect to the credal partition matrix M, the centroids matrix V and the
covariance matrix S = {S;,...,S.} the set composed of covariance matrices
dedicated to clusters.

2.3 Evidential Constrained C-Means Algorithm

Several evidential C-Means based algorithms have already been proposed [1-
4,8,13] to deal with background knowledge. For each of them, constraints are
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expressed in the framework of a belief function and a term penalizing the con-
straints violation is incorporated in the objective function of the ECM algorithm.

In [2,3], labeled data constraints are introduced in the algorithms, i.e. the
expert can express the uncertainty about the label of an object by assigning it to
a subset. Objective functions of the algorithms are written in such a way that any
mass function which partially or fully respects a constraint on a specific subset
has a high weighted plausibility given to a singleton included in the subset.

|A; 0 A2

Ty =T (A) = Y. A

AjﬂA[;ﬁV)

m;, VZE{].TL}, AIQQ, (6)

where r > 0 is a fixed parameter. Notice that if » = 0, then % = 1, which
implies that T;; is identical to the plausibility pl;;.

In [4], authors assumed that pairwise constraints (i.e. must-link and cannot-
link constraints) are available. A plausibility to belong or not to the same class
is then defined. This plausibility allows us to add a penalty term having high
values when there exists a high plausibility that two objects are (respectively are
not) in the same cluster although they have a must-link constraint (respectively
a cannot-link constraint).

plix;(0) = > mixi (A x Aj)
{AlXAjgn2‘(Al><A]’)ﬂ9;éw}
= Y mu(A)m;(4;),
AINA;#0

pllxj(a) =1- mlxj(@) - bellxj(o)

=1—myx,;(0)— Zmz (Ar) m; (Ax),

k=1

(®)

where, 6 denotes the event that objects x; and x; belong to the same class
corresponds to the subset {(wi,w1), (W2, ws), ..., (wk,ws)} within 22, whereas
0 denotes the event that objects z; and x; do not belong to the same class
corresponds to its complement.

3 The LPECM Algorithm with Instance-Level
Constraints

3.1 Objective Function

We propose a new algorithm called Labeled and Pairwise constraints Eviden-
tial C-Means (LPECM), which is based on the ECM algorithm [14], handles
Mahalanobis distance and combines the advantages of pairwise constraints and
labeled data constraints by adding three penalty terms:

Jepeen(M,V,S) = EJpcnu (M, V,8) +vJ 4 (M) + nJe (M) + 6J 2 (M), (9)
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with respect to constraints (4). Formulation of Jgcps corresponds to equation
(3) and (5), J 4 is a penalty term used for must-link constraints, J¢ is dedicated
to cannot-link constraints and J¢ handles labeled data constraints. Coefficients
&, v, n and § allow us to give more importance to the structure of the data, the
pairwise constraints or the labeled data constraints, respectively.

Penalty terms for pairwise constraints and labeled data constraints are
defined similarly to [2,4]:

J (M) = Z 1-—- (mi@ + mip — mi@mj@) - Z mMiEMjk | 5
(xi,Xj)Ek/// Ang,‘Ak‘:l

Jo (M) = Z Z MM, (11)

(xi, , X )E%/ ApNA; #@

JeM)=>" > a1 > Wmil , (12)

i=1 A CN,AL#0 ARNA#0 |

where b;;, denotes whether the " instance belongs to the subset Ay or not:
b — 1 if x; is constrained to subset Ay, (13)
% = 0 otherwise.

It should be emphasized that in this study, unlike [2], each labeled object
is constrained to only one subset. Indeed, it makes more coherent the set of
constraints retrieved from the background knowledge. Constraints are gathered
in three different sets such that .# corresponds to the set of must-link con-
straints, € to the set of cannot-link constraints and .Z denotes the labeled data
constraints set. The J 4 function returns the sum of the plausibilities that must-
link constrained objects to belong to the same class. Similarly, J¢ returns the
sum of the plausibilities that cannot-link constrained objects are not in the same
class. The J¢ term calculates for each labeled object a weighted plausibility to
belong to the label.

3.2 Optimization

The objective function is minimized as the ECM algorithm, i.e. by carrying out
an iterative scheme where first V and S are fixed to optimize M, second M and
S are fixed to optimize V and finally M and V are fixed to optimize S.

Centroids Optimization. It can be observed from (9) that the three penalty
terms included in the objective function of the LPECM algorithm do not depend
on the cluster centroids. Hence, the update scheme of V is identical to the ECM
algorithm [14].
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Masses Optimization. In order to obtain a quadratic objective function with
linear constraints, we set parameter 5 = 2. A classical optimal approach can
then be used to solve the problem [7]. The following equations present how to
transform the objective function (9) in order to obtain a format accepted by
most usual quadratic optimization function.

Let us define m? = (m;g, miw,, - .., min) the vector of masses for object x;.

The first term of Jrpgca is then:
Jeen(M) =Y m] ®'m;, (14)
i=1

where ®° = [gbm is a diagonal matrix of size (2¢ x 2¢) associated to object x;
and defined such as:

‘ p? if A, = A; and Ay, = 0,
(Z)}Lcl = d?k |Ak|a if A, = A; and Ay 75 @, (15)
0 otherwise.

Penalty term used for must-link constraints can be rewritten as follows:

Ju (M) =n, + Z (F;/mz + F;/mj) + Z m{ A" m;, (16)
(xi,xj')ek/// (Xi,X]’)GLf/

where n_; denotes the number of must-link constraints, F_, is a vector of size
2¢ and A = [§;7] corresponds to a matrix (2¢ x 2¢) such that:

1 ifAk:(Z)Ol“Al:@7

F7, =[-1,0,...,0] and &% ={ —1 if Ay, = A; and |4 = |4] = 1,
T 0  otherwise.
(17)
The penalty term associated to cannot-link constraints is:
JeM)= > mA%m;, (18)
(xix;)€?

where A% = [57] is a matrix (2¢ x 2¢) such that:

O = {O otherwise. (19)

Finally, the penalty term for the labeled data constraints is denoted as
follows:

Jz(M) =ng — > Fom,, (20)

i=1
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where n denotes the number of labeled data constraints and F ¢ is a vector of
size 2¢ such that:

FE; = VG, VA € 02, (21)
|Ak N Al|%
_ 22
Clk |Al|r ) ( )
o 1 if (x4, Ag) € £ and AN A #0,
ikl = {0 otherwise. (23)

where expression (x;, Ax) € £ means that the labeled data constraint on object
i is the subset Aj. Function v, = {0, 1} equals to 1 for subsets A; that has an
intersection with Ay knowing the constraint x; € Ag.

Now, let us define m” = (m?, . ,mg;) the vector of size n2° containing the
masses for each object and each subset, H a matrix of size (n2¢ x n2¢) and F a

vector of size n2¢ such that:

S Ap Ay,

Agl @2 A'//Z, if (Xi,Xj)e%,
H= . , where A;; =AY, else if (x,%,) € €,
A, o 0, otherwise.
(24)
F'=(F,---F;---F,), where F;=tF, —bFg, (25)
1, ifx; , 1, ifx;, €. Z,
ti = , X € % 3 and bl = X € . . (26)
0, otherwise. 0, otherwise.
Finally, the objective function (9) can be rewritten as follows:
Jrppom(M) = m”Hm + F'm. (27)

3.3 Metric Optimization

It can be observed from (9), the three penalty terms of the LPECM algorithm
objective function do not depend on the Mahalanobis distance. Since the set of
metric S only appears in Jgops, the update method is identical to the ECM
algorithm [4]. The overall procedure of the LPECM algorithm is summarized in
Algorithm 1.

4 Experiments

4.1 Experimental Protocols

Performances and time consumption of the LPECM algorithm have been tested
on a toy data set and several classical data sets from UCI Machine Learning
Repository [9]. For the Letters data set, we kept only the three letters {I,J,L}
as done in [6]. As in [14], fixed parameters associated to the ECM algorithm
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Algorithm 1. The LPECM algorithm with an adaptive metric

Require: c¢: Number of desired clusters; X = (x1,...,X,) the data set; 4: Set of
cannot-link constraints ; .#: Set of must-link constraints ; .Z’: Set of labeled data
constraints ;

Ensure: credal partition matrix M, centroids matrix V, distance metric matrix S

1: Initialization of V ;

2: repeat

3: Calculate the new credal partition matrix M by solving the quadratic program-
ming problem defined by (27) subject to (4);

4: Calculate the new centroids matrix V by solving the linear system defined as
in the ECM algorithm [14];

5: Calculate the new metric matrix S and new associated distances using [4];

6: until No significant change in V between two successive iterations;

were set such as o = 1, 3 = 2 and p? = 100. In order to balance the importance
of the data structure, must-link constraints, cannot-link constraints and labeled
data constraints respectively, we respectively set £ = %, v = %, n= ‘71| and
0= ﬁ as coefficients.

Experiment on a data set consists of 20 simulations with a random selection
of the constraints. For each simulation, five runs of the LPECM algorithm with
random initialization of the centroids are performed. Then, in order to avoid
local optimum, the clustering solution with the minimum value of the objective
function is selected.

The accuracy of the obtained credal partition is measured with the Adjusted
Rand Index (ARI) [12], which is the corrected-for-chance version of the Rand
Index that compares a hard partition with the true partition of a data set.
As a consequence, the credal partition generated by the LPECM algorithm is
first transformed into a fuzzy partition using the pignistic transformation and
then the maximum of probability on each object is retrieved to obtain a hard
partition.

4.2 Toy Data Set

In order to show the interest of the LPECM algorithm, we started our experi-
ments with a tiny synthetic data set composed of 15 objects and three classes.
Figure 1 presents the hard credal partition obtained using the ECM algorithm.
Big cross marks denote the centroid of each cluster. Centroids for subsets with
higher cardinalities are not represented to ease the reading. As it can be observed,
objects located between two clusters are assigned in subsets with cardinality
equal to two. Notice also that, due to the stochastic initialization of the cen-
troids, there may exist a small difference between the results obtained from
every execution of the ECM algorithm. After the addition of background knowl-
edge in the form of must-link constraints, cannot-link constraints and labeled
data constraints and the execution of the LPECM algorithm with a Euclidean
distance, it is interesting to observe that previous uncertainties have vanished.
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Fig. 1. Hard credal partition obtained Fig. 2. Hard credal partition obtained
on Toy data set with the ECM algo- on Toy data set with the LPECM algo-
rithm rithm

Figure 2 presents the hard credal partition obtained. The magenta dashed line
describes cannot-link constraints, the light green solid line represents must-link
constraints and the circled point corresponds to the labeled data constraints .

Figure 3 illustrates, for the execution of the LPECM algorithm, the mass
distribution for singletons with respect to the point numbers, allowing us a more
distinct sight of the masses allocations. Table 1 displays the accuracy as well as
time consumption for the ECM algorithm and the LPECM algorithm when first
only the cannot-link constraint is incorporated, second when the cannot-link
and the must-link constraint are introduced (Cannot-Must-Link line in Table 1),
finally when all constraints are added (Cannot-Must-Labeled line in Table1).
Our results demonstrate that the combination of pairwise constraints and labeled
data constraints improved the performance of the semi-clustering algorithm with
tolerable time consumption. As expected, the more constraints are added, the
better are the performance.

4.3 Real Data Sets

The LPECM algorithm has been tested on three known data sets from the
UCIT Machine Learning Repository namely Iris, Glass, and Wdbc and a derived
Letters data set from UCI. Table2 indicates for each data set its number of
objects, its number of attributes and its number of classes.

For each data set, we randomly created 5%, 8%, and 10% of each type of
constraints out of the whole objects, leading to a total of 15%, 24%, and 30%
of constraints. As an example, Fig.4 shows the hard credal partition obtained
with the Iris data set after executing the LPECM algorithm with a Mahalanobis
distance and 24% of constraints in total. As can be observed, all the constrained
objects are clustered with certainty in a singleton. Ellipses represent the covari-
ance matrices obtained for each cluster.
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08 “ Table 1. Performance obtained on toy
07 data set with the LPECM algorithm
06
Bosl
E ol ARI | Time(s)
03p ECM 0.60 | 0.07

o2 LPECM-Cannot 0.68 | 0.41

01 .

. & . LPECM-C-Must 0.85 | 0.29

’ poitrumber * LPECM-C-M-labeled | 1.00 | 0.22

Fig. 3. Mass curve obtained on Toy data
set with the LPECM algorithm

Tables 3 and 4 illustrate for all data sets the accuracy results with a Euclidean
and a Mahalanobis distance respectively when the different percentage of con-
straints are employed. Mean and standard deviation are calculated over 20 sim-
ulations. As it can be observed, incorporating constraints lead most of the time
to significant improvement of the clustering solution. Using a Mahalanobis dis-
tance particularly help to achieve better accuracy than using a Euclidean dis-
tance. Indeed, the Mahalanobis distance corresponds to an adaptive metric giv-
ing more freedom than a Euclidean distance to respect the constraints while
finding a coherent data structure.

Table 2. Description of the data sets from
UCIMLR

Name | Objects | Attributes | Clusters

Iris 150 4 3

Letters | 227 16 3

Wdbe | 569 31 2 R S S
Glass | 214 10 3

Fig. 4. Hard credal partition obtained
on Iris data set with the LPECM algo-
rithm

For the time consumption, as it can be observed from Fig. 5, (1) Adding con-
straints gives higher computation time than no constraints. (2) most of the time,
the more constraints are added, the less time is needed to finish the computation.
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Table 3. LPECM’s performance (ARI) with Euclidean distance

J. Xie and V. Antoine

ECM LPECM
5.00% 8.00% 10.00%
Iris 0.59£0.00|0.70 £ 0.01 | 0.71 £ 0.00 | 0.70 £ 0.01
Letters | 0.04 £ 0.01 | 0.09 £ 0.03 | 0.09 £ 0.04 | 0.10 £ 0.02
Wdbc |0.67£0.00|0.71 +£0.00 | 0.71 £ 0.01 | 0.71 £ 0.00
Glass |0.59 +0.07|0.60 £ 0.07 | 0.62 £ 0.06 | 0.65 £ 0.08

Table 4. LPECM’s performance (ARI) with Mahalanobis distance

ECM LPECM
5.00% 8.00% 10.00%
Iris 0.67+£0.01|0.71 £0.05|0.82£0.01 | 0.83 £ 0.04
Letters | 0.08 £0.01 | 0.45 £ 0.03 | 0.47 £ 0.02 | 0.60 £ 0.05
Wdbc |0.73£0.02|0.74 £0.03 | 0.75 £ 0.02 | 0.77 £ 0.05
Glass |0.56 +0.03 | 0.60 £ 0.03 | 0.65 £ 0.02 | 0.65 4 0.03

computation time(s)

L L L L
15% 20% 25% 30%

L
10%
percentage of constraints

L
0% 5%

Fig. 5. Time consumption (CPU) of the LPECM algorithm with Euclidean distance

5 Conclusion

In this paper, we introduced a new algorithm named Labeled and Pairwise
constraints Evidential C-Means (LPECM). It generates a credal partition and
mixes three main types of instance-level constraints together, allowing us to
retrieve more constraints from the background knowledge than other semi-
supervised clustering algorithms. In addition, the framework of belief function
employed in our algorithm allows us (1) to represent doubts for the labeled
data constraints (2) to clearly express, with the credal partition as a result,
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the uncertainties about the class memberships of the objects. Experiments show
that the LPECM algorithm does obtain better accuracy with the introduction
of constraints, particularly with a Mahalanobis distance. Further investigations
have to be performed to fine-tune parameters and to study the influence of
the constraints on the clustering solution. The LPECM algorithm can also be
applied for a real application to show the interest in gathering various types
of constraints. In this framework, active learning schemes, which automatically
retrieve few informative constraints with the help of an expert, are interesting
to study. Finally, in order to scale and fast the LPECM algorithm, a new mini-
mization process can be developed by relaxing some optimization constraints.
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Abstract. We develop a method of reasoning using an incrementally
constructed bipolar argumentation framework (BAF) aiming to apply
computational argumentation to legal reasoning. A BAF that explains
the judgment of a certain case is constructed based on the user’s knowl-
edge and recognition. More specifically, a set of effective laws are derived
as the conclusions from evidential facts recognized by the user, in a
bottom-up manner; conversely, the evidences required to derive a new
conclusion are identified if certain conditions are added, in a top-down
manner. The BAF is incrementally constructed by repeated exercise of
this bidirectional reasoning. The method provides support for those who
are not familiar with the law, so that they can understand the judgment
process and identify strategies that might allow them to win their case.

Keywords: Argumentation - Bidirectional reasoning - Legal reasoning

1 Introduction

An argumentation framework (AF) is a powerful tool in the context of incon-
sistent knowledge [15,21]. There are several possible application areas of AFs,
including law [4,20]. To date, research on applications has focused principally
on AF updating to yield an acceptable set of facts when a new argument is
presented, and strategies to win the argumentation when all of the dialog paths
are known. However, in real legal cases, an AF representing a law in its entirety
is usually incompletely grasped at the initial stage. Thus, it is more realistic to
construct the AF incrementally; recognized facts are added in combination with
AF reasoning.

For example, consider a case in which a person leased her house to another
person, and the lessee then sub-leased a room to his sister; the lessor now wants
to cancel the contract. (This is a simplified version of the case discussed in
Satoh et al. [23].) The lessor decides to prosecute the lessee. The lessor knows
that there was a lease, that they handed over the house to the lessee, and that
the room was handed over by the lessee to the sublessee. However, if the lessor
is not familiar with the law, she does not know what law might be applicable to
her circumstances or what additional facts should be proven to make it effective.
In addition, laws commonly include exceptions; that is, a law is effective if certain
conditions are satisfied provided there is no exception.

© Springer Nature Switzerland AG 2019
N. Ben Amor et al. (Eds.): SUM 2019, LNAI 11940, pp. 79-92, 2019.
https://doi.org/10.1007/978-3-030-35514-2_7
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For example, if there is no abuse of confidence, then the law of cancellation is
not effective. Therefore, the lessor should check that there is “no abuse of confi-
dence,” as well as regarding facts that prove what must be proven. In addition,
other facts may be needed to prove that there has been no abuse of confidence.
Also, the presence of an exception may render another law effective. For those
lacking a legal background, it can be difficult to grasp the entire structure of
a particular law, which may be extensive and complicated. Thus, s/he often
consults with, or even fully delegates the problem-solving process to, a lawyer.
However, if the argumentation structure of the law was clear, s/he would be
more likely to adequately understand the judgment process, obviating the need
for a lawyer.

In this paper, we develop a bidirectional reasoning method using a bipolar
argumentation framework (BAF) [2] that is applicable to legal reasoning. In a
BAF, a general rule is represented as a support relation, and an exception as an
attack relation. The facts of a case become arguments that are not attacked or
supported by other arguments.

We explore the BAF in both a bottom-up and top-down manner, search for
effective laws based on proven facts, and identify the facts required for applica-
tion to other laws.

Beginning with the user-recognized facts of a specific case, laws that may
be effective are searched for using a bottom-up process. Next, new conclusions
are considered if specific conditions are satisfied. If such conclusions exist, the
required facts are then identified in a top-down manner, so that the conditions
are satisfied. If the existence of such facts can be proven, the facts are added as
evidence, and the next round then begins. The procedure terminates if the user is
satisfied with the conclusions obtained, or if no new conclusions are derived. By
repeating this process, a user can simulate and scrutinize the judgment process
to identify a strategy that may allow them to win the case.

This paper is organized as follows. In Sect. 2, we present the BAF, and the
semantics thereof. In Sect. 3, we describe how the law is interpreted and rep-
resented using a BAF. In Sect. 4, we show the reasoning process of a BAF. In
Sect. 5, we discuss related works. Finally, in Sect. 6, we present our conclusions
and describe our planned future work.

2 Bipolar Argumentation Framework

A BAF is an extension of an AF in which the two relations of attack and support
are defined over a set of arguments [2]. We define a support relation between a
power set of arguments and a set of arguments; this differs from the common
support relation of a BAF, so that it corresponds to a legal structure.

Definition 1 (bipolar argumentation framework). A BAF is defined as a
triple (AR, ATT, SUP), where AR is a finite set of arguments, ATT C ARX AR
and SUP C (247 \ {0}) x AR. If (B, A) € ATT, then B attacks A; if (A, A) €
SUP, then A supports A.
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A BAF can be regarded as a directed graph where the nodes and edges
correspond to the arguments and the relations, respectively. Below, we represent
a BAF graphically; a simple solid arrow indicates a support relation, and a
straight arrow with a cutting edge indicates an attack relation. The dashed
rectangle shows a set of arguments supporting a certain argument; it is sometimes
omitted if the supporting set is a singleton.

Ezxample 1. Figurel is a graphical representation of a BAF

{a,b,¢,d, e}, {(b;a), (e;d)}, {({c,d},a)}).

@@ . @ <4 attack relation

______ <— support relation

Fig. 1. Example of BAF.

Definition 2 (leaf). An argument that is neither attacked nor supported by
any other argument in a BAF is said to be a leaf of the BAF.

For a BAF (AR, ATT, SUP), let — be a binary relation over AR as follows:
= ATT U{(A, B)|3A C AR, A€ A A (A, B) € SUP}.

Definition 3 (acyclic). A BAF (AR, ATT, SUP) is said to be acyclic if there
is no A € AR such that (A, A) €e=T, where >V is a transitive closure of —.

We define semantics for the BAF based on labeling [9]. Usually, labeling is
a function from a set of arguments to {in, out, undec}, but undec is unneces-
sary here because we consider only acyclic BAFs. An argument labeled in is
considered an acceptable argument.

Definition 4 (labeling). For a BAF (AR, ATT, SUP), alabeling L is a func-
tion from AR to {in, out}.

Labeling of a set of arguments proceeds as follows: L(A) = in if L(A) = in
for all A € A; and £(A) = out otherwise.

Definition 5 (complete labeling). For a BAF baf = (AR, ATT, SUP), label-
ing L is complete iff the following conditions are satisfied: for any argument
A€ AR, (i) L(A) = in if A is a leaf or (VB € AR;(B,A) € ATT = L(B) =
out) A (3A € 24F; (A, A) € SUP A L(A) = in), (ii) L(A) = out otherwise.

If an argument is both attacked and supported, the attack is taken to be
stronger than the support. For any acyclic BAF, there is exactly one complete
labeling.
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3 Description of Legal Knowledge in a BAF

In this paper, we consider an application of the Japanese civil code.

We assume that the BAFs are acyclic and that each law features both general
rules and exceptions. A law is effective if the conditions of the general rule are
satisfied unless an exception holds. We construct a BAF in which each condition
in a rule is represented by an argument; the general rules can be represented by
support relations, and the exceptions by attack relations. Therefore, our inter-
pretations of attack and support relations differ from those used in the other
BAFs. First, a support relation is defined as a binary relation of a power set and
a set of arguments, since if one of the conditions is not met, the law is ineffec-
tive. Second, an argument lacking support is labeled out, even if it is attacked
by an argument labeled out, since a law is not defined only by its exceptions
and any argument other than a leaf should have an argument that supports it.
The correspondence between the “acceptance” criterion of our BAF and that of
a logic program is shown in [17].

We assume that the entire set of laws can be represented by a BAF termed
a universal BAF, denoted as follows:

ubaf = (UAR, UATT, USUP).

It is almost impossible for a person who is not an expert to understand all
of the laws. Therefore, we construct a specific BAF for each incident; relevant
evidential facts are disclosed, and applicable laws identified using the universal
BAF.

Definition 6 (existence/absence argument). For an argument A, an argu-
ment showing the existence of an evidential fact for A is termed an existence
argument and is denoted by ex(A); and an argument showing the absence of an
evidential fact for A is termed an absence argument and is denoted by ab(A).
These arguments are abbreviated as ex/ab arguments, respectively.

Definition 7 (consistent ex/ab arguments set). For a set of ex/ab argu-
ments S, if there does not exist an argument A that satisfies both ex(A) € S and
ab(A) € S, then S is said to be consistent.

Example 2. Figure2 shows a BAF for the house lease case shown in Sect. 1,
together with the relevant ex/ab arguments.

In this Figure, ex(al), ex(a2), and ex(a4) are existence arguments for agree-
ment_of_lease_contract, handover_to_lessee, and handover_to_ sublessee, respec-
tively; ab(bl) is an absence argument for fact_of non_abuse_of_confidence; and
no evidence is currently shown for the other leaves.

4 Reasoning Using the BAF

4.1 Outline

We employ a running example throughout this section.
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[a: cancelIation_due_to_sublease] D ——

s

o Yo Yo Y i e (AR

] |
a3: agreement_of_sublease 7contract] |
] |

[ b: nonabuse_of confidence ]Q_ [ b1: fact_of nonabuse_of _confidence } + [ ab(b1)

Fig. 2. Example of a BAF for a house-lease case.

|

Ezample 3. We assume the existence of the universal BAF ubaf = (UAR,
UATT, USUP) shown in Fig. 3.

@) —at
!

(e)i—[e)—Ft
)} j(d)i—

____ 1
(1) — (7] (k)—[k1]

Fig. 3. Example of a universal BAF ubaf.

Let Ez be a set of ex/ab arguments that is currently recognized by a user.
For either ex(A) or ab(A) of Ez, A € UAR, and A is a leaf in ubaf.

Initially, a user recognizes a set of facts related to a certain incident. The
reasoning proceeds by repeating two methods in turn. The first is used is to derive
conclusions from the facts in a bottom-up manner, and the other is employed
to find the evidence needed to draw a new conclusion if certain other conditions
are met, this exercise proceeds in a top-down manner.
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4.2 Bottom-Up Reasoning

In bottom-up reasoning, arguments are derived by following the support relations
from an ex/ab argument. The algorithm is shown in Algorithm 1.

Algorithm 1. BUP: find conclusions

Let Ez be a set of ex/ab arguments and AR = {A|ex(A) € Ex} U {A|ab(A) € Ex}.
Find a pair of a set of arguments A C AR and an argument A € UAR \ AR such
that (A, A) € USUP.
while there exists such a pair (A, A) do
Set AR =ARU{A}.
end while
Set SUP = USUP N (247 x AR) U {({ex(A)}, A)|ex(A) € Ez}.
Set ATT = UATT N (AR x AR) U {(ab(A), A)|ab(A) € Fz}. Set AR = ARU Ex.
Apply the complete labeling £ to baf = (AR, ATT, SUP).
Concl(Ez) ={A| L(A) =in A—-3(A,B) € SUP; A€ A C AR}.
return Concl(Ez).

The resulting set of conclusions is the set of arguments that are acceptable,
and no more conclusions can be drawn from the currently known facts.

Ezample 4 (Cont’d). Let Ez be {ex(al),ex(bl),ex(cl),ex(d1l)}, and ubaf be a
BAF in Fig.3. Then, the BAF can be constructed using the process shown in
Fig.4(a) and (b); finally, baf, is obtained, and Concl(Ex) = {a,e} is derived
as the set of conclusions. The complete labeling of the BAF baf, is shown in
Fig.4(c).

o — foxol)

@ @«— ex(al) | 5—@«—@\
o - * / \m /m\ / in \
U;L[%— ex(bl) | @—M«— ex(b1) | _‘%{;t_‘%l“_ #‘
1 - e et )

c1)— [exteD) [ ] 4—lc1]— [extc)] e—iwm i m
D ex(c1) | E_: — i — ’ﬁ n 1d] 4—(d1]— [extan)]
d1)— [ext@n)] | [d]+—d1]— [ex(an)] Lalowm e
) SR | 1

(a) (b) ()

Fig. 4. The bottom-up reasoning used to construct baf;.

4.3 Top-Down Reasoning

On the other hand, we can seek additional facts that must be proven if a new
conclusion is to be derived. Here, we search for a new conclusion and a set of
supports, and identify the facts required to derive the arguments of the set.
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Definition 8 (differential support pair, differential supporting set
of arguments, differentially supported argument). For a BAF
baf = (AR, ATT,SUP), if ANAR) #0AN(ANAR) # AN (A,A) € USUP,
then (A'\ AR, A) is said to be a differential support pair on baf. In addition,
A\ AR and A are said to be a differential supporting set of arguments on baf,
and a differentially supported argument on baf, respectively.

Intuitively, differential support pair means that A cannot be derived using
the current BAF due to the lack of required conditions, but it can be derived if
all of the arguments in A \ AR are accepted. In general, there may exist several
differential support pairs on any BAF.

Ezample 5 (Cont’d). For baf,, we find differential support pair ({f,g},1),
because {e, f,g} N AR = {e} # 0 and ({e, f,g},1) € USUP (Fig.5).
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Fig. 5. A differential support pair on baf, : ({f,g},1).

For a BAF baf = (AR, ATT, SUP) and an argument A € AR, we detect a set
of facts that satisfies L(A) = in. For an argument A, we check the conditions for
labeling of the arguments that attack A and the sets of arguments that support
A. This is achieved by repeatedly applying the following two algorithms: PC(A)
and NC(A), which are shown in Algorithms2 and 3, respectively. Note that
there is no argument that both lacks support and is attacked.

Then, discovery of the required facts proceeds using the algorithm shown in
Algorithm 4.

As a result, a set of ex/ab arguments is generated. An existence argument
ex(A) shows that the fact is required if L(A) = 4n is to hold, whereas an absence
argument ab(A) shows that the evidence is an obstacle to prove L(A) = in.

Ezample 6 (Cont’d). For a differential supporting set of arguments {f, g}, we
find Sol({f,g}) = PC(f) U PC(g).

(i) PC(f) = {ex(f)}-

(ii) PC(g) = PC(h) = PC(h1l) UNC(j) (Fig.6). As for PC(hl), we obtain
{ex(h1)}. As for NC(j), we have two alternatives: NC(j1) and PC(k)
(Fig. 7).
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Algorithm 2. PC(A): find required arguments for £(A) = in.

Let A be an argument in UAR.

if A is a leaf of ubaf then
Sol(A) = {ex(A)}.

else
Choose an arbitrary set of arguments A that satisfies (A, A) € USUP.
Sol(A) = U(B’A)EUATT NC(B)UUy4,ca PC(A)).

end if

return Sol(A).

Algorithm 3. NC(A): find required arguments for £L(A) = out.
Let A be an argument in UAR.
if A is a leaf of ubaf then
Sol(A) = {ab(A)}.
else
Choose an arbitrary argument B that satisfies (B, A) € UATT.
Let Aq,..., A, be all sets of arguments such that (A;, A) € USUP(i =1,...,n).
Choose an arbitrary argument A; € A; (i=1,...,n).
Either Sol(A) = PC(B)
or Sol(A) =U,—, ., NC(A).
end if
return Sol(A).

Assume that we choose the condition NC(j1). Then, we find {ab(j1)} as
Sol(j1) (Fig.8). Finally, we obtain a set of required facts {ex(f), ex(h1),ab(j1)}
(Fig. 9).

4.4 Hybrid Reasoning

The algorithm used for hybrid reasoning is Algorithm 5.
As a result, the required facts are identified, and conclusions are derived from
these facts.

Ezample 7 (Cont’d). For a set of required facts {ex(f),ex(h1),ab(j1)}, assume
that a user has confirmed the existence of f and hl, and the absence of jl.
Then, we construct a new BAF baf, in a bottom-up manner from this set. Part
of the labeling of baf, is shown in Fig. 10. Finally, we obtain a new conclusion
set Concl = {a,i,1}.

Algorithm 4. TDN: find required facts

Let baf = (AR, ATT,SUP) be a BAF and A a differential supporting set of argu-
ments on baf.

Sol(A) = Uuea PC(A).

return Sol(A).
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Fig. 8. Top-down reasoning: The situation when choosing NC(j1).

The hybrid algorithm is nondeterministic at several steps and there are mul-
tiple possible solutions.

Ezample 8 (Cont’d). Assume that we choose the condition PC(k) in Fig.7.
Then, we find {ex(kl)} as Sol(kl), and the set of required facts is
{ex(f),ex(h1),ex(k1)}. In this case, we construct the different BAF baf’, shown
in Fig. 11 after a second round of bottom-up reasoning. Strictly speaking, an
argument j and the attack relations (k,j) and (j,h) do not appear in baf?
because a new argument is created by tracing only a support relation in BUP.
However, it is reasonable to show the attack relation traced in the TDN, consid-
ering that the BAF is constructed based on the user’s current knowledge. Note
that these attacks do not affect the label L(h) = in.

4.5 Correctness

We now prove the validity of hybrid reasoning.
In the proof, we use the height of an argument in wbaf, as defined in [17].

Definition 9. For the acyclic universal BAF ubaf, the height of an argument
A is defined as follows:

— If A is a leaf, then the height of A is 0.
— If there are some arguments B such that (B, A) €—, then the height of A is
h + 1, where h is the maximum height of this B.
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Fig. 9. Top-down reasoning: Ez = {ex(f),ex(hl),ab(j1)}.

Algorithm 5. HR: hybrid reasoning

Let Ez be a set of ex/ab arguments in an initial state.
For Ez, obtain Concl(Ez) and a new baf by BUP.
while a user does not attain a goal that satisfies him/her, and TDN returns a
consistent solution with Ez do
For a baf and an arbitrary A on baf, obtain Sol(A) by TDN.
for each ex(A) or ab(A) in Sol(A) do
Ask the user to confirm that existence or absence.
if there exists a fact for A then
Set Ez = Ex U {ex(A)}.

else
Set Ex = Ex U {ab(A)}.
end if
Get Concl(Fz) and a new baf by BUP.
end for

end while

It is easy to show that the heights of arguments are definable when wbaf is
acyclic.

Here, we prove two specifications, one for a BUP, and the other for a TDN.
For a BUP, the built BAF includes arguments pertaining to the evidential facts
that the user recognizes. Notably, the acceptability of such arguments is the
same as that of the universal BAF.

Theorem 1. Assume that ubaf is acyclic. Let baf be built by BUP from Ez.
When UFEz is defined as {ex(A)|ex(A) € Fz} U {ab(A)|A is a leaf of ubaf A
ex(A) ¢ FEz}, and Ly is a complete labeling for (UAR U UEx, UATT U
{(ab(A), A)|ab(A) € UEz}, USUPU{({ex(A)}, A)|ex(A) € UEz}), for any argu-
ment A€ UAR, A€ ARNL(A) = Ly(A), or A¢ AR N Ly(A) = out.

Proof. We prove this by induction on the height of A. When A is a leaf, if
ex(A) € Ez (ie., ex(A) € UEz), then A € AR and L(A) = Ly(A) = in. If
ex(A) € Ez (i.e., ab(A) € UEz), then Ly (A) = out. In this case, if ab(A4) € Ex
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Fig. 11. The BAF obtained after the second round of bottom-up reasoning: baf.

then A € AR but L(A) = out, and, otherwise A ¢ AR. Both cases satisfy the
proposition.

Assume that A is not a leaf. If Ly(A) = in, then there are some supports
(A, A) € USUP such that Ly(A) = in, and any attacks (B,A) € UATT,
Ly (B) = out. From the induction hypothesis, for any C € A, C € AR, and
L(C) = in; and for any attackers B of A, L(B) = out or B ¢ AR. The definition
of BUP immediately shows that A € AR, and therefore L(A) = in = Ly (A).

Assume that L7 (A) = out. If A ¢ AR, the proposition is satisfied. Otherwise,
A € AR, and from the definition of BUP, there are some supports (A, A) such
that A C AR, so A isnot a leaf of baf. From L7 (A) = out, there are some attacks
(B,A) € UATT such that Ly(B) = in, or for any supports (A, A) € USUP,
Ly(A) = out (i.e., there exists C € A such that Ly(C) = out). From the
induction hypothesis, there are some attacks (B, A) € UATT such that L(B) =
in, or for any supports (A, A) € USUP, there exists C' € A such that C ¢ AR or
L(C) = out. For the former case, (B, A) € ATT, and therefore L(A) = out. For
the latter case, for any (A, A) € SUP, L(A) = out, and therefore L(A) = out.
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From the above, A€ ARNL(A) = Ly(A),or AZ ARANLy(A) =out. O
For a TDN, the facts found by PC(A) make the argument A acceptable.

Theorem 2. Assume that ubaf is acyclic and that A is an arqgument in UAR.
If Ex U PC(A) is consistent and baf is built by BUP from Ex U PC(A), then
A € AR, and the complete labeling L satisfies L(A) = in. If Ex U NC(A) is
consistent and baf is built by BUP from Ex UNC(A), then A ¢ AR, or A€ AR
and the complete labeling L satisfies L(A) = out.

Proof. We prove this by induction on the height of A. For the former case, assume
that Ex U PC(A) is consistent. When A is a leaf (thus of height 0), PC(A) =
{ex(A)} (i.e., baf includes A and ex(A)), and therefore, L(A) = in. Other-
wise, for some A satisfying (A, A) € USUP, PC(A) = U aycvarr NC(B)U
Ucea PC(C). For each B such that (B,A) € ATT, NC(B) € PC(A), and
Ez U NC(B) is thus consistent. As the height of B is less than that of A, from
the induction hypothesis, B € AR or B € AR but £L(B) = out. In a similar
fashion, for each C' € A, C € AR and L(C) = in, and therefore L(A) = in.
From the definitions of BUP and complete labeling, A € AR and L(A) = in.
The proof for the case of NC(A) is the same. O

5 Related Works

Support relations play important roles in our approach. Such relations can be
interpreted in several ways [12]. Cayrol et al. defined several types of indirect
attacks by combining attacks with supports, and defined several types of exten-
sions in BAF [10]. Boella et al. revised the semantics by introducing different
meta-arguments and meta-supports [6]. Noueioua et al. developed a BAF that
considered a support relation to be a “necessity” relation [18]. éyras et al. consid-
ered that several semantics of a BAF could be captured using assumption-based
argumentation [13]. Brewka et al. developed an abstract dialectical framework
(ADF) as a generalization of Dung’s AF [7,8]; a BAF was represented using an
ADF. These works focus on acceptance of arguments. Here, we define a support
relation and develop semantics that can represent a law.

Several authors have studied changes in AFs when arguments are added or
deleted [14]. Cayrol et al. investigated changes in acceptable arguments when an
argument was added to a current AF [11]. Baumann et al. developed a strat-
egy for AF diagnosis and repair, and explored the computational complexity
thereof [3]. Most research has focused on semantics, and changes in acceptable
sets when arguments are added/deleted. The computational complexity associ-
ated with AF updating via argument addition/deletion is a significant issue [1].
Here, we propose the reasoning based on an incrementally constructed BAF,
potentially broadening the applications of such frameworks. Complexity is not
of concern; we do not need to consider all possibilities since solutions can be
derived from a given universal BAF. However, it is possible to use efficient com-
putational methods when executing our algorithm.
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Our reasoning mechanism may be considered a form of hypothetical rea-
soning, or an abduction, which is a method used to search for the set of facts
necessary to derive an observed conclusion [19]. In assumption-based argumen-
tation, abduction is used to explain a conclusion supported by an argument [5].
Combinations of abduction and argumentation have been discussed in several
works. Kakas et al. developed a method to determine the conditions that support
arguments [16]. Sakama studied an abduction in argumentation framework [22]
and proposed a method to search for the conditions explaining the justification
state. This may include removal of an argument if it is not justified. Also, a
computational method was developed by transforming an AF into a logic pro-
gram. In our approach, we do not remove arguments; instead, we add absence
arguments, which is equivalent to argument removal. It is reasonable to confirm
the existence or absence of evidential facts when aiming to establish whether
a certain law applies. The difference between the cited works and our method
is that, in the previous works, observations are given and the facts that can
explain those arguments are searched. In our case, potential conclusions justi-
fied by the observed facts are not specified; instead, bidirectional reasoning is
performed repeatedly to assemble a knowledge set in an incremental manner. In
addition, the purpose of our research is to support simulations. A minimal set of
facts does not necessarily yield the best solution, unlike the cases of conventional
hypothetical reasoning and common abduction.

6 Conclusion

In this paper, we developed a hybrid method featuring both bottom-up and
top-down reasoning using an incrementally constructed BAF. The method can
be applied to find a relevant law based on proven facts, and suggests facts that
might make another law applicable. The proposed method can support those
who are not familiar with a law through a simulation process, allowing a better
understanding of the law to be achieved, in addition to identifying potential
strategies for winning the case.

We are currently exploring reasoning processes that use three-valued repre-
sentation, of which undecided is one possible representation. In future, we plan
to implement visualization of our method.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
JP17H06103.
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Abstract. We consider the problem of actively eliciting the prefer-
ences of a Decision Maker (DM) that may exhibit some versatility when
answering preference queries. Given a set of multicriteria alternatives
(choice set) and an aggregation function whose parameter values are
unknown, we propose a new incremental elicitation method where the
parameter space is partitioned into optimality polyhedra in the same
way as in stochastic multicriteria acceptability analysis. Each polyhedron
encompasses the subset of parameter values for which a given alternative
is optimal (one optimality polyhedron, possibly empty, per alternative
in the choice set). The uncertainty about the DM’s judgment is modeled
by a probability distribution over the polyhedra of the partition. At each
step of the elicitation procedure, the distribution is revised in a Bayesian
manner using preference queries whose choice is based on the current
solution strategy, that we adapt to minimize the expected regret of the
recommended alternative. We interleave the analysis of the set of alter-
natives with the elicitation of the parameters of the aggregation function
(weighted sum or ordered weighted average). Numerical tests have been
performed to evaluate the interest of the proposed approach.

Keywords: Incremental preference elicitation + Optimality
polyhedra - Bayesian updating - Expected regrets

1 Introduction

Preference elicitation is an essential part of computer-aided multicriteria deci-
sion support. Indeed, criteria being often conflicting, the notion of optimality is
subjective and fully depends on the Decision Maker’s (DM) view on the relative
importance attached to every criteria. Thus, the relevance of the recommenda-
tion depends on our ability to elicit this information and the way we model the
uncertainty about the DM’s preferences.

A standard way to compare feasible solutions in multicriteria decision prob-
lems is to use parameterized aggregation functions assigning a value (overall
utility) to every solution. This function can be fitted to the DM preferences
by eliciting the weighting coefficients that specify the importance of criteria in
the aggregation. In many real cases, it is impractical but also useless to precisely
© Springer Nature Switzerland AG 2019
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specify the parameters of the aggregation function. Given a decision model, exact
choices can often be derived from a partial specification of weighting parame-
ters. Dealing with partially specified parameters requires the development of
solution methods that can determine an optimal or near optimal solution with
such partial information. This is the aim of incremental preference elicitation,
that consists on interleaving the elicitation with the exploration of the set of
alternatives to adapt the elicitation process to the considered instance and to
the DM’s answers. Thus, the elicitation effort is focused on the useful part of
the preference information. The purpose of incremental elicitation is not to learn
precisely the values of the parameters of the aggregation function but to specify
them sufficiently to be able to determine a relevant recommendation.

Incremental preference elicitation is the subject of several contributions in
various contexts, see e.g. [3,4,7,16]. Starting from the entire set of possible
parameter values, incremental elicitation methods are based on the reduction
of the uncertainty about the parameter values by iteratively asking the DM to
provide new preference information (e.g., with pairwise comparisons between
alternatives). Any new information is translated into a hard constraint that
allows to reduce the parameter space. In this way, preference data are collected
until a necessarily optimal or near optimal solution can be determined, i.e., a
solution that is optimal or near optimal for all the possible parameter values.
These methods are very efficient because they allow a fast reduction of the
parameter space. Nevertheless, they are very sensitive to possible mistakes of
the DM in her answers. Indeed, in case of a wrong answer, the definitive reduc-
tion of the parameter space will exclude the wrong part of the set of possible
parameter values, which is likely to exclude the optimal solution from the set of
possibly optimal solutions (i.e., solutions that are optimal for at least one possible
parameter value). Consequently, the relevance of the recommendation may be
significantly impacted if there is no possible backtrack. A way to overcome this
drawback is to use probabilistic approaches that allow to model the uncertainty
about the DM’s answers, and thus to give her the opportunity to contradict
herself without impacting too much the quality of the recommendation. In such
methods, the parameter space remains unchanged throughout the algorithm and
the uncertainty about the real parameter values (which characterize the DM’s
preferences) is represented by a probability density function that is updated
when new preference statements are collected.

This idea has been developed in the literature. In the context of incremental
elicitation of utility values, Chajewska et al. [8] proposed to update a proba-
bility distribution over the DM’s utility function to represent the belief about
the utility value. The probability distribution is incrementally adjusted until the
expected loss of the recommendation is sufficiently small. This method does not
apply in our setting because we consider that the utility values of the alternatives
on every criterion are known and that we elicit the values of the weighting coef-
ficients of the aggregation function. Sauré and Vielma [15] introduced a method
based on maintaining a confidence ellipsoid region using a multivariate Gaussian
distribution over the parameter space. They use mixed integer programming to
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select a preference query that is the most likely to reduce the volume of the
confidence region. In a recent work [5], the uncertainty about the parameter
values is represented by a Gaussian distribution over the parameter space of
rank-dependent aggregation functions. Preference queries are selected by min-
imizing expected regrets to update the density function using Bayesian linear
regression. As the updating of a continuous density function is computationally
cumbersome (especially when analytical results for the obtention of the poste-
rior density function do not exist), data augmentation and sampling techniques
are used to approximate the posterior density function. These methods are time
consuming and require to make a tradeoff between computation time and accu-
racy of the approximation. In addition, the information provided by a continuous
density function may be much richer than the information really needed by the
algorithm to conclude. Indeed, it is generally sufficient to know that the true
parameter values belong to a given restricted area of the parameter space to
be able to identify an optimal solution without ambiguity. Thus, we introduce
in this paper a new model-based incremental elicitation algorithm based on a
discretization of the parameter space. We partition the parameter space into
optimality polyhedra and we define a probability distribution over the partition.
After each query, this distribution is updated using Bayes’ rule.

The paper is organised as follows. Section2 recalls some background on
weighted sums and ordered weighted averages. We also introduce the optimality
polyhedra we use in our method and we discuss our contribution with regard to
related works relying on the optimality polyhedra. We present our incremental
elicitation method in Sect. 3. Finally, some numerical tests showing the interest
of the proposed approach are provided in Sect. 4.

2 Background and Notations

Let X be a set of n alternatives evaluated on p criteria. Any alternative of X
is characterized by a performance vector = (x1,...,,), where z; € [0,U] is
the performance of the alternative on criterion ¢, and U is the maximum utility
value. All utilities x; are expressed on the same scale; the utility functions must
be defined from the input data (criterion or attribute values), as proposed by,
e.g., Grabisch and Labreuche [10]. To refine the Pareto dominance relation and to
be able to better discriminate between alternatives in X', we use a parametrized
aggregation function denoted by f,,. The weighting vector w of the function
defines how the components of x should be aggregated and thus makes it pos-
sible to model the decision behavior of the DM. In this paper, we consider two
operators: the weighted sum (WS) and the ordered weighted average (OWA).
We give some notations and recall some basic notions about this two aggregation
functions in the following.

Weighted Sum. Let z € R’ be a performance vector and w € R’ be a
weighting vector. The weighted sum is defined by:

WSu(z) =Y wiz; (1)
i=1
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Ordered Weighted Average. Introduced by Yager [17], the OWA is a rank-
dependent aggregation function, where the weights are not associated to the
criteria but to the ranks in the ordered performance vector, giving more or less
importance to good or bad performances. Let « € R% be a performance vector
and w € RE be a weighting vector. The ordered weighted average is defined by:

P
OWA,,(z) = Zwix(i) (2)
i=1

where () is a permutation of vector x such that z(;) < -+ < z,).

Example 1. Let z=(14,9,10),y =(10,12,10) and z=(9,16,6) be three perfor-
mance vectors to compare, and assume that the weighting vector is w = (%, %, %)

Applying Eq. (2), we obtain: OWA,(z) = 10.75 > OWA,(y) = 105 >
OWA, (z) = 10.

Note that OWA includes the minimum (w; = 1 and w; = 0,Vi € [2,p]), the
maximum (w, = 1 and w; = 0,Vi € [1,p—1]), the arithmetic mean (w; = %,Vz’ €
[1,p]) and all other order statistics as special cases.

If w is chosen with decreasing components (i.e., the greatest weight is
assigned to the worst performance), the OWA function is concave and well-
balanced performance vectors are favoured. We indeed have, for all x € X,
OWA,((z1,..., 2 —&,...,x; +¢&,...,2p)) > OWA,(z) for all 4,5 and e > 0
such that x; — x; > €. Depending on the choice of the weighting vector w, a
concave OWA function allows to define a wide range of mean type aggregation
operators between the minimum and the arithmetic mean. In the remainder of
the paper, we only consider concave OWA functions. For the sake of brevity, we
will say OWA for concave OWA.

Example 2. Consider vectors x, y and z defined in Erample 1 and assume
that the weighting vector is now w = (%,%, %) We have: OWA,(z) = %1,
OWA,(y) = % and OWA,,(z) = %. The alternative y, which corresponds to

the most balanced performance vector, is the preferred one.

Using f,, (defined with (1) or (2)) as an aggregation function, we call f,-
optimal an alternative x that maximizes f,(z). Eliciting the DM’s preferences
amounts to eliciting the weighting vector w. The rest of the section defines how
we deal with the imprecise knowledge of the parameter values in the optimization
process involved in the elicitation.

Optimality Polyhedra. We denote by W the set of all feasible weighting
vectors. Note that, to limit the scale of this set, one can add the additional
non restrictive normalisation constraint Y 7_, w; = 1. Thus, W is defined by
W={weRL|>Y  w;=1and w; >0,Vi}. In the case of a concave OWA, the
additional constraint wy; > --- > w,, is enforced.
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Starting from W and the set X of alterna-
tives, we partition W into optimality polyhe-
dra: the optimality polyhedron associated to
an alternative x is the set of weighting vectors
such that = is optimal. Note that the aggre- W
gation functions we use are linear in w (even oo
though OWA is not linear in x because of the
sorting of x before applying the aggregation 04 W,
operation).

This explains why the sets of the partition
are convex polyhedra. Any preference state-
ment of the form “Alternative z is preferred 00t w w ,

. L . 00 02 04 06§ 08 10
to alternative y” is indeed translated into a
constraint f,,(z) > fu(y) whichislinearinw. pig 1. Optimality polyhedra for

More formally, the optimality polyhedron 2 4 and z in Example 1 with WS.
W, associated to an alternative z € X
is defined by W, = {w € W|fu(z) >
fw(y),Yy € X}. Note that any empty set W, (there is no w € W such that
x is fy-optimal) or not full dimensional set (i.e., Vw € W,,Jy € X such
that f,(x) = fu(y)) can be omitted. An example of such partition is given
in Fig.1 for the instance of Example 1, where the aggregation function is a
weighted sum. Note that ws can be omitted thanks to the normalization con-
straint (ws =1 — w; — wy).

In order to represent the uncertainty about the exact values of parameters,
a probability distribution is defined over the polyhedra of the partition. This
distribution is updated using an incremental elicitation approach that will be
described in the next section.

10

0.8

02 Wy

Related Works. The idea of partitioning the parameter space is closely related
to Stochastic Multiobjective Acceptability Analysis (SMAA for short). The
SMAA methodology has been introduced by Charnetski and Soland under the
name of multiple attribute decision making with partial information [9]. Given
a set of utility vectors and a set of linear constraints characterizing the feasible
parameter space for a weighted sum (partial information elicited from the DM),
they assume that the probability of optimality for each alternative is proportional
to the hypervolume of its optimality polyhedron (the hypervolume reflects how
likely an alternative is to be optimal). Lahdelma et al. [12] developed this idea
in the case of imprecision or uncertainty in the input data (utilities of the alter-
natives according to the different criteria) by considering the criteria values as
probability distributions. They defined the acceptability index for an alternative,
that measures the variety of different valuations which allow for that alterna-
tive to be optimal, and is proportional to the expected volume of its optimality
polyhedron. They also introduced a confidence factor, that measures if the input
data is accurate enough for making an informed decision. The methodology has
been adapted to the 2-additive Choquet integral model by Angilella et al. [2].
These works consider that the uncertainty comes from the criterion values or
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from the variation in the answers provided by different DMs. They also consider
that some prior preference information is given and that there is no opportunity
to ask the DM for new preference statements. Our work differentiates from these
works in the following points:

— the criterion values are accurately known and only the parameter values of
the aggregation function must be elicited;

— the uncertainty comes from possible errors in the DM’s answers to preference
queries;

— the elicitation process is incremental.

3 Incremental Elicitation Approach

Once the parameter space W is partitioned into optimality polyhedra as explained
above, a prior density function is associated to the partition. This distribution
informs us on how likely each solution is to be optimal. In the absence of a
prior information about the DM’s preferences, we define the prior distribution
such that the probability of any polyhedron is proportional to its volume, as
suggested by Charnetski and Soland [9]. The volume of W, gives indeed a mea-
sure on the proportion of weighting vectors for which the alternative z is ranked
first. More formally, the prior probability of x to be optimal is P(z) = Z‘Zl"‘:j
where volyy denotes the volume of a convex polyhedron W. We assume here a
complete ignorance of the continuous probability distribution for w within each
polyhedron. After each new preference statement, the probability distribution P
is updated using Bayes’ rule.

The choice of the next query to ask is a key point for the efficiency of the
elicitation process in acquiring enough preferential information to make a rec-
ommendation with sufficient confidence.

Query Selection Strategy. In order to get the most informative possible
query we use a strategy based on the minimization of expected regrets. Let us
first introduce how we define expected regrets in our setting:

Definition 1. Given two alternatives x and y, and a probability distribution P
on X, the pairwise expected regret PER is defined by:

PER(z,y, X, P) = Y max{0, PMR(z,y, W)} P(=)
zEX

where P(z) represents the probability for z to be optimal and PMR(z,y, W) is
the pairwise maximum regret over a polyhedron W, defined by:

PMR (2, y, W) = max{fu(y) = fu(®)}

In other words, the PER defines the expected worst utility loss incurred by
recommending an alternative = instead of an alternative y, and PMR(z, y, W)
is the worst utility loss in recommending alternative z instead of alternative y
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given that w belongs to W. The use of the PMR within a polyhedron is justified
by the complete ignorance about the probability distribution in the polyhedron,
thereby, the worst case is considered.

Definition 2. Given a set X of alternatives, the mazximum expected regret of
x € X and the minimazx expected regret over X are defined by:

MER(z, X, P) = max PER(z,y, X, P)
ye

MMER(X, P) = mif\} MER(z, X, P)
e
In other words, the MER value defines the worst utility loss incurred by

recommending an alternative z € X and the MMER, value defines the minimal
MER value over X.

The notion of regret expresses a measure of the interest of an alternative.
At any step of the algorithm, the solution achieving the MMER, value is a rel-
evant recommendation because it minimizes the expected loss in the current
state of knowledge. It also allows to determine an informative query to ask.
Various query selection strategies based on regrets and expected regrets have
indeed been introduced in the literature, see e.g. [6] in a deterministic con-
text (current solution strategy) and [11] in a probabilistic context (a probabil-
ity distribution is used to model the uncertainty about the parameter values).
Adapting the current solution strategy to our probabilistic setting, we propose
here a strategy that consists in asking the DM to compare the current rec-
ommendation z* = argmin,cxy MER(x, X, P) to its best challenger defined by
y* = argmaxycx PER(z*,y, P). The current probability distribution is then
updated according to the DM’s answer, as explained hereafter. The procedure
can be iterated until the MMER value drops below a predefined threshold .

The approach proposed in this paper consists in interleaving preference
queries and Bayesian updating of the probability distribution based on the DM’s
answers. The elicitation procedure is detailed in Algorithm 1. At each step i of
the algorithm, we ask the DM to compare two alternatives z(Y and y(?). The
answer is denoted by a;, where a; = 1 if () is preferred to y* and a; = 0 other-
wise. From each answer a;, the conditional probability P(.|a1,...,a;—1) over the
set of alternatives is updated in a Bayesian manner (Line 13 of Algorithm 1).

Bayesian Updating. We assume that answers a; are independent binary ran-
dom variables, i.e. P(a;|z(*),3®) only depends on the (unknown) weighting vector
w and on the performance vectors of (), y(®. This is a standard assumption in
Bayesian analysis of binary response data [1]. To alleviate the notations, we omit
the conditioning statement in P(a;|z(?,y(®)), that we abbreviate by P(a;). Using
Bayes’ rule, the posterior probability of any alternative z € X" is given by:
PClar,.. . a) = P(a}l37 .., ai|2)P(2) _ P(a;|z)P(a,...,a;—1|2)P(z) 3)
(al,...7ai) P(ai)P(al,...,ai,l)
_ P(ai|z)P(Z|al7"'aai—l) (4)
N P(az)
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Algorithm 1: Incremental Elicitation Procedure

Input: X: set of alternatives, &: acceptance threshold; W: parameter space.
Output: z* : best recommendation in X

1 P(z) < IL(ZZVV‘;Z Vze X
210
3 repeat
4 1—1i+1
5 ) — arg mingex MER(z, X, P(.|a1,...,ai-1))
6 y — argmaxyex PER(z®,y, P(.|a1,...,a:-1))
7 Ask the DM if ¥ is preferred to y®
8 if the answer is yes then
9 ‘ a; — 1
10 else
11 a; <0
12 for z € X do
13 | Compute P(z|a1,...,a;) using Bayesian updating
14 until MMER(X, P(.|a1,...,a;)) <¢;
15 return z* selected in arg minyex MER(z, X, P(.|a1, ..., a;))

The likelihood function P(a;|z) is the conditional probability that the answer is
a; given that z is optimal. Let us denote by W,E(i)>y(i) the subset of W containing

all vectors w such that f,(z(®) > f.,(y®); the likelihood function is defined as:

) if W, C Wmm?v-y(i)
Pla;=1z)=¢1-4 if W.nNn Ww(@)H/(f,) =0
P(a; =1) otherwise

where § € ( %, 1] is a constant. The corresponding update of the probability masses
follows the idea used by Nowak in noisy generalized binary search [14] and its
effect is simple; the probability masses of polyhedra that are compatible with
the preference statement are boosted relative to those that are not compatible,
while the probability masses of the other polyhedra remain unchanged. The
parameter 0 controls the size of the boost, and can be seen as a lower bound on
the probability of a correct answer. The three cases are depicted in Fig. 2.

In the third case (on the right of Fig.2), due to the assumption of complete
ignorance within a polyhedron, the new preference statement is not informative
enough to update the probability of z to be optimal. Therefore, for all alterna-
tives z such that W, is cut by the constraint f,(z") > f,(y?) no updating
is performed and therefore P(a;|z) = P(a;); consequently P(zlay,...,a;) =
P(z|ay,...,a;—1) by Eq.4.

Regarding Eq.4, note that, in practice, we do not need to determine
P(a;). For any alternative z € X such that W, is not cut by the constraint,
we have indeed P(z|ai,...,a;) o« P(a;|z)P(z|a1,...,a;—1). More precisely,
P(z|ay,...,a;) is obtained by the following equation:
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W. C Wz(i)>-y(i) W. N Wz(i)>y(i) =0 otherwise

Fig. 2. The polyhedron is W;. The non-hatched area is the half-space W)y, ) -

P(ai|z)P(z|a1,...,ai_1)
> Plaily)P(ylay, ... ai-1)
yey

P(zlay,...,a;)= Z P(ylai,...,a;—1)
yey

(5)

where Y is the subset of alternatives whose optimality polyhedra are not cut by
the constraint. The condition ., P(z|ai,...,a;) = 1 obviously holds.

If the optimal alternative x* is unique, the proposition below states that,
using Algorithm 1, the probability assigned to z* cannot decrease if the DM
always answers correctly.

Proposition 1. Let us denote by x* a uniquely optimal alternative. At any step
i of Algorithm 1, if the answer to query i is correct, then:

P(z*|ay,...,a;) > P(a*|a1,...,a;—1)
Proof. Two cases can be distinguished:

Case 1. If W« € Wm(i)iy(i) and W "Wy # (0, then, as mentioned above,
P(z*|a,...,a;) = P(z*|ay,...,a;—1) by Eq.4 because P(a;|z*) = P(a;).

Case 2. Otherwise, whatever the answer « of the DM, we have P(a; = a|z*) = d
because the answer to query i is correct. By Eq. 5, it follows that:

a;) = 6Zy6yp(y|a1,-..,ai_1)
Y ey Plai = aly)P(ylay, ..., ai 1)

ratio p

P(x*\al,...

P(z*|a, ... a;-1)

We now show that p > 1 for § > % Let us denote by Y5 the subset of alternatives
y € Y such that P(a; = aly) = . We have:

Z P(a; = aly)P(ylai, ..., ai-1)

yey
=63 Plylar,...,ai) +(1-0) Y Plylar,....ai1)
YEYs YyEV1-5

because Y = Ys UVi_s and Vs NY1_s =0
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<9 Z P(ylay,...,ai-1) +6 Z P(ylay,...,ai-1)
YEYs yeEV1-5
1
because § > 3 (the only case of equality is when Y;_5 = ()
=94 Z P(ylai,...,a;—1)
yey
Consequently, p > 1 and thus P(z*|aq,...,a;) > P(z*|ai,...,a;—1). m|

Toward an Efficient Implementation. As mentioned above, in order to
update the probability of an alternative z, we need to know the relative position
of its optimality polyhedron W, compared to the constraint induced by the new
preference statement f,(z(?) > f,(y*). In this purpose, we can consider the
Linear Programs (LPs) opt{ f,, (")~ f.,(y)|w € W, }, where opt =min or max.

If the optimal values of both LPs share the same sign, then we can conclude
that the polyhedron is not cut by the constraint, otherwise it is cut. To limit
the number of LPs that need to be solved (determining the positions of all the
polyhedra would indeed require to solve 2n LPs), and thereby speed up the
Bayesian updating, we propose to approximate the polyhedra by their outer
Chebyshev balls (i.e., the smallest ball that contains the polyhedron). Let us
denote by r the radius of the Chebyshev ball and by d the distance between the
center of the ball and the hyperplane induced by the preference statement:

— if d > r then the polyhedron is not cut by the constraint (see Fig.3a). In
order to know whether the polyhedron verifies the constraint or not, we just
need to check whether the center of the ball verifies it or not. Thus, in this
case, only two scalar products are required.

— if d < r then an exact computation is required because the polyhedron can
either be cut by the constraint (Fig.3b) or not (Fig. 3c). In this way, the use
of Chebyshev balls does not impact the results of the Bayesian updating but
only speeds up the computations.

““\
7
a. d>r c. d<r

Fig. 3. Example of an approximation of a polyhedron by an outer Chebyshev ball.
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4 Experimental Results

Algorithm 1 has been implemented in Python using the polytope library to man-
age optimality polyhedra, and tested on randomly generated instances. We per-
formed the tests on an Intel(R) Core(TM) i7-4790 CPU with 15 GB of RAM.

Random Generation of Instances. To evaluate the performances of
Algorithm 1, we generated instances with 100 alternatives evaluated on 5 criteria,
all possibly f,,-optimal (i.e., W, #0 Vz € X). The generation of the performance
vectors depends on the aggregation function (WS or OWA) that is considered:

— WS instances. An alternative z of the instance is generated as follows: a
vector y of size 4 is uniformly drawn in [0, 1]%, then x is obtained by setting
x; = y; —yi—1 for i = 1,...,5, where yp = 0 and y5 = 1. The vectors thus
generated all belong to the same hyperplane (because Zle z; = 1 for all
z € X) and the set of possibly unique WS-optimal alternatives is therefore
significantly reduced (because the optimality polyhedra of many alternatives
are not full dimensional). To avoid this issue, as suggested by Li [13], we
apply the square root function on all components z; for all x € X in order
to concavify the Pareto front. The set of performance vectors obtained is
illustrated on the left of Fig.4 in the bicriteria case.

— OWA instances. An alternative x is possiblg/ OWA-optimal in a set X if
its Lorenz curve L(z) defined by Ly(v) = > .,z (k € [1,5]) is possibly
WS-optimal in {L(z) : x € X'}. We say that a vector z is Lorenz if there
exists a vector z such that z = L(z). Given a Lorenz vector z, we denote
by L71(z) any vector x such that L(z) = z. For such a vector x, we have
TGy = z; — 21 for all i = 1,...,5, where 2o = 0. An alternative z of the
instance is generated as follows: we first generate a point y in the polyhedron
defined by the following linear constraints:

Yit1 = Yi Vi € [0,4] (1)
(i + 1)y — 2y > %y, — (i — )%y, Vi€ [1,4] (2)

Z?=1 i2yi = Z?=1 i? (3)
Yo =0

(P)

The set £ = {(i®yi)icp,5] : ¥ € P} contains vectors that are all Lorenz
thanks to constraints (1) and (2). Furthermore, they belong to the same
hyperplane due to constraint (3), and therefore they are all possibly WS-
optimal. Consequently, all the alternatives in the set {L~1(z) : 2 € L} are
possibly OWA-optimal. As above, to make them all possibly unique OWA-
optimal, the square root function is applied on each component of vectors
z in L. The obtained set is L' = {(i\/¥i)ie[1,5) : ¥ € P}. All the vectors
in X = {L7Y(2) : 2 € L'} are possibly unique OWA-optimal. Finally, to
generate an alternative x in X’, we randomly draw a convex combination
y=> a;90 of vertices §',...,§™ of P. The obtained alternative is then
defined by & = L™ ((i\/i)ieq1,5])- The set of performance vectors obtained
is illustrated on the right of Fig.4 in the bicriteria case.
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Finally, for both types of instances, a hidden vector w is generated to simulate
the preferences of the DM.

0.8

06 .

04 . .

02 .

0.0 0.00
0.0 0.2 04 0.6 0.8 10 0.00 0.25 0.50 0.75 100 125 150 175 2.00

Fig. 4. Example of WS (left) and OWA (right) instances with n =20 and p = 2

Simulation of the Interactions with the DM. To simulate the DM’s answer
to query i, we represent the intensity of preference between alternatives z(* and
y® by the variable v = f, () — f,(y) + e® where €@ ~ N(0,0?) is
a Gaussian noise modelling the possible DM’s error, with ¢ determining how
wrong the DM can be. The DM states that (9 = 4 if and only if u(® > 0.

Analysis of the Results. We evaluated the efficiency of Algorithm 1 in terms
of the actual rank of the recommended alternative. We considered different values
for ¢ in order to test the tolerance to possible errors. More precisely, o = 0 gives
an error free model while o € {0.1,0.2,0.3} models different rates of errors in the
answers to queries. In the considered instances, these values led to, respectively,
3.6%, 10% and 22% of wrong answers for WS and to 3.2%, 16% and 25% of wrong
answers for OWA. We set 6 = 0.8, which corresponds to a prior assumption of an
error rate of 20%. Thus, the value of § we used in the experiments is uncorrelated
to the ones of 0. The computation time between two queries is less than 1s in
all cases. Results are averaged over 40 instances.

We first observed the evolution of the actual rank of the MMER alternative
over queries (actual rank according to a hidden weighting vector representing the
DM’s preferences). Figure 5 (resp. Fig. 6) shows the curves obtained for WS (resp.
OWA). We observe that the mean rank drops below 2 (out of 100 alternatives)
after about 14 queries for WS with o < 0.3, while the same happens for OWA
whatever value of 0. We see that, in practice, the efficiency of the approach can
be significantly impacted only when the error rate becomes greater than 20%.

We next compared the performance of Algorithm 1 with a deterministic app-
roach described in [4], that consists in reducing the parameter space after each
query (assuming that all answers are correct). The results are illustrated by the
boxplots in Fig.7 for WS, and in Fig.8 for OWA. We can see that our proba-
bilistic approach is more tolerant to errors than the deterministic approach. As
the value of o increases, the deterministic approach makes less and less rele-
vant recommendations. The deterministic approach indeed recommends, in the



Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra 105

\ —-- 0=0
—-=- 0=0.1
soy Y T b 5 20
3 4 -=- 0=03 2
@ R @
« 84 Nu i
2 Yo g®
= AN =
2 AN 2
- AN 10
5] R T )
2 N == s 2
g 4 N Mee e
= N 7T ~~ S 5
© = ~—— ©
s S s
2 NETUN e,
N ————— 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Number of queries Number of queries
Fig. 5. Mean rank vs. queries (WS) Fig. 6. Mean rank vs. queries (OWA)
100 4 [ Deterministic 100 1 3 Deterministic >
[ Bayesian 8 Bayesian
o
5 801 5 80 °
5 5
©° o o °
@ @
5 60 ° E 60
= =
= =
1 o o
£ 40 S 40 °
5 5 °
x 8 X
H o 5
8 20 g 8 20 ° 8
Y 4 P Ds O
J.d 33 Ld J & 1d HE O
o=0 0=0.1 0=0.2 0=0.3 o=0 0=0.1 0=0.2 0=0.3
Variance of the Gaussian noise Variance of the Gaussian noise
Fig. 7. Rank vs. error rate (WS) Fig. 8. Rank vs. error rate (OWA)

worst case, alternatives that are ranked around 90 while it is less than 40 for
Algorithm 1. More precisely, when ¢ = 0.3 (for both WS and OWA), in more
than 75% of instances, Algorithm 1 recommends an alternative with a better
rank than the mean rank obtained in the deterministic case.

5 Conclusion

We introduced in this paper a new model based incremental multicriteria elic-
itation method relying on a partition of the parameter space. The elements of
the partition are the optimality polyhedra of the different alternatives, relatively
to a weighted sum or an ordered weighted average. A probability distribution is
defined over this partition, where each probability represents the likelihood that
the true weighting vector belongs to the polyhedron. The approach is robust
to possible mistakes in the DM’s answers thanks to the incremental revision of
probabilities in a Bayesian setting. We provide numerical tests showing the effi-
ciency of the proposed algorithm in terms of number of queries, as well as the
interest of using such a probabilistic approach compared to a deterministic app-
roach. A short term research direction is to investigate if it is possible to further
speed up the Bayesian updating by using outer Lowner-John ellipsoids instead



106 N. Bourdache et al.

of Chebyshev balls. The answer is not straightforward because, on the one hand,
the use of ellipsoids indeed refines the approximation of the polyhedra, but on
the other hand, this requires the use of matrix calculations to establish whether
or not an ellipsoid is cut by the constraint induced by a preference statement.
Another natural research direction is to extend our approach to more sophisti-
cated aggregation functions admitting a linear representation, such as Weighted
OWAs and other Choquet integrals, to improve our descriptive possibilities.
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Abstract. Association Rule Mining (ARM) in the context of imper-
fect data (e.g. imprecise data) has received little attention so far despite
the prevalence of such data in a wide range of real-world applications.
In this work, we present an ARM approach that can be used to han-
dle imprecise data and derive imprecise rules. Based on evidence theory
and Multiple Criteria Decision Analysis, the proposed approach relies
on a selection procedure for identifying the most relevant rules while
considering information characterizing their interestingness. The several
measures of interestingness defined for comparing the rules as well as the
selection procedure are presented. We also show how a priori knowledge
about attribute values defined into domain taxonomies can be used to
(i) ease the mining process, and to (ii) help identifying relevant rules
for a domain of interest. Our approach is illustrated using a concrete
simplified case study related to humanitarian projects analysis.

Keywords: Association rules - Imperfect data - Evidence theory -
Multiple Criteria Decision Analysis (MCDA)

1 Introduction

Association rule mining (ARM) is a well-known data mining technique designed
to extract interesting patterns in databases. It has been introduced in the context
of market basket analysis [1], and has received a lot of attention since then [15].
An association rule is usually formally defined as an implication between an
antecedent and a consequent, being conjunctions of attributes in a database, e.g.
“People who have age-group between 20 and 30 and a monthly income greater
than $2k are likely to buy product X”. Such rules are interesting for extracting
simple intelligible knowledge from a database; they can also further be used
in several applications, e.g. recommendation, customer or patient analysis. A
large literature is dedicated to the study of ARM, and numerous algorithms
have been defined for efficiently extracting rules handling a large range of data
© Springer Nature Switzerland AG 2019
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types, e.g., nominal, ordinal, quantitative, sequential [15]. Nevertheless, only a
few contributions of the literature study the case of ARM with imperfect data,
e.g. [13,24], even if such data is central in numerous real-world applications.

In order to extend the body of work related to ARM with imperfect data, and
to answer some of the limitations of existing contributions, this paper presents
a novel ARM approach that can be used to handle imprecise data and derive
imprecise rules. In this study, to simplify, the proposed approach focuses on a
specific case where the antecedent and the consequent are composed of prede-
fined disjoint sets of attributes forming a partition of the whole set of attributes.
This particular case is relevant, for example in classification tasks in which the
label value to predict can be defined as consequent of the rules of interest. To
sum up, our goal is threefold: (i) to enrich the expressivity of existing proposed
frameworks, (ii) to complement them with a richer procedure for selecting rele-
vant rules, and (iii) to present simple way to incorporate domain knowledge to
ease the mining process, and to help identifying relevant rules for a domain of
interest. Based on the evidence theory framework and Multiple Criteria Decision
Analysis, a selection procedure for identifying the most relevant rules while con-
sidering information characterizing their interestingness is proposed. The several
measures of interestingness defined for comparing the rules, as well as the selec-
tion procedure, are presented. We also show how a priori knowledge in the form
of taxonomies about consequent and antecedent (i.e. attribute values) can be
used to focus on rules of interest for a domain. We also present an illustration
using a simplified case study related to humanitarian projects analysis.

The paper is structured as follows: Sect.2 formally introduces traditional
ARM, the theoretical notions on which our approach is based, and formally
defines the problem we are considering. It also introduces related work focus-
ing on rule selection and ARM with imperfect data. The proposed approach is
detailed in Sect. 3, and Sect. 4 presents the illustration. Finally, perspectives and
concluding remarks are provided in Sect. 5.

2 Theoretical Background and Related Work

This section briefly presents some of the theoretical notions required to introduce
our work. We next provide the problem statement of ARM with imperfect data,
and our positioning w.r.t. existing contributions.

2.1 Theoretical Background

Association Rule Mining (ARM): In classical ARM [1], a database D =
{d1,...,dm} to be mined consists of m observations of a set of n attributes. The
set of attribute indices is denoted by N = {1,...,n}. Each attribute ¢ takes its
values in a discrete -boolean, nominal or numerical- finite scale denoted ©;. An
association rule r denoted r : X — Y links an antecedent X with a consequent

Y where X € [[©;, I CNandY € [[ ©;, JC N\ I
iel jeJ
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The main challenge in ARM is to extract interesting rules from a large search
space, e.g., n and m are large. In this context, defining the interestingness of a
rule is central.

Interestingness of Rules. Numerous works have studied notions related to
the interestingness of a rule, [16,22,23]. No formal and widely accepted defini-
tion arose from those works, and discussing the numerous existing formulations
is out of the scope of this paper. However, interestingness is generally regarded
as a general concept covering several features of interest for a rule, e.g. reliabil-
ity (how reliable is the rule?) and conciseness (is the rule complex?, i.e. based
on numerous attribute-value pairs). Other aspects of a rule are also considered,
e.g. peculiarity, surprisingness, or actionability, to name a few - the reader can
refer to [12] for details. The literature also distinguishes objective and subjective
measures, the latter being defined based on domain-dependent considerations.
The two main (objective) measures used in the literature are Support and Confi-
dence [2]. The support of arule r : X — Y denoted supp(X — Y) is traditionally
defined as the proportion of the realization of X and Y in D, and the confidence
denoted conf(X — Y) is defined as the proportion of the realization of Y when
X is observed in D. Given support and confidence thresholds, ARM usually aims
at identifying rules exceeding those thresholds [2]. In classical ARM, support
and confidence are quantified using probability theory framework. When ARM
involves imperfect data, this quantification requires reformulating the problem
in a theoretical framework suited for handling data imperfection. In this work,
we focus on contributions based on evidence theory.

Evidence Theory has been introduced to represent imprecision and uncer-
tainty [21]. We briefly introduce its main concepts. Let © be a finite set of
elements being the most precise available information, referred to as the frame
of discernment. A mass function m : 2 — [0,1] is a set function such that

> m(A) = 1. The quantity m(A), A C O is interpreted as the portion of
ACO

belief that is exactly committed to A and to nothing smaller. The subsets of ©
having a strictly positive mass are called focal elements, their set is denoted F.
The total belief committed to any A C © is measured by the belief function:

Bel : 2° — [0,1] with Bel(A) = >>  m(B). In evidence theory, Bel(A),
BCO,BCA
where A denotes the complement of A in ©, is characterized through the notion
of plausibility: Pl : 2° — [0, 1], with PI(A) =1 — Bel(A) = > m(B).
BCO,BNA#£D

In order to provide a complete generalization of the probability framework,
conditioning has also been defined in evidence theory. Several expressions have
been proposed, none of them leading to a full consensus [7,10]. In this paper,
we will adopt the definition corresponding to the conditioning process stated
by Fagin et al. [10], a natural extension of the Bayesian conditioning. We do
not consider the definition proposed in Dempster [7] based on Dempster-Shafer
combination rule, where a new information is interpreted as a modification of
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the initial belief function and used in a revision process [9]. Thus, for A, B C O,
such that Bel(A) > 0, we will further consider:

Bel(AN B)
Bel(ANB) + PI(ANB)’

PI(AN B)
PI(ANB) + Bel(AN B)

Bel(B|A) = PI(B|A) =

2.2 Problem Statement and Related Work

Problem Statement. In classical ARM, where only precise information is
considered, e.g., the value of attribute ¢ is X; € ©;, ¢ € N. In this paper,
we consider observations as “the value of attribute 7 is in A; C ©;”. The case
A; C ©; with |4;] > 1 corresponds to imprecision, while A; = ©; is considered
when information is missing, i.e. it corresponds to the ignorance about the value
of attribute 7. In this setting, a rule r is defined as:

r:A— B where A= [] Ai,A; CO; and B= [] B;,B; C O,
iel jes
forallI C N and JC N\ I

As mentioned previously, in this paper we consider the case where antecedent A
concerns only a subset I C IV of attributes and consequent B concerns a subset
I, C N where I; and I, form partition of N, and I; # (). Thus:

r: A— B where A:HAi,AiQQi and B:HBj,ng@j (1)
ieh jEI

We denote by R the set of rules defined by Formula (1). The problem addressed
here is to reduce R by selecting only the relevant rules.

Related Work and Positioning. As stated in the introduction, our goal is
threefold: (i) to enrich the expressivity of existing proposed frameworks dedicated
to ARM with imperfect data, (ii) to complement them with a richer procedure
for selecting relevant rules (rule pruning), and (iii) to present a simple way to
incorporate domain knowledge to ease the mining process, and to help identifying
relevant rules for a domain of interest.!

Rule Pruning. Most of the approaches use thresholds to select rules - only using
support and confidence most often allows drastically reducing the number of
rules in traditional ARM [1]. A post-mining step is generally performed to rank
the remaining rules according to one specific interestingness measure -the mea-
sure used is generally selected according to the application domain and context-
specific measure properties [23,27]. Nevertheless, processing this way does not

! Note that the simplification of the mining process here refers to a reduction of com-
plexity in terms of the number of rules analysed, i.e. search space size. Algorithmic
contributions and therefore complexity analyses regarding efficient implementations
of the proposed approach are left for future work.
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enable selecting rules when conflicting interestingness measures are used, e.g.
maximizing both support and specificity of rules. This is the purpose of MCDA
methods. Some works propose to take advantage of MCDA methods [3-6,17]
in the context of ARM. Those works can be divided into two categories: (1)
those incorporating the end-user’s preferences using Analytic Hierarchy Process
(AHP) and Electre II [6], or using Electre tri [3]; and (2) those that do not incor-
porate such information and use Data Envelopment Analysis (DEA) [5,26], or
Choquet integral [17]. Our approach is hybrid and falls within the two categories.
First, selection is made based only on database information as in Bouker et al.
[4]. Second, if the set of selected rules is large, a trade-off based on end-user’s
preferences is used within an appropriate MCDA method. As our aim is to select
a subset of interesting rules, Electre I [18] seems to be the most appropriate.

ARM and Imperfect Data. Several frameworks have been studied to deal with
imperfect data in ARM. The assumptions entailed in the approaches based on
probabilistic models do not preserve imprecision and might lead to unreliable
inferences [13]. Uncertainty theories have also been investigated for imperfect
data in ARM using fuzzy logic [14], or using possibility theory [8]. In the case of
missing and incomplete data, evidential theory seems the appropriate setting to
handle ARM problem [13,19,24,25]. Our approach is adopting this setting. In
addition to studying a richer modelling that enables incorporating more infor-
mation, we propose to combine it with a selection process taking advantage of
an MCDA method, namely Electre I, to assess rules interestingness consider-
ing different viewpoints. Although some works previously mentioned tackle rule
selection using MCDA, and few approaches have been addressing ARM problem
using evidence theory, none of them is addressing both issues simultaneously.
We also present how to benefit from a priori knowledge about attribute val-
ues -organised into taxonomies- for improving the rule selection process, and
reducing the increase of complexity induced by the proposed extension of mod-
ellings used so far in existing ARM approaches suited for imperfect data.

3 Proposed Approach

This section presents our ARM approach for imperfect data. We first introduce
how rule interestingness is evaluated by presenting the selected measures and
their formalization in the evidence theory framework. Then, the main steps of
the proposed approach for selecting rules based on these measures are detailed.

3.1 Assessing Rule Interestingness from Imprecise Data

In this study, we focus on important objective measures of interestingness -
subjective ones, involving further interactions with final user, are most often
considered context-dependent and will not be considered in this paper. We pro-
pose to evaluate rules according to (i) their support, (ii) their confidence, as well
as (iil) indirect evaluations used to criticize their potential relevance. In addition,
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since in our context rules are imprecise, and since very imprecise rules are most
often considered useless, the (iv) degree of imprecision embedded in the mined
rules is also evaluated. These four notions of interest considered in the study are
defined below. For convenience, we consider that we are computing measures to
evaluate a rule r : A — B where A= [] A4;,,A;, CO;, and B= ][] B;,B; CO;

i€l VISP
with Iy U I = N. In our context, since we consider n = |N| attributes, the
set functions mass m, belief Bel and plausibility Pl are defined on subsets of
e=1] 6.
ieN

Support. A rule is said to be supported if observations of its realization are
frequent [2]. In our context, the support of a rule relates to the masses of evidence
associated to observations supporting the rule, either explicitly or implicitly. The
belief function is thus used to express support:

supp(r : A — B) = Bel(A x B) (2)

Note that the belief function is monotone, then, the rules composed of the
most imprecise attribute values will necessarily be the most supported.

Confidence. A rule is said to be reliable if the relationship described by the rule
is verified in a sufficiently great number of applicable cases [12]. The Confidence
measure is traditionally evaluated as a conditional probability [1]. Its natural
counterpart in evidence theory is given by the conditional belief, leading to the
following expression:

Bel(A x B)
Bel(A x B) + PI(A x B)

conf(r:A— B)=DBel(B|A) = (3)
The elements defining the consequent are conditioned to the elements composing
the antecedent. Note that the belief and conditional belief functions have also
been adopted to express support and confidence for ARM with imprecise data
[13,24]. In those cases the modelling and domain definition were different, i.e.
restricted to the cartesian products of the power-sets of attribute domains.

Indirect Measures of Potential Relevance. These measures will be intro-
duced through an illustration. Consider humanitarian projects described by
two attributes: the transport means with ©1 = {truck, motorbike, helicopter},
and the final coverage reached in the project (proportion of beneficiaries), with
O, = {low, moderate, high}. To criticize the relevance of a rule r : A — B, e.g.
r: {truck} — {high}, we propose to evaluate the following relations:

— A — B. In the example, if the rule {truck} — {high} holds, it means that
most often using trucks also leads to a coverage that is not high. Hence we
consider that validating A — B conveys a contradictory information w.r.t. to
the rule A — B and tends to invalidate it.
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— A — B. If the rule {truck} — {high} holds, it means that in some cases,
some of the other means of transport also allow to reach a high coverage.
Such an information tends to decrease the interest of the rule r : A — B if
we assume that B is not explained by multiple causes.

— A — B. The rule {truck} — {high} means that when trucks are not used,
a low or moderate coverage (not high) is obtained. We assume that most
commonly, if {truck} — {high} is somehow assumed to be considered as
valid, supporting {¢truck} — {high} will reinforce our interest over {truck} —

{high}.

In a probabilistic framework, only the relationship A — B would have to
be studied, since the other ones do not provide additional information, i.e.
P(B|A) = 1 - P(B|A), P(B|A) = 1 — P(B|A), P(A x B) = P(A)P(B|A)
and P(A x B) = (1 — P(A))P(B|A). Thus, the potential relevance of a rule
takes into consideration the confidence of the rule composed of the complements
of the antecedent and the consequent, given by: P(B|A). Note that, in the liter-
ature, this measure is also referred to as specificity. When considering evidence
theory, the information about the complement is provided by the plausibility
function, such as Bel(A) = 1 — PI(A) and then Bel(B|A) = 1— PI(B|A). In this
context, Table1 introduces the relationships between the confidence of a rule
(conditional belief) and the ones involving the complement of its antecedent
and/or consequent.

Note that to criticize the relevance of a rule using the three rules involving
its complements, we propose to consider their respective support and confidence:
criticizing a rule on the basis of weakly supported rules would not be appropriate.

Table 1. Relationships between support and confidence of a rule r : A — B and rules
involving its complements.

Rule Support Confidence Depends on quantities

A — B | Bel(Ax B)|Bel(B| A) Bel(A x B) and PI(A x B)
A— B | Bel(Ax B) | Bel(B|A)=1— PI(B| A)| Bel(A x B) and PI(A x B)
A — B|Bel(Ax B) | Bel(B| A)=1— PIl(B | A) | Bel(A x B) and PI(A x B)
A — B| Bel(Ax B)| Bel(B| A) Bel(A x B) and PI(A x B)

Specificity Using Information Content. Finally, we propose to incorporate
the specificity of a rule. Let’s consider the information “the value of attribute
i is in the subset A;”. This information is more specific than the information
“the value of attribute 7 is in the subset A;” where A; C Aj. Based on the
notion of Information Content (IC) defined for comparing concept specificities
in ontologies [20], we propose to quantify the specificity of a rule r by:

IC’(r:A—>B):1—IOgl{X:)f@'gAXB}' ()

| X| denotes the number of elements in the set X and © = [] 6;.
ieN
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3.2 Search Space Reduction

Let us remind the starting set R -see Formula (1)- of rules from which a small
subset R* of interesting rules should be selected:

i€l JEI2

We assume that I; and I are fixed before starting the ARM process.

To simplify notations in the rest of the paper, we will denote by r4 g the
rule 7 : A — B where A and B are as in the Formula (1). Two restrictions are
proposed below:

1. All rules being supported are generalizations (supersets) of focal elements F,
ie. F={X:X CO,m(X) > 0}. Since support is a prerequisite for assessing
rule validity, we further consider that the evaluation will be restricted to the
set:

RTZ{T‘A7B€R|E|XE]:S'E.XQAXB}

2. The search space can also be reduced using prior knowledge defined into
ontologies expressing taxonomies of attribute values. Since the ontology
defines the concepts of interest for a domain, a restriction can be performed
only considering the attribute values defined into taxonomies. Thus, for each
i € N, only a subset O; of 29 of the information of interest for a domain is
considered. We can then define the following restriction:

Rep={rap Ry |[A= ][] A, A€ 0:, B=]] B, B; € 0;}
i€l Jj€l2

Table 2. Summary of interestingness measures considered in the selection process

k € K | Measures Formulae Vr € R+ r: A — B | Variation | Weight
1 Rule Support supp(r) = Bel(A x B) Maximize | w1
2 Rule Confidence | conf(r) = Bel(B|A) Maximize | ws
3 Rule Specificity | IC(r) Maximize | w3
4 A—B Bel(A x B) Minimize | w4
5 Bel(B|A) Minimize | ws
6 A—B Bel(A x B) Minimize | we
7 Bel(B|A) Minimize | wr
8 A—B Bel(A x B) Maximize | ws
9 Bel(B|A) Maximize | wy




Selecting Relevant Association Rules From Imperfect Data 115

3.3 Rules Selection Process

The proposed approach aims at selecting the most relevant rules R* according to
their evaluations on a set of interestingness measures listed in Table 2. We here
consider that the evaluated rules are members of the restriction R, ; C R, even
if that condition could further be relaxed. We denote the set of interestingness
measures by K (|K| =9), and gx(r) the score of rule r for the measure k € K.
To simplify notations, we consider that g (r) is to maximize® for all k € K. A
two-step pruning strategy is proposed.

Step 1: Dominance-Based Pruning. A reduction of the concurrent rules
in R, is carried out by focusing on non-dominated rules on the basis of the
considered measures. A rule r; dominates a rule ro, we write ro < rq, iff 71 is
at least equal to ro on all measures and it exists a measure where 7 is strictly
superior to ro. More formally,

ro <711 iff gg(re) < gr(r1),Vk € K and 3j € K such that g;(r2) < g;(r1).
The reduced set of rules can be stated as:

Reta={r€Rus | I €Rrp:r <1}

Step 2: Pruning Using Electre I. When R,.; 4 remains too large to be man-
ually analyzed, a subjective pruning procedure based on the selection procedure
Electre I is applied. This MCDA method enables expressing subjectivity through
parameters that can be given by decision makers [18]. We use it for finding the
final set of rules R* C R, ;4. Electre I builds an outranking relation between
pairs of rules allowing to select a subset of the best rules: R*. This subset is such
that (i) any rules excluded from R, . q is outranked by at least one rule from
R*, (ii) rules from R* do not outrank each other. To do so, Electre I procedure
(a) constructs outranking relationships through pairwise comparisons of rules,
to further (b) exploit those relationships to build R*.

(a) Outranking relations: the relationship “r outranks r'” (rSr’') means that
r is at least as good as r’ on the set of measures K. The outranking assertion
rSr’ holds if: (i) a sufficient coalition of measures supports it, and (ii) none of
the measures is too strongly opposed to it. These conditions are respectively
referred to as concordance ¢(rSr’) and discordance indices d(rSr’), such that:
c(rSr') = > wy and d(rSr’) = max [9x (") — gk (r)],
{k:gr(r)>gu(r)} {k: g (r)<gr(r)}
with wy the relative importance of measure k. R
From these notations, we consider rSr’ if ¢(rSr’) > ¢ and d(rSr') < d; with ¢

and c/i\, two thresholds defining when the outranking should be considered or not.

2 Indeed all the measures used in our approach take values in the interval [0,1], then
a measure k to minimize can be changed to a measure to maximize by considering
1 — gx(r) instead of gi(r).
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(b) Relations exploitation: a graph of outranking relationships is obtained
from these pairwise comparisons. The kernel of this graph is our final reduced
set of rules R* to be considered, such that:

—Vr' € Ryt a \R*,Ir € R* : 1St and
—VY(r,r') € R* x R*,~(rSr"). (5)

The set of model parameters that have to be defined for applying the subjective
reduction based on Electre I are: weights wy, Vk € K, and the concordance and
discordance thresholds, ¢, d.> The choice of parameter values will be further
discussed in the illustration Sect. 4.

4 Illustration

As an illustration, we consider the context of humanitarian projects carried out
for answering to emergency situations. A dataset of observations describes these
emergency situations according to four attributes: (1) the type of disaster faced,
(2) the season, (3) the environment in which it occurred, and (4) an evaluation
of the situation w.r.t. the human cost. We further refer to these attributes using

Table 3. Database of observations expressed using precise, imprecise or missing values.

Disaster type Season Environment |Human cost
d1 | {earthquake} {autumn} {rural} {medium}
do | {tsunami} {autumn} {urban} {medium}
ds | {epidemic} - {urban} {veryHigh}
dy | {earthquake, epidemic, tsunamsi} | {spring} - {high,veryHigh}
ds | {epidemic} {spring} {urban} {high}
dg | {epidemic} {spring, summer} |- {high,veryHigh}
d7 | {epidemic} {spring, summer} | {urban} {high,veryHigh}
dg | {epidemic} {spring, summer} | {urban} {veryHigh}
dg |{earthquake, epidemic, tsunami} | {summer} {rural} {high}
dio | {epidemic} {summer} {urban} {high}
dy1 | {epidemic} {summer} {urban} {veryHigh}
di2 | {earthquake} {winter} {rural} {high, medium,veryHigh}
di3 | {earthquake} {winter} {rural} {low}
d14 | {earthquake, epidemic, tsunami} | {winter} {rural} {high}

3 Evaluating support and confidence of A — B and A — B can lead to undefined
values, e.g. evaluating A — B, we have Bel(A x B) = 0 when A has never been
observed, leading to Bel(B|A) being undefined. However, pruning using dominance
and Electre I requires the same measures to be defined. Undefined values are thus
substituted by an arbitrary value that neither favor nor penalize the evaluation of
the rule A — B. The median of Bel(A x B) (resp. Bel(A x B)) has been chosen.
Note that A — B is not concerned since evaluating A — B implies evidence on A.



Selecting Relevant Association Rules From Imperfect Data 117

their number, considering that they respectively take discrete values in: @1 =
{tsunami, earthquake, epidemic, conflict, pop.displacement}, Oy = {spring, sum-
mer, autumn, winter}, O3 = {urban, rural}, ©4 = {low, medium, high, very-
High}. Besides, for each attribute, prior knowledge is defined into ontologies
determining the values of interest. In this specific case study, the purpose of
association rules is to highlight the influence of a situation contextual features
on its evaluation according to the Human Cost, a useful information for project
planning. Thus the searched rules r : A — B will imply the attributes in the
following set I; = {1,2,3} in the antecedent and in I = {4} for the consequent.

Table 4. Set of non-dominated rules, R, ¢ 4.

Disaster Type Season Environment Human cost
ro: {earthquake} A {autumn} A {rural} — {medium}
r1 : {earthquake, tsunami} A {autumn} A O3 — {medium}
rg : {tsunami} A {autumn} A {urban} — {medium}
rg3 i {earthquake, epidemic, tsunami} A Oy NCE — Oy
rq: {earthquake, epidemic, tsunami} A Oo A O3 — {high, medium, veryHigh}
r5 : {earthquake, epidemic, tsunami} N\ Og N O3 — {high,veryHigh}
rg : {epidemic} A Oy NCH — {high, veryHigh}
r7 : {epidemic} N Og A {urban} — {veryHigh}
rg : {earthquake} A {autumn, winter} A {rural} — {medium}

rg :

{earthquake, tsunami}

A {autumn, winter} A Og

— {low, medium}

710

: {earthquake, tsunami}

A {autumn, winter} A O3

— {medium}

T11

: {earthquake, epidemic, tsunami} A {spring, summer} A O3

— {high, veryHigh}

712

: {epidemic}

A {spring, summer} A O3

— {high, veryHigh}

713

: {epidemic}

A {spring, summer} A {urban}

— {high,veryHigh}

T14

{epidemic}

A {spring, summer} A {urban}

— {veryHigh}

ri5 i {epidemic} A {summer} A {urban} — {high, veryHigh}

r16 : {epidemic} A {summer} A {urban} — {veryHigh}

ri7 : {earthquake} A {winter} A {rural} — {low}

Among the observations of 14 projects given in Table 3, some attribute values
are expressed with imprecision, e.g. Human cost values may be unclear such
that “human Cost is High or VeryHigh”. When values are missing the total
ignorance is considered. In this setting, the size of the initial studied space R

4
is ] 219\l — 20925. Using the restrictions focusing on rules with non-null

i=1
support, and involving attribute values of interest defined into ontologies (cf.
Sect. 3), we obtain a reduced search space R, composed of 484 rules.

The rule evaluation and selection process is further applied to R, ; using the
9 interestingness measures proposed in Table 2. Using dominance-based pruning
(Step 1/2), a set of 18 non-dominated rules R, ;4 is identified among the 484
rules initially considered. These rules are listed in Table 4, and indexed from r(
to r17. Pruning using Electre I is then applied over the set of non-dominated
rules R, q (Step 2/2). Different sets of selected rules -i.e. R*- are given in
Table 5 for different sets of model parameters. The results being sensitive to
parameter values, we propose to discuss different parameter settings. We remind
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that these parameters are: Vk € K, wy the weights of interestingness measures,
and ¢ and d the concordance and discordance thresholds. They represent end-
user’s preferences. They can be given directly; the weights wy, can also be elicited
using Simos, a well-known weighting procedure [11].

Table 5. Final sets of rules (R*) obtained with Electre I pruning using four parameter
settings (a to e).

Different sets of parameters, with ¢ = 0.7

wy w2 w3 |w4 w5 |we Wy |Ws wg d |R*

0.27 0.15 0.1 |0.08 0.08|0.08 0.08/0.08 0.08 [0.3|{r1,r3,7r6,79,711}

0.18 0.18 0.18/0.1 0.1 [0.1 0.1 [0.03 0.03 (0.3 {r1,r3, 76}
0.2|{ro,r1,72,73, 76,713, T16, 717}
0.12 0.2 0.2 |0.08 0.080.08 0.08/0.08 0.08 |0.3 {r1,r3, 76}

0.2 {70, 71,72,73, 76,713, T16, 17}
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Among the considered interestingness measures, according to the literature,
we assume that support, confidence and IC are the most significant ones w.r.t.
rule interest. They have to be associated to the most important weights. Con-
versely, we assume that the other measures -about rule complements- are sec-
ondary and will provide additional information for comparing and criticizing the
relevance of rules. In the first set of parameters (a) (cf. Table 5), the weight given
to support and confidence is maximized to represent 60% of the votes required
for the outranking (to exceed ¢ = 0.7). This setting will tend to favor the rules
having a high degree of imprecision, being well supported and then reliable, since
Bel(B|A) > Bel(A x B). For example, in this setting the rules r3, r¢, 11, see
Tables4 and 5, are among the selected rules in R*; e.g. with r3 involving the
total imprecision on three attributes.

When restricting d to 0.2 with the parameter settings (b), (¢), (d), it increases
the size of the kernel, while still discarding more than half of the rules among the
set of non-dominated ones. With parameters (d) and d = 0.3, highest importance
is given to confidence and IC, providing these 2 measures with 71% of the voting
power to reach the outranking condition ¢ = 0.7. Thus, a rule with a better score
on confidence, IC' and on some of the other measures -except support- can be
selected while having a low support. This is illustrated with the selection of ry7
for example. Lastly, the parameter setting (e) is equivalent to considering only
the three main measures with equal importance. Here, it enables to discard only
4 extra rules in comparison to dominance relationships. This is explained by the
fact that the absence of dominance between rules is more frequent.

Finally, the parameter settings (b), (¢) or (d) with d = 0.2, favoring the
support, confidence and IC over the other measures tend to provide interesting
results. This setting enables the selection of both precise and imprecise rules of
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interest w.r.t. the initial set of observations, such as r1g and ri3. In the initial
dataset -see Table 3- the imprecise information {spring, summer} for the sea-
son or {high,veryHigh} for the Human Cost are frequently observed. Indeed,
selecting the imprecise rule 713 : {epidemic} A {spring, summer} A {urban} —
{high,veryHigh} in R* is not surprising. As an interpretation of this rule,
we say that the analysis of the database tends to relate the occurrence of epi-
demics in urban areas to a specific season, spring or summer, and human cost.
In particular, the rule seems valid at least for one the conjunction “summer and
high human cost”, “summer and a very High human cost”, “spring and high”
or “spring and veryHigh”. In this illustration, different sets of parameters and
their results on rule selection have been presented. However, these parameters
have to be set by the end-user.

To further discuss these results, it is interesting to note that all the selected
measures for rules comparison, except the IC, are based on observations fre-
quency. In order to counterbalance the preponderance of this factor, it might
be relevant to add subjective measures and not only data-driven ones. Subjec-
tive interestingness measures have been studied in the literature. Relying on
these works, we could include here measures based for example on user expected
rules or expected conjunction of attribute values. Furthermore, investigating the
dependencies among frequency based measures, and considering them in the
selection process will be valuable. Nevertheless, considering additional measures
(especially data-driven), as the ones proposed for classical ARM, is not neces-
sarily straightforward within the evidence theory framework. It indeed implies
to define their right expression and meaning in this framework.

5 Conclusion and Perspectives

Mining association rules from imperfect data is a key challenge for real-world
applications dealing with imperfect data, e.g., imprecise, missing data, etc. The
ARM approach introduced in this paper enables to deal with imprecise data and
derive imprecise rules under specific conditions (e.g. fixing both antecedent and
consequent). Relying on evidence theory and Multiple Criteria Decision Anal-
ysis, this new framework enriches expressivity of existing works while provid-
ing a novel selection procedure for identifying most interesting rules according
to several viewpoints. To this aim, several interestingness measures have been
proposed, and used in a two-step selection procedure based on dominance rela-
tionships and Electre I. A restriction using a priori knowledge has also been
proposed to focus and ease the mining process by incorporating symbolic knowl-
edge defined into domain ontologies. To further improve the approach, additional
measures of interestingness could be added. Future work related to subjective
measures (e.g., user-oriented) would be particularly relevant to enrich the set of
frequency-based measures that are currently involved in the approach. Studying
the interactions between the measures would also be of interest. Finally, only
an illustration using a simplified case study related to humanitarian projects
analysis has been presented in this paper. Thorough algorithmic complexity and
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performance evaluations of the approach have to be discussed. Difficult chal-
lenges related to algorithmic complexity and efficiency issues of the procedure
also have to be addressed in order to mine rules involving numerous attributes.
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Abstract. Besides ecological issues, the recycling of plastics involves
economic incentives that encourage industrial firms to invest in the field.
Some of them have focused on the waste sorting phase by designing
optical devices able to discriminate on-line between plastic categories.
To achieve both ecological and economic objectives, sorting errors must
be minimized to avoid serious recycling problems and significant qual-
ity degradation of the final recycled product. Even with the most recent
acquisition technologies based on spectral imaging, plastic recognition
remains a tough task due to the presence of imprecision and uncertainty,
e.g. variability in measurement due to atmospheric disturbances, age-
ing of plastics, black or dark-coloured materials etc. The enhancement
of recent sorting techniques based on classification algorithms has led
to quite good performance results, however the remaining errors have
serious consequences for such applications. In this article, we propose
an imprecise classification algorithm to minimize the sorting errors of
standard classifiers when dealing with incomplete data, by both integrat-
ing the processing of classification doubt and hesitation in the decision
process and improving the classification performances. To this end, we
propose a relabelling procedure that enables better representation of the
imprecision of the learning data, and we introduce the belief functions
framework to represent the posterior probability provided by a classifier.
Finally, the performances of our approach compared to existing imprecise
classifiers is illustrated on the sorting problem of four plastic categories
from mid-wavelength infra-red spectra acquired in an industrial context.

Keywords: Machine learning - Imprecise classification - Reliable
classification - Belief functions - Plastic separation

1 Introduction

Plastic recycling is a promising alternative to landfills for dealing with the
fastest growing waste stream in the world [8]. However, for physiochemical rea-
sons related to non-miscibility between plastics, most plastics must be recycled

© Springer Nature Switzerland AG 2019
N. Ben Amor et al. (Eds.): SUM 2019, LNAI 11940, pp. 122-135, 2019.
https://doi.org/10.1007/978-3-030-35514-2_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35514-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-35514-2_10

Evidential Classification of Incomplete Data 123

separately. Plastic category identification is therefore a major challenge in the
recycling process. With the emergence of hyperspectral imaging, some indus-
trial firms have designed sorting devices able to discriminate between several
categories of plastics based on their absorption or transmittance spectra. The
sorting process is generally performed using supervised classification, which has
been well developed with the emergence of computer sciences and data science
[18,22,38]. The classification performance might be affected by several issues
such as noise or overlapping regions in the feature space [21,34]. The latter
problem occurs when samples from different classes share very similar char-
acteristics. We are particularly faced with these problems when attempting to
classify industrially acquired spectra. Indeed, in an industrial context, the acqui-
sition process is subject to technical and financial constraints to ensure through-
put and financial competitiveness. For this reason one cannot expect the same
quality of data as for equivalent laboratory measures. Several issues imply the
presence of imprecision and uncertainty in the acquired spectra: (i) the avail-
able spectral range might be insufficient; (ii) the plastic categories to be recycled
are chemically close; (iii) atmospheric perturbations may cause noise; (iv) plastic
ageing and plastic additives are known to change spectral information; (v) impu-
rities like dust deposits or remains of tags will also produce spectral noise. As
in solving many other decision-making problems, classification errors may have
serious consequences, e.g., medical diagnosis applications. Regarding plastic sort-
ing, identification errors will cause serious recycling difficulties and significant
degradation of the secondary raw material performances and thus quality degra-
dation of the recycled products. Usually, the problem of plastic identification
is treated using standard classification algorithms that are designed to produce
point predictions, i.e., a single plastic category. In cases of imperfect data, stan-
dard classifiers become confused and inevitably commit errors. This brings us
to consider alternative representations of the information that take into account
imprecision and uncertainty to achieve more accurate classification. Modern the-
ories of uncertainty such as fuzzy subsets [35], possibility theory [14], imprecise
probabilities [33] or belief functions [26,30] offer better representations of the
data-imperfection of information. Several classification algorithms have been
proposed in these frameworks. Most of them are extensions of standard algo-
rithms. We can cite the fuzzy version of the well known k-means algorithm [15],
fuzzy and evidential versions of k-Nearest Neighbour (k-NN) [10,19] or some
fuzzy and evidential revisions of neural network algorithms [4,11].

In this paper we consider the case where the original imperfections come from
data features only. Available training example labels are precise and considered
trustworthy, e.g., based on laboratory measures and expertise. In order to bet-
ter represent all available information, we think that labels should conform with
the feature imprecision. If an object of class #; has its vector of features = in
the overlapping region 6, and 65, then the example should be relabelled by the
set {01,02}. In order to achieve such representation we propose to relabel each
training example in accordance with their discriminatory nature. New labels are
therefore subsets of the original set of classes. This imprecise relabelling would
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better represent the learning data by mapping overlaps in the feature space. The
resulting imprecise label can be naturally treated in the belief functions theory
context. Indeed, belief functions theory [26] is an interesting framework for rep-
resenting imprecise and uncertain data by allowing the allocation of a probability
mass for imprecise data. Thus, imprecision and ignorance is better captured in
this framework compared to the probability framework where equiprobability
and imprecision are confused. The recent growing interest in this theory has
allowed techniques to be developed for resolving a diverse range of problems
such as estimation [12,17], standard classification [10,32], or even hierarchical
classification [1,23].

Our proposed approach, called Evidential CLAssification of incomplete data
via Imprecise Relabelling (ECLAIR), is based on a relabelling procedure of the
training examples that enables better representation of the missing information
about some data features. Then a classifier is trained on the relabelled data
producing a posterior mass function. With imprecise relabelling we try to quan-
tify, using a mass function, the extend to which a subsets of classes is reliable
and relevant as output for a new data. In other words, we look for the set of
classes which any more precise subset output would lead inevitably to an error.
The resulting classification algorithm can enhance the classification accuracy as
well as cope with difficult examples by allowing less precise but more reliable
classification output which will optimize the recycling process.

The remainder of this paper is organized as follows: Sect.2 sets down the
main notations and provides a reminder on supervised classification and elements
of belief functions theory; in Sect.3 we present the proposed approach; Sect. 4
briefly describes the related works; Sect.5 presents results of experimentation
on the sorting problem of four plastics.

2 Theoretical Background

Classification is a technique allowing to assign objects to categories from the
observations of several of their characteristics. A classifier is a function that maps
an object represented by its values of characteristics on a finite set of variables,
to a category represented by a value of a categorical variable. More precisely, let
us consider a set of n categories represented by a set @ = {61,0s,...,0,}, also
refereed as a set of labels or classes. In the framework of belief functions @ is
called a frame of discernment. Each 6;, j € {1,...,n} denotes a singleton which
represents the lowest level of discernible information in ©. Let us denote by
X1,Xa,...,X,, pvariables where the taken values represent the characteristics,
also called attributes or features, of the objects, to be classified. In the rest of
the paper we refer to © as a set of classes and to (X1, X2,...,X,) as a vector
of features where Vi € {1,...,p}, X; refers both to the name of the feature and
to the space of the values taken by the feature, i.e., X; C R. For an object x

P
belonging to X = [ X; C RP, let (x) € O denote the unknown label that
i—1

i=
should be associated to .
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In this article, we focus on a supervised classification problem. The specificity
of the considered data, referred to as incomplete data, is that some features of
some examples are missing due to technological aspects. Therefore, only part of
the data of these examples is obtained. The proposed classification approach,
qualified as imprecise, integrates the incompleteness of the data in its process to
predict subsets of classes comprising the true class when standard counterpart
classifier would have predicted the wrong class. To this aim we diverted standard
probabilistic classifiers from their natural use for computing probability on sets of
classes. Such uncertain resulting information is then captured by belief functions.
The following subsections, briefly recalls the notions discussed.

2.1 Supervised Classification

To determine #(z) in a supervised classification manner, a standard classifier
do : X — O is trained on a set of examples (z;,0;)1<i<n such that for all
1 <i < N, z; belongs to X and 6; to ©. By standard classifier we mean a classi-
fier that assigns to x a single class 6(z) = 6;, j € {1,...,n}. In some cases when
the input data is too voluminous or redundant, it may be appropriate to perform
some extraction features before the training of dg. By reducing the dimension
of X, and thus, working with a reduced feature space X’ C RP with p < p,
the extraction such as Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA) or Independent Component Analysis (ICA) facilitates the
learning and may enhance the classification performance. When feature extrac-
tion is designed taking into account the labels of the training examples it is
termed as supervised feature extraction. For instance LDA also known as Fisher
discriminant analysis reduces the number of features to n—1 by looking for a lin-
ear combination of the variables maximizing the within-groups and minimizing
between-groups variance.

2.2 Probabilistic Classifier and Decision Rule

When dg can also provide for x a posterior probability distribution p(.|z) : © —

[0, 1], it is called a probabilistic classifier. Many classifier algorithms base their deci-

sion only on p(.|z) as follows: 0(z) = arg max p(0,|z). For more sophisticated
7j=1,....,n

decisions, one can use the decision rule technique classically used in decision the-
ory. Let A = {a1,as2,...,a,} be a finite set of actions that can be taken. In the
case of a standard classifier, an action a € A corresponds to assign a class 6 € 6 to
an object x. In such case, we simplify by setting A = ©. In order to compare deci-
sions in A or to compare the classifier g to another decision rule, two functions
are introduced: loss function and risk function. A loss function L : A x © — R is
considered to quantify the loss L(a, #) incurred when choosing the action a € A
while the true state of natureis § € ©. A risk functionrs, : A — Risdefined as the
following expectation: 75, (a) = Ep(.|2)(L(a,0)). In the case of discrete and finite

probability distribution, we have 75, (0;) = > L(0;,0k) p(6i|z), 5 € {1,...,n}.
k=1

Thus, considering the decision rule dg, the class 6; minimizing the risk r5, (6;) over
© should be chosen.
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2.3 Elements of Belief Functions Theory

Due to the additivity constraint inherent to the definition of a probability distri-
bution, one cannot built a probability distribution when measures, observations,
etc. are imprecise. Belief functions theory, as an extension of probability the-
ory, allows masses to be assigned to imprecise data. Two levels are considered
when introducing belief functions: credal and pignistic levels. At the credal level,
beliefs are captured and quantified by belief functions, while at the pignistic level
or decision level, beliefs are quantified using probability distributions.

Credal Level. A mass function, also called basic belief assignment (bba), is
a set function m : 2 — [0,1] satisfying > m(A) = 1. For a set A C O,
ACo

the quantity m(A) is interpreted as a measure of evidence committed exactly
to the set A and not to any more specific subsets of A. The elements A € 2°
such that m(A4) > 0 are called focal elements and they form a set denoted F.
(m,T) is called body of evidence. The total belief committed to A is measured
by the sum of all masses of A’s subsets. This is expressed by the belief function

Bel : 29 — [0,1], Bel(A) = > m(B). Furthermore the plausibility of
BCO,BCA
A, Pl:2° — [0,1], quantifies the maximum amount of support that could be
allocated to A, PI(A) = > m(B).
BCO,BNA£D

Pignistic Level. In the transferable belief model [29], the decision is made in
the pignistic level. The evidential information is transferred into a probabilistic
framework by means of the pignistic probability distribution betP,,, for § € O,

betP,(0) = > m(A)/|A|, where |A| denotes the number of elements in A.
ACO,A30

Decision Rule. The risk associated with a decision rule is adaptable for the
evidential framework [9,13,27]. In the case of imprecise data, the set of actions
A is 29\ {0}. In order to decide between the elements of A according to the
chosen loss function L, it is possible to adopt different strategies. Two strategies
are proposed in the literature: the optimistic strategy by minimizing rs_ or the
pessimistic strategy by minimizing 75, which are defined as follows:

r(A) = Z m(B) géig L(A,0), T(A) = Z m(B) Ieneaé(L(A, 0). (1)
BCO BCO
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3 Problem Statement and Proposed Approach

3.1 Imprecise Supervised Classification

For a new example x, the output of an imprecise classifier is a set of classes,
all its elements are candidates for the true class 6 and the missing information
prevent more precise output. In this case a possible output of the classifier is
the information: “¢ € A”, A C ©. To perform an imprecise classification, two
cases need to be distinguished related to the training examples: (case 1) learn-
ing examples are precisely labelled, i.e., only a single class is assigned to each
example; (case 2) one or more classes are assigned to each training example. In
the first case described in the Subsect. 2.1, standard classifiers give a single class
as prediction to a new object x but some recent classifiers [6,7,36] give a set of
classes as prediction of z. Some of these recent classifiers base their algorithm
on the posterior probability provided by standard classifiers. More precisely, if
we denote by P(.|x) the probability measure associated to the posterior prob-
ability distribution p(.|z), P(4]z) = > p(f|z), A C O is used to determine
0cA

the relevant subset of classes to be assigned to x. In the second case when the
imprecision or doubt is explicitly expressed by the labels, [2,5,37], a classifier
S0 1 X — 29\ {0} is trained on a set of examples (z;, A4;)1<i<n such that for
all 1 <4 < N, x; belongs to X and ) # A; C ©. This case is refereed in our
paper as imprecise supervised classification.

3.2 Problem Statement

Let us consider the supervised classification problem where the available training
examples that are precisely labelled (case 1) (z;,0;)1<i<n, i € X and 0; € O are
such that (i) the labels 6,—;  n are trusted. They may derive from expertise on
other features #;_;  y which contain more complete information than x;—1,..n,
(ii) this loss of information induces overlapping on some examples. In other
words, Ji,5 € {1,..., N} such that the characteristics of x; are very close to
those of x; but 0; # 6;. When a standard classifier is trained on such data, it
will commit inevitable errors. The problem that we handle in this paper is how
to improve the learning step to better consider this type of data and get better
performances and reliable predictions.

3.3 The Imprecise Classification Approach

The proposed approach of imprecise classification is constituted by three steps:
(i) the relabelling step which consists in analysing the training example in
order to add to the class that is initially associated to an example the classes
associated to the other examples having characteristics very close. Thus a new
set of examples is built: (z;, 4;)1<;<n such that for all 1 < ¢ < N, z; belongs
to X and ) # A; C ©; (ii) the training step which consists on the training of
probabilistic classifier dye : X — 2€ \ {#}. The classifier 550 provides for a new
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object € X a posterior probability distribution on 2° which is also a mass
function denoted m(.|x). The trained classifier ignores the existence of inclusion
or intersection between subsets of classes. This unawareness of relations between
the labels may seem counter intuitive, but is compatible with the purpose of
finding a potentially imprecise label associated to a new incoming example; (iii)
the decision step which consists of proposing a loss function adapted for the
case of imprecise classification that calculates the prediction that minimize the
risk function associated to the classifier d50. Figure 1 illustrates the global process
and the steps of relabelling, classification and decision are presented in detail
below.

Treatment of a new un-

Training phase labelled example =z € R?
4 N O N
. z € RP
Preprocessings
Second LDA
(zi,0:)i=1,.,.n ERP x O extraction
First LDA extraction g’ e R
Application
(2},0:)i=1,..N ER*" ' x O s
iy Vi )i= ,, 4 Training L _ ()l( (52<—)
Rela‘billmg L, of 6,0 on —_
procedure noaAN.
A1, .Nn€AC 20 (@, Addi=t,...n Decision
: problem
Second LDA
extraction 0 # A e 29
S T, N € RIAI-1 D
\_ 2N /

Fig. 1. Steps of evidential classification of incomplete data

Relabelling Procedure. First we perform LDA extraction on the training
examples (cf Fig.1) in order to reduce complexity. The resulting features are
2 € R""1 i =1,..,N where n = |©|. Then we consider a set of C' standard
classifiers 03, ...,55 where on each classifier g : R"™t — O, ¢ € {1,...,C} we
compute leave-one-out (LOO) cross validation predictions for the training data
($2,91)i:1,“.,N~

The relabelling of the example (z},6;) is based on a vote procedure of the
LOO predictions of the C classifiers. The vote procedure is the following: when
more than 50% majority of the classifiers predict a class 6,,,4;,, the example is
relabelled as the union A; = {6;, 0pq;, }. Note that when 6,,,;, = 0; the original
label remains, i.e., A; = 6;. If none of the predicted classes from the C' classifiers
gets the majority, then the ignorance is expressed for this example by relabelling
it as A; = ©. Note that the new labels are consistent with the original classes



Evidential Classification of Incomplete Data 129

that were trusted. The fact that several (C') classifiers are used to express the
imprecision permits a better objectivity on the real imprecision of the features,
i,e, the example is difficult not only for a single classifier. We denote by A C 2€
the set of the new training labels A;,¢ =1,..., V.

Note that we limited the new labels A; to have at most two elements except
when expressing ignorance A; = ©. This is done for avoiding too unbalanced
training sets, but more general relabelling could be considered. Once all the
training examples are relabelled, a classifier d50 can be trained.

Learning 40 . As indicated throughout this paper, dyo is learnt using the new
labels ignoring the relations that might exist between the elements of A. Rein-
forcing the idea of independence of treatment between the classes, LDA is applied
to the relabelled training set (z;, A;);=1,... n. This results to the reduction of the
space dimension from p to |A| — 1 which better expresses the repartition of rela-
belled training examples. For the training example i € {1,..., N}, let 2/ € RI4I=1
be the new projection of x; on this |A| — 1 dimension space. The classifier dq0 is
finally taught on (z, A;)i=1.... N-

Decision Problem. As recalled in Subsects. 2.2 and 2.3, the decision to assign a
new object = to a single class or a set of classes usually relies on the minimisation
of the risk function which is associated to a loss function L : 29\ {0} x © — R.
As mentioned in the introduction to this paper, the application of our work
concerns situations where errors may have serious consequences. It would then
be legitimate to consider the pessimistic strategy by minimizing 75, . Further-
more, in the definition of 75, , Eq. (1), the quantity max L(A,0) concerns the loss

incurred by choosing A C @, when the true nature is comprised in B C 6. On
the basis of this fact, we proposed a new definition of the loss function, L(A, B),
A, B C O, which directly takes into account the relations between A and B.
This is actually a generalisation of the definition proposed in [7] that is based
on F-measure, recall and precision for imprecise classification. Let us consider
A, B € 29\ {0}, where A = () is the prediction for the object z and B is its
state of nature. Recall is defined as the proportion of relevant classes included
in the prediction §(z). We define the recall of A and B as:

|AN B

R(A.B) =

(2)
Precision is defined as the proportion of classes in the prediction that are rele-
vant. We define the precision of A and B as:

_l4nB

P(A,B) = i (3)

Considering these two definition, the F-measure can be defined as follows:

(1+B8*)PR  (1+?)|An B
BP+R  B%B|+|A4]

Fs(A,B) =
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Note that § = 0, induce Fg(A, B) = P(A, B), whereas when § — oo,
Fs(A,B) ﬂ—> P(A,B). Let us comment on some situations according to the

“true set” B and the predicted set A. The worse scenario of prediction is when
there is no intersection between A and B. This would always be sanctioned by
F3(A, B) = 0. On the contrary, when A = B, Fg(A, B) = 1 for every (3. Between
those extreme cases, the errors of generalisation i.e., B C A, are controlled by
the precision while the errors of specialisation i.e., A C B, are controlled by the
recall. Finally, the loss function Lg : 26 \ {#} x 2° \ {#} — R is extended:

Lﬁ(A7B):17Fﬂ(A7B)' (5)

For an example x to be classified, whose mass function m(.|z) has been calculated
by d,e, we predict the set A minimizing the following risk function:

Riskg(A) = > m(B)Lg(A, B). (6)
BCeO

4 Related Works

Regarding relabelling procedures, much research has been carried out to identify
suspect examples with the intention to suppress or relabel them into a concurrent
more appropriate class [16,20]. This is generally done to enhance the performance.
Other approaches consist in relabelling into imprecise classes. This has been done
to test the evidential classification approach on imprecise labelled data in [37]. But,
as already stated, our relabelling serves a different purpose, better mapping over-
laps in the feature space. Concerning the imprecise classification, several works
have been dedicated to tackle this problem. Instead of the term “imprecise clas-
sification” that is adopted in our article, authors use terms like “nondeterminis-
tic classification” [7], “reliable classification” [24], “indeterminate classification”
[6,36], “set-valued classification” [28,31] or “conformal prediction” [3] (see [24] for
a short state of the art). In [36], the Naive Credal Classifier (NCC) is proposed as
the extension of Naive Bayes Classifier (NBC) to sets of probability distributions.
In [24] the authors propose an approach that starts from the outputs of a binary
classification [25] using classifier that are trained to distinguish aleatoric and epis-
temic uncertainty. The outputs are epistemic uncertainty, aleatoric uncertainty
and two preference degrees in favor of the two concurrent classes. [24] generalizes
this approach to the multi-class and providing set of classes as output. Closer to
our approach are approaches of [5] and [7]. The approach in [7] is based on a poste-
rior probability distribution provided by a probabilistic classifier. The advantage of
such approach and ours is that any standard probabilistic classifier may be used to
perform an imprecise classification. Our approach distinguishes itself by the rela-
belling step and by the way probabilities are allowed on sets of classes. To the best
of our knowledge existing works algorithms do not train a probabilistic classifier
on partially labelled data to quantify the body of evidence. Although we insisted
for the use of standard probabilistic classifier ;0 unaware of relations between the
sets, it is possible to run our procedure with an evidential classifier as the evidential
k-NN [5].
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5 Illustration

5.1 Settings

We performed experiments on the classification problem of four plastic categories
designated plastics A, B, C and D on the basis of industrially acquired spectra.
The total of 11540 available data examples is summarized in Table 1. Each plastic
example was identified by experts on the basis of laboratory measure of atten-
uated total reflectance spectra (ATR) which is considered as a reliable source
of information for plastic category’s determination. As a consequence, original
training classes are trusted and were not questioned. However data provided by
the industrial devices may be challenged. These data consist in spectra composed
of the reflectance intensity of 256 different wavelengths. Therefore and for the
enumerated reasons in Sect. 1, the features are subject to ambiguity. Prior to
experiments, all the feature vectors, i.e., spectra, were corrected by the standard
normal variate technique to avoid light scattering and spectral noise effects. We
implemented our approach and compared it to the approaches in [5] and [7]. The
implementation is made using R packages, using existing functions for the appli-
cation of the following 8 classifiers naive Bayes classifier: (nbayes), k-Nearest
Neighbour (k-NN), decision tree (tree), random forest (rf), linear discriminant
analysis (lda), partial least squares discriminant analysis (pls-da), support vector
machine (svm) and neural networks (nnet).!

Table 1. Number of spectra of each original class in learning and testing bases.

Classes Category A | Category B | Category C | Category D
Learning base | 1416 1412 1425 1434
Testing base | 1469 1458 1454 1472

5.2 Results

In order to apply our procedure, we must primary choose a set of classifiers
to perform the relabelling. These classifiers are not necessarily probabilistic
but producing point prediction. Thus, for every experimentation, our algorithm
ECLAIR was performed with the ensemble relabelling using 7 classifiers: nbayes,
k-NN, tree, rf, lda, svm, nnet?. Then, we are able to perform the ECLAIR impre-
cise version of a selected probabilistic classifier. Figure 2, shows the recall and
precision scores of the probabilistic classifier nbayes to show the role of 3. We see
the same influence of 3 as mentioned in [7]. Indeed, (cf Subsect. 3.3), with small

! Experiments concerning these learning algorithm rely on the following functions
(and R packages) : naiveBayes (e€1071), knn3 (caret), rpart (rpart), randomForest
(randomForest), 1da (MASS), plsda (caret), svmm (e1071), nnet (nnet).

2 In order to limit unbalanced classes, we choose to exclude form the learning base
examples which new labels count less than 20 examples.
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Fig. 2. Recall and precision of ECLAIR using nbayes, i.e. d,0 is nbayes, against 3.

values of § we have good precision, traducing the relevance of prediction, i.e.,
the size of the predicted set is reasonable; while high values of 8 give good recall,
meaning reliability, i.e., better chance to have true class included in the predic-
tions. The choice of § should then result form a compromise between relevance
and reliability requirement.

Table 2. Precision P of ECLAIR compared with nondeterministic with 3s chosen such
that recalls equal to 0.90.

nbayes | k-NN | tree rf 1da pls-da | svm | evidential k-NN
Nondeterministic | 86.70 | 86.94 |85.00 | 86.52 | 83.41 | 85.35 |88.20 | 86.58
ECLAIR 87.78 | 87.89 83.88 | 87.45|82.94 | 86.33 | 88.31 | 86.69

In order to evaluate the performances of ECLAIR, we compared our results
to the classifier proposed in [7] that is called here nondeterministic classifier.
As nondeterministic classifier and ECLAIR are set up for a parameter 3, we
decided to set (s such that global recalls equal to 0.90, and compare global
precisions on a fair basis. For even more neutrality regarding the features used
in both approach, we furnish to the nondeterministic classifier, the same reduced
features z7,i = 1,..., N, that those used by ECLAIR in the training phase (see
Fig.1). The 7 first columns of Table2 shows the so obtained precisions for 7
classifiers. These results show the competitiveness of our approach for most of
the classifiers, especially nbayes, k-NN, rf and pls-da. However, these results are
only partial since they do not show the general trend for different (s that are
generally in favour of our approach. Therefore we present more complete results
for nbayes and svm in Fig. 3, showing evaluation of precision score against recall
score for several values of § varying in [0, 6]. On the same figure, we also present
the results of nondeterministic classifier with different input feature (in black):
raw features, i.e., z; € RP, LDA reduced features, i.e., 2, € R""! and the
same features as those used for ECLAIR, i.e., 2/ € RI*~1 (see Fig. 1 for more
details). Doing so, we show that the good performances of ECLAIR are not only
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Fig. 3. Precision vs recall of Nondeterministic (ND) and ECLAIR

attributable to extraction phase. To facilitate the understanding of the results
plotted in Fig.3, one should understand that the best performances are those
illustrated by points on the top right of the plots, i.e., higher precision and recall
scores. We observe that ECLAIR, generally makes a better compromise between
the recall and precision scores for the used classifiers. Regarding the special case
when ECLAIR is performed with an evidential classifier performing example
imprecise labelled training (see Sect.4), the comparison is less straightforward.
We considered the evidential k-NN [10] for imprecise labels by minimizing the
error suggested in [39]. Using this evidential k-NN as a classifier 6 in ECLAIR
procedure is straightforward. Concerning the application of nondeterministic
classifier, we decided to keep the same parameter and turn the classifier into
probabilistic by applying the pignistic transformation to the mass output of the
k-NN classifier (see column of Table 2). ECLAIR obtains a slightly better results.

6 Conclusion

In this article, a method of evidential classification of incomplete data via impre-
cise relabelling was proposed. For any probabilistic classifier, our approach pro-
poses an adaptation to get more cautious output. The benefit of our approach
was illustrated on the problem of sorting plastics and showed competitive per-
formances. Our algorithm is generic it can be applied in any other context where
incomplete data on the features are presents. In future works we plan to exploit
our procedure to provide cautious decision-making for the problem of plastic
sorting. This application requires high reliability of the decision for preserving
the physiochemical properties of the recycle product. At the same time, the deci-
sion shall ensure reasonable relevance to guarantee financial interest, indeed the
more one plastic category is finely sorted the more benefice the industrial gets.
We also plan to strengthen our approach evaluation by confronting it with other
state of the art imprecise classifiers and by preforming experiments on several
datasets from machine learning repositories.
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Abstract. In classification problems, it happens that the training set
remains scarce. Given a data set, described in terms of discrete, ordered
attribute values, we propose an interpolation-based approach in order
to predict new examples useful for enlarging the original data set. The
proposed approach relies on the use of continuous analogical proportions
that are statements of the form “a is to x as = is to ¢”. The prediction
is made on the basis of pairs of examples (a,c) present in the data set,
for which one can find a value for x for each attribute value as well as
for the corresponding class label of the example thus created. The first
option that we consider is to select x as the midpoint between a and c,
attribute by attribute. To extend the search space, we may also choose
z as any randomly selected value between the values of a and c¢. We first
propose a basic algorithm implementing these two interpolation defini-
tions, then we extend it to two improved algorithms. In the former, we
only consider the nearest neighbor pairs (a, c) to x for prediction, while,
in the latter, we further restrict the search to those pairs (a,c) having
the same class label. The experimental results, for classical ML classifiers
applied to the enlarged data sets built by the proposed algorithms, show
the effectiveness of analogical interpolation methods for enlarging data
sets.

1 Introduction

Analogical proportions are statements of the form “a is to b as ¢ is to d”. In the
Nicomachean FEthics, Aristotle makes an explicit parallel between such state-
ments and geometric proportions of the form “ = §”, where a,b, ¢, d are num-
bers. It also parallels arithmetic proportions, or difference proportions, which
are of the form “a —b = c¢—d”. The logical modeling of an analogical proportion
as a quaternary connective between four Boolean items appears to be a logical
counterpart of such numerical proportions [15]. It has been extended to items
described by vectors of Boolean, nominal or numerical values [2].

A particular case of such statements, named continuous analogical propor-
tions, is obtained when the two central components are equal, namely they are
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statements of the form “a is to b as b is to ¢”. In case of numerical propor-
tions, if we assume that b is unknown, it can be expressed in terms of a and
c as b = y/a - ¢ in the geometric case, and as ‘%“ in the arithmetic case. Note
that similar inequalities hold in both cases: min(a,c¢) < v/a - ¢ < max(a,c) and
min(a, c) < “T“ < max(a, ¢). This means that the continuous analogical propor-
tion induces a kind of interpolation between a and c in the numerical case by
involving an intermediary value that can be obtained from a and c.

General analogical proportions when d is unknown provides an extrapolation
mechanism, which with numbers yields d = %‘ and d = b+c—a in the geometric
and arithmetic cases respectively. We recognize the expression of the well-known
Rule of Three in the first expression. Analogical proportions-based inference [2]
offers a similar extrapolation device relying on the parallel between (a,b) and
(¢, d) stated by “a is to b as ¢ is to d”.

The analogical proportions-based extrapolation has been successfully applied
to classification problems. It may be used either directly as a new classification
paradigm [2,12], or as a way of completing a training set on which classical
classification methods are applied once this set has been completed [1,4]. This
paper investigates the effectiveness of the simpler option of using only continuous
analogical proportions that involve pairs instead of triples of items, in order to
enlarge a training set.

The paper is organized as follows. Section 2 provides a short background on
analogical proportions and more particularly on continuous ones. Then Sect. 3
surveys related work on analogical interpolation or extrapolation. Section4
presents different variants of algorithms for completing a training set based on
the idea of continuous analogical proportions. Section 5 reports the results of the
use of different classical classification techniques on the corresponding enlarged
training sets for various benchmarks.

2 Background: Continuous Analogical Proportion

The statement “a is to b as ¢ is to d”, here denoted a : b :: ¢ : d, expresses that
“a differs from b as ¢ differs from d, and b differs from a as d differs from ¢”. The
logical counterpart of the latter statement, where a, b, ¢, d are Boolean variables,
is given by:

a:buc:d=(naNb=-cANd)N(-bANa=-dAc)

See [13,16] for justifications. This expression is true for only 6 patterns of values
for abcd, namely {0000,0011,0101,1111,1100,1010}. This extends to nominal
values where a : b :: ¢ : d holds true if and only if abcd is one of the following
patterns ssss, stst, or sstt, where s and t are two possible distinct values of
items a, b, ¢ and d.

Regarding continuous analogical proportions, it can be easily checked that
the unique solutions of equations 1 : z :: x : 1 and 0 : z :: x : 0 are respectively
rz=1and z =0, whilel:z:2:0 or 0:x: x:1 have no solution in the
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Boolean case. This somewhat trivializes continuous analogical proportions in the
Boolean case. The situation for nominal values is the same.

The case of numerical values is richer. a, b, ¢, d are now supposed to be
normalized values in the real interval [0,1]. The reader is referred to [6] for a
general discussion of multiple-valued logic extensions of analogical proportions.
They can be associated with the following expression:

1= [(a—=b) = (c—d) |,
ifa>bandc>d, ora<bandc<d
1 —max(a —bl,|c—d]),
ifa<band c¢>d, ora>bandc<d

a:buc:d= (1)

It coincides with a : b::c : d on {0,1}. As can be seen, a : b::c: d is
equal to 1 if and only if (a — b) = (¢ — d). For instance, 0.2 : 0.5 :: 0.6 : 0.9,
or 0.2 : 0.5:: 0.2 : 0.5 holds true. Because |a — b| = [(1 —a) — (1 = b)], it is
easy to check that the code independence property: a : b::c:d = (1 —a) :
(I1-0) = (1—c¢):(1—d) holds (0 and 1 play symmetric roles, and it is the same
to encode an attribute positively or negatively).

Then the corresponding expression for continuous analogical proportions
is [16]:

1—|a+c—2b]|,

ifa>bandb>c, ora<band b<c
1 —max(a —b|,|b—c]),

ifa<band b>c¢, ora>bandb<c

a:b:b:c= (2)

As can be seen a : b::b: ¢ =1 1if and only if b = (a + ¢)/2 (which includes
the case a = b = ¢). The proportions 0 : % : % :1or03:06:06:09
are examples of continuous analogical proportions. Moreover, 1 : 3 :: 3 : 5 is an
example of continuous analogical proportion between nominal ordered grades.
Thus this extension captures the idea of betweenness implicit in statements of
the form “a is to b as b is to ¢”. Note that we have 0 : 1::1 : 0 = 0 and
1:0::0:1=0, as expected.

Analogical proportions extend to vectors in a component-wise manner. Let
a = (ay,...,an), where each a; belongs to {0,1} (Boolean case), or to a finite
set with more than 2 elements (nominal case), or to [0,1] (numerical case).
b, c,d are defined similarly. Then a : b :: ¢ : d has a truth value which is just
mini>q a; : b; ¢ o d;.

In this paper, we deal with classification. So each vector a in a training set
is associated with its class cl(a). Thus saying that the continuous analogical
proportion a :  :: « : ¢ holds true amounts to say:

a:xx:c=1iff (3)
aj iz : x; : ¢; = 1 for each attribute j and cl(a) : cl(x) :: cl(x) : cl(c) =1

Moreover, since continuous analogical proportions are trivial for a Boolean or a
nominal variable, we shall also use a more liberal extension of betweenness for
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the vectorial case [10] in this paper. Namely, we shall say x is between a and ¢
defined as:

between(a,x,c) =11iff a; < z; <¢j or ¢; < x; < a; for each attribute j. (4)

Then we can define the set Between(a, ¢) of vectors between two vectors a and
c. For instance, we have Between(01000,11010) = {01000, 11000,01010,11010}.
Note that in case of Boolean values, the betweenness condition can also be
written as Vi =1, ;m, (a; A¢c; — x) A (x; — a; V) = 1.

3 Related Work

The idea of generating, or completing, a third example from two examples can be
encountered in different settings. An option, quite different from interpolation, is
the “feature knock out” method [23], where a third example is built by modifying
a randomly chosen feature of the first example with that of the second one. A
somewhat related idea can be found in a recent proposal [3] which introduces
a measure of oddness with respect to a class that is computed on the basis of
pairs made of two nearest neighbors in the same class; this amounts to replace
the two neighbors by a fictitious representative of the class.

Reasoning with a system of fuzzy if-then rules provides an interpolation
mechanism [14], which, from these rules and an input “in-between” their con-
dition parts, yields a new conclusion “in-between” their conclusion parts, by
taking advantage of membership functions that can be seen as defining fuzzy
“neighborhoods”.

Moreover, several approaches based on the use of interpolation and analog-
ical proportions have been developed in the past decade. In [17], the problem
considered is to complete a set of parallel if-then rules, represented by a set of
condition variables associated to a conclusion variable. The values of the vari-
ables are assumed to belong to finite sets of ordered labels. The basic idea is
to apply analogical proportion inference in order to induce missing rules from
an initial set of rules, when an analogical proportions hold between the variable
labels of several parallel rules. Although this approach may seem close to the
analogical interpolation-based approach proposed in this paper, our goal is not to
predict just the conclusion part of an incomplete rule, but rather a whole exam-
ple including its attribute-based description and its class. Moreover, we restrict
our study to the use of pairs of examples for this prediction, while in [17] the
authors use both pairs or triples of rules for completing rules. An extended ver-
sion of the above-mentioned work has been presented in [22] where the authors
also propose a more cautious method that makes explicit the basic assumptions
under which rule conclusions are produced from analogical proportions. Along
the same line, see also [21] on interpolation between default rules.

Let us also mention the general approach proposed by Schockaert and Prade
[20] to interpolative and extrapolative reasoning from incomplete generic knowl-
edge represented by sets of symbolic rules, handled in a purely qualitative man-
ner, where labels are represented in conceptual spaces. This work is an extended
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version of [19] in which only interpolative inference is considered. The same
authors present an illustrative case study in [18] in the music domain. In the
context of natural language modeling, Derrac and Schockaert [5] have proposed
a data-driven approach that exploits betweenness and a fortiori inference to
derive semantic relations within conceptual spaces.

Besides, some previous works have considered, discussed and experimented
the idea of an analogical proportion-based enlargement of a training set, based
on triples of examples. In [1], the authors proposed an approach to generate
synthetic data to tune a handwritten character classifier. Couceiro et al. [4]
presented a way to extend a Boolean sample set for classification using the
notion of “analogy preserving” functions that generate examples on the basis of
triples of examples in the training set. The authors only tested their approach
on Boolean data.

In a more recent work, Lieber et al. [10] have extended the paradigm of classi-
cal Case-Based Reasoning to link the current case to either pairs of known cases
by performing a restricted form of interpolation, or to triples of known cases by
exploiting extrapolation, taking advantage of betweenness and analogical pro-
portion relations.

Lastly, in the context of deep learning, Goodfellow et al. [7] invented the
idea of a generative adversarial network (GAN) as a class of machine learning
systems. Given a training set, two neural networks, contesting with each other in
a game, are learnt in order to generate new data with the same statistics as the
training set. More recently, Inoue [9] presented a data augmentation technique
for image classification that mix two randomly picked images to train a classifier.

4 Analogical Interpolation-Based Predictor (AIP)

Analogical proportions have been recently applied to classification problems and
have shown their efficiency for classifying a variety of datasets [2]. In this paper,
we aim to investigate if continuous analogical proportions could be useful for a
prediction purpose, namely enlarging a training set with made examples, and if
standard classification methods applied to this enlarged set can compete with
the direct application of analogical proportions-based inference for classification.
As said before, the basic idea of the paper is to apply an interpolation method
for predicting new examples not present in the original data set which is just
enlarged.

In the following, we describe the basic principle of our predicting approach.

4.1 Basic Procedure

Consider a set E of n classified examples ie., E = {(z',y"),..., ("9, ...,
(x™,y")} such that the class label y* = cl(z*) is known for each i € 1,...,n.
The goal is to predict a new set of examples S = {(x*,4*) ¢ E} by interpolat-
ing examples from the set E. The new set S will serve for enlarging F.
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The basic idea is to find pairs of examples (a, ¢) € E? with known labels such
that the analogical proportion (3) is solvable attribute by attribute i.e., there
exists & such that a; : x; :: ; : ¢; = 1 for each attribute j = 1,...,m, and the
class equation has cl(x) as a solution, i.e., cl(a) : cl(x) :: cl(x) : cl(c) = 1.

As mentioned before in Sect. 2, the solution for the previous equation a; :
xj ©: xj : ¢;j =1 in the numerical case is just the midpoint z; = (a; + ¢;)/2 for
each attribute j = 1,...,m. We are interested in the case of ordered nominal val-
ues in this paper. Moreover, we assume that the distances between any two suc-
cessive values in such an ordered set of values are the same. Let V = {vy,--- ,vi}
be an ordered set of nominal values, then, v; will be regarded as the midpoint of
v;—; and v;4; with 7 > 1, provided that both v;_; and v;; exist. For instance,
if V.= {1,---,5}, the analogical proportions 1:3::3:5 or 2:3::3:4 hold,
while 2 : z ::  : 5 = 1 has no solution. So it is clear that some pairs (a, ¢) will
not lead to any solution since we restrict the search space to the pairs for which
the midpoint (attribute by attribute) exists.

This condition may be too restrictive especially for datasets with high number
of attributes which may reduce the set of predicted examples. In case of success,
the predicted example = {z1,...,%;,...Z:n } will be assigned to the predicted
class label cl(x) and saved in a candidate set.

Since different voting pairs may predict the same example & more than once
(z may be the midpoint of more than one pair (a, ¢)), a candidate example may
have different class labels. Then has to perform a wvote on class labels for each
candidate example classified differently in the candidate set. This leads to the
final predicted set of examples where each example is classified uniquely.

This process can be described by the following procedure:

1. Find solvable pairs (a, ¢) such that Eq.3 has a unique non null solution x.

2. In case of ties (an example @ is predicted with different class labels), apply
voting on all its predicted class labels and assign to o the success label.

3. Add x to the set of predicted examples (together with cl(x)).

In the next section, we first present a basic algorithm applying the process
described above, then we propose two options that may help to improve the
search space for the voting pairs.

4.2 Algorithms

The simplest way is to systematically consider all pairs (a,c) € E?, for which
Eq. 3 is solvable, as candidate pairs for prediction. Algorithm 1 implements a
basic Analogical Interpolation-based Predictor, denoted Al Py;q, without applying
any filter on the voting pairs.

Considering all pairs (a, ¢) for prediction may seem unreasonable especially
when the domain of attribute values is large since this may blur prediction
results. A first improvement of Algorithm 1 is to restrict the search for pairs to
those that are among the nearest neighbors (in terms of Hamming distance) to
the example to be predicted.
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Algorithm 1. Analogical Interpolation-based Predictor (Al Pgtq)

Input: A set E of classified instances
CandidatesSet = ()
S=190
for each pair (a,c) in E? do
if cl(a) : cl(x) :: cl(x) : cl(e) = 1 has solution ! then
if a:x :: x : ¢ =1 has solution b then

cl(b) =1
CandidatesSet.add(b)
end if
end if
end for

S = VoteOnclasses(CandidatesSet )
Comp(E)=E + S
return (Comp(E))

Let us consider two different pairs (a,c) and (d,e) € E?. We assume that
a:x:x:c =1 produces as solution an example band d : x :: x : e = 1
produces an other example b’ # b. If b’ is closest to (d, e) than b is to (a,c)
in terms of Hamming distance, it is more reasonable to consider only the pair
(d, e) for prediction. This means that example b’ will be predicted while b will be
rejected. We denote AI Py this second improved Algorithm 2 in the following.

Algorithm 3 (that we denote AI Py n sc) is exactly the same as Algorithm 2 in
all respects, except that we look for only pairs (a, ¢) belonging to the same class
in this case. Note that the two algorithms only differ for non binary classification
problems, since s : « ::  : t = 1 has no solution in {0, 1} for s # .

4.3 Another Option

As can be seen in the next section, searching for the best pairs (described in
Algorithms 2 and 3) limits the number of accepted voting pairs. Moreover, there
is a second constraint to be satisfied, that is limiting the solutions of Eq.3 to
the values of & that are the midpoint of @ and ¢ which is hard to be satisfied
in the ordered nominal setting. To relax this last constraint, we may think to
use the “betweenness” definition given in Eq. 4. In this definition, the equation
between(a,x,c) = 1 has, as a solution, any x such that x is between a and ¢
for each attribute j € 1, ..., m. This last option is implemented by the algorithm
denoted AIPpgy,, which is exactly the same as Algorithm 3 except that we use
the definition (4) to solve the analogical interpolation.
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Algorithm 2. Analogical Interpolation-based Predictor using Nearest Neigh-
bors pairs for prediction (AIPyy)

Input: A set E of classified instances
CandidatesSet = {)
PredictedSet = 0
Mingp = NbrAttribute
for each pair (a,c) in E? do
if cl(a) : cl(x) :: cl(x) : cl(e) = 1 has solution [ then
if a:x ::x:c=1 hassolution b then
c(b) =1
HD = Max(HammingDistance(b,a), HammingDistance(b,c))
if HD < Mingp then
MZ"I’LHD = HD
CandidateSet.clean()
CandidatesSet.add(b)
else if HD =Minyp then
CandidatesSet.add(b)
end if
end if
end if
end for
S = VoteOnclasses(CandidatesSet )
Comp(E)=E + S
return (Comp(FE))

5 Experimentations and Discussion

In this section, we aim to evaluate the efficiency of the proposed algorithms for
predicting new examples. For this purpose, we first run different standard ML
classifiers on the original dataset, then we apply each AI-Predictor to generate a
new set of predicted examples that is used to enlarge the original data set. This
leads us to four different enlarged datasets, one for each proposed algorithm.
Finally, we re-evaluate again ML classifiers on each of these completed datasets.
For both original and enlarged datasets, we apply the testing protocol presented
in the next sub-section.

In this experimentation, we tested with the following standard ML classifiers:

e IBk: a k-NN classifier, we use the Manhattan distance and we tune the
classifier on different values of the parameter £k =1,2,...,11.

e C4.5: generating a pruned or unpruned C4.5 decision tree. We tune the
classifier with different confidence factors used for pruning C = 0.1,0.2, ..., 0.5.

e JRip: propositional rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER). We tune the classifier for different values of
optimization runs O = 2,4, ...10 and we apply pruning.
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Algorithm 3. Analogical Interpolation-based Predictor using Nearest Neigh-
bors pairs in the same class for prediction (AIPyy sc)

Input: A set E of classified instances
CandidatesSet = 0
PredictedSet = 0
Mingp = NbrAttribute
for each pair (a,c¢) in E? do
if cl(a) = cl(c) then
if a: x :: x : ¢ =1 has solution b then
cl(b) =cl(a) //or cl(c)
HD = Max(HammingDistance(b,a), HammingDistance(b,c))
if HD < Mingp then
MiTLHD = HD
CandidateSet.clean()
CandidatesSet.add(b)
else if HD =Minygp then
CandidatesSet.add(b)
end if
end if
end if
end for
S = VoteOnclasses(CandidatesSet )
Comp(E)=E + S
return (Comp(E))

5.1 Datasets for Experiments

The experimental study is based on several datasets taken from the U.C.IL
machine learning repository [11]. A brief description of these data sets is given
in Table1.

To apply the analogical interpolation, we have chosen to deal only with
ordered nominal datasets in this study (the extension to the numerical case
is the topic of a future work). Table 1 includes 10 datasets with ordered nom-
inal or Boolean attribute values. In terms of classes, we deal with a maximum
number of 5 classes.

— Balance, Car, Hayes-Roth and Nursery are multiple classes datasets.

— Monk1, Monk2, Monk3, Breast Cancer, Voting and W. B. Cancer datasets
are binary class problems. Monk3 has noise added (in the sample set only).
Voting data set contains only binary attributes and has missing attribute
values. As a missing value, in this dataset, simply means that this value is
not “yes” nor “no”, we replace each missing value by a third value other than
0 and 1. These data sets are described in Table 1.

5.2 Testing Protocol

To test ML classifiers, we apply a standard 10 fold cross-validation technique.
As usual, the final accuracy is obtained by averaging the 10 different accuracies
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(computed as the ratio of the number of correct predictions to the total number
of test examples) for each fold. However, each ML classifier requires a parameter
to be tuned before performing this cross-validation.

Table 1. Description of datasets

Datasets Instances | Nominal Att. | Binary Att. | Classes
Balance 625 4 0 3
Car 743 6 0 4
Monk1 432 4 2 2
Monk?2 432 4 2 2
Monk3 432 4 2 2
Breast Cancer | 286 6 3 2
Voting 435 0 16 2
Hayes-Roth 132 5 0 3
W. B. Cancer | 699 9 0 2
Nursery 1102 8 5

In order to do that, we randomly choose a fold (as recommended by [8]), we
keep only the corresponding training set (i.e. which represents 90% of the full
dataset). On this training set, we again perform a 10-fold cross-validation with
diverse values of the parameters. We then select the parameter values providing
the best accuracy. These tuned parameters are then used to perform the initial
cross-validation. As expected, these tuned parameters change with the target
dataset. To be sure that our results are stable enough, we run each algorithm
(with the previous procedure) 10 times so we have 10 different parameter opti-
mizations. The displayed parameter p is the average value over the 10 different
values (one for each run). The results shown in Table2 are the average values
obtained from 10 rounds of this complete process.

5.3 Experimental Results

In the following, we first provide a comparative study of the overall accuracies
for ML classifiers obtained with original and enlarged datasets. This study aims
to check if examples predicted by the AIP are of good quality (namely labeled
with the suitable class). In such case, the efficiency of ML classifiers should
be improved when applied to enlarged datasets. Then we also report the main
characteristics of these predicted datasets. Finally, we compare ML classification
results with enlarged datasets to the ones obtained by directly applying Analogy-
based Classification [2] to the original datasets. In this last study, we wonder if
using ML classifiers with enlarged datasets may perform similarly as Analogy-
based Classification [2] to the original datasets while maintaining a reduced
complexity.
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Results of ML-Classifiers. Accuracy results for 1Bk, C4.5 and JRIP are
obtained by using the free implementation of Weka software to the enlarged
datasets obtained from AI-Predictors. To run IBk, C4.5 and JRIP, we first opti-
mize the corresponding parameter for each classifier, using the meta CVPa-
rameterSelection class provided by Weka using a cross-validation applied to the
training set only. This enables us to select the best value of the parameter for
each dataset, then we train and test the classifier using this selected value of this

parameter.

Table 2 provides classification results of ML classifiers obtained with a 10-
fold cross validation and for the best/optimized value of the tuned parameter

(denoted p in this table).
Results in the previous table show that:

M. Bounhas and H. Prade

Table 2. Results for ML classifiers obtained with the enlarged datasets

Datasets KNN C4.5 JRIP
Accuracy p | Accuracy p | Accuracy P
Balance | AIPyn,sc |85.7+2.13 |1 |74.15+£2.42|0.5|76.05+2.85|9
AIPNN 85.31+£3.24 |1 |73.73+4.12 0.5|75.09+3.23 |6
AlPgsiq 78.16 £1.15 |3 |65.92+2.73 |0.5 6845+3.73 |6
AIPpyy, 83.04+£3.42 |3 |7544+£389 |0.575.21+4.64 |7
Orig. 84.05 + 2.6 11]63.79+£4.33 10.3|72.74+348 |6
Car AIPNN,sc | 91.4+1.84 1 19278 £1.28 | 0.4|88.6+2.82 8
AIPNN 91.5+1.95 1 /93.14+1.95 0.5|89.13+2.55 |8
AIPgqq 91.51+191 |3 |9226+1.85 /0.3/89.09+1.93 |6
AIPpity 86.74 +£2.71 |4 |88.74+1.99 |0.485.61+2.38 |8
Orig. 92.38+£2.51 |1 |90.84+£3.61 |0.5]86.58+3.67 |8
Monkl | AIPypn,sc | 94.58 £2.7 5 194.11+2.88 |0.2|93.75+2.48 2
AIPNN 94.82+237 |3 |94.53+2.35 |0.1]/93.62+1.9 2
AIPgtq 87.07+4.48 |3 |87.35+£249 |0.183.21+4.34 |6
AIPpty 85.34+£3.91 |3 |88.15+4.78 |0.389.46+3.66 |4
Orig. 98.37+2.78 |2 |99.36 £0.64|0.4|90.99 +13.15 | 2
Monk2 | AIPyn,sc|82414+4.77 |1 |7244£0.19 |0.1|{71.914+3.32 |5
AIPNN 82.49+7.56 |1 | 72.44+£0.19 [0.1|71.87+3.8 3
AIPgiq 76.12+£4.28 |3 |77.03+0.0 0.1]76.6+£0.43 4
Al Ppty 80.86 £0.79 |3 | 80.79+0.78 0.1 80.56+0.82|3
Orig. 65.29 +1.74 |11 |67.13£0.61 |0.1|64.64+3.69 |4
Monk3 | AIPyn,sc|98.384+1.31 |3 |9841+£1.31 |0.1{98.244+149 |2
AIPNN 98.38+1.41 |3 98414141 0.1[9827+1.42 |2
AlPstq 92.91+2.47 |3 |93.58+£3.09 |0.1/92.09+2.63 |4
Al Ppiy 97.75+1.76 |3 |97.71+£1.76 0.1 |97.87+1.79 |2
Orig. 99.14+1.49 |1 |99.82+0.18|0.2|/98.951+1.48 2

(continued)
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Table 2. (continued)

Datasets KNN C4.5 JRIP
Accuracy p | Accuracy p | Accuracy P
Breast Cancer | AIPy N, sc | 75.57 £8.31 | 4| 74.01 £7.29 0.2]71.9+8.6 4
AIPNN 75.59 +£4.95 |5|73.68+6.85 0.2 |71.0 £ 7.49 5
Al Psq 83.0+3.19 |6|82.47+3.93 |0.180.3+7.01 |3
AIPpgyy, 75.86 £5.27 |4 75.94+5.99 0.272.61+5.84 |4
Orig. 72.81+7.65 |9|71.58+6.55 0.2]70.11+8.59 |2
Voting AIPNN,sc | 93.32+£3.58 |4]95.65+ 2.67 0.2195.62+2.85 |3
AIPNN 93.05 £3.17 |3/95.79 +3.59 0.3]95.67+3.07 |3
Al Pgsq 93.89+2.31|2|96.12 4+ 2.02 0.3/96.1+2.04 |3
AIPpgyy, 93.22+£3.84 |2]9545+2.37 0.2/95.73£2.13 |2
Orig. 92.5 + 3.59 4/96.384+2.63 |0.2/95.84+2.39 |4
Hayes-Roth AIPNN,sc | 74.621+8.84 |1|74.44+9.63 0.284.79+7.65 |4
AIPNN 73.91 £ 8.0 1|74.13+£7.65 0.2]85.12+6.58 |5
AIPsiy 60.45 4+ 11.59 | 3| 70.62 £ 9.3 0.4|78.78 +9.67 |4
Al PBiyw 69.87 £7.77 |1|/80.43+12.53|0.1 | 88.52+8.8 |2
Orig. 61.41 £10.31 | 3 | 68.2 +6.66 0.283.26+9.04 |4
W. B. Cancer | AIPyn.sc | 95.92+1.69 |1|94.38+3.38 0.4]94.57+2.15 |5
AIPNN 96.12 +2.47 | 1]94.05 4 2.82 0.3]94.5+2.31 4
AIPgq 96.82+1.22 | 3|97.37+1.23 |0.5|96.56+2.19 |5
AlIPptyw 95.99 +1.17 |2]94.43+1.49 0.4]94.444+2.16 |5
Orig. 96.7 £ 1.73 3194.79£3.19 0.2]/9587+29 |4
Nursery AIPNN,sc | 98.23£0.96 |1]98.6940.56 0.4]97.78+1.12 |6
AIPNN 98.25+0.78 | 1|98.74+0.64 |0.5|97.83+1.25|5
AIPgq 97.73+£0.88 |1/98.0+0.96 0.5/97.74+0.99 |5
AIPpiy, 95.9+0.97 |3/96.51+1.34 0.4]95.78+ 1.5 6
Orig. 9745 +1.34 |3|97.7+1.36 0.5]95.58+2.04 |4
Average AIPyN,sc | 89,01 -1 86,90 - 187,32 -
AIPny 88,94 ~ 186,86 — 8721 -
AlIPgq 85,76 —| 86,07 - /85,89 -
AIPpyy, 86,45 - | 87,35 - | 87,57 -
Orig. 86,01 ~ 184,96 — 185,46 -

147

— The accuracy results have been improved when applying ML classifiers on

the new predicted data instead of the original data. This is noticed for all
datasets except for Monkl and Monk3 datasets. The highest improvement
percentage was noticed with the IBk classifier for the dataset Monk2 (17%),
Hayes-Roth (13%) and Breast Cancer (11%).
Regarding the two artificial datasets Monkl and Monk3, it is known in the
original dataset, that only two attributes among 6 are involved to define the
class label for each example. We may think that using the midpoint value for
each attribute as well as the class label, applied in the proposed analogical



148 M. Bounhas and H. Prade

interpolation which treat equally all attributes, is not compatible with this
kind of classification.

— The good improvement observed for Monk2 dataset confirms our previous
intuition since, contrary to Monkl and Mon3, in Monk2 all attributes are
involved in defining the class label in this dataset.

— The standard Algorithm 1 outperforms other algorithms in case of Cancer and
Breast Cancer datasets. It is important to note that only these two datasets
include attributes with large range of values (with maximum of 10 different
values for Cancer and 13 different values for Breast Cancer). Moreover the
number of attributes is also high if compared to other datasets. We expect
that, in case ordered nominal data is represented by a large scale, using only
nearest neighbor pairs for prediction seems too restrictive and leads to a local
search for new examples.

— There is no particular algorithm that provides the best results for all datasets.

— We computed the average accuracy for each proposed algorithm and for each
ML classifier over all datasets. Results are given at the end of Table 2. We can
note that IBk classifier performs the best accuracy when using the enlarged
data built from the AIPyn sc Algorithm. While C4.5 and JRIP perform
better when applied to the dataset built from AIPpg, Algorithm.

— Opverall, the IBK classifier shows the highest classification accuracy over all
datasets.

In this first study, the improved results of ML classifiers when applied to enlarged
datasets show the ability of the proposed algorithms (especially, AI Pyy sc and
AIPpy,) to predict examples that are labeled with the suitable class.

Characteristics of the Predicted Datasets. To have a better understanding
of the previous shown results, in this subsection we aim to investigate more
the new predicted datasets. For this end, we compute the number of predicted
examples for each dataset and the proportion of these examples that are assigned
to the correct/suitable class label. This proportion is computed on the basis of
the predicted examples that are compatible with the original set. For this new
experimentation, we only consider examples predicted by Algorithm AIPyy sc
(and AIPgyy for some datasets). We save these additional results in Table 3.
From these results, we can see that:

— In seven among ten datasets, the proportion of predicted examples that are
successfully classified is 100%. This means that all predicted examples that
match the original set are assigned to the correct class label and thus are
fully compatible with the original set (see for example Monk2, Breast Cancer,
Hayes Roth and Nursery).

— Predicting accurate examples in these datasets may explain why ML classi-
fiers show high classification improvement when applied to the new enlarged
dataset.

— Although AIPyy sc Algorithm succeeds to predict accurate examples, the
number of predicted examples is very reduced for some datasets such as for
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Breast Cancer, Voting and Cancer. This due to the fact that we restrict the
search for only nearest neighbors pairs belonging to the same class in this
Algorithm. It is important to note that these datasets contains large number
of attributes which make the process of pairs filter more constraining.

— As can be seen in Table3, the size of the predicted sets is considerably
increased, for these three datasets, when applying Al Pg;q Algorithm which is
less constraining than AIPny sc (520 examples instead of 46 are predicted
for Cancer dataset). In Table 2, we also noticed that, only for these three cited
datasets, IBK performs considerably better when applied to the datasets built
from the standard algorithm AIPs;q (producing larger sets). It is clear that
in case the predicted set is very reduced, the enlarged dataset remains similar
to the original set that’s why the improvement percentage of ML classifiers
cannot be clearly noticed in the case of datasets predicted from AIPnn sc
Algorithm.

— Lastly for some datasets such as Monkl and Monk3, the proportion of pre-
dicted examples that are compatible with the original set is low if compared
to other datasets. As explained before, in the original sets, the classification
function involves only 2 among 6 attributes which seems incompatible with
continuous analogical interpolation assuming that all attributes as well as
class label are the midpoint of the attributes and the class label of the pair
used for prediction.

Table 3. Nbr. of predicted examples, proportion of predicted examples that are com-
patible with the original set

Datasets Nbr. predicted | Prop. of success
Balance 529 85.82
Car 630 93.44
Monk1 288 87.5
Monk?2 221 100
Monk3 320 96.25
Breast Cancer-AIPyn,sc | 14 100
Breast Cancer-AI Psq 152 83.78
Voting-AIPnn,sc 38 100
Voting-AI Psta 95 100
Hayes-Roth 27 100
Cancer-AIPyn,sc 46 100
Cancer-AI Psqq 520 100
Nursery 883 99.89
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Comparison with AP-Classifier [2]. Finally, we provide a comparative study
of ML classifiers results, reported in Sect. 5.3, to the results obtained with a
direct application of analogical proportions for a classification purpose [2]. Note
that in [2], analogical proportions-based extrapolation has been directly applied
to define a new classification paradigm while in this paper we exploit analog-
ical proportions-based interpolation to enlarge datasets on which classical ML
classifiers are applied. Classification accuracies of analogical proportions-based
classifiers [2] are given in Table4 and compared to the best result of each ML
classifier applied to the enlarged datasets. Results in Table4 shows that AP-
Classifier outperforms classic ML classifiers on five datasets especially on the
three Monks datasets. However enlarged datasets, using analogical interpola-
tion, helped to reduce the gap between AP-Classifier and other ML classifiers
once they were applied to these enlarged data. On the other side, ML classifiers
provides better accuracies on four other datasets (see for example the Breast
cancer (resp. Hayes-Roth) dataset for which the IBK (resp. JRIP) is largely
better than AP-Classifier).

Table 4. Results for ML classifiers obtained with the enlarged datasets and comparison
with AP-Classifier [2]

Datasets AP-Classifier [2] | KNN C4.5 JRIP
Accuracy p | Accuracy p | Accuracy p | Accuracy P
Balance 86.35+2.27 |11 (85.7+2.13 |1|74.15+£242 |0.5|76.05+2.85|9
Car 94.16 £4.11 |11 |91.5+1.95 |1]93.14+£1.95 |0.5|89.13+2.55|8
Monk1 99.77+0.71| 7/94.82+2.37|3|94.53+£2.35 |0.1|93.75+2.48|2
Monk?2 99.77+0.7 |118249+£756|180.79+0.78 | 0.1]80.56+0.82|3
Monk3 99.63 +0.7 9/98.384+1.41|3|/98414+1.41 |0.1|98.27+1.42|2
Breast Cancer | 73.68 £6.36 |10 |83.0+3.19 |6|82.47+3.93 |0.1/80.3+7.01 |3
Voting 94.73 £3.72 7193.890+231/2(96.12+2.02|0.396.1+2.04 |3
Hayes-Roth 79.29+9.3 774.62+8.84|1|80.43+12.53 /0.1 |88.52+8.8|2
W. B. Cancer | 97.01+3.35 | 4|/96.82+1.223|97.37+1.23|0.5|96.56+2.19|5

This comparison firstly shows the interest of analogical proportions as a clas-
sification tool for some datasets and secondly as way for enlarging datasets for
other cases. Identifying on which dataset each of these methods may be better
applied should be deeply investigated in future.

In terms of complexity, the proposed Analogical Interpolation approaches
(which are quadratic due to the use of pairs of examples) if combined with the
IBK classifier for example (which is linear), leads to a improved classifier. This
latter shows better classification accuracy and enjoining reduced complexity if
compared to the AP-classifier having cubic complexity (that may be computa-
tionally costly for large datasets [2]).
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6 Conclusion

This paper has studied the idea of enlarging a training set using analogical
proportions as in [4], with two main differences: we only consider pairs of exam-
ples by using continuous analogical proportions which contribute to reduce the
complexity to be quadratic instead of cubic, and we test with ordered nominal
datasets instead of Boolean one.

On the one hand the results obtained by classical machine learning methods
on the enlarged training set generally improve those obtained by applying these
methods to the original training sets. On the other hand, these results, obtained
with a smaller level of complexity, are often not so far from those obtained by
directly applying the analogical proportion-based classification method on the
original training set [2].

References

1. Bayoudh, S., Mouchere, H., Miclet, L., Anquetil, E.: Learning a classifier with very
few examples: analogy based and knowledge based generation of new examples for
character recognition. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
Mladeni¢, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 527—
534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_49

2. Bounhas, M., Prade, H., Richard, G.: Analogy-based classifiers for nominal or
numerical data. Int. J. Approximate Reasoning 91, 36-55 (2017)

3. Bounhas, M., Prade, H., Richard, G.: Oddness-based classification: a new way of
exploiting neighbors. Int. J. Intell. Syst. 33(12), 2379-2401 (2018)

4. Couceiro, M., Hug, N., Prade, H., Richard, G.: Analogy-preserving functions: a way
to extend Boolean samples. In: Proceedings 26th International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, 19-25 August, pp. 1575—-1581
(2017)

5. Derrac, J., Schockaert, S.: Inducing semantic relations from conceptual spaces: a
data-driven approach to plausible reasoning. Artif. Intell. 228, 66-94 (2015)

6. Dubois, D., Prade, H., Richard, G.: Multiple-valued extensions of analogical pro-
portions. Fuzzy Sets Syst. 292, 193-202 (2016)

7. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems 27, pp. 2672-2680. Curran Associates, Inc. (2014)

8. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification.
Technical report, Department of Computer Science, National Taiwan University
(2010)

9. Inoue, H.: Data augmentation by pairing samples for images classification. CoRR
abs/1801.02929 (2018). http://arxiv.org/abs/1801.02929

10. Lieber, J., Nauer, E., Prade, H., Richard, G.: Making the best of cases by approxi-
mation, interpolation and extrapolation. In: Cox, M.T., Funk, P., Begum, S. (eds.)
ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 580-596. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01081-2_38

11. Mertz, J., Murphy, P.: UCI repository of machine learning databases (2000).
ftp://ftp.ics.uci.edu/pub/machine-learning-databases


https://doi.org/10.1007/978-3-540-74958-5_49
http://arxiv.org/abs/1801.02929
https://doi.org/10.1007/978-3-030-01081-2_38

152

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Bounhas and H. Prade

Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms
and two experiments in machine learning. JAIR 32, 793-824 (2008)

Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy
logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNATI),
vol. 5590, pp. 638-650. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02906-6_55

Perfilieva, 1., Dubois, D., Prade, H., Esteva, F., Godo, L., Hoddkové, P.: Inter-
polation of fuzzy data: analytical approach and overview. Fuzzy Sets Syst. 192,
134-158 (2012)

Prade, H., Richard, G.: From analogical proportion to logical proportions. Logica
Universalis 7(4), 441-505 (2013)

Prade, H., Richard, G.: Analogical proportions: from equality to inequality. Int. J.
Approximate Reasoning 101, 234-254 (2018)

Prade, H., Schockaert, S.: Completing rule bases in symbolic domains by analogy
making. In: Galichet, S., Montero, J., Mauris, G. (eds.) Proceedings 7th Conference
European Society for Fuzzy Logic and Technology (EUSFLAT), Aix-les-Bains, 18—
22 July, pp. 928-934. Atlantis Press (2011)

Schockaert, S., Prade, H.: Interpolation and extrapolation in conceptual spaces: a
case study in the music domain. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011.
LNCS, vol. 6902, pp. 217-231. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23580-1_16

Schockaert, S., Prade, H.: Qualitative reasoning about incomplete categorization
rules based on interpolation and extrapolation in conceptual spaces. In: Benferhat,
S., Grant, J. (eds.) SUM 2011. LNCS (LNAI), vol. 6929, pp. 303-316. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23963-2_24

Schockaert, S., Prade, H.: Interpolative and extrapolative reasoning in proposi-
tional theories using qualitative knowledge about conceptual spaces. Artif. Intell.
202, 86-131 (2013)

Schockaert, S., Prade, H.: Interpolative reasoning with default rules. In: Rossi, F.
(ed.) IJCAI 2013, Proceedings 23rd International Joint Conference on Artificial
Intelligence, Beijing, 3-9 August, pp. 1090-1096 (2013)

Schockaert, S., Prade, H.: Completing symbolic rule bases using betweenness and
analogical proportion. In: Prade, H., Richard, G. (eds.) Computational Approaches
to Analogical Reasoning: Current Trends. SCI, vol. 548, pp. 195-215. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54516-0-8

Wolf, L., Martin, I.: Regularization through feature knock out. MIT Computer
Science and Artificial Intelligence Laboratory (CBCL Memo 242) (2004)


https://doi.org/10.1007/978-3-642-02906-6_55
https://doi.org/10.1007/978-3-642-02906-6_55
https://doi.org/10.1007/978-3-642-23580-1_16
https://doi.org/10.1007/978-3-642-23580-1_16
https://doi.org/10.1007/978-3-642-23963-2_24
https://doi.org/10.1007/978-3-642-54516-0_8

®

Check for
updates

Towards a Reconciliation Between
Reasoning and Learning - A Position
Paper

Didier Dubois and Henri Prade®)

IRIT - CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
{dubois,prade}@irit.fr

Abstract. The paper first examines the contours of artificial intelli-
gence (Al) at its beginnings, more than sixty years ago, and points out
the important place that machine learning already had at that time. The
ambition of AI of making machines capable of performing any informa-
tion processing task that the human mind can do, means that AT should
cover the two modes of human thinking: the instinctive (reactive) one
and the deliberative one. This also corresponds to the difference between
mastering a skill without being able to articulate it and holding some
pieces of knowledge that one can use to explain and teach. In case a
function-based representation applies to a considered AI problem, the
respective merits of learning a universal approximation of the function
vs. a rule-based representation are discussed, with a view to better draw
the contours of AI. Moreover, the paper reviews the relative positions of
knowledge and data in reasoning and learning, and advocates the need
for bridging the two tasks. The paper is also a plea for a unified view of
the various facets of Al as a science.

1 Introduction

What is artificial intelligence (AI) about? What are the research topics that
belong to AI? What are the topics that stand outside? In other words, what
are the contours of AI? Answers to these questions may have evolved with time,
as did the issue of the proper way (if any) of doing Al Indeed over time, Al
has been successively dominated by logical approaches (until the mid 1990’s)
giving birth to the so-called “symbolic AI”, then by (Bayesian) probabilistic
approaches, and since recently by another type of numerical approach, artificial
neural networks. This state of facts has contributed to developing antagonistic
feelings between different schools of thought, including claims of supremacy of
some methods over others, rather than fostering attempts to understand the
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potential complementarity of approaches. Moreover, when some breakthrough
takes place in some sector of Al such as expert systems in the 1980’s, or fuzzy
logic in the 1990’s (outside mainstream AI), or yet deep learning [51] nowadays,
it is presented through its technological achievements rather than its actual
scientific results. So we may even - provocatively - wonder: Is Al a science, or
just a bunch of engineering tools? In fact, Al has developed over more than sixty
years in several directions, and many different tools have been proposed for a
variety of purposes. This increasing diversity, rather than being a valuable asset,
may be harmful for an understanding of AI as a whole, all the more so as most
AT researchers are highly specialized in some area and are largely ignoring the
rest of the field.

Besides, beyond the phantasms and fears teased by the phrase ‘artificial
intelligence’, the meaning of words such as ‘intelligence’, ‘learning’, or ‘reason-
ing’ has a large spectrum and may refer to quite different facets of human mind
activities, which contributes to blur the meaning of what we claim when we
are using the acronym Al. Starting with ‘intelligence’, it is useful to remember
the dichotomy popularized in [44] between two modes of thinking: “System 1”
which is fast, instinctive and emotional, while “System 2” is slower, more delib-
erative, and more logical. See [76] for an illustration of similar ideas in the area
of radiological diagnosis, where “super-experts” provide correct diagnosis, even
on difficult cases, without any deliberation, while “ordinary experts” may hesi-
tate, deliberate on the difficult cases and finally make a wrong diagnosis. Yet, a
“super-expert” is able to explain what went wrong to an “ordinary expert” and
what important features should have been noticed in the difficult cases.

Darwiche [21] has recently pointed out that what is achieved by deep leaning
corresponds to tasks that do not require much deliberation, at least for a top
expert, and is far from covering all that may be expected from AI. In other words,
the system is mastering skills rather than being also able to elaborate knowledge
for thinking and communicating about its skills. This is the difference between
an excellent driver (without teaching capability) and a driving instructor.

The intended purpose of this paper is to advocate in favor of a unified view
of AI both in terms of problems and in terms of methods. The paper is orga-
nized as follows. First, in Sect. 2 a reminder on the history of the early years of
AT emphasizes the idea that the diversity of AI has been there from its incep-
tion. Then Sect. 3 first discusses relations between a function-based view and a
rule-based view of problems, in relation with “modeling versus explaining” con-
cerns. The main paradigms of Al are then restated and the need for a variety of
approaches ranging from logic to probability and beyond is highlighted. Section 4
reviews the roles of knowledge and data both in reasoning and in machine learn-
ing. Then, Sect.5 points out problems where bridging reasoning and learning
might be fruitful. Section 6 calls for a unified view of Al, a necessary condition
for letting it become a mature science.
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2 A Short Reminder of the Beginnings of Al

To have a better understanding of Al, it may be useful to have a historical view
of the emergence of the main ideas underling it [53,54,64]. We only focus here
on its beginnings. Still it is worth mentioning that exactly three hundreds years
before the expression ‘artificial intelligence’ was coined, the English philoso-
pher Thomas Hobbes of Malmesbury (1588-1679) described human thinking
as a symbolic manipulation of terms similar to mathematical calculation [39].
Indeed, he wrote “Per Ratiocinationem autem intelligo computationem.” (or in
English one year later “By ratiocination I mean computation.”) The text con-
tinues with “Now to compute, is either to collect the sum of many things that
are added together, or to know what remains when one thing is taken out of
another. Ratiocination, therefore, is the same with addition and subtraction;”
One page after one reads: “We must not therefore think that computation, that
18, ratiocination, has place only in numbers, as if man were distinguished from
other living creatures (which is said to have been the opinion of Pythagoras) by
nothing but the faculty of numbering; for magnitude, body, motion, time, degrees
of quality, action, conception, proportion, speech and names (in which all the
kinds of philosophy consist) are capable of addition and subtraction.” Such a
description appears retrospectively quite consonant with what AI programs are
trying to do!

In the late 1940’s with the advent of cybernetics [96], the introduction of
artificial neural networks [56]', the principle of synaptic plasticity [37] and the
concept of computing machines [91] lead to the idea of thinking machines with
learning capabilities. In 1950, the idea of machine intelligence appeared in a
famous paper by Turing [92], while Shannon [89] was investigating the possibility
of a program playing chess, and the young Zadeh [97] was already suggesting
multiple-valued logic as a tool for the conception of thinking machines.

As it is well-known, the official birthday act of Al corresponds to a research
program whose application for getting a financial support, was written in the
summer of 1955, and entitled “A proposal for the Dartmouth summer research
project on artificial intelligence” (thus putting the name of the new field in the
title!); it was signed by the two fathers of AI, John McCarthy (1927-2011),
and Marvin Minsky (1927-2016), and their two mentors Nathaniel Rochester
(1919-2001) (who designed the IBM 701 computer and was also interested in
neural network computational machines), and Claude Shannon (1916-2001) [55]
(in 1950 he was already the founder of digital circuit design theory based on
Boolean logic, the founder of information theory, but also the designer of an
electromechanical mouse (Theseus) capable of searching through the corridors
of a maze until reaching a target and of acquiring and using knowledge from
past experience). Then a series of meetings was organized at Dartmouth College
(Hanover, New Hampshire, USA) during the summer of 1956. At that time,
McCarthy was already interested in symbolic logic representations, while Minsky

! One would notice the word ‘logical’ in the title of this pioneering paper.
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had already built a neural network learning machine (he was also a friend of
Rosenblatt [79] the inventor of perceptrons).

The interests of the six other participants can be roughly divided into rea-
soning and learning concerns, they were on the one hand Simon (1916-2001),
Newell (1927-1992) [63] (together authors with John Clifford Shaw (1922-1991)
of a program The Logic Theorist able to prove theorems in mathematical logic),
and More [60] (a logician interested in natural deduction at that time), and
on the other hand Samuel (1901-1990) [81] (author of programs for checkers,
and later chess games), Selfridge (1926-2008) [84] (one of the fathers of pattern
recognition), and Solomonoff (1926-2009) [90] (already author of a theory of
probabilistic induction).

Interestingly enough, as it can be seen, these ten participants, with differ-
ent backgrounds ranging from psychology to electrical engineering, physics and
mathematics, were already the carriers of a large variety of research directions
that are still present in modern Al, from machine learning to knowledge repre-
sentation and reasoning.

3 Representing Functions and Beyond

There are two modes of representation of knowledge, that can be called respec-
tively functional and logical. The first mode consists in building a large, often
numerical, function that produces a result when triggered by some input. The
second mode consists of separate, possibly related, chunks of explicit knowledge,
expressed in some language. The current dominant machine learning paradigm
(up to noticeable exceptions) has adopted the functional approach?, which
ensures impressive successes in tasks requiring reactiveness, at the cost of los-
ing explanatory power. Indeed, we can argue that what is learnt is know-how
or skills, rather than knowledge. The other, logical, mode of representation, is
much more adapted to the encoding of articulated knowledge, reasoning from
it, and to the production of explanations via deliberation, but its connection to
learning from data is for the most part still in infancy.

A simple starting point for discussing relationships between learning and
reasoning is to compare the machineries of a classifier and a rule-based expert
system, for diagnosis for instance. In both cases, a function-based view may
apply. On the one hand, from a set of examples (of inputs and outputs of the
function, such as pairs (symptoms, disease)) one can easily predict the disease
corresponding to a new case via its input symptoms, after learning some function
(e.g., using neural nets). On the other hand, one may have a set of expert rules
stating that if the values of the inputs are such and such, the global evaluation
should be in some subset. Such rules are mimicking the function. If collected
from an expert, rules may turn out to be much less successful than the function
learned from data. Clearly, the first view may provide better approximations
and does not require the elicitation of expert rules, which is costly. However,
the explanatory power will be poor in any case, because it will not be possible

2 Still this function-based approach is often cast in a probabilistic modeling paradigm.
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to answer “why not” questions and to articulate explanations based on causal
relations. On the contrary, if causal knowledge is explicitly represented in the
knowledge base, it has at least the merit of offering a basis for explanations (in a
way that should be cognitively more appropriate for the end-user). It is moreover
well-known that causal information cannot easily be extracted from data: only
correlations can be laid bare if no extra information is added [66].

The fuzzy set literature offers early examples of the replacement of an auto-
matic control law by a set of rules. Indeed Zadeh [98] proposed to use fuzzy
expert rules for controlling complex non linear dynamic systems that might be
difficult to model using a classical automatic control approach, while skilled
humans can do the job. This was rapidly shown to be successful [52]. The fact of
using fuzzy rules, rather than standard Boolean if-then rules, had the advantage
of providing a basis for an interpolation mechanism, when an input was firing
several rules to some degree. Although the approach was numerical and quite
far from the symbolic logic-based Al mainstream trend in those times, it was
perceived as an Al-inspired approach, since it was relying on the representation
of expert know-how by chunks of knowledge, rather than on the derivation of a
control law from the modeling of the physical system to be controlled (i.e., the
classical control engineering paradigm). After some time, it was soon recognized
that fuzzy rules could be learnt rather than obtained from experts, while keeping
excellent results thanks to the property of universal approximation possessed by
sets of fuzzy rules. Mathematical models of such fuzzy rules are in fact closely
related to neural network radial basis functions. But, fuzzy rules thus obtained
by learning may become hardly intelligible. This research trend, known under
the names of ‘soft computing’ or ‘computational intelligence’, thus often drifted
away from an important Al concern, the explainability power; see [27] for a
discussion.

The long term ambition of Al is to make machines capable of performing any
information processing task the human mind can perform. This certainly includes
recognition, identification, decision and diagnosis tasks (including sophisticated
ones). They are “System 1” tasks (using Kahneman terminology) as long as
we do not need to explain and reason about obtained results. But there are
other problems that are not fully of this kind, even if machine learning may
also play a role in their solving. Consider for instance the solving of quadratic
equations. Even if we could predict, in a bounded domain, by machine learning
techniques, whether an equation has zero, one or two solutions and what are their
values (with a good approximation) from a large amount of examples, the solving
of such equations by discovering their analytical solution(s), via factorization
through symbolic calculations, seems to be a more powerful way of handling of
the problem (the machine could then teach students).

AT problems cannot always be viewed in terms of the function-based view
mentioned above. There are cases where we do not have a function, only a one-to-
many mapping, e.g., when finding all the solutions (if any) of a set of constraints.
Apart from solving combinatorial problems, tasks such as reasoning about static
or dynamical situations, or building action plans, or explaining results, commu-
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nicating explanations pertaining to machine decisions in a meaningful way to
an end-user, or analyzing arguments and determining their possible weakness,
or understanding what is going on in a text, a dialog in natural langage, in an
image, a video, or finding relevant information and summarizing it are examples
that may require capabilities beyond pure machine learning. This is why Al, over
the years, has developed general representation settings and methods capable of
handling large classes of situations, while mastering computation complexity.
Thus, at least five general paradigms have emerged in Al:

— Knowledge representation with symbolic or numerical structured settings
for representing knowledge or preferences, such as logical languages, graph-
ical representations like Bayesian networks, or domain ontologies describing
taxonomy of concepts. Dedicated settings have been also developed for the
representation of temporal or spatial information, of uncertain pieces of infor-
mation, or of independence relations.

— Reasoning and decision Different types of reasoning tasks, beyond classical
deduction, have been formalized such as: non monotonic reasoning for deal-
ing with exception-tolerant rules in the presence of incomplete information,
or reasoning from inconsistent information, or belief revision, belief updating,
information fusion in the presence of conflicts, or formal argumentation han-
dling pros and cons, or yet reasoning directly from data (case-based reasoning,
analogical reasoning, interpolation, extrapolation). Models for qualitative (or
quantitative) decision from compact representations have been proposed for
decision under uncertainty, multiple criteria, or group decisions.

— General algorithms for problem solving This covers a panoply of generic
tools ranging from heuristic ordered search methods, general problem solver
techniques, methods for handling constraints satisfaction problems, to effi-
cient algorithms for classical logic inference (e.g., SAT methods), or for deduc-
tion in modal and other non-classical logics.

— Learning The word ‘learning’ also covers different problems, from the clas-
sification of new items based on a set of examples (and counter-examples),
the induction of general laws describing concepts, the synthesis of a function
by regression, the clustering of similar data (separating dissimilar data into
different clusters) and the labelling of clusters, to reinforcement learning and
to the discovery of regularities in data bases and data mining. Moreover, each
of these problems can often be solved by a variety of methods.

— Multiple agent AI Under this umbrella, there are quite different problems
such as: the cooperation between human or artificial agents and the organi-
zation of tasks for achieving collective goals, the modeling of BDI agents
(Belief, Desire, Intention), possibly in situations of dialogue (where, e.g.,
agents, which have different information items at their disposal, do not pur-
sue the same goals, and try to guess the intentions of the other ones), or the
study of the emergence of collective behaviors from the behaviors of elemen-
tary agents.
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4 Reasoning with Knowledge or with Data

In the above research areas, knowledge and data are often handled separately.
In fact, Al traditionally deals with knowledge rather than with data, with the
important exception of machine learning, whose aim can sometimes be viewed
as changing data into knowledge. Indeed, basic knowledge is obtained from data
by induction, while prior background knowledge may help learning machineries.
These remarks suggest that the joint handling of knowledge and data is a general
issue, and that combining reasoning and learning methods should be seriously
considered.

Rule-based systems, or ontologies expressed by means of description logics,
or yet Bayesian networks, represent background knowledge that is useful to make
prediction from facts and data. In these reasoning tasks, knowledge as well as
data is often pervaded with uncertainty. This has been extensively investigated.

Data, provided that they are reliable, are positive in nature since their exis-
tence manifests the actual possibility of what is observed or reported. This con-
trasts with knowledge that delimit the extent of what is potentially possible by
specifying what is impossible (which has thus a negative flavor). This is why
reasoning from both knowledge and data goes much beyond the application of
generic knowledge to factual data as in expert systems, and even the separate
treatment of knowledge and data in description logics via ‘TBox’ and ‘ABox’
[4]. It is is a complex issue, which has received little attention until now [93].

As pointed out in [71], reasoning directly with data has been much less stud-
ied. The idea of similarity naturally applies to data and gives birth to specific
forms of reasoning such as case-based reasoning [45], case-based decision [35], or
even case-based argumentation. “Betweenness” and similarity are at the basis
of interpolation mechanisms, while analogical reasoning, which may be both a
matter of similarity and dissimilarity, provides a mechanism for extrapolation.
A well-known way of handling similarity and interpolation is to use fuzzy rules
(where fuzzy set membership degrees capture the idea of similarity w.r.t. the
core value(s) of the fuzzy set) [67]. Besides, analogical reasoning, based on ana-
logical proportions (i.e., statements of the form “a is to b as ¢ is to d”, where
items a, b, c,d are represented in terms of Boolean, nominal or numerical vari-
ables), which can be logically represented [28,58,72], provides an extrapolation
mechanism that from three items a, b, ¢ described by complete vectors, amounts
to inferring the missing value(s) in incomplete vector d, providing that a,b, ¢, d
makes an analogical proportion component-wise on the known part of d; this was
successfully applied to classification [14,18,57], and more recently to preference
learning [13,32].

Lastly, the ideas of interpolation and extrapolation closely related to analogi-
cal proportion-based inference seem to be of crucial importance in many numeri-
cal domains. They can be applied to symbolic settings in the case of propositional
categorization rules, using relations of betweenness and parallelism respectively,
under a conceptual spaces semantics [83]; see [82] for an illustration.
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5 Issues in Learning: Incomplete Data and Representation
Formats

The need for reasoning from incomplete, uncertain, vague, or inconsistent infor-
mation, has led to the development of new approaches beyond logic and prob-
ability. Incompleteness is a well-known phenomenon in classical logic. However,
many reasoning problems exceed the capabilities of classical logic (initially devel-
oped in relation with the foundations of mathematics where statements are true
or false, and there is no uncertainty in principle). As for probability theory,
single probability distributions, often modeled by Bayesian networks are not
fully appropriate for handling incomplete information nor epistemic uncertainty.
There are different, but related, frameworks for modeling ill-known probabilities
that were developed in the last 50 years by the Artificial Intelligence community
at large [95]: belief functions and evidence theory (which may be viewed as a
randomization of the set-based approach to incomplete information), imprecise
probability theory [3,94] (which uses convex families of probability functions)
and quantitative possibility theory (which is the simplest model since one of the
lower and the upper probability bounds is trivial).

The traditional approach for going from data to knowledge is to resort to sta-
tistical inferential methods. However, these methods used to assume data that
are precise and in sufficient quantity. The recent concern with big data seems
to even strengthen the relevance of probability theory and statistics. However
there are a number of circumstances where data is missing or is of poor quality,
especially if one tries to collect information for building machines or algorithms
supposed to face very complex or unexpected situations (e.g., autonomous vehi-
cles in crowded areas). The concern of Artificial Intelligence for reasoning about
partial knowledge has led to a questioning of traditional statistical methods when
data is of poor quality [19,38,42,43].

Besides, the fact that we may have to work with incomplete relational data
and that knowledge may also be uncertain has motivated the development of
a new probabilistic programming language first called “Probabilistic Similarity
Logic”, and then “Probabilistic Soft Logic” (PSL, for short) where each ground
atom in a rule has a truth value in [0, 1]. It uses the Lukasiewicz t-norm and
co-t-norm to handle the fuzzy logical connectives [5,33,34]. We are close to rep-
resentation concerns of fuzzy answer set programs [61]. Besides, there is a need
for combining symbolic reasoning with the subsymbolic vector representation
of neural networks in order to use gradient descent for training the neural net-
work to infer facts from an incomplete knowledge base, using similarity between
vectors [16,17,78].

Machine learning may find some advantages to use advanced representation
formats as target languages, such as weighted logics [26] (Markov logic, proba-
bilistic logic programs, multi-valued logics, possibilistic logic, etc.). For instance,
qualitative possibility theory extends classical logic by attaching lower bounds of
necessity degrees and captures nonmonotonic reasoning, while generalized possi-
bilistic logic [30] is more powerful and can capture answer-set programming, or
reason about the ignorance of an agent. Can such kinds of qualitative uncertainty
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modeling, or yet fuzzy or uncertain description logics, uncertainty representa-
tion formalisms, weighted logics, be used more extensively in machine learning?
Various answers and proposals can be found in [48-50,86,88]. This also raises
the question of extending version space learning [59] to such new representation
schemes [41,73,75].

If-then rules, in classical logic formats, are a popular representation format in
relational learning [80]. Association rules have logical and statistical bases ; they
are rules with exceptions completed by confidence and support degrees [1,36].
But, other types of rules may be of interest. Mining genuine default rules that
obey Kraus, Lehmann and Magidor postulates [47] for nonmonotonic reasoning
relies on the discovery of big-stepped probabilities [8] in a database [9]. Multiple
threshold rules, i.e., rules describing how a global evaluation depends on multiple
criteria evaluations on linearly ordered scales, such as, e.g., selection rules of the
form “if 1 > aq and --- and x, > a, then y > 0" play a central role in ordinal
classification [46] and can be represented by Sugeno integrals or their extensions
[15,74]. Gradual rules, i.e., statements of the form “the more x is A, the more y is
B”, where A, and B are fuzzy sets, are another representation format of interest
[65,87]. Other types of fuzzy rules may provide a rule-based interpretation [20]
for neural nets, which may be also related to non-monotonic inference [7,22]. All
these examples indicates the variety of rules that makes sense and be considered
both in reasoning and in learning.

Another trend of research has been also motivated by the extraction of sym-
bolic knowledge from neural networks [22] under the form of nonmonotonic rules.
The goal of a neuro-symbolic integration has been pursued with the proposal of
a connectionist modal logic, where extended modal logic programs are trans-
lated into neural network ensembles, thus providing a neural net view of, e.g.,
the muddy children problem [24]. Following a similar line of thought, the same
authors translate a logic program encoding an argumentation network, which is
then turned into a neural network for arguments [23]. A more recent series of
works [25,85,86] propose another form of integration between logic and neural
nets using a so-called “Real Logic”, implemented in deep Tensor Neural Net-
works, for integrating deductive reasoning and machine learning. The semantics
of the logical constants is in terms of vectors of real numbers, and first order
logic formulas have degrees of truth in [0, 1] handled with Lukasiewicz multiple-
valued logic connectives. Somewhat related is a work on ontology reasoning [40]
where the goal is to generate a neural network with binary outputs that, given a
database storing tuples of the form (subject, predicate, object), is able, for any
input literal, to decide the entailment problem for a logic program describing the
ontology. Others look for an exact representation of a binarized neural network
as a Boolean formula [62].

The use of degrees of truth multiple-valued logic raises the question of
the exact meaning of these degrees. In relation with this kind of work, some
have advocated a non-probabilistic view of uncertainty [11], but strangely
enough without any reference to the other uncertainty representation frame-
works! Maybe more promising is the line of research initiated a long time ago by
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Pinkas [68,69] where the idea of penalty logic (related to belief functions [31]) has
been developed in relation with neural networks, where penalty weights reflect
priorities attached to logical constraints to be satisfied by a neural network
[70]. Penalty logics and Markov logic [77] are also closely related to possibilistic
logic [30].

Another intriguing question would be to explore possible relations between
spikes neurons [12], which are physiologically more plausible than classical artifi-
cial neural networks, and fire when conjunctions of thresholds are reached, with
Sugeno integrals (then viewed as a System 1-like black box) and their logical
counterparts [29] (corresponding to a System 2-like representation).

6 Conclusion

Knowledge representation and reasoning on the one hand, and machine learning
on the other hand, have been developed largely as independent research trends
in artificial intelligence in the last three decades. Yet, reasoning and learning
are two basic capabilities of the human mind that do interact. Similarly the two
corresponding Al research areas may benefit from mutual exchanges. Current
learning methods derive know-how from data in the form of complex functions
involving many tuning parameters, but they should also aim at producing artic-
ulated knowledge, so that repositories, storing interpretable chunks of informa-
tion, could be fed from data. More precisely, a number of logical-like formalisms,
whose explanatory capabilities could be exploited, have been developed in the
last 30 years (non-monotonic logics, modal logics, logic programming, probabilis-
tic and possibilistic logics, many-valued logics, etc.) that could be used as target
languages for learning techniques, without restricting to first-order logic, nor to
Bayes nets.

Interfacing classifiers with human users may require some ability to provide
high level explanations about recommendations or decisions that are understand-
able by an end-user. Reasoning methods should handle knowledge and informa-
tion extracted from data. The joint use of (supervised or unsupervised) machine
learning techniques and of inference machineries raises new issues. There is a
number of other points, worth mentioning, which have not be addressed in the
above discussions:

— Teachability A related issue is more generally how to move from machine
learning models to knowledge communicated to humans, about the way the
machine proceeds when solving problems.

— Using prior knowledge Another issue is a more systematic exploitation of
symbolic background knowledge in machine learning devices. Can prior causal
knowledge help exploiting data and getting rid of spurious correlations? Can
an argumentation-based view of learning be developed?

— Representation learning Data representation impacts the performance of
machine learning algorithms [10]. In that respect, what may be, for instance,
the role of vector space embeddings, or conceptual spaces?
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— Unification of learning paradigms Would it be possible to bridge learning
paradigms from transduction to inductive logic programming? Even including
formal concept analysis, or rough set theory?

This paper has especially advocated the interest of a cooperation between two
basic areas of Al: knowledge representation and reasoning on the one hand and
machine learning on the other hand, reflecting the natural cooperation between
two modes, respectively reactive and deliberative, of human intelligence. It is also
a plea for maintaining a unified view of Al all facets of which have been present
from the very beginning, as recalled in Sect.2 of this paper. It is time that Al
comes of age as a genuine science, which means ending unproductive rivalries
between different approaches, and fostering a better shared understanding of the
basics of Al through open-minded studies bridging sub-areas in a constructive
way. In the same spirit, a plea for a unified view of computer science can be found
in [6]. Mixing, bridging, hybridizing advanced ideas in knowledge representation,
reasoning, and machine learning or data mining should renew basic research in
AT and contribute in the long term to a more unified view of AI methodology.
The interested reader may follow the work in progress of the group “Amel”
[2] aiming at a better mutual understanding of research trends in knowledge
representation, reasoning and machine learning, and how they could cooperate.
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Abstract. Two approaches have been proposed for the graphical han-
dling of qualitative conditional preferences between solutions described
in terms of a finite set of features: Conditional Preference networks (CP-
nets for short) and more recently, Possibilistic Preference networks (7-
pref nets for short). The latter agree with Pareto dominance, in the sense
that if a solution violates a subset of preferences violated by another
one, the former solution is preferred to the latter one. Although such an
agreement might be considered as a basic requirement, it was only con-
jectured to hold as well for CP-nets. This non-trivial result is established
in the paper. Moreover it has important consequences for showing that
m-pref nets can at least approximately mimic CP-nets by adding explicit
constraints between symbolic weights encoding the ceteris paribus pref-
erences, in case of Boolean features. We further show that dominance
with respect to the extended m-pref nets is polynomial.

1 Introduction

Ceteris Paribus Conditional Preference Networks (CP-nets, for short) [5,6] were
introduced in order to provide a convenient tool for the elicitation of multidi-
mensional preferences and accordingly compare the relative merits of solutions
to a problem. They are based on three assumptions: only ordinal information is
required; the preference statements deal with the values of single decision vari-
ables in the context of fixed values for other variables that influence them; pref-
erences are provided all else being equal (ceteris paribus). CP-nets were inspired
by Bayesian networks (they use a dependency graph, most of the time a directed
acyclic one, whose vertices are variables) but differ from them by being quali-
tative, by their use of the ceteris paribus assumption, and by the fact that the
variables in a CP-net are decision variables rather than random variables. In
the most common form of CP-nets, each preference statement in the prefer-
ence graph translates into a strict preference between two solutions (i.e., value
assignment to all decision variables) differing on a single variable (referred to as
a worsening flip) and the dominance relation between solutions is the transitive
closure of this worsening flip relation.
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Another kind of conditional preference network, called 7-pref nets, has been
more recently introduced [1], and is directly inspired by the counterpart of
Bayesian networks in possibility theory, called possibilistic networks [3]. A II-pref
net shares with CP-nets its directed acyclic graphical structure between decision
variables, and conditional preference statements attached to each variable in the
contexts defined by assignments of its parent variables in the graph. The prefer-
ence for one value against another is captured by assigning degrees of possibility
(here interpreted as utilities) to these values. When the only existing prefer-
ences are those expressed by the conditional statements (there are no preference
statements across contexts or variables), it has been shown that the dominance
relation between solutions is obtained by comparing vectors of symbolic utility
values (one per variables) using Pareto-dominance.

Some results comparing the preference relations between solutions obtained
from CP-nets and m-pref nets with Boolean decision variables are given in [1].
This is made easy by the fact that CP-nets and 7-pref nets share the graph struc-
ture and the conditional preference tables. It was shown that the two obtained
dominance relations between solutions cannot conflict with each other (there
is no preference reversal between them), and that ceteris paribus information
can be added to m-pref nets in the form of preference statements between spe-
cific products of symbolic weights. One pending question was to show that the
dominance relation between solutions obtained from a CP-net refines the prefer-
ence relation obtained from the corresponding 7-pref net. In the case of Boolean
variables, the m-pref net ordering can be viewed as a form of Pareto ordering:
each assignment of a decision variables is either good (= in agreement with
the preference statement) or bad. The pending question comes down to prove
a monotonicity condition for the preference relation on solutions, stating that
as soon as a solution contains more (in the sense of inclusion) good variable
assignments than another solution, it should be strictly preferred by the CP-
net. Strangely enough this natural question has hardly been addressed in the
literature so far (see [2] for some discussion). The aim of this paper is to solve
this problem, and more generally to compare the orderings of solutions using the
two preference modeling structures.

We further show that dominance with respect to extended m-pref nets can
be computed in polynomial time, using linear programming; it thus forms a
polynomial upper approximation for the CP-net dominance relation.

The paper is structured as follows: In Sect. 2 we define a condition, that we
call local dominance, that is shown to be a sufficient condition for dominance
in a CP-net. The follow two sections, Sects. 3 and 4, make use of this sufficient
condition in producing results that show that a form of Pareto ordering is a
lower bound for a lower bound for CP-net dominance. Section 5 then uses the
results of Sect. 4 to show that m-pref nets dominance is a lower bound for CP-net
dominance. We also show there that the extended m-pref nets dominance, which
is an upper bound for CP-net dominance, can be computed in polynomial time.
Section 6 concludes.
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2 A Sufficient Condition for Dominance in a CP-Net

We start by recalling the definition of CP-nets and a characterization of the
corresponding dominance relation between solutions.

2.1 Defining CP-nets

We consider a finite set of variables V. Each variable X € V has an associ-
ated finite domain Dom(X). An outcome (also called a solution) is a complete
assignment to the variables in V), i.e., a function w that, for each variable X € V,
w(X) € Dom(X).

A CP-net X over set of variables V is a pair (G, P). The first component G
is a directed graph with vertices in V, and we say that CP-net X' is acyclic if G
is acyclic. For variable X € V), let Ux be the set of parents of X in G, i.e., the
set of variables Y such that (Y, X) is an edge in G. The second component P of
X consists of a collection of partial orders {>X : X € V,u € Dom(Ux)}, called
conditional preference tables; for each variable X € V and each assignment u to
the parents Ux of X, relation >uX is a strict partial order (i.e., a transitive and
irreflexive relation) on Dom(X'). We make the assumption that for each variable
X there exists at least one assignment u to Ux such that >:X is non-empty
(i.e., for each X € V there exists some z,2’ € Dom(X) and some u such that
x >X2').

Let w be an outcome and, for variable X € V), let u = w(Ux ) be the projection
of w to the parents set of X. If z >:X 2’ then we shall write, for simplicity, (with
the understanding that z and 2’ are elements of Dom(X)):

x >z’ given w [with respect to X].

Note that if v is any outcome whose projection to the parents set of X is also
w then [x > 2’ given v] if and only if [z > &’ given w]; the values of w(Y") and
u(Y') may differ for variables Y ¢ Ux U {X}, but the preference between x and
7' in the context u does not depend on Y.

We say that X' is locally totally ordered if each associated strict partial order
>X is a strict total order, so that for each pair of different elements = and 2’ of

Dom(X), we have either z >X 2/ or 2/ >X x. We say that X is Boolean if for
each X € V, each domain has exactly two elements: |Dom(X)| = 2.1

The Dominance Relation Associated with a CP-Net. Given a CP-net X/
over variables V, we say that w’ is a worsening flip from w w.r.t. X, if w’ and w
are outcomes that differ on exactly one variable X € V (so that w'(X) # w(X)
and for all Y € V\ {X}, w/(Y) = w(Y)), and w(X) >X w'(X), where u is the
projection of w (or w’) to the parent set Ux of X.

The set of direct consequences of CP-net X' are the set of pairs (w, w’), where
w’ is a worsening flip from w w.r.t. X, forming an irreflexive relation:

L If a variable has only one element in its domain, it is a constant, and we could remove
it if we wished.
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Definition 1. The worsening flip relation >5f is defined by w >£f w’ if and
only if w(X) >X w'(X) where u = w(lUx) = w'(Ux). Let the binary relation
>CZp on outcomes denote the transitive closure of >ff. If w >CZp w' we say that
w |[cp-]dominates w’ [with respect to X].

The relation >f g s well-defined due to the ceteris paribus assumption. A
sequence of outcomes wi,...,w; is said to be a worsening flipping sequence
[with respect to CP-net X] from wy to wy if, for each i = 1,...,k — 1, w41
is a worsening flip from w;. Thus, w cp-dominates w’ if and only if there is a
worsening flipping sequence from w to w’'.

2.2 Some Simple Conditions for CP-Dominance

For outcomes w and v we define A(w,v) to be the set of variables on which
they differ, i.e., {X € V : w(X) # v(X)}. The following lemma gives two simple
sufficient conditions for w to dominate v with respect to a CP-net. In Case (i),
for each variable X in A(w,v), there is a worsening flip from w, changing w(X)
to v(X). In Case (ii) cflip from v changing v(X) to w(X).

Lemma 1. Consider an acyclic CP-net X and two different outcomes w and v.
Then w cp-dominates v w.r.t. CP-net X if either

(i) for all X € A(w,v), w(X) > v(X) given w; or
(i) for all X € A(w,v), w(X) > v(X) given v.

Proof. Let k = |A(w,v)|, which is greater than zero because w # v. Let us
label the elements of A(w,v) as X1,..., Xy in such a way that if ¢ < j then
X; is not an ancestor of X; with respect to the CP-net directed graph; this
is possible because of the acyclicity assumption on Y. To prove (i), beginning
with outcome w, we flip variables of w to v in the order Xy, ..., X}, so that we
first change w(X7) to v(X1), and then change w(Xs) to v(X3), and so on. The
choice of variable ordering means that when we flip variable X; the assignment
to the parents Ux, of X; is just w(Ux,). It can be seen that this is a sequence
of worsening flips from w to v, and thus, w cp-dominates v w.r.t. X.

Part (ii) is very similar, except that we start with v, and iteratively change
X; from v(X;) to w(X;) in the order ¢ = 1,... k. The assumption behind part
(ii) implies that we obtain an improving flipping sequence from v to w. O

Lemma 1 can be used to prove a more general form of itself.

Proposition 1. Consider an acyclic CP-net X and two different outcomes w
and v. Assume that for each X € A(w,v) either w(X) > v(X) given w w.r.t. X,
or w(X) > v(X) given v w.r.t. X. Then w cp-dominates v w.r.t. X.

Proof. Define outcome u by u(X) = v(X) if X is such that w(X) > v(X) given
w (so X € A(w,v)), and u(X) = w(X) otherwise. Then A(w,v) is the disjoint
union of A(w,u) and A(u,v).
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For all X € A(w,u), w(X) > u(X) given w, because u(X) = v(X) and
w(X) > v(X) given w. Lemma 1 implies that w cp-dominates v w.r.t. X.

For all X € A(u,v), u(X) > v(X) given v, since u(X) = w(X) and u(X) >
v(X) given w. Lemma 1 implies that u cp-dominates v w.r.t. X. Thus, w cp-
dominates v w.r.t. X. O

2.3 The Local Dominance Relation

The conditions of Proposition 1 involve what might be called a local dominance
condition.

Definition 2. Given an acyclic CP-net X we say that outcome w locally dom-
inates outcome v [w.r.t. CP-net X, written w > v, if for each X € A(w,v)
either w(X) > v(X) given w w.r.t. X; or w(X) > v(X) given v w.r.t. X.

Proposition 1 above implies that if w locally dominates v then w cp-dominates
v, so that w >7, v implies w >CEp v. In fact, we even have the following result.

Proposition 2. Given an acyclic CP-net X', binary relation >CEp s the transi-
tive closure of >¥p,.

Proof. Let > be the transitive closure of >7),. Since, by Proposition 1, >7, is
a subset of >CEp7 and the latter is transitive, we have that > is a subset of >CEp.

Suppose that w’ is a worsening flip from w w.r.t. X. Then, w(X) > w'(X)
given w and A(w,w’) = {X}, which implies that w locally dominates w’. This

shows that >, and thus, >, contains the worsening flip relation >7f ¢ induced
by X. Being transitive, > contains the transitive closure >CEp of > 7- We have
therefore shown that >CEp equals >, the transitive closure of >7,. O

3 Pareto Ordering for CP-Nets in the General Case

A Pareto Ordering between outcomes comes down to saying that w dominates
w' if VX € V,w(X) is at least as good an assignment as w'(X) (and better
for some X). However, it is not so easy to define Pareto dominance between
outcomes in a CP-net when variables are not Boolean. It is often impossible
to compare w(X) and w’(X) directly as there is generally no relation >X that
compares them. To perform this kind of comparison in the general case of a
dependency graph, we must in some way map the various preference relations
>X on Dom(X) to some common scale, either totally (using a scoring function)
or partially on some landmark values (mapping the best choices or the worst
choices). We define a somewhat extreme Pareto-like relation, using the latter
idea, below. As mentioned in Sect. 1, and discussed in detail in Sect. 4, the more
natural form of Pareto dominance applies only for the case of Boolean CP-nets.
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3.1 A Variant of Pareto Dominance for CP-nets

We define relation >§p on the set of outcomes, which can be viewed as being
based on a strong variant of the Pareto condition (with sp standing for strong
Pareto).

Definition 3 (Fully dominating and fully dominated). For outcome w,
we say that x is fully dominating in X given w [w.r.t. X] if € Dom(X), and
for all ' € Dom(X) \ {z} we have x > 2’ given w w.r.t. X.

Similarly, we say that x is fully dominated in X given w [w.r.t. Y] if z €
Dom(X), and |Dom(X)| > 1 and for all 2’ € Dom(X) \ {z} we have 2’ > z
given w w.r.t. 3.

Thus, if x is fully dominating in X given w then z is not fully dominated
in X given w. Also, there can at most one element z € Dom(X) that is fully
dominating in X given w, and at most one that is fully dominated in X given
w.

We define irreflexive relation >§) by, for different outcomes w and v, w >§) v
if and only if for all X € V either v(X) is fully dominated in X given v w.r.t. X,
or w(X) is fully dominating in X given w w.r.t. X.

In the case in which the local relations > are total orders, then the def-
initions can be simplified. Consider any outcome w, and value x in Dom(X),
and let u be the projection of w to the parent set of X. Let x}, and z,. be the
best and the worst element (respectively) in Dom(X) for relation >:X. Then =
is fully dominating in X given w if and only if x = «, and «x is fully domi-
nated in X given w if and only if [Dom(X)| > 1 and z = z,.. Another way
of defining the >§p relation then consists, for each relation >, of mapping
Dom(X) to a three-valued totally ordered scale L = {1,1,0} with 1 > I > 0
using a kind of qualitative scoring function fX : Dom(X) — L defined by
(@) =1, fX (24s) = 0, and f;X (z) = I otherwise. Note that relation w > w’
expresses a very strong form of Pareto-dominance, since it requires that not only
w # w and fX(w(X)) > fX(w'(X)), but also that either fX(w(X)) = 1 or
fX(w(X)) =0,¥X € V.

Proposition 3. Relation >52p is transitive, and is contained in >%p, i.e., w >§p
v implies w >7p v, and thus >§p C>7pC >§p, Furthermore, we have >§p and
>CEp are equal (i.e., are the same relation) if and only if >SEp and >%,, are equal.

Proof. We will prove transitivity of >82p by showing that if w; >Szp wsy and
wo >fp ws then wq >82p ws. Consider any X € V such that ws(X) is not
fully dominated in X given ws. Since wy >52p wsz, we have that we(X) is fully
dominating in X given wsg, and so wq(X) is not fully dominated in X given ws.
Since wy >S€, wa, we have that w;(X) is fully dominating in X given wy. Thus,
for all X € V, if w3(X) is not fully dominated in X given ws then w; (X) is fully
dominating in X given wy, and hence, wy >§p ws, proving transitivity.

Now, suppose that wy >3 wa, and consider any X € V. Either (i) wa(X)
is fully dominated in X given ws, and thus, wq(X) > wa(X) given wo; or (ii)
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wi (X)) is fully dominating in X given wy, and thus, wy(X) > we(X) given wy;
therefore we have w; >fD ws.

Clearly if >fp and >CEp are equal then the inclusions >§) C>¥,C >CEp imply
that >fp and >7, are equal. Conversely, assume that >§p and >7p, are equal.
We then have that >, is transitive (since >32p is transitive), and thus it is equal

to its transitive closure, which equals >§) by Proposition 2. O

3.2 Necessary and Sufficient Conditions for Equality of >fp
and >fp

We will show that > Szp and > CEp are only equal under extremely special conditions,
including that the CP-net is unconditional and that each domain has at most
two elements. We use a series of lemmas to prove the result.

The first lemma follows easily using the transitivity of >52p.

Lemma 2. Given CP-net X, then we have >32p equals >CEp if and only if for all
pairs (w,w’) such that w' is a worsening flip from w we have w >§) w’.

Proof. We need to prove that >52p equals >CEp if and only if >fp contains the
worsening flip relation >5 7 induced by X. Since >C2p is the transitive closure of
>f}f, if >£7 equals >CEp then >32p contains >5f.

Regarding the converse, assume that >52p contains >5 Iz Since, by
Proposition 3, >fp is transitive, then >§, contains the transitive closure >C2p

of >£f. Proposition 3 implies that >£) is a subset of >

z z
op» SO >3, equals >, O

The definition of >32p leads to the following characterisation. Suppose that w’
is a worsening flip from w w.r.t. CP-net X, with X being the variable on which
they differ. Then w >2, w’ if and only if (a) either w(X) is fully dominating in
X given w w.r.t. X, or w'(X) is fully dominated in X given w w.r.t. X; and (b)

forall Y € V\ {X},

(i) if Y is not a child of X then w(Y") is either fully dominated or fully domi-
nating in Y given w w.r.t. X; and

(ii) if Y is a child of X then w(Y') is either fully dominating in Y given w
w.r.t. X or fully dominated in Y given w’ w.r.t. X.

The above considerations lead to the following result.

Lemma 3. Consider any X € V, and any assignment u to the parents of X, and
any values x,x" € Dom(X) such that x > «'. Assume that w >2, w' whenever
(w,w’) is an associated worsening flip, i.e., if w(X) = x and w'(X) = 2/, and
w and w' agree on all other variables, and w extends u. Let (v,v") be one such
associated worsening flip.

If variable Z is not a child of X and z is any element of Dom(Z) then z
is either fully dominated or fully dominating in X given v w.r.t. X. We have
|[Dom(Z)| < 2.

If variable Y is a child of X and y is any element of Dom(Y") then y is either
fully dominating given v or fully dominated given v'. We have |Dom(Y)| < 2.
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Note that the condition |Dom(Z)| < 2 follows since there can be at most one
fully dominated and at most one fully dominating element in X given v.

Lemma 3 implies that for any variable X, every other variable has at most two
values, which immediately implies that every domain has at most two elements:

Lemma 4. Suppose that >fp and >CEp are equal. Then each domain has at most

two values.

Definition 4 (True parents and being unconditional). Let Y be a variable
and let X be an element of its parent set Uy . We say that X is not a true parent
of Y if for all assignments u and u' to Uy that differ only on the value of X, if
y >Y o then y >Y, y'. We say that Y is unconditional in X if it has no true
parents.

If X is not a true parent of Y then >Y does not depend on X. For any
CP-net X we can generate an equivalent CP-net (i.e., that generates the same
ordering on outcomes) such that every parent of every variable is a true parent.

Lemma 5. Suppose that >£7 and >CEp are equal. Assume that every parent of
variable Y is unconditional, and let X be one such parent. Suppose that u is
some assignment to the parents of Y, and that u' is another assignment that

differs from u only on the value of X. If y >Y v/ then y >Z, Y.

Proof. Suppose that y >Y y/. Let v be any outcome extending v and let v’ be
any outcome extending «’. Lemma 4 implies that X has at most two values. If X
had only one value then it is trivially not a true parent of Y, so we can assume
that Dom(X) = 2. X is unconditional so it has no parents. Our definition of
a CP-net implies that the relation >% is non-empty, so we have z; >% o, for
some labelling 1 and x5 of the values of X. We first consider the case in which
u(X) = x1. Now, 3/ is not fully dominating given w and so, by Lemma 3, ¢’ is
fully dominated given u’, which implies y >5, Y.

We now consider the other case in which w(X) = x5. Then, y is not fully
dominated given u, and so, by Lemma 3, y is fully dominating given u’, and
thus, also y >Y, v/ O

Lemma 5 implies that X is not a true parent of Y. Since X was an arbi-
trary parent of Y, it then implies that Y has no true parent, so is unconditional.
Applying this result inductively then implies that every variable in V is uncondi-
tional with respect to 2. Along with Lemmas 3 and 4, this leads to the following
result.

Proposition 4. Given CP-net X, then we have >§p equals >C2p if and only
if X be a Boolean locally totally ordered CP-net such that each variable X is
unconditional in X.
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4 Pareto Ordering for the Boolean Case

As discussed earlier, there is a natural way of defining a Pareto ordering for
the case of Boolean locally totally ordered CP-nets. Basically, if variables are
Boolean, each of its values is either fully dominating or fully dominated in each
context. So, the relation >SEp becomes a full-fledged Pareto ordering. In this
section we analyse the relationship between this Pareto ordering and the CP-net
ordering.

Let X be a Boolean locally totally ordered CP-net. Consider any outcome
w. We say that variable X is bad for w if there is an improving flip of variable
X from w to another outcome w’. Define F,, to be the set of variables which are
bad for w.

The definition of Fy, and of the local dominance relation (see Sect. 2.3) imme-
diately leads to the following expression of >%,, in the Boolean locally totally
ordered case.

Lemma 6. Let X be a Boolean locally totally ordered CP-net. Then, for different
outcomes w and v, we have w >7p, v if and only if F, N A(w,v) C F,.

Proof. w >%p, v if and only if for each X € A(w,v) either w(X) > v(X) given
w, or w(X) > v(X) given v. For X € A(w,v), we have w(X) > v(X) given w if
and only if X ¢ F,,; and we have w(X) > v(X) given v if and only if X € F,.
Thus, w >, v if and only if for each X € A(w,v) [ X € F,, = X € F,], which
is if and only if F, N A(w,v) C F,. O

X

par O OUtcomes as follows.

We define the irreflexive binary relation >

Definition 5. For different outcomes w and v, w >z€1r v if and only if F, C F,,

i.e., every variable that is bad for w is also bad for v.

This can be viewed as a kind of Pareto ordering, and equals the strong Pareto
relation >52p (see Sect. 3.1) for the Boolean locally totally ordered case.

Lemma 7. Let X' be a Boolean locally totally ordered CP-net. Let w and v be

outcomes. Then w >§p v if and only if w >§W v

Proof. For different w and v, w >Z, v if and only if for all X € V either v(X) is
fully dominated in X given v, or w(X) is fully dominating in X given w.

Suppose that w >3 v and consider any X € V. If X € F,, then w(X) is not
fully dominating in X given w, and so v(X) is fully dominated in X given v,
which implies that X € F,,. We have shown that F,, C F,,.

Conversely, assume that F,, C F),, and consider any X € V. such that v(X) is
not fully dominated in X given v. Because X' is a Boolean locally totally ordered
CP-net this implies that X is not bad for v. Since F,, C F,,, this implies that X
is not bad for w, and so, w(X) is fully dominating in X given w. This proves
that w >fp . O

The CP-net relation contains the Pareto relation, with the local dominance
relation being between the two.
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Theorem 1. Let X be a Boolean locally totally ordered CP-net. Relation >Z

par

is transitive, and is contained in >fD, 1.6, W >§M v implies w >fD v, and

thus >§M - >fD - >CEp. Furthermore, we have >fa and >CEp are equal (i.e., are

the same relation) if and only if >§M. and >¥p, are equal, which happens only if

every variable of the CP-net is unconditional.

r

Proof. Theorem 1 follows immediately from Propositions 3 and 4 and Lemma 7.
O

As a consequence, we get that CP-nets are in agreement with Pareto ordering
in the case of Boolean locally totally ordered variables: for any variable X and
any configuration u of its parents, consider the mapping f:X : Dom(X) — {0,1}
such that X (z*) = 1 and f.X (x,.) = 0. For any two distinct outcomes w and w’,
we have that VX € V,ff(UX)(w(X)) > fl)U(,(UX)(w/(X)) if and only F,, C F,
which is Pareto-ordering >§;W.

We emphasise the following part of the theorem:

Corollary 1. Let X be a Boolean locally totally ordered CP-net, w >=, w'

par
implies w >CEp w'.

As shown in the previous section, it does not seem straightforward to extend
this Pareto ordering in a natural way to non-Boolean variables without using
scaling functions that map all partial orders (Dom(X),>X),u € Ux to a com-
mon value scale, unless the variables are all preferentially independent from one
another. In this case, Ux = 0, VX, and >:X = >% VX € Dom(X). We could then
define the Pareto dominance relation >§w on outcomes as w >1§1T w' if and only

if w# w and w(X) >¥ w'(X) or w(X) = w'(X) for all X € V.

5 m-pref Nets

Possibility theory [8] is a theory of uncertainty devoted to the representation of
incomplete information. It is maxitive (addition is replaced by maximum) in con-
trast with probability theory. It ranges from purely ordinal to purely numerical
representations. Possibility theory can be used for representing preferences [9]. It
relies on the idea of a possibility distribution =, i.e., a mapping from a universe
of discourse {2 to the unit interval [0, 1]. Possibility degrees m(w) estimate to
what extent the solution w is not unsatisfactory. m-pref nets are based on possi-
bilistic networks [3], using conditional possibilities of the form m(x|u) = Hl(f(ﬁ;‘),
for v € Dom(Ux ), where II(p) = max,,—, 7(w). The use of product-based con-
ditioning rather than min-based conditioning leads to possibilistic nets that are
more similar to Bayesian nets.

The ceteris paribus assumption of CP-nets is replaced in possibilistic net-
works by a chain rule like in Bayesian networks. It enables one to compute,
using an aggregation function, the degree of possibility of solutions. However it
is supposed that these numerical values are unknown and represented by sym-
bolic weights. Only ordering between symbolic values or products thereof can
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be expressed. The dominance relation between solutions is obtained by compar-
ing products of symbolic utility values computed for them from the conditional
preference tables.

Definition 6 (/1/). A Boolean possibilistic preference network (m-pref net) is
a preference network, where |[Dom(X)| = 2,VX €V, and each preference state-
ment x >xX a' is associated to a conditional possibility distribution such that
m(zlu) = 1 > 7(2'|u)) = a%, and &% is a non-instantiated variable on [0, 1)
we call a symbolic weight. One may also have indifference statements x ~=X '
expressed by w(xz|u) = 7w(a'|u) = 1.

7

m-pref nets induce a partial ordering between solutions based on the comparison
of their degrees of possibility in the sense of a joint possibility distribution com-
puted using the product-based chain rule: w(z;,...,2,) = [[,_; ,, 7m(@s|wi).
The preferences between solutions are of the form w =, w’ if and only if
m(w) > w(w') for all instantiations of the symbolic weights.

5.1 m-pref Nets Vs CP-Nets

Let us compare preference relations between solutions induced by both CP-
nets and 7w-pref nets. It has been shown [2] that the ordering between solutions
induced by a m-pref net corresponds to the Pareto ordering between the vectors
w = (61(w),...,0L(w)) where 0;(w) = 7(w(X;)|lwlx,)),i =1,...,n.

As symbolic weights are not comparable across variables, it is easy to see that
the only way to have w(w) > 7(w’) is to have 0 (w) > 0 (w’) in each component
k of w and w’. Otherwise the products will be incomparable due to the presence
of distinct symbolic variables on each side. So, if w # w’,

w =, w' ifand only if O (w) > Op(w'),k =1,...,nand 3i : 6;(w) > 6;(w").

It is then known that the m-pref net ordering between solutions induced by the
preference tables is refined by comparing the sets F,, of bad variables for w:

w =y W =F, CFy

since if two solutions contain variables having bad assignments in the sense of the
preference tables, the corresponding symbolic values may differ if the contexts
for assigning a value to this variable differ. It has been shown that if the weights
oy reflecting the satisfaction level due to assigning the bad value to X; in the
context u; do not depend on this context, then we have an equivalence in the
above implication:

IfVX € V,a% = ax,Vu; € Dom(Ux), then w =, w' < w > w'.

par

As a consequence, using Corollary 1, it is clear that w >, w’ implies w >CEp w SO
that the CP-net preference ordering refines the one induced by the corresponding
Boolean 7-pref net. It suggests that we can try to add ceteris paribus constraints
to a m-pref net and so as to capture the preferences expressed by a CP-net.
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In the following, we highlight local constraints between each node and its
children that enable ceteris paribus to be simulated. Ceteris paribus constraints
are of the form w >CEp w’ where w and w’ differ by one flip. For each such
statement (one per variable), we add the constraint on possibility degrees 7(w) >
m(w'). Using the chain rule, it corresponds to comparing products of symbolic
weights. Let Dom(Ux) = Xx,cuy Dom(X;) denote the Cartesian product of
domains of variables in Uy, a% = m(z~|u), where ™~ is bad for X and 4% =
m(y~|u"). Suppose a CP-net and a m-pref net built from the same preference
statements. It has been shown in [2] that the worsening flip constraints are all
induced by the conditions: V X € V s.t. X has children Ch(X) # 0:

max ay% < min u'

u€Dom(Ux) X Yel_h[(X) u’€Dom(Uy ) Y
Let =} be the resulting preference ordering built from the preference tables and
applying constraints of the above format between symbolic weights, then, it is
clear that w >, w’ = w =} Ww': relation >} is a bracketing from above of the

CP-net ordering.

5.2 Relation >jr‘ as a Polynomial Upper Bound for CP-Net
Dominance

In this section we give a characterisation of the relation > in terms of deduction
of linear constraints, which implies that determining dominance with respect to
=T is polynomial. It is thus a polynomial upper bound for CP-net dominance.

We list all the different symbolic weights (not including 1) as aq, ..., Qm,
and let « represent the whole vector of symbolic weights [aq, ..., ).

Let a weights vector z be a vector of m real numbers [z1,...,2y,] (with
each z; in {—1,0,1}). For each such weights vector z, we associate the product
ait -+ aZm, which we abbreviate as R, [z].

A comparison between products of symbolic weights can be encoded as a
statement R,[z] > 1. For example, a comparison a3 > asag is equivalent
to Ra[z] > 1 where z = [1,—1,-1,0,0,...], since R,[2] = ala;'az’ and so
Rulz] > 1 <= alay'az! > 1 <= a; > asas. In this way, every ceteris
paribus statement corresponds to a set of statements R,[z] > 1 for different
vectors z. )

For each i = 1,...,m, define the vector z(¥) as ZZ-(Z) = —1 and for all j # 1,
20 = 0. Ry [20)] > 1 expresses that a; ' > 1, i.e., a; < 1. For a CP-net X let
Z(X) be the set of weights vectors associated with symbolic weights comparisons
for each ceteris paribus statement, plus for each i = 1,...,m, the element z(*).

Similarly, every solution is associated with a product of symbolic weights, so
a comparison w > w’ between solutions w and w’ corresponds to a statement
pertaining to a weights vector z’. The definitions lead easily to the following
characterisation of this form of dominance.
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Proposition 5. Consider any CP-net X with associated set of weights vectors
Z(X), and let w and w' be two solutions, where the comparison w > w' has
associated vector z'. We have that w =1 w' if and only if {Rn[2] > 1: 2z € Z(X)}
implies R,[2'] > 1, i.e., if one replaces the values of symbolic weights «; by any
real values such that Ry[z] > 1 holds for each z € Z(X) then R,[z'] > 1 also
holds.

We can write log Ry [2] as z1A1 + -+ + 2mAm = 2 - A, where X is the vector
(M., Am) and each A\; = log ;. Thus, Ry[z] > 1 <= logR,[z] > 0 <—
z - A > 0. By Proposition 5 this implies that w =} w’ if and only if for vectors
A {z-A>0:2z¢€ Z(X)} implies 2/ - A > 0.

Using a standard result from convex sets, this leads to the following result,
which gives a somewhat simpler characterisation that shows that dominance is
polynomial. It also suggests potential links with Generalized Additive Iindepen-
dent (GAI) value function approximations of CP-nets [4,7].

Theorem 2. Consider any CP-net with associated set of weights vectors Z(X),
and let w and w' be two different solutions, where w > w’ has associated vector
2'. We have that w =+ w’ if and only if there exist non-negative real numbers r,,
for each z € Z(X) such that 3~ ;5 12z = z'. Hence, whether or not w =
holds can be checked in polynomial time.

Proof. As argued above, w =7 w’ holds if and only if for vectors A, the set of
inequalities {z- A > 0: 2z € Z(X)} implies 2’ - A > 0. We need to show that this
holds if and only if there exist non-negative real numbers r, for each z € Z(X)
such that ) . Z(x) 2% = z'. Firstly, let us assume that there exist non-negative
real numbers r, for each z € Z(X) such that }° ) r.z = 2’. Consider any
vector A such that z-A > 0 for all z € Z(X). Then 2"-A =" 7 5y 7.2- A which
is greater than zero since each r, is non-negative, and at least some r, > 0 (else
z' is the zero vector, which would contradict w # w’).

Conversely, let us assume that there do not exist non-negative real numbers
r, for each z € Z(X) such that > _, 5722 = 2’. To prove that the set of
inequalities {z-A > 0:z € Z(X)} does not imply 2z’ - A > 0, we will show that
there exists a vector A with z-A > 0 for all z € Z(X) but 2’- A < 0. Let C be the
set of vectors of the form Zze 7(x) =% Over all choices of non-negative reals r,.
Now, C' is a convex and closed set, which by the hypothesis does not intersect
with {2’} (i.e., does not contain z’). Since {z'} is closed and compact we can use
a hyperplane separation theorem to show that there exists a vector A and real
numbers ¢; < ¢y such that for all z € C, z- A > ¢3 and 2’ - A < ¢1. Because C
is closed under strictly positive scalar multiplication (i.e., z € C implies ra € C
for all real » > 0) we must have co < 0, and - A > 0 for all z € C, and in
particular z- A > 0 for all z € Z(X). Also, 2’ - A <c¢1 <2 <0s02' -A<0, as
required.

The last part follows since linear programming is polynomial. O
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6 Summary and Discussion

In this paper we have compared CP-nets and m-pref nets, two qualitative coun-
terparts of Bayes nets for the representation of conditional preferences. We have
studied them from the point of view of their rationality, namely whether they
respect Pareto dominance between multiple Boolean variable solutions to a deci-
sion problem expressed by such graphical models. While 7-pref nets naturally
respect this property, strangely enough, it was previously unknown whether the
preference ordering induced by CP-nets respects it or not. For more general (non-
Boolean) variables, it seems difficult to extend this notion of Pareto-dominance
for a CP-net in an entirely natural way. Besides, it was shown previously that the
ordering induced by m-pref nets is weaker than the one induced by CP-nets, but
ceteris paribus constraints can be added to a m-pref net in the form of constraints
between products of symbolic variables. Here we show the polynomial nature of
this encoding. Thus we get a bracketing of the CP-net preference ordering by
bounds which are apparently easier to compute than standard CP-net prefer-
ences. Further research includes constructing an example that explicitly proves
that the upper approximation of the CP-net ordering is not tight; moreover the
case of non-Boolean variables deserves further investigation.
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co-funded under the European Regional Development Fund.

References

1. Ben Amor, N., Dubois, D., Gouider, H., Prade, H.: Possibilistic preference networks.
Inf. Sci. 460—461, 401-415 (2018)

2. Ben Amor, N., Dubois, D., Gouider, H., Prade, H.: Expressivity of possibilistic
preference networks with constraints. In: Moral, S., Pivert, O., Sdnchez, D., Marin,
N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 163-177. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67582-4_12

3. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between
possibilistic logic bases and possibilistic causal networks. Int. J. Approx. Reasoning
29(2), 135-173 (2002)

4. Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-networks: a directed graphical rep-
resentation of conditional utilities. In: Proceedings of the 17th Conference on Uncer-
tainty in Al, Seattle, Washington, USA, pp. 56-64 (2001)

5. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional
ceteris paribus preference statements. In: Proceedings of the 15th Conference on
Uncertainty in Al, Stockholm, Sweden, pp. 71-80 (1999)

6. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements.
J. Artif. Intell. Res. 21, 135-191 (2004)

7. Brafman, R.I., Domshlak, C., Kogan, T.: Compact value-function representations
for qualitative preferences. In: Proceedings of the 20th Conference on Uncertainty
in AI, Banff, Canada, pp. 51-59 (2004)


https://doi.org/10.1007/978-3-319-67582-4_12

CP-Nets, m-pref Nets, and Pareto Dominance 183

8. Dubois, D., Prade, H.: Possibility Theory: An Approach to ComputerizedProcessing
of Uncertainty. Plenum Press (1988)

9. Dubois, D., Prade, H.: Possibility theory as a basis for preference propagation in
automated reasoning. In: Proceedings of the 1st IEEE International Conference on
Fuzzy Systems, San Diego, CA, pp. 821-832 (1992)



l‘)

Check for
updates

Measuring Inconsistency Through
Subformula Forgetting

Yakoub Salhi(®)

CRIL - CNRS & Université d’Artois, Lens, France
salhi@cril.fr

Abstract. In this paper, we introduce a new approach for defining
inconsistency measures. The key idea consists in forgetting subformula
occurrences in order to restore consistency. Thus, our approach can be
seen as a generalization of the approach based on forgetting only proposi-
tional variables. We here introduce rationality postulates of inconsistency
measuring that take into account in a syntactic way the internal struc-
ture of the formulas. We also describe different inconsistency measures
that are based on forgetting subformula occurrences.

1 Introduction

In this work, we are interested in quantifying conflicts for better analyzing the
nature of the inconsistency in a knowledge base. Plenty of proposals for incon-
sistency measures have been defined in the literature (e.g. see [3,7,9,14,15]),
and it has been shown that they can be applied in different domains, such as
e-commerce protocols [4], integrity constraints [6], databases [13], multi-agent
systems [10], spatio-temporal qualitative reasoning [5].

In the literature, an inconsistency measure is defined as a function that asso-
ciates a non negative value to each knowledge base. In particular, the authors
in [9] have proposed different rationality postulates for defining inconsistency
measures that allow capturing important aspects related to inconsistency in the
case of classical propositional logic. Furthermore, objections to some of them
and many new postulates have also been proposed in [1]. The main advantage of
the approach based on rationality postulates for defining inconsistency measures
is its flexibility in the sense that the appropriate measure in a given context can
be chosen through the desired properties from the existing postulates.

In [11,12], the authors have proposed a general framework for reasoning under
inconsistency by forgetting propositional variables to restore consistency. Using
the variable forgetting approach of this framework, an inconsistency measure
has been proposed in [2]. The main idea consists in quantifying the amount of
inconsistency as the minimum number of variable occurrences that have to be
forgotten to restore consistency. We here propose a new approach for defining
inconsistency measures that can be seen as a generalization of the previous app-
roach. Indeed, our main idea consists in measuring the amount of inconsistency
by considering sets of subformula occurrences that we need to forget to restore
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consistency. To the best of our knowledge, we here provide the first approach
that takes into account in a syntactic way the internal structure of the formulas.

In this work, we propose rationality postulates for measuring inconsistency
that are based on reasoning about subformula occurrences. In particular, the
postulate stating that forgetting any subformula occurrence does not increase
the amount of inconsistency. Finally, we propose several inconsistency measures
that are based on forgetting subformula occurrences. These measures are defined
by considering the number of modified formulas and the size of the forgotten
subformula occurrences to restore consistency. For instance, one of the proposed
inconsistency measure quantifies the amount of inconsistency as the minimum
size of the subformula occurrences that have to be forgotten to obtain consis-
tency. It is worth mentioning that we show that two of the described incon-
sistency measures correspond to two measures existing in the literature: that
introduced in [2] based on forgetting variables and that introduced in [7] based
on consistent subsets.

2 Preliminaries

2.1 Classical Propositional Logic

We here consider that every piece of information is represented using classical
propositional logic. We use Prop to denote the set of propositional variables.
The set of propositional formulas is denoted Form. We use the letters p, g, r, s to
denote the propositional variables, and the Greek letters ¢, ¥ and x to denote
the propositional formulas. Moreover, given a syntactic object o, we use P(0) to
denote the set of propositional variables occurring in o. Given a set of variables
S such that P(¢) C S, we use Mod(¢,S) to denote the set of all the models of
¢ defined over S.

Given a formula ¢, the size of a formula ¢, denoted s(¢), is inductively defined
as follows: s(p) = s(L) =s(T) =1; s(—) = 14+s(¥); s(v@x) = 1+s(W) +s(x)
for ® = A, V, —. In other words, the size of a formula is defined as the number
of the occurrences of propositional variables, constants and logical connectives
that appear in it.

Similarly, the set of the subformulas of ¢, denoted SF(¢), is inductively
defined as follows: SF(p) = {p}; SF(L) = {L}; SF(T) = {T}; SF(—) =
[~} USF(); SF(Y @ x) = {1 @ x} USF() USF(x) for ® = A,V, —.

Given a formula ¢ and ¢ € SF(¢), we use O(¢, 1) to denote the number
of the occurrences of 1 in ¢. Moreover, we consider that the occurrences of a
subformula are ordered starting from the left. For example, consider the formula
¢ = (p A q) - (_'T \ Q) Then, SF(¢) = {¢7p Ng,—r Vg, _‘rapa(Lr}' Further,
O(¢,p) = 1 and O(¢, q) = 2. The first occurrence of ¢ is that occurring in the
subformula p A ¢, while the second is that occurring in the subformula —r V q.

The polarity of a subformula occurrence within a formula that has a polarity
(positive or negative) is defined as follows:

— ¢ is a positive (resp. negative) subformula occurrence of the positive (resp.
negative) formula ¢;
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— if x is a positive (resp. negative) subformula occurrence of ¢, then y is also
a positive (resp. negative) subformula occurrence of ¢ ® ¥, ¥ ® ¢, » — ¢ for
every formula ¢ and for ® = A, V;

— if x is a positive (resp. negative) subformula occurrence of ¢, then x is a
negative (resp. positive) subformula occurrence of —¢ and ¢ — 1 for every
formula .

Consider, for instance, the formula p — (pV ¢) with the negative polarity. Then,
the left-hand p is a positive subformula occurrence and the right-hand occurrence
is negative.

A knowledge base is a finite set of propositional formulas. A knowledge base
K is inconsistent if its associated formula A ¢ ¢ (T if K = 0) is inconsistent,
written K F L, otherwise it is consistent, written K ¥ 1. We use Krorm to
denote the set of knowledge bases. Moreover, we use SF(K) to denote the set
Userx SF(@).

From now on, we consider that the polarity of the formulas occurring in any
knowledge base are negative, the same results can be obtained by symmetrically
considering the positive polarity.

Given a knowledge base K, a subset K’ C K is said to be a minimal inconsis-
tent subset (MIS) of K if (i) K’ L and (ii) V¢ € K', K’ \ {¢} ¥ L. Moreover,
K’ is said to be a mazimal consistent subset (MCS) of K if (i) K’ ¥ L and
(1) Vo € K\ K', K'U{¢} b L. We use MISes(K) and MCSes(K) to denote
respectively the set of all the MISes and the set of all the MCSes of K.

2.2 Substitution

Given a formula ¢ and two subformula occurrences ¢ and x in ¢. We say that
1 and x are disjoint if one does not occur in the other.

Given two propositional formulas ¢ and v, x € SF(¢) and i € 1..0(¢, x),
we use @[(x,4)/¢] to denote the result of substituting the formula ¢ for the
ith occurrence of x in ¢. Further, we use ¢[x/v], ¢[(x)"/¥] and ¢[(x)~/¥] to
denote the result of substituting the formula i for respectively all the occur-
rences of x, all the positive occurrences of x and all the negative occurrences of
X in ¢. Similarly, given the formulas ¢, 1, ...,%, x1, . Xx: and the expressions
e1,...,e such that each e; has one of the forms (x;,7), xi, (xi)T and (x;)~,
oler, ... ei/1, ..., 4] is the result of simultaneously substituting 1, ..., for

the subformula occurrences corresponding to the expressions ey, ..., e; respec-
tively. It is worth mentioning that the subformula occurrences corresponding to
the expressions ey, ..., e; should be pairwise disjoint in ¢.

For instance, consider the formula ¢ = (p A ¢) — (p V ¢) with the negative
polarity. Then, ¢[(p)™, (¢,2)/(p A —q), 7] corresponds to the formula ((p A =q) A
q) — (p V). Indeed, there is a unique positive occurrence of p which is on the
left-hand side of the implication and it is replaced with p A =¢; and the second
occurrence of ¢ is on the right-hand side of the implication and it is replaced
with 7.
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3 Inconsistency Measure

In the literature, an inconsistency measure is defined as a function that associates
a non negative value to each knowledge base (e.g. [3,7,9,14,15]). It is used to
quantify the amount of inconsistency in a knowledge base. The different works
on inconsistency measures use postulate-based approaches to capture important
aspects related to inconsistency. In particular, in the recent work [3], the authors
have proposed the following formal definition of inconsistency measure that we
consider in this work.

Definition 1 (Inconsistency Measure). An inconsistency measure is a
function I : Keorm — RI that satisfies the two following properties: (i) VK €
Krorm, I(K) = 0 iff K is consistent (Consistency); and (ii) VK, K' € Keorm, if
K C K' then I(K) < I(K') (Monotonicity). The set RY, corresponds to the set
of positive real numbers augmented with a greatest element denoted oco.

The postulate (Consistency) means that an inconsistency measure must
allow distinguishing between consistent and inconsistent knowledge bases, and
(Monotonicity) means that the amount of inconsistency does not decrease by
adding new formulas to a knowledge base. Many other postulates have been
introduced in the literature to characterize particular aspects related to incon-
sistency (e.g. see [1,9,15]).

Let us now describe some simple inconsistency measures from the literature:

= In(K) = [MISes(K)| ([8])

~ IMY(K) = |K| —maz{|K'| | K' € MCSes(K)} ([7))

— Ins(K) = min{|S| | S C M and V¢ € K, 3B € S s.it. B |E ¢} — 1 with
M = Uyex Mod(¢, P(K)) and min{} = oo ([14])

— Trorget(K) = min{n | /\¢€K dl(p1,%1)s -+ (Pnsin)/ C1y.o oy CpliD1y -0 €
Prop,C1,...,Cn, € {T,L}} ([2])

The measure I; quantifies the amount of inconsistency through minimal incon-
sistent subsets: more MISes brings more conflicts; I Z[it consider the dual of the
size of the greatest MCSes; I is defined through an explicit use of the Boolean
semantics: the amount of inconsistency is related to the minimum number of
models that satisfy all the formulas in the considered knowledge base; and I'f,,get
defines the amount of inconsistency as the minimum number of variables that
we have to forget to restore consistency. It is worth mentioning that we consider
here the reformulation of I¢,pger proposed in [15].

4 Subformula-Based Rationality Postulates

In this section, we propose rationality postulates for measuring inconsistency
that are based on reasoning about forgetting subformula occurrences. In the same
way as in the case of the inconsistency measure Iyorger, we use the constants T
and L to forget subformula occurrences.

The rationality postulates that we consider are defined as follows VK € Krorm
and V¢ € Form with ¢ ¢ K:
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— (ForgetNegOcc):
1. Vo € SF(¢) and Vi € 1..0(¢, ) with the ith occurrence of 1 in ¢ is
negative, I(K U{¢[(¢,1)/T]}) < I(K U 9);
2. Vip € SF(¢) and Vi € 1..0(¢,v) with the ith occurrence of 9 in ¢ is
negative and ¢[(¢, 1)/ 1] ¢ K, I(K U ¢) < I(K U{¢[(¢,i)/L]}).
— (ForgetPosOcc):
1. Vo € SF(¢) and Vi € 1..0(¢, ) with the ith occurrence of 1 in ¢ is
positive and 8{(6,)/T] ¢ K, I(K U @) < I(K U {6[(,1)/TI});
2. (ForgetPosOccy ) Yy € SF(¢) and Vi € 1..0(¢, ) with the ith occur-
rence of 1 in ¢ is positive, (K U {¢[(v,i)/L1]}) < I(K U ¢).

The first property of (ForgetNegOcc) expresses the fact that a negative
subformula occurrence becomes useless to produce inconsistency if it is replaced
with T. Regarding the second property, it is worth mentioning that the con-
dition ¢[(¢0,4)/ L] ¢ K is only used to prevent formula deletion. The postulate
(ForgetPosOcc) is simply the counterpart in the case of positive subformula
occurrences of (ForgetNegOcc).

In a sense, the next proposition shows that the previous postulates can be
seen as restrictions of the postulate (Dominance), introduced in [9], in the case
of consistent formulas. Let us recall that (Dominance) is defined as follows:

-~ VK € Kgorm and V¢,¢ € Form with ¢ ¥ 1L and ¢ F ¢, I(K U {¢}) >
I(K U{v}).

Proposition 1. The following two properties are satisfied for V¢ € Form with
negative polarity and Vi € SF(¢) and Vi € 1..0(¢,v): (i) if the ith occurrence
of ¥ in ¢ is negative, then ¢[(1p,1)/ L]+ ¢ and & &+ @[(v,i)/T]; (ii) if the ith
occurrence of ¥ in ¢ is positive, then ¢[(1,4)/T]F ¢ and ¢+ ¢[(¥,i)/1].

Proof. We here consider only the case of ¢[(1,7)/ L] F ¢ when the considered
occurrence is negative and the case of ¢ F @[(+,4)/L] when the considered
occurrence is positive, the other case being similar. The proof is by mutual
induction on the value of s(¢). If s(¢) = 1, then ¢ is a propositional variable
or a constant, and as a consequence, ¢[(¢,7)/L] = L holds in the case where
the ith occurrence of ¥ in ¢ is negative. Thus, we obtain ¢[(¢,7)/L] = L F ¢.
Moreover, there is no positive subformula occurrence in this case. Assume now
that s(¢) > 1. Then, ¢ has one of the following forms —¢’ ¢1 A @2, &1 V d2
and ¢; — ¢o. Consider first the case ¢ = —¢’ the proof is trivial in the case
i = ¢. If the ith occurrence of ¢ in ¢ is negative, then it is positive in ¢/,
and using the induction hypothesis, ¢’ = ¢'[(1,4)/L] holds. Thus, we obtain
= [(v,1)/ L] = ¢[(v,i)/L] F —¢" = ¢. The case where the ith occurrence of v
in ¢ is positive is similar. The proof in the remaining cases can be obtained by
simple application of the induction hypothesis, except the case ¢1 — ¢2, which
is similar to that of —¢’.

For instance, a direct consequence of Proposition 1 is the fact that I, satis-
fies (ForgetNegOcc) and (ForgetPosOcc). However, Iy does not satisfy these



Measuring Inconsistency Through Subformula Forgetting 189

postulates. Indeed, consider K = {pA—p, pAq, pAr}. We clearly have I, (K) =1
since there is a single MIS, which is {p A =p}, but In;({T A—=p,pAgq,pAT}) =2
since there are two MISes {T A —p,pAq} and {T A —p,pAr}.

We now introduce a rationality postulate, named (ForgetSubformula), that
is based on forgetting all the occurrences of a subformula. Before that, let us
introduce a notational convention. Given a knowledge base K and a subformula
¢ € SF(¢) with ¢ € K, K[ |] denotes Ugeg #[(¢0) 7, (¥)*/T, L]. In other
words, K[y |] is used to denote that all the occurrences of ¥ are forgotten to
restore consistency.

The postulate (ForgetSubformula) is defined as follows: VK € Kgom and
Vi € SF(K), I(K[¢ |]) < I(K). It is clearly weaker than the previous postulates
and expresses simply that the amount of inconsistency does not decrease by for-
getting any subformula. This postulate can be used instead of (ForgetNegOcc)
and (ForgetPosOcc) in the case where no distinction is made between the occur-
rences of any subformula.

5 Forgetting Based Inconsistency Measures

In this section, we define several inconsistency measures that are based on forget-
ting subformula occurrences. We show in particular that two of these measures
correspond to I g“ and Ifoprge¢ described previously.

The first inconsistency measure, denoted Ifi o I8 defined as the minimum
number of subformula occurrences that have to be forgotten to restore consis-

tency. It is formally defined as follows:
Iif({(blv ct ¢n}) = min{Z?:l li ‘ {¢1[(w%’jll)7 MR (wlll’]lll)/ 011’ Tt Clll]} U
The second inconsistency measure, denoted I7, is defined in the same way

as Ii f but it takes into account the sizes of the forgotten subformula occur-

. 1; ; . .
rences: I5, ({1, ... én}) = min{3701, 375y s(¥3) {1, 41), - (), 50,)/
{T,L}}. The measure I; , relates the effort needed to restore consistency to
the size of the considered subformula occurrences instead of their number as in
#
It
The third inconsistency measure, denoted Ij;ic, takes also into account the
sizes of the forgotten subformula occurrences, with the additional requirement
that there is at most one forgotten occurrence in every formula in the knowl-

edge base: 17 ({61,...,¢n}) = min{3_ s(bi) | {d[(v1,51)/Ch]} U ---U
{n](n, 3n)/Cnl} ¥ L with Cy,...,C, € {T,L}}. The measure Ij;; captures
the fact that if we need to forget two disjoint subformula occurrences v and v’
in the same formula ¢ to restore consistency, then we have to forget the small-
est subformula occurrence in ¢ containing both 1 and v’. This measure allows
considering the relationship between occurrences forgotten in the same piece of

information.
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For the sake of illustration, consider the base K = {p A ¢,—p A =q}. Then,
we clearly have I5,;(K) = 2 since we only need to forget the first occurrences

of p and ¢ to restore consistency. However, Ij;; (K) = 3 since we need to forget
the entire formula p A ¢ to forget its subformulas p and ¢g. Compared to I7, ; in

this case, we also consider in Ij;; the fact that the first occurrences of p and ¢
are related with conjunction.

The three following inconsistency measures can be seen as variants of the pre-
vious ones by considering subformulas instead of subformula occurrences. These
measures can be used in the contexts where no distinction is made between
the occurrences of a subformula with regard to the amount of inconsistency.
For instance, the inconsistency measure denoted Ij; is defined as the minimum
number of subformulas that have to be forgotten to restore consistency. Thus,
forgetting any subformula once or more does not change the amount of incon-

sistency.
I?;(K) =min{m e N| K[y |]--[m |] ¥ L}

;f(K) = mm{ZZ’il s(i) | Kby L]+ [bm L] ¥ L
with s(1) = ... = s(m) = 1}

({61, 00}) = min{X cn gy 500 | {101, 50)/C1} U=+ U
{Dn[(Wn, jn)/Cul} ¥ Lwith Cy,...,Cp e {T,L}}

One can easily see that all the previous measures satisfy the two postulates
(Consistency) and (Monotonicity), and as a consequence, they are inconsis-
tency measures with respect to Definition 1. Further, from their definitions, it
is clear that they also satisfy the rationality postulates (ForgetNegOcc) and
(ForgetPosOcc).

In the following proposition, we have the fact that I(ﬁ f and [ (’}“ are the same,
and in addition I ;(K) = Iforget(K) for every constant free knowledge base K.

Proposition 2. The following properties are satisfied:

117 (K) = Ij*(K);
2. ISSf({¢1""a¢n}) = min{z;lzl li | {¢1[(w%’]%)7’(¢1117]l11)/011,’cl11”
with CL...,C{; e{T, L} and s(y})=... =s( r) =1}

6 Conclusion and Perspectives

We have proposed an approach for measuring inconsistency that takes into
account in a syntactic way the internal structure of the formulas, which is based
on forgetting subformula occurrences to restore consistency. As a future work, we
intend to investigate the possibility to consider more rationality postulates that
consider the internal structure in a syntactic way. The aim of such postulates is
to capture other interesting links between inconsistency and the notion of subfor-
mula occurrence. We also plan to propose inconsistency measures that combine
the subformula forgetting based approach with other syntactic approaches, such
as those based on minimal inconsistent subsets.
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Abstract. We are interested in the explanation of the solution to a hierarchical
multi-criteria decision aiding problem. We extend a previous approach in which
the explanation amounts to identifying the most influential criteria in a decision.
This is based on an influence index which extends the Shapley value on trees. The
contribution of this paper is twofold. First, we show that the computation of the
influence grows linearly and not exponentially with the depth of the tree for the
multi-linear model. Secondly, we are interested in the case where the values of
the alternatives are imprecise on the criteria. The influence indices become thus
imprecise. An efficient computation approach is proposed for the multi-linear
model.

1 Introduction

One of the major challenges of Artificial Intelligence (AI) methods is to explain their
predictions and make them transparent for the user. The explanations can take very
different forms depending on the area. For instance, in Computer Vision, one is inter-
ested in identifying the salient factors explaining the classification of an image [12]. In
Machine Learning, one might look for the smallest modification to make on an instance
to change its class (counter-factual example) [16]. In Constraint Programming, the aim
is to find the simplest way to repair a set of inconsistent constraints [8]. And so on. There
is thus a variety of explanation methods applicable to a wide range of Al methods.

Many decision problems involve multiple attributes to be taken into account. Multi-
Criteria Decision Aiding (MCDA) aims at representing the preferences of a decision
maker regarding options on the basis of multiple and conflicting criteria. In real appli-
cations, one shall use elaborate decision models able to capture complex expertise. A
few models have been shown to have this ability, such as the Choquet integral [3], the
multi-linear model [11] or the Generalized Additive Independence (GAI) model [1,6].
The main asset of these models is their ability to represent interacting criteria. The
multi-linear model is especially important as it is the most natural multi-dimensional
interpolation model. It is very smooth and does not have discontinuity of the Gradient
that the Choquet integral has. The following example illustrates applications in which
such models are important.

Example 1 (Example 1 in [9]). The DM is a Tactical Operator of an aircraft aiming
at Maritime Patrol. It consists in monitoring a maritime area and in particular looking
for illegal activity. The DM is helped by an automated system that evaluates in real
time a Priority Level (PL) associated to each ship in this area. The higher the PL the
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N. Ben Amor et al. (Eds.): SUM 2019, LNAI 11940, pp. 192-206, 2019.
https://doi.org/10.1007/978-3-030-35514-2_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35514-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-35514-2_15

Explaining Hierarchical Multi-linear Models 193

10
|
1/7\9
/7 N\ /7 N\
2 3 8 6
/ \
4 5

Fig. 1. Hierarchy of criteria for Example 2.

more suspicious a ship and the more urgent it is to intercept it. The PL is used to raise
the attention of the DM on some specific ships. The computation of the PL depends
on several criteria: 1. Incoherence between Automatic Identification System (AIS) data
and radar detection; 2. Suspicion of drug smuggling on the ship; 3. Suspicion of human
smuggling on the ship; 4. Current speed (since fast boats are often used to avoid being
easily intercepted); 5. Maximum speed since the first detection of the ship (it represents
the urgency for the potential interception); 6. Proximity of the ship to the shore (since
smuggling ships often aim at reaching the shore as fast as possible). B

In the previous example, as in most real-applications, the criteria are not considered
in a flat way but are organized as a tree. The criteria are indeed organized hierarchically
with several nested aggregation functions. The hierarchical structure shall represent the
natural decomposition of the decision reasoning into points of view and sub-points of
view. In the previous example, the six criteria are organized as in Fig. 1. The tree of
the DM contains four aggregation nodes: 7. Suspicion of illegal activity; 8. Kinematics;
9. Capability to escape interception; 10. Overall PL.

The ability to explain the evaluation is very important in Example 2. If the PL of
a ship suddenly increases over time, the tactical operator needs to understand where
this comes from. This latter is under stress and time pressure. He is thus looking for
an explanation highlighting the most influencing attributes in the evolution of the PL.
This type of explanation has been recently widely studied under the name of feature
attribution. The aim is to attribute to each feature its level of contribution. Among the
many concepts that have been proposed, the Shapley value has been widely used in
Machine Learning [4,10].

The Shapley value has also been recently as an explanation means in MCDA [9].
In this reference, a new explanation approach for hierarchical MCDA models has been
introduced. The idea is to highlight the criteria that contribute most to the decision.
In Example 2, consider two ships represented by two alternatives x and y taking the
following values on the six attributes = = (z1, T2, T3, T4, T5, T6) = (+, — —, —, —, —)
and y = (+,+,+,+, +,+) (where values ‘4’ and ‘—’ indicate a high and low value
respectively). The type of explanation that is sought can typically be that the nodes
contributing the most to the preference of y over z are nodes 8 (Kinematics) and 9
(Capability to escape interception) and not 2 (Suspicion of drug smuggling on the ship)
or 3 (Suspicion of human smuggling on the ship). This helps the user to further analyze
the values of criteria 8 and 9 (and not criteria 2 or 3). To this end, an indicator measuring
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the degree to which a node contributes to the preference between two alternatives has
been defined in Ref. [9]. It is a generalization of the Shapley value on trees.

The contribution of this paper is to further develop this approach in two directions.

We are interested in the practical computation of the influence indicator. The main
drawback of the Shapley value is that it has an exponential complexity in the num-
ber of nodes. It has been shown in Ref. [9] that the influence index for a node can be
equivalently be computed on a subtree. The first contribution of this paper is to rewrite
the influence index so as to improve the computational complexity. It cannot be fur-
ther reduced without making assumptions on the utility model. An illustration of the
influence indicator to the Choquet integral has been proposed in Ref. [9]. We consider
in this paper another important class of aggregation model, based on the multi-linear
extension. One of the main result of this paper shows that for the multi-linear model,
the computations can be performed independently on each aggregation node, making
the computation of the influence index much more tractable (see Sect. 5.2).

In practice, the values of the alternatives on the attributes are imprecise (second
direction of this work). In Example 2, one needs to assess the PL of faraway ships for
which the values of some attributes are not precisely known. In particular, the attributes
related to the intent of the ship cannot readily be determined. Other attributes such as
the heading of a ship cannot be assigned to a precise value as it is a fluctuating vari-
able. The imprecision of the values of the attributes can also come from some disagree-
ment among experts opinions (for attributes corresponding to a subjective judgment).
For numerical attributes, the imprecise value can take the form of an interval. So far,
there is no explanation approach able to capture imprecise values of the alternatives. In
Example 2, the values of a ship on numerical attributes such as the maximum speed or
the proximity of the shore might be given as an interval of confidence. The imprecisions
on the value of the alternatives on the attributes propagate to the influence degrees in
a very complex manner. We show that when the aggregation models are multi-linear
models, the computation of the bounds on the influence degree can be easily obtained
(see Sect. 4).

2 Preference Model and Notations

2.1 MCDA Model

We are given a set of criteria N = {1,...,n}, each criterion ¢ € N being associated
with an attribute X, either discrete or continuous. The alternatives are characterized by
a value on each attribute and are thus associated to an element in X = X7 X --- x X,,.
We assume that the preferences of the DM over the alternatives are represented by a
utility model U : X — R.

The hierarchy of criteria is represented by a rooted tree 7', defined by the set of
nodes M (i.e. the set of criteria and aggregation nodes), and the children Chr (1) of
node [ (i.e. the nodes that are aggregated at each node [) [5]. We also denote by N C
M the set of leaves of tree T (i.e. the criteria), by s € My the root of tree T (i.e. the
top aggregation node), by Chy (1) the children of node [ in T, by Descr () the set of
descendants of [, and by Leafr(l) the leaves at or below [ € M. A hierarchical model
on criteria N is such that N7 = N.
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The preference model is composed of an aggregation function H; at each node
l € My \ Nr and a partial utility function w; for each criterion ¢ € Ny (criteria). For
x € X, we can compute U (z) recursively from a function v¢ defined at each node
i € Myp:

— vY(x) = u;(x;) for every leaf i € Ny,

— v/ (z) = H((v] (2))recnrq)) for every aggregation node | € My \ Nr,
— U(z) = v () is the overall utility.

Example 2 (Example 2 cont.). We have

vl (z) = ui(z;) fori € {1,2,3,4,5,6},
v (¥) = He(vg (z), 05 (2)) , v (x) = Hs(vf (), 05 (2)),
vg (z) = Ho(vg (2),v8 (¥)) , U(x) = vip(x) = Hio(vy (x),v7 (x),v5 (z)). ]

2.2 Shapley Value

In Cooperative Game Theory, a game on N is a set function v : 2V — R such that
v(@) = 0, N is the set of players, and v(.S) (for S C N) is the amount of wealth pro-
duced by S when they cooperate. It is a non-normalized capacity. The Shapley value is
a fair share of the global wealth v(N) produced by all players together, among them-
selves [14]:

(n —|S] = DYS]!

n!

¢z’Sh(Nﬂ v) == Z

SCN\i

[v(SU{i}) —v(9)]. ()
It can also be written as an average over the permutation on N:

SN0 = o 3 [(S(0) — o)\ i), @

weIlI(N)

where Sy (7w (k)) := {m(1),...,m(k)} and IT(N) is the set of permutations on N.

2.3 Influence Index

Consider two alternatives « and y in X. One wishes to explain the reasons of the dif-
ference of preference between x and y. The explanation proposed in Ref. [9] takes the
form of an index measuring the degree to which each node in M contributes to the dif-
ference of preference between x and y. An influence index denoted by I;(xz,y; U, T) is
computed for each node ¢ € My for utility model U on the hierarchy 7" of criteria. The
influence index is some kind of Shapley value applied to the game v(S) = U(ys, Tn\s)
forall S C N, where (ys, 2n\ g) denotes an alternative taking the values of y in S and
the values of 2 in N \ S. As for the Shapley value, it is defined from permutations on
N. Its expression is defined by [9]:

I — ﬁ D mern(r) §zv U (§) if i € Nr,
ZkELeafT(i) Ik (III, Y, T7 U) CISC,
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where 624V (i) == Ul(ys, (i), 2n\s, () — UUs, ()\{i}» T(N\S» (i))ufi})- In (3), the
set of admissible orderings I1(T) is defined as the set of orderings of elements of N for
which all elements of a subtree of T" are consecutive. More precisely, = € I1(T) iff, for
every | € My \ N, indices 7—*(Leafr(l)) are consecutive.

2.4 Influence Index of the Restricted Tree

The complexity of computing I; is equal to |I1(T')|, which is far too large. It has been
shown in Ref. [9] that one can reduce this complexity by taking profit of some symme-
tries among permutations in I7(7"). The symmetries can be seen considering subtrees
of T'. We consider a subtree T’ of T having the same root as 7', taking a subset of nodes
of T" and having the same edges than T" between nodes that are kept.

Definition of Urv: Given ((u;)ieny, (Hi)ierr\ny) and a subtree 7' of T', we can
define ((u;)ieny,, (H])iermp\n,.) by w; = u; for i € Npv 0 Ny, uj(x;) = x; for
i € Np\ Ny and H! = H, for i € My \ Np/. The overall utility on the sub-
tree is denoted by Upr. We set X; = R for every i« € My \ Np. Then for z € X,
U(z) = Up(«T') where 27" € Xpv is defined by 27 = z; if i € Ny N Np and
2T = oV () otherwise.

Definition of 77;: A particular subtree is when anode j € My of T becomes a leaf, and
thus all descendants of j are encapsulated and represented by ;7. We define the restricted
tree Tj;; by M7, :=(Mr \ Descr(j))U{j}, N1, :=(Nr \ Leafr(j))U{j}, s7,, :=
s, and ChT[j] (l) = ChT(l) forall [ € MT[J] \ NT[j]-

Definition of Tj): For J = {j1,..., jp}, we set Ty} := (((T)[jl]) ol -)[j X
P

Let us thus consider I; for some fixed ¢ € N. The path from s7 to ¢ in T" consists of
the nodes 7o = s, 71, ...,7: = 1. Let J = Uf;i Chr(r;—1) \ {r:}. Then we have [9]

Ii(x7y7Ta U) = Ii(xT[J]7yT[J]aT[J]aUT[J])' (4)

The influence index can be equivalently be computed on the restricted tree 77 ;.

3 Generic Complexity Reduction of I;(x,y; U, T)

Our aim is to implement the influence index in practice. The influence index contains
an exponential number of terms. It is thus very challenging to perform its exact compu-
tation. A complexity analysis is performed in Sect. 3.1. An alternative expression of the
influence index, reducing its computational complexity is proposed in Sect. 3.2.

3.1 Complexity Analysis

By Sect. 2.3, the expression of the influence index is given by (3). Hence the complexity
of I;(z,y; U,T) depends on the number of permutations I7(T). For j € Mr \ N,
we denote by T}; the subtree of T starting at node j, defined by My, := Descr (),
Ny, := Leafr(j), s7y, := j, and Chyy, (I) = Chy(l) foralll € My, \ Nr,,. Then the
cardinality of IT(T) can be recursively computed thanks to the next result.
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Lemma 1. [II(T)| = [Chr(sp)|'x  []  [I(T))I-
jGChT(ST)

The proofs of this result and the others are omitted for space limitation.

Lemma 3 provides a recursive formula to compute the number of compatible per-
mutations in a tree 7', that is the complexity of I;(z,y, T, U).

By (4), the extended Owen value of node 7 for tree 7" can be computed equiva-
lently on tree 17 ;. The implementation of these formulae requires to enumerate over
the permutations I7(7} ). This helps to drastically reduce the complexity.

Example 3. For T of Fig.2(left), i = 1, we obtain J = {2, 10, 14}. Figure 2(right)
shows 77 ;. &

15
15
13/ \14 VAN
/ N\ / \ = 13 14
9 10 11 12 / N\
/ \ / \ / \ / \ 9 10
1 23 45 67 8 1/\2

Fig. 2. Trees T (left) and T}, (right), J = {2,10, 14}

In order to demonstrate the gain obtained by using 7{;; instead of 7', let us take
the example of uniform trees, denoted by TdU,I‘)‘ (with d,p € N,) where each aggrega-
tion node contains exactly p children and each leaf is exactly at depth d of the root.
Figure 2(left) illustrates T?H;. The next lemma gives the expression of the number of
permutations associated to the uniform tree TEZ’;.

Lemma 2. n = ‘NTE“ = pd |II(TYY)

d—1 _k
= (=07 and ‘H((T;{;)m)’ — (™

Table 1 below shows a clear benefit of using 77} instead of T in the computation of
the influence index: the ratio amounts to orders of magnitude when n increases.

3.2 Alternative Expression of I, (xz, y; U, T)

Expression (3) takes the form of an average over permutations. The number of terms in
the sum in (3) is equal to C'(N) := 2INI=1 We give in this section an equivalent new
expression taking profit of relation (4).

Consider I; for some fixed i € N. We set V; := Chy(r;—1) foralll € {1,...,t},
V/ == Vi \ {r} - see Fig.3.
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Expression (3) can be turned into a sum over coalitions, which reduces a little bit
the computation complexity:

To

Fig. 3. Illustration of notation r; and V;.

Theorem 1. We have

I, (ISt < (1vi] = IS] = 1)t
Li(z,y, UTi) = > > : (l (Wl - 15 ))

t
Si1CVy SV Hl:l \ax

(&)

X [U(yi, [ys, .@lv; ) — Ul [ysl..tm]vl'_t)]a

where Sy j = SiU---US;, V/ =V U---UV], zp = v (@), y = oY (y) and
lysz|r (for S C T) denotes an alternative taking the value of y in S and the value of ©
inT\S.

The computation complexity of (5) is given by the next result.
Lemma 3. The number of terms in (5) is of order C(T) := [[i_, 217

The last two column in Table 1 presents the log of the number of operations in the
expression of the influence index written over coalitions rather than on permutations.
The complexity of computing the influence index reducing (resp. not reducing) to the
restricted tree is denoted by C' (Tr}f;‘) (resp. C(Npus ).

We obtain significant improvements on the cofnputation time. In the second part
of the paper, we will aim at drastically reducing this complexity — going from expo-
nential complexity to polynomial or even linear — by taking an appropriate family of
hierarchical aggregation models.
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Table 1. Logarithm of the number of permutations and subsets for uniform trees TCE;,‘.

dip|n Expression (3) Expression (5)
logyo[TI(N)| | logyo [TI(T)| | logyo II(T1s1) | logyg C(NTF%) log;o C(Ty5)

313127 |28.036 10.115 2.334 8.128 1.806
314164 |89.1 28.984 4.14 19.266 2.709
3151125 ]209.27 64.454 6.237 37.629 3.612
3/6[216 |412.0 122.86 8.571 65.022 4.515
41381 120.76 31.126 3.112 24.383 2.408
414256 |506.93 117.31 5.520 77.063 3.612
4151625 |1477.7 324.35 8.316 188.14 4.816
4161296 |3473.0 740.04 11.429 390.13 6.021
5131243 |475.76 94.156 3.89 73.15 3.010
51411024 |2639.7 470.65 6.901 308.2 4.515
51513125 ]9566.3 1623.84 10.395 940.7 6.021
516|7776 | 26879 4443.15 14.286 2340.9 7.526

4 Computation of the Influence Index with Imprecise Values

In many practical situations, the values of the alternatives are imprecise. We have justi-
fied this in the introduction, in particular for Example 2. For the sake of simplicity, the
imprecision of the two alternatives on which the explanation is computed are given as
intervals: ¥ = [z,7]| and ¥ = [y, 7], with 2, T,y,7 € X. The problem is to define the
influence index between Z and 7. a

The idea is to propagate the imprecisions on the values of x and y on the computa-
tion of the influence index. The influence of node ¢ in the comparison between T and
is a closed interval defined by

~

L@3.7.0) = |LE5.1T.0). 1@ §.T.0)],
where

LIi(Z,y,T,U) = minmin I;(z,y, T, U),
- TET YEY

1;(z,9,T,U) = maxmax [;(z,y, T, U).
TEXT YeEY
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We have

Ii(Z,y,T,U) = minmin I;(z,y, T, U)
- TET YEY

L 1
= min min W Z [U(ym Ys,.(i)\{i}» 95—8,,(1‘)) —U(s, Ysx(i)\{i}> x—Sw(i))}

vez yey |11

well(T)
1
= min min Uy., NGV TS (i
Jn min e > [(yl YS(\{i}» T (i)
well(T)

- U<fi7yS,r(i)\{i}vxfs’,r(i))}7
and

1;(2,9,T,U) = maxmax I;(z,y, T, U)
TET YEY

= maxmax
TET ye@|IICTﬂ

> {U(yi, Ys. (0\{i}> T—5.(1)) — Ui Ys, i\ {i}» xfsw(i))}
Tell(T)
: [
= max max ———- U(Ys» Y5, (i)\{i}s TS (i)
) > O\{i}s T8 (0)

T_;€ET_; Y_i€Y_;
i i Y—iCY—i WEH(T)

- U(EiaySW(i)\{i}vxfs’w(i))}'

In the general case, computing I;(Z,y,T,U) or I;(z,y, T, U) is difficult. We will
show in the next section that these computations become tractable for the multi-linear
model.

5 Case of the Multi-linear Model

Section 3.2 has provided an improved expression of the influence index reducing its
computation complexity. However, it is still exponential in the number of criteria and
the depth of the tree. We cannot further reduce the computation complexity without
making assumptions on the utility model U. For applications requiring real-time com-
putations of the explanations and/or presenting a large tree of criteria, we need to restrict
ourselves to classes of models U having specific properties allowing to break the expo-
nential complexity of the computation. This can be easily obtained considering very
simple aggregation models. For example, if all aggregation models in the tree are sim-
ple weighted sums

o (@) = Hi((vf @)kecnrm) = D> wik) vy (), (6)
keChr (1)

where w; (k) is the weight of node k at aggregation ode /, then one can easily show that

L, 55 T 0) = () — i) [ s (i) ™
=0
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Even though the complexity of computing I;(x,y; T;U) is linear in the depth of the
tree, the underlying model is very simple and far from being able to capture real-life
preferences.

We are thus looking for a decision model realizing a good compromise between
a high representation power (in particular being able to capture interaction among
attributes) and a low computation time for the influence indices. We explore in this paper
the multi-linear model and believe that it realizes such good compromise. Section 5.1
describes the multi-linear model. Section 5.2 shows that the expression of the influence
index for the multi-linear model can be drastically simplified in terms of computational
complexity. Section 5.3 shows that when the values of the alternatives are uncertain, the
computation of the influence is also tractable for the multi-linear model.

5.1 Multi-linear Model

Consider an aggregation node [ € My \ N, which children are Chy(!). For the sake
of simplicity, we assume that the components that are aggregated by H; are simply
denoted by the vector a = (ay, . .., a,,), with n; = |Chp(1)].

There exists many aggregation functions [2,7]. The simplest one is the weighted

sum (see (6)): /

WS(a) = Z wi (1) ag,

where w; () is the weight assigned to node i. This model assumes the independence
among the criteria.

Without loss of generality, we can assume that the score lies in interval [0, 1] where
0 (resp. 1) means the criterion is not satisfied at all (resp. completely satisfied). In order
to represent interaction among criteria, the idea is to assign weights not only to single
criteria but also to subsets of criteria. A capacity (also called fuzzy measure [15]) is a set
function v; : 2™ — [0, 1] such that v;(0) = 0, v;({1,...,n}) = 1 and v;(S) < v (T)
whenever S C T [3]. Term v;(S) represents the aggregated score of an option being
very well-satisfied on criteria S' (with score 1) and very ill-satisfied on the other criteria
(with score 0).

The Mobius transform of v, denoted by m; : 2™ — R, is given by [13]

my(A) =Y (=) Ply(B).
BCA

A capacity is said to 2-additive if the Mobius coefficients are zero for all subsets of three
or more terms. Two classical aggregation functions can be obtained given the Mobius
coefficients m;. The first one is the Choquet integral [3]

Cm,(a) = Z my(T) X min ay,,
TeS; met

whereas the second one is the multi-linear model

My, (@) = > mu(T) x [] am, ®)

TeS; meT
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where S; is the subset of {1,...,7n;} on which the Mdbius coefficients are non-null.
The next example illustrates the multi-linear model w.r.t. a two-additive capacity.

Example 4 (Example2 cont.). After eliciting the tactical operator preferences, the
aggregation functions are given by:
Node 7: There is suspicion of illegal activity whenever either drug or human smug-
gling is detected. Hence there is redundancy between criteria 2 and 3. As human
smuggling (crit. 3) is slightly more important than criterion 2, we obtain v¥ (z) =
0.8 vY (x) +vY (x) — 0.8v¥ (z) x v{ (x);
Node 8: v{ (z) = (v{ (z) +v¥ (2))/2;
Node 9: Nodes 6 and 8 are redundant, since there is a high risk that the ship escapes
interception when it is either close to the shore (crit. 6) or very fast (node 8). Hence
v (x) =080 (z) + 0.8 vY (z) — 0.6 v (x) x v{ (z),
Node 10: Nodes 1 and 7 are redundant since there is a suspicion on the ship when
the score is high on either node 1 or 7. Nodes 7 and 9 are complementary as the
risk is not so high for a suspicious ship (high value at node 7) that is easy to inter-
cept (low value at node 9), or for a ship that is difficult to intercept but that is not
suspicious. We have the same behavior between nodes 1 and 9. Hence v{(z) =
(of (@) + 0¥ () — o (2) x 0¥ () + 0¥ () x o (2) + ¥ () x o (2)) /3.

For x = (+,—,—,+,+,+), we obtain us(z) = uz(x) = 0, u;(x) = 1fori €
{1,4,5,6}, 0¥ (2) = 0,v¥ (z) = v{ (z) = 1 and U(z) = v§j(z) = 2. |

5.2 Expression of the Influence Index for the Multi-linear Model

We consider the case where all aggregations functions are multi-linear models.
We now give the main result of this paper.

Theorem 2. Assume that the aggregation function at node r; (for | € {0,...,t — 1})
is done with a multi-linear extension w.r.t. Mobius coefficients m,,. Then

t—1
Li(@,y; U, Tigy) = (ui(y:) — wi(z:)) X H(Ph )]
1=0
where
P, = Z My, (T U{ri41}) % Z H Ym X H Ty X
TCV/ ), TU{ri41}€Si41 S'CT meTns’ meT\S’
[Viga]|—|T|—1

(Vi =T =D (5[ + ) Viga| = 187 = 8" = 1)!
s (Viga| = [T] =1 = s")! Vi !

s''=0

In the generic expression of the influence index (see (5)), the complexity of the
computation of I; grows exponentially with the number ¢ of layers (see Lemma 3).
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Thanks to the previous result, one readily sees that the computation of the influence only
grows linearly with the depth of the tree for the multi-linear model. In (9), the influence
index takes the form of a product of an influence computed for each layer, where @,
is the local influence at aggregation node r;. Hence the computation of (9) becomes
very fast, whatever the depth of the tree and the number of aggregation functions, as the
number of children at each aggregation node is small in practice (in general between
2 and 6). We note that there are strong similarities with the case of a weighted sum
— see (7). The weighted is a particular case of a multi-linear model where all Mobius
coefficients for the subsets of two or more elements are zero. In this case, ®; subsumes
to my, ({ri+1}), which is equal to the weight w,, (r;+1) of node r; 1 at aggregation
node r; in a weighted sum. Hence (9) subsumes to (7) for a weighted sum.

Lemma 4. The number of terms in (5) is of order
t t
Crnutitin(T) =14 Y _ [V/'] > 2T <1+ VBV (10)
=1 TCV/ , Tu{r;}€S, =1
If all multi-linear models are two-additive, the complexity becomes
t
Cyuttirin(T) = 1+ Z VI 1L+ 2[V/]].
1=1
We now illustrate Theorem 2 on the running example.

Example 5. (Example 4 cont.). We consider the two options z = (+,—,—, —, —, —)
andy = (+,+,+,+,+, +). We have

ur(z) =1, ua(z) = us(x) = ug(x) = us(z) = ug(x) =0,
ui(y) = uz(y) = us(y) = ua(y) = u u
Then the influence of node say 4 is equal to

Li(z,y; U, T gy) = (ua(y) — ua(x)) X @o x @1 X Po,

where @; is the contribution at aggregation node 7; to the influence. We have

By = mp({9)) + mup({1,9)) LT W) (7,0 o) erly)

2 2
(as m19({1,7,9}) = 0),

18)) + ma({6,9) "0 10lW)

{4})  (asms({4,5}) = 0).

Py =4, Dy = 5 and Iy(z, y; U, T} ) = 0.125. u
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5.3 Computation of the Influence Index with Imprecise Values for the
Multi-linear Model

As in Sect. 5.2, we now assume that all aggregation functions are multi-linear models.
From Theorem 2,

Li(w,y; U, Tiy) = xH@ z,y),
where

By(,y) =Y IS (|V|l‘|/l] |S|_1)!xz (Tu{rp)x [T wix II =

scvy TCV! JETNS JET\S

Let us start with the computation of the lower bound of the influence of criterion i:

LEGTU) = min  min (@20, (y,y-)T,U)

T €T Y—i€Y—i
t
= (gl _Ei) X th
=1

where &, = min, ,cz , min, ,c5 , Pi(x,y). Let k € V/. Let us analyse the mono-
tonicity of variables xy, and Yy on P; (x Y):

Z Z S|t (Vi = IS —1)!

Py (x,y) = : (T U {r)) 0
SCV/\{k} TCV/\{k} Vil!
(IS|+1)! x (|Vi| — |S| — 2)!
|(vz|' s
S| x (|V; S
|51t x (] |l‘|/|;| = (U (o, k)
S|+ D! x (V] — 18] — 2)!
(IS +1) |(|V|z' |51 - 2) Uk ] < ] > I]
v JETNS JET\S

The first two terms in the bracket are constant w.r.t. x5 and y. Hence @; is linear in
xy, and in yj. This implies that the minimum value in ¢;(z, y) is attained at an extreme
point of the intervals. As this holds for every k, we obtain

P, = min min Dy (z,y).
i €[], {z; %5} yfiEH#i{gj Uit

The optimal value can be obtained by enumerating the extreme values. This is not so
time consuming as the number of elements in V}’ is not large. A similar approach can
be performed to compute I;(Z, 7, T, U).

A more efficient approach can be derived to compute I;(Z,7,T,U) and
I;(Z,9,T,U) under assumptions on m;. By (11), if m; (T U {r;,k}) > 0 (resp. < 0)
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for all T C V} \ {k}, then &; is monotonically increasing (resp. decreasing) w.r.t. zy
and y;,. Hence the minimum @, is attained at x;, = x;, (resp. at x, = T). This is in
particular the case when the Mobius coefficients are 2-additive. Indeed, for a 2-additive
capacity, m(T U {r;, k}) can be non-zero only for T" = {).

6 Conclusion and Perspectives

The problem of generating explanations is of particular importance in many applica-
tions. It is also very challenging. We have considered the problem of explaining a hier-
archical multi-criteria decision aiding problem using influence indices extending the
Shapley value. The main drawback of this approach is that its computation complexity
grows exponentially with the depth of the tree. We have shown that this complexity
remains linear when the aggregation functions are multi-linear models. Secondly, we
considered in the case where the values of the alternatives are imprecise on the crite-
ria. The influence indices become thus imprecise. An efficient computation approach is
proposed for the multi-linear model.

The work can be extended in several directions. In applications where a multi-linear
model is not suitable, it is crucial to obtain efficient algorithms for other classes of
aggregation models, such as the Choquet integral. One can also check the validity of
the explanations on real users.
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Abstract. DL-Lite is a tractable family of Description Logics that underlies the
OWL-QL profile of the ontology web language, which is specifically tailored for
query answering. In this paper, we consider the setting where the queried data are
provided by several and potentially conflicting sources. We propose a merging
approach, called “Assertional Removed Sets Fusion” (ARSF) for merging D L-
Lite assertional bases. This approach stems from the inconsistency minimization
principle and consists in determining the minimal subsets of assertions, called
assertional removed sets, that need to be dropped from the original assertional
bases in order to resolve conflicts between them. We give several merging strate-
gies based on different definitions of minimality criteria, and we characterize the
behaviour of these strategies with respect to rational properties. The last part of
the paper shows how to use the notion of hitting sets for computing the assertional
removed sets, and the merging outcome.

1 Introduction

In the last years, there has been an increasing use of ontologies in many application
areas including query answering, Semantic Web and information retrieval. Description
Logics (DLs) have been recognized as powerful formalisms for both representing and
reasoning about ontologies. A DL knowledge base is built upon two distinct compo-
nents: a terminological base (called TBox), representing generic knowledge about an
application domain, and an assertional base (called ABox), containing assertional facts
that instantiate terminological knowledge. Among Description Logics, a lot of attention
was given to DL-Lite [12], a lightweight family of DLs specifically tailored for appli-
cations that use huge volumes of data for which query answering is the most important
reasoning task. DL-Lite guarantees a low computational complexity of the reasoning
process.

In many practical situations, data are provided by several and potentially conflicting
sources, where getting meaningful answers to queries is challenging. While the avail-
able sources are individually consistent, gathering them together may lead to inconsis-
tency. Dealing with inconsistency in query answering has received a lot of attention
in recent years. For example, a general framework for inconsistency-tolerant semantics

© Springer Nature Switzerland AG 2019
N. Ben Amor et al. (Eds.): SUM 2019, LNAI 11940, pp. 207-220, 2019.
https://doi.org/10.1007/978-3-030-35514-2_16
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was proposed in [4,5]. This framework considers two key notions: modifiers and infer-
ence strategies. Inconsistency tolerant query answering is seen as made out of a modi-
fier, which transforms the original ABox into a set of repairs, i.e. subsets of the original
ABox which are consistent w.r.t. the TBox, and an inference strategy, which evaluates
queries from these repairs. Interestingly enough, such setting covers the main existing
works on inconsistency-tolerant query answering (see e.g. [2,9,22]). Pulling together
the data provided by available sources and then applying inconsistency-tolerant query
answering semantics provides a solution to deal with inconsistency. However, in this
case valuable information about the sources will be lost. This information is indeed
important when trying to find better strategies to deal with inconsistency during merg-
ing process.

This paper addresses query answering by merging data sources. Merging consists
in achieving a synthesis between pieces of information provided by different sources.
The aim of merging is to provide a consistent set of information, making maximum use
of the information provided by the sources while not favoring any of them. Merging
is an important issue in many fields of Artificial Intelligence [10]. Within the classical
logic setting belief merging has been studied according different standpoints. One can
distinguish model-based approaches that perform selection among the interpretations
which are the closest to original belief bases. Postulates characterizing the rational
behaviour of such merging operators, known as IC postulates, which have been pro-
posed by Revesz [25] and improved by Konieczny and Pérez [21] in the same spirit as
the seminal AGM [1] postulates for revision. Several concrete merging operators have
been proposed [11,20,21,23,26]. In contrast to model-based approaches, the formula-
based approaches perform selection on the set of formulas that are explicitly encoded
in the initial belief bases. Some of these approaches have been adapted in the con-
text of DL-Lite [13]. Falappa et al. [14] proposed a set of postulates to characterize
the behaviour of belief bases merging operators and concrete merging operators have
been proposed [6,8,14,17,19,24]. Among these formula-based merging approaches,
Removed Sets Fusion approach has been proposed in [17, 18] for merging propositional
belief bases. This approach stems from removing a minimal subset of formulae, called
removed set, to restore consistency. The minimality in Removed Sets Fusion stems
from the operator used to perform merging, which can be the sum (X), the cardinal-
ity (Card), the maximum (M ax), the lexicographic ordering (GM ax). This approach
has shown interesting properties: it is not too cautious and satisfies most rational IC
postulates when extended to belief sets revision.

This paper studies DL-Lite Assertional Removed Sets Fusion (ARSF). The main
motivation in considering ARSF is to take advantage of the tractability of DL-Lite for
the merging process and the rational properties satisfied by ARSF operators. We con-
sider in particular DL-Literp as member of the DL-Lite family, which offers a good
compromise between expressive power and computational complexity and underlies
the OWL2-QL profile. We propose several merging strategies based on different defini-
tions of minimality criterion, and we give a characterization of these merging strategies.
The last section contains algorithms based on the notion hitting sets for computing the
merging outcome.
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2 Background

In this paper, we only consider DL-Liter, denoted by £, which underlies OWL2-QL.
However, results of this work can be easily generalized for several members of the
DL-Lite family (see [3] for more details about the DL-Lite family).

Syntax. A DL-Lite knowledge base K = (7,.A) is built upon a set of atomic con-
cepts (i.e. unary predicates), a set of atomic roles (i.e. binary predicates) and a set of
individuals (i.e. constants). Complex concepts and roles are formed as follows:

B — A|3R,C — B|~B,R —> P|P~,E — R|-R,

where A (resp. P) is an atomic concept (resp. role). B (resp. C') are called basic (resp.
complex) concepts and roles R (resp. E) are called basic (resp. complex) roles. The
TBox 7 consists of a finite set of inclusion axioms between concepts of the form: B C
C' and inclusion axioms between roles of the form: R C E. The ABox A consists of a
finite set of membership assertions on atomic concepts and on atomic roles of the form:
A(a;), P(a;, a;), where a; and a; are individuals. For the sake of simplicity, in the rest
of this paper, when there is no ambiguity we simply use DL-Lite instead of DL-Litep.

Semantics. The DL-Lite semantics is given by an interpretation Z = (AZ,.7) which
consists of a nonempty domain AZ and an interpretation function .Z. The function
I assigns to each individual a an element aZ € AZ, to each concept C' a subset
C? C AT and to each role R a binary relation RZ C A? x AT over AZ. More-
over, the interpretation function 7 is extended for all constructs of DL-Liteg. For
instance: (=B)T = AT\BZ, (3R)? = {z € AT|Fy € AT suchthat (z,y) € R}
and (P7)% = {(y,7) € AT x A%|(z,y) € PT}. Concerning the TBox, we say that
7 satisfies a concept (resp. role) inclusion axiom, denoted by Z = B C C (resp.
Z E R C E),iff BT C C7? (resp. R* C E7). Concerning the ABox, we say that
7 satisfies a concept (resp. role) membership assertion, denoted by Z |= A(a;) (resp.
T k= P(ai,ay)), iff af € AT (resp. (af,al) € PT). Finally, an interpretation Z is said
to satisfy IC = (7, A) iff 7 satisfies every axiom in 7 and every assertion in .A. Such
interpretation is said to be a model of .

Incoherence and Inconsistency. Two kinds of inconsistency can be distinguished in
DL setting: incoherence and inconsistency [7]. A knowledge base is said to be incon-
sistent iff it does not admit any model and it is said to be incoherent if there exists at
least a non-satisfiable concept, namely for each interpretation Z which is a model of 7,
we have CZ = (). In DL-Lite setting a TBox 7 = {PIs, NIs} can be viewed as com-
posed of positive inclusion axioms, denoted by (PIs), and negative inclusion axioms,
denoted by (NIs). PIs are of the form By T By or Ry C Ry and NIs are of the form
B; C =By or Ry C —Rs. The negative closure of 7, denoted by cln(7), represents the
propagation of the NIs using both PIs and NIs in the TBox (see [12] for more details).
Important properties have been established in [12] for consistency checking in DL-Lite:
K is consistent if and only if {cIn(7), A) is consistent. Moreover, every DL-Lite knowl-
edge base with only PIs in its TBox is always satisfiable. However when 7 contains NI
axioms then the DL-Lite knowledge base may be inconsistent and in an assertional-
based approach only elements of ABoxes are removed to restore consistency [13].
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3 Assertional Removed Sets Fusion

In this section, we study removed sets fusion to merge a set {45, - - -, A, } of n asser-
tional bases, representing different sources of information, linked to a DL-lite ontology
T. As representation formalism, we consider M = (7, M _4), an MBox knowledge
base where M 4 = {A4,..., A, } is called an MBox. An MBox is simply a multi-set
of membership assertions, where each 4; is an assertional base linked to 7. We assume
that M is coherent, i.e. 7 is coherent and for each A;, 1 < i < n, (T, .A;) is consis-
tent. However, the MBox M may be inconsistent since the assertional bases .4; may
be conflicting w.r.t. 7. We define the notion of conflict as a minimal inconsistent subset
of A U...UA,, more formally:

Definition 1. Let My = (T, M 4) be an inconsistent MBox DL-Lite knowledge base.
A conflict C is a set of membership assertions such that (i) C C A3 U---U A,, (i1)
(T, C) is inconsistent, (13i) YVC', if C' C C then (T ,C") is consistent.

We denote by C(M) the collection of conflicts in M. Since M is assumed to be
finite, if M is inconsistent then C(M) # 0 is also finite.

Within the DL-Lite framework, in order to restore consistency, the following defini-
tion introduces the notion of potential assertional removed set.

Definition 2. Let My = (T, M_4) be a MBox DL-Lite knowledge base. A potential
assertional removed set, denoted by X, is a set of membership assertions such that (i)
X CAU---UA,, (i) (T,(AL U - UA)\X) is consistent, (ii)) VX', if X € X C
A1 U---UA, then (T, (A1 U---UA,)\X') is inconsistent.

We denote by PR(Mj) the set of potential assertional removed sets of M. If M is
consistent then PR(My) = {0}. The concept of potential assertional removed sets is
to some extent dual to the concept of repairs (maximally consistent subbase). Namely,
if X is a potential assertional removed set then (A; U --- U A,)\X is a repair, and
conversely.

Example 1. Let My = (T, M_4) be an inconsistent MBox DL-Lite knowledge base
such that 7 = {A C -B,C C —-D} and M4 = {A;, Ay, A3} where 4, =
{A(a),C(a)} Az = {A(a), A(b)} and A3 = {B(a), D(a),C(b)}. By Definition I,
C(Mx) = {{A(a),B(a)},{C(a),D(a)}}. Hence, by Definition2, PR(My) =
{{A(a), C(a)}. {A(a), D(a)}, {B(a), C(a)}. {B(a), D(a)}}.

In order to cope with conflicting sources, merging aims at exploiting the comple-
mentarity between the sources providing the ABoxes, so merging strategies are neces-
sary. These merging strategies are captured by total pre-orders on potential assertional
removed sets. Let X and Y be two potential assertional removed sets, for each strategy
P atotal pre-order <p over the potential assertional removed sets is defined. X <p Y
means that X is preferred to Y according to the strategy P. We define < p as the strict
total pre-order associated to <p (i.e. X <p Y ifandonlyif X <p Y andY £p X).

Definition 3. Let My = (T, M 4) be a MBox DL-Lite knowledge base. An assertional
removed set according to the strategy P, denoted by X, is a set of membership asser-
tions such that (i) X is a potential assertional removed set of My, (ii) there does not
exist any Y such that Y is a potential assertional removed set of My andY <p X.
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We denote by R p(Mjc) the set of assertional removed sets according to the strat-
egy P of M. If M is consistent then Rp(My) = {0}. The usual merging strate-
gies sum-based (L), cardinality-based (Card), maximum-based (M ax) and lexico-
graphic ordering (GM ax) are captured by the following total pre-orders. We denote
by s(M_4) the ABox obtained from M where every assertion expressed more than
once is reduced to a singleton.

(D) X <o Vif 3o, [ XNAS Y o0, [Y DAL

(Card): X <cara Y If TX Ns(M4)| < [Y N s(M4)].

(MCLLU)Z X SMax Y lf maxlgign | X N .AZ |§ maxlgign | Y N .AZ | .

(GMax): For every potential assertional removed set X and every ABox .4;, we define
p}‘}i =| X N A; |. Let LY be the sequence (p§1 ey pé”) sorted by decreasing
order. Let X and Y be two potential assertional removed sets of M, X <gnraz
Y if LM <jep LA

The X strategy minimizes the number of assertions to remove from M 4. The Card
strategy attempts, similarly to 3, to minimize the number of removed assertions. But it
does not take into account assertions which are expressed several times. Note that the
X and Card strategies only differ if there are redundant assertions. The Max strategy
tries to distribute to the best the assertions to be removed among to ABoxes. It tries
to do so by removing the less possible assertions in the most hit ABox. The GM ax
strategy is a lexicographic refinement of the M ax strategy. Note that when there is only
one source, all strategies become equivalent.

We now present assertional-based D L-Liter merging operators. A merging opera-
tor is a function that maps an MBox DL-Litegr My = (7, M 4) to a knowledge base
A(M) = (T, A(M 4)), where the function A defined from £ x ... x L to £, merges
according to a strategy a multiset of assertions M 4 into a set of assertions denoted by
A(M 4). In the DL-Lite language, it is not possible to find a set of assertions which
represents the disjunction of such possible merged sets of assertions. If we want to keep
the result of merging in DL-Lite, several options are possible. The first one is to con-
sider the intersection of all possible merged set of assertions however this option may be
too cautious since it could remove too many assertions and contradicts in some sense
the minimal change principle. Another option is to define a selection function which
allows us to define the family of ARSF operators. In this paper we consider the family
of selection functions that select exactly one assertional removed set as follows.

Definition 4. A selection function f is a mapping from Rp(Mx) to Ay U ... U A,
such that (i) f(Rp(Myx)) = X with X € Rp(My), (i) f({0}) = 0.

Definition 5. Let My = (T, M 4) be a MBox DL-Lite knowledge base, f be a selec-
tion function, and P be a strategy, the merged DL-Lite knowledge base, denoted by
AT (M), is such that AD (M) = <T, Aarst (MA)> where ATT(My) =
(AU UA)\f(Rp(Mi)).

Let Mx = (7,M_4) be a MBox DL-Lite knowledge base, and ¢(z) a query.
Querying multiple data sources is performed by querying merged data sources and

(T, M) = g(z) amounts to <T, AT (M A)> = q(x).

C(X1yeee s Xn) Stew (Yipooo, Ya) i3, 1< i <my () Xy < Vi, (i0) Vi, 1 < j < i X, =
Y.
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Example 2. Let My = (T, M _4) be the MBox of Example 1. The potential assertional
removed sets are X1 = {A4(a),C(a)}, Xo = {A(a),D(a)}, X5 = {B(a),C(a)}
and X; = {B(a),D(a)}. As illustrated in the table below?, we have Rx(My) =
{X3,X4}. Suppose the selection function f is such that f(Rx(My)) = X4 we
have AL (M) = {A(a), C(a), A(b), C(b)}. We have Roara(Mi) = {X1, Xo,
X3, X4}. Suppose the selection function f is such that f(Rcera(Mx)) = X1 we
have AL (M 4) = {A(b), B(a), D(a), C(b)}. We have Rarae(Mx) = {X2, X3}.
Suppose the selection function f is such that f(Rcoara(Mi)) = Xo we have
A (My) = {C(a), A(b), B(a), C(b)}. We have Ranran(Mx) = {X3} and
AGrfae(Ma) = {Ala), D(a), A(b), C(0)}.

Xi [|Xan A || XsNnAs| | |1 XiNAs| | X | Card| Max | GMax
X1 |2 1 0 312 2 210
Xa 1 1 1 312 1 111
Xs|1 0 1 2 |2 1 110
X410 0 2 2 |2 2 200

4 Logical Properties

Within the context of propositional logic, postulates have been proposed in order to
classify reasonable belief bases merging operators [14—16]3. In order to give logical
properties of ARSF operators, we first rephrase these postulates within the DL-Lite
framework, and then analyse to which extent the proposed operators satisfy these pos-
tulates for any selection function.

Let Mg = (7, M) and My = (T, M) be two MBox DL-Lite knowledge
bases, let A be an assertional-based merging operator and (7', A(M 4)) be the DL-Lite
knowledge base resulting from merging, where A(M 4) is a set of assertions. Let o be
a permutation over {1,...n}, and M4 = {Ay,..., A, } be a multiset of assertions,
(M 4) denotes the set {Ag(1), - - -, As(n) }. We rephrase the postulates as follows:

Inclusion A(Ma) C AL U...UA,.
Symmetry For any permutation o over {1,...n}, A(G(Ma)) = A(My).
Consistency (T, A(M 4)) is consistent.
Congruence If Ay U...UA, = AjU...UA then A(My) = A(My).
Vacuity 1f (T, M 4) is consistent then A(M ) = A; U... U A,.
Reversion If (T, M 4) and (T, M 4+) have the same minimal inconsistent sub-

sets then (A; U... UA)N\NAWM4) = (AJU...UANAMA).

2 On each column the assertional removed sets are in bold.
3 We do not consider the IC postulates [21] since they apply to belief sets and not to belief bases.
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Core-retainment If « € A1 U...UA, and o ¢ A(M 4) then there exists A’ s. t.
A" C A U...UA,, A is consistent but A’ U {a} is inconsistent.
Relevance If « € A;U...UA, and o ¢ A(M,) then there exists A’ s. t.
AMy) C A C A U...UA,, A is consistent but A" U {a} is

inconsistent.

Inclusion states that the union of the initial ABoxes is the upper bound of any merging
operation. Symmetry establishes that all ABoxes are considered of equal importance.
Consistency requires the consistency of the result of merging. Congruence requires that
the result of merging should not depend on syntactic properties of the ABoxes. Vacuity
says that if the union of the ABoxes is consistent w.r.t. 7 then the result of merging
equals this union. Reversion says that if ABoxes have the same minimal inconsistent
subsets w.r.t. 7 then the assertions erased in the respective ABoxes are the same. Core-
retainment and Relevance express the intuition that nothing is removed from the original
ABoxes unless its removal in some way contribute to make the result consistent.

Proposition 1. Let My = (T, M) be a MBox DL-Lite knowledge base. For any
selection function, VP € {X,Card, Max, GMax}, A(}rsf satisfies the Inclusion,
Symmetry, Consistency, Vacuity, Core-retainment and Relevance. A?;;Tf , satisfies Con-
gruence and Reversion, but VP € {%, Max, GMazx}, A% does not satisfy Congru-
ence nor Reversion.

(sketch of the proof) For any selection function, by Definitions4 and 5, VP €
{¥,Card, Max,GMaz}, A‘}fsf satisfies Inclusion, Symmetry, Consistency, Vacuity
and Core-retainment.

Relevance: By Definition 5, for any selection function f, VP € {X,Card, Maz,
GMaz},ifa € A U.. .UA, and o & AT (M) then o € f(Rp(My)). Let A/ =
A% (M 4), A’ is consistent and A’ U{«/} is inconsistent since o € f(Rp(My)) and
f(Rp(My) is an assertional removed set. By Definition 5, A‘gasrf 4 satisfies Congruence
and Reversion since every assertion expressed more than once is reduced to a singleton.
We provide a counter-example for A‘}!Sf, VP € {¥, Max,GMax}. Let My =
(T, M 4) be an inconsistent MBox DL-Lite knowledge base such that 7 = {A C - B}
and A, = {A(a)}, A2 = {A(b),B(a)}, A3 = {B(a), A(b)}. The potential asser-
tional removed sets are PR(My) = {X1, X2, X3, X4} with X3 = {A(a), A(D)}.
Xy = {A(a),B(b)}, X3 = {B(a),A(b)}, X4 = {B(a),B(b)} and the sets of
assertional removed sets are Ry (M) = {X1,Xo}, Raraz(Mi) = {X1, X2} and
Remaz(Mic) = {X1, Xo}.

X [|1Xan A || XsNn Azl || XinNAs| | X | Max | GMax
X1 1 0 2|1 110
Xa 1 0 1 2 |1 110
X310 2 1 312 210
X410 1 2 312 210
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Besides, let My = (7, M’,) be an inconsistent MBox DL-Lite knowledge base such
that 7 = {A C -B} and A} = {A(a), B(b)}, A, = {B(a)}, A5 = {A(a), A(a)}.
We have (A; UAyUA3) = (A;UALUAL) and PR(M) = PR(M), and the sets
of assertional removed sets are Ry (M) = {X3, X4}, Rarar(Mxr) = { X3, X4}
and RGMax(MIC’) = {Xg, X4}.

X [1Xan A4 || XsnA's| || XN A's| | X | Max | GMax
X1 0 2 312 210
X2 |2 0 1 312 110
X310 1 1 2|1 110
X4 1 1 0 2|1 110

VP € {X,Mazx, GMazx} we have Rp(My) # Rp(Mcx:), and there is no selection
function such that f(Rp(Mx)) € Rp(Mpxr) therefore A% (M a) # AT (Mar).

5 Computing ARSF Merging Outcome

We first show the one to one correspondence between potential assertional removed sets
and minimal hitting sets w.r.t. set inclusion [28]. We recall that a set H is a hitting set
of a collection of sets C iff VC' € C, C N H # (.

Proposition 2. Let X be such that X C Ui<;<pA;. X is an potential assertional
removed set of Mc if and only if X is minimal hitting set w.r.t. set inclusion of C(Myc).

The proof is straightforward following Definition 2. Notice that the algorithm for the
computation of the set of conflicts C(Mc) is done in polynomial w.r.t. the size of M.
This can be found e.g. in [7]. In the following, we provide a single algorithm to compute
the potential assertional removed sets and the assertional removed sets according to the
strategies C'ard, X/, M ax and Gmaz. We give explanations on the different use cases of
this algorithm hereafter. For a given assertional base M, the outcome of Algorithm 1
depends on the value of the parameter P: if P € {Card, X, Max, Gmax}, then the
result is R p(Mc). Otherwise the result is PR (M ).

Let us first focus on the computation of PR (M ). The algorithm is an adaptation
of the algorithm for the computation of the minimal hitting sets w.r.t. set inclusion of
a collection of sets described in [28]. It relies on the breadth-first construction of a
directed acyclic graph called an HS-dag. An HS-dag T is a dag with labeled nodes and
edges such that: (i) The root is labeled with () if C(M ) is empty, otherwise it is labeled
with an arbitrary element of C(M); (ii) for each node n of T', we denote by H(n) the
set of edge labels on the path from n to the root of 77 (iii) The label of a node n is any
set C' € C(My) such that C N H(n) = 0 if such a set exists. Otherwise n is labeled
with (). Nodes labeled with () are called terminal nodes; (iv) If n is labeled by a set C,
then for each o € C, n has a successor n,, joined to n by an edge labeled by a.
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Algorithm 1. Computes the elements of Rp(Mj) or the elements of PR(Mk)
depending on the P parameter value.

1: function COMPUTE-ASSERTIONAL-RS(M i, P)

D> P: strategy

2 My =(T, My) My ={A1, -, An}
3 level «— 0
4 label(root) « anelement C € C( M) > root is the root node
5. PrevQ « {root} 1> Queue of nodes in the previous level
6: ifP € {X, Maz, Gmax} then
7: MinNodes «— > set of optimal nodes
8: MinCost «— oo > oo for X and Maz, (oo, . . . , 0o) for GMax

[ ——

n times

9: mincard «— false > used by C'ard strategy

10: while PrevQ # 0 and not mincard do
11: level «— level + 1

12: CurQ «— 0

13: forallno € PrevQ do

14: iflabel(no) # 0 andlabel(no) # X then

15: label(no) = {a, B}

16: label(left_branch(no)) — «

17: label(right_branch(no)) «— 8

18: left_child(no) «PROCESSCHILD(cx, no, CurQ, M, MinCost, MinNodes, P)
19: right_child(no) «PROCESSCHILD(B, no, CurQ, Mg, MinCost, MinNodes, P)
20: it label(left_child(no)) = 0 orlabel(right_child(no)) = @and P = Card then
21: mincard «— true

22: PrevQ «— CurQ

23: ifP ¢ {X, Maxz, Gmax} then

24: MinNodes « all nodes labelled with ()

25: return Min Nodes

Algorithm 2. Process a child branch of a node. Return a node (new or recycled).

11 function PROCESSCHILD(b_label, pa, CurQ, M, MinCost, MinNodes, P)

> b_label: label of the branch to the new node

D> pa: the parent node

> CurQ: queue of nodes already processed at the current level (input/output parameter)
> MinC ost: current minimum cost (input/output parameter)

> Min N odes: set of current minimum cost nodes (input/output parameter)

D> P: strategy

2 My =(T, My)
3 Mg ={A1, -, An}
4 if3n’ € CurQsuchthat H(n') = H(pa) U {b_label} then
5: child_node «— n' 1> no new node creation
6: elseif In’ € T suchthat H(n') C H(pa) U {b_label} and label(n’) = @ then
7: child_node « anew node
8: label(child_node) — K 1> this is a closed node
9. eseif P € {¥, Max, Gmaz} and CosT(P, H(pa) U {b_label}) > MinCost then
10: child_node «— anew node
11 label(child_node) «+— K D> this is a closed node
12: else
13: child_node «— anew node
14: label(child_node) « anelement C € C(Mc) suchthat C N (H(pa) U {b_label}) = 0
15: CurQ «— CurQ U {child_node}
16: if P € {¥, Maz, Gmaxz} and label(child_node) = 0 then
17: if CosT(P, H(pa) U {b_label}) < MinCost then

1> Close current level nodes which are no more optimal
18: forall nopt € MinN odes do
19: label(nopt) «— X
20: MinNodes «— 0
21: MinCost «CosT(P, H(pa) U {b_label})
22: MinNodes «— MinNodes U {child_node}

23: return child_node

In our case, the elements of C € C(My) are such that |C| = 2 (see [12]), so the
HS-dag is binary. Algorithm 1 computes the potential assertional removed sets by com-
puting the minimal hitting sets w.r.t. set inclusion of C(M ). It builds a pruned HS-dag
in a breadth-first order, using some pruning rules to avoid a complete development of
the branches. We move the processing of the left and right children nodes in a separate
function (described in Algorithm 2), as it first permits to keep the algorithm short and
simple, and second facilitates the extension of this algorithm to the computation of the
assertional removed sets according to the different strategies.
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Prev@ and Cur(@ are sets containing respectively the nodes of the previous and the
current level. label(n) denotes the label of a node n. In a similar way, if b is a branch,
label(b) represents the label of b. left_branch(n) (resp. right_branch(n)) denotes
the left (resp. right) branch under the node n. left_child(n) (resp. right_child(n))
represent the left (resp. right) child node of the node n. The algorithm iterates the nodes
of a level and tries to develop the branches under each of these nodes. The central
property is that the conflict C' labeling a node n is such that C N H(n) = 0.

Pruning rules are applied when trying to develop the left and right branches of some
parent node pa (lines 4-22 in function PROCESSCHILD, Algorithm 2). Let us briefly
describe them: (i) if there exists a node n’ on the same level as the currently developed
child branch such that H(n') = H(pa) U {b_label} (b_label being the label of the
currently developed child branch), we connect the child branch to n’, and there is no
node creation (line 4); (ii) if there exists a node n’ in the HS-dag such that H(n') C
H (pa)U{b_label} and n' is a terminal node, then the node connected to the child branch
is a closed node (which is marked with X) (line 6); (iii) otherwise the node connected
to the child branch is labelled by a conflict C' such that H(pa) U {b_label} N C = (.
This new node is added to the current level queue.

Now we explain the aspects of the computation of the assertional removed sets
according to each strategy P. Clard strategy. The Card strategy is the simplest one
to implement. First, observe that the level of a node n in the HS-dag is equal to the
cardinality of H(n). This means that if n is an end node (a node labeled with 0), the
cardinality of the corresponding minimal hitting set is H(n). Thus, there is no need
to continue the construction of the HS-dag, as we are only interested in hitting sets
which are minimal w.r.t. cardinality. In the light of the preceding observation, The only
modification of the algorithm is the use of a boolean flag mincard which halts the
computation at the end of the level where the first potential assertional removed set has
been detected. X', Max and GMazx strategies. As regards these strategies, we have
no guarantee that the assertional removed sets reside in the same level of the tree, as
illustrated by the following example for the ) strategy.

Example 3. Let My = (T, M 4) be an inconsistent MBox D L-Lite knowledge base
suchthat 7 = {AC -B,C C -B},and A; = {A(a)}, A2 = {C(a)}, A3 = {B(a)},
Ay = {B(a)}, A5 = {B(a)}. We have PR(Mx) = {{A(a),C(a)},{B(a)}} and
Rx(Mg) = {{A(a),C(a)}}. Thus the only assertional removed set is found at level
2, while the first potential assertional removed set is found at level 1.

Similar examples can be exhibited for the Maz and G M ax strategies. The search
strategy and associated pruning techniques for X, M ax and Gmax are located in lines 9
and 16 of Algorithm 2. They rely on a cost function which takes as parameters a strategy
and a set S of ABox assertions. The different cost functions are defined according to
the strategies, that is, given an MBox M4 = {A; U ... U A,}: For the X strategy
COST(X, S) computes [SNA;y|+...+|SNA,|. For the Max strategy COST(Max, S)

computes max(|SNAyl,...,[SNA,|), For the GMaz strategy, using pi’ = | X N.A;l,
cosT(GMaz, S) computes L34, which is the sequence (p’;}l b ,p}‘}") sorted by

decreasing lexicographic order.
The variable M inCost maintains the current minimal cost. In line 9 of Algorithm 2,
if the cost of the current node is greater than MinCost, then the node is closed, as is
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cannot be optimal. Otherwise we create a new node, labelled with a conflict which does
not intersect H (pa)U{b_label}. If such a label cannot be found (line 16), i.e. the current
node is a terminal node then, at this point: (i) we are assured that COST(P, H (pa) U
{b_label}) < MinCost, so we add the new node to the set of currently optimal nodes
(line 22); (ii) if the cost of the current node is strictly less than MinCost, then we close
all nodes currently believed to be optimal, empty the set containing them, and update
MinCost (lines 18-21).

Example 4. We illustrate the operation of the algorithm with the computation of the
assertional removed sets of Example 2. Figure 1 depicts the HS-dag built by Algo-
rithm 1. Circled numbers shows the ordering of nodes (apart from root which is obvi-
ously the first node).

{A(a), B(a)}
/ \
(.01 () o

ar/ Now  aw/ Now

0(
2—3 2_3 X =2 2_2
Max = 2 @ Mazx =1 @ Max =1 @ Max = 2 @
GMaz = (2,1,0) GMaz = (1,1,1) GMaz = (1,1,0) GMaz = (2,0,0)

Fig. 1. Computing the removed sets of Example 2.

In order to facilitate the description, we denote by MinNodesp the variable
MinNode when considering strategy P. The same applies for MinCost. At the end
of the execution of the processing of a node (PROCESSCHILD function), a state of these
variables is given.

root The root is labelled with a conflict.
level 1

— Left and right branches of root node are labelled respectively with A(a) and
B(a), the members of the root label (lines 16-17 of Algorithm 1).

— PROCESSCHILD(«, no, Cur@, Mk, MinCost, MinNodes, P) is called. None of
the pruning conditions in lines 4, 6 and 9 apply, so node (D is created, and
labelled with a conflict not intersecting H (D) = A(a), namely {C(a), D(a)}.
The same processing leads to the creation of node Q).

State: MinNodes = (), MinCost = oo for any strategy
level 2

— Leftand right branches of node (D) are labelled respectively with C(a) and D(a),
the members of the label (lines 16-17 of Algorithm 1).

— PROCESSCHILD (v, no, Cur@, Mg, MinCost, MinNodes, P) (left branch
of node (D) is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node () is created. As there is no conflict C such that C N H(Q) = 0,
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the new node is labelled with (). Whatever the strategy is, its cost is necessarily
less than MinC'ost which has been initialized to co. Thus MinCost is updated
to the cost of node 3) depending on the strategy and node (3) is added to the
MinNodes set.

State: MinNodes = {®}, MinCosts;, = 3, MinCostpyrar = 2,
MinCostgnyrar = (2,1,0).

— PROCESSCHILD(S, no, Cur@, Mg, MinCost, MinN odes, P) (right branch
of node () is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node @ is created. As there is no conflict C' such that C N H(@) = 0,
the new node is labelled with (. For strategy X, the cost of node @) is equal to
MinCost, thus node @) is added to the Min N odes set. For strategies M ax and
G M az, the cost of node @ is less than MinCost: node () is closed (line 18),
set MinNodes is emptied, and MinCost is updated.

State: MinNodess; = {®), @}, MinNodesyaz = {@}, MinNodesgriaz =
{@®}, MinCosty, = 3, MinCost e, = 1, MinCostaarar = (1,1, 1).

— Leftand right branches of node Q) are labelled respectively with C(a) and D(a),
the members of the label (lines 16—17 of Algorithm 1).

— PROCESSCHILD (v, no, Cur@, Mg, MinCost, MinNodes, P) (left branch
of node () is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node (5 is created. As there is no conflict C' such that C N H(®) = 0, the
new node is labelled with (). For strategy X, The cost of node (5) (2) is less than
MinCost. The same applies for GM ax
State: MinNodess: = {®}, MinNodesyaw = {@,®}, MinNodescgrar =
{®}, MinCosty, = 2, MinCostprae = 1, MinCostgaras = (1,1,0).

— PROCESSCHILD(f, no, Cur@, Mg, MinCost, MinN odes, P) (right branch
of node (Q)) is called. None of the pruning conditions apply, so node ) is cre-
ated. As there is no conflict C such that CN H(®) = ), the new node is labelled
with (). For strategy X, The cost of node @) (2) is equal to MinCost.

State: MinNodess = {3, ®}, MinNodesnrar = {@, D}, MinNodescmar =
{®}, MinCosts, = 2, MinCostprar = 1, MinCostgyra: = (1,1,0).

6 Conclusion

In this paper, we proposed new family of assertional-based merging operators, called
Assertional Removed Sets Fusion (ARSF) operators, following several merging strate-
gies (X, Card, Mazx, GMax). We studied the behaviour of ARSF operators with
respect to a set of logical postulates (initially stated for propositional formula-based
merging), which we rephrased within the DL-Lite framework. From a computational
point of view, we proposed algorithms, stemming from the notion of hitting set, for
computing the potential assertional removed sets as well as the assertional removed
sets according to the different used strategies.

Belief change has been investigated within the framework of DL-Lite. Calvanese et
al. [13] adapted formula-based and model-based approaches of ABox and Tbox belief
revision and update, however they did not consider belief merging. Wang et al. [27]
addressed the problem of TBox DL-Lite KB merging by adapting classical model-based
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belief merging to DL-Lite. This approach differs from the one we propose since we
extend formula-based merging to DL lite.

In a future work we plan to conduct a complexity analysis of the proposed algo-
rithm for the different used merging strategies. Moreover, we also want to focus on
the implementation of ARSF operators and on an experimental study on real world
applications, in particular 3D surveys within the context of underwater archaeology
and handling conflicts in dances’ videos. Furthermore, the ARSF operators stem from
a selection function that selects one assertional removed set, we also plan to investigate
operators stemming from other selection functions as well as other strategies and other
approaches than ARSF for performing assertional-based merging.
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Abstract. In this paper, we develop a general interactive polyhedral
approach to solve multi-objective combinatorial optimization problems
with incomplete preference information. Assuming that preferences can
be represented by a parameterized scalarizing function, we iteratively ask
preferences queries to the decision maker in order to reduce the impre-
cision over the preference parameters until being able to determine her
preferred solution. To produce informative preference queries at each
step, we generate promising solutions using the extreme points of the
polyhedron representing the admissible preference parameters and then
we ask the decision maker to compare two of these solutions (we pro-
pose different selection strategies). These extreme points are also used
to provide a stopping criterion guaranteeing that the returned solution is
optimal (or near-optimal) according to the decision maker’s preferences.
We provide numerical results for the multi-objective spanning tree and
traveling salesman problems with preferences represented by a weighted
sum to demonstrate the practical efficiency of our approach. We com-
pare our results to a recent approach based on minimax regret, where
preference queries are generated during the construction of an optimal
solution. We show that better results are achieved by our method both
in terms of running time and number of questions.

Keywords: Multi-objective combinatorial optimization + Minimum
spanning tree problem - Traveling salesman problem - Incremental
preference elicitation - Minimax regret

1 Introduction

The increasing complexity of applications encountered in Computer Science sig-
nificantly complicates the task of decision makers who need to find the best
solution among a very large number of options. Multi-objective optimization
is concerned with optimization problems involving several (conflicting) objec-
tives/criteria to be optimized simultaneously (e.g., minimizing costs while max-
imizing profits). Without preference information, we only know that the best
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solution for the decision maker (DM) is among the Pareto-optimal solutions (a
solution is called Pareto-optimal if there exists no other solution that is better
on all objectives while being strictly better on at least one of them). The main
problem with this kind of approach is that the number of Pareto-optimal solu-
tions can be intractable, that is exponential in the size of the problem (e.g. [13]
for the multicriteria spanning tree problem). One way to address this issue is to
restrict the size of the Pareto set in order to obtain a “well-represented” Pareto
set; this approach is often based on a division of the objective space into differ-
ent regions (e.g., [15]) or on e-dominance (e.g., [18]). However, whenever the DM
needs to identify the best solution, it seems more appropriate to refine the Pareto
dominance relation with preferences to determine a single solution satisfying the
subjective preferences of the DM. Of course, this implies the participation of the
DM who has to give us some insights and share her preferences.

In this work, we assume that the DM’s preferences can be represented by a
parameterized scalarizing function (e.g., a weighted sum), allowing some trade-
off between the objectives, but the corresponding preference parameters (e.g.,
the weights) are initially not known; hence, we have to consider the set of all
parameters compatible with the collected preference information. An interesting
approach to deal with preference imprecision has been recently developed [19,
21,30] and consists in determining the possibly optimal solutions, that is the
solutions that are optimal for at least one instance of the preference parameters.
The main drawback of this approach, though, is that the number of possibly
optimal solutions may still be very large compared to the number of Pareto-
optimal solutions; therefore there is a need for elicitation methods aiming to
specify the preference model by asking preference queries to the DM.

In this paper, we study the potential of incremental preference elicitation
(e.g., [23,27]) in the framework of multi-objective combinatorial optimization.
Preference elicitation on combinatorial domains is an active topic that has been
recently studied in various contexts, e.g. in multi-agents systems [1,3,6], in stable
matching problems [9], in constraint satisfaction problems [7], in Markov Deci-
sion Processes [11,24,28] and in multi-objective optimization problems [4,14,16].
Our aim here is to propose a general interactive approach for multi-objective
optimization with imprecise preference parameters. Our approach identifies
informative preference queries by exploiting the extreme points of the polyhe-
dron representing the admissible preference parameters. Moreover, these extreme
points are also used to provide a stopping criterion which guarantees the deter-
mination of the (near-)optimal solution. Our approach is general in the sense
that it can be applied to any multi-objective optimization problem, providing
that the scalarizing function is linear in its preference parameters (e.g., weighted
sums, Choquet integrals [8,12]) and that there exists an efficient algorithm to
solve the problem when preferences are precisely known (e.g., [17,22] for the
minimum spanning tree problem with a weighted sum).

The paper is organized as follows: We first give general notations and recall
the basic principles of regret-based incremental elicitation. We then propose
a new interactive method based on the minimax regret decision criterion and
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extreme points generation. Finally, to show the efficiency of our method, we
provide numerical results for two well-known problems, namely the multicriteria
traveling salesman and multicriteria spanning tree problems; for the latter, we
compare our results with those obtained by the state-of-the-art method.

2 Multi-objective Combinatorial Optimization

In this paper, we consider a general multi-objective combinatorial optimization
(MOCO) problem with n objective functions y;,4 € {1,...,n}, to be minimized.
This problem can be defined as follows:

migiegize (y1($)7 “ee 7yn(93))

In this definition, X is the feasible set in the decision space, typically defined by
some constraint functions (e.g., for the multicriteria spanning tree problem, X is
the set of all spanning trees of the graph). In this problem, any solution z € X’ is
associated with a cost vector y(z) = (y1(x),...,yn(x)) € R™ where y;(x) is the
evaluation of  on the i-th criterion/objective. Thus the image of the feasible
set in the objective space is defined by {y(z) : v € X} C R™.

Solutions are usually compared through their images in the objective space
(also called points) using the Pareto dominance relation: we say that point u =
(u1,...,un) € R™ Pareto dominates point v = (vy,...,v,) € R™ (denoted by
u <p v) if and only if u; < v; for all i € {1,...,n}, with at least one strict
inequality. Solution x* € X is called efficient if there does not exist any other
feasible solution = € X such that y(z) <p y(x*); its image in objective space is
then called a non-dominated point.

3 Minimax Regret Criterion

We assume here that the DM’s preferences over solutions can be represented by a
parameterized scalarizing function f,, that is linear in its parameters w. Solution
x € X is preferred to solution =’ € X if and only if f,(y(z)) < fu(y(z)).
To give a few examples, function f, can be a weighted sum (i.e. f,(y(z)) =
S, wiyi(z)) or a Choquet integral with capacity w [8,12]. We also assume that
parameters w are not known initially. Instead, we consider a (possibly empty)
set © of pairs (u,v) € R™ x R™ such that u is known to be preferred to v; this set
can be obtained by asking preference queries to the DM. Let {2¢ be the set of all
parameters w that are compatible with ©, i.e. all parameters w that satisfy the
constraints f,,(u) < f,(v) for all (u,v) € ©. Thus, since f,, is linear in w, we can
assume that {2g is a convex polyhedron throughout the paper. The problem is
now to determine the most promising solution under the preference imprecision
(defined by £2¢). To do so, we use the minimax regret approach (e.g., [7]) which
is based on the following definitions:
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Definition 1 (Pairwise Max Regret). The Pairwise Max Regret (PMR) of
solution x € X with respect to solution ¥’ € X 1is:

PMR(z,2', Qo) = max {f.(y(z)) = fu(y(=))}

In other words, PM R(z,z’, {20) is the worst-case loss when choosing solution x
instead of solution z’.

Definition 2 (Max Regret). The Max Regret (MR) of solution x € X is:

MR(z, X, 20) = max PMR(x,2', Q0)
z' €
Thus M R(z, X, g) is the worst-case loss when selecting solution z instead of
any other feasible solution ' € X. We can now define the minimax regret:

Definition 3 (Minimax Regret). The MiniMax Regret (MMR) is:

MMR(X, Qo) = min MR(x, X, Qo)
re

According to the minimax regret criterion, an optimal solution is a solution that
achieves the minimax regret (i.e., any solution in argmin,cx MR(z, X, 20)),
allowing to minimize the worst-case loss. Note that if MM R(X, 2¢) = 0, then
any optimal solution for the minimax regret criterion is necessarily optimal
according to the DM’s preferences.

4 An Interactive Polyhedral Method

Our aim is to produce an efficient regret-based interactive method for the deter-
mination of a (near-)optimal solution according to the DM’s preferences. Note
that the value MM R(X, f2o) can only decrease when inserting new preference
information in @, as observed in previous works (see e.g., [5]). Therefore, the
general idea of regret-based incremental elicitation is to ask preference queries
to the DM in an iterative way, until the value MM R(X, {20) drops below a
given threshold § > 0 representing the maximum allowable gap to optimality;
one can simply set § = 0 to obtain the preferred solution (i.e., the optimal
solution according to the DM’s preferences).

At each iteration step, the minimax regret MM R(X, f2¢0) could be obtained
by computing the pairwise max regrets PM R(x,z’, g) for all pairs (z,z') of
distinct solutions in X' (see Definitions 2 and 3). However, this would not be very
efficient in practice due to the large size of X (recall that X is the feasible set of
a MOCO problem). This observation has led a group of researchers to propose a
new approach consisting in combining preference elicitation and search by asking
preference queries during the construction of the (near-)optimal solution (e.g.,
[2]). In this work, we propose to combine incremental elicitation and search in
a different way: at each iteration step, we generate a set of promising solutions
using the extreme points of 2 (the set of admissible parameters), we ask the
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DM to compare two of these solutions, we update {2g according to her answer
and we stop the process whenever a (near-)optimal solution is detected (i.e. a
solution x € X such that M R(z, X, 20) < 0 holds). More precisely, taking as
input a MOCO problem P, a tolerance threshold § > 0, a scalarizing function
f with unknown parameters w and an initial set of preference statements O,
our algorithm iterates as follows:

1. First, the set of all extreme points of polyhedron {2g are generated. This set
is denoted by EPg and its kth element is denoted by w”.

2. Then, for every point w® € EPg, P is solved considering the precise scalar-
izing function f x (the corresponding optimal solution is denoted by z*).

3. Finally MM R(Xe, 26) is computed, where Xo = {2 : k € {1,...,|EPs|}}.
If this value is strictly larger than , then the DM is asked to compare two
solutions z,z’ € Xg and {2g is updated by imposing the linear constraint
fu(x) < fu(2") (or f,(z) > f.(2') depending on her answer); the algorithm
stops 