
 123

LN
BI

P
37

1

12th International Conference, SWQD 2020
Vienna, Austria, January 14–17, 2020
Proceedings

Software Quality
Quality Intelligence in Software
and Systems Engineering

Dietmar Winkler · Stefan Biffl ·
Daniel Mendez · Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 371

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Dietmar Winkler • Stefan Biffl •

Daniel Mendez • Johannes Bergsmann (Eds.)

Software Quality
Quality Intelligence in Software
and Systems Engineering

12th International Conference, SWQD 2020
Vienna, Austria, January 14–17, 2020
Proceedings

123

Editors
Dietmar Winkler
Vienna University of Technology
Vienna, Austria

Stefan Biffl
Vienna University of Technology
Vienna, Austria

Daniel Mendez
fortiss GmbH, Germany,
and Blekinge Institute of Technology
Karlskrona, Sweden

Johannes Bergsmann
Software Quality Lab GmbH
Linz, Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-35509-8 ISBN 978-3-030-35510-4 (eBook)
https://doi.org/10.1007/978-3-030-35510-4

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0002-3413-7780
https://orcid.org/0000-0003-0619-6027
https://doi.org/10.1007/978-3-030-35510-4

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair was first organized in
2009 and has since grown to be the largest yearly conference on software quality in
Europe with a strong and vibrant community. The program of the SWQD conference
was designed to encompass a stimulating mixture of practice-oriented presentations,
scientific presentations of new research topics, tutorials, and an exhibition area for tool
vendors and other organizations in the area of software quality.

This professional symposium and conference offers a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference welcomes anyone interested in software quality including:
software process and quality managers, test managers, software testers, product
managers, agile masters, project managers, software architects, software designers,
requirements engineers, user interface designers, software developers, IT managers,
release managers, development managers, application managers, and many more.

The guiding conference topic of the SWQD 2020 was “Quality Intelligence:
Software Quality in the Absence of Well-Defined Requirements,” as changed product,
process, and service requirements, e.g., distributed engineering projects, mobile
applications, involvement of heterogeneous disciplines and stakeholders, extended
application areas, and new technologies include new challenges and might require new
and adapted methods and tools to support quality assurance activities early.

January 2020 Johannes Bergsmann

Message from the Scientific Program Chairs

The 12th Software Quality Days (SWQD) conference and tools fair brought together
researchers and practitioners from business, industry, and academia working on quality
assurance and quality management for software engineering and information
technology. The SWQD conference is one of the largest software quality conferences
in Europe.

Over the past years, we received a growing number of scientific contributions to the
SWQD symposium. Starting back in 2012, the SWQD symposium included a
dedicated scientific program published in scientific proceedings. In this ninth edition,
we received an overall number of 17 high-quality submissions from researchers across
Europe which were each peer-reviewed by 3 or more reviewers. Out of these
submissions, we selected 5 contributions as full papers yielding an acceptance rate of
29%. Further, we accepted two short papers representing promising research directions
to spark discussions between researchers and practitioners on promising work in
progress. This year, we have two scientific keynote speakers for the scientific program,
who contribute two invited papers.

Main topics from academia and industry focused on Systems and Software Quality
Management Methods, Improvements of Software Development Methods and
Processes, latest trends and emerging topics in Software Quality, and Testing and
Software Quality Assurance.

This book is structured according to the sessions of the scientific program following
the guiding conference topic “Quality Intelligence in Software and Systems
Engineering”:

• Industry Challenges and Collaborations
• Software Testing Approaches
• Social Aspects in Software Engineering
• Natural Language Processing
• Software Quality Assurance Concepts

January 2020 Stefan Biffl
Dietmar Winkler
Daniel Mendez

Organization

SWQD 2020 was organized by Software Quality Lab GmbH, the Vienna University of
Technology, Institute of Information Systems Engineering, and Blekinge Institute of
Technology, Sweden.

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH, Austria

Scientific Program Co-chair

Stefan Biffl TU Wien, Austria
Dietmar Winkler TU Wien, Austria
Daniel Mendez Blekinge Institute of Technology, Sweden

Proceedings Chair

Dietmar Winkler TU Wien, Austria

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH, Austria

Program Committee

SWQD 2020 established an international committee of well-known experts in software
quality and process improvement to peer-review the scientific submissions.

Maria Teresa Baldassarre University of Bari, Italy
Matthias Book University of Iceland, Iceland
Ruth Breu University of Innsbruck, Austria
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Andreas Ekelhart SBA Research, Austria
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Gordon Fraser University of Passau, Germany
Nauman Ghazi Blekinge Institute of Technology, Sweden
Volker Gruhn University of Duisburg-Essen, Germany
Roman Haas CQSE GmbH, Munich, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro, Brazil

Peter Kieseberg FH St. Pölten, Austria
Eda Marchetti ISTI-CNR, Italy
Kristof Meixner TU Wien, Austria
Emilia Mendes Blekinge Institute of Technology, Sweden
Paula Monteiro CCG-Centro de Computação Gráfica, Portugal
Jürgen Münch University of Reutlingen, Germany
Oscar Pastor Universitat Politècnica de València, Spain
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Andreas Rausch Technical University Clausthal, Germany
Felix Rinker TU Wien, Austria
Klaus Schmid University of Hildesheim, Germany
Miroslaw Staron University of Gothenburg Gothenburg, Sweden
Andreas Vogelsang Technische Universität Berlin, Germany
Rini Van Solingen Delft University of Technology, The Netherlands
Henning Femmer Qualicen GmbH, Germany
Kristian Beckers Siemens AG, Germany
Sebastian Voss fortiss GmbH, Germany
Stefan Wagner University of Stuttgart, Germany

Additional Reviewers

Michael Brunner
Stefan Fischer
Andrea Mussmann

x Organization

Contents

Industry Challenges and Collaborations

Together We Are Stronger: Evidence-Based Reflections
on Industry-Academia Collaboration in Software Testing 3

Michael Felderer and Vahid Garousi

Challenges in Testing Big Data Systems: An Exploratory Survey 13
Monika Steidl, Ruth Breu, and Benedikt Hupfauf

Software Testing Approaches

Selecting and Prioritizing Regression Test Suites by Production
Usage Risk in Time-Constrained Environments. 31

Daniel Lübke

An Evaluation of Test Suite Minimization Techniques 51
Raphael Noemmer and Roman Haas

Social Aspects in Software Engineering

Soft Competencies and Satisfaction Levels for Software Engineers:
A Unified Framework . 69

Nana Assyne

Natural Language Processing

Semantic Similarities in Natural Language Requirements 87
Henning Femmer, Axel Müller, and Sebastian Eder

Software Quality Assurance Concepts

On Identifying Similarities in Git Commit Trends—A Comparison
Between Clustering and SimSAX . 109

Miroslaw Ochodek, Miroslaw Staron, and Wilhelm Meding

Code Reviews, Software Inspections, and Code Walkthroughs:
Systematic Mapping Study of Research Topics . 121

Ilenia Fronza, Arto Hellas, Petri Ihantola, and Tommi Mikkonen

Optimising Analytical Software Quality Assurance 134
Stefan Wagner

Author Index . 139

xii Contents

Industry Challenges and Collaborations

Together We Are Stronger:
Evidence-Based Reflections

on Industry-Academia Collaboration
in Software Testing

Michael Felderer1(B) and Vahid Garousi2

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Queen’s University Belfast, Belfast, UK
v.garousi@qub.ac.uk

Abstract. For a highly relevant and applied research area like software
testing industry-academia collaboration is of uttermost importance. In
this paper we reflect on how industry-academia collaboration can be
improved based on evidence from four empirical studies. We therefore
first present four studies providing evidence on the (1) perceived level
of challenges in testing activities, (2) focus areas in industrial and aca-
demic software testing conferences, (3) synergies between industrial and
academic software testing conferences, as well as (4) the need for con-
sideration of grey literature. Then, we reflect on issues, which we think
can improve the link and synergies between industry and academia in
software testing, i.e., research topics, guidelines and evidence, value and
risk, context and scalability, action research and education as well as
grey literature and open science.

Keywords: Software testing · Software quality · Industry academia
collaboration

1 Introduction

In an applied research area like software engineering industrial impact and rele-
vance are crucial [1]. This holds especially for software testing, which is an area of
high scientific and practical importance as it comprises a critical set of activities
to enable the development of high-quality software and systems [2].

This paper provides reflections on industry-academia collaboration in soft-
ware testing, which aim to improve collaboration and as a follow-up impact of
research in specific contexts and its transfer to practice. For that purpose, we
first present studies providing evidence on industry-academia collaboration espe-
cially in software testing, but also its conferences and literature. We think that
a holistic strategy to improving industry-academia collaboration requires to not

c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-35510-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_1

4 M. Felderer and V. Garousi

only consider research topics, but also the research ecosystem, which includes
conferences and literature, but also education.

This paper is structured as follows. Section 2 provides an overview of test
activities. Section 3 provides available specific evidence on industry-academia
collaboration in software testing as well as in its conferences and literature.
Section 4 presents reflections on industry-academia collaboration based on the
provided evidence. Finally, Sect. 5 concludes the paper.

2 Software Test Activities

According to the international testing standard ISO/IEC/IEEE 29119 [3], soft-
ware testing comprises a set of activities conducted to facilitate discovery and/or
evaluation of properties of one or more test items, i.e., a software system or parts
of it. Following [4] we consider the nine test activities test-case design (criteria-
based), test-case design (based on human expertise), test scripting, test execu-
tion, test evaluation, test-result reporting, test management, test automation,
and other test activities. These test activities are defined in Table 1.

Table 1. Definition of test activity types [4]

Activity type Description

Test-case design
(criteria-based)

Designing test suites (set of test cases) or test
requirements to satisfy coverage criteria, e.g., line
coverage

Test-case design (based
on human expertise)

Designing test suites (set of test cases) based on human
expertise (e.g., exploratory testing) or other engineering
goals

Test scripting Documenting test cases in manual test scripts or
automated test code

Test execution Running test cases on the system under test (SUT) and
recording the results

Test evaluation Evaluating results of testing like assigning test verdicts

Test-result reporting Reporting test verdicts and defects to developers, e.g.,
via defect (bug) tracking systems

Test management Encompasses activities related to test management, e.g.,
planning, control, monitoring, etc.

Test automation Automating any test activity

Other testing activities Includes activities other than those discussed above,
e.g., regression testing or test prioritization

Industry-Academia Collaboration in Software Testing 5

3 Evidence on Industry-Academia Collaboration
in Software Testing as Well as in Its Conferences
and Literature

Software testing is an important area when investigating industry-academia col-
laboration in software engineering as it is a common topic covered in papers on
industry-academia collaboration in software engineering in general as shown by
a recent systematic literature review [5]. However, there are only a few studies
focusing on industry-academia collaboration in software testing and providing
evidence in that area. In this section we present four studies providing evi-
dence on the perceived level of challenges in testing activities (Study 1), focus
areas in industrial and academic software testing conferences (Study 2), syner-
gies between industrial and academic software testing conferences (Study 3), as
well as the need for consideration of grey literature (Study 4).

3.1 Study 1: Perceived Level of Challenges in Testing Activities

Garousi et al. [4] performed a survey among experienced practitioners to find
out what industry wants from academia in software testing. For that purpose,
practitioners were asked for the perceived level of challenges in testing activities
as well as concrete research topics related to testing activities (see Table 1).

Figure 1 shows the level of challenges in each of the nine testing activities as
perceived by the 105 participants of the survey.

Only for the activities of test management, test automation and other testing
activities a significant amount of challenges is perceived by the participants. For
these three activities, for instance the following concrete practically relevant
topics, where solutions from research are required, are mentioned:

– Test management : test ROI calculation; risk metrics; test size and effort esti-
mation; balance between test efficiency and effectiveness

– Test automation: metrics for test automation; fully-automated test script
generation; usability of test automation; automated recommendation support
for test execution

– Other activities: regression testing of complex legacy software; adoption of
open source tools; test training and awareness.

3.2 Study 2: Focus Areas in Industrial and Academic Software
Testing Conferences

Garousi and Felderer [6] compared presentation titles from several leading
industrial and academic conferences. The top three terms were “automation”,
“mobile”, and “agile” in industrial presentation titles and “model”, “combi-
natorial”, and “automated” in academic presentation titles, respectively. Both
communities appear to focus on test automation. However, the presentation
titles reveal that when practitioners refer to test automation, they mostly mean

6 M. Felderer and V. Garousi

Fig. 1. Level of challenges in each testing activity (0 = no challenges at all, . . . , 4 =
lots of challenges) [4]

automating test execution. In contrast, academics focus mostly on automat-
ing other activities like test-case design or evaluation. Further industrial focus
areas are test management and other activities like domain-specific aspects (e.g.,
mobile, robotics or cloud testing) as well as non-functional aspects like perfor-
mance testing. This finding is inline with the industrial challenges raised in
Fig. 1. Common presentation topics at academic conferences are search-based
test-case design, combinatorial testing, mutation testing and model-based test-
ing, i.e. topics at academic testing conferences seem to be mainly related to
automated test-case design.

3.3 Study 3: Synergies Between Industrial and Academic Software
Testing Conferences

Beszedes and Vidacs [7] compiled a comprehensive list of 63 academic and 38
industrial conferences that focus on testing aspects and analyzed their industry-
academia synergies. For that purpose, they compute an index which considers
chairs, presenters and keynotes from the other community (i.e., industry and
academia, respectively) to measure synergies.

Figure 2 shows the presence of industrial chairs, PC members and keynote
speakers in academic conferences and vice versa. Notable findings from this com-
parison are as follows:

– Academic conferences more often invite industrial members as program chairs
than industrial conferences invite academic ones

Industry-Academia Collaboration in Software Testing 7

14% 14%

28%

6%

22%

6%

0%

5%

10%

15%

20%

25%

30%

Chair PC Member Keynote

Fo
re

ig
n

M
em

be
r P

er
ce

nt
ag

e

Academic Conferences Industrial Conferences

Fig. 2. Presence ratio of industrial members in academic conferences and vice versa) [7]

– Synergies regarding the membership of program committees are similar
– There are more keynotes with industrial background on academic conferences

than academic keynotes on industrial ones
– Considering other factors as well, most notably the existence of a synergistic

track, academic conferences show more ambitions to synergies
– In case of academic conferences, it seems that younger conferences are more

industry oriented than the more mature ones.

Testing: Academia-Industry Collaboration, Practice and Research Tech-
niques (TAIC PART) and Software Quality Days (SWQD) are rated and high-
lighted as distinguished venues to foster industry-academia collaboration in soft-
ware testing and examples of mutual recognition between the two communities.

3.4 Study 4: Need for Consideration of Grey Literature

Garousi et al. [8] investigated the need for multivocal literature reviews in
software engineering. Multivocal literature reviews [9] take grey literature into
account in addition to formally published academic literature. Grey literature is
typically neither formally peer-reviewed nor formally published, which implies
uncertainty of the status of the covered information. Grey literature sources com-
prise for instance blog-like documents, videos, and white papers and are often
written by practitioners to share their knowledge and opinions. The authors
investigate, mainly based on examples from the domain of software testing, what
types of knowledge are missed and what the software engineering community can
gain when explicitly considering grey literature in literature studies.

For instance, Fig. 3, which is covered by the study, shows based on a multi-
vocal literature review on test process assessment and improvement [10], what
information from practice would have been missed if we were to exclude grey
literature sources. Overall, 57 different test process assessment and improvement
models were identified in the formal and grey literature sources of the performed

8 M. Felderer and V. Garousi

multivocal literature review. From these sources 14 were grey literature reporting
test maturity models such as TMap, Agile TMM or Test Maturity Index which
would have been lost in a regular systematic literature review (by not including
the grey literature). Furthermore, Fig. 3 shows the number of papers per model
using or extending a source model. Without grey literature, the usage of TMap
and some other models would not have been considered.

0 5 10 15 20 25 30 35

TMMi

TMM

CMMI

CMM

TPI

TPI Next

TestSPICE

TMap

TIM

Other

Number of Sources

Formal Literature Grey Literature

Fig. 3. Formal and grey literature per test process improvement model [10]

Based on a second multivocal literature review on test automation [11], also
covered in the study by Garousi et al. [8], it is once more shown that a significant
body of experience and knowledge from practicing test engineers on the topic
of test automation would have been missed. To put this in quantitative terms,
in the multivocal literature review factors to be considered for deciding when
and what to automate in testing were analyzed by the type of source where they
were mentioned. In total, 15 factor categories were identified, grey literature
sources contributed a total of 219 occurrences of factors, while academic sources
discussed only 67 occurrences. Furthermore, two factor categories (test oracle
and development process) would not have been identified in the study if grey
literature would not have been considered.

Based on these study, we can conclude that grey literature covers a large
amount of knowledge, opinions and experience from practitioners and it can
contribute substantially to the body of knowledge and open challenges in certain
areas of software testing.

Industry-Academia Collaboration in Software Testing 9

4 Reflections on Industry-Academia Collaboration
in Software Testing

Based on the results of the studies and our own experiences we reflect on some
issues that we consider relevant to benefit from industry-academia collaboration,
especially in software testing, and to further improve the link and synergies
between industry and academia.

Research Topics. Researchers should be aware of their industrial partners’ chal-
lenges and take into account research topics that are novel, feasible, industrially
relevant, and potentially impactful [12]. As highlighted in [4], problems, where
practitioners require support from research, are especially related to test man-
agement and test automation. Garousi and Herkiloğlu [13] even propose a process
to select suitable topics for industry-academia collaborations in software testing.

Guidelines and Evidence. Researchers can benefit a lot from available guide-
lines (e.g., technology transfer models [14] or patterns and anti-patterns [5]) and
evidence on industry-academia collaboration in software engineering [15]. For
instance, the first author of this paper was inspired by an available technology
transfer model [14] when planning and performing research on testing with defect
taxonomies in close collaboration with industry [16].

Value and Risk. Companies are under continuous pressure to make profit. Hence,
researchers should take the business value into account and consider ideas from
value-based software engineering [17]. Related to the concept of value is the con-
cept of risk [18], which can be considered in all test activities [19]. For instance,
risk (and therefore also value aspects) can be considered in test generation and
selection approaches, which allows a much better business framing even of sophis-
ticated test-generation approaches.

Context and Scalability. Software testing research has to become more context-
driven by focusing on problems driven by concrete needs in specific domains and
development projects. The applicability and scalability, which are essential for
industrial acceptance and adoption of research results, depend largely on con-
textual factors, whether human (such as engineers’ background), organizational
(such as cost and time constraints), or domain-related (such as the level of crit-
icality and compliance with standards) [20]. This also requires that top-journals
and conferences acknowledge that context-driven research is needed, valuable,
and challenging. Such research focuses especially on scalability in realistic con-
ditions, and therefore brings essential contributions for an applied research field
like software testing.

Action Research and Education. Action research [21], which seeks transformative
change through the simultaneous process of taking action and doing research, is
especially useful when collaborating with industry. It supports that the research
problems are based on real industry needs and that research results are actually

10 M. Felderer and V. Garousi

adopted in testing practice. Action research is often linked to education of prac-
titioners. Especially software testing is considered as highly important, but with
a considerable knowledge gap existing [22].

Grey Literature and Open Science. The dissemination of results, i.e., papers,
artifacts and data, plays an important role in industry-academia collaboration.
In addition, to research papers, researchers could try describing their research
in laymen’s terms, making it available in more forms than conference articles
and journal papers. Knowledge should be made available through various forms
of grey literature, e.g., by publishing slides, white papers, recorded videos, and
blogs. On the other, hand researchers should also consider grey literature sources
from practitioners as valuable sources to identify challenges, cases or even evi-
dence. Researchers should also apply principles of open science [23], whose aim is
to render all artifacts borne out of scientific research activities accessible, without
any barriers, to any individual on Earth.

However, one should for sure also take into account that it is not achiev-
able and even not desirable that industry and academia always collaborate
very tightly. Wohlin [24] addresses this issues by defining five levels of closeness
between industry and academia, i.e., not in touch, hearsay, sales pitch, offline,
and one team. One should be aware that industry has for obvious reasons shorter
cycle times, which implies moving targets and may pose impediments for long-
term investigations and innovations researchers are aiming for. However, in an
applied research area such as software testing, there should always be a link
between industry and academia, which may vary in its intesnity. We hope that
the raised issues support to keep continuously keep this link.

5 Conclusion

In this paper we first presented four studies providing evidence on the per-
ceived level of challenges in testing activities (Study 1), focus areas in industrial
and academic software testing conferences (Study 2), synergies between indus-
trial and academic software testing conferences (Study 3), as well as the need
for consideration of grey literature (Study 4). We then reflect on the following
issues, which we think can improve the link and synergies between industry and
academia in software testing: research topics, guidelines and evidence, value and
risk, context and scalability, action research and education as well as grey liter-
ature and open science. Through papers such as this one, we’re continuing our
effort to bring practitioners and researchers in software testing closer to each
other so that they can benefit each other much more than they do today.

Acknowledgments. The authors thank all collaborators from industry and academia
who worked with them on industry-academia collaboration.

Industry-Academia Collaboration in Software Testing 11

References

1. Lo, D., Nagappan, N., Zimmermann, T.: How practitioners perceive the relevance
of software engineering research. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pp. 415–425. ACM (2015)

2. Harrold, M.J.: Testing: a roadmap. In: Proceedings of the Conference on the Future
of Software Engineering, pp. 61–72. Citeseer (2000)

3. ISO: 29119-1-2013 - ISO/IEC/IEEE international standard - software and systems
engineering -software testing -part 1: concepts and definitions (2013)

4. Garousi, V., Felderer, M., Kuhrmann, M., Herkiloğlu, K.: What industry wants
from academia in software testing?: Hearing practitioners’ opinions. In: Proceed-
ings of the 21st International Conference on Evaluation and Assessment in Software
Engineering, pp. 65–69. ACM (2017)

5. Garousi, V., Petersen, K., Ozkan, B.: Challenges and best practices in industry-
academia collaborations in software engineering: a systematic literature review.
Inf. Softw. Technol. 79, 106–127 (2016)

6. Garousi, V., Felderer, M.: Worlds apart: industrial and academic focus areas in
software testing. IEEE Softw. 34(5), 38–45 (2017)

7. Beszédes, Á., Vidács, L.: Academic and industrial software testing conferences: sur-
vey and synergies. In: 2016 IEEE Ninth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 240–249. IEEE (2016)

8. Garousi, V., Felderer, M., Mäntylä, M.V.: The need for multivocal literature
reviews in software engineering: complementing systematic literature reviews with
grey literature. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, p. 26. ACM (2016)

9. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Inf. Softw.
Technol. 106, 101–121 (2019)

10. Garousi, V., Felderer, M., Hacaloğlu, T.: Software test maturity assessment and
test process improvement: a multivocal literature review. Inf. Softw. Technol. 85,
16–42 (2017)

11. Garousi, V., Mäntylä, M.V.: When and what to automate in software testing? A
multi-vocal literature review. Inf. Softw. Technol. 76, 92–117 (2016)

12. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 12–23. ACM (2014)

13. Garousi, V., Herkiloglu, K.: Selecting the right topics for industry-academia col-
laborations in software testing: an experience report. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pp. 213–222.
IEEE (2016)

14. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A model for technology transfer
in practice. IEEE Softw. 23(6), 88–95 (2006)

15. Garousi, V., et al.: Characterizing industry-academia collaborations in software
engineering: evidence from 101 projects. Empir. Softw. Eng. 24, 1–63 (2019)

16. Felderer, M., Beer, A.: Mutual knowledge transfer between industry and academia
to improve testing with defect taxonomies. In: Software-Engineering and Manage-
ment 2015 (2015)

17. Ramler, R., Biffl, S., Grünbacher, P.: Value-based management of software testing.
In: Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.) Value-
Based Software Engineering, pp. 225–244. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-29263-2 11

https://doi.org/10.1007/3-540-29263-2_11
https://doi.org/10.1007/3-540-29263-2_11

12 M. Felderer and V. Garousi

18. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16(5), 559–568 (2014)

19. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Softw. Qual. J. 22(3), 543–575 (2014)

20. Basili, V., Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.: Soft-
ware engineering research and industry: a symbiotic relationship to foster impact.
IEEE Softw. 35(5), 44–49 (2018)

21. Santos, P.S.M.d., Travassos, G.H.: Action research use in software engineering:
an initial survey. In: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, pp. 414–417. IEEE Computer
Society (2009)

22. Garousi, V., Giray, G., Tüzün, E., Catal, C., Felderer, M.: Aligning software engi-
neering education with industrial needs: a meta-analysis. J. Syst. Softw. 156, 65–83
(2019)

23. Fernández, D.M., Graziotin, D., Wagner, S., Seibold, H.: Open science in software
engineering. arXiv preprint arXiv:1904.06499 (2019)

24. Wohlin, C.: Software engineering research under the lamppost. In: ICSOFT. IS-11
(2013)

http://arxiv.org/abs/1904.06499

Challenges in Testing Big Data Systems
An Exploratory Survey

Monika Steidl(B), Ruth Breu, and Benedikt Hupfauf

Department of Computer Science, University of Innsbruck, Technikerstraße 21a,
6020 Innsbruck, Austria

Monika.Steidl@student.uibk.ac.at,

{Ruth.Breu,Benedikt.Hupfauf}@uibk.ac.at

Abstract. An increasing number of companies incorporate Big Data in order to
increase business value and gain competitive advantages.With this new paradigm,
also testing methodologies need to be revised to suit the specific requirements of
Big Data. This paper summarizes the outcome of an exploratory survey conducted
in 2018with seven participants fromdifferent industries (Healthcare, Technology).
The issues can be divided into four categories: (1) limited resources and perfor-
mance problems, (2) verifying test results, (3) finding an optimal test coverage,
and (4) availability of test data.

Keywords: System test for Big Data · Data-intensive · Test challenges ·
Exploratory survey · Big Data testing

1 Introduction

In recent years, Big Data has become an important driver of success in business. A
survey conducted among 330 public North American companies evaluated their tech-
nology management practices. On average, the companies that used Big Data were six
percent more profitable and five percent more productive than their direct competitors
[1]. Another survey obtained similar results, when interviewing 341 businesses about
their profitability with respect to Big Data [2]. The study found that the businesses that
used data-intensive software were 36%more likely to achieve a stronger revenue growth,
as well as a higher operating efficiency [1].

Although Big Data has the potential to gain significant competitive advantages with
data driven decision making, more than a few companies fail to use these data success-
fully. A recent survey among nearly 65 industry leading firms and Fortune 1000 compa-
nies analysed, how Big Data and AI accelerate business transformation. The study found
that even though most of the companies were investing in Big Data and AI, 37.8% did
not report measurable results. Moreover, 77.1% stated that the adoption of Big Data or
AI initiatives posed challenges for their organisations [3].

© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 13–27, 2020.
https://doi.org/10.1007/978-3-030-35510-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_2

14 M. Steidl et al.

In this paper, Big Data and data-intensive are used synonymously and follow the
definition of Mauro, Greco and Grimaldi: “Big Data is the Information asset charac-
terized by such a High Volume, Velocity and Variety [and Veracity] to require specific
Technology and Analytical Methods for its transformation into Value.” [4].

Testing data-intensive systems is more challenging due to the data set’s characteris-
tics, however, crucial to prevent most critical failures. For instance, executing tests with
a large volume of data as well as high velocity is very resource intensive. Also, the lack
of homogeneity and standardization of the data types, structures and sources makes it
significantly harder to test those systems [5].

This paper puts themain focus on challenges related to system tests,which are defined
in this paper as testing the system as a whole. System testing is often referred to as Black
Box testing, because tests are executed without knowledge about the internals of the
system, such as code structure. In addition to tests for functional requirements, such as the
correct behaviour of the systemand robustness, also tests for non-functional requirements
are considered. Non-functional requirements include for instance the scalability of a
system, or its performance [6]. If not clearly stated otherwise, the terms test and system
test are used as synonyms.

The paper is structured as follows: first, the objective for this survey is outlined
in more detail, followed by a concise description of the methodological approach and
the participants. Next, the analysis method is introduced. The main part of the paper
summarizes the results and analyses the most frequently mentioned challenges in Big
Data testing. Afterwards, threats to validity, related work and potential future work are
discussed. The concluding chapter interprets the results and concludes the paper.

2 Objective

There is some evidence that the well-established practices of system testing do not
necessarily apply to Big Data applications. We strive to fill this gap and further the
understanding of system tests specifically designed for Big Data applications. For this,
we collect the most common challenges from practice and build a taxonomy. Our main
research question is:

RQ: “Which problems can arise when testing data intensive systems?”

With our work, we hope to facilitate the planning as well as the execution of tests, and
ultimately reduce the risks of Big Data initiatives.

3 Methodological Approach and Survey Design

In order to answer the research question, a qualitative approach was chosen to explore
and provide an insight into challenges during testing data-intensive systems. The qual-
itative approach is a valuable analysis method to understand individual experiences
by outlining the complexity and diversity of the observed environment. Moreover, a

Challenges in Testing Big Data Systems 15

qualitative survey does not restrict answers to a predefined set of options, but allows
individuals to report their experiences in detail [7]. The data was collected with the help
of seven semi-structured interviews. This allowed to elicit the interviewees’ personal
experience regarding system tests for data-intensive systems thoroughly. In addition, the
semi-structured approach of the interviews allowed to further address the interviewees’
responses, and to ask clarification questions [8].

The questionnaire consisted of a short introduction, the main part, and follow-up
questions. The introductory questions included, for instance, the participant’s definition
of the terms “system test” and “Big Data”, as well as a concise description of the
participant’s work experience in this field. This allowed to ensure amutual understanding
andminimize the risk of misconceptions. The main part included questions about testing
guidelines and criteria, to obtain a better understanding on how extensively and precisely
testing was done in their company. The general question was formulated as follow:

“What challenges have you noticed during your work life when using system
tests for data-intensive applications/Big Data applications?”

Most of the time of the interview was dedicated to this open question, to avoid bias
and allow the participants to express their personal opinion. During this part, follow
up questions and clarification questions were allowed to ensure a mutual understanding
of the presented issues and to gather enough details. This main question was answered
by all participants without further need for structural questions. Thus, those structural
question such as data issues, how to decide when the optimal test coverage was reached,
and regression tests were used as sub questions. The interviews were conducted between
22 May 2018 and 15 June 2018 with an average duration of 34 min.

4 Participants

The target group for this survey comprised experts in software development and test-
ing, who had at least five years of work experience with data-intensive applications. All
interviewees participated voluntarily in the study without financial compensation and
provided enough time to comprehensively answer all the survey questions. In order to
protect their personal rights and their companies’ intellectual property, the participants
are only referred to by an ID. The participants work for four different companies; partic-
ipants B and M work for an Austrian company in the Healthcare industry, participants
F and C work for a Swiss company in the Healthcare industry, participant L works for a
US software company, and finally, participants I and A work for an Austrian company
specializing in software testing. Although all participants are located in Europe, their
companies operate world-wide. For further information on the field of work, years of
work experience, industry, number of company employees and region, see Table 1.

16 M. Steidl et al.

Table 1. Description of the participants

ID Field of work Experience Industry #Employees Region

B ADF database 13 years Healthcare 1.500 AT

F AI/Machine learning 19 years Healthcare 25.000 CH

C BI 13 years Healthcare 25.000 CH

L Machine learning 8 years Technology 10.000 NO

M ERP-Systems 16 years Healthcare 1.500 AT

I AI/Machine learning 11 years Technology 500 AT

A BI/Data warehouse 10 years Technology 500 AT

5 Analysis Method

The evaluation of the interviews was based on the summarizing qualitative content
analysis described by Mayring [7]. This approach systematically reduces the amount of
data collected in the interviews, while still maintaining a realistic depiction of the base
material. We opted for an inductive category definition method [7] that is described in
more detail in the course of this section. In order to gain a neutral and objective insight
into the collected material, without having prepossessions based on a literature review
prior to the analysis, we derived categories from the interviews without references to
previously designed theory concepts.

Based on the inductive category definition byMayring [7] for the first step, awareness
was raised for the aim of the survey: Identifying problems regarding system tests for
data intensive applications. In the second step, categories were defined. For the questions
about the interviewee’s definitions of the terms Big Data and system tests as well as
his/her background, the following four categories were created: “work experience”,
“Big Data”, “system tests” and “quality criteria”. For the research related questions, the
categories “data”, “validation of sufficiency of number of tests”, “regression tests” and
“verification of results” were defined.

In the third step, statements were allocated to categories defined in step two, with the
help of segmentation and subsumption. By the means of segmentation, we divided the
content into units of coding, which are defined as short and content-focused paraphrases
where extraneous details are omitted [7]. Those segments were then added to a category
via subsumption [7, 9]. However, when the segment did not match any category, a new
category was added. The following categories were added: “resources”, “statistics and
testing”, “continuous ongoing system testing”, “repeatability”, “machine learning” and
“performance”. Additionally, although mentioned infrequently, the categories “human
layer and automatization”, “user acceptance testing” and “testing as a discipline” were
added.

As an intermediate step, after assigning approximately half of the interview material
to the categories, the material was revised to check if the analysis still fulfilled the
purpose of the survey as defined in step one. Based on Mayring’s approach [7] step two

Challenges in Testing Big Data Systems 17

was also executed again to revise the segments in the category and relocate the segments
if they fitted better to a newly created category. In addition, the abstraction level was
also amended.

6 Results

This section presents the main findings of the survey. For a better understanding of the
most common challenges in testing BigData systems, the results are divided in fourmain
categories: (1) limited resources and performance problems, (2) verifying test results,
(3) finding an optimal test coverage, and (4) availability of test data. Each sub-section is
dedicated to one of the aforementioned categories and beginswith a summary of themost
important statements of the participants. In addition, a table provides a summary of all
statements related to this category, where columns represent topics, and rows represent
participants. A checkmark indicates that the participant saw the topic in question as
a challenge, whereas a cross indicates that the participant did not see this topic as a
challenge. If neither a checkmark nor a cross is depicted, the participant did not mention
the topic at all.

6.1 Resources and Performance

The interviewees B, F, L, M and I stated that resources played a significant role in
their testing environment. One of the most frequently mentioned challenges were the
hardware, and storage capacity. B and L stated that when testing the systemwith loads
of collected real time data, a lot of processing cores were required. In addition, data that
needed to be processed could not fit into the main memory. Participant F, L and I also
stated that repeating and comparing tests caused storage issues, because for every test
run, the version of the system as well as the input data set needed to be documented and
archived. Moreover, participant I stated that he needed different data sets to execute the
system test. Considering the number of tests done for each version and the according
data used, led to a huge amount of data that needed to be stored. According to F, L, and
I, this could lead to a high administrative burden regarding memory consumption and
storage.

When talking about costs, B, M, and I stated that the hardware to run the tests was
expensive. When using different environments for testing and production, replicating
the live system one-to-one led to a significant increase in costs, and budget restrictions
prohibited duplicating the production environment. In addition, the production environ-
mentmight use thousands ofmachines located at various parts of theworld, whichwould
increase the complexity of the test environment significantly. They frequently had to deal
with a trade-off between money and risk when testing – the higher the investment, the
better the replication of the testing environment, the more extensive and realistic tests
could be executed.

When there were limited resources, performance was directly affected. This chal-
lenge was mentioned by the participants M and I, while participant A denied that perfor-
mance was a challenge when directly asked about it. The reason why participant A never

18 M. Steidl et al.

encountered performance deviation between test and production environments was that
he integrated software into an already existing system landscape and focused more on
functional requirements than performance. Nevertheless, participant M stated that the
performance in the testing environment was worse than in the production environment
due to limited resources available or different network dependencies. ParticipantMstated
that they encountered a problem with the utilization of I/O interfaces, because they were
busy with backups at night. Consequently, the performance of a newly implemented
software under test deteriorated substantially. Furthermore, according to participants M
and I, it was challenging to derive performance measures from just testing the system
with a small data set. Consequently, such a test would not be suitable to predict the
software’s behaviour beforehand.

Contrary to participant M, participant I stated that his company did not measure
performance in the test environment due to the lack of expressivity. Consequently, they
had tomonitor performance directly in the production environment. On the downside, the
current workload of the system had a major influence on the system’s performance and
could not be predicted easily beforehand. A summary of the most important statements
with respect to this category, Resources and Performance, can be found in Table 2.

Table 2. Overview of the statements related to the category Resources and Performance

ID Hardware & storage capacity Budget & money Performance

B ✓

Require processing cores
✓

Budget restrictions

F ✓

Storing test data

C

L ✓

Saving and processing data

M ✓

Trade-off between money
and risk

✓

Limited resources cause
unforeseeable problems

I ✓

Storing test data
✓

Replication of production
environment

✓

Different workload in
production and test

A ✘

6.2 Verifying Test Results

The challenge of verifying test results was never mentioned by the participants on their
initiative. However, when asked directly, the majority of participants acknowledged that
verifying test results was challenging. Interviewees M, I and A stated that they had

Challenges in Testing Big Data Systems 19

fundamental problems to define a test oracle. The oracle was based on a design docu-
mentation, the acceptance criteria of user stories in the agile context, or the subjective
opinion of the testers, which could impose some bias on the test results. In all cases,
humans made the decision to define how reliable the test results were.

Participant F and I stated that when talking about test verification in the machine
learning context, test cases were based on a statistical approach. Tests were done with
data sets, where the output was already known and evaluated accordingly. However,
they found it difficult to evaluate the output when new test data sets were used, or the
algorithm changed its behaviour. Moreover, participant I stated that testing machine
learning algorithms was particularly challenging, when the desired output was simply
unknown (e.g. unsupervised learning). A summary of the most important statements
with respect to this category, Verifying Test Results, can be found in Table 3.

Table 3. Overview of the statements related to the category Verifying Test Results

ID Test oracle Testing machine learning

B

F ✓

Verify output of new test data set

C

L

M ✓

Validate results without human interaction

I ✓

Based on subjective criteria
✓

Difficult to know which output is expected

A ✓

Define business tests

6.3 Finding an Optimal Test Coverage

All participants stated that it was difficult to decide, when the optimal test coverage
was reached for multiple reasons. For instance, participant I found it difficult to measure
test coverage in general. Moreover, multiple participants saw a trade-off between high
test coverage on the one hand, and budget, resources, or risk on the other.

Participants L, M, I and A had some rules or guidelines with respect to the test
coverage required by their companies. For instance, participants I and A relied on risk
assessment to find an optimal test coverage. Interviewee I used a tree like hierarchy
to focus on the tests with the highest priority. He, as well as participant M, argued
that finding an optimal test coverage was a general problem in testing, and not unique
for testing Big Data applications. To tackle this problem, participant M introduced a

20 M. Steidl et al.

“signature approach”,where the person in chargehad to sign that a sufficient test coverage
had been reached. This way, managers were in charge of test coverage and had to take
responsibility. According to participant A, to accurately assess the risk and make a
thoughtful decision, requirement management needed to understand the complexity of
the system, which was often challenging. Interviewee F and L chose a different approach
and focused on the need of having a statistically representative number of test cases. For
participant L, it was an issue which number of test cases was representative in order to
ensure that the system functioned properly. Participant B remarked that he did not have
any formal metrics for optimal test coverage and based his decisions on work experience
and guess work.

Finally, one of participant B’s challenges was the trade-off between time and system
reliability, whichwas alsomentioned by participant A. A summary of themost important
statements with respect to this category, Finding an Optimal Test Coverage, can be found
in Table 4.

Table 4. Overview of the statements related to the category Finding an Optimal Test Coverage

ID Optimal test coverage No rules Time

B ✓ ✓

No formal metrics (work
experience & guess work)

✓

Trade-off between time &
reliability

F ✓ ✓

Statistically representative
number of samples

C ✓

L ✓ ✓

Statistically representative
number of samples

M ✓ ✘

Signature approach to verify test
coverage

I ✓ ✘

Risk based test tree structure

A ✓ ✓

Understand system
requirements

✓

Time and resources

6.4 Availability of Test Data

The absence of data was mentioned by all participants. The answers included technical,
as well as organizational issues. Participant B stated that data was sparsely available.

Challenges in Testing Big Data Systems 21

This challenge was particularly problematic with data from the healthcare sector or the
government, due to strict privacy guidelines. According to interviewee L, unavailable
servers or broken sensors, which were not sending information anymore, contributed to
the problem of missing data. Another reason for missing data mentioned by participant
I was that historical data was not available for newly implemented functions. Addition-
ally, interviewee M gave prominence to data availability problems because of a lack of
communication between different departments. In essence, the departments simply did
not know which data was already available. However, also internal access restrictions
could apply, as in the case of interviewee I. When applying for test data, it took up to
several weeks until the data set was allocated. Subsequently, the testing process was
prolonged due to temporarily unavailable data. Participants B and C also stated that full
data integrity was exceedingly difficult to achieve. It was impossible to have all the data
available everywhere simultaneously. Moreover, participant F took into consideration
that his company was not willing to use production data for testing purposes. Notwith-
standing, production data was absolutely necessary to ensure well-conducted system
tests. Moreover, when talking about production data used for system tests, participant
I raised concerns that data which was not created synthetically, was getting depleted
too quickly under the assumption that several system tests were executed per day. Thus,
when testing, the company could run out of data to use.

Another challenge in this category were data protection regulations. This chal-
lenge was indicated by most of the participants, in particular by participant F. He was
working in the healthcare sector where he would have needed patient records for testing.
However, regulations prohibited him from using raw data. Even anonymizing the test
data did not fulfil the strict data protection rules of his company, because the risk of
deanonymization and violating privacy regulations was too high. This is even more true
since the newGeneral Data Protection Regulations (GDPR). For instance, the companies
of participants I and M needed to be more careful when processing data and implement
anonymization strategies. With respect to anonymization, participant M highlighted that
the characteristics of the data needed to be preserved.

In contrast, participants C and A did not face any challenges with respect to test data
because of data protection regulations. Interviewee C only used internal and process
specific data that were not protected by any regulations. Participant A, on the other
hand, stated that they very rarely used data from production; however, when they used it,
the data sets were anonymized and masked. Furthermore, he used synthetical data that
was generated, which also did not pose any data regulation problems.

Another challenge identified in the course of the interviews were problems related
to the different structure, formats, and sources of data, all of which are characteris-
tics associated with Big Data. Participant B worked in a project for processing natural
language and they were severely struggling with different formats and sources. Partic-
ipant L and A emphasized the difficulty of integrating data into one universal format.
In addition, data was messy, unstructured, full of errors, excessively big and constantly
changing. Due to these characteristics of Big Data, interviewee L also struggled to verify
if there were no duplicates included and if the data was consistent. When it came to the

22 M. Steidl et al.

successful usage of data in system tests, participants M, I, and A also needed to have
the data in a harmonized and purified way, stored somewhere accessible. Interviewee I
conducted a survey where they found that due to insufficient data preparations in their
company, 32% of all automated test cases failed. To fix the failing tests, maintenance
costs and processing time increased.

Another challenge mentioned by participants F, C, L, M, I and A was the trade-off
between the size of the data set and representability. Participant C and F stated, that a
frequent question in their company was, how much data was needed to properly model
the relation and behaviour patterns of the data set used in production. A test data setmight
be correct in the structural and relational perspective, but not representative, because the
statistical behaviour was different than the one in the complete data set.

Furthermore, participant M touched upon the appropriate size of the test data set.
Normally, systems were tested with a small data set, although Big Data needed to be
processed when the system is used in production. The data-intensive software’s load was
created by processing the data. Therefore, performance could not sufficiently be tested
with a small data set.

Participant C and A also emphasized that the composition of the data set was a
much-discussed topic and needed a lot of time to search for the right data, so that data
scientists as well as people from the business side felt comfortable. Additionally, under-
standing the business relations between data was essential to finding the right data set
for testing.

When production data was not an option, participants C, L and I relied on
data generators, although generating synthetical data was costly and posed a sub-
stantial effort. They claimed that synthetic data sets did not reflect the intended
behaviour between objects. According to interviewee F and M, the syntheti-
cal data set could be biased, depending on how the data generation algorithm
was implemented. The algorithm was based on a finite set of criteria which the busi-
ness side and software deployment team determined. Participant I elaborated that in his
case only 80 to 85% of the automated test cases worked properly with synthetically
produced data. Those data worked perfectly until the test case required historical data,
which caused the test case to collapse.

In contrast to the others, participants L and M saw the decision of which data set to
use not as part of the system test, but as part of the architectural phase. Since the technical
and business side needed to agree on what was the purpose of the system and which
data needed to be collected in the beginning, interviewee L and M saw the collection
of data sets more as preparatory work. Nonetheless, participant M and L confirmed that
defining test data sets was an arduous task and the mentioned problems beforehand were
applicable. A summary of the most important statements with respect to this category,
Availability of Test Data, can be found in Table 5.

Challenges in Testing Big Data Systems 23

Table 5. Overview of the statements related to the category Availability of Test Data

ID Availability Data protection
regulation

Structure,
format,
sources

Size of data set Data generator

B ✓

Private database
✓

Jungle of data

F ✓

Not using
production data

✓

Healthcare
sector

✓

Model
behaviour
pattern

✓

Biased

C ✓

Data integrity
✘

Internal,
product

specific data

✓

Data
preparation

✓

Model
behaviour
pattern

✓

Instead of
pseudonymisation

L ✓

Unavailable
servers

(preparatory
work)

✓

User data
✓

Purify data
✓ ✓

M ✓

Unawareness of
data

(preparatory
work)

✓

Obfuscation
✓

Purify data
✓

Performance
✓

Deviations

I ✓

No historic data
✓

Transaction
histories

✓

Data
preparation

✓ ✓

Prone to errors

A ✓

Unaware
✘

Internal data
✓

Purify data
✓

7 Threats to Validity

The guidelines elaborated by Cook and Campbell [10] form the basis for further argu-
mentations. Concerning external validity, a two-stage selection process was applied to
ensure a better generalization possibility. We defined a target group as described in
the section Participants and chose a random sample of the target group. This helped
minimizing the threat of a too biased selection of interview partners. However, the sam-
pling number comprised only seven people working in a similar region, which limits the
insights into diverse cultural mindsets and companies’ system testing cultures; however,
all companies are operating internationally. It remains open whether the results can be
generalized to other geographical regions, which could be subject to further research.

24 M. Steidl et al.

Additionally, half of the samples were taken from companies in the healthcare sector
with stricter guidelines compared to other companies [11]. Thus, the findings may not
apply to companies working in different sectors. However, the healthcare and technology
sectors are precursors of BigData Applications, undergoing rapid transformation to keep
up to date with software requirements. Since quality and reliability are paramount in
these sectors, one could argue that they are a good starting point to come to a deeper
understanding of the challenges in testing Big Data systems.

Finally, the ranking of the challenges is not completely objective due to the small
sample size. Not all challenges were covered in detail by every single participant because
of the wide range of possible challenges and the participants’ duty of confidentiality.
However, the aim of this paper was not to find an absolute ranking of challenges in
testing Big Data systems, but to gain an understanding of the challenges and build a
taxonomy.

8 Related Work

Bertolino [12] investigated the challenges of conventional software testing in 2007.
Bertolino identified several challenges, including test effectiveness, a test oracle,
automating tests, test input generation, and costs. Although the research had no spe-
cial focus on Big Data systems, we found that the challenges still applied to many of
the participants of this survey. For instance, test input generation was still a major chal-
lenge for most participants. Even more so, as the characteristics of Big Data systems
add another layer of complexity.

Tao et al. [13] compared the characteristics of conventional testing and Big Data
application testing. As even a short summary of the comparison would go beyond the
scope of this paper, the reader is referred to the original publication. In addition, they
argue that therewere increasing quality problems in thefield ofBigData applications. For
this, they too analyzed challenges related to quality assurance in Big Data systems. They
conclude that finding an adequate test model, such as a test oracle, and test coverage are
major issues. Both issues were also mentioned multiple times by the participants in this
survey.Moreover, Tao et al. [13] identified the lack of quality assurance standards and test
automation tools as issues. However, these issues were only mentioned infrequently by
the participants of this survey. In addition,we identified several challenges notmentioned
by Tao et al. These include the trade-off between time and test coverage, budgetary
constraints and availability of test data.

Libes et al. [14] conducted a survey in the advanced manufacturing industry with
focus on the availability of test data to highlight the challenges of system tests. Their
main concern was real-life data availability, such as missing data types or an insufficient
data quantity. They also touched upon access and usage preventions due to strict data
protection regulations and data sets with missing values. In advanced manufacturing,
data may also have been collected or generated with different underlying goals. Also
a lack of documentation of the data formats make it hard to interpret and use the data
sets [14]. A different study, conducted by Kanstren [15], also mentioned data absence in
his experience report of testing data-intensive systems. Access restrictions and limited

Challenges in Testing Big Data Systems 25

visibility within the company inhibited using the available data as test data [15]. Both
papers are limited to challenges related to the availability of test data. Although the
availability of test data was frequently mentioned during the interviews, we found that
testers faced a wider range of challenges in practice.

Alexandrov et al. [16] analyzed the challenges of testing Big Data applications.
However, they only researched the generation of test data.

9 Future Work

In future research, the findings of this survey could be verified at a larger scale. A bigger
number of participants and a broader field of companies (geographic location, sector)
help to further strengthen the results presented.

The findings of this paper give rise to several areas for further research. The prob-
lems of the category Resources and performance mostly stem from the idea that the
test environment should be as close to the production environment as possible. Future
research could look into possible ways of scaling down the test environment or data sets
while maintaining their characteristics (also see [17]).

When it comes to Verifying test results, future work could investigate new oracles
and metamorphic testing to overcome limitations when testing Big Data systems.

Finally, the challenges of the category Availability of test data could be addressed
in future research by the means of anonymisation techniques and data generators.

10 Conclusion

The main objective of this paper was to address the lack of research for system tests for
data-intensive applications. Originally, the research question was formulated as follows:
“Which problems can arise when testing data-intensive systems?”. An exploratory
survey with seven interview partners was conducted in order to further the understanding
of common challenges in testing Big Data systems. We identified numerous challenges
and grouped them in four main categories: (1) limited resources and performance prob-
lems, (2) verifying test results, (3) finding an optimal test coverage, and (4) availability
of test data.

The first category, limited resources, and performance problems included challenges
related to the high demand of computation power, memory, and storage capacity. More-
over, high costs and the fact that it is hard to estimate the performance of a system based
on a non-production environment were mentioned frequently.

The challenges grouped in the second category, verifying test results, included defin-
ing test cases, validating test resultswithout human interaction, and specifying thedesired
output for test cases. The latter was challenging in particular in a machine learning con-
text, where the desired output is simply unknown (e.g. when applying unsupervised
learning).

The third category, finding an optimal test coverage, was characterized by a trade-off
between high test coverage on the one hand, and money, time, and resources on the other

26 M. Steidl et al.

hand. In addition, many participants found the lack of clear guidelines on test coverage
in their company challenging.

The last category, availability of test data, was the most comprehensive category.
The participants mentioned an extensive list of reasons why test data was not avail-
able: regulations, policies, private databases, a lack of communication between different
departments, or non-existent historic data for new functions. Furthermore, key charac-
teristics of Big Data turned out to be challenging for system tests. For instance, the high
volume of data posed a major challenge. The same holds for unstructured data, diverse
formats, and different sources (variety). In order to compensate for the lack of test data,
many companies used data generators. However, synthetic data posed a challenge in
itself for most participants.

We found that the last category, availability of test data, was the most frequently
mentioned category. All participants saw at least two of the five topics as a challenge.
Thus, we conclude that the quality of test data is among the most critical factors for
successful and expressive system tests for data-intensive applications.

References

1. McAfee, A., Brynjolfsson, E.: Big Data: the management revolution. Harv. Bus. Rev. 90,
60-6, 68, 128 (2012)

2. Marshall, A., Mueck, S., Shockley, R.: How leading organizations use Big Data and analytics
to innovate. Strategy Leadersh. 43, 32–39 (2015)

3. NewVantage Partners LLC: Big Data and AI Executive Survey 2019: Data and Innova-
tion How Big Data and AI are Accelerating Business Transformation (2019). Accessed
30 May 2019 https://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-
Survey-2019-Findings-Updated-010219-1.pdf

4. DeMauro, A., Greco, M., Grimaldi, M.: A formal definition of Big Data based on its essential
features. Libr. Rev. 65, 122–135 (2016)

5. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, Hoboken (2012)
6. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press,

Cambridge (2008)
7. Mayring, P.: Qualitative Inhaltsanalyse: Grundlagen und Techniken. Beltz, Weinheim (2010)
8. Creswell, J.W.: Research Design: Qualitative, Quantitative, andMixedMethods Approaches.

SAGE Publ., Los Angeles (2010)
9. Schreier, M.: Qualitative Content Analysis in Practice. SAGE, Los Angeles, London, New

Delhi, Singapore, Washington DC (2012)
10. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design & Analysis Issues for Field

Settings. Houghton Mifflin, Boston (1979)
11. IMDRF SaMDWorking Group: Software as aMedical Device (SaMD): Application of Qual-

ity Management System (2015). http://www.imdrf.org/workitems/wi-samd.asp. Accessed 21
July 2018

12. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: Briand, L.C.,
Wolf, A.L. (eds.) Future of Software Engineering, 2007: FOSE 2007, 29th International
Conference on Software Engineering, ICSE 2007,Minneapolis,Minnesota, 23–25May 2007,
pp. 85–103. IEEE Computer Society, Los Alamitos (2007)

13. Tao,C.,Gao, J.:Quality assurance forBigData application– issuses, challenges, andneeds. In:
Proceedings of the 28th International Conference on Software Engineering and Knowledge
Engineering, pp. 375–381. KSI Research Inc. and Knowledge Systems Institute Graduate
School (2016)

https://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-Updated-010219-1.pdf
http://www.imdrf.org/workitems/wi-samd.asp

Challenges in Testing Big Data Systems 27

14. Libes, D., Lechevalier, D., Jain, S.L.: Issues in synthetic data generation for advanced manu-
facturing. In: Nie, J.-Y. (ed.) 2017 IEEE International Conference on Big Data: Proceedings,
Boston, MA, USA, 11–14 December 2017, pp. 1746–1754. IEEE, Piscataway (2017)

15. Kanstren, T.: Experiences in testing and analysing data intensive systems. In: Proceedings
of the 2017 IEEE International Conference on Software Quality, Reliability and Security
(Companion Volume): QRS-C 2017, IEEE International Conference on Software Quality
RaS, Prague, Czech Republic, 25–29 July 2017, pp. 589–590. IEEE, Piscataway (2017)

16. Alexandrov, A., Brücke, C., Markl, V.: Issues in Big Data testing and benchmarking. In:
Narasayya, V., Polyzotis, N., Ailamaki, N. (eds.) DBTest 2013: Proceedings of the Sixth
InternationalWorkshop on Testing Database Systems, NewYork, NY, USA, p. 1. Association
for Computing Machinery, New York (2013)

17. Madhavji, N.H., Miranskyy, A., Kontogiannis, K.: Big picture of Big Data software engineer-
ing: with example research challenges. In: Proceedings of the First International Workshop
on Big Data Software Engineering - BIGDSE 2015, Florence, Italy, 23 May 2015, pp. 11–14.
IEEE, Piscataway (2015)

Software Testing Approaches

Selecting and Prioritizing Regression Test
Suites by Production Usage Risk

in Time-Constrained Environments

Daniel Lübke(B)

FG Software Engineering, Leibniz Universität Hannover, Hanover, Germany
daniel.luebke@inf.uni-hannover.de

Abstract. Regression Testing is an important quality assurance activity
for combating unwanted side-effects, which might have been introduced
in a new software release. Selecting and prioritizing regression test cases is
a challenge in practice – especially in a world of ever increasing complex-
ity, distribution, and size of the software solutions. Current approaches
try to minimize the number of regression test cases by analyzing the
change and the coverage of the tests with regards to this change. Our
approach utilizes usage frequencies from the previous, productive soft-
ware version in order to select or prioritize test cases by calculating the
Regression Risk of a change. This takes into account that not all features
of a software are used the same. We successfully validate our approach
in a case study of an industry project which develops a complex process
integration platform.

Keywords: Regression test · Software test · Risk · Test coverage ·
Test priorization · Test selection · Regression Risk Coverage

1 Introduction

Testing is the execution of a software system with the goal to find errors [30].
“[It] is an essential activity in software engineering” [4] and is probably the most
important quality assurance technique employed in today’s software projects,
consuming half of the projects’ budgets [12].

In practical terms testing can never be complete: “Because software and any
digital systems are not continuous, testing boundary values are not sufficient
to guarantee correctness. All the possible values need to be tested and verified,
but complete testing is infeasible.” [31] If we look at the complexity and the
possible value space of even modest service designs alone, the value space and
its combinations are far too large to even try to cover all values. For example,
the SOAP-based eBay API1 contains 8199 different XML elements.

Thus, testing cannot be complete and cannot demonstrate the absence of
defects. However, the more tests have been performed, the more defects are
1 https://developer.ebay.com/webservices/latest/ebaySvc.wsdl.

c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 31–50, 2020.
https://doi.org/10.1007/978-3-030-35510-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_3&domain=pdf
http://orcid.org/0000-0002-1557-8804
https://developer.ebay.com/webservices/latest/ebaySvc.wsdl
https://doi.org/10.1007/978-3-030-35510-4_3

32 D. Lübke

found but the higher the costs. Therefore, testing can be seen as a risk mitigation
technique.

As with any risk management activity, the intensity of testing is also a com-
mercial question. The more tests are being performed, the higher the costs. While
the costs usually increase at least linearily, the number of found defects decreases
exponentially. Thus, the goal in most commercial software projects is to find a
optimal trade-off between testing activities and the remaining risk in terms of
undetected defects delivered into production.

One important type of tests are regression tests. Regression tests are “per-
formed on modified software to provide confidence that changes are correct and
do not adversely affect other portions of the software” [36]. Ideally, regression
tests enable a smooth transition of a new version of a software system into pro-
duction without unnoticed “side-effects”, i.e., defects.

With the rise of more complex software systems, e.g., large cloud-enabled
systems based on a microservice architecture, which are based on a multitude
of services, regression test suites need to increase in size in order to find critical
defects prior to release. Test generation approaches, e.g., Combinatorial Test
Design (CTD) [6,9] can be used for generating large test suites with high code
coverage. While more faults can be detected with such test suites, these test
suites require extensive time to run. Usually, today’s complex systems cannot be
tested overnight anymore: “Re-running all existing test cases is often costly and
sometimes even infeasible due to time and resource constraints.” [2]. In the case
study project Terravis [28] automated end-to-end process unit tests take around
4 s, automated integration tests 1.5 min, and automated system-level tests take
approx. 5 min per end-to-end process variant. This means that only 96 end-to-end
process tests on system level can be executed in 8 h, if no parallelization occurs.
Such projects tend to implement complex executable business processes [13]
with even more complex data-transformation logic [25]. Regression testing in
such projects is very important because they have lots of code changes over time
that requires frequent regression testing [19].

With the rise of DevOps practices, which include continuous builds and
deployments, it is even more critical that a deployment is not blocked by tests
but can instead go live quickly because otherwise the envisioned flexibility and
deployment speed cannot be realized. Thus, testers of such complex systems
need to find ways to reduce the time required for running regression tests.
Marijan et al. have worked on how projects can “learn” to optimize testing
in such scenarios [26].

First countermeasures can be non-algorithmic. By parallelizing test runs, the
project must invest into development infrastructure but can reduce the time of
regression tests easily. Another option is to cover more aspects in more technical
tests. Because unit tests run much faster than system tests, as many aspects as
possible should be covered there. However, unit tests are usually developed and
maintained by the developers so that the different perspective of a tester is miss-
ing. Even more importantly, unit tests – by definition – cannot find integration
issues, which need to be tested for in different tests.

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 33

By having smaller deployment units, e.g., in microservice architectures, the
test scope is reduced even without applying any selection or prioritization tech-
niques, because the system is composed of many, smaller sub-systems, which are
strongly isolated.

However, moving more aspects to unit and integration tests and solely relying
on the deployment unit scope pose the risk of missing defects that got introduced
by integration problems. Because today’s systems are often distributed, changes
can leak via many channels; for instance via APIs and services (e.g., by broken
backwards-compatibility in the service contract) or via Web pages (e.g., tran-
sclusion of another page might fail or a robot cannot handle the page anymore).
Due to the increasing use of non-formal descriptions of services (e.g., most REST
services are described on Web pages in a semi-structured way), static analysis
for automatically determining the impact of the change is becoming increasingly
harder. Also applications built with a microservice architecture tend to use even
looser-coupled technologies like messaging and eventing, so that receivers are
unknown to static inspection by design.

On the one hand, these developments make regression test selection and
reduction techniques ever more important but on the other hand these tech-
niques work only well within single deployment units or systems which are con-
nected with formal service contracts. This is because current techniques mostly
utilize knowledge that can be extracted from the system during design time
(e.g., static analysis like control-flow graphs) and thus cannot be applied if
at design time certain judgements cannot be made. For example, the control-
flow graph of microservice architecture systems cannot be constructed anymore
because service dependencies cannot be resolved at design-time without requir-
ing further, usually unavailable, information.

Therefore, this paper proposes to complement existing techniques with an
approach, which we call Regression Risk Coverage: The idea is to use dynamic
data collected at run-time in order to select and/or prioritize regression tests.
Most frequently used functionalities are deemed more critical and thus test cases
covering those are selected first and/or with higher priority.

This paper is structured as follows: In the next Section related work is pre-
sented. Section 3 introduces the concepts Regression Risk and Regression Risk
Coverage before an example is given in Sect. 4. Application of the newly proposed
metrics are validated in a case study presented in Sect. 5. Finally, a conclusion
and an outlook are given in Sect. 6.

2 Related Work

Regression testing has been a research topic for a long time. Rothermell and
Herold [35] have compiled a list of the then available regression test techniques.
The extensive description has been summarized by Kim and Porter [15] as they
fitted the different algorithms to the following categories:
Retest-All Technique: This technique runs all available regression tests not

considering any optimization possibilities, e.g., by analyzing the change in
the software.

34 D. Lübke

Random/Ad-Hoc Technique: Testers or an algorithm selects a random sub-
set of regression tests or a subset based on their personal experience.

Minimization Technique: Such techniques try to select a minimal subset of
the regression tests so that all changes in the software are covered.

Safe Technique: Such techniques identify all regression test cases that cover a
change in the software system and select those for execution.

Later, Kim and Porter [15] present their approach, which takes more data
as input. They model regression testing not as a single, one-time activity but
as a sequence of test runs, which better reflects the activities in a software
project. If testing finds a defect prior to release, it is generally fixed and re-
tested. Thus, testing is indeed a sequence of different test runs. By taking into
account what tests have been previously run and which test cases failed and
which passed allows to make better judgements about which tests to select next.
This is especially important in resource constrained environments, which are not
capable of running all test cases in a single test run. For example, nightly builds
are constrained in the time tests may run. It therefore makes no sense to re-run
the same tests on the next day. Other tests can be chosen to cover more parts
of the software with each additional nightly build.

Existing techniques have been refined since. For example, Panda and
Mohapatra use integer linear programming models to minimize test suites [32].

A recent survey about test case priorization techniques has been compiled
by Mukherjee and Patnaik [29]. Since the report of Rothermell and Herold
additional techniques have been proposed. This especially includes techniques
that utilize additional data sources. Further, history-based data, e.g., test case
costs [33], test case success rate [16] and fault severity [33] are used as inputs for
prioritizing test cases.

Wong et al. [39] showed that smaller test suites are as effective in finding
defects as larger ones, if coverage is kept constant. Thereby, they concluded that
a test suite can be minimized by removing all test cases, which do not increase
the coverage over the already selected test case set.

Graves et al. have conducted experiments [11] for comparing different selec-
tion techniques. They found that the efficiency depends on the available test
suite, the changes made to the software, and the characteristics of the software
itself.

All such approaches are based on an existing test suite. If none exists, it
needs to be created. Shihab et al. [38] have compiled a list of heuristics that can
be used to develop unit tests to existing legacy code bases.

If a regression test suite detects a fault, the problem is how to diagnose its root
cause. Selecting the matching test cases in order to help the diagnosis, Gonzales
et al. have developed an approach to select test cases for this use case [10].

In a recent literature review, Mukherjee et al. [29] complied an extensive list
of algorithms and empirical research regarding test case priorization to which
the reader is referred to for further information.

Previous works have shown that using production data for guiding or helping
software development projects can be useful; especially in the realm of testing.

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 35

For example, regression tests can be mined from process logs [20] in order to
replicate defects on non-production machines and to have a test case that verifies
the fix in all upcoming releases.

Therefore, we add an additional data source in this article, which is not
exploited in previous works: the information about (user) behaviour in the pro-
ductive system.

Felderer and Schieferdecker [8] give a taxonomy for risk-based testing. They
identify risk drivers, risk assessment, and a risk-based test process as key con-
cepts for risk-based testing, which are divided into several subcategories. For
example, the degree of automation for the assessment of risk exposure is a con-
cept below risk assessment.

Finally, Erdogan et al. [7] conducted a structured literature review of risk-
based testing. They identified works concerned with model-based risk estimation,
test case generation, test case analysis, source code analysis, measurements, spe-
cific programming paradigms and application domains. All in all, 24 approaches
are categorized and presented in their literature review.

3 Production Usage Risk and Coverage

3.1 Regression Risk

A risk is defined as a possible (adverse) event. A risk R therefore consists of two
components: the probability p that this event occurs and the damage D that is
dealt in case of this event (see Eq. 1.)

R := p · D (1)

When releasing a new version of a software, there are risks concerning regres-
sions. Regressions are newly introduced defects into parts of the system, which
were already working properly and should work unchanged in the new software
version.

From a user’s point of view, the damage of such a regression is the impact
on his/her work, i.e., his/her ability to execute the actions that are the driver to
use the software. If many users have used the newly broken functionality up to
the latest release, the higher the damage is from the user’s perspective and as
such for the software owner. We quantify this damage of the regression risk DRR

as the proportional amount of past executions Ep of a measured functionality
f ∈ F compared to all executions of all functionalities (see Eq. 2.)

DRR(f, F,Ep) :=
|Ep(f)|
|Ep(F)| (2)

A functionality f ∈ F is a functionality of both the current production
release as well as the to be released software system. The set of all functionalities
(F :=

⋃
fi) represents the whole functionality that is common to both systems.

Because we are concerned with regressions, functionalities in F need to be both

36 D. Lübke

available in the latest productive version n of the software system as well as
still present in the new version n + 1, thus, F := Fn ∩ Fn+1. If a functionality
is only present in the newest version (f /∈ Fn ∧ f ∈ Fn+1) it is a newly added
functionality, which is not subject to regression tests. If it is only present in the
previous version (f /∈ Fn ∧ f /∈ Fn+1) it has been removed in the newest version
and is therefore not subject to future regression testing.

The more frequently a functionality is used, the more damage is dealt from a
user’s perspective if that functionality is broken. In the extremes this means on
the one hand that if a functionality, which is never used, is broken by a regression,
no one will notice and no harm is done. Thus, the damage and consequently the
risk is zero. If on the other hand, the broken functionality is the only one used,
all other aspects of the software can be working perfectly but no user will be
able to use the system anymore. The damage – and consequently the risk – is
very high in the this case.

The probability of a change leading to a regression is influenced first and
foremost by whether the functionality is affected by the change or not. If it is not,
i.e., no changed software artefact is executed as part of executing a functionality,
we assume that the software is still working correctly and thus the probability
is zero (see Eq. 3). If the functionality depends on changed code, the probability
is 0 < pF ≤ 1 because the introduced change might or might not break the
functionality. The probability of breaking existing functionality is influenced by
several factors like change size, complexity of the changed code etc. In order
to build a model that can be used in practice, we simplify this by assuming a
constant probability 1 for a regression for every software change.

p(f) :=

{
0 no code change in f
1 code change in f

(3)

Regression Risk RR is defined by substituting the adapted damage (Eq. 2)
and probability (Eq. 3) into the risk definition (Eq. 1) resulting in Eq. 4. Because
software consists of many functionalities, the overall regression risk is the sum
of all regression risks of all functionalities f ∈ F .

RR(F,Ep) :=
∑

f∈F

(p(f) · |Ep(f)|) (4)

3.2 Regression Risk Coverage

By knowing the regression risk of a code change, a coverage definition can be
defined: regression risk coverage indicates to what extend regression tests have
addressed the regression risk for the current release.

As with all coverage metrics, the formula describes the relationship of covered
objects with regards to all objects. Usually, these are simple counts (e.g. covered
vs. total statements/branches/. . .). However, in our case this is the covered risk,
i.e., the risk addressed by the executions Et of the tests vs. the whole risk by
the productive executions Ep of the system as shown in Eq. 5.

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 37

RRC(F,Ep, Et) :=
RR(F,Et ∩ Ep)

RR(F,Ep)
(5)

In order to measure regression risk coverage, we need to know the function-
alities of a system F (both present in the productive and in the newest version),
past executions on the productive system Ep and executions during the test Et.
Note that the proportion is not directly calculated with the functionalities cov-
ered during test, but only those functionalities that are present covered during
regression tests and in production (Et ∩ Ep).

3.3 Partitioning a System into Functionalities

Calculating Regression Risk and Regression Risk Coverage requires a partition-
ing of the system into functionalities. Like with other coverage metrics, different
options are available to use as objects to measure for calculating the metrics.

A suitable set of functionalities F have to fulfil the following requirements.
They must be

Distinct: Functionalities are a partition. As such they must not overlap and
an execution must be clearly assignable to one functionality: practically, a
functionality fj must not always be covered if another functionality fi is
covered: �i, j, i �= j : Ep(fi) > 0 =⇒ Ep(fj) > 0.

Complete: In order to test the whole system functionality, all partitions
together must represent the whole functionality available to the user, i.e.,
there must be no execution which cannot be assigned to a functionality.

Measurable during Test: The execution of a functionality must be measur-
able during test. Like the measurement of established code coverage metrics,
this can be achieved by multiple means, e.g., by instrumentation.

Measurable in Production: Besides being measurable during testing, execu-
tion must be measurable during production because the history of executions
needs to be calculated. Usually, instrumentation is deemed to be too expensive
run-time wise and should be avoided or minimized as much as possible [34].
Thus, other sources – like event logs or log files – might be more appropriate to
use. The domain of business process mining [1] offers many techniques that
are suitable to analyze high-level executions in software systems; although
these techniques are usually only applied in order to better understand the
business side (e.g., for deriving business metrics or documentation).

Mappable between Software Versions: Because measurements done in the
production system are made against an older software version than the one,
which is subject to regression testing, it must be possible to measure a func-
tionality in both systems or to map executions within both systems to the
same set of functionalities.

Although in general, metrics measured at the code level could be used, it
seems questionable if this is a suitable way in practice, because the involved
run-time penalty is high and the mapping between execution traces of changed
code is difficult.

38 D. Lübke

However, more high-level abstractions can be used. These include – but are
not limited to:

– User Interactions and corresponding equivalence classes of user inputs,
– Log Statements that are already written and can – for example if developers

apply log-based testing – replace instrumentation because the flow in the
software can be measured by analyzing the log files,

– Event Logs that are utilized by modern event-driven architectures and offer
a persistent trace of business-related events, which are already gathered by
the software system(s),

– Process Execution Traces, which are written by business process management
systems in order to offer the capability of process audits and rewinds. Such
logs are so detailed that they can be used to calculate code-level coverage [21].

Within the case study presented below we define the sequencing of function-
ality in form of business process traces. By analyzing the (process) event logs of
the application, we construct end-to-end traces of business processes.

A trace is the ordering of executed activities for achieving a goal. If the
application is (a) event-based, i.e., the communication between its components
is implemented by exchanging events that are made persistent in order to replay
event streams, or (b) orchestration-based with a central workflow engine or busi-
ness process management system, which writes an execution log of executed
activities, such traces can be constructed. The latter applies to our case study
project.

3.4 Use Cases for Regression Test Risk Coverage

Being able to measure Regression Risk RR and its Coverage RRC, allows mem-
bers of software projects and especially the testers to benefit from this informa-
tion in several ways:

Select Regression Tests for Execution: Complex systems with large regre-
ssion test suites can require more time to execute than is available. In order
to select the test cases to be run, the ones with most regression risk coverage
can be selected so that a certain regression risk threshold is reached.

Prioritize Regression Test Development: Today’s software systems are
complex, thus requiring many regression tests to cover the systems. These
need to be developed, which can be a time-consuming task, especially if an
already existing system is to be complemented by regressions tests, or if the
existing regression test suite is to be made more complete. By measuring
the Regression Risk RR of such systems allows prioritizing the creation of
regression tests in order to incrementally improve the achieved regression
risk coverage.

Prioritize Regression Test Execution: Complex systems require a large set
of regression tests in order to find as many regressions as possible for a soft-
ware release. Naturally, running more test cases takes more time to complete.
In order to prioritize test cases, they can be run in order of their Regression

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 39

Fig. 1. A sample process

Risk. This leads to high-impact defects being found earlier and thus giving
developers more time to fix them.

Evaluate Covered Risk by Regression Testing for a Software Release:
Before a release is deployed into production, regression risk coverage can be
calculated as a means to judge which parts of the system is untested weighted
by the number of user interactions. If coverage is too low, quality managers
and/or project managers can decide to postpone the release.

Evaluate Covered Risk by Regression Test Suite: Independent of a con-
crete release – and thus of a concrete change set – regression risk coverage of
a regression test suite can show how well a project can accommodate future,
unknown changes and is able to help guarding against regressions in frequently
used functionalities.

One main advantage of this approach is that it is fully automatable, i.e.,
if applied in risk-based testing the risk assessment can be made automatically
thereby saving time and effort.

4 Example

In order to demonstrate the regression risk and regression risk coverage metrics,
we analyze a simple flow through a software system. This system is modelled as
a BPMN (Business Process Model and Notation) process in Fig. 1.

This process has – due to the contained loop – an endless number of possible
end-to-end traces. Thus, in theory we can construct as many test cases as we
like because perhaps the software might fail at the next loop iteration.

By analyzing the events emitted from the software system we can compute
how often different traces were executed in the productive system. We assume
that users of the productive system have used the software system in the variants
as shown in Table 1.

If new regression tests are to be implemented – or existing regression tests
are to be executed – they should address the highest risk first. If A, B & C have
been changed since the latest release, the trace A, B should be covered first
(RR = 100

200 = 0.5), followed by the trace C, C (RR = 90
200 = 0.45) and finally C

(RR = 10
200 = 0.05).

Also existing regression tests can be evaluated for how representative they are
with regards to the behaviour of the users. If the regression test suite covers A,

40 D. Lübke

Table 1. Executions of the sample process

Execution Trace Ep
Relative
Usage

A,B 100 50%

C 10 5%

C,C 90 45%

B, C, and C, C, C, 55% of user interactions are covered and thus the regression
risk coverage is RRC = 100+10+0

200 = 0.55. The test case that covers C, C, C does
not add to the regression risk coverage because this trace has not been executed
in the production release.

5 Case Study: Application in an Industrial Project

Within this section, a case study in an industrial project is presented, which
was conducted in order to gain understanding of the practical application of
regression risk coverage.

This section is structured according to the suggestion presented by Runeson
et al. [37], which are in turn composed of the suggestions by Jedlitschka and
Pfahl [14] and Kitchenham et al. [17].

5.1 Case Study Design

Research Questions. We conduct this case study because we want to answer
the following research questions:

RQ1: Is the regression risk and regression risk coverage approach
applicable in industry projects? This question validates whether regres-
sion risk and regression risk coverage can be measured in industry projects or
not. This especially includes whether all data can be gathered economically
and – in the best case – automatically. Because the field of process mining and
log analysis has been researched well and the project uses a central process
management system, which collects a full audit trail of executed activities,
we assume that we can gather all data efficiently.

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 41

RQ2: What is the distribution of the occurrences of event traces? This
question validates whether the chosen approach adds value for prioritizing the
creation of new test cases or ordering the execution of existing test cases or
not. If all functionalities are used more or less equally often, no gains can
be achieved by applying this metric. We assume that a small number of
common cases represent the most often used functionalities. The number of
additionally required test cases should increase exponentially when increasing
regression risk coverage. We hypothesize that more than 80% of regression
risk coverage can be achieved by covering less than 50% of all functionalities
encountered in the production system.

Case & Subject Selection. The motivation of this work came from the same
project, which serves as the subject of the case study for applying the regression
risk approach: Terravis [28] is a Swiss platform for integrating mortgage-related
business processes end-to-end in a fully digitized manner. Therefore, different
parties, including land registries, banks, and notaries are integrated via their
systems allowing them to conduct relevant processes fully digitally. Today, most
mortgage transactions in Switzerland are done via this platform and, when com-
pletely finalized, Terravis will connect more than 1000 partner systems.

Because the Terravis platform grew since its inception and the number of
supported business process types as well as the supported variants in each of
those increased, quality assurance in general and testing in particular have been
a challenge [3]. Like probably all complex software systems, processes in Terravis
are regularly updated and changed [19].

In order to efficiently test business processes, Terravis has used BPELU-
nit [27] from the beginning in order to conduct fully automated unit tests of the
implemented processes. In order to improve the scope of the tests, system tests
have been implemented by following a Behavior-Driven Approach, which builds
upon BPMN models and generates BPELUnit tests, which drive the tests [24].
In the next step, unit test creation was improved by generating test suites with
Combinatorial Test Design (CTD) and IPOG-C and AETG-SAT selection algo-
rithms [5,18] in the project [22].

All these existing test types were driven by running SOAP message sequences
(also for human task management) against the executable process models and
services. Thus, the test drivers take the perspective of a partner that has inte-
grated its systems with Terravis. However, the next step for the project was to
implement fully automated user interface (UI) tests. Terravis offers a Web-based
user interface, which can be used by notaries and banks for operating the pro-
cesses. Although Terravis encourages partners to integrate their systems with
the platform in order to realize the full benefits of end-to-end digital processing,
some partners choose to use the Web interface instead, which was not covered
by extensive regression test automation before.

When starting the implementation of regression tests for a large system, it is
necessary to prioritize, which test cases to create first and to assess how many
test cases are to be developed to build an efficient regression test suite.

42 D. Lübke

Together with the project’s test team, it was decided to prioritize frequently
used business process variants in order to address the risk of regressions. Without
acquiring additional infrastructure, e.g., additional servers for running tests, the
maximum test running time available after the nightly build is approximately
six hours. The project’s goal is to cover as much regression risk as possible in
the available time slot. Thus, the goal is to select the most efficient regression
test cases.

During our research the project introduced a change to five of its supported
processes: For banks that let a trustee manage their mortgages, a preview func-
tion of generated contracts and orders was to be implemented.

Table 2. Meta data of the process models (1) (according to Lübke et al. [23])

Process Name: A: New Mortgage B: Increase Mortgage C: Generic Mortgage
Business

Version: —
Domain: Land Register Mortgage Transactions

Geography: Switzerland
Time: 2019-03

Boundary: Cross-Organizational
Relationships: Calls another

Scope: Core
Process Model
Purpose:

Execution

People Involve-
ment:

None

Process Language: WS-BPEL 2.0 (w/ vendor extensions)

Execution Engine: ActiveVOS 9.2
Model Maturity: Productive

NOA bef/aft: 332 / 344 409 / 418 248 / 254
Non-Linear Act.
bef/aft:

145 / 151 186 / 191 78 / 82

The process implementations are modeled as WS-BPEL processes, which
consists of 1373 basic activities prior to the change and 1420 basic activities
after the change. Also the number of non-linear activities, i.e., those which split
or join the control-flow (e.g., loops or conditions) rose from 544 to 573 with
the new release. For a complete metadata description the reader is referred to
Tables 2 and 3, which structure the process meta data according to the process
template suggested for empirical research by Lübke et al [23].

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 43

Table 3. Meta data of the process models (2) (according to Lübke et. al [23])

Process Name: D: Remove Mortgage
from Trustee

E: Add Mortgage to
Trustee

Version: —
Domain: Trustee Mortgage Transactions

Geography: Switzerland
Time: 2019-03

Boundary: Cross-Organizational
Relationships: Calls another

Scope: Core
Process Model
Purpose:

Execution

People Involve-
ment:

None

Process Language: WS-BPEL 2.0 (w/ vendor extensions)

Execution Engine: ActiveVOS 9.2
Model Maturity: Productive

NOA bef/aft: 267 / 277 117 / 127
Non-Linear Act.
bef/aft:

101 / 108 34 / 41

Data Collection Procedures. Because the case study project is centered
around business process integration and automation, we decided to use distinct
event traces as exemplified in Sect. 4 in end-to-end process instances for parti-
tioning the system’s functionality.

In the first iteration, the process logs of all completed processes in the pro-
duction system, which were (a) started since the last release and (b) subject
to modification in the new release, were analyzed and end-to-end traces were
constructed along with their usage frequencies. The calculation was done with
a small Java program, which had direct access to the event log in a relational
database.

Analysis & Validity Procedures. For gathering and analyzing the required
data, we needed to write a small program, which reads all process event logs
from the production database and creates usage frequencies for the differ-
ent end-to-end traces. The output was grouped by process and sorted by the
trace’s/functionality’s usage frequency. This information is written into CSV
files and later visualized by using R.

In order to maintain internal validity, we tested the program intensively and
manually verified the output for a subset of process instances.

44 D. Lübke

5.2 Results

Measurements. We wrote the program for analyzing the event logs from the
business process management system, which meant reading and aggregating data
from a relational database.

As described an (end-to-end) trace of business process serves as a func-
tionality. End-to-end traces fulfil all outlined requirements for functionalities
as described in Sect. 3.3. Thus, we use (end-to-end) trace and functionality as
synonyms in this case study.

25

50

75

100

0 50 100 150 200
Number of Test Cases

A
cc

um
ul

at
ed

 C
ov

er
ed

 R
eg

re
ss

io
n

R
is

k
%

Process

Process A

Process B

Process C

Process D

Process E

Fig. 2. Maximal regression risk coverage with increasing test case count

In total, we identified 3381 end-to-end traces of process instances and calcu-
lated their frequencies. The computation took approx. 3 h.

When creating test suites by taking the test cases, which cover the most addi-
tional functionality executions in production, the efficiency drops with additional
test cases as shown in Fig. 2. While the first test cases cover many executions on
the production system, the curves flatten out towards full coverage.

For better demonstrating the required test cases and covered execution
traces, the numbers are shown in Table 4 for different regression risk coverage
goals. For each process and all processes combined the number of required test
cases for individual regression risk coverage levels (80%, 90%, 95%, 99% & 100%)
alongside the number of covered production traces are shown in this table.

Additionally, the feedback of the testers was that the data was helpful for
them in order to define, which regression tests to automate and in which order
these should be implemented.

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 45

Table 4. Required test cases for achieving a defined regression risk coverage

Process 80% Goal 90% Goal 95% Goal 99% Goal 100% Goal

#TC #Tr. #TC #Tr. #TC #Tr. #TC #Tr. #TC #Tr.

A 12 778 21 879 31 922 55 960 64 969

B 69 666 129 749 171 791 204 824 212 832

C 10 312 17 350 25 370 38 385 41 388

D 5 684 9 749 16 786 38 819 46 827

E 2 320 3 335 5 350 9 362 12 365

Total 98 2760 179 3062 248 3219 344 3350 375 3381

Interpretation

RQ1: Is the regression risk and regression risk coverage approach
applicable in industry projects? Calculating regression risk and regres-
sion risk coverage was possible in the case study industry project. However,
this was done by analyzing large event logs written by the Business Process
Management System. The calculation needed to be written from scratch and
evaluating the metrics was an hour-long process. This means that evaluating
the baseline for the metrics, i.e., the types and numbers of past execution
traces, needs to be actualized independently of the build. In the case study’s
case, this was a one-time activity although it is probably better to actualize
it regularly in order to reflect changed user behavior.

RQ2: What is the distribution of the occurrences of event traces? Ana-
lyzing the number and distribution of event traces of the case study’s project
with regards to the analyzed change yields a clear non-linear distribution: it is
relatively easy to cover an overall regression risk of 80% for the implemented
change with 98 test cases. Covering all functionalities (i.e., execution traces)
encountered in the productive system, in contrast requires 375 test cases. This
means that a 20% increase of coverage can only be achieved by creating 3.8
times more test cases. Increasing coverage “only” to 90% still requires 179
test cases, which approximately doubles the number of test cases required
for an 80% coverage. The required test cases to go from a 99% to a 100%
level are nearly one additional test case for one additional covered end-to-
end trace. Thus, the occurrence of the least used end-to-end traces is always
only 1. This means that the regression risk coverage metric can be used in
order to select and/or to prioritize regression test cases and thereby reducing
the required run-time of regression tests while testing the important features
from the point of the users. Setting a threshold for the regression tests to a
fixed percentage or by looking at the individual frequency distribution and
set a cut-off, projects can regression test their releases more economically and
efficiently. However, the collected data also indicates that while the relative
test case count, which is required for achieving a certain coverage level, is
comparably stable, the absolute number of test cases differs by business pro-

46 D. Lübke

cesses, i.e., by the implementing software component. Process B is the largest
process in terms of size (basic activities) and complexity (process branches
and joins) and requires significantly more test cases to achieve a certain cov-
erage level than any other of the changed processes in the analyzed release.
With this knowledge (and according to the testers’ feedback), projects can
easily select and prioritize regression test cases by applying regression risk
coverage.

Evaluation of Validity. Like with every other single-project case study, the
question of generalizability arises. We have identified three major risks for exter-
nal validity with our chosen research design:

1. Within the case study project the damage is very similar independent of the
software component or issue. Other systems are different in this regards, e.g.,
there are safety components that are to be tested more intensively. A car’s
airbag might (hopefully) not be used frequently, but would be critical to be
tested. Projects with such requirements cannot use this approach but need
to complement it with defect costs or by treating system components indi-
vidually and applying regression risk coverage to each of those and prioritize
components separately.

2. Other projects might work differently, and have a different distribution of
interactions with their users and partner systems. By only studying one
project there is an inherent risk that some of the project’s characteristics
skew the results. In this case this might especially be the case for the imple-
mentation technology. If not using a Business Process Management System,
the availability of data and/or the granularity of possible tracing into the
productive application might be more difficult or impossible.

3. The selection of changed business processes and thus functionalities is homo-
geneous: All affected business processes were main end-to-end processes as
shown in the classification tables. It has been shown by Lübke et al. [23]
different categories of process properties can lead to statistically different
behavior. They demonstrated that different process types exhibit different
run-time behavior and have different control-flow complexities on average.
It is possible that also the distribution of usage frequencies varies between
different categories, although this has not been researched yet.

6 Conclusions and Outlook

6.1 Conclusions

Within this paper Regression Risk and Regression Risk Coverage have been
proposed and defined in order to guide the creation and execution of regression
test cases. The underlying idea is to measure the possible damage of a change by
the number of user interactions of the past with the affected functionality. The
more user interactions would be negatively affected under the new release due to

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 47

a regression, the worse this regression is. In order to cover most of this damage,
the Regression Risk Coverage metric can be used for judging what amount of
past productive user interactions are replicated during regression tests.

Although the idea in itself is relatively simple, data gathering and analysis
for the implementation requires the use of elaborate log analysis techniques in
order to calculate the current user behaviour with the productive system.

For validating that it is possible to measure and apply the proposed metrics,
they have been successfully applied in an industry project. The project’s goal
was to measure the impact of a release and to find the most important regression
tests to automate in a test time-constraint environment.

The application was successful and as such the Regression Risk Coverage
can be used as a stand-alone tool or in conjunction with other techniques for
helping testers to select and prioritize regression tests. It was shown that the
business processes of this project have very dominant variants so that a 80%
Regression Risk Coverage can be achieved within the given short test execution
time window, which was available for nightly automated tests.

6.2 Possible Future Work

Applying Regression Risk Coverage in the industry project has revealed some
open questions, which can be addressed in future research.

Most importantly, the question on analyzing the user interactions from pro-
ductions raises the question of the time-frame to analyze. We found that differ-
ences in the duration of business process variants can make data not representa-
tive. While we used the time from the last release in our application, ideas to use
a fixed 0.5 or 1 year period came up. However, in order to implement this idea,
the traces of multiple software versions need to be mapped so that a combined
regression risk across all software versions can be calculated. (Semi-)Automating
this step would be a beneficial next step for applying this technique further.

Also the presented technique can in theory be used in conjunction with other
selection and/or prioritization strategies. Making empirical studies about which
combinations are the most effective and/or provide most coverage is a valuable
next research goal. For example, combining usage frequencies and (estimated)
costs for a defect might make this approach more general applicable.

The industry project has used the new metrics for one new release, which
was comparatively large. Thus, most user interactions in the changed business
processes were affected by this change. Further research can therefore explore
what a typical regression risk for a change is and what constitutes influencing
factors. For example, small releases in a two-week agile sprint should likely carry
a lower regression risk compared to large releases.

Within this paper we laid the foundation for pursuing these additional ques-
tions. We therefore hope that our work is useful for other projects and researchers
alike in order to utilize usage data for better selecting and prioritizing regression
test cases!

48 D. Lübke

References

1. van der Aalst, W.: Process Mining - Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Ansari, A., Khan, A., Khan, A., Mukadam, K.: Optimized regression test using
test case prioritization. Procedia Comput. Sci. 79, 152–160 (2016)

3. Berli, W., Lübke, D., Möckli, W.: Terravis - large scale business process integration
between public and private partners. In: Plödereder, E., Grunske, L., Schneider,
E., Ull, D. (eds.) Proceedings INFORMATIK 2014. Lecture Notes in Informatics
(LNI), vol. P-232, pp. 1075–1090. Gesellschaft für Informatik e.V., Gesellschaft für
Informatik e.V. (2014)

4. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: 2007
Future of Software Engineering, pp. 85–103. IEEE Computer Society (2007)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7),
437–444 (1997). https://doi.org/10.1109/32.605761

6. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Softw. 13(5), 83–88 (1996)

7. Erdogan, G., Li, Y., Runde, R.K., Seehusen, F., Stølen, K.: Approaches for the com-
bined use of risk analysis and testing: a systematic literature review. Int. J. Softw.
Tools Technol. Transf. 16(5), 627–642 (2014). https://doi.org/10.1007/s10009-014-
0330-5

8. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16(5), 559–568 (2014). https://doi.org/10.1007/s10009-014-
0332-3

9. Go, K., Kang, S., Baik, J., Kim, M.: Pairwise testing for systems with data derived
from real-valued variable inputs. Softw. Pract. Exp. 46(3), 381–403 (2016)

10. Gonzalez-Sanchez, A., Piel, É., Abreu, R., Gross, H.G., van Gemund, A.J.: Pri-
oritizing tests for software fault diagnosis. Softw. Pract. Exp. 41(10), 1105–1129
(2011)

11. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical
study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 10(2), 184–208 (2001)

12. Harrold, M.J.: Testing: a roadmap. In: Proceedings of the Conference on
The Future of Software Engineering, ICSE 2000, pp. 61–72. ACM, New
York (2000). https://doi.org/10.1145/336512.336532. http://doi.acm.org/10.1145/
336512.336532

13. Hertis, M., Juric, M.B.: An empirical analysis of business process execution lan-
guage usage. IEEE Trans. Software Eng. 40(08), 738–757 (2014)

14. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In: 2005 International Symposium on Empirical Software Engi-
neering, p. 10. IEEE (2005)

15. Kim, J.M., Porter, A.: A history-based test prioritization technique for regression
testing in resource constrained environments. In: Proceedings of the 24th Interna-
tional Conference on Software Engineering, ICSE 2002, pp. 119–129. ACM, New
York (2002). https://doi.org/10.1145/581339.581357. http://doi.acm.org/10.1145/
581339.581357

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/32.605761
https://doi.org/10.1007/s10009-014-0330-5
https://doi.org/10.1007/s10009-014-0330-5
https://doi.org/10.1007/s10009-014-0332-3
https://doi.org/10.1007/s10009-014-0332-3
https://doi.org/10.1145/336512.336532
http://doi.acm.org/10.1145/336512.336532
http://doi.acm.org/10.1145/336512.336532
https://doi.org/10.1145/581339.581357
http://doi.acm.org/10.1145/581339.581357
http://doi.acm.org/10.1145/581339.581357

Selecting and Prioritizing Regression Test Suites by Production Usage Risk 49

16. Kim, S., Baik, J.: An effective fault aware test case prioritization by incorporat-
ing a fault localization technique. In: Proceedings of the 2010 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, p. 5.
ACM (2010)

17. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

18. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG-IPOG-D: efficient
test generation for multi-way combinatorial testing. Softw. Test. Verif. Reliab.
18(3), 125–148 (2008). https://doi.org/10.1002/stvr.v18:3

19. Lübke, D.: Using metric time lines for identifying architecture shortcomings in
process execution architectures. In: 2015 IEEE/ACM 2nd International Workshop
on Software Architecture and Metrics (SAM), pp. 55–58. IEEE (2015)

20. Lübke, D.: Extracting and conserving production data as test cases in executable
business process architectures. In: Cruz-Cunha, M.M., et al. (eds.) Proceedings of
CENTERIS 2017 (2017)

21. Lübke, D.: An extended evaluation of process log analysis for BPEL test coverage
calculation. Int. J. Adv. Syst. Meas. 11(3&4) (2018)

22. Lübke, D., Greenyer, J., Vatlin, D.: Effectiveness of combinatorial test design with
executable business processes. Empirical Studies on the Development of Executable
Business Processes, pp. 199–223. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17666-2 9

23. Lübke, D., Ivanchikj, A., Pautasso, C.: A template for categorizing empirical busi-
ness process metrics. In: Carmona, J., Engels, G., Kumar, A. (eds.) Business Pro-
cess Management Forum - BPM Forum 2017 (2017)

24. Lübke, D., van Lessen, T.: Modeling test cases in BPMN for behavior-driven devel-
opment. IEEE Softw. 17–23 (2016)

25. Lübke, D., Unger, T., Wutke, D.: Analysis of data-flow complexity and architec-
tural implications. Empirical Studies on the Development of Executable Business
Processes, pp. 59–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17666-2 4

26. Marijan, D., Gotlieb, A., Liaaen, M.: A learning algorithm for optimizing con-
tinuous integration development and testing practice. Softw. Pract. Exp. 49(2),
192–213 (2019)

27. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: TAV-WEB
2006: Proceedings of the 2006 Workshop on Testing, Analysis, and Verification of
Web Services and Applications, Portland, USA, pp. 33–42. ACM Press, New York
(2006). http://doi.acm.org/10.1145/1145718.1145723, http://portal..acm.org/
affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&
idx=1145718&part=Proceedings&WantType=Proceedings&title=International%
20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=14831
83&CFTOKEN=32880799#

28. Möckli, W., Lübke, D.: Terravis - the case of process-oriented land register transac-
tions digitization. In: Digital Government Excellence Awards 2017: An Anthology
of Case Histories. ACPIL (2017)

29. Mukherjee, R., Patnaik, K.S.: A survey on different approaches for software test
case prioritization. J. King Saud Univ. Comput. Inf. Sci. (2018)

30. Myers, G.J., Sandler, C.: The Art of Software Testing, 2nd edn. Wiley, Chichester
(2004)

31. Pan, J.: Software testing. Dependable Embed. Syst. 5, 2006 (1999)

https://doi.org/10.1002/stvr.v18:3
https://doi.org/10.1007/978-3-030-17666-2_9
https://doi.org/10.1007/978-3-030-17666-2_9
https://doi.org/10.1007/978-3-030-17666-2_4
https://doi.org/10.1007/978-3-030-17666-2_4
http://doi.acm.org/10.1145/1145718.1145723
http://portal.acm.org/affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&idx=1145718&part=Proceedings&WantType=Proceedings&title=International%20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=1483183&CFTOKEN=32880799#
http://portal.acm.org/affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&idx=1145718&part=Proceedings&WantType=Proceedings&title=International%20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=1483183&CFTOKEN=32880799#
http://portal.acm.org/affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&idx=1145718&part=Proceedings&WantType=Proceedings&title=International%20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=1483183&CFTOKEN=32880799#
http://portal.acm.org/affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&idx=1145718&part=Proceedings&WantType=Proceedings&title=International%20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=1483183&CFTOKEN=32880799#
http://portal.acm.org/affiliated/citation.cfm?id=1145718.1145723&coll=ACM&dl=ACM&type=series&idx=1145718&part=Proceedings&WantType=Proceedings&title=International%20Symposium%20on%20Software%20Testing%20and%20Analysis&CFID=1483183&CFTOKEN=32880799#

50 D. Lübke

32. Panda, S., Mohapatra, D.P.: Regression test suite minimization using integer linear
programming model. Softw. Pract. Exp. 47(11), 1539–1560 (2017)

33. Park, H., Ryu, H., Baik, J.: Historical value-based approach for cost-cognizant test
case prioritization to improve the effectiveness of regression testing. In: 2008 Second
International Conference on Secure System Integration and Reliability Improve-
ment, pp. 39–46, July 2008. https://doi.org/10.1109/SSIRI.2008.52

34. Pavlopoulou, C., Young, M.: Residual test coverage monitoring. In: Proceedings of
the 21st International Conference on Software Engineering, ICSE 1999, pp. 277–
284. ACM, New York (1999). https://doi.org/10.1145/302405.302637. http://doi.
acm.org/10.1145/302405.302637

35. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Trans. Softw. Eng. 22(8), 529–551 (1996)

36. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
ACM Trans. Softw. Eng. Methodol. 6(2), 173–210 (1997). https://doi.org/10.1145/
248233.248262. http://doi.acm.org/10.1145/248233.248262

37. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineeering - Guidelines and Examples. Wiley, Hoboken (2012)

38. Shihab, E., Jiang, Z.M., Adams, B., Hassan, A.E., Bowerman, R.: Prioritizing the
creation of unit tests in legacy software systems. Softw. Pract. Exp. 41(10), 1027–
1048 (2011)

39. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set minimiza-
tion on fault detection effectiveness. Softw. Pract. Exp. 28(4), 347–369 (1998)

https://doi.org/10.1109/SSIRI.2008.52
https://doi.org/10.1145/302405.302637
http://doi.acm.org/10.1145/302405.302637
http://doi.acm.org/10.1145/302405.302637
https://doi.org/10.1145/248233.248262
https://doi.org/10.1145/248233.248262
http://doi.acm.org/10.1145/248233.248262

An Evaluation of Test Suite Minimization
Techniques

Raphael Noemmer1(B) and Roman Haas2

1 Technical University of Munich, Munich, Germany
noemmer@cqse.eu

2 CQSE GmbH, Munich, Germany

Abstract. As a software project evolves over time, the associated test
suite usually grows with it. If test suites are not carefully maintained, this
can easily result in massive test execution duration, reducing the benefits
of regression testing because faults are found later in development or even
after release. Test suite minimization aims to combat long running test
suites by removing redundant test cases. Previous work mainly evaluates
test suite minimization techniques based on comparably small projects,
which are less practically relevant. In this paper, we compare four test
suite minimization techniques by applying them to several open source
software projects and evaluate the results. We find that the size and
execution time of all the test suites can be reduced by over 70% on
average. However, there is a substantial loss in fault detection capability
of, on average, around 12.5%, restricting the applicability of this form of
test suite minimization.

1 Introduction

The size of test suites tends to grow over time, which leads to an increasing
amount of time used for each test run [5]. Test suites of large projects may run
for days or even weeks. This is problematic for continuous integration where
tests are ideally executed after every commit to give feedback to the developers
as early as possible. The delay of feedback makes it harder to fix failures found
by the tests because the changes might have been made several days ago, requir-
ing the developer to refamiliarize himself with the changed code. Besides, more
changes might have been made to the same code since the tests have started run-
ning. Additionally, there is a lot more changed code at once, making it harder
to identify the fault that is the root cause of test failures. In the literature,
three research areas, coping with long running test suites, can be found. The
first approach is Test case selection where test cases to be executed are chosen
depending on the changes made since the last test run. Because unit tests cover
specific areas of a system and, in general, changes over a limited time span are

This work was partially funded by the German Federal Ministry of Education and
Research (BMBF), grant “SOFIE, 01IS18012A”. The responsibility for this article lies
with the authors.

c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 51–66, 2020.
https://doi.org/10.1007/978-3-030-35510-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_4

52 R. Noemmer and R. Haas

limited to parts of a system, it is usually not necessary to execute all test cases
every time. The main difficulty of this approach is to identify, which test case
runs through which code after changes have been made. To get this informa-
tion precisely, the whole test suite would need to run again, rendering the test
selection approach useless. Usually, heuristics, based on test coverage data from
earlier test runs, are used to resolve this issue. The second option is test case
prioritization. In contrast to the other approaches, it does not aim for run time
reduction of test suites but instead for a faster fault detection. With this method,
test cases are executed in order of their relevance for the changes made. This
can be accomplished by executing fast test cases that cover changes first. So,
with this approach, the whole test suite is still executed, but the tests that are
executed first have the highest likelihood of finding faults. This allows for the
developers to get quick feedback without any loss in the overall fault detection.
The last approach, and the one we are using in this paper, is test suite min-
imization. Test suite minimization attempts to find redundant tests that have
little to no impact on fault detection capabilities of a test suite and remove them
permanently. There are several common ways of determining whether a test is
redundant, that is, has a low likelihood of detecting faults which are not found
by the remaining tests. For determining the redundancy of a test, one or multiple
criteria can be used, for example, statement coverage, execution cost, mutation
coverage, mc/dc coverage etc. The tests that satisfy the chosen criteria are then
selected and the rest is removed, ideally leading to a permanent reduction in the
runtime of a test suite.

Problem Statement. In many software projects, regression testing takes up large
amounts of time which can slow down development. Test suite minimization can
be used to reduce the time each test run takes by removing redundant test cases.
However, test suite minimization is rarely used in practice. We identified two
core reasons for this, the first of which is that it is not an easy task to perform,
especially with complex builds. The second reason is that removing test cases
always carries the risk of reducing the effectiveness of the test suite. Due to the
nature of test suite minimization, tests are usually removed permanently, which
is a risk that has to be taken compared to test case selection or prioritization.

Contribution. In this paper, we evaluate different algorithms for test suite mini-
mization with seven open source projects and make the following contributions:

– Random Mutation Testing for Evaluation
A lot of the papers on test suite reduction utilize manually introduced faults
in their underlying research for the evaluation of the loss in fault detection
capability. By using mutation testing instead, we can generate a higher num-
ber of faults, equally spread over the whole project, which allows us to assess
fault detection capability at a larger scale.

– Real Open Source Projects
For the evaluation of test suite minimization, small test projects that
were published for research purpose only, are used [7,16]. We chose to use
actively maintained open source projects which are developed by a variety of

An Evaluation of Test Suite Minimization Techniques 53

organizations to investigate the applicability of test suite minimization tech-
niques in practice.

– Time Measurements of Minimized Test Suites
Test suite minimization approaches are often evaluated, based on the number
of tests that could be removed from the original test suite. Although, this is
a relevant statistic which we report as well, the biggest benefit of test suite
minimization in practice is to save execution time. Since execution times
for tests can vary a lot in practice, the time savings need to be considered
separately from the number of tests. To find out whether the practical benefits
of test suite reduction are proportional to the number of removed tests, we
analyze execution times of test suite before and after minimization is applied.

2 Fundamentals

In the following, we describe two basic concepts in the field software testing that
we need for our study. The first is a formal description of test suite minimization,
a technique that aims to reduce the runtime of test suites by removing redundant
tests, the second concept is mutation testing which can be used evaluating the
fault detection capability of a test suite.

2.1 Test Suite Minimization

In their 2002 paper on test suite reduction, Rothermel et al. define the minimiza-
tion problem as follows: Given a test suite T that contains test cases t1, t2 . . . tn
and requirements r1, r2 . . . rn which can be satisfied by the test cases in T , find a
minimal subset of T that satisfies the same requirements as T itself [13]. When
all ri need to be satisfied, the technique is called adequate. An inadequate app-
roach means that some of the requirements may be left unsatisfied. The ri can
be different functional or structural requirements, for example line coverage or
mutation coverage.

Selecting a minimal set of tests that satisfies the requirements means finding
a minimal hitting subset of T over the ri, which is an NP-complete problem.
Due to this difficulty, heuristics are a compelling option. There are many dif-
ferent heuristics that have been used and analyzed for the purpose of test suite
minimization [19] some of which we investigate in Sect. 3.

2.2 Mutation Testing

Mutation testing is a method of assessing a test suite where mutations, a set
of simple changes, supposed to represent typical faults, are introduced into a
system. The test suite is then rated based on how many of the introduced faults
are detected [9]. These faults are called mutants, and finding one of them is
called ’killing a mutant’. The score of a test suite is calculated as follows:

MutationScore =
numberOfFoundMutants

numberOfIntroducedMutants

54 R. Noemmer and R. Haas

It has been shown that mutants are similar enough to real faults to allow the
mutation score to give a good indication of the real-world fault detection capa-
bility of a test suite [1]. There are, however, some inherent flaws of mutation
testing. It is, for example, possible for mutants to cancel each other out which
leads to undetectable mutants. Mutations can also cause infinite loops which
makes it hard to tell whether a test takes a long time or is stuck in an infinite
loop.

3 Related Work

The test suite minimization algorithms most commonly found in research are
variations of the greedy algorithm [3,10] which has been shown to be an effective
heuristic for the minimal hitting set problem [11]. Two well-known extensions of
the greedy algorithm are the GE (Greedy Essential) and GRE (Greedy Redun-
dant Essential) algorithms. Chen and Lau compared these two greedy variants
to another heuristic called HGS (Harrold-Gupta-Soffa) [3,6]. Their results sug-
gested that, though there are differences, neither technique is better than the
others in all cases. Tallam and Gupta invented another version of the greedy
heuristic, the delayed greedy algorithm [15]. It avoids selecting test cases that
may later be rendered redundant by other selected test cases. This can happen
when large tests are selected early on but then the subsequently selected tests,
together, cover the same requirements. To avoid it, they removed the test cases,
whose coverage is either a subset of another test or is completely covered by
multiple other tests. After the tests are removed, the normal greedy heuristic is
applied.

Offut et al. used mutation testing but instead of evaluating the quality of
the minimized test suite on the basis of the resulting mutation score [10], they
used the score as a criterion for minimization, that is, the mutants are the
requirements that need to be satisfied by the algorithm. They compared state-
ment coverage to mutation score as testing requirements for minimization. Their
mutation score was based on manually created mutants. In our study, we used
automated mutation testing which allows for about two orders of magnitude
more mutants. The automation also allows us to use larger projects.

There are also approaches that use more than one objective for test suite
minimization. Selective redundancy is the approach used by Jeffrey and Gupta
[7,8] in their multi objective approach. Selective redundancy means that, if a test
is marked redundant by the first set of testing requirements, it is not removed
until it is also redundant with respect to the second set of requirements. Only if
a test is redundant for both sets of requirements, it is omitted. Gupta et al. used
branch-coverage and all-uses coverage as their criteria. Their results showed less
omitted tests but also an improvement to fault detection capability compared
to the HGS heuristic with only one requirement.

An Evaluation of Test Suite Minimization Techniques 55

Wei et al. also utilized mutation testing, but instead of evaluating their
results with the mutation score, they used it as a goal for several different many-
objective evolutionary algorithms [16]. These algorithms can be used to optimize
many-objective problems with four or more conflicthing criterions. While this
provides a good approach for selecting tests, the resulting mutation score is not
comparable since tests are selected based on their mutation killing capability.
They also employed smaller test suites compared to our study subjects.

Regarding the fault detection loss of test suites through minimization, there
are conflicting results. While Rothermel et al. found significant losses in fault
detection effectiveness of test suites through the use of minimization [12,13],
Zhang et al. found only small losses in fault detection when using test suite
reduction on the same projects from the Software-artifact Infrastructure Repos-
itository1[20]. Wong et al. also found that the impact of test suite minimization
on a test suite’s ability to detect faults is negligible [17,18].

Shi et al. have taken a very similar approach to test suite reduction as we
do in this paper [14]. They used mutation testing to evaluate 18 open source
projects from GitHub. Their focus was on using the mutation score instead of line
coverage as testing requirement for minimization. They also evaluated adequate
and inadequate approaches and looked at different versions of the projects they
investigated. They found that mutant-based minimization is better with regard
to the fault detection loss while the statement-based approach delivers slightly
better minimization results.

4 Implementation

Our goal in this paper is to investigate the applicability of test suite minimization
techniques in practice. To achieve this, we implemented test suite minimization
and a way to run mutation testing, as an indicator of fault detection capability,
on the reduced test suites.

In Fig. 1, we provide a structural overview of how we evaluate our chosen test
suite minimization algorithms. First, we recorded testwise coverage for the tests
of a project, using a modified version of JaCoCo2. We need this testwise coverage
to apply the coverage-based minimization algorithms we have chosen. For our
evaluation, we used two algorithms, a greedy algorithm, and the HGS heuristic.
The goal of both of these algorithms is to select a subset of tests that covers
the same as the original test suite but with different approaches. For both of
them, we used statement coverage as the testing requirements for minimization.
We used both, an adequate and an inadequate approach for each of the two
algorithms. The adequate approach selects test cases until all lines are covered
while, for the inadequate approach, new tests are selected until they no longer
contribute at least five lines of additional coverage to the chosen subset of tests.

1 https://sir.csc.ncsu.edu/php/previewfiles.php.
2 https://github.com/cqse/teamscale-jacoco-agent.

https://sir.csc.ncsu.edu/php/previewfiles.php
https://github.com/cqse/teamscale-jacoco-agent

56 R. Noemmer and R. Haas

4.1 The Greedy Algorithm

The greedy algorithm selects test cases by iteratively choosing the test case with
the most additional statement coverage. First, the test with the most overall cov-
erage is selected, that is, the test case tk that satisfies the most testing require-
ments ri. The requirements rn . . . rm covered by this first test are then removed
from the coverage of all other test cases. This means that for each tj , j �= k, the
operation {ry . . . rz} \ {rn . . . rm} where ry . . . rz are the requirements satisfied
by tj is performed. The result of the set-theoretic difference is the new set of
requirements satisfied by tj . With this, we optimize for additional coverage and
ignore what has already been covered. New tests are selected according to this
rule until no additional coverage can be achieved by selecting more tests. In case
of the inadequate approach, the heuristics stops earlier, in our case when no
more than five lines can be added by selecting an additional test case.

4.2 The HGS Algorithm

The HGS heuristic works by adding test cases based on their cardinality, starting
with the tests that have the lowest cardinality. To determine the cardinality of
test case tj take all testing requirements rn . . . rm covered by test case tj . For
rn . . . rm, check by how many test cases each ri is covered. The requirement ri
with the lowest number of test cases covering it, is the cardinality of test case
tj . For the algorithm this means, we start with the lines that are only covered
by one test case. This gives us a set of test cases. All these test cases need to be
added since they are essential, that is, they are the only tests that cover some
lines. We then proceed with requirements that are covered by two test cases and
iteratively add the test case with the highest additional coverage. We add test
cases one by one and go up in cardinality until all requirements are met.

4.3 Mutation Testing

After we have the full and minimized test suites, we use the mutation testing
tool Pitest3 on the resulting test suites to get an approximation of how well the
fault detection capability is maintained after the minimization is applied. Pitest
provides a list of mutators4, most of which are active by default. Their goal
is to emulate real faults as realistically as possible. The advantage of mutation
testing is the number of faults we can introduce and the randomness of them. By
using real-world projects instead of the fairly small projects from the Software-
artifact Infrastructure Repository, which are often used in research on test suite
reduction, we want to evaluate how well test suite minimization works in practice.

3 http://pitest.org.
4 http://pitest.org/quickstart/mutators/.

http://pitest.org
http://pitest.org/quickstart/mutators/

An Evaluation of Test Suite Minimization Techniques 57

Fig. 1. Approach

5 Empirical Assessment

In this section, we want to examine the performance of statement coverage based
test suite minimization. First, we describe our research questions followed by the
subjects we chose to examine to answer said questions. We then explain, how
we investigated each question and finally answer the questions according to the
results we obtained.

5.1 Research Questions

The goal of our research is to find out how much our chosen test suite mini-
mization techniques influence the fault revelation capability of test suites. Since
the mutation score of a test suite is linked to its fault detection capability the
resulting mutation score will give us an indication on how much the quality of a
test suite suffers when minimization is used. With our experiments, we answer
the following research questions.

RQ1 – How well is a test suite’s capability to kill mutants preserved
after test suite minimization is applied? Test suite minimization is only
useful if a test suite preserves its fault detection capability through the process.
We want to find out, if and how much worse a test suite gets at detecting faults,
represented by mutants, when test suite minimization is used.

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques? We look at two different
techniques to find out whether there is a considerable difference. We chose a
simple greedy algorithm and compare it with a more complex algorithm, the
HGS heuristic, to investigate how much of a difference using a more sophisticated
algorithm, like the HGS, makes, compared to a simple greedy heuristic.

RQ3 – How does adequate test minimization perform compared
to inadequate test minimization with a lower limit of five lines per
test? Using adequate test suite minimization techniques means that even if it
covers only one additional line, a test case has to be included in the set of tests.

58 R. Noemmer and R. Haas

With an inadequate approach, we can fix a number of minimum required newly
covered lines and only include a test if it exceeds the lower limit. We expect this
to reduce the number of tests considerably, improving the minimization result,
but with five lines as the minimum number of newly covered lines, it might also
have a substantial negative impact on the fault detection capability.

RQ4 – How big are the time savings and are they proportional to
the number of omitted tests? The goal of test suite reduction is to save test
execution time. To find out whether this goal is achieved, we analyze how much
time is actually saved in a test run after applying test suite minimization. Since
test cases can have vastly different runtime, we want to find out how much the
runtime reduction is connected to the reduced number of tests and whether this
behaves similarly in all study subjects.

5.2 Study Subjects

For our study, we examined seven systems, all of which are open source projects
hosted on GitHub5 and implemented in Java. We decided on Java because it is
the only language supported by Pitest which is one of the most comprehensive
and well maintained mutation testing tools we could find. The systems we chose
vary in size from around 1k SLOC (Source Lines of Code) to 170k SLOC. We
chose three projects from the Apache Software Foundation. They are well main-
tained, have a solid number of tests and are among our larger study subjects.
With Ebean and Spoon, we included two other fairly large projects. To cover a
wider set of different characteristics, we chose two smaller projects, JSoup, and
Faux-pas, as well. All of our subject projects use Apache Maven as their build
tool and use either JUnit version 4 or 5 for unit testing, which allows us to apply
mutation testing (using Pitest) to their tests.

Table 1 shows a detailed overview of our subject projects. The LLOC (Log-
ical Lines of Code) and coverage thereof are the numbers relevant for Pitest.
For this value, only lines that can actually be executed are counted. For exam-
ple, function headers and class declarations are not included in this metric. For
mutation testing, only these lines are relevant since they are the ones that can
potentially be mutated. For the SLOC metric, all lines that contain source code
are counted, so only empty lines and comments are excluded. The number of
mutants that are introduced is determined by Pitest according to the number of
possible mutations.

Also note that the number of tests in Table 1 are the test cases that we
executed. This number may be lower than the total number of tests in some
instances because we removed or ignored tests that caused problems. These
are, for the most part, tests that failed when running the test suite and some
parametrized tests which cannot properly undergo test suite minimization.

5.3 Study Design

In this section, we describe, how we approached answering each of our research
questions.
5 https://github.com.

https://github.com

An Evaluation of Test Suite Minimization Techniques 59

Table 1. Study subject details.

Study subjects SLOC SLOC project SLOC test LLOC Cov #Tests # Mutants

Commons Collection 62,897 28,708 34,189 46% 14,770 8,253

Commons Lang 75,408 27,825 47,583 95% 3,252 13,088

Commons Math 171,060 82,706 88,354 90% 4,825 37,674

Ebean 170,619 99,317 71,302 64% 2,598 25,056

Fauxpas 1,141 315 826 96% 81 50

JSoup 20,099 12,037 8,062 83% 666 4,711

Spoon 112,614 60,619 51,995 83% 1,608 15,887

RQ1 – How well is a test suite’s capability to kill mutants preserved
after test suite minimization is applied? To answer this question, we ran
mutation testing on the original test suite and on the test suite minimized by
the greedy algorithm for all our study subjects. We compare the mutation scores
and calculate the relative mutation score loss from the minimization. Besides
the timeout factor and constant, we used the default settings of Pitest. These
factors were increased to reduce the number of false positive timeouts, a timeout
is reported despite no infinite loop present. This increases the runtime but also
increases the accuracy of the results we get.

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques? For our second research ques-
tion, we ran the greedy and the HGS algorithm on our study subjects. We used
mutation testing to find out how well the different minimization algorithms work
with our study subjects and whether there is a significant difference between the
techniques.

RQ3 – How does adequate test minimization compare to inade-
quate test minimization with a lower limit of five lines per test? For
this, we use the same set-up as for RQ2 and additionally use inadequate versions
of our algorithms. We compare the different approaches using mutation testing
and their respective reduction in test suite size.

RQ4 – How much time can be saved per test run and are the
time savings proportional to the number of omitted tests? To analyze,
how much time is saved per run, we measure the run time of each test suite.
We investigate both our algorithms in their adequate and inadequate forms. To
minimize the possibility of background tasks influencing our results, we take
five measurements for each project and minimization algorithm. We report the
average reduction in execution time for each project’s test suite.

6 Results and Discussion

In this section, we present and discuss the results of our experiments.
RQ1 – How well is a test suite’s capability to kill mutants preserved

after test suite minimization is applied?

60 R. Noemmer and R. Haas

In Table 2, we display the number of killed mutants as well as the number
of tests before and after minimization. Our results for the reduction are closely
related to the results in the 2014 paper on test suite minimization by Shi et al.
[14] who applied a similar approach. Most of the projects have a reduction in
test suite size from roughly 60% to 75% with the median at 67%. The differ-
ence between our results and the results in the other paper can most likely be
attributed to the difference in project selection. We consider a reduction of more
than 50% in all projects very high and it was particularly impressive to us that
even for the small projects, we got a reduction in test suite size of more than
half.

The number that sticks out the most in terms of the test reduction is the
93% of the Apache Commons Collections library. On closer inspection we found
that a lot of the test cases of that project are focused on very few classes which
leads to an extreme effectiveness of the minimization as well as a low overall
mutations score. A hint to this can be found in the comparably low LLOC
coverage in Table 1 even though the number of tests is very high. In cases like
this, we ignore that the developer might have a reason for having many tests for
a small section of code. Even though this usually means that the minimization
is very effective, we have no way of knowing whether that code is particularly
important or complex and requires more testing.

The most important column of the table, however, is the relative MS (muta-
tion score) loss. Due to the fact that it ranges from 3.5% to 21% in our study,
the effectiveness appears to be dependent on the project in question and is not
strongly correlated with the size reduction percentage. Our results also show
that the Apache Foundation projects facilitate test suite minimization a lot bet-
ter than the other projects we tested. They have similar reduction rates to the
other projects but at a substantially lower loss in mutation score.

Overall, while the reduction figures are promising, the loss in mutation cov-
erage for some of the projects is quite high. Potentially missing 21% of faults is
unacceptable in a lot of cases. These results suggest that a stricter set of testing
requirements for minimization instead of only statement coverage could make
sense. This would likely limit the number of missed mutants but also reduce the
effectiveness of the minimization. Our results also show that there is potential
for test suite minimization in big software projects that are actively maintained.

Table 2. Comparison Full test suite and minimized Greedy.

Study subjects Full test suite Minimized test suite

Tests # MK MS # Tests # MK MS Reduct Rel MS loss

Commons Collection 14,770 3,459 42% 960 3,145 38% 93% 9.5%

Commons Lang 3,252 11,285 86% 1,638 10,873 83% 50% 3.5%

Commons Math 4,825 29,721 79% 1,574 27,893 74% 67% 6,3%

Ebean 2,598 10,971 44% 811 9,565 38% 69% 21%

Fauxpas 81 47 94% 23 39 78% 72% 17%

JSoup 666 3,167 67% 240 2,660 56% 64% 16%

Spoon 1,608 11,229 71% 482 9,683 61% 70% 14%

An Evaluation of Test Suite Minimization Techniques 61

RQ2 – How much does the mutant killing capability vary between
different test suite minimization techniques?

In Table 3, we have listed the number of tests after minimization as well as
the number of killed mutants for both algorithms. We also display the relative
difference in the number of selected tests and mutant killing capability. Our main
finding here is that the differences between the greedy and the HGS algorithm
are very minute in terms of the number of retained tests as well their mutant
killing capability.

We observe that the HGS algorithm retains slightly fewer tests than the
greedy algorithm but the difference is at most around 3% and with a p value >>
0.05, the HGS algorithm is not significantly better than the greedy algorithm.
In terms of their mutation score, neither algorithm is superior as they are very
close for all study subjects and neither of the two consistently outperforms the
other.

These results confirm the results that Shi et al. found [14] which indicate
that the differences between the simple greedy algorithm and more sophisticated
algorithms is minute. Though we have only tried two algorithms, we observe that
the more expensive HGS heuristic does not result in a palpable benefit for any
of our study subjects. Though, because of the nature of test suite minimization,
the algorithm is only applied rarely, so a more time consuming, but slightly more
effective algorithm might still be worth it.

Table 3. Comparison Greedy HGS.

Study subjects Greedy HGS

Tests # MK # Tests # MK Rel test diff Rel MS diff

Commons Collections 960 3, 145 943 3, 116 1.77% 0.92%

Commons Lang 1, 638 10, 873 1, 632 10, 883 0.37% 0.092%

Commons Math 1, 574 27, 893 1, 544 27, 574 1.91% 1.14%

Ebean 811 9, 565 799 9, 450 1.48% 1.20%

Fauxpas 23 39 23 41 0.0% 4.88%

JSoup 240 2, 660 233 2, 656 2.92% 0.15%

Spoon 482 9, 683 477 10, 123 1.04% 4.35%

RQ3 – How does adequate test minimization compare to inade-
quate test minimization with a lower limit of five lines per test?

We display our results for this question in Table 4. In the table, we can
see that the benefits of using the inadequate technique are quite substantial.
Compared to the adequate variants, the number of remaining tests is more than
halfed for most of our study subjects. Of course, the overall impact is significantly
lower with an absolute average decrease in the number of tests of 86.7% for
the inadequate greedy algorithm compared to 69.2% for the adequate greedy
algorithm. The HGS algorithm behaves very similar.

However, there is also a substantial drop in mutation score across most of our
study subjects. For most of our projects, the drop in fault detection capability

62 R. Noemmer and R. Haas

compared to the adequate version is considerably larger than the drop from the
full test suite to the adequately minimized version. Compared to the adequate
version, the inadequate minimization is not worthwile due to the lower absolute
gain and the higher loss in fault detection capability.

There are different versions of inadequacy, for example we could also limit
the overall coverage we want to achieve instead of introducing a lower limit per
test.

Table 4. Comparison adequate inadequate

Study subjects Greedy Hgs

Adequate Inadequate Difference Adequate Inadequate Difference

Tests # MK # Tests # MK Tests MS # Tests MS # Tests # MK Tests MS

Commons

Collections

960 3,145 401 2,522 58% 19.8% 943 3,116 434 2,598 54% 16.6%

Commons Lang 1,638 10,873 662 9,201 60% 15.4% 1,632 10,883 691 9,280 58% 14.7%

Commons Maths 1,574 27,893 725 26,053 54% 6.6% 1,544 27,574 793 26,089 49% 5.4%

Ebean 811 9,565 363 8,182 55% 14.5% 799 9,450 377 8,424 53% 10.9%

Fauxpas 23 39 6 27 74% 30.7% 23 41 6 28 74% 31.7%

JSoup 240 2,660 127 2,394 47% 10.0% 233 2,656 131 2,436 44% 8.3%

Spoon 482 9,683 233 9,447 52% 2.4% 477 10,123 239 9,563 50% 5.5%

RQ4 – How much time can be saved per test run and are the time
savings proportional to the number of omitted tests?

In Fig. 2 we give an overview of the time savings of the different algorithms
applied to all of our study subjects. The y-axis shows the time savings in per-
cent of the runtime of the full test suite. First, we can observe that the results
vary a lot between the different projects. The time savings range from 4.5% to
68.6%. However, for most of our study subjects, the savings of all minimiza-
tion techniques exceed 35%, making the benefits of test suite minimization quite
attractive.

A, to us, surprising result is that the project with the smallest time savings,
the Apache Commons Collections library, also has the highest relative reduction
in its test suite size. This suggests that execution time of the test suites is not
equally distributed. The removal of few, long running tests has more impact than
omitting as many tests as possible. A good indicator for this is the difference
between the inadequate versions of the algorithms for the Apache Commons
Collections library and the adequate versions. The difference in the number of
selected tests is rather small but the savings increase a lot more than they did
with the first ∼93% of removed tests.

Regarding the difference between the greedy and HGS algorithms, we can,
once again, not determine a consistently superior algorithm. However, the inad-
equate versions of both algorithms show clear improvement over their adequate
counterparts reaching from 4.4% to 24.3%.

By including the execution time of the individual test cases in the minimiza-
tion, the variation in the effectiveness of test suite minimization could most likely
be reduced considerably.

An Evaluation of Test Suite Minimization Techniques 63

Fig. 2. Time Savings of Test Suite Minimization

7 Threats to Validity

In this section, to understand the limitations of our evaluation of test suite
minimization, we discuss some possible threats that could affect the validity of
our results.

Internal Threats. The first possible criticism of our method is the use of mutation
testing as a replacement for real faults. Though, it has been shown that the
ability of a test suite to kill mutants is highly correlated with its ability to detect
real faults [1,2,4], mutants are not the same thing as real faults. Another problem
of mutation testing are equivalent mutants which cannot be detected and endless
loops which can be caused by mutants. However, since our results involve mainly
comparisons of the loss of mutation score from test suite minimization, the overall
mutation score is not critical for the validity of our results.

Another issue of mutation testing is that timeouts can vary between test
runs. Since mutation testing can cause infinite loops, there is a timeout value
necessary to keep the mutation testing going when an infinite loop has been
created. However, this can also happen by accident if a test runs longer than it
should for some reason. We found a variation in timeouts between runs caused
by false positives in the determination of timeouts. However, the margin between
our runs did not exceed 1% in our results.

External Threats. There is no guarantee that these results are representative
beyond the scope of our study subjects. Even though, we used actively devel-
oped open source projects from different developers, commercial, closed source
projects and other open source projects with very different characteristics may
behave different with regard to test suite minimization. The projects we chose
were limited in size due to the cost of mutation testing being fairly high and
it’s compatibility, especially with complicated builds being fairly low. Further-
more, we investigated only a small set of proposed minimization techniques to

64 R. Noemmer and R. Haas

evaluate applicability of test suite minimization techniques in practice. We have
implemented two common test suite minimization algorithms but there are a
lot more, also incorporating different testing requirements instead of only using
statement coverage.

8 Conclusion

We evaluated the benefits and drawbacks of two test suite minimization algo-
rithms over a range of seven open source software projects. We used two different
statement coverage-based algorithms, the basic greedy algorithm and the HGS
algorithm. For both, we applied an adequate and an inadequate variant to all
of our study subjects. To find out, how well the fault detection capability of a
test suite is maintained after test suite minimization, we compared the results
of mutation testing of the full test suites and the minimized ones. We found
that with the algorithms we used, there is a considerable trade-off between the
reduction in test suite size and the loss in fault detection capability. The number
of test cases was reduced by at least 50% for all the study subjects; the average
reduction of our adequate algorithms being around 69% of tests removed.

To get an insight into the practical benefits of test suite minimization, we
measured the execution time of test suites of our study subjects before and
after the test suites were minimized. We found that, even though there were
substantial reductions in all projects, there is a huge range between the execution
time reduction of the individual projects (5% to 69%). The reduction in number
of tests appears to be a bad indicator for the reduction in execution time.

Overall, test suite minimization shows great potential in terms of test suite
execution time reduction. However, the implementation we chose in this paper
does not provide a great trade-off between runtime improvements and loss in
fault detection.

9 Future Work

We found that using statement coverage as the only criterion for minimization,
while producing great results in terms of test suite size, leads to a substantial
loss in fault detection capability which, in practice, will not be acceptable in
a lot of cases. That is why we plan on investigating multiple objective-based
algorithms, which could improve the outcome of test suite minimization in terms
of the maintained fault detection capability. Another factor in a multi objective
approach could be execution time, which shows substantial reductions in our
experiments but could most likely be improved by introducing it as a criterion
to be optimized for.

Another interesting possibility, which we want to pursue, is be to increase the
variety of study subjects by shifting the focus from only open source projects
to include closed source projects as well. Covering as many different ways of
software development as possible can increase the viability of test suite mini-
mization. So far it is rarely used in practice. Proving that commercial projects

An Evaluation of Test Suite Minimization Techniques 65

can gain from test suite minimization could benefit its propagation from the
domain of research into widespread use.

Future research could also evaluate test suite minimization techniques on the
basis of real faults from the past according to how many of them are found. This
would deliver even more relevant results than using mutation testing but finding
and extracting data of sufficient volume for this kind of evaluation is much more
difficult and laborious than using generated mutants.

References

1. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for test-
ing experiments? In: Proceedings of the 27th International Conference on Software
Engineering, pp. 402–411. ACM (2005)

2. Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: Using mutation analysis
for assessing and comparing testing coverage criteria. IEEE Trans. Softw. Eng.
32(8), 608–624 (2006)

3. Chen, T.Y., MF, L.: Dividing strategies for the optimization of a test suite. Inf.
Process. Lett. 60(3), 135–141 (1996)

4. Do, H., Rothermel, G.: On the use of mutation faults in empirical assessments of
test case prioritization techniques. IEEE Trans. Softw. Eng. 32(9), 733–752 (2006)

5. Harman, M.: Making the case for MORTO: multi objective regression test opti-
mization. In: 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, pp. 111–114. IEEE (2011)

6. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2(3), 270–285 (1993)

7. Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: 21st
IEEE International Conference on Software Maintenance (ICSM 2005), pp. 549–
558. IEEE (2005)

8. Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining
test cases during test suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123
(2007)

9. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2010)

10. Pan, J., Loudon Tech Center: Procedures for reducing the size of coverage-based
test sets. In: Proceedings of International Conference on Testing Computer Soft-
ware, pp. 111–123. Citeseer (1995)

11. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Corporation (1998)

12. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the effects
of minimization on the fault detection capabilities of test suites. In: Proceedings
of the International Conference on Software Maintenance (Cat. No. 98CB36272),
pp. 34–43. IEEE (1998)

13. Rothermel, G., Harrold, M.J., Von Ronne, J., Hong, C.: Empirical studies of test-
suite reduction. Softw. Test. Verif. Reliab. 12(4), 219–249 (2002)

14. Shi, A., Gyori, A., Gligoric, M., Zaytsev, A., Marinov, D.: Balancing trade-offs
in test-suite reduction. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 246–256. ACM (2014)

15. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. ACM SIGSOFT Softw. Eng. Notes 31(1), 35–42 (2006)

66 R. Noemmer and R. Haas

16. Wei, Z., Xiaoxue, W., Xibing, Y., Shichao, C., Wenxin, L., Jun, L.: Test suite min-
imization with mutation testing-based many-objective evolutionary optimization.
In: 2017 International Conference on Software Analysis, Testing and Evolution
(SATE), pp. 30–36. IEEE (2017)

17. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set minimiza-
tion on fault detection effectiveness. Softw. Pract. Exp. 28(4), 347–369 (1998)

18. Wong, W.E., Horgan, J.R., Mathur, A.P., Pasquini, A.: Test set size minimization
and fault detection effectiveness: a case study in a space application. In: Pro-
ceedings Twenty-First Annual International Computer Software and Applications
Conference (COMPSAC 1997), pp. 522–528. IEEE (1997)

19. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

20. Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: An empirical study of JUnit
test-suite reduction. In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering, pp. 170–179. IEEE (2011)

Social Aspects in Software Engineering

Soft Competencies and Satisfaction Levels
for Software Engineers: A Unified Framework

Nana Assyne(B)

Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
nana.m.a.assyne@student.jyu.fi

Abstract. The importance of software engineers’ competency has long been
established as a keypillar for the development of robust software in order to achieve
quality software. Software engineering competency research is not necessarily
lacking. Nevertheless, the satisfaction derived from using software competency
needs more investigation. The aim of this study is to identify soft competencies
from empirical data and create satisfaction levels for software engineers’ soft com-
petencies. The result shows 63 soft competencies with three different satisfaction
levels consisting of basic, performance and delighters. The paper contributes to
the SEC research by highlighting the satisfaction levels of soft competency for
the benefit of the educators (academia), software engineers (possessor) and users
of software competency (practitioner).

Keywords: Soft competency · Software engineers’ competencies · Competency
satisfaction levels · Essential competencies

1 Introduction

The competencies of software engineers have long been recognized as essential for the
development of efficient and robust software [1]. According to IEEE software engineer-
ing competency is defined as the knowledge, skills and attitudes of software developers
to fulfill a task in a software development project [2]. This includes both soft and hard
competencies [3]. Lenberg et al. pointed out that research work on software engineering
competency (SEC) is not necessarily lacking. Yet, most of the earlier research on SEC
focused on technical or hard competencies as against soft or behavioral competencies
[4]. Harris &Rogers, define soft skills or competencies as “work ethics, positive attitude,
social grace, facility with language, friendliness, integrity and the willingness to learn”
[5, p.19]. Thus, the identification and use of soft competencies help in the development
of complex software, because the software development involves a combination of soft
and hard competencies [3, 6].

Works of authors such as Broadbent et al., Moreno et al., and Colomo-palacios et al.
have established that soft competency is essential for development of software [6–8].
More importantly, recent literature suggests an increase in the number of software soft
competencies studieswith emphasis on identification of soft competencies [4].Holtkamp
et al. argued that, soft competencies are crucial for the development of global software

© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 69–83, 2020.
https://doi.org/10.1007/978-3-030-35510-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_5

70 N. Assyne

engineering [9]. Nonetheless, the satisfaction levels of these competencies have not been
adequately explored. Accordingly, this paper reports the identification and satisfaction
levels of soft SEC as part of a bigger research on SEC.

The knowledge or identification of competencies is one phase of competency equa-
tion. The other phase is the benefit derived in the using such competency. The second
phases have not received much attention in SEC research. Thurner et al. argue for min-
imum or base competency as a basic requirement for students of software engineering
[10]. We support the base competency requirement and advocate for further investiga-
tions to determine the various levels of satisfaction of competencies. We therefore argue
for satisfaction levels of soft competencies for software engineers, and state our research
questions as:

RQ1: What are the different satisfaction levels derived from using a software soft
competency?

RQ2:Which of these soft competencies are perceived asmost valuable for Software
engineering?

Knowledge of soft competencies and their satisfaction levels serve as insurance for
users (people or organizations who use the competencies possessed by the developers to
produce a product or a service), educator (people who train the developers to acquire the
competencies), and the engineers’ (people who receive training and therefore possesses
some competencies). Therefore, we have adopt the Kano model [11] and Competency
Framework for Software Engineers (CFSE) [12] as a lens to develop satisfaction rank-
ings that can be employed by (i) the possessor of the competencies, (ii) users of the
competencies and (iii) by the trainer of competencies possessors. The rest of the paper
is presented as follows: Sect. 2 looks at the background and related works and discuss
the research models; Sect. 3 discusses the methodology; Sect. 4 presents the results; and
Sects. 5 and 6 looks at the discussions and conclusions respectively.

2 Theoretical Foundation and Related Works

2.1 Soft Competency

According to Harris & Rogers, soft skill is or are skills that mostly do not require formal
training [5]. Until recently, these skills were mostly self-taught and self-developed. They
are mostly not industry specific. In addition, they mostly require emotional intelligence
[13, 14] e.g. communication flexibility, leadership, motivation, patience, persuasion,
problem-solving abilities, teamwork, time management, work ethics.

Soft competency connotes skills that complement technical skills; therefore, it cannot
be overlooked in the development of software engineering. [They complement technical
skills and thus cannot be overlooked in software engineering]. They are considered to
be essential for global software projects [9, p.136]. (Broadbent et al. established that
the biggest skill gaps for software engineers were business strategies and marketing of
their services [7]. This was emphasized by Moreno et al. [6]. Other studies have argued
that more attention must be given to social and inter-personal competencies [15] and
emotional intelligence [16].

Soft Competencies and Satisfaction Levels for Software Engineers 71

In proposing a body of skills (SWEBOS) for software engineering, Sedelmaier and
Landes identified and structured soft competencies of software engineers into three cat-
egories [3]. These include (i) comprehension of the complexity of software engineering
processes, (ii) awareness of problems and understanding of cause-effect relationships,
and (iii) team competency including communication skills. Although, this provided use-
ful information that facilitates software development practices, it fails to provide relevant
information regarding the satisfaction levels derived for possessing or using a compe-
tency. Evidently, there is a gap in existing literature. Perhaps, this is because researchers
in the area of behavioral of software engineering have been focusing on few concepts [4]
and ignore other relevant issues such as the assurance for using or possessing a particular
competency.

To address this, this study seeks to identify and also create a satisfaction level of the
competencies from perspective of users, educators, and engineers. This will complement
research on SEC in general and soft competency research specifically. To enable us to
achieve our research objectives, we make use of CFSE and Kano model. The next
sub-sections discuss CFSE and the Kano model.

2.2 Kano Model

The Kano model is a quality function-deployment framework that helps developers
of product or service to include customer’s voice in the development phase. It has been
appliedmostly in the development of products. This is because it takes into consideration
the views of both the customer and developer in the development of a product instead
of a passive approach of only developers [17, 17–23] used the Kano model for the
development of ICT system and concluded that the model prioritizes user involvement.
It assists in determining basic, performance and delighters of a product or service.

In our scenario, the customer is the software community (organization using the
competencies) and the product or service is the competency. According to Kano et al.
customer’s decision-making options on product or service acquisition, are based on
conscious and subconscious deliberations [11]. There is therefore the need to under-
stand these deliberative conscious and subconscious processes of decision-making to
help develop products or services. Kano et al. categorized these processes into three-
requirement levels (basic, performance and delighters). Basic requirements relate to
customer’s expectations about a product or service. These requirements are classified as
basic since their presence are not dynamic enough to change the options and opinion a
customer has about the product.However, their absencemay result in complaints from the
customer. Performance requirements, on the other hand, are expected pre-requisites that
customers know and they are essential influential factors on the customer’s decision-
making options on products or services. These are critical pre-requisite requirements
that create high levels of satisfaction when employed appropriately and otherwise if not
used. The last requirement termed delighters are those requirements that do not engender
any complaints from the customers when absent however surprises the customer when
present. Delighters are sometimes referred to as attractive or “wow” factors [11].

72 N. Assyne

2.3 Competency Framework for Software Engineers

Competency Framework for Software Engineers (CFSE) is a framework that facilitates,
identifies the training needs, and guides the design of software engineers’ competencies.
The design is based on the activities and interactions of engineers during the software
development process. The constructs of this framework are under the main classifica-
tion of competency (Hard and Soft). Hard competency category relates to the technical
aspects of software engineering. These aspects are based on the definition of the SWE-
BOK roles in software engineering. They are project management, requirement analysis,
software design, programming, validation and verification tests, configuration manage-
ment, quality, tests, documentation and maintenance. The soft part of the categorization
is classified into social and personal. Social aspects include interpersonal relations, coop-
eration and work in a team, and handling and conflicts resolution. Personals on the other
hand includes development in the job, personal development, rights and limits. It can
broadly be considered as “a set of knowledge, abilities and key behaviors, with special
emphasis on the soft skills” [12].

The objective is to create a classificatory system that identifies and explains satisfac-
tion levels of software engineers’ competencies. Therefore, we consider the framework
suitable. This is because it considers both soft and hard competency and this is the big-
ger objective we intend to achieve. Furthermore, the framework considers granularity,
which is essential for fitting the work to the community. In line with the objective of
this study, we focus on the soft competency aspect of the framework and merge it with
Kano model. This resulted in a unified framework for identifying and classifying the
satisfaction levels of soft competencies. For detailed analysis of the individual meanings
of critical variables of CFSE, readers can refer to the original paper of [12]. The detail
of the proposed framework for this paper is explained in the next section.

3 A Unified Framework of Soft Competency Satisfaction Levels
for Software Engineers (UFSCSL)

As mentioned earlier, the framework is derived from the CFSE and Kano model. From
the CFSE we made use of the soft competency category since our aim is to identify
and classify only the soft competency. From among frameworks such as [24–27] for
identifying software engineering competencies CFSE framework is the one that hasmore
granularity, thus making it easy for in-depth analysis. In addition, the Kano model has
been used for researchwork in software engineering, but not for analyzing competencies.
Thus, this provides a means to chart a new path for competency research. The soft part of
the CFSE framework is first categorized into socials and personals and each have lower
granularity as shown in Fig. 1. The variables of the Kano model (basic, performance,
and delighters) were included, to provide the satisfaction levels for the competencies.
See Fig. 1 for the “soft satisfaction levels of software engineers” framework.

Soft Competencies and Satisfaction Levels for Software Engineers 73

Fig. 1. Unified framework of soft competency satisfaction levels for software engineers
(UFSCSL)

To use the UFSCSL, first, the competencies are identified and classifying using the
variables in [12] within the frameworks. Then each competency identified or classified is
subjected to themetrics ofKanomodel (see Sect. 2.2) to determines its satisfaction levels.
Thus, given as basic, performance and delighter competencies for socials (interpersonal
relations, cooperation and work in a team, and handling and conflicts resolution) and
personals (development in the job, personal development, rights and limits).

4 Methodology

4.1 Data Collection

An exploratory qualitative study was adopted. Specifically, [28, 29] qualitative research
guide was employed to extrapolate the required data. We agree with the philosophy that
an individual’s behavior is influenced by the meanings attached to events [30]. Thus, one

74 N. Assyne

hundred and thirty-eight (138) participantswere drawn fromworkers in various positions
within the industry: practitioner/software engineers/managers/supervisors/mentor. All
participants were from software industries based inNorway. A semi-structured interview
was used for data collection. Interviews were face-to-face and focused on expected skills
of a software developer. Each interview session lasted for about 1 h. The interview
was conducted with the support of assistants. Table 1 represents the distribution of
respondents’ characteristics.

Table 1. Respondents characteristics

Category Freq

Years of experience 1–5 40

6–10 17

11–15 7

16–20 15

21–25 11

26–30 13

31–35 2

36–40 2

unspecified 31

Background Software 72

Hardware 11

Research/university 11

Others 19

Unspecified 25

4.2 Data Analysis

A thematic analysis offers an accessible means for organizing and describing a dataset
under specific themes. Currently, there is no widely agreed way of going about how to
use the method [31]. The soft competency satisfaction framework was therefore adopted
to guide the analysis.

Both inductive analysis and deductive analysis were used. The coding of the data
was done without any pre-defined framework. This enable the themes to emerge from
the data. The framework (UFSCSL) was then applied to further code the theme that
emerged from the data. Two categories were used on the bases of the epistemology
of this research. That is, we were aware of the competencies that have been identified
and exist in literature, but our epistemology was that within those identified there will
be different satisfaction levels. Hence, we employed both categories in this paper. We
outline the following steps below based on the outcome of our analysis and guided by
the steps of [31].

Soft Competencies and Satisfaction Levels for Software Engineers 75

Step 1 Familiarization of the Data
The interview was conducted with the help of assistants, with the aim of capturing large
groups of respondents. Each interviewer transcribed his or her own interview. The author
of this paper acquainted himself by reading through the transcribed scripts. During this
stage, notes were taken in cases where there were difficulties in understanding aspects
of the data. Further discussions were made with the head of data collection to resolve
any ambiguity in the data.

Step 2 Generating Initial Codes
Initial codeswere generated from the data by extracting keywords. Thiswas donewithout
recourse to initial pre-defined coding framework. The total number of competencies that
were identified from the transcribed data were six hundred forty-one.

Step 3 Searching for Themes
After the initial code, all initial codes were grouped into themes, this facilitated the
identification of themes. These themes were generated without resort to pre-defined
coding framework. Three hundred sixty soft competencies were identified at this stage.

Step 4 Reviewing Themes
The themes were compared with existing themes. That is, a pre-defining coding frame-
work was also used. In this case, the Rivera-Ibarra et al. [12] CFSE framework was
used.

Step 5 Defining and Naming
Next defined themes and meanings were assigned. These names and meanings were
reviewed with literature before the competencies were validated using the variables in
the Kano model. This stage resulted in 22 basics, 26 performance and 16 delighter
competencies.

Phase 6 Producing the Report
The emerged themes that resulted from comparing data themes and themes from the
framework were used to produce the results discussed in the next section.

5 Results

5.1 RQ1: What Are the Different Satisfaction Levels Derived from Using
a Software Soft Competency?

Wepresent the result in Table 2 using the framework (UFSCSL) developed for this paper.
The results show the individual competencies and their satisfaction levels, that is: basic,
performance, and delighters. They were grouped according to the broader theme of soft
competency: social and personal. We also provided definitions using the classification
levels from the Kano model for the competencies.

Basic
From the interview data and the analysis, basic competencies are pre-requisite compe-
tencies that are necessary and are expected by the users of the competency. Mostly they

76 N. Assyne

Table 2. Soft competencies and their satisfaction Levels

Satisfaction levels Software engineer competencies

Socials

Interpersonal
relations

Delight (i) communicate to outside world, and (ii) sociable

Performance (i) communication skill, (ii) adaptability, (iii) human
skill, and (iv) interpersonal skill

Basic (i) social skills and (ii) contributing to the society

Cooperation
and work in
team

Delight (i) Excellent teacher, (ii) see bigger picture, and (iii)
leadership

Performance (i) team work, (ii) team organizer, (iii) approachable,
(iv) open and communicating, (v) learn from others,
and (vi) voice your own opinions

Basic (i) Cooperation, (ii) maturity, (iii) teach and share
knowledge, and (iv) dedication to work

Handling and
solving
conflicts

Delight (i) humbleness, (ii) customer awareness, and (iii)
understand customer needs

Performance (i) meeting skills, and (ii) contact with clients

Basic (i) Listen ears, (ii) compromise, and (iii) empathy

Personals

Development
in the job
environment

Delight (i) unafraid, (ii) creative and brave, and (iii) think
outside the box

Performance (i) persistence, (ii) flexible, (iii) versatile, (iv) focus,
(v) accuracy, (vi) analytical skills, (vii) logical
mindset and keep and overview, and (viii) creativity

Basic (i) Willingness to learn, (ii) curious, (iii) passionate
about your job, (iv) ask questions, (v) confidence,
(vi) honest and responsible

Personal
development

Delight (i) can apply theories in application, (ii) see
opportunity in systems, (iii) initiative, (iv) separate
work and being available, and (v) self-sufficient

Performance (i) precise and detail oriented, (ii) self-reliance, (ii)
independence (iv) understand needs for further
development, and (v) know the working
environments

Basic (ii) pragmatic, (iii) patience, and (iii) open to new
ideas

Right and
limits

Delight –

Performance (i) attention to detail

Basic (i) Introspection and admit error, (ii) admit
ignorance, and (iii) interest in the field

Soft Competencies and Satisfaction Levels for Software Engineers 77

are taken for granted. Users see these competencies as natural when delivered properly.
However, when delivered poorly, users will complain.

Performance
From the interview data and the analysis performance competencies are what users
expect and can articulate. They are mostly in the minds of the users and when they
are delivered well, they create more satisfaction. These competencies can be described
as “uni-dimensional” competency, in that the satisfaction grows exponentially when
executed properly.

Delighters
From the interview data and the analysis, the delighter competencies are unexpected
by the user. Mostly unexpected by the user but increases the delight and surprise when
available however its absence may have no effect on user.

5.2 RQ2: Which of These Soft Competencies Are Perceived as Most Valuable
for Software Engineering?

As mentioned earlier, delighters are attractive or wow factors that valuable for the devel-
opment of a product [11]. Therefore, we present our delighter competencies as the most

Table 3. Most valuable competencies.

Competency area Competency name

Socials

Interpersonal
relations

Communicate to outside world

Sociable

Cooperation and
work in team

Excellent teacher

See bigger picture

Leadership

Personals

Handling and
solving conflicts

Humbleness

Customer awareness

Understand customer needs

Development in the
job environment

Unafraid

Creative and brave

Think outside the box

Personal
development

Can applied theories in application

See opportunity in systems

Initiative

Separate work and being available

Self-sufficient

78 N. Assyne

Table 4. Total number of soft competencies based on the satisfaction levels classification

Competency area Satisfaction levels Total number

Socials

Interpersonal relations Delight 2 8

Performance 4

Basic 2

Cooperation and work in team Delight 3 13

Performance 6

Basic 4

Handling and solving conflicts Delight 3 8

Performance 2

Basic 3

Personals

Development in the job environment Delight 3 17

Performance 8

Basic 6

Personal development Delight 5 13

Performance 5

Basic 3

Right and limits Delight 0 4

Performance 1

Basic 3

Total

valuable or essential competencies for software engineering. The Table 3 shows the
competency based on Rivera-Ibarra et al. CFSE framework [12]. The table shows the
competency category and the identified essential soft competency for software engineers
that are useful for software development.

6 Discussions

Following our analysis, we aimed to provide a satisfaction level for the competencies
identified from our primary data. A total of 63 competencies emerge from our data. Out
of that 29 was for social competencies and 34 was for personals competencies with three
satisfaction levels.

Table 4 shows the number of competencies and number of satisfactions of the com-
petency area. Under socials competency area cooperation and work in team had 13
competencies, interpersonal relations and handling and solving conflicts had 8 compe-
tencies each. The cooperation andwork in team competency reflect the team competency

Soft Competencies and Satisfaction Levels for Software Engineers 79

Table 5. Identified soft competencies and prior work.

Category Identified soft competency Comparison

Socials

Interpersonal relations Sociable, communication skill,
adaptability, human skill, interpersonal
skill, social skills

Consistent with prior
work

Communicate to outside world,
contributing to the society,

New observations

Cooperation and work
in team

See bigger picture, leadership, team work,
Cooperation, teach and share knowledge,
team organizer, approachable, open and
communicating, learn from others

Consistent with prior
work

Maturity, Excellent teacher, voice your
own opinions. dedication to work

New observations

Handling and solving
conflicts

Customer awareness, understand customer
needs, meeting skills, contact with clients,
empathy

Consistent with prior
work

Humbleness, compromise New observations

Personals

Development in the job
environment

Unafraid, creative and brave, think outside
the box, persistence, flexible, versatile,
analytical skills, creativity, Willingness to
learn, curious, ask questions, confidence,
focus, accuracy, logical mindset and keep
and overview, honest and responsible

Consistent with prior
work

Passionate about your job New observations

Personal development Separate work and being available,
self-sufficient, precise and detail oriented,
self-reliance, independence, pragmatic,
patience, initiative, open to new ideas

Consistent with prior
work

Can apply theories in application, see
opportunity in systems, understand needs
for further development, know the working
environments

New observations

Right and limits Attention to detail, Consistent with prior
work

Introspection and admit error, admit
ignorance, interest in the field

New observations

category of Sedelmaier and Landes [3]. Under personals competency area, development
in the job environment had 17 competencies, followed by personal development with
13 and right and limits with 4 competencies.

80 N. Assyne

Some of the identified competencies in the categories are consistent with exiting
literature such as the work of [3, 15, 16, 32–34]. Table 5 highlights the new observations
and comparison to prior work. With regard to satisfaction levels, competencies were
identified in all the categories except rights and limits delighters. A total of 16 essential
competencies using the Kano model was identified. These competencies are consistent
with literatures such as [35, 36]. Furthermore we have been able to create a satisfaction
level, that adds to the works of [10, 37] that made argument for based competencies.

On the essential soft competencies for software engineers, we have been able use
model analysis to extrapolate the essential competencies that are in agreements with the
work of [35, 36, 38]. Thus, providing a new way of identifying essential competencies.

The novelty in this work are: (i) observations of new soft competency from empirical
data that are highlighted in Table 4 and (ii) the Unified framework of soft competency
satisfaction levels for software engineers (UFSCSL). The UFSCSL has the ability to
identify soft competencies of software engineers and also provide a satisfaction levels of
the competency.Thus, serving as insurancemodel for users, possessors and the educators.
In short, the major stakeholders of software engineering competency development are
considered in this framework.

The study has both practical and research implications. From the perspective of the
users of competencies, they can use the classification to determine which competen-
cies will be valuable for employment. On the part of the possessor, they can use the
classification levels to evaluate what they possess. Furthermore, educators can use the
classification levels to adjust their training. Additionally, the framework which was pro-
posed (UFSCSL) can be used for constant evaluation on old competencies and also on
new ones.

7 Conclusion

The study has analyzed, identified and created a classification that can be used by the
software community. This was done by synthesized existing relevant literature. The
empirical work was based on Kano et al. [11] and Rivera-Ibarra et al. [12] CFSE frame-
work. The study resulted in the identification of competencies, classification levels and
essential competencies of software engineers. The study charts a new path of identifying
essential or valued competencies of software engineers by using Kano model that has
on been applied on products and services. Further studies should be done to understand
how competencies within the satisfaction level can change.

The scope of the data collection was limited to companies situated in Norway; it may
therefore limit the ability to generalize the findings universally. Nevertheless, most of
the companies that the interviewees worked for has global representation and dealings
outside Norway. With the development of competency satisfaction levels, we call for
further studies to understand how specific competencies evolves within the satisfaction
level.

Acknowledgement. The author would like to acknowledge Prof. Pekka Abrahamsson for his
support in providing the dataset for this research and Dr. Hadi Ghanbari for his guidance.

Soft Competencies and Satisfaction Levels for Software Engineers 81

References

1. Weinberg, G.M.: The Psychology of Computer Programming. Dorset House Publishing, New
York (1971)

2. IEEE: Software Engineering Competency Model (SWECOM). IEEE. (2014). http://www.
dahlan.web.id/files/ebooks/SWECOM.pdf

3. Sedelmaier, Y., Landes, D.: Software engineering body of skills (SWEBOS). In: 2014 IEEE
Global Engineering Education Conference (EDUCON), pp. 395–401. IEEE (2014). https://
doi.org/10.1109/educon.2014.6826125

4. Lenberg, P., Feldt, R., Wallgren, L.G.: Behavioral software engineering: A definition and
systematic literature review. J. Syst. Softw. 107, 15–37 (2015). https://doi.org/10.1016/j.jss.
2015.04.084

5. Harris, K.S., Rogers, G.E.: Soft skills in the technology education classroom:what do students
need. Technol. Teacher 68(3), 19–25 (2008)

6. Moreno, A.M., Sanchez-segura, M., Medina-dominguez, F., Carvajal, L.: The journal of
systems and software balancing software engineering education and industrial needs. J. Syst.
Softw. 85(7), 1607–1620 (2012). https://doi.org/10.1016/j.jss.2012.01.060

7. Broadbent, M., Dampney, C.N.G., Lloyd, P., Hansell, A.: Roles, responsibilities and require-
ments for managing information systems in the 1990s. Int. J. Inf. Manage. 72, 21–38
(1992)

8. Colomo-palacios, R., Casado-lumbreras, C., Soto-acosta, P., García-peñalvo, F.J., Tovar-
caro, E.: Computers in human behavior competence gaps in software personnel: a multi-
organizational study. Comput. Hum. Behav. 29(2), 456–461 (2013). https://doi.org/10.1016/
j.chb.2012.04.021

9. Holtkamp, P., Jokinen, J.P.P., Pawlowski, J.M.: Soft competency requirements in require-
ments engineering, software design, implementation, and testing. J. Syst. Softw. 101, 136–146
(2015). https://doi.org/10.1016/j.jss.2014.12.010

10. Thurner, V., Schlierkamp, K., Bottcher, A., Zehetmeier, D.: Integrated development of tech-
nical and base competencies: fostering reflection skills in software engineers to be. In: IEEE
Global Engineering Education Conference, EDUCON, pp. 340–348. Abu Dhabi, UAE: IEEE
(2016). https://doi.org/10.1109/educon.2016.7474576

11. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Kano. attractive quality and must-be quality.
J. Japanese Soc. Qual. Control 14, 39–48 (1984)

12. Rivera-Ibarra, J.G., Rodríguez-Jacobo, J., Serrano-Vargas, M.A.: Competency framework for
software engineers. In: 2010 23rd IEEE Conference on Software Engineering Education and
Training, pp. 33–40 (2010). https://doi.org/10.1109/cseet.2010.21

13. Andrews, J., Higson, H.: Graduate employability, ‘soft skills’ versus ‘hard’ business knowl-
edge: a european study. Higher Educ. Eur. 33(4), 411–422 (2008). https://doi.org/10.1080/
03797720802522627

14. Trivellas, P., Reklitis, P.: Leadership Competencies Profiles and Managerial Effectiveness in
Greece. In: Procedia Economics and Finance, 9(Ebeec 2013), pp. 380–390 (2014). https://
doi.org/10.1016/s2212-5671(14)00039-2

15. Licorish, S.A., Macdonell, S.G.: Differences in jazz project leaders’ competencies and behav-
iors : a preliminary empirical investigation. In: 2013 6th International Workshop on Cooper-
ative and Human Aspects of Software Engineering (CHASE), pp. 1–8. IEEE (2013). https://
doi.org/10.1109/chase.2013.6614725

16. Noorman, M., Akmal, M., Osman, F., Ibrahim, Z.: Malaysian computer professional : assess-
ment of emotional intelligence and organizational commitment. In: Procedia - Social and
Behavioral Sciences, vol. 172, pp. 238–245. Elsevier B.V. (2015). https://doi.org/10.1016/j.
sbspro.2015.01.360

http://www.dahlan.web.id/files/ebooks/SWECOM.pdf
https://doi.org/10.1109/educon.2014.6826125
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1016/j.jss.2012.01.060
https://doi.org/10.1016/j.chb.2012.04.021
https://doi.org/10.1016/j.jss.2014.12.010
https://doi.org/10.1109/educon.2016.7474576
https://doi.org/10.1109/cseet.2010.21
https://doi.org/10.1080/03797720802522627
https://doi.org/10.1016/s2212-5671(14)00039-2
https://doi.org/10.1109/chase.2013.6614725
https://doi.org/10.1016/j.sbspro.2015.01.360

82 N. Assyne

17. Lee, Y.C., Sheu, L.C., Tsou, Y.G.: Quality function deployment implementation based on
fuzzy kano model: an application in PLM system. Comput. Ind. Eng. 55(1), 48–63 (2008).
https://doi.org/10.1016/j.cie.2007.11.014

18. Gangurde, S., Patil, S.: Benchmark product features using the Kano-QFD approach: a case
study. Benchmarking: an Int. J. 25(2), 450–470 (2018)

19. Huang, J. (2018). Application of Kano model and IPA on improvement of service quality of
mobile healthcare Jui-Chen Huang, 16(2)

20. Lehtola, L., Kauppinen, M.: Suitability of requirements prioritization methods for market-
driven software product development. Softw. Process Improv. Pract. 11(1), 7–19 (2006).
https://doi.org/10.1002/spip.249

21. Liu, X.F.: Software quality function deployment. Potentials, IEEE 19(5), 14–16 (2000).
https://doi.org/10.1109/45.890072

22. Piaszczyk, C.: Model based systems engineering with department of defense architectural
framework. Syst. Eng. 14(3), 305–326 (2011). https://doi.org/10.1002/sys

23. Richardson, I.: Software process matrix: a small company SPI model. Software Process:
Improvement and Practice, 6(Daft 1992), 157–165 (2001). https://doi.org/10.1002/spip.144

24. Orsoni, A., Colaco, B.: A competency framework for software development organizations.
In: 2013 UKSim 15th International Conference on Computer Modelling and Simulation,
pp. 507–511). IEEE (2013). https://doi.org/10.1109/uksim.2013.101

25. Acuña, S.T., Juristo, N.: Assigning people to roles in software projects. Softw. – Pract. Exp.
34(7), 675–696 (2004). https://doi.org/10.1002/spe.586

26. Linck, B., Ohrndorf, L., Kiel, T.D.L., Magenheim, J., Neugebauer, J.: Competence model
for informatics modelling and system comprehension. In: 2013 IEEE Global Engineering
Education Conference (EDUCON), pp. 85–93. IEEE (2013). https://doi.org/10.1109/educon.
2013.6530090

27. Tuffley, D. Optimising virtual team leadership in Global Software Development. IET
Software, 6(March 2011), pp. 176–184 (2012). https://doi.org/10.1049/iet-sen.2011.0044

28. Mason, J.: Qualitative Researching. Qualitative Research Journal, vol. 41 (2002). https://doi.
org/10.1159/000105503

29. Myers, M.D., Newman, M.: The qualitative interview in IS research: Examining the craft.
Inf. Organ. 17(1), 2–26 (2007). https://doi.org/10.1016/j.infoandorg.2006.11.001

30. Wohlin, C., Aurum, A.: Towards a decision-making structure for selecting a research design
in empirical software engineering. Empirical Softw. Eng. 20(6), 1427–1455 (2015). https://
doi.org/10.1007/s10664-014-9319-7

31. Braun, V., Clarke, V.: Full-text. Qual. Res. Psychol. 3(2), 77–101 (2006). https://doi.org/10.
1191/1478088706qp063oa

32. Kropp, M., Meier, A., Perellano, G.: Experience report of teaching agile collaboration and
values agile software development in large student teams. In: 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEET), pp. 76–80. IEEE
(2016). https://doi.org/10.1109/cseet.2016.30

33. Robal, T., Ojastu, D., Kalja, A., Jaakkola, H.: Managing software engineering competences
with domain ontology for customer and team profiling and training. In: Portland Interna-
tional Conference on Management of 2015 Portland International Conference on Manage-
ment of Engineering and Technology (PICMET), pp. 1369–1376 (2015). https://doi.org/10.
1109/picmet.2015.7273171

34. Samuelsen, T., Colomo-palacios, R., Kristiansen, M.: Learning software project management
in teams with diverse backgrounds. In: Fourth International Conference on Technological
Ecosystems for Enhancing Multiculturality–TEEM 16 (2016)

35. Turley, T., Bieman, M.: Competencies nonexceptional of exceptional and software engineers.
J. Syst. Softw. 28(28), 19–38 (1995)

https://doi.org/10.1016/j.cie.2007.11.014
https://doi.org/10.1002/spip.249
https://doi.org/10.1109/45.890072
https://doi.org/10.1002/sys
https://doi.org/10.1002/spip.144
https://doi.org/10.1109/uksim.2013.101
https://doi.org/10.1002/spe.586
https://doi.org/10.1109/educon.2013.6530090
https://doi.org/10.1049/iet-sen.2011.0044
https://doi.org/10.1159/000105503
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1007/s10664-014-9319-7
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1109/cseet.2016.30
https://doi.org/10.1109/picmet.2015.7273171

Soft Competencies and Satisfaction Levels for Software Engineers 83

36. Chang, J., Wang, T., Lee, M.: Impacts of using creative thinking skills and open data on pro-
gramming design in a computer-supported collaborative learning environment. In: 2016 IEEE
16th International Conference on Advanced Learning Technologies, pp. 396–400 (2016).
https://doi.org/10.1109/icalt.2016.78

37. Thurner, V., Axel, B., Andreas, K.: Identifying base competencies as prerequisites for soft-
ware engineering education. In IEEEGlobal Engineering Education Conference (EDUCON),
pp. 1069–1076 (2014). https://doi.org/10.1109/educon.2014.6826240

38. Suhartono, J., Sudirwan, J., Background, A.: Academic competence of computer science
graduate degree from the employer’s perspective. In: 2016 International Conference on Infor-
mation Management and Technology (ICIMTech), pp. 176–181. IEEE (2016). https://doi.
org/10.1109/icimtech.2016.7930325

https://doi.org/10.1109/icalt.2016.78
https://doi.org/10.1109/educon.2014.6826240
https://doi.org/10.1109/icimtech.2016.7930325

Natural Language Processing

Semantic Similarities in Natural
Language Requirements

Henning Femmer(B), Axel Müller, and Sebastian Eder

Qualicen GmbH, Lichtenbergstr. 8, 85748 Garching, Germany
{henning.femmer,axel.muller,sebastian.eder}@qualicen.de

Abstract. Semantic similarity information supports requirements trac-
ing and helps to reveal important requirements quality defects such as
redundancies and inconsistencies.

Previous work has applied semantic similarity algorithms to require-
ments, however, we do not know enough about the performance of
machine learning and deep learning models in that context.

Therefore, in this work we create the largest dataset for analyzing the
similarity of requirements so far through the use of Amazon Mechani-
cal Turk, a crowd-sourcing marketplace for micro-tasks. Based on this
dataset, we investigate and compare different types of algorithms for
estimating semantic similarities of requirements, covering both relatively
simple bag-of-words and machine learning models.

In our experiments, a model which relies on averaging trained word
and character embeddings as well as an approach based on character
sequence occurrences and overlaps achieve the best performances on our
requirements dataset.

Keywords: Requirements engineering · Similarity detection · Machine
learning

1 Introduction

Since a requirements specification defines the outcome of a particular prod-
uct development process, it is necessary that the contained requirements ful-
fill important quality factors [1,2]. This is important because requirements are
worthless if they are, for instance, not understandable or the defined set of
requirements is not complete. In that case, the developers or manufacturers
could misunderstand the desired characteristics and thus create a product that
diverges from the expected result. Therefore, the quality of the requirements
specification needs to be assured which is typically accomplished by inspecting
and validating the created requirements with respect to different quality char-
acteristics. Accordingly, requirements can have different defects if they do not
satisfy these characteristics [3,4].

Several of these characteristics are related to the semantic similarity of
requirements. For example, semantic similarity information would help to iden-
tify redundant requirements which impair the maintainability of a requirements
c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 87–105, 2020.
https://doi.org/10.1007/978-3-030-35510-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_6

88 H. Femmer et al.

document since changes would have to be carried out for all duplicate items. Fur-
thermore, automatic similarity estimations could help revealing inconsistencies
within the specification by helping to track similar requirements which might
turn out to be contradictory regarding particular details. Besides that, the pro-
cess of requirements tracing could be supported by automatically suggesting
links between similar project artifacts like requirements, test cases or designs.
By generating these traces in a faster and easier way due to automatic similar-
ity analyses, requirements engineers would be supported in understanding the
relationships between different artifacts and can thus better detect duplicates,
inconsistencies or missing items. When extending this idea to specifications of dif-
ferent projects, the information about the similarity of their artifacts may reveal
reusable components of prior projects thus helping to reduce project effort.

Therefore, having information about the semantic similarities of requirements
could help to support requirements engineers or analysts during the requirements
review [5].

As we discuss in Sect. 2, previous works looking into this topic focused mostly
on information retrieval approaches. However, modern advances in machine
learning, e.g. Alpha Go [6] give us a glimpse of the potential of machine learning.
Each year, the most promising approaches for similarity detection are discussed
in the SemEval community. In this work, we want to test their knowledge in the
domain of requirements engineering.

1.1 Contribution of This Work

This paper provides a novel analysis of the performance of a variety of similarity
detection algorithms, including both baseline information retrieval algorithms,
but also machine learning based approaches, on a large dataset of 1000 pairs of
natural language requirements.

1.2 Structure of This Work

In Sect. 2, we describe related work with respect to both requirements-independent
semantic similarity algorithms as well as already applied similarity approaches
within the domain of requirements engineering. In Sect. 3, we explain the required
background knowledge to understand the content of this paper in particular
regarding our applied semantic similarity algorithms.The design of our experiment
which is intended to evaluate the different algorithms on a requirements dataset
is portrayed in Sect. 4. We present and analyze the results of this experiment in
Sect. 5. Based on these results, we conclude and come up with several interpreta-
tions which are discussed in Sect. 6. Finally, in Sect. 7, we summarize the content
and gathered insights of this work.

Semantic Similarities in NL Requirements 89

2 Related Work

Our related work can be divided into semantic similarity approaches using gen-
eral text data and approaches only focusing on requirements data.

2.1 Semantic Similarity Estimation of General Texts

The approach and study of our paper draws on the Natural Language Processing
task of Semantic Textual Similarity introduced by Agirre et al. For this task,
algorithms try to estimate the grade of semantic similarity between given sen-
tence pairs [7]. However, models that have been proposed for this task have not
been investigated in the context of requirements engineering yet.

Several introduced semantic similarity models use machine learning tech-
niques with manually designed and engineered features. These features often
rely on string-based lexical information such as word and character overlaps, on
knowledge-based semantic word relations based on lexical-semantic resources like
WordNet, on corpus-based vector space models like Latent Semantic Analysis,
or on syntactic similarities and dependencies [7,8].

Other researchers have proposed artificial intelligence models that are capable
of capturing semantic differences of sentences based on word order or sentence
structures [9]. Such algorithms can, for example, use sentence vectors provided
by models such as Nie and Bansal’s sentence encoder [10], employ interaction
modules for computing word and phrase relationships of sentences like in Parikh
et al.’s model [11] or apply combinations of such components such as the neural
network model proposed by He and Lin [12].

2.2 Semantic Similarity Estimation for Requirements

Several semantic similarity approaches have specifically been proposed for the
domain of requirements engineering and often utilize lexical similarity measures.

Mihany et al. introduced a system for identifying reusable projects and com-
ponents by the similarity of their requirements which was calculated based on
word overlaps [13,14].

Natt och Dag et al. compared different lexical similarity measures for identi-
fying equivalent requirements [5]. They further refined these approaches in order
to map customer wishes to product requirements which relate to the same func-
tional requirements. For that, they constructed and compared sentence vectors
based on word occurrences and frequency weights [15,16].

Hayes et al. compared several similarity methods for the requirements tracing
process in order to automatically identify potential links between similar arti-
facts. They experimented with term frequencies and weights (TF-IDF), Latent
Semantic Indexing (LSI), incorporating thesaurus information as well as rele-
vance feedback analysis. Thereby, artifacts were represented by word occurrence
vectors [17]. Eder et al. also applied LSI for automatic requirements tracing
intending to automate the determination of LSI configurations [18].

90 H. Femmer et al.

Mezghani et al. proposed a k-means clustering algorithm for detecting redun-
dancies and inconsistencies in requirements. They applied their algorithm on
combinations of given requirements and their extracted business terms using the
Euclidean distance as a similarity metric [19].

Juergens et al. investigated clone detection for requirements specifications.
Their approach tried to identify duplicates by analyzing suffix trees which were
constructed based on the word sequences of requirements [20].

Falessi et al. experimented with different NLP techniques regarding the iden-
tification of equivalent requirements. Their applied approaches comprised combi-
nations of algebraic models, term extraction techniques, weighting schemes and
similarity metrics. Falessi et al. reported a bag-of-words approach as the best
single NLP technique, however, they pointed out that a combination of different
NLP techniques outperformed all available individual approaches [21].

2.3 Research Gap

Researchers on semantic textual similarity tasks have proposed different state-
of-the-art machine learning approaches that have shown to outperform simpler
information retrieval methods on general text data. Nevertheless, it has never
been investigated whether such approaches can also yield superior performances
when applied to requirements data.

3 Background

For this work, two concepts are relevant. First, we need to define similarity.
Second, we need to define the algorithms that we want to apply.

3.1 Semantic Similarity

For the definition of semantic similarity within this work, we utilize an ordinal
similarity scale with six different values. This scale has been introduced by Agirre
et al. for the SemEval research workshops on semantic textual similarity and
have been successfully applied in this linguistic community since 7 years (details
e.g. in [22]).

The applied semantic similarity scale is shown in Table 1. As can be seen,
the different levels reach from total dissimilarity in meaning to complete mean-
ing equivalence. The intermediate similarity grades represent various degrees of
partial similarity and meaning overlap [7], for example, considering the topics
and details of given texts.

Semantic Similarities in NL Requirements 91

Table 1. Ordinal semantic similarity scale

Score Explanation

0 The two sentences are completely dissimilar

1 The two sentences are not equivalent, but are on the same topic

2 The two sentences are not equivalent, but share some details

3 The two sentences are roughly equivalent, but some important
information differs/is missing

4 The two sentences are mostly equivalent, but some unimportant
details differ

5 The two sentences are completely equivalent, as they mean the
same thing

3.2 Applied Algorithms

In this work, we compare the algorithms listed in Table 2. The selection is based
on the most common and successful algorithms from the SemEval community [7],
since these are obviously the most promising approaches. We cannot explain all
used algorithms in detail. For a deeper introduction into this, please refer to the
respective original works. The selected algorithms listed in Table 2 vary between
baselines, pre-trained, self-trained, and non-trained approaches:

Baseline approaches are very simplistic approaches, e.g. counting tokens,
that help to reflect on the complexity of the problem and the actual advantage
of more sophisticated and complex approaches. Pre-Trained approaches came
with already trained machine learning models provided by the original authors.
Self-Trained approaches are machine learning algorithms that we trained our-
selves using data that has been published for the SemEval workshops. Non-
Trained approaches do not require training for applications.

4 Study Design

In this chapter, we describe the structure and setup of our study which we
use to compare the performances of different semantic similarity algorithms on
requirements data. The description and design of our study correspond to the
experiment process as introduced by Wohlin et al. [32].

According to the Goal Question Metric approach of Basili et al. [33], we first
define the goal of our study as well as related research questions that we will
investigate and answer based on the obtained results measured by appropriate
metrics. Afterwards, we describe the context and setup of our study including
selected subjects, objects and instruments.

4.1 Goal Definition

To understand the overall setting and intention of our experiment, we first define
the goal of this study:

92 H. Femmer et al.

Table 2. The different algorithms used in this study grouped into baseline approaches,
as well as pre-trained, self-trained, and non-trained approaches, each in alphabetical
order.

Algorithm Description

Char ngram BOW A baseline token-occurrence-based model incorporating both
character trigrams and fourgrams as features into the sentence vectors
whereby the corresponding vector values represent binary occurrence
indicators of these tokens

Word2vec CBOW As a baseline, Word2vec continuous bag of words (CBOW) is a widely
used word embeddings approach

BiLSTM Avg A pre-trained sentence encoder by Wieting et al. that uses a
bi-directional LSTM and concatenates the hidden states of the
forward and backward LSTM [23,24]

Charagram A pre-trained sentence encoder by [25] based on character n-gram
embeddings which are added together in order to retrieve sentence
vectors

InferSent A pre-trained sentence encoder model that is a bi-directional LSTM
trained on Natural Language Inference data [26]

USE As a pre-trained sentence encoder, Universal Sentence Encoders (USE)
is an approach focussing on task and context generalizability [27]

Word-trigram This pre-trained sentence encoder combines word and character
trigram embeddings by averaging all embeddings for the character
sequences and words contained in the given sentence, which
outperformed other models on SemEval tasks [23,24]

DecAttn A self-trained supervised algorithm only based on word and phrase
alignments which are used to partition the problem into subtasks [11]

MPCNN As a self-trained supervised algorithm, Multi-Perspective
Convolutional Neural Networks are a CNN specifically tuned for
semantic similarities [8]

PWIM and Subword
PWIM

As a self-trained supervised algorithm, Pairwise Word Interaction
Model (PWIM) is similar to MPCNNs, but directly applies
word-interaction computations on the individual word context
representations of the given sentences [12]. The Subword PWIM
model uses the same functionality but has been adapted to work with
character sequence embeddings [28]

Random Forest Self-trained supervised algorithm that creates multiple trees on
specific subsets of the sample data and aggregates the results. We
apply the NLP features proposed at SemEval 2017 [29]

SSE As a self-trained supervised algorithm, Shortcut-stacked Sentence
Encoder is an ML approach originally developed for multi-domain
natural language inference tasks [10]

Tree LSTM A self-trained supervised algorithm that processes sentences according
to the syntactic sentence structure [9]

Word Aligner This is a non-trained model that has worked very well on previous
similarity tasks outside the RE world [30,31]

Our goal is to analyze semantic similarity algorithms
for the purpose of evaluating and comparing their performances
with respect to the accuracy of their predicted semantic similarity scores
from the point of view of laymen
in the context of natural language requirements pairs with human-annotated
semantic similarity labels.

4.2 Research Questions

In this work, we focus on the following research questions:

Semantic Similarities in NL Requirements 93

– RQ1: How do semantic similarity algorithms trained on non-requirements
data perform in comparison to algorithms trained on requirements data?

– RQ2: Which algorithm performs most accurately for predicting the semantic
similarities of natural language requirements?

4.3 Metrics

In order to answer the research questions, we test and analyze the performance
of each algorithm based on its semantic similarity prediction accuracy. For this,
we apply mean squared error (for a discussion of the adequacy, check [34]) as the
performance metric for the algorithms, where n indicates the number of samples
and yi and ŷi represent the expected and the predicted scores respectively:

MSE =
1
n

n∑

i=1

(yi − ŷi)2

4.4 Experiment Design and Execution

The overall procedure of our experiment is illustrated in Fig. 1 and will be further
explained in the following sections.

Fig. 1. Overview of the experiment procedure

Requirements Pair Dataset and Human Similarity Annotations. In order to col-
lect human scores, we extract requirements from several requirements specifica-
tions and assemble 1000 different requirements pairs. We upload this dataset to
the crowdsourcing marketplace Amazon Mechanical Turk1 where human work-
ers, called turkers, assign semantic similarity scores to each of our requirements
pairs. For each requirements pair, we collect annotations from five different work-
ers and take the median. Annotators are asked to assign a semantic similarity
category S ∈ {

0, 1, 2, 3, 4, 5
}

to each requirements pair according to the similar-
ity definition given in Table 1. We argue that this does not require the partici-
pants to have any expertise in the domains of linguistics or requirements analysis
(c.f. Dagan et al. [35]).

1 https://www.mturk.com/ (accessed 06 February 2019).

https://www.mturk.com/

94 H. Femmer et al.

We choose to retrieve annotations this way due to the findings of Agirre et al.
in the context of their preparations for the SemEval workshops. They have shown
that similarity scores with good rates of agreement among the annotators can
be observed for similar semantic similarity annotation tasks (cf. e.g. Sect. 2.1).

Each turker who participates in our task on Amazon Mechanical Turk gets
paid $0.04 per annotated requirements pair. The total number of annotations
per worker over all of our uploaded requirements pairs is not restricted, however,
one particular worker can only annotate each requirements pair once.

Similarity Annotation Retrieval. We executed several trial runs with only five
requirements pairs each. This is intended to evaluate and compare the perfor-
mance of the turkers, which enabled us to evaluate the required qualification for
the turkers. When we required masters qualification from our turkers, the turk-
ers provided us annotations on average close to our own similarity estimations
for the corresponding requirements pairs.

Algorithm Application and Performance Comparison. Afterwards, we apply
a variety of different algorithms on this dataset in order to compare their
performances.

Balancing. We collect annotations in batches of 100 sentence pairs each, which
allows us to control for the balance of similarity scores by appropriately choosing
the requirements pairs for our subsequent batches. This means that we check the
distribution of similarity scores after every completed batch. Based on that, we
create the next batch with more pairs of the less frequent categories and less pairs
of the more frequent categories according to our own similarity judgements for
the corresponding requirements. However, because our own assessment of these
pairs may diverge from the final annotations of the turkers, we cannot completely
influence and control the final balance of semantic similarity scores.

Randomization. Before we upload our dataset to Amazon Mechanical Turk,
we shuffle the requirements pairs in each batch so that requirements taken from
the same document are less likely to be clustered together.

4.5 Study Subjects

Due to Amazon Mechanical Turk, our subjects are primarily laymen. In trial
runs, we have retrieved the best results regarding the agreement among annota-
tors when requiring a so-called Masters qualification. Consequently, we take this
as a prerequisite for our tasks.

Semantic Similarities in NL Requirements 95

4.6 Study Objects

Our objects are requirements that we extract from 14 different requirements
specifications available on the Natural Language Requirements Dataset [36].
These include both real-world industrial requirements specifications and spec-
ifications from university projects. We select the software requirements speci-
fications based on our impression of how suitable their requirements would be
for getting annotated by laymen. Accordingly, the requirements to be incorpo-
rated in our dataset must be understandable without a background briefing.
However, we incorporate both requirements that are easy to understand as well
as requirements that are more complicated based on their sentence structure
and content. Table 3 shows all of the requirements documents that we use for
collecting requirements for our dataset.

Table 3. Sources of the requirements in our evaluation dataset

Document Domain Number of req.

Pontis Highway bridge information management system 274

E-store Online store for consumer electronics 112

Sprat Goals and scenario management tool 98

NASA Spacecraft software 86

TCS Aircraft control software 75

Nenios Child care management software 71

agentMom Multi agent communication systems 59

Philips Messenger software application 42

Mahjong Web software system for Chinese board game 37

Digital home Home management system 35

Puget sound Courseware system 32

Blit Laboratory information system 29

Colorcast Web application for paint selection 26

Video search Video search software 24

As described before, we balance the number of future semantic similarity
scores to the extent possible while building the requirements pair dataset based
on our own similarity estimations. However, this is difficult because we cannot
predict the scores that will be obtained from the annotators. Hence, our evalua-
tion dataset turned out to have a higher number of requirements pairs annotated
with the similarity categories 1 or 2, whereas especially the number of require-
ments pairs annotated with category 4 is small compared to this. The histogram
of received semantic similarity categories is illustrated in Fig. 2.

96 H. Femmer et al.

5 Results

In this section, we report the performances of our applied algorithms on our
created requirements pair dataset based on the defined metrics and appropriate
visualizations.

5.1 Presentation of Results

In the following, we present the performance accuracies of the algorithms intro-
duced in the Sect. 3 when applied to our assembled requirements pair dataset.

Fig. 2. Distribution of requirements pairs over similarity categories

Performance Accuracy. As described in Sect. 4.3, we use the mean squared
error (MSE) as the performance metric to measure the accuracy of the predic-
tions of our applied algorithms based on the collected similarity labels for our
requirements evaluation dataset.

Overall and Weighted Mean Squared Error Metrics. Because of the unbalanced
distribution of requirements pairs over the six similarity categories, only regard-
ing the overall mean squared error would give a distorted result since there would
be a bias towards the more frequent categories. Thus, we calculate the weighted
mean squared error by summing up the individual mean squared errors MSEc

for each semantic similarity category c of requirements pairs which have been
labeled with this category and dividing this result by 6 according to the number
of similarity categories:

weighted MSE =
1
6

∗
5∑

c=0

MSEc

Semantic Similarities in NL Requirements 97

We include the overall mean squared error as well as the weighted mean squared
error for each algorithm in Table 4 denoted as MSE and MSEw.

The smaller the mean squared error, the less do the algorithms’ predictions
diverge from the assigned similarity labels treated as the ground truth. Accord-
ingly, smaller MSEs indicate better algorithm performances.

Performance Results. In Table 4 we list the mean squared error values for every
algorithm as described before. We denote the adjusted algorithm settings (where
we chose hyper-parameters for the algorithms) by adding (a) to the correspond-
ing model names.

5.2 Answers to Research Questions

In this section, we answer our research questions which have been introduced in
the previous chapter on the basis of the experiment results presented above.

We will describe the differences between the algorithms relative to each other.
Therefore, when we say that the MSE of an algorithm is relatively small or rela-
tively big this refers to the comparison of its performance to the other algorithms.

RQ1: How Do Semantic Similarity Algorithms Trained on Non-
requirements Data Perform in Comparison to Algorithms Trained on
Requirements Data? For answering this research question, we only consider
our self-trained algorithms and the pre-trained sentence encoders because the
monolingual word aligner and the baseline algorithms do not need to be trained.

From analyzing the mean squared error results of these algorithms, it can be
inferred that most of the evaluated models perform rather well in the context
of this work because the majority of the weighted mean squared error values
is below or around 1.5. This means that on average the predictions of the cor-
responding algorithms do not diverge much more than one similarity category
from the expected similarity score as interpreted by humans.

In particular, the pre-trained Word-trigram sentence encoder model with
both its original and adjusted application settings shows a very good perfor-
mance on our requirements data, achieving a weighted mean squared error of
0.94 with its adjusted settings and of 0.96 with the standard model. Behind these
two model versions, the BiLSTM Avg model ranks third among all trained algo-
rithms and completes the set of the best three algorithms within this experiment,
producing prediction results with a weighted MSE of 0.98.

As can be seen in Table 4, for almost all of the trained algorithms we were
able to come up with adjusted training or application settings so that better
performances on the evaluation dataset could be achieved. For example, espe-
cially for the Subword PWIM and the standard PWIM models, the performance
differences between the unadjusted and the adjusted settings are very large.

98 H. Femmer et al.

Table 4. Table shows performances on our requirements evaluation dataset ordered
by weighted mean squared error. Models that have been self-trained or applied with
adjusted settings are marked with (a).

Algorithm MSE MSEw Type

Word-trigram (a) 0.96 0.94 Pre-Trained

Char ngram BOW 0.94 0.94 Baseline

Word-trigram 0.95 0.96 Pre-Trained

BiLSTM Avg 0.98 0.98 Pre-Trained

Charagram (a) 0.97 1.06 Pre-Trained

Charagram 0.95 1.08 Pre-Trained

Word Aligner (a) 0.99 1.10 Non-Trained

InferSent (a) 1.10 1.14 Pre-Trained

Word Aligner 1.03 1.15 Non-Trained

Subword PWIM (a) 1.20 1.15 Self-Trained

PWIM (a) 1.20 1.16 Self-Trained

Random Forest (a) 1.29 1.21 Self-Trained

Word2vec CBOW 1.25 1.28 Baseline

MPCNN (a) 1.33 1.29 Self-Trained

USE (a) 1.28 1.30 Pre-Trained

USE 1.29 1.31 Pre-Trained

Random Forest 1.38 1.31 Self-Trained

SSE (a) 1.49 1.36 Self-Trained

Tree LSTM (a) 1.44 1.45 Self-Trained

PWIM 1.64 1.56 Self-Trained

Subword PWIM 1.78 1.63 Self-Trained

MPCNN 1.75 1.63 Self-Trained

SSE 1.98 1.85 Self-Trained

Tree LSTM 2.17 2.03 Self-Trained

DecAttn (a) 2.59 2.50 Self-Trained

InferSent 2.77 2.55 Pre-Trained

DecAttn 3.08 2.90 Self-Trained

RQ2: Which Algorithm Performs Most Accurately for Predicting the
Semantic Similarities of Natural Language Requirements? The best-
performing algorithms in our experiment were the adjusted Word-trigram model
and the Char ngram BOW baseline which both achieved the smallest weighted
MSE of 0.94.

Furthermore, the third best algorithm, the BiLSTM Avg model, completes
the set of algorithms which reached a weighted MSEs below 1.0. This approach
provides slightly better results for the lower similarity categories 0, 1 and 2 but
performs less accurately for the other, higher similarity categories.

Semantic Similarities in NL Requirements 99

Apart from this, when further analyzing Table 4, it can be seen that there are
more algorithms whose performances do not greatly differ from the best results
described above.

All in all, despite the minor differences to other model performances, our
experiment results have shown that the Word-trigram and the Char ngram BOW
models perform most accurately within the scope of this experiment.

6 Interpretation

In this section, we interpret the results and observations described before for
each individual research question. Furthermore, we discuss the threats to validity
which apply to our conducted experiment.

6.1 RQ1: How Do Semantic Similarity Algorithms Trained on
Non-requirements Data Perform in Comparison to Algorithms
Trained on Requirements Data?

Our experiment reveals that distinct trained semantic similarity algorithms
achieve very different performances. Within this section, we identify and dis-
cuss various findings regarding the characteristics of these algorithms and their
influence on the performance results.

For our self-trained models, we used the same training data, classification
layer, loss function, and training objective. However, these models exhibit sub-
stantially different performances. Thus, we conclude, that the actual architecture
(esp. of neural networks) of the underlying models impacts accuracy.

Algorithms that do not consider the word order can perform equal or better
than algorithms sensitive to the word order. This is especially true for the bag
of words based algorithms. Thus, we conclude that word order is not important
to detect similar requirements, in contrast to other NLP tasks.

We adjusted the parameters of various algorithms to make them perform
better on requirements data. This included the pre-processing steps. Thereby
we noticed that for the different algorithms, different pre-processing steps have
a positive influence on their accuracy. However, the best choices of pre-processing
steps which yield the highest performance gains largely differ between models.
We assume that this is likely linked to the way of how models process the input
texts and how they model input representations so that, for instance, some
models prefer to keep stop words and original word forms in order to better
understand sentence structures and word relationships.

6.2 RQ2: Which Algorithm Performs Most Accurately for
Predicting the Semantic Similarities of Natural Language
Requirements?

As already identified in Sect. 5.2, the models with the best overall performance
in our experiment are the Word-trigram and Char ngram BOW models. In the
following we further discuss these algorithms and their performances.

100 H. Femmer et al.

We believe that the Word-trigram model might perform better than the Char
ngram BOW baseline when they are both applied to other datasets by using the
same implementation settings like in our experiment. This is because the Word-
trigram model has already proven its transferability from its training dataset
to another dataset, that is, our requirements dataset whereas the settings of
the Char ngram BOW model are completely adjusted and dependent on our
evaluation dataset.

For this reason, we consider the Word-trigram model as the best overall
model not only because it outperformed all other models applied within our
experiment, but also because of its proven transferability. Moreover, we think
that its large paraphrase training corpus and the combination of word and char-
acter embeddings allow it to capture important and meaningful characteristics
of words and sentences that are crucial for the determination of semantic sim-
ilarity. Because of this embedding information, we assume that this model can
better capture important word semantics and semantic relations between words
compared to the simpler token occurrence-based approaches which merely rely
on lexical token overlaps. This might be even more important for other require-
ments specifications which may use less consistent terminology.

6.3 Threats to Validity

We discuss the validity threats according to the different issues described by
Wohlin [32].

Reliability of Measures. In our experiment, we apply the ordinal similarity
scale which is used to collect human interpretations of semantic similarity for
given requirements pairs. This measure can be unreliable because humans may
interpret semantic similarities differently. However, we collect similarity annota-
tions from five different raters for every requirements pair and take the median
in order to retrieve the final similarity label.

The inter-rater agreement according to the Kendall’s coefficient of concor-
dance W of 0.607 suggests that there is a correlation between the scores of the
different annotators for each requirements pair. Thus, there is a good degree of
agreement between the raters regarding the semantic similarities of our require-
ments pairs which is why we assume that reasonable similarity labels have been
obtained.

Finally, we review the obtained dataset. We note that while some scores
diverge from how we would have rated the corresponding requirements pairs,
the majority of these labels agrees with our own point of view. Consequently,
despite the sometimes large divergences between the individual annotations of
different raters, we argue that we have retrieved a suitable dataset for the purpose
of this study where the potential disagreement between raters is counteracted
by taking the median score.

Semantic Similarities in NL Requirements 101

Random Irrelevancies in Experimental Setting. This issue is concerned
with possible influences on the result due to external disturbances like noise or
interruptions. Since our subjects can log on to Amazon Mechanical Turk and
participate in our experiment from any place and at any time, we cannot control
their environment and outside influences.

Random Heterogeneity of Subjects. Since all Amazon Mechanical Turk
workers who fulfill the defined qualification requirements of our experiment are
able to accept and participate in our created task, there might be a certain
heterogeneity of subjects.

We tried to mitigate the effects of individual differences by requiring the
Master qualification as well as by taking the median from five different annota-
tors for every requirements pair. Furthermore, we conducted several trial runs
for obtaining similarity annotations where we investigated and selected the most
suitable qualification requirements In these trial runs, the median value of the
obtained scores for the best selected qualification requirements seemed to be
reasonable and suitable for the tested pairs.

Mono-operation Bias. The mono-operation bias describes the problem of not
representing the construct broadly enough, for instance, by only including one
subject, variable or object. In our experiment, we only used requirements from
the domain of information technology. Hence, results might not generalize.

Mixed Scales. In our experiment, we use an ordinal similarity scale to record
the similarity annotations assigned by our subjects so that every annotation cor-
responds to one of the six similarity categories. Our applied algorithms produce
predictions according to a similar idea of similarity, however, their similarity
estimations are continuous so that they can lay between categories and thus cor-
respond to an interval scale. Since we calculate the mean squared error based on
the ordinal human similarity annotations and the continuous algorithm predic-
tions, we compare values from an ordinal scale to values from an interval scale.
This constitutes an error according to measure theory and thus poses a threat
to the validity of our results.

Interaction of Selection and Treatment. In our case, we utilized laymen
as subjects for our study. However, the study results are intended for evaluat-
ing the suitability of the tested semantic similarity algorithms for requirements
engineering in industry where requirements analysts and experts are concerned
with the topic of semantic similarities of requirements. Due to their background
knowledge and experience, requirements experts might interpret semantic sim-
ilarities of requirements differently than laymen. Thus, this might negatively
influence the generalizability of our results to industrial practice.

102 H. Femmer et al.

Interaction of Setting and Treatment. This threat concerns the risk of
using a different experimental setting or relying on non-representative objects
during the study compared to what is standard in industrial practice. In our
experiment, we used requirements from industrial requirements specifications or
specifications from university that are similar to industrial specifications. Most
of these specifications have been created for real-life projects. Thus, we believe
that they are at least to some extent representative of requirements used in
industrial practice.

7 Summary

In this work, we researched and investigated suitable approaches for automat-
ically estimating the semantic similarities of requirements pairs. In order to
evaluate and compare these approaches, we designed an experiment in which
the algorithms’ predictions were measured against human similarity interpre-
tations that were treated as the ground truth. For this purpose, we assembled
an evaluation requirements dataset containing 1000 distinct requirements pairs
which were extracted from several requirements specifications for industrial and
university projects. For this dataset, we obtained similarity labels from human
annotators according to an ordinal similarity scale from 0 to 5 using Amazon
Mechanical Turk as a crowdsourcing platform.

The requirements pair dataset was used to determine the performances of our
selected and applied algorithms by calculating the mean squared error between
their predictions and the corresponding human similarity labels. Due to the
unbalanced distribution of the requirements pairs in our evaluation dataset over
the similarity categories, we calculated a weighted mean squared error which
determines and averages individual MSE values for each similarity class. Based
on these performance results, we were able to draw different conclusions regard-
ing our research questions which we summarize in the following.

RQ1: How do Semantic Similarity Algorithms Trained on Non-requirements
Data Perform in Comparison to Algorithms Trained on Requirements Data?
We found that the different algorithms perform very differently on requirements
data both regarding their overall performances as well as regarding their per-
formances for individual similarity categories. This indicated that the models
have different prediction tendencies regarding the various similarity categories.
Furthermore, we suggested that the performances of algorithms which do not
capture characteristics about word order and sentence structures do not seem
to be negatively influenced because these types of information do not seem to
noticeably affect the semantic similarity of requirements pairs.

RQ2: Which Algorithm Performs Most Accurately for Predicting the Semantic
Similarities of Natural Language Requirements? In our study, the Word-trigram
sentence encoder model developed by Wieting et al. [23] as well as the Char
ngram BOW baseline approach achieved the best overall performance accuracy

Semantic Similarities in NL Requirements 103

with a weighted mean squared error of 0.94. The Word-trigram model combines
word embeddings with character trigram embeddings and averages these com-
binations in order to retrieve sentence vector representations whereas the Char
ngram BOW method is based on lexical character sequence overlaps. Despite
the equal performance results, we believe that the Word-trigram model would
provide better performances in practice due to its use of token embeddings which
capture individual word and sentence semantics instead of just relying on token
occurrences and overlaps.

References

1. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Softw.
36(3), 83–91 (2018)

2. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

3. Femmer, H.: Automatic requirements reviews - potentials, limitations and practical
tool support. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 617–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 53

4. Wiegers, K.E., Beatty, J.: Software Requirements. Microsoft Press, Redmond
(2013)

5. Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A
feasibility study of automated natural language requirements analysis in market-
driven development. Requir. Eng. 7(1), 20–33 (2002)

6. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

7. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: SemEval-2017 task
1: semantic textual similarity multilingual and crosslingual focused evaluation. In:
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval
2017), pp. 1–14. Association for Computational Linguistics (2017)

8. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with
convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, Association for Computational Linguis-
tics, pp. 1576–1586 (2015)

9. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. CoRR abs/1503.00075 (2015)

10. Nie, Y., Bansal, M.: Shortcut-stacked sentence encoders for multi-domain inference.
In: Proceedings of the 2nd Workshop on Evaluating Vector Space Representations
for NLP, pp. 41–45. Association for Computational Linguistics (2017)

11. Parikh, A., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention model
for natural language inference. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2249–2255. Association for Compu-
tational Linguistics (2016)

12. He, H., Lin, J.: Pairwise word interaction modeling with deep neural networks for
semantic similarity measurement. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 937–948. Association for Computational Linguistics
(2016)

https://doi.org/10.1007/978-3-319-69926-4_53

104 H. Femmer et al.

13. Mihany, F.A., Moussa, H., Kamel, A., Ezat, E.: A framework for measuring simi-
larity between requirements documents. In: Proceedings of the 10th International
Conference on Informatics and Systems. INFOS 2016, pp. 334–335. ACM, New
York (2016)

14. Mihany, F.A., Moussa, H., Kamel, A., Ezzat, E., Ilyas, M.: An automated system
for measuring similarity between software requirements. In: Proceedings of the 2nd
Africa and Middle East Conference on Software Engineering, AMECSE 2016, pp.
46–51. ACM New York (2016)

15. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: Speeding up require-
ments management in a product software company: linking customer wishes to
product requirements through linguistic engineering. In: Proceedings of 12th IEEE
International Requirements Engineering Conference, September 2004, pp. 283–294
(2004)

16. Natt och Dag, J., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-
engineering approach to large-scale requirements management. IEEE Softw. 22(1),
32–39 (2005)

17. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: the study of methods. IEEE Trans. Softw. Eng. 32(1),
4–19 (2006)

18. Eder, S., Femmer, H., Hauptmann, B., Junker, M.: Configuring latent seman-
tic indexing for requirements tracing. In: Proceedings of the Second International
Workshop on Requirements Engineering and Testing, RET 2015, pp. 27–33. IEEE
Press, Piscataway (2015)

19. Mezghani, M., Kang, J., Sèdes, F.: Industrial requirements classification for redun-
dancy and inconsistency detection in SEMIOS. In: 26th IEEE International
Requirements Engineering Conference, RE 2018, Banff, AB, Canada, 20–24 August
2018, pp. 297–303 (2018)

20. Juergens, E., et al.: Can clone detection support quality assessments of require-
ments specifications? In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 2, ICSE 2010, pp. 79–88. ACM, New
York (2010)

21. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Trans. Softw. Eng. 39(1), 18–44 (2013)

22. Agirre, E., Diab, M., Cer, D., Gonzalez-Agirre, A.: SemEval-2012 task 6: a pilot
on semantic textual similarity. In: Proceedings of the First Joint Conference on
Lexical and Computational Semantics - Volume 1: Proceedings of the Main Con-
ference and the Shared Task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation, SemEval 2012, pp. 385–393. Association for
Computational Linguistics, Stroudsburg (2012)

23. Wieting, J., Gimpel, K.: Pushing the limits of paraphrastic sentence embeddings
with millions of machine translations. CoRR abs/1711.05732 (2017)

24. Wieting, J., Mallinson, J., Gimpel, K.: Learning paraphrastic sentence embeddings
from back-translated bitext. In: Proceedings of Empirical Methods in Natural Lan-
guage Processing. (2017)

25. Wieting, J., Bansal, M., Gimpel, K., Livescu, K.: Charagram: embedding
words and sentences via character n-grams. CoRR abs/1607.02789 (2016)

Semantic Similarities in NL Requirements 105

26. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning
of universal sentence representations from natural language inference data. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, September 2017, pp. 670–680. Association for
Computational Linguistics (2017)

27. Cer, D., et al.: Universal sentence encoder. CoRR abs/1803.11175 (2018)
28. Lan, W., Xu, W.: Character-based neural networks for sentence pair modeling. In:

Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), pp. 157–163. Association for Computational Linguistics (2018)

29. Al-Natsheh, H.T., Martinet, L., Muhlenbach, F., ZIGHED, D.A.: UdL at SemEval-
2017 task 1: semantic textual similarity estimation of English sentence pairs using
regression model over pairwise features. In: Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, August
2017, pp. 115–119. Association for Computational Linguistics (2017)

30. Brychćın, T., Svoboda, L.: UWB at SemEval-2016 task 1: semantic textual similar-
ity using lexical, syntactic, and semantic information. In: SemEval@NAACL-HLT,
pp. 588–594. The Association for Computer Linguistics (2016)

31. Sultan, M.A., Bethard, S., Sumner, T.: Back to basics for monolingual alignment:
exploiting word similarity and contextual evidence. Trans. Assoc. Comput. Lin-
guist. 2, 219–230 (2014)

32. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

33. Basili, V.R., Caldiera, G.: Rombach, D.H.: The goal question metric approach. In:
Encyclopedia of Software Engineering, pp. 528–532 (1994)

34. Shepperd, M., MacDonell, S.: Evaluating prediction systems in software project
estimation. Inf. Softw. Technol. 54(8), 820–827 (2012)

35. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: ratio-
nal, evaluation and approaches. J. Nat. Lang. Eng. 4, I-Xvii (2010)

36. Ferrari, A., Spagnolo, G.O., Gnesi, S.: PURE: a dataset of public requirements doc-
uments. In: IEEE 25th International Requirements Engineering Conference (RE),
pp. 502–505. IEEE (2017)

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Software Quality Assurance Concepts

On Identifying Similarities in Git Commit
Trends—A Comparison Between

Clustering and SimSAX

Miroslaw Ochodek1(B), Miroslaw Staron2, and Wilhelm Meding3

1 Poznan University of Technology, Poznań, Poland
miroslaw.ochodek@cs.put.poznan.pl

2 Chalmers | University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

3 Ericsson AB, Gothenburg, Sweden
wilhelm.meding@ericsson.com

Abstract. Software products evolve increasingly fast as markets con-
tinuously demand new features and agility to customer’s need. This evo-
lution of products triggers an evolution of software development prac-
tices in a different way. Compared to classical methods, where products
were developed in projects, contemporary methods for continuous inte-
gration, delivery, and deployment develop products as part of continu-
ous programs. In this context, software architects, designers, and quality
engineers need to understand how the processes evolve over time since
there is no natural start and stop of projects. For example, they need to
know how similar two iterations of the same program or how similar two
development programs are. In this paper, we compare three methods for
calculating the degree of similarity between projects by comparing their
Git commit series. We test three approaches—the DNA-motifs-inspired
SimSAX measure and clustering of subsequences (k-Means and Hierar-
chical clustering). Our results show that the clustering algorithms are
much more sensitive to parameters and often find similarities that are
not correct. SimSAX, on the other hand, can be calibrated to find fewer
similarities between the projects; the similarities are also more consis-
tent for SimSAX than they are for the clustering. We conclude that it is
better to use DNA-inspired motifs as they provide more accurate results.

1 Introduction

Understanding similarity between software development projects is important
while performing many important tasks that require projecting historical data
to a currently developed project, e.g., predicting defect inflow based on history,
predicting development effort, benchmarking productivity of project teams, or
evaluating whether the practices of one project apply to another one.

The state-of-the-art approaches to assess similarities between projects focus
on cross-sectional evaluation. For instance, in the studies on effort estimation
each project is usually described by a set of attributes (e.g., size of the product,
c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 109–120, 2020.
https://doi.org/10.1007/978-3-030-35510-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_7

110 M. Ochodek et al.

business domain, technology) and unsupervised methods such as clustering are
often used to construct homogeneous training data sets (e.g., [3,17]).

However, modern software development requires continuous evolution of soft-
ware products. Mobile Apps, Cloud systems and even embedded software sys-
tems evolve continuously [4,5]. The products are often developed using processes
that are iterative, responsive to customer needs and often continuous—for exam-
ple, Agile and Lean software development. In the context of these processes, the
notion of software project has been replaced by the notion of software programs.
In software development programs, the companies do not plan the number of
iterations á priori, but new features are developed as soon as one of the teams
is ready to develop them.

Consequently, there is a need to continuously monitor when the products
and processes evolved so much that new methods for product quality need to
be introduced, the old ones need to be evolved or abandoned. The quality man-
agers need to understand when to change their baselines for comparing between
projects so that their assessment is more accurate (e.g., for defect predictions
[15]). Therefore, there is a need to find similarities in the way given charac-
teristics of projects change over time rather than focusing on cross-sectional
similarities.

In this paper, we set-off to compare three methods of finding similarities in
Git commit histories (the number of commits in time), which are two state-
of-the-art clustering methods—k-Means and hierarchical clustering [2,10] and
using two popular distance measures—Euclidean distance and Dynamic Time
Wrapping (DTW) with the recently proposed SimSAX measure [14]. We use Git
commit histories from two Eclipse sub-projects (JDT and Platform) as objects of
the study. Since ground truth allowing to evaluate the accuracy of the compared
methods is not available, we focus on understanding the pros and cons of applying
each of the methods. We use simulations to generate a set of parameters for the
methods and show which similarities these methods discover. As the criteria for
comparison between these methods, we use the percentage of similar weeks. The
similarity of project A to project B is then defined as the percentage of the weeks
in project A that are similar to weeks in project B.

Our results show that the clustering algorithms are much more sensitive to
parameters and often find similarities that are not correct. SimSAX, on the
other hand, can be calibrated to find fewer similarities between the projects; the
similarities are also more consistent for SimSAX than they are for the clustering.

2 Background

2.1 Similarity Between Git Commit Trends

For our work, we use the definition of a time series T = t1, ..., tm as an ordered
set of m real-valued variables. A Git commits history can be regarded as a time
series if we consider the number of commits in time. We will refer to such time
series being the number of commits per week as a Git commits trend. We do not
take into account any other meta data available in Git commit histories.

On Identifying Similarities in Git Commit Trends 111

We are interested in finding similar subsequences of a length w of two Git
commits trends Ti and Tj (w < mi and w < mj , where mi, mj are the lengths
of Ti and Tj). The similarity of project A to project B is then defined as the
percentage of the weeks in project A that are similar to weeks in project B,
compared to the total number of weeks in project A. We consider similarity as
the similarity of shapes, which means that two time-series are matched as well
as possible, by a non-linear stretching and contracting of the time axes [2].

2.2 Time-Series Clustering

Time-series clustering is, in general, an unsupervised machine-learning method
that partition a given set of time series in such a way that homogenous time
series are grouped together based on a certain similarity measure [2]. We can
cluster subsequences of many time series to find clusters that group subsequences
between these time series. Two most popular families of clustering algorithms
are hierarchical and partitioning clustering.

Hierarchical clustering makes a hierarchy of clusters using agglomerative or
divisive algorithms. Agglomerative algorithms consider each time series as a
cluster, and then gradually merges the clusters. Divisive algorithms start by
grouping all of the time series in a single cluster and then split the cluster to
reach the clusters containing a single time series. We selected the agglomerative
hierarchical clustering method using Ward variance minimization algorithm as
a representative algorithm for this family of algorithms.

Partitioning clustering algorithms make k groups from n unlabelled time
series in the way that each group contains at least one time series. One of the
most frequently used algorithms of this type is k-Means. We use this algorithm
as a representative of the family of partitioning clustering methods.

All of the mentioned clustering algorithms require similarity measures to
compare time series. We use two most popular shape-based similarity measures—
Euclidean distance and LB Keogh, which is a lower bounding measure for
Dynamic Time Warping (DTW) [8].

2.3 Similarity-based on Symbolic Aggregate approXimation

SimSAXn,w,a (Similarity-based on Symbolic Aggregate approXimation) is a mea-
sure of time-series similarity, originally proposed to find similarities between
defect-inflow profiles [14]. The measure is inspired by the research on DNA
sequence alignment in the area of bioinformatics.

The process of calculating SimSAXn,w,a is multi-staged and involves a trans-
formation of the original Git commits trend into a sequence of symbols. In the
first step, we transform a sequence of numbers into a sequence of symbols using
Symbolic Aggregate approXimation (SAX) [11]. The method operates on mov-
ing windows of a given length n (each window is normalized to have a mean of
zero and standard deviation of one) and transforms each of them into a word of
length w using symbols from an alphabet of size a. Then, Piecewise Aggregate
Approximation (PAA) [9] is applied to reduce its dimensionality from n to w.

112 M. Ochodek et al.

During this stage, the window is divided into w segments of equal length and
each segment is replaced by its mean value. The newly created sequence is fur-
ther transformed into a word over the alphabet of size a assuming that all the
symbols of the alphabet are equiprobable.

When comparing two time series, we compare every pair of the generated
windows transformed into words. When all of the symbols match, the verdict is
that two windows are similar. They are called motif —a recurring subsequence
in a time series.

Finally, we calculate SimSAXn,w,a(A, B) for time series A and B as the
percentage of weeks covered by the windows coming from the time series A
that were indicated as similar to at least one window from time series B
(being a motif), and do the same for B. Therefore, the result of calculating
SimSAXn,w,a(A, B) is a tuple (X, Y), where X and Y are the percentages of
weeks covered by at least one motif in A and B, respectively. For instance, hav-
ing SimSAXn,w,a(A, B) = (100%, 30%) would mean that there is not any novelty
in time series A with respect to B, while time series B has 70% of weeks covered
by subsequences not observed in A.

An open-source tool allowing to calculate SimSAXn,w,a(A, B) is available on
GitHub.1 The tool allows to calibrate the parameters w and a using simulations.2

3 Related Work

There are, basically, three different models for comparing software projects, orga-
nizations, and processes.

The first one is to use databases of projects, where users input data about
characteristics of their projects, the database selects the most similar projects,
which can be used for benchmarking [12]. The advantages are, among others: (i)
large number of comparison parameters, and (ii) flexibility in choosing param-
eters to compare. However, the disadvantage is the need for manual input of
parameters and the lack of full data for predictions (e.g., lack of full defect
database for predicting defects, or detailed information about requirements).

Another approach is to use similarity measures like Euclidean distance [16]
or its derivatives. Such a comparison has the advantage that it is very simple and
it can work on time series (e.g., defect inflow, Git commit trend), but it has a
disadvantage of being prone to bias caused by discrepancies between individual
data points. Often, these techniques are supported by unsupervised machine
learning methods such as k-Means or hierarchical clustering to help in grouping
similar objects. Similarity measures and clustering algorithms were employed in
many studies in the area of effort estimation. For instance, Silhavy et al. [17]
and Bardsiri et al. [3] used clustering to find homogeneous sets of projects for
training effort estimation models. However, none of these studies considered the
change of projects characteristics in time.

1 The SimSAX tool—https://github.com/mochodek/simsax.
2 More information about calibrating SimSAXn,w,a(A, B) can be found in [14].

https://github.com/mochodek/simsax

On Identifying Similarities in Git Commit Trends 113

The recently proposed SimSAXn,w,a measure [14] was originally designed to
find similarities between the ways of working in software development teams
based on defect-inflow profiles. In this study, it is applied to find similarities in
Git commit trends.

Finally, the third type of approaches to find similarities between software
projects are formalizations of processes and their comparison. An example of
such a model is the work of van der Alst [1], where two processes are described,
formalized and compared. The advantage of this type of models is the accuracy
of comparison, but the disadvantage is the need for extensive data collection.

There have been studies that analyzed Git commit histories. For instance,
Hindle et al. [6] studied commits with respect to their size and purpose. We
can learn from their study that large commits can carry important information
about the project and its structure. Similarly, Nayebi et al. [13] studied commits
removing the code, tests, libraries, and other artifacts from a product codebase.
Although these works show that it is worth to consider the nature of commits
while analyzing Git commit histories, in this study, we focus on comparing Git
commit trends only from the frequency point of view to limit the axes of analysis
since our goal is to comparing different approaches to find similarities rather than
study commit histories themselves.

4 Research Design

We perform the simulations on Git commit trend data collected from open
source projects. We choose the projects that have been used in previous studies,
and that has been found to have good quality, professional development process
behind them and which are mature in terms of the number of releases.

We choose a set of Eclipse sub-projects as the objects of the study (we collect
their Git commit histories and transform them into time series of numbers of
commits per week): Eclipse JDT Core – 872 weeks (from 2001-06-11 to 2018-
02-25); Eclipse JDT UI – 877 weeks (from 2001-05-07 to 2018-02-25); Eclipse
Platform – 876 weeks (from 2001-05-07 to 2018-02-18); and Eclipse Platform
SWT – 876 weeks (from 2001-05-14 to 2018-02-25).

We selected three pairs of projects for the comparison: O1 – Eclipse JDT
Core and Eclipse JDT UI; O2 – Eclipse JDT Core and Eclipse Platform; and
O3 – Eclipse Platform SWT and Eclipse JDT UI. Pair O1 consists of commit
trends from the same Eclipse sub-project (but different components), while the
remaining two (O2 and O3) group commit trends from two different sub-projects.
Since the development processes are very similar for these products, we should
expect to observe high similarity when we try to quantify their similarity.

We generate subsequences of the Git commit time series using 52-week sliding
windows; a 52-week window captures the regularity of main releases in the Eclipse
project. We capture the releases as we would like to avoid randomness in find-
ing similarities and we focus on complete releases. We standardize each window
(normalize to have a mean of zero and standard deviation of one), because we are
interested in finding similar shapes regardless of the absolute number of commits.

114 M. Ochodek et al.

Having prepared the commit time series, we run the considering methods on each
object using the following configurations: Hierarchical clustering, Euclidean—
HE1 (k = 34, 43, 41), HE2 (k = 68, 86, 82), HE3 (k = 400), and HE4 (inconsis-
tency); k-Means, DTW—KDTW1 (k = 34, 43, 41), KDTW2 (k = 68, 86, 82), and
KDTW3 (k = 400); and SimSAXn,w=7,a=9(A, B) (we used SimSAX calibration
algorithm to find the parameters w and a [14]).

The well-known drawback of the partitioning clustering methods is that the
number of clusters, k, has to be a priori assigned [2]. Although theoretically,
the hierarchical clustering methods do not require pre-assigning k, in practice,
if one wants to obtain flat clusters some criterion of splitting the hierarchical
structure needs to be provided (e.g., by providing a maximum distance between
clusters, number of clusters, etc.). In our study, we also use one of the automatic
approaches to determine the number of clusters based on inconsistency [7] (how-
ever, such methods are known to be imperfect) and variants of the method with
the pre-assigned k. For manually assigned k, we test 7 different values, including
k= 400, which is approximately half of the time series lengths, and theoretically,
allows to form clusters containing pairs of similar subsequences.

We use the measure of week coverage (WeekCov) to describe the similarity
between Git commit trends, which is the percentage of weeks in that time series
that are covered by at least one 52-week window indicated as similar between
the projects. This is the equivalent of the outcome of SimSAXn,w,a(A, B).

In order to compare the methods between projects, we introduce another mea-
sure called windows coverage—WindCov(m1, m2). We define it as the percent-
age of 52-week windows indicated as similar by a given method m1 for the com-
pared pair of projects that are also indicated as similar by the second method m2.
Finally, we use an visual examination to evaluate the outputs of the methods.

5 Results and Discussion

We organize our analysis into week coverage and windows coverage analyses to
show how the methods differ in matching the studied pairs of the Git commit
time series.

5.1 Week Coverage

The main results of the similarity calculations are in Table 1. Columns refer to
different objects (i.e. pairs of projects to compare) and each row is a different
algorithm with a different set of parameters.

All of the considered variants of clustering algorithms indicate the percentage
week coverage equal, or very close to, 100% (see Table 1). This means that, for
all projects considered in our study, these algorithms could find similar windows
in another project from the pair that altogether cover all the weeks in that
projects. Although the Git commit trends for these projects are very similar,
they are not identical. Therefore, such similarity is, naturally, not accurate, as
it could mislead further analyses assuming that two projects are identical.

On Identifying Similarities in Git Commit Trends 115

Table 1. Percentage of weeks covered by indicated motifs.

Method Week coverage O1 Week coverage O2 Week coverage O3

Average A B Average A B Average A B

Hierarchical, Euc., k= (34, 43, 41) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Hierarchical, Euc., k= (68, 86, 82) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Hierarchical, Euc., k= 400 100% 100% 100% 100% 100% 100% 100% 100% 100%

Hierarchical, Euc., inconsistency 100% 100% 100% 100% 100% 100% 100% 100% 100%

K-means, Euc., k= (34, 43, 41) 100% 100% 100% 100% 100% 100% 100% 100% 100%

K-means, Euc., k= (68, 86, 82) 100% 100% 100% 100% 100% 100% 100% 100% 100%

K-means, Euc., k= 400 100% 100% 100% 100% 99% 100% 100% 100% 100%

K-means, DTW, k= (34, 43, 41) 100% 100% 100% 100% 100% 100% 100% 100% 100%

K-means, DTW, k= (68, 86, 82) 100% 100% 100% 100% 100% 100% 100% 100% 100%

K-means, DTW, k=400 100% 100% 100% 100% 100% 100% 100% 100% 100%

SimSAXn,7,9(A,B) 70% 67% 73% 82.5% 81% 84% 78.5% 80% 77%

The SimSAXn,w,a measure yield different results, which seem more realistic.
The week coverage ranged between 67–84%. Also, the indicated similarity is not
symmetrical. For instance, for the object O1, only 67% of weeks of Eclipse JDT
Core are covered by similar windows comparing to 73% for Eclipse JDT UI. We
make a similar observation for the object O2 (81% and 84%) and O3 (80% and
77%). A visual comparison of Eclipse JDT UI (O1) weeks covered is presented
in Fig. 1, where each red line represents one motif/cluster.

We can observe that SimSAXn,w,a is more selective in finding similarities—
fewer horizontal red lines in Fig. 1(a). The patterns revolve around peak-like
shapes (or even double peaks appearing in close proximity). It also visible that
for Eclipse JDT UI these patterns are spread evenly through the whole time
series (they cover 73% of the weeks).

In contrast to SimSAXn,w,a, the k-Means clustering with Euclidean distance
measure (see (c) and (e) in Fig. 1), the pattern gets random and the credibil-
ity in the results is lower. The k-Means with Euclidean distance results in too
many false positives, which we can see that all weeks are matched to some other
weeks—which is not correct as the projects are not identical.

The k-Means clustering with DTW (see (d) and (f) in Fig. 1), results in
finding fewer clusters containing windows from both series (fewer horizontal red
lines), but still matches all weeks, which results in higher similarity measure
than the SimSAXn,w,a measure.

5.2 Comparing Windows Coverage

The comparison of windows coverage (WinCov) is presented in Table 2. Each cell
in the table shows how many of the same windows are found by two methods
(row and column) with respect to all windows found by the method in the row.

Analyzing the table leads to the observation that with increasing k, the per-
centage of overlap decreases, showing that the low k is not useful in practice.
When a smaller number of clusters was selected (k between 34 and 86), all win-
dows were grouped in clusters containing windows from both projects. When

116 M. Ochodek et al.

Fig. 1. Examples of weeks covered by similar windows for O1 (Eclipse JDT UI) indi-
cated by different algorithms (red boxes represent similar windows—y-axis indicates
the same cluster/motif). (Color figure online)

k was increased to 400, windows indicated as similar started to differ between
Hierarchical clustering and k-Means (e.g., compare HE3 and KE3 in Table 2).
SimSAXn,w,a selected visibly fewer windows as similar (5% to 10% of windows
indicated by the clustering algorithms).

The differences in how the considered algorithms group windows are shown
by examples presented in Fig. 2. The patterns of similar series are overlapping
lines with limited dispersion, while the non-similar, false-positive patterns are
when lines that are visible different or do not overlap.

The figure shows clusters/motifs from Eclipse JDT Core and JDT UI (O1)
including a selected window of Eclipse JDT Core. It is visible that when k
increases, the number of subsequences in clusters decreases.

It also shows that having multiple series in one cluster (small k), results in
high coverage of one cluster; since the similarity within the cluster is low, then the
similarity for the entire series is not accurate—too many false positive matchings.
When increasing the k, we get fewer sub-sequences in the cluster, and therefore,
fewer matches in the entire series—thus, fewer false positive matchings. This
presence of multiple false positive matchings renders the clustering methods as
inadequate for measuring the similarity between Git commit trends.

On Identifying Similarities in Git Commit Trends 117

Table 2. The comparison of the percentage of common windows identified as similar
by a method in the row that were also identified as similar by the method in a column.

Sim

Object Symbol Method HE1 HE2 HE3 HE4 KE1 KE2 KE3 KDTW1 KDTW2 KDTW3 SAX

O1 HE1 Hierarchical, Euclidean,
k= (34, 43, 41)

100% 88% 97% 100% 100% 83% 100% 100% 99% 5%

O1 HE2 Hierarchical, Euclidean,
k= (68, 86, 82)

100% 88% 97% 100% 100% 83% 100% 100% 99% 5%

O1 HE3 Hierarchical, Euclidean,
k=400

100% 100% 100% 100% 100% 86% 100% 100% 99% 5%

O1 HE4 Hierarchical, Euclidean,
inconsistency

100% 100% 91% 100% 100% 84% 100% 100% 99% 5%

O1 KE1 K-means, Euclidean,
k= (34, 43, 41)

100% 100% 88% 97% 100% 83% 100% 100% 99% 5%

O1 KE2 K-means, Euclidean,
k= (68, 86, 82)

100% 100% 88% 97% 100% 83% 100% 100% 99% 5%

O1 KE3 K-means, Euclidean,
k=400

100% 100% 90% 98% 100% 100% 100% 100% 99% 6%

O1 KDTW1 K-means, DTW,
k= (34, 43, 41)

100% 100% 88% 97% 100% 100% 83% 100% 99% 5%

O1 KDTW2 K-means, DTW,
k= (68, 86, 82)

100% 100% 88% 97% 100% 100% 83% 100% 99% 5%

O1 KDTW3 K-means, DTW, k=400 100% 100% 88% 97% 100% 100% 83% 100% 100% 5%

O1 SimSAX SimSAXn,7,9(A, B) 100% 100% 97% 100% 100% 100% 95% 100% 100% 99%

O2 HE1 Hierarchical, Euclidean,
k= (34, 43, 41)

99% 89% 99% 100% 100% 84% 98% 99% 99% 7%

O2 HE2 Hierarchical, Euclidean,
k= (68, 86, 82)

100% 89% 100% 100% 100% 84% 98% 99% 100% 7%

O2 HE3 Hierarchical, Euclidean,
k=400

100% 100% 100% 100% 100% 87% 98% 99% 100% 8%

O2 HE4 Hierarchical, Euclidean,
inconsistency

100% 100% 89% 100% 100% 84% 98% 99% 100% 7%

O2 KE1 K-means, Euclidean,
k= (34, 43, 41)

100% 99% 89% 99% 100% 84% 98% 99% 99% 7%

O2 KE2 K-means, Euclidean,
k= (68, 86, 82)

100% 99% 89% 99% 100% 84% 98% 99% 99% 7%

O2 KE3 K-means, Euclidean,
k=400

100% 100% 92% 100% 100% 100% 98% 99% 100% 8%

O2 KDTW1 K-means, DTW,
k= (34, 43, 41)

100% 99% 88% 99% 100% 100% 84% 99% 99% 7%

O2 KDTW2 K-means, DTW,
k= (68, 86, 82)

100% 99% 89% 99% 100% 100% 84% 98% 99% 7%

O2 KDTW3 K-means, DTW, k=400 100% 100% 89% 99% 100% 100% 84% 98% 99% 7%

O2 SimSAX SimSAXn,7,9(A, B) 100% 100% 97% 100% 100% 100% 90% 96% 100% 100%

O3 HE1 Hierarchical, Euclidean,
k= (34, 43, 41)

99% 78% 92% 100% 99% 79% 100% 98% 99% 8%

O3 HE2 Hierarchical, Euclidean,
k= (68, 86, 82)

100% 79% 93% 100% 99% 80% 100% 98% 99% 8%

O3 HE3 Hierarchical, Euclidean,
k=400

100% 100% 99% 100% 99% 85% 100% 98% 99% 10%

O3 HE4 Hierarchical, Euclidean,
inconsistency

100% 100% 84% 100% 99% 81% 100% 98% 99% 9%

O3 KE1 K-means, Euclidean,
k= (34, 43, 41)

100% 99% 78% 92% 99% 79% 100% 98% 99% 8%

O3 KE2 K-means, Euclidean,
k= (68, 86, 82)

100% 99% 79% 93% 100% 79% 100% 98% 99% 8%

O3 KE3 K-means, Euclidean,
k=400

100% 100% 84% 94% 100% 99% 100% 98% 99% 10%

O3 KDTW1 K-means, DTW,
k= (34, 43, 41)

100% 99% 78% 92% 100% 99% 79% 98% 99% 8%

O3 KDTW2 K-means, DTW,
k= (68, 86, 82)

100% 99% 78% 92% 100% 99% 79% 100% 99% 8%

O3 KDTW3 K-means, DTW, k=400 100% 99% 78% 92% 100% 99% 79% 100% 98% 8%

O3 SimSAX SimSAXn,7,9(A, B) 100% 100% 94% 98% 100% 100% 91% 99% 96% 99%

118 M. Ochodek et al.

Fig. 2. Examples of clusters/motifs containing the same window.

Finally, we can see in the sub-figure (a) that the calibrated SimSAXn,7,9

indicated a motif containing only two windows from both Git commit trends.

5.3 Validity Analysis

We use the framework presented by Wohlin et al. [18] to discuss the threats to
validity and our measures to minimize them.

Our main external validity threat is the fact that we use a small sample
of projects—three pairs—when comparing the algorithms. Essentially, since we
are interested in the differences between the methods, we do not need a large

On Identifying Similarities in Git Commit Trends 119

sample, but a sample of projects with known similarity. We also need a sample
of well-engineered projects and therefore we made a deliberate selection of the
sample.

The main construct validity threat is the choice of parameters in the study—
there is a risk that our choice of parameters is biased towards our method. In
order to minimize the probability of this kind of bias, we chose a broad set of
sampling base for the parameters—from small values to large values and doubling
the values of the parameters. This minimizes this risk.

One of the main conclusion validity threat is the lack of statistical analyses of
projects. Since our goal is to use well-engineered projects, our sample was small
and therefore we prefer to report the values for each pair instead. This minimizes
the risk that using statistics for small samples leads to incorrect conclusions.

6 Conclusions

Software products evolve increasingly fast as markets continuously demand new
features and agility to customer’s need. This evolution of products triggers an
evolution of software development practices in a different way. Quantifying sim-
ilarity between evolved projects is important when comparing projects or using
prediction models.

In this paper, we studied three approaches (including a recently proposed
one) for quantifying similarity between Git commit trends—k-Means clustering,
hierarchical clustering, and SimSAXn,w,a.

Our results show that the SimSAXn,w,a measure is more selective in finding
similarities than the clustering methods. For the projects which are similar, but
not identical, it estimates the similarity to be between 67% and 84%, compared
to other methods which predicted 100% similarity between these projects.

Clustering methods must group all observations, i.e. both similar and non-
similar series. Which means that if we have not enough clusters then we end
up with clusters having non-similar series. This means that high week coverage
does not mean that the projects are similar. This, in consequence, means that
the results of the method are very sensitive to changes in the configuration
parameters and therefore less useful in practice.

Euclidean distance and DTW have different properties, but they impact the
results in similar ways. DTW is more fragile to trivial matches of moving win-
dows, but groups more subsequences than the Euclidean distance. Thus we see
DTW as the better choice for the distance measure (one can consider using
moving windows with a stride greater than one).

References

1. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841760 10

https://doi.org/10.1007/11841760_10

120 M. Ochodek et al.

2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inf. Syst. 53, 16–38 (2015)

3. Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: Increasing the accu-
racy of software development effort estimation using projects clustering. IET Softw.
6(6), 461–473 (2012)

4. Bosch, J.: Continuous Software Engineering. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-11283-1

5. Bosch, J.: Speed, data, and ecosystems: the future of software engineering. IEEE
Softw. 33(1), 82–88 (2016)

6. Hindle, A., German, D.M., Holt, R.: What do large commits tell us?: a taxonom-
ical study of large commits. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories, pp. 99–108. ACM (2008)

7. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001). http://www.scipy.org/. Accessed 12 Mar 2018

8. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3), 358–386 (2004)

9. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast
similarity search in large time series databases. In: Terano, T., Liu, H., Chen, A.L.P.
(eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 122–133. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45571-X 14

10. Liao, T.W.: Clustering of time series data a survey. Pattern Recogn. 38(11), 1857–
1874 (2005)

11. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the 8th ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge Discovery pp.
2–11. ACM (2003)

12. Lokan, C., Wright, T., Hill, P., Stringer, M.: Organizational benchmarking using
the ISBSG data repository. IEEE Softw. 18(5), 26–32 (2001)

13. Nayebi, M., Kuznetsov, K., Chen, P., Zeller, A., Ruhe, G.: Anatomy of function-
ality deletion. In: Proceedings of the Conference on Mining Software Repositories
(MSR18), Gothenburg, Sweden (2018)

14. Ochodek, M., Staron, M., Meding, W.: SimSAX: a measure of project sim-
ilarity based on symbolic approximation method and software defect inflow.
Inf. Softw. Technol. (2019). http://www.sciencedirect.com/science/article/pii/
S0950584919301363

15. Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Törner, F., Meding,
W., Höglund, C.: Selecting software reliability growth models and improving their
predictive accuracy using historical projects data. J. Syst. Softw. 98, 59–78 (2014)

16. Shepperd, M., Schofield, C.: Estimating software project effort using analogies.
IEEE Trans. Softw. Eng. 23(11), 736–743 (1997)

17. Silhavy, R., Silhavy, P., Prokopová, Z.: Evaluating subset selection methods for
use case points estimation. Inf. Softw. Technol. 97, 1–9 (2018)

18. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publisher,
Boston (2000)

https://doi.org/10.1007/978-3-319-11283-1
https://doi.org/10.1007/978-3-319-11283-1
http://www.scipy.org/
https://doi.org/10.1007/3-540-45571-X_14
http://www.sciencedirect.com/science/article/pii/S0950584919301363
http://www.sciencedirect.com/science/article/pii/S0950584919301363

Code Reviews, Software Inspections,
and Code Walkthroughs: Systematic
Mapping Study of Research Topics

Ilenia Fronza1, Arto Hellas2, Petri Ihantola2, and Tommi Mikkonen2(B)

1 Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
ilenia.fronza@unibz.it

2 University of Helsinki, Helsinki, Finland
{arto.hellas,petri.ihantola,tommi.mikkonen}@helsinki.fi

Abstract. Code reviews have been used to improve code quality since
the 1970s. Most practitioners in the field of software have some experi-
ence with respect to the technique. In this mapping study we illustrate
what kinds of research questions are addressed in code review litera-
ture. The following themes emerged from analysis of 75 original articles:
(1) description or comparison of different code review practices, (2)
behavior of reviewers (e.g., eye tracking studies), (3) communication and
teamwork, (4) outcomes of code reviews (e.g., what kinds of problems are
identified), (5) how properties of code to be reviewed affect reviewing,
and (6) reasons for conducting code reviews. About half of the studies
have been conducted with students and novices. The numbers of indus-
try papers has significantly increased when compared to the previous
reviews in the field.

Keywords: Code reviews · Software inspections · Code
walkthroughs · Mapping study

1 Introduction

Software engineering has evolved significantly during the last decades. Code
review (sometimes called as peer review) is one of the few activities surviving
this evolution. Different forms of peer reviewing have been around since the
1970s [1], and practically every software engineer is familiar with the techniques,
at least to some extent. Based on the previous literature, the driving force to do
code reviews include finding defects, improving code quality, finding alternative
solutions, transferring knowledge and improving teams awareness [2].

Code review, or manual inspection of software quality in general are widely
studied topics, but systematic literature studies in the field are still rare.
Brykczynski [3] conducted a literature review on checklist based quality assur-
ance of software artifacts (i.e., requirements, design, code, testing, documen-
tation, and process). Authors point out, that although some checks should be

c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 121–133, 2020.
https://doi.org/10.1007/978-3-030-35510-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-35510-4_8

122 I. Fronza et al.

automated, all the listed phases of software development are likely to benefit from
manual (possibly computer assisted) inspection. More recently, Ebad [4] did a
systematic literature review to compare multiple manual inspection approaches
and conclude that “the most effective reading techniques in requirements, design,
and coding phases are perspective-based reading, usage-based reading, and tool-
assisted reading, respectively”. Authors also concluded that most research seems
to be based on data collected from academic, instead of industrial context.

In addition to being scarce, previous literature studies on code reviews have
focused on topics that are quite specific. We argue that software engineering
community would benefit from a broader understanding of themes covered in
the code review literature. Therefore, the main objective of this study is to
shed light on which themes can be identified in the research of code reviews.
The exact research questions answered here is “what’s the focus of the existing
empirical articles on code reviews, software inspections, and code walkthroughs”.
In the rest of this article, we use the term code review to refer different review
approaches (e.g., code reviews, software inspections, and code walkthroughs) We
will answer our research question by conducting a systematic mapping study.

The goal of this mapping study, following the guidelines in [5], is to provide
an overview of empirical research on code reviews, and identify the quantity and
type of research, and results available within it. The results of this study can
identify areas suitable for conducting systematic literature reviews [6], and areas
where a primary study is more appropriate.

The rest of this paper is structured as follows. Section 2 gives an overview to
our data collection. Section 3 presents our results. Section 4 provides an extended
discussion regarding our findings and lists directions for future work. Section 5
describes limitations of this research. Finally, towards the end of the paper,
Sect. 6 draws some conclusions.

2 Data Collection

2.1 Search for Primary Studies

The first phase of the study consisted of identifying primary studies from sci-
entific databases. Search queries were defined to retrieve the initial selection of
works to be filtered and screened later on. The search was carried out in the
following digital libraries: IEEE (http://ieeexplore.ieee.org/Xplore/home.jsp),
ACM (http://dl.acm.org/), and Scopus (https://www.scopus.com/).

The format of queries differs between platforms. Table 1 shows how queries
were defined in each library. The actual search was conducted in June 2018; the
Results-column in Table 1 indicates the number of hits in each platform.

In total, the queries produced a combined total of 1426 articles. This ini-
tial set of articles was then examined to remove duplicate articles. A total of
281 articles were removed automatically based on duplicate DOIs, leaving 1145
articles for further analysis.

http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/
https://www.scopus.com/

Code Reviews, Software Inspections, and Code Walkthroughs 123

Table 1. Executed queries for each digital library.

Database Search Results

IEEE METADATA ONLY: (((“code review”) OR “code
inspection”) OR “code walkthrough”)

297

ACM acmdlTitle:(“code review” “code inspection” “code
walkthrough”) OR recordAbstract:(“code review”
“code inspection” “code walkthrough”) OR
keywords.author.keyword:(“code review” “code
inspection” “code walkthrough”)

267

Scopus (TITLE-ABS-KEY(“code review”) OR
TITLE-ABS-KEY(“code inspection”) OR
TITLE-ABS-KEY(“code walkthrough”)) AND
(LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO
(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE,
“re”)) AND (LIMIT-TO (SUBJAREA, “COMP”)
OR LIMIT-TO (SUBJAREA, “ENGI”)) AND
(LIMIT-TO (LANGUAGE, “English”))

862

Total 1426

2.2 Screening of Papers for Inclusion and Exclusion

The 1145 articles were screened based on their titles and abstracts. The applica-
tion of inclusion and exclusion criteria to titles and abstracts was conducted by
four researchers working in parallel. We were inclusive taking a paper to full-text
reading when in doubt. The following criteria state when a study was excluded:

– Studies presenting tools that are not specifically about code reviews (e.g.,
tools for clone detection, tools for static code analysis).

– Studies not presented in English.
– Studies presenting summaries of conferences/editorials.
– Studies not accessible in full-text.
– Books and gray literature.
– Studies that are replications of other studies.

This exclusion phase led to removal of 622 articles.

2.3 Selecting Empirical Studies in the Software Engineering Field

After the initial screening and exclusion of non-relevant articles, 523 articles
remained. These articles were then further inspected, including only articles that
were from the field of software engineering, and provided empirical results related
to code reviews. More precisely, the following inclusion criteria was applied:
(1) Studies are in the field of software engineering, and (2) Studies present
empirical results on code reviews (e.g. qualitative or quantitative data on code
reviews). Opinion pieces without any data or where the focus was on something
else than code reviews were excluded. This led to a final data set of 75 articles.

124 I. Fronza et al.

Most of the articles in our final data set have been published in conference
proceedings (61%). 32% of the publications were journal articles and the remain-
ing 7% were published in magazines and workshops.

3 Qualitative Content Analysis of Research Questions

For all the papers, we extracted excerpts describing the objectives, hypothesis
and explicit research questions of the work. Some of the papers did not have any
research questions and in some cases even the objectives were loosely defined. In
these cases, we extracted excerpts from the conclusions that illustrated outcomes
of the work. As the last option, if we failed to find illustrative excerpts, the main
contributions of a paper we defined by our own words. In addition, for every
paper, we extracted the context of code reviews (e.g. academic, industry, or open
source software development). Some papers had multiple contexts, in which case
all were recorded.

Next, we carried out a qualitative content analysis of research questions to
identify themes of the research. First, one of the authors went through all the
excerpts, and created a list of potential categories. At this phase, some of the
excerpts were augmented by reading the original publication. Next, themes were
discussed with an another author who also read the excerpts. This resulted in
some themes to be merged and some new themes to be created. Finally, when all
the papers were classified to potentially multiple categories, the categorization
was finalized jointly by all the authors.

The final categories and the number of articles assigned to each category
are the following. The list of papers in each category divided by the context
is provided in Table 2; in our study, an article could be mapped to multiple
categories.

Review Methods. This category is related to description, combination and
comparison of different code review practices. Some of the studies are descrip-
tive and focus on explaining (new) code review methods and best practices, as
in [7]: “Building on the existing literature, here we add insights from a recent
large-scale study of Microsoft developers’ code review practices to summarize
the challenges that code-change authors and reviewers face, suggest best code-
reviewing practices, and discuss tradeoffs that practitioners should consider.”
Some papers in the category focus on (quantitative) comparison review meth-
ods as illustrate in the following excerpt of research hypothesis [8]: “There is
significant difference in the number defects found by those subjects perform-
ing ad-hoc inspection and those performing systematic inspection of object
oriented code”. (33 papers)
Human Behaviour. Papers in this category focus on Individual differences
between reviewers (e.g., “how effective developers are at conducting code
reviews and the degree of variation among them” [9] and behaviour of individ-
ual reviewer, e.g., by using eye-tracking [10,11]. The category is often linked

Code Reviews, Software Inspections, and Code Walkthroughs 125

to the previous category of describing new review method and research ques-
tions such as “Do developers who are shown information that could poten-
tially help avoid the introduction of bugs behave differently than without that
information” [12] (15 papers)
Teamwork. Papers in this category focus on communication, team config-
urations and teamwork. Examples of research questions in this category are
“Does the number of involved teams influence the effectiveness of distributed
code review” [13] and “what do reviewers discuss in test code reviews” [14] In
many cases, the role of teamwork was implicit while research questions were
more broadly defined. (14 papers)
Outcome of Code Reviews. Papers in this category focus on effect of
code reviews, for example, which kinds of errors are found or how many of the
errors can be found. The category is closely linked to review methods category.
Examples of research questions in category include “What is the impact of
continuous code reviews and inspections on code quality, What are the most
common bugs among the code written by sophomores? What are the most
common code smells identified within the code written by sophomores?” [15]
(14 papers)
Role of Code to be Reviewed. Papers in this category focus on the relation
of reviews and code to be reviewed. How properties of code to be reviewed
affect reviewing is more specific when compared to other categories, but it was
still clearly emerging from the data. Excepts illustrating this category include
“Does the number lines of code to be reviewed influence the effectiveness of
distributed code review?” [13] and “What factors can influence how long it
takes for a patch to be reviewed?” [16] (5 papers)
Reasons for Conducting Code Reviews. Papers in this category address
explicitly the reasons or motivations for conducting code reviews, with
research questions like “What are the motivations for code review at Google
[...] How do Google developers perceive code review?” [17] (4 papers)

Table 2. Topical classification of papers. (*) Some papers use data from more than
one context, for instance when comparing industry with academia.

Category n Context∗ Papers

Review methods 33 industry (14), open source

(3), academia (15), unclear

(1), government (1),

simulated review (1)

[1,7,8,14,17–45]

Human behaviour 15 industry (5), open source (3),

academia (8)

[9–12,46–56]

Teamwork 14 industry (9), open source (2),

academia (3)

[7,13,14,16,24,35,57–64]

Outcome of code reviews 14 industry (5), open source (7),

academia (2)

[15,43,49,65–75]

Role of code to be reviewed 5 industry (1), open source (4) [13,14,16,76,77]

Reasons for conducting code

reviews

4 industry (2), academia (1),

not defined (1)

[17,78–80]

126 I. Fronza et al.

While reviews are considered somewhat classical technique, we identified only
few studies published prior to mid-1990s. Publication year of the studies are
illustrated in Fig. 1.

1 1 1 1 1 2 1 3 1 2 1

1 2 1 1

1 1 1 1 2 2 4 1 1

1 1 1 1

1 4 2 1 2 1 1 1 1 1 1 3 1 1 3 1 4 4

2 2 2 1 1 2 1 1 2

1 1 1 5 2 2 2 3 2 2 3 2 1 4 1 1 4 1 6 3 9 6 8 5All

Reasons for conducting code reviews

Role of code to be reviewed

Outcome of code reviews

Teamwork

Human behavior

Review methods

1980 1990 2000 2010 2020

Fig. 1. The number of publication per year for each category (a single paper can be
classified into multiple categories) and the total number of publications identified each
year.

4 Discussion

The largest category of research topics identified in this mapping study, with 38%
of papers related to it is description, combination and comparison of different
code review practices. The category overlaps heavily with other categories, how-
ever. For example, description of a new code review approach is often related to
analysis of how people behave when applying the new methods, and quantifying
the results of code reviews.

Indeed, the second largest groups in our analysis are “Communication, team
configurations and teamwork”, “ Effect of code reviews (e.g., which kinds of
errors are found)”, and “Individual differences and behavior of reviewers”. Each
of these themes to related to ca. 16% of all the papers.

Although we were able to identify many studies that either compare (effec-
tiveness of) code review techniques or identify benefits of code review, there
are only few studies that compare effectiveness of code reviews to other quality
assurance techniques (e.g., [75]). We would like to see more studies that com-
pare code reviews directly to alternative or complementary methods, such as
test driven development or pair programming.

Three different contexts are common when considering reviews that con-
tain empirical results – open source, industry, and education. Sometimes, they
(partially) overlap or complement each other in the studies (hence the small
mismatch in numbers per category and total in Table 2). In our study, ca. half
of the studies have been conducted with students and novices. This is a signifi-
cant improvement to earlier review by Ebad [4], where only four percent of the
research was conducted in the industry context.

Code Reviews, Software Inspections, and Code Walkthroughs 127

We are somewhat surprised by the fact that there are very few old articles
with empirical evidence, although code reviews is considered a classic topic.
Furthermore, these initial papers were really placing the focus on the essentials
of code reviews as a quality assurance and bug-fixing instrument. Based on our
study, mid-1990s seem to mark the point when there was increasing empirical
interest in reviews in general, and only after 2010 there are several papers that
empirically study reviews. Granted, the increasing interest in reviews has also
meant that the research is more versatile, addressing various topics revolving
around reviews but not necessarily studying their effectiveness as a mechanism
for quality assurance.

Finally, we did not consider the evolution of the term code review in this
study; however it is clear that the meaning of the term has evolved significantly.
For example, in 1980s, the term ‘software review’ meant software inspection
where the quality of a software module was inspected following a certain process
[81], whereas today software review more often refers to the acceptance decision
for inclusion of a contribution in an open source project [82]. Understanding this
evolution is a topic for future work.

5 Limitations and Threats to Validity

There are multiple biases related to the selection of primary research. Retro-
spectively, the biggest selection choice we made in the paper was to exclude
tool papers, where empirical evidence was focused on evaluating the tool. It is
likely that in the process we also eliminated some data that also acts as evidence
regarding code reviews more generally as well. By inspecting many of the tools
papers as well, we came to a conclusion that in general they are not comparable
to papers that are solely dedicated to code reviews. However, studying the tool
perspective remains an possible direction for future work.

Another dimension we deliberately excluded in this study is the use of code
reviews in education. Such studies take a very different stand to code reviews,
and while they would have contributed to versatility of the mapping study in
general, based on reading many of them, they might have resulted in a category
of their own in the classification. Hence, we feel that they deserve a paper of
their own. Publications that used educational context, but did not focus on how
to teach code reviews were included, however.

The general limitations associated with any mapping study also apply to our
work, including in particular bias in selection of the reviewed papers and inaccu-
racy in data extraction. Since we mainly relied on search engines to retrieve the
primary studies, the search engines may have influenced the completeness of the
identified studies. The extraction process may have also resulted in inaccuracies,
even though the reviewers practiced extraction jointly. Quality assessment of
studies in systematic reviews still remains a major problem [83].

128 I. Fronza et al.

6 Conclusions

Code inspections are a classic approach to quality assurance. Despite frequent
use of the method in industry, there are only few systematic literature studies
of the field. In this systematic mapping study we have illustrated what kinds of
research themes can be identified in the code review literature.

The following themes emerged from analysis of 75 original articles: (1)
description or comparison of different code review practices, (2) human behavior
and differences between individual reviewers (3) communication and teamwork,
(4) outcomes of code reviews, (5) how properties of code to be reviewed affect
reviewing, and (6) reasons for conducting code reviews.

While many of the papers identified in this survey address effectiveness of
code reviews, comparisons between code review to other approaches aiming to
improve software quality are uncommon. Moreover, much of the knowledge is at
least partially outdated due to the changes in software development and deploy-
ment methodologies. In contrast, softer issues, such as team behavior and par-
ticipants roles in code review, have been gaining traction in research, resulting
in various studies of code reviews from the socio-technical dimension.

While we acknowledge the importance of the socio-technical dimension, we
believe that there is a need for further primary studies from purely technical
point of view, taking code reviews as a quality assurance technique back into
focus.

References

1. Myers, G.J.: A controlled experiment in program testing and code walk-
throughs/inspections. Commun. ACM 21(9), 760–768 (1978)

2. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software engineer-
ing, pp. 712–721. IEEE Press (2013)

3. Brykczynski, B.: A survey of software inspection checklists. ACM SIGSOFT Softw.
Eng. Notes 24(1), 82 (1999)

4. Ebad, S.: Inspection reading techniques applied to software artifacts-a systematic
review. Comput. Syst. Sci. Eng. 32(3), 213–226 (2017)

5. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Proc. of the 12th International Conference on Evaluation
and Assessment in Software Engineering. EASE 2008, BCS Learning & Develop-
ment, pp. 68–77 (2008)

6. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01, Keele Univ.
(2007)

7. Greiler, M., Bird, C., Storey, M.A., MacLeod, L., Czerwonka, J.: Code reviewing
in the trenches: Understanding challenges, best practices and tool needs (2016)

8. Dunsmore, A., Roper, M., Wood, M.: Systematic object-oriented inspection-an
empirical study. In: Proceedings of the 23rd International Conference on Software
Engineering, pp. 135–144. IEEE (2001)

Code Reviews, Software Inspections, and Code Walkthroughs 129

9. Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D.:
An empirical study on the effectiveness of security code review. In: Jürjens, J.,
Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 197–212.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36563-8 14

10. Begel, A., Vrzakova, H.: Eye movements in code review. In: Proceedings of the
Workshop on Eye Movements in Programming, p. 5. ACM (2018)

11. Uwano, H., Nakamura, M., Monden, A., Matsumoto, K.I.: Analyzing individual
performance of source code review using reviewers’ eye movement. In: Proceedings
of the 2006 Symposium on Eye Tracking Research & Applications, pp. 133–140.
ACM (2006)

12. Foss, S.L., Murphy, G.C.: Do developers respond to code stability warnings? In:
Proceedings of the 25th Annual International Conference on Computer Science
and Software Engineering, pp. 162–170. IBM Corp. (2015)

13. dos Santos, E.W., Nunes, I.: Investigating the effectiveness of peer code review in
distributed software development. In: Proceedings of the 31st Brazilian Symposium
on Software Engineering, pp. 84–93. ACM (2017)

14. Spadini, D., Aniche, M., Storey, M.A., Bruntink, M., Bacchelli, A.: When testing
meets code review: why and how developers review tests. In: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), pp. 677–687. IEEE
(2018)

15. Sripada, S.K., Reddy, Y.R.: Code comprehension activities in undergraduate soft-
ware engineering course-a case study. In: 24th Australasian Software Engineering
Conference, vol. 2015, pp. 68–77. IEEE (2015)

16. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: The influence of non-
technical factors on code review. In: 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 122–131. IEEE (2013)

17. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code
review: a case study at google. In: Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, pp. 181–190. ACM
(2018)

18. Fracz, W., Dajda, J.: Experimental validation of source code reviews on mobile
devices. In: Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (eds.) ICCSA
2017. LNCS, vol. 10408, pp. 533–547. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62404-4 40

19. Baum, T., Leßmann, H., Schneider, K.: The choice of code review process: a survey
on the state of the practice. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp.
111–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 9

20. Ferreira, A.L., Machado, R.J., Silva, J.G., Batista, R.F., Costa, L., Paulk, M.C.:
An approach to improving software inspections performance. In: 2010 IEEE Inter-
national Conference on Software Maintenance, pp. 1–8. IEEE (2010)

21. Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., Gall, H.C.:
Context is king: the developer perspective on the usage of static analysis tools. In:
IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 38–49. IEEE (2018)

22. Höst, M., Johansson, C.: Evaluation of code review methods through interviews
and experimentation. J. Syst. Softw. 52(2–3), 113–120 (2000)

23. Kamsties, E., Lott, C.M.: An empirical evaluation of three defect-detection tech-
niques. In: Schäfer, W., Botella, P. (eds.) Software Engineering – ESEC 1995, pp.
362–383. Springer, Berlin (1995)

https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1007/978-3-319-62404-4_40
https://doi.org/10.1007/978-3-319-62404-4_40
https://doi.org/10.1007/978-3-319-69926-4_9

130 I. Fronza et al.

24. Müller, M.M.: Are reviews an alternative to pair programming? Empir. Softw. Eng.
9(4), 335–351 (2004)

25. Khandelwal, S., Sripada, S.K., Reddy, Y.R.: Impact of gamification on code review
process: an experimental study. In: Proceedings of the 10th Innovations in Software
Engineering Conference, pp. 122–126. ACM (2017)

26. Hatton, L.: Testing the value of checklists in code inspections. IEEE Softw. 25(4),
82–88 (2008)

27. Belli, F., Crisan, R.: Empirical performance analysis of computer-supported code-
reviews. In: Proceedings The Eighth International Symposium on Software Relia-
bility Engineering, pp. 245–255. IEEE (1997)

28. El Emam, K., Laitenberger, O.: Evaluating capture-recapture models with two
inspectors. IEEE Trans. Softw. Eng. 27(9), 851–864 (2001)

29. Hirao, T., Ihara, A., Matsumoto, K.I.: Pilot study of collective decision-making in
the code review process. In: Proceedings of the 25th Annual International Con-
ference on Computer Science and Software Engineering, pp. 248–251. IBM Corp
(2015)

30. Olorisade, B.K., Vegas, S., Juristo, N.: Determining the effectiveness of three
software evaluation techniques through informal aggregation. Inf. Softw. Technol.
55(9), 1590–1601 (2013)

31. Runeson, P., Stefik, A., Andrews, A., Gronblom, S., Porres, I., Siebert, S.: A com-
parative analysis of three replicated experiments comparing inspection and unit
testing. In: Second International Workshop on Replication in Empirical Software
Engineering Research, vol. 2011, pp. 35–42. IEEE (2011)

32. De Vreede, G.J., Koneri, P.G., Dean, D.L., Fruhling, A.L., Wolcott, P.: A collab-
orative software code inspection: the design and evaluation of a repeatable collab-
oration process in the field. Int. J. Coop. Inf. Syst. 15(02), 205–228 (2006)

33. Hémeury, B.: Report on the VERA experiment. In: González Harbour, M., de la
Puente, J.A. (eds.) Ada-Europe 1999. LNCS, vol. 1622, pp. 103–113. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48753-0 9

34. Kelly, D., Shepard, T.: Qualitative observations from software code inspection
experiments. In: Proceedings of the 2002 conference of the Centre for Advanced
Studies on Collaborative research, p. 5. IBM Press (2002)

35. Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the
cost-benefits of code inspections in large scale software development. IEEE Trans.
Softw. Eng. 23(6), 329–346 (1997)

36. Wang, Y.Q., Qi, Z.Y., Zhang, L.J., Song, M.J.: Research and practice on education
of SQA at source code level. Int. J. Eng. Educ. 27(1), 70 (2011)

37. Panko, R.R.: Applying code inspection to spreadsheet testing. J. Manage. Inf. Syst.
16(2), 159–176 (1999)

38. Koneri, P.G., de Vreede, G.-J., Dean, D.L., Fruhling, A.L., Wolcott, P.: The design
and field evaluation of a repeatable collaborative software code inspection process.
In: Fukś, H., Lukosch, S., Salgado, A.C. (eds.) CRIWG 2005. LNCS, vol. 3706, pp.
325–340. Springer, Heidelberg (2005). https://doi.org/10.1007/11560296 26

39. Cristia, M., Frydman, C.: Formal and semi-formal verification of a web voting
system. Int. J. Web Inf. Syst. 11(2), 183–204 (2015)

40. da Silva Neto, A.V., Vismari, L.F., Gimenes, R.A.V., Sesso, D.B., de Almeida,
J.R., Cugnasca, P.S., Camargo, J.B.: A practical analytical approach to increase
confidence in pld-based systems safety analysis. IEEE Syst. J. 99, 1–12 (2017)

https://doi.org/10.1007/3-540-48753-0_9
https://doi.org/10.1007/11560296_26

Code Reviews, Software Inspections, and Code Walkthroughs 131

41. Wood, M., Roper, M., Brooks, A., Miller, J.: Comparing and combining software
defect detection techniques: a replicated empirical study. In: Jazayeri, M., Schauer,
H. (eds.) ESEC/SIGSOFT FSE -1997. LNCS, vol. 1301, pp. 262–277. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63531-9 19

42. Wilkerson, J.W., Nunamaker, J.F., Mercer, R.: Comparing the defect reduction
benefits of code inspection and test-driven development. IEEE Trans. Softw. Eng.
38(3), 547–560 (2011)

43. Morales, R., McIntosh, S., Khomh, F.: Do code review practices impact design
quality? a case study of the qt, vtk, and itk projects. In: IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pp.
171–180 IEEE (2015)

44. Oliveira, R., Estácio, B., Garcia, A., Marczak, S., Prikladnicki, R., Kalinowski,
M., Lucena, C.: Identifying code smells with collaborative practices: a controlled
experiment. In: X Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), pp. 61–70. IEEE 2016 (2016)

45. Swamidurai, R., Dennis, B., Kannan, U.: Investigating the impact of peer code
review and pair programming on test-driven development. In: IEEE SOUTHEAST-
CON 2014, pp. 1–5. IEEE (2014)

46. Bisant, D.B., Lyle, J.R.: A two-person inspection method to improve programming
productivity. IEEE Trans. Softw. Eng. 10, 1294–1304 (1989)

47. McMeekin, D.A., von Konsky, B.R., Chang, E., Cooper, D.J.A.: Measuring cognition
levels in collaborative processes for software engineering code inspections. In: Ulieru,
M., Palensky, P., Doursat, R. (eds.) IT Revolutions 2008. LNICST, vol. 11, pp. 32–43.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03978-2 5

48. McMeekin, D.A., von Konsky, B.R., Chang, E., Cooper, D.J.: Checklist based
reading’s influence on a developer’s understanding. In: 19th Australian Conference
on Software Engineering (aswec 2008), pp. 489–496. IEEE (2008)

49. McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: An empirical study of the
impact of modern code review practices on software quality. Empir. Softw. Eng.
21(5), 2146–2189 (2016)

50. St̊alhane, T., Awan, T.H.: Improving the software inspection process. In: Richard-
son, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI 2005. LNCS, vol. 3792, pp.
163–174. Springer, Heidelberg (2005). https://doi.org/10.1007/11586012 16

51. Dunsmore, A., Roper, M., Wood, M.: The role of comprehension in software inspec-
tion. J. Syst. Softw. 52(2–3), 121–129 (2000)

52. Da Cunha, A.D., Greathead, D.: Does personality matter?: an analysis of code-
review ability. Commun. ACM 50(5), 109–112 (2007)

53. Thongtanunam, P., McIntosh, S., Hassan, A.E., Iida, H.: Investigating code review
practices in defective files: an empirical study of the qt system. In: Proceedings of
the 12th Working Conference on Mining Software Repositories, pp. 168–179. IEEE
(2015)

54. Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating
code review quality: do people and participation matter? In: 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp. 111–120.
IEEE (2015)

55. de Mello, R.M., Oliveira, R.F., Garcia, A.F.: On the influence of human factors for
identifying code smells: a multi-trial empirical study. In: ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), vol.
2017, pp. 68–77. IEEE (2017)

https://doi.org/10.1007/3-540-63531-9_19
https://doi.org/10.1007/978-3-642-03978-2_5
https://doi.org/10.1007/11586012_16

132 I. Fronza et al.

56. Murakami, Y., Tsunoda, M., Uwano, H.: Wap: does reviewer age affect code review
performance? In: IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE), vol. 2017, pp. 164–169. IEEE (2017)

57. Seaman, C.B., Basili, V.R.: An empirical study of communication in code inspec-
tions. In: Proceedings of the (19th) International Conference on Software Engi-
neering, pp. 96–106. IEEE (1997)

58. Porter, A., Siy, H., Mockus, A., Votta, L.: Understanding the sources of variation
in software inspections. ACM Trans. Softw. Eng. Methodol. 7(1), 41–79 (1998)

59. Müller, M.M.: Two controlled experiments concerning the comparison of pair pro-
gramming to peer review. J. Syst. Softw. 78(2), 166–179 (2005)

60. Spohrer, K., Kude, T., Schmidt, C.T., Heinzl, A.: Knowledge creation in infor-
mation systems development teams: The role of pair programming and peer code
review. In: ECIS. 213 (2013)

61. Miller, J., Yin, Z.: A cognitive-based mechanism for constructing software inspec-
tion teams. IEEE Trans. Softw. Eng. 30(11), 811–825 (2004)

62. Sutherland, A., Venolia, G.: Can peer code reviews be exploited for later infor-
mation needs? In: 2009 31st International Conference on Software Engineering-
Companion Volume, pp. 259–262. IEEE (2009)

63. Seaman, C.B., Basili, V.R.: Communication and organization: An empirical study
of discussion in inspection meetings. IEEE Trans. Softw. Eng. 24(7), 559–572
(1998)

64. Bosu, A., Carver, J.C., Bird, C., Orbeck, J., Chockley, C.: Process aspects and
social dynamics of contemporary code review: Insights from open source develop-
ment and industrial practice at microsoft. IEEE Trans. Softw. Eng. 43(1), 56–75
(2016)

65. Panichella, S., Arnaoudova, V., Di Penta, M., Antoniol, G.: Would static analysis
tools help developers with code reviews? In: IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pp. 161–170. IEEE
(2015)

66. Thompson, C., Wagner, D.: A large-scale study of modern code review and security
in open source projects. In: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 83–92. ACM
(2017)

67. Lei, Q., He, Z., Fuqun, H., Bin, L.: Classification of air on-board software code
defects and investigations. Procedia Eng. 15, 3577–3583 (2011)

68. Russell, G.W.: Experience with inspection in ultralarge-scale development. IEEE
Softw. 8(1), 25–31 (1991)

69. Siy, H., Votta, L.: Does the modern code inspection have value? In: Proceedings
of the IEEE International Conference on Software- Maintenance (ICSM 2001), p.
281. IEEE (2001)

70. Bavota, G., Russo, B.: Four eyes are better than two: On the impact of code
reviews on software quality. In: 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 81–90. IEEE (2015)

71. Bosu, A., Carver, J.C.: Impact of peer code review on peer impression formation:
a survey. In: ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, vol. 2013, p. 133–142. IEEE (2013)

72. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-
source projects: which problems do they fix? In: Proceedings of the 11th Working
Conference on Mining Software Repositories, pp. 202–211. ACM (2014)

Code Reviews, Software Inspections, and Code Walkthroughs 133

73. Bernhart, M., Grechenig, T.: On the understanding of programs with continuous
code reviews. In: 2013 21st International Conference on Program Comprehension
(ICPC), pp. 192–198. IEEE (2013)

74. Mäntylä, M.V., Lassenius, C.: What types of defects are really discovered in code
reviews? IEEE Trans. Softw. Eng. 35(3), 430–448 (2008)

75. Runeson, P., Stefik, A., Andrews, A.: Variation factors in the design and analysis
of replicated controlled experiments. Empir. Softw. Eng. 19(6), 1781–1808 (2014)

76. Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W.: Investigating technical and
non-technical factors influencing modern code review. Empir. Softw. Eng. 21(3),
932–959 (2016)

77. Nanthaamornphong, A., Chaisutanon, A.: Empirical evaluation of code smells in
open source projects: preliminary results. In: Proceedings of the 1st International
Workshop on Software Refactoring, pp. 5–8. ACM (2016)

78. Perry, D.E., Porter, A., Wade, M.W., Votta, L.G., Perpich, J.: Reducing inspection
interval in large-scale software development. IEEE Trans. Softw. Eng. 28(7), 695–
705 (2002)

79. Jenkins, G.L., Ademoye, O.: Can individual code reviews improve solo program-
ming on an introductory course? Innov. Teach. Learn. Inf. Comput. Sci. 11(1),
71–79 (2012)

80. Baum, T., Liskin, O., Niklas, K., Schneider, K.: Factors influencing code review
processes in industry. In: Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pp. 85–96. ACM
(2016)

81. Ackerman, A.F., Buchwald, L.S., Lewski, F.H.: Software inspections: an effective
verification process. IEEE Softw. 6(3), 31–36 (1989)

82. Rigby, P., Cleary, B., Painchaud, F., Storey, M.A., German, D.: Contemporary
peer review in action: lessons from open source development. IEEE Softw. 29(6),
56–61 (2012)

83. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013)

Optimising Analytical Software Quality
Assurance

Stefan Wagner(B)

Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
stefan.wagner@iste.uni-stuttgart.de

Abstract. While optimising quality assurance has been an important
research area for many years, we still see interesting new ideas in this
area such as incorporating psychological factors, detecting pseudo-tested
code and detecting code with low fault risk.

Keywords: Quality assurance · Optimisation · Economics · Test suite
optimisation

1 Optimisation of Quality Assurance

Analytical quality assurance is the part of software quality assurance that anal-
yses artefacts and processes to assess the level of quality and identify quality
shortcomings. Analytical quality assurance is a major cost factor in any soft-
ware development project. While real numbers are hard to find, any practitioner
would agree that they spend a lot of time on testing and similar activities. At
the same time, analytical quality assurance is indispensable to avoid quality
problems of all kinds.

Hence, we have a set of activities in the development process that are expen-
sive but are also decisive for the quality, and thereby probably the success, of
a software product. Therefore, it is a practical need to optimise what kinds of
analytical quality assurance are employed, to what degree and with how much
effort to reach high quality and low costs.

In the following, we will first discuss how this problem could be framed from
an economics point of view. Second, we will discuss the progress on evaluating
and understanding the effectiveness and efficiency of various analytical quality
assurance techniques. Third, we the will widen our perspective by discussing
psychological aspects of quality assurance, and, finally, discuss some concrete,
current proposals to optimise software testing.

2 Quality Economics

As the optimisation of quality assurance contains many different factors such as
the effort spent for the techniques and what kind of techniques, what kind of

c© Springer Nature Switzerland AG 2020
D. Winkler et al. (Eds.): SWQD 2020, LNBIP 371, pp. 134–138, 2020.
https://doi.org/10.1007/978-3-030-35510-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35510-4_9&domain=pdf
http://orcid.org/0000-0002-5256-8429
https://doi.org/10.1007/978-3-030-35510-4_9

Optimising Analytical Software Quality Assurance 135

faults are in the software it is difficult to find a common unit. Hence, various
quality economics approaches have been proposed that use monetary units [1,10].

We have proposed a quality economics model to estimate and evaluate costs
and revenue from using analytical quality assurance mainly based on effort and
difficulty functions of faults and quality assurance techniques [11–13]. We show in
Fig. 1 just the part of the model describing the direct costs of applying an ana-
lytical quality assurance technique. Such an application usually comes with some
kind of fixed setup costs, execution costs depending on how much effort we spend
and removal costs depending on the probability that we detect a given fault.

Fig. 1. The direct costs of an analytical quality assurance technique

This needs to be complemented with future costs describing the costs incurred
by faults not detected by analytical quality assurance but leading to failures in
the field. Those faults need also to be removed and there are further effect costs
such as compensations to the customers. We showed that especially the latter
are an important part of the model, but it is extremely difficult to determine.
A very simple fault can have catastrophic effects while a very complicated, far
ranging fault might never lead to a failure. Overall, we found that the empirical
basis is too thin to practical apply such models and, because of the difficulty of
collecting all the necessary data, might never improve.

3 Effectiveness and Efficiency of Quality Assurance
Techniques

Therefore, we are convinced that it is more useful to rather devote research on
the effectiveness (what share of the faults is found?) and efficiency (what is the
relation of the number of found faults to effort spent?) of particular quality
assurance techniques to at least be able to judge and compare them to have a
basis for the decision what techniques to apply when and for what. There have
been many studies for evaluating these aspects for various quality assurance
techniques. In particular testing and inspections have been a focus of empirical
research.

136 S. Wagner

We have also contributed to better understand several quality assurance tech-
niques. For model-based testing, we could show that a large share of the detected
defects are already found during the modelling activity. The created test suite
itself was not more effective than a test suite created by experts but was able
to find other defects, often defects that require a particular long interaction
sequence [9]. For black-box integration testing, we could show that test suites
with a higher data-flow-based coverage are able to detect more more defects [2].

In a comparison of tests, reviews and automated static analysis [15], we
found that automated static analysis finds a subset of defect types of reviews,
but if it detected a specific type, it would detect it more thoroughly. Tests found
completely different detect types than reviews and automated static analysis. In
a study only of automated static analysis [14], we found that none of the analysed
72 field defects would have been found by one of the used static analysis tools.
For the particular static analysis technique clone detection, we found that by
looking particularly at clones with differences between their instance, we found
107 faults in five production systems leading to the observation that every other
clone with unintended differences between its instances constitutes a fault [3].

Together with the large and growing body of evidence from other researchers,
this starts to give a good understanding of the effectiveness and efficiency of ana-
lytical quality assurance. The main weaknesses I see still today is the infrequent
replication of studies and slightly different operationalisations of effectiveness
and efficiency that make meta-analysis difficult.

4 Psychological Aspects

A further dimension we believe to be of critical importance but that has not
widely been investigated are psychological factors of the software developers and
testers applying analytical quality assurance. In particular, we studied the use of
automated static analysis in relation to the personality of the developers [8] and
the stress it caused for developers [7]. For example, we found that while people
with a high level of agreeableness show a relatively structured strategy in dealing
with static analysis findings by working with small changes in cycles, people with
high neuroticism show a more chaotic approach by making larger changes and
impulsive decisions: They change the file they were working on without finishing
the work they had started. Such findings can in turn inform how to improve
quality assurance techniques or the user interfaces of corresponding tools.

5 Test Optimisation

Especially for the optimisation of tests, there is a lot of existing research on
test case prioritisation and test suite minimisation. These techniques aim at
only executing relevant test cases and executing test cases with a high proba-
bility of detecting a defect for a giving change early. Yet, there is still room for
improvement. We recently introduced two novel concepts to optimise test suites:
(1) detection of pseudo-tested code [4,6] and (2) inverse defect prediction [5].

Optimising Analytical Software Quality Assurance 137

We define pseudo-tested code as code that is covered by some test case but
the test case does not effectively test that code. It would not detect faults in that
code. We detect pseudo-tested code by using an extreme mutation operator: We
remove the whole implementation of a method or function and return a constant.
In empirical analyses, we found in all 19 study objects that pseudo-tested code
existed and that the median of pseudo-tested methods was 10%. It can help in a
practical setting to reduce incorrect coverage values to concentrate on test cases
that effectively add more coverage.

We introduced inverse defect detection to identify methods that are too trivial
to be tested. For example, many getter and setter methods in Java contain only
trivial functionality. In many cases, it is not time and effort well spent to test
these methods. We identified a set of metrics that we considered to be likely
indicators for trivial methods. We used these for association rule mining and
identified association rules to identify methods that have a low fault risk. This
forms effectively a theory for low-fault-risk methods. The predictor that uses
these rules is what we call inverse defect detection. It is effective in identifying
methods with low fault risk: On average, only 0.3% of the methods classified as
?low fault risk? are faulty. The identified methods are, on average, 5.7 times less
likely to contain a fault than an arbitrary method in the analysed systems. Hence,
we can either not test those methods at all or at least execute the corresponding
test cases last.

6 Conclusions

Optimising analytical quality assurance has been an important practical prob-
lem as well as a corresponding research area for many years. We have learnt that
precise economical models suffer from the lack of empirical data and, hence, have
not led to much practical progress. Yet, many empirical studies contributed to
a better understanding of the effectiveness and efficiency of particular qual-
ity assurance methods. Furthermore, new research directions such as the influ-
ence of psychological factors, pseudo-tested code and the prediction of low-fault-
risk code provide us with more theoretical understanding and already practical
impact in the form of new tools.

References

1. Boehm, B.W., Huang, L., Jain, A., Madachy, R.J.: The ROI of software depend-
ability: the iDAVE model. IEEE Softw. 21(3), 54–61 (2004)

2. Hellhake, D., Schmid, T., Wagner, S.: Using data flow-based coverage criteria for
black-box integration testing of distributed software systems. In: 12th IEEE Con-
ference on Software Testing, Validation and Verification, ICST 2019, Xi’an, China,
22–27 April 2019, pp. 420–429. IEEE (2019)

3. Jürgens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: Proceedings of 31st International Conference on Software Engineering, ICSE
2009, Vancouver, Canada, 16–24 May 2009, pp. 485–495. IEEE (2009)

138 S. Wagner

4. Niedermayr, R., Jürgens, E., Wagner, S.: Will my tests tell me if I break this code?
In: Proceedings of the International Workshop on Continuous Software Evolution
and Delivery, CSED@ICSE 2016, Austin, Texas, USA, 14–22 May 2016, pp. 23–29.
ACM (2016)

5. Niedermayr, R., Röhm, T., Wagner, S.: Too trivial to test? An inverse view on
defect prediction to identify methods with low fault risk. PeerJ Comput. Sci. 5,
e187 (2019)

6. Niedermayr, R., Wagner, S.: Is the stack distance between test case and method
correlated with test effectiveness? In Ali, S., Garousi, V. (eds.) Proceedings of the
Evaluation and Assessment on Software Engineering, EASE 2019, Copenhagen,
Denmark, 15–17 April 2019, pp. 189–198. ACM (2019)

7. Ostberg, J., Wagner, S.: At ease with your warnings: the principles of the salu-
togenesis model applied to automatic static analysis. In: IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2016,
Suita, Osaka, Japan, 14–18 March 2016, vol. 1, pp. 629–633. IEEE Computer Soci-
ety (2016)

8. Ostberg, J., Wagner, S., Weilemann, E.: Does personality influence the usage of
static analysis tools?: an explorative experiment. In: Proceedings of the 9th Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE@ICSE 2016, Austin, Texas, USA, 16 May 2016, p. 75–81. ACM (2016)

9. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M.,
Sostawa, B., Zölch, R., Stauner, T.: One evaluation of model-based testing and
its automation. In: Roman, G., Griswold, W.G., Nuseibeh, B. (eds.) 27th Interna-
tional Conference on Software Engineering (ICSE 2005), St. Louis, Missouri, USA,
15–21 May 2005, pp. 392–401. ACM (2005)

10. Slaughter, S., Harter, D.E., Krishnan, M.S.: Evaluating the cost of software quality.
Commun. ACM 41(8), 67–73 (1998)

11. Wagner, S.: A literature survey of the quality economics of defect-detection tech-
niques. In: Travassos, G.H., Maldonado, J.C., Wohlin, C. (eds.) 2006 International
Symposium on Empirical Software Engineering (ISESE 2006), Rio de Janeiro,
Brazil, 21–22 September 2006, pp. 194–203. ACM (2006)

12. Wagner, S.: A model and sensitivity analysis of the quality economics of defect-
detection techniques. In Pollock, L.L., Pezzè, M. (eds.) Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2006, Portland, Maine, USA, 17–20 July 2006, pp. 73–84. ACM (2006)

13. Wagner, S.: Cost optimisation of analytical software quality assurance. Ph.D. the-
sis, Technical University Munich, Germany (2007)

14. Wagner, S., Deissenboeck, F., Aichner, M., Wimmer, J., Schwalb, M.: An eval-
uation of two bug pattern tools for Java. In: First International Conference on
Software Testing, Verification, and Validation, ICST 2008, Lillehammer, Norway,
9–11 April 2008, pp. 248–257. IEEE Computer Society (2008)

15. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug finding
tools with reviews and tests. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005.
LNCS, vol. 3502, pp. 40–55. Springer, Heidelberg (2005). https://doi.org/10.1007/
11430230 4

https://doi.org/10.1007/11430230_4
https://doi.org/10.1007/11430230_4

Author Index

Assyne, Nana 69

Breu, Ruth 13

Eder, Sebastian 87

Felderer, Michael 3
Femmer, Henning 87
Fronza, Ilenia 121

Garousi, Vahid 3

Haas, Roman 51
Hellas, Arto 121
Hupfauf, Benedikt 13

Ihantola, Petri 121

Lübke, Daniel 31

Meding, Wilhelm 109
Mikkonen, Tommi 121
Müller, Axel 87

Noemmer, Raphael 51

Ochodek, Miroslaw 109

Staron, Miroslaw 109
Steidl, Monika 13

Wagner, Stefan 134

	Message from the General Chair
	Message from the Scientific Program Chairs
	Organization
	Contents
	Industry Challenges and Collaborations
	Together We Are Stronger: Evidence-Based Reflections on Industry-Academia Collaboration in Software Testing
	1 Introduction
	2 Software Test Activities
	3 Evidence on Industry-Academia Collaboration in Software Testing as Well as in Its Conferences and Literature
	3.1 Study 1: Perceived Level of Challenges in Testing Activities
	3.2 Study 2: Focus Areas in Industrial and Academic Software Testing Conferences
	3.3 Study 3: Synergies Between Industrial and Academic Software Testing Conferences
	3.4 Study 4: Need for Consideration of Grey Literature

	4 Reflections on Industry-Academia Collaboration in Software Testing
	5 Conclusion
	References

	Challenges in Testing Big Data Systems
	1 Introduction
	2 Objective
	3 Methodological Approach and Survey Design
	4 Participants
	5 Analysis Method
	6 Results
	6.1 Resources and Performance
	6.2 Verifying Test Results
	6.3 Finding an Optimal Test Coverage
	6.4 Availability of Test Data

	7 Threats to Validity
	8 Related Work
	9 Future Work
	10 Conclusion
	References

	Software Testing Approaches
	Selecting and Prioritizing Regression Test Suites by Production Usage Risk in Time-Constrained Environments
	1 Introduction
	2 Related Work
	3 Production Usage Risk and Coverage
	3.1 Regression Risk
	3.2 Regression Risk Coverage
	3.3 Partitioning a System into Functionalities
	3.4 Use Cases for Regression Test Risk Coverage

	4 Example
	5 Case Study: Application in an Industrial Project
	5.1 Case Study Design
	5.2 Results

	6 Conclusions and Outlook
	6.1 Conclusions
	6.2 Possible Future Work

	References

	An Evaluation of Test Suite Minimization Techniques
	1 Introduction
	2 Fundamentals
	2.1 Test Suite Minimization
	2.2 Mutation Testing

	3 Related Work
	4 Implementation
	4.1 The Greedy Algorithm
	4.2 The HGS Algorithm
	4.3 Mutation Testing

	5 Empirical Assessment
	5.1 Research Questions
	5.2 Study Subjects
	5.3 Study Design

	6 Results and Discussion
	7 Threats to Validity
	8 Conclusion
	9 Future Work
	References

	Social Aspects in Software Engineering
	Soft Competencies and Satisfaction Levels for Software Engineers: A Unified Framework
	1 Introduction
	2 Theoretical Foundation and Related Works
	2.1 Soft Competency
	2.2 Kano Model
	2.3 Competency Framework for Software Engineers

	3 A Unified Framework of Soft Competency Satisfaction Levels for Software Engineers (UFSCSL)
	4 Methodology
	4.1 Data Collection
	4.2 Data Analysis

	5 Results
	5.1 RQ1: What Are the Different Satisfaction Levels Derived from Using a Software Soft Competency?
	5.2 RQ2: Which of These Soft Competencies Are Perceived as Most Valuable for Software Engineering?

	6 Discussions
	7 Conclusion
	References

	Natural Language Processing
	Semantic Similarities in Natural Language Requirements
	1 Introduction
	1.1 Contribution of This Work
	1.2 Structure of This Work

	2 Related Work
	2.1 Semantic Similarity Estimation of General Texts
	2.2 Semantic Similarity Estimation for Requirements
	2.3 Research Gap

	3 Background
	3.1 Semantic Similarity
	3.2 Applied Algorithms

	4 Study Design
	4.1 Goal Definition
	4.2 Research Questions
	4.3 Metrics
	4.4 Experiment Design and Execution
	4.5 Study Subjects
	4.6 Study Objects

	5 Results
	5.1 Presentation of Results
	5.2 Answers to Research Questions

	6 Interpretation
	6.1 RQ1: How Do Semantic Similarity Algorithms Trained on Non-requirements Data Perform in Comparison to Algorithms Trained on Requirements Data?
	6.2 RQ2: Which Algorithm Performs Most Accurately for Predicting the Semantic Similarities of Natural Language Requirements?
	6.3 Threats to Validity

	7 Summary
	References

	Software Quality Assurance Concepts
	On Identifying Similarities in Git Commit Trends—A Comparison Between Clustering and SimSAX
	1 Introduction
	2 Background
	2.1 Similarity Between Git Commit Trends
	2.2 Time-Series Clustering
	2.3 Similarity-based on Symbolic Aggregate approXimation

	3 Related Work
	4 Research Design
	5 Results and Discussion
	5.1 Week Coverage
	5.2 Comparing Windows Coverage
	5.3 Validity Analysis

	6 Conclusions
	References

	Code Reviews, Software Inspections, and Code Walkthroughs: Systematic Mapping Study of Research Topics
	1 Introduction
	2 Data Collection
	2.1 Search for Primary Studies
	2.2 Screening of Papers for Inclusion and Exclusion
	2.3 Selecting Empirical Studies in the Software Engineering Field

	3 Qualitative Content Analysis of Research Questions
	4 Discussion
	5 Limitations and Threats to Validity
	6 Conclusions
	References

	Optimising Analytical Software Quality Assurance
	1 Optimisation of Quality Assurance
	2 Quality Economics
	3 Effectiveness and Efficiency of Quality Assurance Techniques
	4 Psychological Aspects
	5 Test Optimisation
	6 Conclusions
	References

	Author Index

