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Abstract. Semantic similarity information supports requirements trac-
ing and helps to reveal important requirements quality defects such as
redundancies and inconsistencies.

Previous work has applied semantic similarity algorithms to require-
ments, however, we do not know enough about the performance of
machine learning and deep learning models in that context.

Therefore, in this work we create the largest dataset for analyzing the
similarity of requirements so far through the use of Amazon Mechani-
cal Turk, a crowd-sourcing marketplace for micro-tasks. Based on this
dataset, we investigate and compare different types of algorithms for
estimating semantic similarities of requirements, covering both relatively
simple bag-of-words and machine learning models.

In our experiments, a model which relies on averaging trained word
and character embeddings as well as an approach based on character
sequence occurrences and overlaps achieve the best performances on our
requirements dataset.

Keywords: Requirements engineering · Similarity detection · Machine
learning

1 Introduction

Since a requirements specification defines the outcome of a particular prod-
uct development process, it is necessary that the contained requirements ful-
fill important quality factors [1,2]. This is important because requirements are
worthless if they are, for instance, not understandable or the defined set of
requirements is not complete. In that case, the developers or manufacturers
could misunderstand the desired characteristics and thus create a product that
diverges from the expected result. Therefore, the quality of the requirements
specification needs to be assured which is typically accomplished by inspecting
and validating the created requirements with respect to different quality char-
acteristics. Accordingly, requirements can have different defects if they do not
satisfy these characteristics [3,4].

Several of these characteristics are related to the semantic similarity of
requirements. For example, semantic similarity information would help to iden-
tify redundant requirements which impair the maintainability of a requirements
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document since changes would have to be carried out for all duplicate items. Fur-
thermore, automatic similarity estimations could help revealing inconsistencies
within the specification by helping to track similar requirements which might
turn out to be contradictory regarding particular details. Besides that, the pro-
cess of requirements tracing could be supported by automatically suggesting
links between similar project artifacts like requirements, test cases or designs.
By generating these traces in a faster and easier way due to automatic similar-
ity analyses, requirements engineers would be supported in understanding the
relationships between different artifacts and can thus better detect duplicates,
inconsistencies or missing items. When extending this idea to specifications of dif-
ferent projects, the information about the similarity of their artifacts may reveal
reusable components of prior projects thus helping to reduce project effort.

Therefore, having information about the semantic similarities of requirements
could help to support requirements engineers or analysts during the requirements
review [5].

As we discuss in Sect. 2, previous works looking into this topic focused mostly
on information retrieval approaches. However, modern advances in machine
learning, e.g. Alpha Go [6] give us a glimpse of the potential of machine learning.
Each year, the most promising approaches for similarity detection are discussed
in the SemEval community. In this work, we want to test their knowledge in the
domain of requirements engineering.

1.1 Contribution of This Work

This paper provides a novel analysis of the performance of a variety of similarity
detection algorithms, including both baseline information retrieval algorithms,
but also machine learning based approaches, on a large dataset of 1000 pairs of
natural language requirements.

1.2 Structure of This Work

In Sect. 2, we describe related work with respect to both requirements-independent
semantic similarity algorithms as well as already applied similarity approaches
within the domain of requirements engineering. In Sect. 3, we explain the required
background knowledge to understand the content of this paper in particular
regarding our applied semantic similarity algorithms.The design of our experiment
which is intended to evaluate the different algorithms on a requirements dataset
is portrayed in Sect. 4. We present and analyze the results of this experiment in
Sect. 5. Based on these results, we conclude and come up with several interpreta-
tions which are discussed in Sect. 6. Finally, in Sect. 7, we summarize the content
and gathered insights of this work.
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2 Related Work

Our related work can be divided into semantic similarity approaches using gen-
eral text data and approaches only focusing on requirements data.

2.1 Semantic Similarity Estimation of General Texts

The approach and study of our paper draws on the Natural Language Processing
task of Semantic Textual Similarity introduced by Agirre et al. For this task,
algorithms try to estimate the grade of semantic similarity between given sen-
tence pairs [7]. However, models that have been proposed for this task have not
been investigated in the context of requirements engineering yet.

Several introduced semantic similarity models use machine learning tech-
niques with manually designed and engineered features. These features often
rely on string-based lexical information such as word and character overlaps, on
knowledge-based semantic word relations based on lexical-semantic resources like
WordNet, on corpus-based vector space models like Latent Semantic Analysis,
or on syntactic similarities and dependencies [7,8].

Other researchers have proposed artificial intelligence models that are capable
of capturing semantic differences of sentences based on word order or sentence
structures [9]. Such algorithms can, for example, use sentence vectors provided
by models such as Nie and Bansal’s sentence encoder [10], employ interaction
modules for computing word and phrase relationships of sentences like in Parikh
et al.’s model [11] or apply combinations of such components such as the neural
network model proposed by He and Lin [12].

2.2 Semantic Similarity Estimation for Requirements

Several semantic similarity approaches have specifically been proposed for the
domain of requirements engineering and often utilize lexical similarity measures.

Mihany et al. introduced a system for identifying reusable projects and com-
ponents by the similarity of their requirements which was calculated based on
word overlaps [13,14].

Natt och Dag et al. compared different lexical similarity measures for identi-
fying equivalent requirements [5]. They further refined these approaches in order
to map customer wishes to product requirements which relate to the same func-
tional requirements. For that, they constructed and compared sentence vectors
based on word occurrences and frequency weights [15,16].

Hayes et al. compared several similarity methods for the requirements tracing
process in order to automatically identify potential links between similar arti-
facts. They experimented with term frequencies and weights (TF-IDF), Latent
Semantic Indexing (LSI), incorporating thesaurus information as well as rele-
vance feedback analysis. Thereby, artifacts were represented by word occurrence
vectors [17]. Eder et al. also applied LSI for automatic requirements tracing
intending to automate the determination of LSI configurations [18].
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Mezghani et al. proposed a k-means clustering algorithm for detecting redun-
dancies and inconsistencies in requirements. They applied their algorithm on
combinations of given requirements and their extracted business terms using the
Euclidean distance as a similarity metric [19].

Juergens et al. investigated clone detection for requirements specifications.
Their approach tried to identify duplicates by analyzing suffix trees which were
constructed based on the word sequences of requirements [20].

Falessi et al. experimented with different NLP techniques regarding the iden-
tification of equivalent requirements. Their applied approaches comprised combi-
nations of algebraic models, term extraction techniques, weighting schemes and
similarity metrics. Falessi et al. reported a bag-of-words approach as the best
single NLP technique, however, they pointed out that a combination of different
NLP techniques outperformed all available individual approaches [21].

2.3 Research Gap

Researchers on semantic textual similarity tasks have proposed different state-
of-the-art machine learning approaches that have shown to outperform simpler
information retrieval methods on general text data. Nevertheless, it has never
been investigated whether such approaches can also yield superior performances
when applied to requirements data.

3 Background

For this work, two concepts are relevant. First, we need to define similarity.
Second, we need to define the algorithms that we want to apply.

3.1 Semantic Similarity

For the definition of semantic similarity within this work, we utilize an ordinal
similarity scale with six different values. This scale has been introduced by Agirre
et al. for the SemEval research workshops on semantic textual similarity and
have been successfully applied in this linguistic community since 7 years (details
e.g. in [22]).

The applied semantic similarity scale is shown in Table 1. As can be seen,
the different levels reach from total dissimilarity in meaning to complete mean-
ing equivalence. The intermediate similarity grades represent various degrees of
partial similarity and meaning overlap [7], for example, considering the topics
and details of given texts.
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Table 1. Ordinal semantic similarity scale

Score Explanation

0 The two sentences are completely dissimilar

1 The two sentences are not equivalent, but are on the same topic

2 The two sentences are not equivalent, but share some details

3 The two sentences are roughly equivalent, but some important
information differs/is missing

4 The two sentences are mostly equivalent, but some unimportant
details differ

5 The two sentences are completely equivalent, as they mean the
same thing

3.2 Applied Algorithms

In this work, we compare the algorithms listed in Table 2. The selection is based
on the most common and successful algorithms from the SemEval community [7],
since these are obviously the most promising approaches. We cannot explain all
used algorithms in detail. For a deeper introduction into this, please refer to the
respective original works. The selected algorithms listed in Table 2 vary between
baselines, pre-trained, self-trained, and non-trained approaches:

Baseline approaches are very simplistic approaches, e.g. counting tokens,
that help to reflect on the complexity of the problem and the actual advantage
of more sophisticated and complex approaches. Pre-Trained approaches came
with already trained machine learning models provided by the original authors.
Self-Trained approaches are machine learning algorithms that we trained our-
selves using data that has been published for the SemEval workshops. Non-
Trained approaches do not require training for applications.

4 Study Design

In this chapter, we describe the structure and setup of our study which we
use to compare the performances of different semantic similarity algorithms on
requirements data. The description and design of our study correspond to the
experiment process as introduced by Wohlin et al. [32].

According to the Goal Question Metric approach of Basili et al. [33], we first
define the goal of our study as well as related research questions that we will
investigate and answer based on the obtained results measured by appropriate
metrics. Afterwards, we describe the context and setup of our study including
selected subjects, objects and instruments.

4.1 Goal Definition

To understand the overall setting and intention of our experiment, we first define
the goal of this study:
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Table 2. The different algorithms used in this study grouped into baseline approaches,
as well as pre-trained, self-trained, and non-trained approaches, each in alphabetical
order.

Algorithm Description

Char ngram BOW A baseline token-occurrence-based model incorporating both
character trigrams and fourgrams as features into the sentence vectors
whereby the corresponding vector values represent binary occurrence
indicators of these tokens

Word2vec CBOW As a baseline, Word2vec continuous bag of words (CBOW) is a widely
used word embeddings approach

BiLSTM Avg A pre-trained sentence encoder by Wieting et al. that uses a
bi-directional LSTM and concatenates the hidden states of the
forward and backward LSTM [23,24]

Charagram A pre-trained sentence encoder by [25] based on character n-gram
embeddings which are added together in order to retrieve sentence
vectors

InferSent A pre-trained sentence encoder model that is a bi-directional LSTM
trained on Natural Language Inference data [26]

USE As a pre-trained sentence encoder, Universal Sentence Encoders (USE)
is an approach focussing on task and context generalizability [27]

Word-trigram This pre-trained sentence encoder combines word and character
trigram embeddings by averaging all embeddings for the character
sequences and words contained in the given sentence, which
outperformed other models on SemEval tasks [23,24]

DecAttn A self-trained supervised algorithm only based on word and phrase
alignments which are used to partition the problem into subtasks [11]

MPCNN As a self-trained supervised algorithm, Multi-Perspective
Convolutional Neural Networks are a CNN specifically tuned for
semantic similarities [8]

PWIM and Subword
PWIM

As a self-trained supervised algorithm, Pairwise Word Interaction
Model (PWIM) is similar to MPCNNs, but directly applies
word-interaction computations on the individual word context
representations of the given sentences [12]. The Subword PWIM
model uses the same functionality but has been adapted to work with
character sequence embeddings [28]

Random Forest Self-trained supervised algorithm that creates multiple trees on
specific subsets of the sample data and aggregates the results. We
apply the NLP features proposed at SemEval 2017 [29]

SSE As a self-trained supervised algorithm, Shortcut-stacked Sentence
Encoder is an ML approach originally developed for multi-domain
natural language inference tasks [10]

Tree LSTM A self-trained supervised algorithm that processes sentences according
to the syntactic sentence structure [9]

Word Aligner This is a non-trained model that has worked very well on previous
similarity tasks outside the RE world [30,31]

Our goal is to analyze semantic similarity algorithms
for the purpose of evaluating and comparing their performances
with respect to the accuracy of their predicted semantic similarity scores
from the point of view of laymen
in the context of natural language requirements pairs with human-annotated
semantic similarity labels.

4.2 Research Questions

In this work, we focus on the following research questions:
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– RQ1: How do semantic similarity algorithms trained on non-requirements
data perform in comparison to algorithms trained on requirements data?

– RQ2: Which algorithm performs most accurately for predicting the semantic
similarities of natural language requirements?

4.3 Metrics

In order to answer the research questions, we test and analyze the performance
of each algorithm based on its semantic similarity prediction accuracy. For this,
we apply mean squared error (for a discussion of the adequacy, check [34]) as the
performance metric for the algorithms, where n indicates the number of samples
and yi and ŷi represent the expected and the predicted scores respectively:

MSE =
1
n

n∑

i=1

(yi − ŷi)2

4.4 Experiment Design and Execution

The overall procedure of our experiment is illustrated in Fig. 1 and will be further
explained in the following sections.

Fig. 1. Overview of the experiment procedure

Requirements Pair Dataset and Human Similarity Annotations. In order to col-
lect human scores, we extract requirements from several requirements specifica-
tions and assemble 1000 different requirements pairs. We upload this dataset to
the crowdsourcing marketplace Amazon Mechanical Turk1 where human work-
ers, called turkers, assign semantic similarity scores to each of our requirements
pairs. For each requirements pair, we collect annotations from five different work-
ers and take the median. Annotators are asked to assign a semantic similarity
category S ∈ {

0, 1, 2, 3, 4, 5
}

to each requirements pair according to the similar-
ity definition given in Table 1. We argue that this does not require the partici-
pants to have any expertise in the domains of linguistics or requirements analysis
(c.f. Dagan et al. [35]).

1 https://www.mturk.com/ (accessed 06 February 2019).

https://www.mturk.com/
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We choose to retrieve annotations this way due to the findings of Agirre et al.
in the context of their preparations for the SemEval workshops. They have shown
that similarity scores with good rates of agreement among the annotators can
be observed for similar semantic similarity annotation tasks (cf. e.g. Sect. 2.1).

Each turker who participates in our task on Amazon Mechanical Turk gets
paid $0.04 per annotated requirements pair. The total number of annotations
per worker over all of our uploaded requirements pairs is not restricted, however,
one particular worker can only annotate each requirements pair once.

Similarity Annotation Retrieval. We executed several trial runs with only five
requirements pairs each. This is intended to evaluate and compare the perfor-
mance of the turkers, which enabled us to evaluate the required qualification for
the turkers. When we required masters qualification from our turkers, the turk-
ers provided us annotations on average close to our own similarity estimations
for the corresponding requirements pairs.

Algorithm Application and Performance Comparison. Afterwards, we apply
a variety of different algorithms on this dataset in order to compare their
performances.

Balancing. We collect annotations in batches of 100 sentence pairs each, which
allows us to control for the balance of similarity scores by appropriately choosing
the requirements pairs for our subsequent batches. This means that we check the
distribution of similarity scores after every completed batch. Based on that, we
create the next batch with more pairs of the less frequent categories and less pairs
of the more frequent categories according to our own similarity judgements for
the corresponding requirements. However, because our own assessment of these
pairs may diverge from the final annotations of the turkers, we cannot completely
influence and control the final balance of semantic similarity scores.

Randomization. Before we upload our dataset to Amazon Mechanical Turk,
we shuffle the requirements pairs in each batch so that requirements taken from
the same document are less likely to be clustered together.

4.5 Study Subjects

Due to Amazon Mechanical Turk, our subjects are primarily laymen. In trial
runs, we have retrieved the best results regarding the agreement among annota-
tors when requiring a so-called Masters qualification. Consequently, we take this
as a prerequisite for our tasks.



Semantic Similarities in NL Requirements 95

4.6 Study Objects

Our objects are requirements that we extract from 14 different requirements
specifications available on the Natural Language Requirements Dataset [36].
These include both real-world industrial requirements specifications and spec-
ifications from university projects. We select the software requirements speci-
fications based on our impression of how suitable their requirements would be
for getting annotated by laymen. Accordingly, the requirements to be incorpo-
rated in our dataset must be understandable without a background briefing.
However, we incorporate both requirements that are easy to understand as well
as requirements that are more complicated based on their sentence structure
and content. Table 3 shows all of the requirements documents that we use for
collecting requirements for our dataset.

Table 3. Sources of the requirements in our evaluation dataset

Document Domain Number of req.

Pontis Highway bridge information management system 274

E-store Online store for consumer electronics 112

Sprat Goals and scenario management tool 98

NASA Spacecraft software 86

TCS Aircraft control software 75

Nenios Child care management software 71

agentMom Multi agent communication systems 59

Philips Messenger software application 42

Mahjong Web software system for Chinese board game 37

Digital home Home management system 35

Puget sound Courseware system 32

Blit Laboratory information system 29

Colorcast Web application for paint selection 26

Video search Video search software 24

As described before, we balance the number of future semantic similarity
scores to the extent possible while building the requirements pair dataset based
on our own similarity estimations. However, this is difficult because we cannot
predict the scores that will be obtained from the annotators. Hence, our evalua-
tion dataset turned out to have a higher number of requirements pairs annotated
with the similarity categories 1 or 2, whereas especially the number of require-
ments pairs annotated with category 4 is small compared to this. The histogram
of received semantic similarity categories is illustrated in Fig. 2.
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5 Results

In this section, we report the performances of our applied algorithms on our
created requirements pair dataset based on the defined metrics and appropriate
visualizations.

5.1 Presentation of Results

In the following, we present the performance accuracies of the algorithms intro-
duced in the Sect. 3 when applied to our assembled requirements pair dataset.

Fig. 2. Distribution of requirements pairs over similarity categories

Performance Accuracy. As described in Sect. 4.3, we use the mean squared
error (MSE) as the performance metric to measure the accuracy of the predic-
tions of our applied algorithms based on the collected similarity labels for our
requirements evaluation dataset.

Overall and Weighted Mean Squared Error Metrics. Because of the unbalanced
distribution of requirements pairs over the six similarity categories, only regard-
ing the overall mean squared error would give a distorted result since there would
be a bias towards the more frequent categories. Thus, we calculate the weighted
mean squared error by summing up the individual mean squared errors MSEc

for each semantic similarity category c of requirements pairs which have been
labeled with this category and dividing this result by 6 according to the number
of similarity categories:

weighted MSE =
1
6

∗
5∑

c=0

MSEc
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We include the overall mean squared error as well as the weighted mean squared
error for each algorithm in Table 4 denoted as MSE and MSEw.

The smaller the mean squared error, the less do the algorithms’ predictions
diverge from the assigned similarity labels treated as the ground truth. Accord-
ingly, smaller MSEs indicate better algorithm performances.

Performance Results. In Table 4 we list the mean squared error values for every
algorithm as described before. We denote the adjusted algorithm settings (where
we chose hyper-parameters for the algorithms) by adding (a) to the correspond-
ing model names.

5.2 Answers to Research Questions

In this section, we answer our research questions which have been introduced in
the previous chapter on the basis of the experiment results presented above.

We will describe the differences between the algorithms relative to each other.
Therefore, when we say that the MSE of an algorithm is relatively small or rela-
tively big this refers to the comparison of its performance to the other algorithms.

RQ1: How Do Semantic Similarity Algorithms Trained on Non-
requirements Data Perform in Comparison to Algorithms Trained on
Requirements Data? For answering this research question, we only consider
our self-trained algorithms and the pre-trained sentence encoders because the
monolingual word aligner and the baseline algorithms do not need to be trained.

From analyzing the mean squared error results of these algorithms, it can be
inferred that most of the evaluated models perform rather well in the context
of this work because the majority of the weighted mean squared error values
is below or around 1.5. This means that on average the predictions of the cor-
responding algorithms do not diverge much more than one similarity category
from the expected similarity score as interpreted by humans.

In particular, the pre-trained Word-trigram sentence encoder model with
both its original and adjusted application settings shows a very good perfor-
mance on our requirements data, achieving a weighted mean squared error of
0.94 with its adjusted settings and of 0.96 with the standard model. Behind these
two model versions, the BiLSTM Avg model ranks third among all trained algo-
rithms and completes the set of the best three algorithms within this experiment,
producing prediction results with a weighted MSE of 0.98.

As can be seen in Table 4, for almost all of the trained algorithms we were
able to come up with adjusted training or application settings so that better
performances on the evaluation dataset could be achieved. For example, espe-
cially for the Subword PWIM and the standard PWIM models, the performance
differences between the unadjusted and the adjusted settings are very large.
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Table 4. Table shows performances on our requirements evaluation dataset ordered
by weighted mean squared error. Models that have been self-trained or applied with
adjusted settings are marked with (a).

Algorithm MSE MSEw Type

Word-trigram (a) 0.96 0.94 Pre-Trained

Char ngram BOW 0.94 0.94 Baseline

Word-trigram 0.95 0.96 Pre-Trained

BiLSTM Avg 0.98 0.98 Pre-Trained

Charagram (a) 0.97 1.06 Pre-Trained

Charagram 0.95 1.08 Pre-Trained

Word Aligner (a) 0.99 1.10 Non-Trained

InferSent (a) 1.10 1.14 Pre-Trained

Word Aligner 1.03 1.15 Non-Trained

Subword PWIM (a) 1.20 1.15 Self-Trained

PWIM (a) 1.20 1.16 Self-Trained

Random Forest (a) 1.29 1.21 Self-Trained

Word2vec CBOW 1.25 1.28 Baseline

MPCNN (a) 1.33 1.29 Self-Trained

USE (a) 1.28 1.30 Pre-Trained

USE 1.29 1.31 Pre-Trained

Random Forest 1.38 1.31 Self-Trained

SSE (a) 1.49 1.36 Self-Trained

Tree LSTM (a) 1.44 1.45 Self-Trained

PWIM 1.64 1.56 Self-Trained

Subword PWIM 1.78 1.63 Self-Trained

MPCNN 1.75 1.63 Self-Trained

SSE 1.98 1.85 Self-Trained

Tree LSTM 2.17 2.03 Self-Trained

DecAttn (a) 2.59 2.50 Self-Trained

InferSent 2.77 2.55 Pre-Trained

DecAttn 3.08 2.90 Self-Trained

RQ2: Which Algorithm Performs Most Accurately for Predicting the
Semantic Similarities of Natural Language Requirements? The best-
performing algorithms in our experiment were the adjusted Word-trigram model
and the Char ngram BOW baseline which both achieved the smallest weighted
MSE of 0.94.

Furthermore, the third best algorithm, the BiLSTM Avg model, completes
the set of algorithms which reached a weighted MSEs below 1.0. This approach
provides slightly better results for the lower similarity categories 0, 1 and 2 but
performs less accurately for the other, higher similarity categories.
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Apart from this, when further analyzing Table 4, it can be seen that there are
more algorithms whose performances do not greatly differ from the best results
described above.

All in all, despite the minor differences to other model performances, our
experiment results have shown that the Word-trigram and the Char ngram BOW
models perform most accurately within the scope of this experiment.

6 Interpretation

In this section, we interpret the results and observations described before for
each individual research question. Furthermore, we discuss the threats to validity
which apply to our conducted experiment.

6.1 RQ1: How Do Semantic Similarity Algorithms Trained on
Non-requirements Data Perform in Comparison to Algorithms
Trained on Requirements Data?

Our experiment reveals that distinct trained semantic similarity algorithms
achieve very different performances. Within this section, we identify and dis-
cuss various findings regarding the characteristics of these algorithms and their
influence on the performance results.

For our self-trained models, we used the same training data, classification
layer, loss function, and training objective. However, these models exhibit sub-
stantially different performances. Thus, we conclude, that the actual architecture
(esp. of neural networks) of the underlying models impacts accuracy.

Algorithms that do not consider the word order can perform equal or better
than algorithms sensitive to the word order. This is especially true for the bag
of words based algorithms. Thus, we conclude that word order is not important
to detect similar requirements, in contrast to other NLP tasks.

We adjusted the parameters of various algorithms to make them perform
better on requirements data. This included the pre-processing steps. Thereby
we noticed that for the different algorithms, different pre-processing steps have
a positive influence on their accuracy. However, the best choices of pre-processing
steps which yield the highest performance gains largely differ between models.
We assume that this is likely linked to the way of how models process the input
texts and how they model input representations so that, for instance, some
models prefer to keep stop words and original word forms in order to better
understand sentence structures and word relationships.

6.2 RQ2: Which Algorithm Performs Most Accurately for
Predicting the Semantic Similarities of Natural Language
Requirements?

As already identified in Sect. 5.2, the models with the best overall performance
in our experiment are the Word-trigram and Char ngram BOW models. In the
following we further discuss these algorithms and their performances.
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We believe that the Word-trigram model might perform better than the Char
ngram BOW baseline when they are both applied to other datasets by using the
same implementation settings like in our experiment. This is because the Word-
trigram model has already proven its transferability from its training dataset
to another dataset, that is, our requirements dataset whereas the settings of
the Char ngram BOW model are completely adjusted and dependent on our
evaluation dataset.

For this reason, we consider the Word-trigram model as the best overall
model not only because it outperformed all other models applied within our
experiment, but also because of its proven transferability. Moreover, we think
that its large paraphrase training corpus and the combination of word and char-
acter embeddings allow it to capture important and meaningful characteristics
of words and sentences that are crucial for the determination of semantic sim-
ilarity. Because of this embedding information, we assume that this model can
better capture important word semantics and semantic relations between words
compared to the simpler token occurrence-based approaches which merely rely
on lexical token overlaps. This might be even more important for other require-
ments specifications which may use less consistent terminology.

6.3 Threats to Validity

We discuss the validity threats according to the different issues described by
Wohlin [32].

Reliability of Measures. In our experiment, we apply the ordinal similarity
scale which is used to collect human interpretations of semantic similarity for
given requirements pairs. This measure can be unreliable because humans may
interpret semantic similarities differently. However, we collect similarity annota-
tions from five different raters for every requirements pair and take the median
in order to retrieve the final similarity label.

The inter-rater agreement according to the Kendall’s coefficient of concor-
dance W of 0.607 suggests that there is a correlation between the scores of the
different annotators for each requirements pair. Thus, there is a good degree of
agreement between the raters regarding the semantic similarities of our require-
ments pairs which is why we assume that reasonable similarity labels have been
obtained.

Finally, we review the obtained dataset. We note that while some scores
diverge from how we would have rated the corresponding requirements pairs,
the majority of these labels agrees with our own point of view. Consequently,
despite the sometimes large divergences between the individual annotations of
different raters, we argue that we have retrieved a suitable dataset for the purpose
of this study where the potential disagreement between raters is counteracted
by taking the median score.
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Random Irrelevancies in Experimental Setting. This issue is concerned
with possible influences on the result due to external disturbances like noise or
interruptions. Since our subjects can log on to Amazon Mechanical Turk and
participate in our experiment from any place and at any time, we cannot control
their environment and outside influences.

Random Heterogeneity of Subjects. Since all Amazon Mechanical Turk
workers who fulfill the defined qualification requirements of our experiment are
able to accept and participate in our created task, there might be a certain
heterogeneity of subjects.

We tried to mitigate the effects of individual differences by requiring the
Master qualification as well as by taking the median from five different annota-
tors for every requirements pair. Furthermore, we conducted several trial runs
for obtaining similarity annotations where we investigated and selected the most
suitable qualification requirements In these trial runs, the median value of the
obtained scores for the best selected qualification requirements seemed to be
reasonable and suitable for the tested pairs.

Mono-operation Bias. The mono-operation bias describes the problem of not
representing the construct broadly enough, for instance, by only including one
subject, variable or object. In our experiment, we only used requirements from
the domain of information technology. Hence, results might not generalize.

Mixed Scales. In our experiment, we use an ordinal similarity scale to record
the similarity annotations assigned by our subjects so that every annotation cor-
responds to one of the six similarity categories. Our applied algorithms produce
predictions according to a similar idea of similarity, however, their similarity
estimations are continuous so that they can lay between categories and thus cor-
respond to an interval scale. Since we calculate the mean squared error based on
the ordinal human similarity annotations and the continuous algorithm predic-
tions, we compare values from an ordinal scale to values from an interval scale.
This constitutes an error according to measure theory and thus poses a threat
to the validity of our results.

Interaction of Selection and Treatment. In our case, we utilized laymen
as subjects for our study. However, the study results are intended for evaluat-
ing the suitability of the tested semantic similarity algorithms for requirements
engineering in industry where requirements analysts and experts are concerned
with the topic of semantic similarities of requirements. Due to their background
knowledge and experience, requirements experts might interpret semantic sim-
ilarities of requirements differently than laymen. Thus, this might negatively
influence the generalizability of our results to industrial practice.
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Interaction of Setting and Treatment. This threat concerns the risk of
using a different experimental setting or relying on non-representative objects
during the study compared to what is standard in industrial practice. In our
experiment, we used requirements from industrial requirements specifications or
specifications from university that are similar to industrial specifications. Most
of these specifications have been created for real-life projects. Thus, we believe
that they are at least to some extent representative of requirements used in
industrial practice.

7 Summary

In this work, we researched and investigated suitable approaches for automat-
ically estimating the semantic similarities of requirements pairs. In order to
evaluate and compare these approaches, we designed an experiment in which
the algorithms’ predictions were measured against human similarity interpre-
tations that were treated as the ground truth. For this purpose, we assembled
an evaluation requirements dataset containing 1000 distinct requirements pairs
which were extracted from several requirements specifications for industrial and
university projects. For this dataset, we obtained similarity labels from human
annotators according to an ordinal similarity scale from 0 to 5 using Amazon
Mechanical Turk as a crowdsourcing platform.

The requirements pair dataset was used to determine the performances of our
selected and applied algorithms by calculating the mean squared error between
their predictions and the corresponding human similarity labels. Due to the
unbalanced distribution of the requirements pairs in our evaluation dataset over
the similarity categories, we calculated a weighted mean squared error which
determines and averages individual MSE values for each similarity class. Based
on these performance results, we were able to draw different conclusions regard-
ing our research questions which we summarize in the following.

RQ1: How do Semantic Similarity Algorithms Trained on Non-requirements
Data Perform in Comparison to Algorithms Trained on Requirements Data?
We found that the different algorithms perform very differently on requirements
data both regarding their overall performances as well as regarding their per-
formances for individual similarity categories. This indicated that the models
have different prediction tendencies regarding the various similarity categories.
Furthermore, we suggested that the performances of algorithms which do not
capture characteristics about word order and sentence structures do not seem
to be negatively influenced because these types of information do not seem to
noticeably affect the semantic similarity of requirements pairs.

RQ2: Which Algorithm Performs Most Accurately for Predicting the Semantic
Similarities of Natural Language Requirements? In our study, the Word-trigram
sentence encoder model developed by Wieting et al. [23] as well as the Char
ngram BOW baseline approach achieved the best overall performance accuracy



Semantic Similarities in NL Requirements 103

with a weighted mean squared error of 0.94. The Word-trigram model combines
word embeddings with character trigram embeddings and averages these com-
binations in order to retrieve sentence vector representations whereas the Char
ngram BOW method is based on lexical character sequence overlaps. Despite
the equal performance results, we believe that the Word-trigram model would
provide better performances in practice due to its use of token embeddings which
capture individual word and sentence semantics instead of just relying on token
occurrences and overlaps.
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