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Abstract In the study of linear differential systems, an important concept is that
of exponential separation. In a previous paper, we have studied this concept for
differential equations. Here we develop the theory for difference equations. Our first
aim is to develop a theorywhich applies to unbounded systems. It turns that in order to
have a reasonable theory it is necessary to add the assumption that the angle between
the two separated subspaces is bounded below (note this follows automatically for
bounded systems). Our second aim is to show that if a bounded linear symplectic
system is exponentially separated into two subspaces of the same dimension, then
it must have an exponential dichotomy. The theory follows the same lines as the
differential equation case with one important difference: for the roughness theorem
a different kind of perturbation is needed.

Keywords Linear difference equations · Exponential separation · Exponential
dichotomy · Symplectic

1 Introduction

In this paper we study linear difference systems

Nowweconsidex(k + 1) = A(k)x(k), x ∈ R
n (1)

where A(k) is an invertible matrix for each k. In the study of such systems, an
important concept is that of exponential separation. It is closely related to the concept
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of exponential dichotomy. In this paper we restrict attention to the case where the
solution space is split into two exponentially separated subspaces.

Exponential separation for difference equations was first studied in [9, 10]. There
it is assumed that the coefficient matrixNow we conside A(k) is bounded in norm
together with its inverse. Our first aim here is to develop a theory of exponential
separation which applies to unbounded systems. It turns out that in order to have a
reasonable theory it is necessary to add the assumption that the angle between the two
separated subspaces is bounded below (note this follows automatically for bounded
systems). Our second aim is to show that if a bounded linear system (1), where
the A(k) is symplectic, is exponentially separated into two subspaces of the same
dimension, then it must have an exponential dichotomy. Note that we developed a
similar theory for linear differential equations in [2]. Most of the results for invertible
difference equations are analogous but there is one important difference which we
mention below. Let us remark here that it was already observed in [4] that in the case
of exponential separation for differential equations, an additional angle condition is
needed for unbounded systems.

Now we summarize the contents of the paper. In Sect. 2, we introduce the basic
definitions and examine to what extent the separated subspaces are unique. Then if
a system is separated on both half-axes, we describe what must be added to ensure
separation on thewhole axis. In this sectionwedonot need the additional condition on
the angle. In Sect. 3 we introduce the concept of strong exponential separation, which
is exponential separation plus the condition that the angle between the separated
subspaces be bounded below.Then in Proposition 3,we derive a convenient necessary
and sufficient condition for strong exponential separation and use it to show that the
condition of strong exponential separation is preserved by the operation of taking
the inverse adjoint of a system and that it is implied by exponential dichotomy. In
Sect. 4, we mention the result in [9] which shows that when A(k) and its inverse
are bounded then exponential separation is equivalent to exponential dichotomy
of a shifted equation. In Sect. 5 we show strong exponential separation is robust
under small perturbation of the coefficient matrix. In fact, here we see a major
difference from the theorem for differential equations and also a difference from
the roughness theorem for exponential dichotomy in difference equations. Next in
Sect. 6 we study block upper triangular systems. First, we show that if the block
upper triangular system is strongly exponentially separated, then the corresponding
block diagonal system is strongly exponentially separated. Here no boundedness
assumptions are needed. Then, using the perturbation theorem in Sect. 5, we show
that if the corresponding block diagonal system is strongly exponentially separated
and the off-diagonal blocks are bounded in a certain sense, then the block upper
triangular system is strongly exponentially separated. Here again there is a difference
from the result for differential equations. Finally in Sect. 7, we show that if a bounded
linear symplectic system is exponentially separated into two subspaces of the same
dimension, then it must have an exponential dichotomy. An important tool here are
the results in Sect. 6 about block upper triangular systems.
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2 Exponential Separation in Bounded and Unbounded
Systems: General Properties

In this section, we define exponential separation and examine to what extent the
separated subspaces are unique. Then if a system is separated on both half-axes (that
is, Z+ or Z−), we describe what must be added to ensure separation on the whole
axis (that is,Z). Note in the case ofZ−, (1) holds for k ∈ (−∞,−1] but the solutions
are defined for k ∈ Z−. However in the sequel we use Z− in both cases where, for
(1), it is to be understood that Z− means (−∞,−1].
Definition 1 We say system (1) is exponentially separated on an infinite interval J
of integers if there are nonzero invariant subspaces V1(k) ⊕ V2(k) = R

n and positive
constants K ≥ 1 and α such that if x(k) is a nonzero solution in V1(k) and y(k) a
nonzero solution in V2(k), then

|x(k)| |y(m)|
|x(m)| |y(k)| ≤ Ke−α(k−m), k ≥ m in J.

V1(k) is called the stable subspace and V2(k) the unstable subspace. If we denote by
P(k) (note that P(k) �= 0, I) the projection with range V1(k) and nullspace V2(k),
then this can be written as

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|, k ≥ m in J (2)

for all ξ ∈ RP(m) and all η ∈ N P(k), where Φ(k,m) is the transition matrix. If
P(k) has rank r (1 ≤ r ≤ n − 1), or equivalently dim V1(k) = r , we say that (1)
is exponentially separated with rank r . Note that P(k) has the invariance property
A(k)P(k) = P(k + 1)A(k) for all k.

Remark 1 It is easy to see that (1) is exponentially separated on Z+ with subspaces
V1(k), V2(k) if and only if x(k + 1) = A−1(−k − 1)x(k) is exponentially separated
on Z− with subspaces V2(−k), V1(−k).

First we make a simple but useful observation.

Proposition 1 If (1) is exponentially separated on [T,∞) for some T > 0, it is
exponentially separated on Z+.

Proof Let (1) be exponentially separated on [T,∞) with projection P(k) and con-
stants K , α. Then

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|, k ≥ m ≥ T (3)

for all ξ ∈ RP(m) and all η ∈ N P(k).
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There exists M such that |A(k)|, |A−1(k)| ≤ M for 0 ≤ k ≤ T − 1. Then

|Φ(k,m)| ≤ M |k−m| for 0 ≤ k,m ≤ T

so that if T ≥ k ≥ m ≥ 0 and ξ ∈ RP(m), η ∈ N P(k),

|Φ(k,m)ξ| |Φ(m, k)η| ≤ M2T eαT e−α(k−m)|ξ| |η|. (4)

Next if k ≥ T ≥ m ≥ 0 and ξ �= 0 inRP(m), η �= 0 in N P(k),

|Φ(k,m)ξ| |Φ(m, k)η|
|ξ| |η|

= |Φ(k, T )ξ1| |Φ(m, T )η1|
|ξ| |η| , ξ1 = Φ(T,m)ξ ∈ RP(T ), η1 = Φ(T, k)η ∈ N P(T )

= |Φ(k, T )ξ1|
|ξ1|

|Φ(T, k)η|
|η| × |Φ(T,m)ξ|

|ξ|
|Φ(m, T )η1|

|η1|
≤ Ke−α(k−T ) × M2T eαT e−α(T−m), using (3), (4)
= KM2T eαT e−α(k−m).

Together with (3) and (4), this proves the proposition.

Now we examine the extent to which exponentially separated subspaces are
unique.

Proposition 2 For exponentially separated systems on Z+ the stable subspace is
uniquely defined (for a given dimension) and for exponentially separated systems
on Z− the unstable subspace is uniquely defined. The other subspace can be any
complement.

Proof Consider firstZ+. So we are assuming there is an invariant projection P(k) �=
0, I and positive constants K andα such that (2) holds. Let Q(k) be another invariant
projection with the same range as P(k).

Suppose ξ ∈ R(Q(m)) = R(P(m)) and η �= 0 ∈ N (Q(k)). Note that
(I − P(k))η �= 0, since otherwise η ∈ R(P(k)) = R(Q(k)) and therefore would
be 0 since it is in N (Q(k)) also. Then if 0 ≤ m ≤ k,

|Φ(k,m)ξ| |Φ(m, k)η|
= |Φ(k,m)ξ| |Φ(m, k)(I − P(k))η| |Φ(m, k)(I − Q(k))η|

|Φ(m, k)(I − P(k))η|
≤ Ke−α(k−m)|ξ| |(I − P(k))η| |Φ(m, k)(I − Q(k))η|

|Φ(m, k)(I − P(k))η|
= Ke−α(k−m)|ξ| |η| |Φ(m, k)(I − Q(k))η||(I − P(k))η|

|Φ(m, k)(I − P(k))η||(I − Q(k))η| .

(5)
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Now

|Φ(m, k)(I − Q(k))η|
|Φ(m, k)(I − P(k))η| = |Φ(m, 0)(I − Q(0))Φ(0, k)η|

|Φ(m, 0)(I − P(0))Φ(0, k)η|
≤ 1 + |Φ(m, 0)(P(0) − Q(0))Φ(0, k)η|

|Φ(m, 0)(I − P(0))Φ(0, k)η|
≤ 1 + Ke−αm |(P(0) − Q(0))Φ(0, k)η|

|(I − P(0))Φ(0, k)η|
≤ 1 + Ke−αmN ,

since (P(0) − Q(0))Φ(0, k)η ∈ R(P(0)), (I − P(0))Φ(0, k)η ∈ N (P(0)) and
where

N = sup
η∈N Q(0),|η|=1

|(P(0) − Q(0))η|
|(I − P(0))η| .

Similarly,

|(I − Q(k))η|
|(I − P(k))η| = |Φ(k, 0)(I − Q(0))Φ(0, k)η|

|Φ(k, 0)(I − P(0))Φ(0, k)η|
≥ 1 − |Φ(k, 0)(P(0) − Q(0))Φ(0, k)η|

|Φ(k, 0)(I − P(0))Φ(0, k)η|
≥ 1 − Ke−αk |(P(0) − Q(0))Φ(0, k)η|

|(I − P(0))Φ(0, k)η|
≥ 1 − Ke−αk N .

So if k ≥ m ≥ T = α−1 log(3K N ),

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|1 + 1/3

1 − 1/3
= 2Ke−α(k−m)|ξ| |η|.

Then we get the exponential separation on Z+ using Proposition 1. Thus Q(k) can
also be used as a projection and hence any invariant complement ofR(P(k)) can be
taken as the unstable subspace.

Nowwe prove the uniqueness of the stable subspace. Suppose R(k) is an invariant
projection with different range from P(k) but with the same rank, with respect to
which the system is exponentially separated. Let p be a vector which is in the range
of R(0) but not in the range of P(0) and q a vector which is in the range of P(0)
but not in the range of R(0). We can take Q1(k) as an invariant projection with the
same range as P(k) with p in the nullspace of Q1(0) and Q2(k) as an invariant
projection with the same range as R(k) with q in the nullspace of Q2(0). Now there
exist positive constants Ki and αi such that for k ≥ m ≥ 0,

|Φ(k,m)ξ| |Φ(m, k)η| ≤ K1e
−α1(k−m)|ξ| |η|
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for all ξ �= 0 inRQ1(m) and all η �= 0 in N Q1(k) and

|Φ(k,m)ξ| |Φ(m, k)η| ≤ K2e
−α2(k−m)|ξ| |η|

for all ξ �= 0 inRQ2(m) and all η �= 0 inN Q2(k). Since q is in the range of Q1(0)
and Φ(k, 0)p is in the nullspace of Q1(k), it follows that for k ≥ 0,

|Φ(k, 0)q| |Φ(0, k)Φ(k, 0)p| ≤ K1e
−α1k |q| |Φ(k, 0)p|,

and since p is in the range of Q2(0) andΦ(k, 0)q in the nullspace of Q2(k), it follows
that for k ≥ 0,

|Φ(k, 0)p| |Φ(0, k)Φ(k, 0)q| ≤ K2e
−α2k |p| |Φ(k, 0)q|.

Then, combining these inequalities,

|p| |Φ(k, 0)q| ≤ K1e
−α1k K2e

−α2k |p| |Φ(k, 0)q|

so that for k ≥ 0
1 ≤ K1e

−α1k K2e
−α2k,

clearly impossible. Thus the stable subspace is unique.
The proof of the Proposition for Z− follows using Remark 1.

In the following corollary, we show what additional conditions are needed to
ensure that a system which is exponentially separated on both half-axes is also expo-
nentially separated on the whole axis.

Corollary 1 System (1) is exponentially separated on Z if and only if it is expo-
nentially separated on Z+ and Z−, the respective ranks are the same and the stable
subspace on Z+ and the unstable subspace on Z− intersect in {0} at k = 0.

Proof Clearly the conditions are necessary.
For the sufficiency, suppose (1) is exponentially separated on Z+ and Z−, the

respective ranks are the same and the stable subspace onZ+ and the unstable subspace
onZ− intersect in {0} at k = 0. According to Proposition 2, at k = 0, we can take the
unstable subspace on Z+ to be the unstable subspace on Z− and the stable subspace
on Z− to be the stable subspace on Z+. This means we have the same invariant
projection P(k) on both Z+ and Z−. Then there exist positive constants K and α
such that if ξ ∈ R(P(m)) and η ∈ N (P(k)), we have

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|
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for k ≥ m ≥ 0 and 0 ≥ k ≥ m. Next if k ≥ 0 ≥ m,

|Φ(k,m)ξ| |Φ(m, k)η| = |Φ(k,m)ξ| |Φ(0, k)η|
|Φ(0,m)ξ|

|Φ(0,m)ξ| |Φ(m, k)η|
|Φ(0, k)η|

= |Φ(k, 0)Φ(0,m)ξ| |Φ(0, k)η|
|Φ(0,m)ξ|

|Φ(0,m)ξ| |Φ(m, 0)Φ(0, k)η|
|Φ(0, k)η|

≤ Ke−αk |Φ(0,m)ξ| |η|
|Φ(0,m)ξ|

Keαm |ξ| |Φ(0, k)η|
|Φ(0, k)η|

= K 2e−α(k−m)|ξ| |η|.

It follows that (1) is exponentially separated on Z.

3 Strongly Exponentially Separated Systems

In this section we introduce the definition of strong exponential separation. Then we
derive a simple necessary and sufficient condition for strong exponential separation
and we use it to show that strong exponential separation is preserved by the operation
of taking adjoints and also that exponential dichotomy implies strong exponential
separation.

First we recall the definitions of kinematic similarity and reducibility.

Definition 2 Systems (1) and y(k + 1) = B(k)y(k) are kinematically similar if
there exists a bounded, invertiblematrix function S(k)with bounded inverse such that
the transformation x = S(k)y takes (1) into y(k + 1) = B(k)y(k), where B(k) =
S−1(k + 1)A(k)S(k). We refer to the transformation x = S(k)y as a kinematic sim-
ilarity.

Definition 3 System (1) is reducible if it is kinematically similar to a block diagonal
system

y(k + 1) =
(
A1(k) 0
0 A2(k)

)
y(k).

The following proposition follows from [3] (see also Lemma 1.5.4 in [11]). Note
that a projection P(k) is invariant for (1) if A(k)P(k) = P(k + 1)A(k) for all k.

Proposition 3 System (1) is reducible if and only if (1) has a bounded invariant
projection P(k) �= 0, I.

Remark 2 Note that the boundedness of P(k) is equivalent to the angle between the
range and nullspace of P(k) being bounded below by a positive number.

Remark 3 Here we prove the sufficiency in Proposition 3. If P(k) is invariant and
bounded, it follows from [3] that there is a kinematic similarity S(k) such that P(k) =
S(k)PS−1(k) with P =

(
I 0
0 0

)
. Then the transformation x = S(k)y takes (1) into a

system y(k + 1) = B(k)y(k), where
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B(k)P = B(k)S−1(k)P(k)S(k)
= S−1(k + 1)A(k)P(k)S(k)
= S−1(k + 1)P(k + 1)A(k)S(k) by invariance of P(k)
= S−1(k + 1)P(k + 1)S(k + 1)B(k)
= PB(k).

So the transformed system has the form

y(k + 1) =
(
A1(k) 0
0 A2(k)

)
y,

and the projection corresponding to P(k) is S−1(k)P(k)S(k) = P .

Remark 4 Analogously to Lemma 1 in [7], it can be proved that if A(k) and A−1(k)
are bounded and (1) is exponentially separated with corresponding projection P(k),
then P(k) is bounded so that (1) is reducible. The example below shows that an
unbounded exponentially separated system need not be reducible, in contrast to the
case of bounded systems.

Example 1

x(k + 1) =
(
e (e2 − 1)ek+1

0 e2

)
x(k). (6)

This has the two solutions

x(k) = (ek, 0), y(k) = (e3k, e2k).

Using the maximum norm in R
2, we see that |x(k)| = ek and |y(k)| = e3k for all

k ≥ 0. Then if k ≥ m ≥ 0

|x(k)| |y(m)|
|x(m)| |y(k)| = ek e3m

em e3k
= e−2(k−m)

so that the system is exponentially separated on Z+. Now suppose (6) is reducible.
Then it follows that there exists a bounded invariant projection P(k) of rank 1. By
direct calculation, it can be shown that there is no such P(k). Indeed if

P(0) =
(
a b
c d

)
, P2(0) = P(0),

then with

Φ(k, 0) =
(
ek e3k − ek

0 e2k

)
,

wefind that the (2, 1) entry in P(k), where by invariance P(k)=Φ(k, 0)P(0)Φ(0, k),
is cek . So, if P(k) is bounded, then c = 0. Next we find that the (1, 2) entry in P(k) is
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(d − a)ek + (a + b − d)e−k . So a = d and it follows that P(0) = 0 or the identity
and hence cannot have rank 1.

Now we give the definition of strong exponential separation.

Definition 4 System (1) is said to be strongly exponentially separated if it is expo-
nentially separated with corresponding subspaces V1(k) ⊕ V2(k) = R

n where the
angle between V1(k) and V2(k) is bounded below by a positive number, or equiva-
lently the projection P(k) on to V1(k) along V2(k) is bounded.

Remark 5 Kinematic similarity preserves both exponential separation and strong
exponential separation. Indeed, suppose the kinematic similarity x = S(k)y takes
(1) into the system y(k + 1) = B(k)y(k). Moreover suppose (1) is exponentially
separated on an interval J with projection P(k) so that

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|, k ≥ m in J

for all ξ ∈ RP(m) and all η ∈ N P(k). The transition matrix for y(k + 1) =
B(k)y(k) is Ψ (k,m) = S−1(k)Φ(k,m)S(m). So if we define the projection Q(k) =
S−1(k)P(k)S(k), then Q(k) is invariant with respect to y(k + 1) = B(k)y(k) and if
ξ ∈ RQ(m) and η ∈ N Q(k), then S(m)ξ ∈ RP(m) and S(k)η ∈ N P(k) so that if
k ≥ m in J ,

|Ψ (k,m)ξ| |Ψ (m, k)η| = |S−1(k)Φ(k,m)S(m)ξ| |S−1(m)Φ(m, k)S(k)η|
≤ N2|Φ(k,m)S(m)ξ| |Φ(m, k)S(k)η|, with N = sup |S−1(k)|
≤ N2Ke−α(k−m)|S(m)ξ| |S(k)η|
≤ M2N2Ke−α(k−m)|ξ| |η|, where M = sup |S(k)|.

Moreover, if P(k) is bounded then Q(k) is bounded also.

Remark 6 In viewof the remark before the example, if A(k) and A−1(k) are bounded,
exponential separation implies strong exponential separation.

Nowwederive a simple criterion for strong exponential separationwhich is similar
to one given in [5] and was proved for the bounded case in [9].

Proposition 4 A system x(k + 1) = A(k)x(k) is strongly exponentially separated
on an infinite interval J with projection P(k) if and only if there exist positive
constants K and α such that

|Φ(k,m)P(m)| |Φ(m, k)(I − P(k))| ≤ Ke−α(k−m), m ≤ k ∈ J. (7)

Proof To prove the sufficiency, note that (7) with k = m implies that

|P(k)| |I − P(k))| ≤ K , k ∈ J.
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Since I − P(k) is a nonzero projection, |I − P(k)| ≥ 1 and so

|P(k)| ≤ K , k ∈ J.

Next observe that if ξ ∈ RP(m) and η ∈ N P(k)

|Φ(k,m)ξ| |Φ(m, k)η| = |Φ(k,m)P(m)ξ| |Φ(m, k)(I − P(k))η|
≤ |Φ(k,m)P(m)| |ξ| |Φ(m, k)(I − P(k))| |η|
≤ Ke−α(k−m)|ξ| |η|.

for k ≥ m. So the sufficiency is proved.
Now we prove the necessity. We are supposing that there are positive constants

K and α such that if ξ ∈ RP(m) and η ∈ N P(k), then for k ≥ m

|Φ(k,m)ξ| |Φ(m, k)η| ≤ Ke−α(k−m)|ξ| |η|, |P(k)| ≤ K .

Then for all ξ and η,

|Φ(k,m)P(m)ξ| |Φ(m, k)(I − P(k))η| ≤ Ke−α(k−m)|P(m)ξ| |(I − P(k))η|
≤ Ke−α(k−m)|P(m)| |ξ| |(I − P(k))| |η|
≤ K 2(1 + K )e−α(k−m)|ξ| |η|.

Hence

|Φ(k,m)P(m)| |Φ(m, k)(I − P(k))| ≤ K 2(1 + K )e−α(k−m), k ≥ m.

We use the criterion just derived to show that strong exponential separation is
preserved by the operation of taking adjoints.

Corollary 2 If a system x(k + 1) = A(k)x(k) is strongly exponentially separated
on an interval J with projection P(k), then so also is its adjoint x(k + 1) =
[A∗(k)]−1x(k) with projection I − P∗(k).

Proof By Proposition 4, there exist an invariant projection P(k) and positive con-
stants K and α such that

|Φ(k,m)P(m)| |Φ(m, k)(I − P(k))| ≤ Ke−α(k−m), k ≥ m,

which, using invariance P(k)Φ(k,m) = Φ(k,m)P(m), can be rewritten as

|P(k)Φ(k,m)| |(I − P(m))Φ(m, k)| ≤ Ke−α(k−m), k ≥ m.

Taking adjoints and using the Euclidean norm, we get

|Φ∗(k,m)P∗(k)| |Φ∗(m, k)(I − P∗(m))| ≤ Ke−α(k−m), k ≥ m.
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Now the transition matrix for the adjoint system is Ψ (k,m) = Φ∗(m, k) and so we
have

|Ψ (k,m)(I − P∗(m))| |Ψ (m, k)P∗(k)| ≤ Ke−α(k−m), k ≥ m.

Thus the adjoint system is strongly exponentially separated with projection I −
P∗(k).

Remark 7 In 2 dimensions this also holds without “strong”. For let x(k) = (x1(k),
x2(k))T and y(k) = (y1(k), y2(k))T be exponentially separated solutions. Set X (k) =
(x(k), y(k)). Then X∗(k)−1 is a matrix solution of the adjoint system. But

X∗(k)−1 = (x1(k)y2(k) − x2(k)y1(k))
−1

(
y2(k) −x2(k)

−y1(k) x1(k)

)
.

We see that the columns of this are exponentially separated solutions for the adjoint
system. However this does not extend to higher dimensions. We give an example
of an exponentially separated discrete equation in three dimensions for which the
corollary about the adjoint system does not hold.

The system is

x(k + 1) =
⎛
⎝e3 0 (1 − e)ek+2

0 e2 e(1 − e)
0 0 e

⎞
⎠ x(k), k ≥ 0, (8)

for which the transition matrix is

Φ(k, 0) =
⎛
⎝e3k 0 e2k(1 − ek)

0 e2k ek(1 − ek)
0 0 ek

⎞
⎠ .

If P is the projection

P :=
⎛
⎝0 0 1
0 1 0
0 0 1

⎞
⎠ ,

then

Φ(k, 0)P =
⎛
⎝0 0 e2k

0 e2k ek(1 − ek)
0 0 ek

⎞
⎠ , Φ(k, 0)(I − P) =

⎛
⎝e3k 0 −e3k

0 0 0
0 0 0

⎞
⎠ .

The space spanned by the columns of Φ(k, 0)P is the

span{x1(k), x2(k)} with x1(k) = e2k

⎛
⎝0
1
0

⎞
⎠ and x2(k) = ek

⎛
⎝ek

1
1

⎞
⎠ .
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With the �1-norm we have

|x1(k)| = e2k e2k ≤ |x2(k)| ≤ 3e2k .

Next the space spanned by the columns of Φ(k, 0)(I − P) is

span{y(k)} with y(k) = e3k

⎛
⎝1
0
0

⎞
⎠ .

Let x(k) = ax1(k) + bx2(k)witha2 + b2 �= 0.Then (|a| + |b|)e2k ≤ |x(k)| ≤ (|a| +
3|b|)e2k . Then for k ≥ 0, m ≥ 0,

|x(k)|
|x(m)| ≤ |a| + 3|b|

|a| + |b| e
2(k−m).

Next |y(m)|
|y(k)| = e3(m−k).

Hence for k ≥ 0, m ≥ 0,

|x(k)|
|x(m)|

|y(m)|
|y(k)| ≤ |a| + 3|b|

|a| + |b| e
−(k−m) ≤ 3e−(k−m).

As a consequence the discrete system (8) is exponentially separated on Z+ with
projection

P(k) = Φ(k, 0)PΦ(0, k) =
⎛
⎝0 0 ek(ek + 1)
0 1 0
0 0 1

⎞
⎠ ,

which is not bounded so that (8) is not strongly exponentially separated.
We prove that the adjoint system is not exponentially separated with projection

(at k = 0)

I − P∗(0) = I − P∗ =
⎛
⎝ 1 0 0

0 0 0
−1 0 0

⎞
⎠ .

If we denote by Ψ (k,m) the transition matrix for the adjoint system, then

Ψ (k, 0) = Φ∗(0, k) =
⎛
⎝ e−3k 0 0

0 e−2k 0
e−k − e−2k e−k − e−2k e−k

⎞
⎠



Strongly Exponentially Separated Linear Difference Equations 161

so that

Ψ (k, 0)P∗ =
⎛
⎝ 0 0 0

0 e−2k 0
e−k e−k − e−2k e−k

⎞
⎠ , Ψ (k, 0)(I − P∗) =

⎛
⎝ e−3k 0 0

0 0 0
−e−2k 0 0

⎞
⎠ .

Thus the stable subspace for the adjoint system should be spanned by the solution

u(k) =
⎛
⎝ e−3k

0
−e−2k

⎞
⎠

and we can take the unstable space as the one spanned by the two solutions:

v1(k) =
⎛
⎝ 0

0
e−k

⎞
⎠ , v2(k) =

⎛
⎝ 0

e−2k

−e−2k

⎞
⎠ .

Then
e−2k ≤ |u(k)| = e−2k(e−k + 1) ≤ 2e−2k and |v2(k)| = 2e−2k .

Now if there was an exponential separation, there would exist positive constants K
and α such that for k ≥ m ≥ 0,

|u(k)|
|u(m)|

|v2(m)|
|v2(k)| ≤ Ke−α(k−m).

However then for k ≥ m ≥ 0,

1

2
= e−2k

2e−2m

2e−2m

2e−2k
≤ |u(k)|

|u(m)|
|v2(m)|
|v2(k)| ≤ Ke−α(k−m).

This is impossible. We conclude that the adjoint system cannot be exponentially
separated with projection I − P∗ at k = 0.

Next we show that exponential dichotomy implies strong exponential separation.
First we give the defintion of exponential dichotomy.

Definition 5 We say system (1) has an exponential dichotomy on an infinite interval
J of integers if there is an invariant projection P(k) and positive constants K ≥ 1
and α such that

|Φ(k,m)P(m)| ≤ Ke−α(k−m), |Φ(m, k)(I − P(k))| ≤ Ke−α(k−m) k ≥ m in J,

where Φ(k,m) is the transition matrix. If P(k) has rank r (0 ≤ r ≤ n), we say that
(1) has an exponential dichotomy with rank r .
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Corollary 3 If a system x(k + 1) = A(k)x(k) has an exponential dichotomy on
an interval J with projection not equal to 0 or I, then it is strongly exponentially
separated on J with the same projection.

Proof The proof follows at once from Proposition 4.

Finally we show that if a system is strongly exponentially separated on Z+ (resp.
Z−) with a certain invariant projection, then it is strongly exponentially separated
with respect to an invariant projection with the same range (resp. nullspace).

Proposition 5 If system (1) is strongly exponentially separated on Z+ (resp. Z−)
with projection P(k), then it is strongly exponentially separated with respect to an
invariant projection Q(k) with the same range (resp. nullspace) as P(k).

Proof We just prove it for Z+. By Proposition 2, we know that (1) is exponentially
separated with respect to Q(k). All we need to show is that Q(k) is bounded. As in
Remark 3, there is a kinematic similarity x = S(k)y taking (1) into a system of the
form

y(k + 1) =
(
A1(k) 0
0 A2(k)

)
y(k),

where the projection for the exponential separation is the constant P =
(
I 0
0 0

)
=

S−1(k)P(k)S(k) and so by Proposition 4, there exist positive constants K and α
such that

|Φ1(k,m)| |Φ2(m, k)| ≤ Ke−α(k−m), k ≥ m,

Φ1(k,m) and Φ2(k,m) being the respective transition matrices for y1(k + 1) =
A1(k)y1(k) and y2(k + 1) = A2(k)y2(k). If Q(k) is a projection with the same range
as P(k), Q̃(k) = S−1(k)Q(k)S(k) has the same range as S−1(k)P(k)S(k) = P so
that

Q̃(k) =
(
I C(k)
0 0

)

for some matrix function C(k), where by the invariance of Q̃(k),

C(k) = Φ1(k, 0)C(0)Φ2(0, k)

so that
|C(k)| ≤ |Φ1(k, 0)| |C(0)| |Φ2(0, k)| ≤ Ke−αk |C(0)|.

So Q̃(k) is bounded and hence also Q(k) = S(k)Q̃(k)S−1(k). Note also that we have
shown that |Q(k) − P(k)| → 0 as k → ∞ exponentially fast.
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4 Exponential Separation and Dichotomy

InProposition3 in [9], Papaschinopoulos showed that for a system (1)where A(k) and
its inverse are bounded, strong exponential separation is equivalent to the existence
of a bounded sequence p(k) > 0, where 1/p(k) is also bounded, such that the shifted
equation

x(k + 1) = 1

p(k)
A(k)x(k)

has an exponential dichotomywith the sameprojection.A similar result, in the context
of diffeomorphisms on a compact manifold, has been given in [5]. There exponen-
tial separation is referred to as “dominated splitting” and exponential dichotomy as
“hyperbolicity”. It is not known whether or not this result can be extended to the case
where A(k) and its inverse are not bounded.

5 Roughness of Strong Exponential Separation

Wewould like to show, as for differential equations (see [2]), that strong exponential
separation is preserved under small perturbations of the coefficient matrix. Now
Kalkbrenner [6] has shown that if (1) has an exponential dichotomy and |B(k)| is
uniformly small, then x(k + 1) = [A(k) + B(k)]x(k) has an exponential dichotomy
with projection near that for the unperturbed system. (Such a result was also proved
in [8], but under the additional assumptions that A(k) be invertible and A(k) and
its inverse be bounded.) However the following example shows that the analogous
result is not true, in general, for strong exponential separation.

Example 2 Consider the equation

x(k + 1) =
(
e−αa(k) + δ 0

0 a(k)

)
x(k) (9)

with k ≥ 0, δ > 0 and a(k) > 0. Two independent solutions are:

u(k) =
⎛
⎝e−αkσ(k)

k−1∏
j=0

(
1 + δeα

a( j)

)
, 0

⎞
⎠ , v(k) = (0,σ(k)),

where σ(0) = 1 and

σ(k) =
k−1∏
j=0

a( j) for k ≥ 1. (10)
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Then
|u(k)|
|u(m)|

|v(m)|
|v(k)| = e−α(k−m)

k−1∏
j=m

(
1 + δeα

a( j)

)
.

We define a(k) as follows. Let Ti , i ≥ 0, be a sequence of positive integers such that
Ti+1 ≥ Ti + 2 (e.g. Ti = 2i). Then we define

a(k) =
{
Ai (i ≥ 1, T2i−1 ≤ k < T2i ),

Bi (i ≥ 0, T2i ≤ k < T2i+1),

where Ai → 0 and Bi → ∞ (e.g. Ai = 1/ i , Bi = i). Then

|u(k)|
|u(m)|

|v(m)|
|v(k)| = e−α(k−m)

(
1 + δeα

Ai

)k−m

= e[log(1+δeα/Ai )−α](k−m). (11)

when T2i−1 ≤ m ≤ k < T2i . This implies that it is not possible that there exist positive
constants K and β such that

|u(k)|
|u(m)|

|v(m)|
|v(k)| ≤ Ke−β(k−m), k ≥ m

for otherwise, setting m = T2i−1 and k = T2i − 1 and taking logs,

[log(1 + δeα/Ai ) − α](T2i − 1 − T2i−1) ≤ log(K ) − β(T2i − 1 − T2i−1) ≤ log(K ) − β,

which is impossible since the left side → ∞ as i → ∞. On the other hand, if T2i ≤
m ≤ k < T2i+1 we have

|u(k)|
|u(m)|

|v(m)|
|v(k)| = e−α(k−m)(1 + δeα/Bi )

k−m = e[log(1+δeα/Bi )−α](k−m).

This implies that it is not possible that there exist positive constants K and β such
that |v(k)|

|v(m)|
|u(m)|
|u(k)| ≤ Ke−β(k−m), k ≥ m

for otherwise, setting m = T2i and k = T2i+1 − 1 and taking logs,

−(log(1 + δeα/Bi ) − α)(T2i+1 − 1 − T2i ) ≤ log(K ) − β(T2i+1 − 1 − T2i ) ≤ log(K ) − β,

which is impossible since the left side → ∞ as i → ∞.

As a consequence system (9) is not exponentially separated with, at k = 0, pro-

jection

(
1 0
0 0

)
or with projection

(
0 0
0 1

)
. This also covers all cases where the stable
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subspace at k = 0 is the x-axis, because we may take the unstable subspace at k = 0

as the y-axis so that at k = 0 the projection is

(
1 0
0 0

)
.

This leaves the case that system (9) is exponentially separatedwith stable subspace
at k = 0 different from the x-axis. Then we can take the x-axis as the unstable
subspace at k = 0, that is, we can assume that (9) is exponentially separated with

projection

(
0 γ
0 1

)
at k = 0. Set

u(k) = e−αkσ(k)
k−1∏
j=0

(
1 + δeα

a( j)

)
, v(k) = σ(k),

with σ(k) as in (10). Then the stable and unstable solutions are, respectively

xs(k) = (γu(k), v(k)), xu(k) = (u(k), 0)

and there should exist positive constants K and β such that

max

{
|γ|, |v(k)|

|u(k)|
}

= |xs(k)|
|xu(k)| ≤ Ke−βk, k ≥ 0,

where we are using the maximum norm in R
2. This implies that γ = 0. However

we have shown the system is not exponentially separated with projection

(
0 0
0 1

)
at

k = 0. This completes the proof that system (9) is not exponentially separated.
In view of this example, we must choose a different kind of perturbation.

Theorem 1 Suppose (1) is strongly exponentially separated on an interval J with
projection P(k). Then if |B(k)| ≤ δ, where δ is sufficiently small, the perturbed
system

x(k + 1) = A(k)[I + B(k)]x(k) (12)

is also strongly exponentially separated with projection Q(k) of the same rank. Also
there exists a constant N such that

|Q(k) − P(k)| ≤ Nδ.

First we prove the perturbation theorem for the special case where the system has
been split into its stable and unstable parts and the perturbation is uncoupled. Note
that this proof is rather more complicated than the proof of a corresponding lemma
for dichotomy would be.

Lemma 1 Consider the system

x1(k + 1) = A1(k)[I + C1(k)]x1(k), x2(k + 1) = A2(k)[I + C2(k)]x2(k).
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Suppose there exist positive constants K and α such that

|Φ1(k,m)| |Φ2(m, k)| ≤ Ke−α(k−m), k ≥ m ∈ J,

Φi (k,m) being the respective transition matrices for xi (k + 1) = Ai (k)xi (k). Then
if |Ci (k)| ≤ δ, where K δ < 1,

|Φ̃1(k,m)| |Φ̃2(m, k)| ≤ Ke−(α−log[(1+K δ)/(1−K δ)])(k−m), k ≥ m ∈ J,

where Φ̃i (k,m) are the respective transition matrices for xi (k + 1) = Ai (k)[I +
Ci (k)]xi (k).
Proof Let x2(k) be a nonzero solution of x2(k + 1) = A2(k)x2(k). Then

|Φ1(k,m)| |x2(m)| = |Φ1(k,m)| |Φ2(m, k)x2(k)| ≤ Ke−α(k−m)|x2(k)|, k ≥ m.

Next if x1(k) is a solution of x1(k + 1) = A1(k)[I + C1(k)]x1(k), then

x1(k) = Φ1(k,m)x1(m) +
k−1∑
p=m

Φ1(k, p)C1(p)x1(p)

so that

|x1(k)| ≤ Ke−α(k−m) |x2(k)|
|x2(m)| |x1(m)| +

k−1∑
p=m

Ke−α(k−p) |x2(k)|
|x2(p)|δ|x1(p)|.

Writing z(k) = eαk |x1(k)|/|x2(k)|, we get

z(k) ≤ Kz(m) + K δ

k−1∑
p=m

z(p)

so that for k ≥ m,
z(k) ≤ K (1 + K δ)k−mz(m).

Therefore

|x1(k)| ≤ Ke−(α−log(1+K δ))(k−m) |x2(k)|
|x2(m)| |x1(m)|

and hence

|Φ̃1(k,m)| ≤ Ke−(α−log(1+K δ))(k−m) |x2(k)|
|x2(m)| , k ≥ m.
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That is,

|Φ̃1(k,m)| |Φ2(m, k)x2(k)| ≤ Ke−(α−log(1+K δ))(k−m)|x2(k)|, k ≥ m.

Since x2(k) is arbitrary, it follows that

|Φ̃1(k,m)| |Φ2(m, k)| ≤ Ke−(α−log(1+K δ))(k−m), k ≥ m.

Next let x1(k) be a solution of x1(k + 1) = A1(k)[I + C1(k)]x1(k). Then

|x1(k)| |Φ2(m, k)| = |Φ̃1(k,m)x1(m)| |Φ2(m, k)| ≤ Ke−(α−log(1+K δ))(k−m)|x1(m)|, k ≥ m.

Now if x2(k) is a solution of x2(k + 1) = A2(k)[I + C2(k)]x2(k), then for k ≤ m

x2(k) = Φ2(k,m)x2(m) −
m−1∑
p=k

Φ2(k, p)C2(p)x2(p)

so that

|x2(k)| ≤ Ke−(α−log(1+K δ))(m−k) |x1(k)|
|x1(m)| |x2(m)|+

m−1∑
p=k

Ke−(α−log(1+K δ))(p−k) |x1(k)|
|x1(p)| δ|x2(p)|.

Writing z(k) = e−(α−log(1+K δ))k |x2(k)|/|x1(k)|, we get

z(k) ≤ Kz(m) + K δ

m−1∑
p=k

z(p), k ≤ m, so that z(k) ≤ Kz(m)(1 − K δ)k−m , k ≤ m

and so

|x2(k)| ≤ Ke−(α−log[(1+K δ)/(1−K δ)])(m−k) |x1(k)|
|x1(m)| |x2(m)|, k ≤ m.

Thus

|Φ̃2(k,m)| ≤ Ke−(α−log[(1+K δ)/(1−K δ)])(m−k) |x1(k)|
|x1(m)| , k ≤ m.

That is,

|Φ̃1(m, k)x1(k)| |Φ̃2(k,m)| ≤ Ke−(α−log[(1+K δ)/(1−K δ)])(m−k)|x1(k)|, k ≤ m.

Since x1(k) is arbitrary, it follows that

|Φ̃1(k,m)| |Φ̃2(m, k)| ≤ Ke−(α−log[(1+K δ)/(1−K δ)])(k−m), m ≤ k.
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Nowwe prove the general perturbation theorem, using the special case just proved
and also Lemma 2. Here we follow the method in the proof on p. 42 of [3]. First we
prove a lemma which is essentially well-known (see, for example, Proposition 2.8
in [8]) but we give the proof for the sake of completeness.

Lemma 2 Let A(k) be an invertible matrix function on J = Z, Z+ or Z−. Suppose
there exist positive constants K and α such that the transition matrix Φ(k,m) for
(1) satisfies

|Φ(k,m)| ≤ Ke−α(k−m)

for k ≥ m in J . Next let f (k, x) be a function satisfying

| f (k, 0)| ≤ μ, | f (k, x1) − f (k, x2)| ≤ θ|x1 − x2|

for k ∈ J and |x1|, |x2| ≤ Δ. Then if

2Kμ ≤ (1 − e−α)Δ, 2Kθ ≤ 1 − e−α,

the equation
x(k + 1) = A(k)x(k) + f (k, x(k)), k ∈ J

has a solution x(k) such that |x(k)| ≤ 2Kμ/(1 − e−α).

Proof Let E be the Banach space of bounded sequences x(k) defined for k ∈ J with
the supremum norm ‖ · ‖∞ and let S be the ball of radius 2Kμ/(1 − e−α) in E . Then
we define a mapping T on S by

(T x)(k) =
k−1∑
m=b

Φ(k,m + 1) f (m, x(m)), k ∈ J,

where b = −∞ when J = Z, Z− and b = 0 when J = Z+. Note that if k ∈ J ,

|(T x)(k)| ≤
k−1∑
m=b

Ke−α(k−m−1)[μ + θ 2Kμ/(1 − e−α)]

≤ K (1 − e−α)−1[μ + θ 2Kμ/(1 − e−α)]
≤ 2Kμ(1 − e−α)−1.

Hence T maps S into itself. Next if x1(k) and x2(k) are two sequences in S, then for
k ∈ J1,

|(T x1)(k) − (T x2)(k)| ≤
k−1∑
m=b

Ke−α(k−m−1)θ‖x1 − x2‖∞

≤ K (1 − e−α)−1θ‖x1 − x2‖∞ ≤ 1

2
‖x1 − x2‖∞.
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Thus T is a contraction on S and has a unique fixed point x(k) which satisfies
|x(k)| ≤ 2Kμ/(1 − e−α) for all k ∈ J and also

x(k) =
k−1∑
m=b

Φ(k,m + 1) f (m, x(m)), k ∈ J,

from which it follows that for k ∈ J ,

x(k + 1) =
k∑

m=b

Φ(k + 1,m + 1) f (m, x(m))

= A(k)
k−1∑
m=b

Φ(k,m + 1) f (m, x(m)) + f (k, x(k)) = A(k)x(k) + f (k, x(k)).

Now we continue with the proof of the theorem.

Proof As in Remark 3, there is a kinematic similarity x = T (k)y, k ∈ J , taking (1)
into a block diagonal system

x(k + 1) =
(
A1(k) 0
0 A2(k)

)
x(k).

This coefficient matrix commutes with P =
(
I 0
0 0

)
. Also the block diagonal system

is strongly exponentially separated with constant projection P so that by Proposition
4 there exist positive constants K and α such that

|Φ1(k,m)| |Φ2(m, k)| ≤ Ke−α(k−m), m ≤ k, m, k ∈ J

Φi (k,m) being the respective transition matrices. If we apply the transformation
x = T (k)y to the perturbed system (12), we obtain a system with coefficient matrix

T−1(k + 1)A(k)[I + B(k)]T (k) = T−1(k + 1)A(k)T (k)
+T−1(k + 1)A(k)T (k)T−1(k)B(k)T (k)

=
(
A1(k) 0
0 A2(k)

)
+

(
A1(k)C11(k) A1(k)C12(k)
A2(k)C21(k) A2(k)C22(k)

)
,

where

T−1(k)B(k)T (k) =
(
C11(k) C12(k)
C21(k) C22(k)

)
so that |Ci j (k)| ≤ Mδ,
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M being an upper bound on |T−1(k)| |T (k)|. We assume

2KMδ < 1.

The transformed equation is

y1(k + 1) = A1(k)[y1(k) + C11(k)y1(k) + C12(k)y2(k)],
y2(k + 1) = A2(k)[y2(k) + C21(k)y1(k) + C22(k)y2(k)]. (13)

Then we use the transformation
(
y1
y2

)
= S(k)

(
w1

w2

)
=

(
I H12(k)

H21(k) I

)(
w1

w2

)
(14)

where, provided H12(k), H21(k) are bounded and |H12(k)H21(k)| ≤ γ < 1, S(k) is
invertible with bounded inverse given by

( [I − H12(k)H21(k)]−1 −[I − H12(k)H21(k)]−1H12(k)
−[I − H21(k)H12(k)]−1H21(k) [I − H21(k)H12(k)]−1

)
.

The transformation (14) takes (13) into a block diagonal system

w1(k + 1) = A1(k)[I + C11(k) + C12(k)H21(k)]w1(k),
w2(k + 1) = A2(k)[I + C22(k) + C21(k)H12(k)]w2(k)

(15)

provided for k ∈ J ,

H12(k + 1)A2(k)[I + C22(k) + C21(k)H12(k)] = A1(k)[(I + C11(k))H12(k) + C12(k)],
(16)

H21(k + 1)A1(k)[I + C11(k) + C12(k)H21(k)] = A2(k)[C21(k) + (I + C22(k))H21(k)].
(17)

First we solve (16). With H12 replaced by H , (16) can be rewritten as

H(k + 1) = A1(k)[I + C11(k)]H(k)[I + C22(k) + C21(k)H(k)]−1A−1
2 (k)

+ A1(k)C12(k)[I + C22(k) + C21(k)H(k)]−1A−1
2 (k),

(18)

assuming I + C22(k) + C21(k)H(k) is invertible, which it will be as long as δ is
sufficiently small. Now we know the equation

H(k + 1) = A(k)H(k) = A1(k)H(k)A−1
2 (k)

is uniformly asymptotically stable because it has transition operator

H → Ψ (k,m)H = Φ1(k,m)HΦ2(m, k),
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where
|Ψ (k,m)| ≤ Ke−α(k−m), k ≥ m.

We write (18) as

H(k + 1) = A1(k)H(k)A−1
2 (k) + f (k, H(k)),

where

f (k, H) = A1(k)g(k, H)A−1
2 (k) with g(k, H) = g1(k, H)g−1

2 (k, H),

and

g1(k, H) = C11(k)H − HC22(k) − HC21(k)H + C12(k),

g2(k, H) = I + C22(k) + C21(k)H.

We see that |g(k, 0)| ≤ (1 − Mδ)−1Mδ so that

| f (k, 0)| ≤ Ke−α(1 − Mδ)−1Mδ

in view of the fact that

|A1(k)||A−1
2 (k)| = |Φ1(k, k − 1)||Φ2(k − 1, k)| ≤ Ke−α.

Next note that when |H | ≤ 1,

|g1(k, H)| ≤ 4Mδ, |g−1
2 (k, H)| ≤ (1 − 2Mδ)−1

and if |H1|, |H2| ≤ 1,

|g1(k, H1) − g1(k, H2)| ≤ 4Mδ|H1 − H2|,
|g−1

2 (k, H1) − g−1
2 (k, H2)| = |g−1

2 (k, H1)[g2(k, H1) − g2(k, H2)]g−1
2 (k, H2)|

≤ (1 − 2Mδ)−2Mδ|H1 − H2|

so that

|g(k, H1) − g(k, H2)| ≤ |g1(k, H1)| |g−1
2 (k, H1) − g−1

2 (k, H2)|
+ |g−1

2 (k, H2)| |g1(k, H1) − g1(k, H2)|
≤ [4Mδ(1 − 2Mδ)−2Mδ + (1 − 2Mδ)−14Mδ]|H1 − H2|
= 4Mδ(1 − Mδ)(1 − 2Mδ)−2|H1 − H2|.

Then if |H1|, |H2| ≤ 1,

| f (k, H1) − f (k, H2)| ≤ 4MKe−α(1 − Mδ)(1 − 2Mδ)−2δ|H1 − H2|.
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Nowwe apply Lemma2withΔ = 1,μ = Ke−α(1 − Mδ)−1Mδ, θ = 4MKe−α(1 −
Mδ)(1 − 2Mδ)−2δ. Then if

2K 2M(1 − Mδ)−1δ ≤ eα − 1, 8K 2M(1 − Mδ)(1 − 2Mδ)−2δ ≤ eα − 1,

equation (16) has a solution H12(k) such that |H12(k)| ≤ 2K 2M(eα − 1)−1(1 −
Mδ)−1δ for all t .

Now we consider Eq. (17). If we define H̃(k) = H21(−k + 1), with k ∈ 1 − J =
{1 − � : � ∈ J }, (17) reads:

H̃(k)A1(−k)[I + C11(−k) + C12(−k)H̃(k + 1)]
= A2(−k)[C21(−k) + (I + C22(−k))H̃(k + 1)]

for k ∈ 1 − J , that is,

H̃(k + 1)

= [A2(−k)(I + C22(−k)) − H̃(k)A1(−k)C12(−k)]−1

{H̃(k)A1(−k)[I + C11(−k)] − A2(−k)C21(−k)} (19)

= A2(−k)−1 H̃(k)A1(−k) + f (k, H̃(k)), k ∈ 1 − J,

where
f (k, H) = g−1

2 (k, H)g1(k, H),

with

g1(k, H) = p(k, H)C11(−k) − C21(−k) − C22(−k)p(k, H) + p(k, H)C12(k)p(k, H),

g2(k, H) = I + C22(−k) − p(k, H)C12(−k), p(k, H) = A−1
2 (−k)H A1(−k).

Note that if |H |, |H1|, |H2| ≤ 1,

p(k, 0) = 0, |p(k, H1) − p(k, H2)| ≤ Ke−α|H1 − H2|
|g1(k, H)| ≤ Mδ(1 + Ke−α)2, |g−1

2 (k, H)| ≤ [1 − Mδ(1 + Ke−α)]−1

|g1(k, H1) − g1(k, H2)| ≤ 2MKe−αδ[1 + Ke−α]|H1 − H2|,
|g−1

2 (k, H1) − g−1
2 (k, H2)| ≤ [1 − Mδ(1 + Ke−α)]−2MδKe−α|H1 − H2|

so that if |H1|, |H2| ≤ 1,

| f (k, H1) − f (k, H2)| ≤ θ|H1 − H2|,

where
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θ = [1 − Mδ(1 + Ke−α)]−12MKe−αδ[1 + Ke−α]
+ Mδ(1 + Ke−α)2[1 − Mδ(1 + Ke−α)]−2MδKe−α

≤ (1 − 2KMδ)−24K 2e−αMδ.

Also we have

| f (k, 0)| = |[I + C22(−k)]−1| |C21(−k)| ≤ Mδ

1 − Mδ
.

The transition operator of equation

H(k + 1) = A2(−k)−1H(k)A1(−k), k ∈ 1 − J,

is Ψ (k,m)H = Φ2(1 − k, 1 − m)HΦ1(1 − m, 1 − k) and satisfies

|Ψ (k,m)| ≤ Ke−α(k−m)

for m ≤ k. Then, applying Lemma 2 with μ = Mδ
1−Mδ

, θ = 4K 2e−αMδ
(1−2KMδ)2

and Δ = 1 we
see that if

Mδ ≤ eα − 1

2Keα + eα − 1
and

8K 3Mδ

(1 − 2KMδ)2
≤ eα − 1,

equation (19) has a solution bounded on 1 − J and hence (17) has a solution bounded
on J .

In fact, |H21(k)| ≤ 2KM(1 − e−α)−1(1 − Mδ)−1δ. Then provided

|H12(k)H21(k)| ≤ 4K 3e−αM2(1 − e−α)−2(1 − Mδ)−2δ2 < 1,

x = S(k)w is a kinematic similarity taking (13) into (15).
Next we show that the transformed Eq. (15) is strongly exponentially separated.

Note that

|C11(k) + C12(k)H21(k)| ≤ δ1, |C22(k) + C21(k)H12(k)| ≤ δ1,

where
δ1 = Mδ(1 + 2KM max{1, Ke−α}(1 − e−α)−1(1 − Mδ)−1δ).

Then it follows from Lemma 1 that

|Φ̃1(k,m)| |Φ̃2(m, k)| ≤ Ke−(α−log[(1+K δ1)/(1−K δ1)])(k−m), m ≤ k,

Φ̃i (k,m) being the respective transition matrices. Provided that
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log[(1 + K δ1)/(1 − K δ1)] < α,

it follows that (15) is strongly exponentially separated with constant projection

P =
(
I 0
0 0

)
. Hence (12) is strongly exponentially separated with projection Q(k) =

T (k)S(k)PS−1(k)T−1(k). Now the projection for the unperturbed system is P(k) =
T (k)PT−1(k). It follows that

|Q(k) − P(k)| ≤ |T (k)| |S(k)PS−1(k) − P| |T−1(k)|
≤ |T (k)| [|S(k) − I| |P| |S−1(k)| + |P| |S−1(k) − I|] |T−1(k)|
≤ M

[|S(k) − I| |P| |S−1(k)| + |P| |S−1(k) − I|]
≤ Nδ

for some constant N , since |S(k) − I| = O(δ), |S−1(k) − I| = O(δ).

6 Exponential Separation in Block Upper Triangular
Systems

In this section we consider a block upper triangular system

u(k + 1) = A(k)u(k) =

⎛
⎜⎜⎝
A11(k) A12(k) · · · A1p(k)

0 A22(k) · · · A2p(t)
· · · · · ·
0 0 · · · App(k)

⎞
⎟⎟⎠ u(k), (20)

where Aii (t) is ni × ni , and its associated block diagonal system

u(k + 1) =

⎛
⎜⎜⎝
A11(k) 0 · · · 0

0 A22(k) · · · 0
· · · · · ·
0 0 · · · App(k)

⎞
⎟⎟⎠ u(k). (21)

In Proposition 6, we show if (20) is strongly exponentially separated on a half-axis,
then (21) is strongly exponentially separated also. Then in Proposition 7, we show
the converse of this statement on a half-axis or whole axis but with a boundedness
condition. At the end we give some results for diagonal systems and upper triangular
systems, where the blocks are scalars.

Proposition 6 If the block upper triangular system (20) is strongly exponentially
separated on a half-axis J , then the projection for the exponential separation of (20)
at k = 0 can be taken as
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P =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 P12 P13 · · · · P1p
0 P2 P23 · · · · P2p
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 Pp−1,p

0 0 0 · · · · Pp

⎞
⎟⎟⎟⎟⎟⎟⎠

, (22)

where the Pi are projections. Moreover, the block diagonal system (21) is strongly
exponentially separated with projection at k = 0 given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 0 0 · · · · 0
0 P2 0 · · · · 0
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 0
0 0 0 · · · · Pp

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the unbounded case, “strongness” is necessary here to get exponential separa-
tion. Consider the following example.

Example 3

u(k + 1) =
(
1 ek(e − 1)
0 1

)
u.

This upper triangular system is exponentially separated on Z+, since we have the
two solutions (1, 0) and (ek − e, 1). However the diagonal system is clearly not
exponentially separated. The reason for this is that the exponential separation is not
strong.

In order to prove the proposition, we use the following lemma from [2].

Lemma 3 Consider the Cartesian product of vector spaces

U = U1 ×U2 × · · · ×Uk,

where k ≥ 2. If V is a subspace of U, there is a projection P on U with range V ,
which has the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 P12 P13 · · · · P1k
0 P2 P23 · · · · P2k
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pk−1 Pk−1,k

0 0 0 · · · 0 Pk

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Pi is a projection on Ui for i = 1, . . . , k.

Now we prove Proposition 6.
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Proof Denote by V the stable (resp. unstable) subspace for (20) at k = 0. Then it
follows from Lemma 3 that there is a projection P of the form given in the statement
of the Proposition which has range V ; in the case Z−, we replace P by I − P so that
the new P has nullspace V . It follows from Proposition 2 that we may take P as the
projection for the exponential separation at k = 0. The transition matrix for (21) is

Ũ (k,m) =

⎛
⎜⎜⎝

Φ1(k,m) 0 · · · 0
0 Φ2(k,m) · · · 0
· · · · · ·
0 0 · · · Φp(k,m)

⎞
⎟⎟⎠ ,

whereas that for (20) is

U (k,m) =

⎛
⎜⎜⎝

Φ1(k,m) W12(k,m) · · · W1p(k,m)

0 Φ2(k,m) · · · W2m(k,m)

· · · · · ·
0 0 · · · Φp(k,m)

⎞
⎟⎟⎠ ,

where Φi (k,m) is the transition matrix for xi (k + 1) = Aii (k)xi (k). We take

P̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 0 0 · · · · 0
0 P2 0 · · · · 0
0 0 P3 · · · · ·
0 0 0 · · · · ·
0 0 0 · · · Pp−1 0
0 0 0 · · · · Pp

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then P̃(k) = Ũ (k, 0)P̃Ũ (0, k) is an invariant projection for (21) and P(k) =
U (k, 0)PU (0, k) is a projection for the exponential separation of (20). We see that
U (k, 0)PU (0,m) = U (k,m)P(m) and Ũ (k)P̃Ũ−1(m) = Ũ (k,m)P̃(m) only dif-
fer in the (i, j)-entries, i < j , with those in Ũ (k,m)P̃(m) being zero. It follows
that

|Ũ (k,m)P̃(m)| ≤ |U (k,m)P(m)|.

(Note we use a matrix norm with the property that if A = [Ai j ] and B = [Bi j ] are
partitioned matrices with |Ai j | ≤ |Bi j | for all i, j , then |A| ≤ |B|.) Similarly

|Ũ (m, k)(I − P̃(k))| ≤ |U (m, k)(I − P(k))|.

Since by Proposition 4 the strong exponential separation of (20) implies the existence
of positive constants K and α such that

|U (k,m)P(m)| |U (m, k)(I − P(k))| ≤ Ke−α(k−m), m ≤ k,

we conclude that



Strongly Exponentially Separated Linear Difference Equations 177

|Ũ (k,m)P̃(m)| |Ũ (m, k)(I − P̃(k))| ≤ Ke−α(k−m), m ≤ k.

Then the proposition follows from Proposition 4.

Now we prove the converse.

Proposition 7 Consider system (20) on J = Z+, Z− or Z, where A−1
i i (k)Ai j (k)

is bounded for i < j . Then if the diagonal system (21) is strongly exponentially
separated, system (20) is also strongly exponentially separated.

Proof We define the matrix

S =

⎛
⎜⎜⎝
In1 0 · · · 0
0 βIn2 · · · 0
· · · · · ·
0 0 · · · β p−1Inp

⎞
⎟⎟⎠ ,

where Aii (k) is ni × ni and β > 0. A simple calculation shows that with A(k) as
in (20),

S−1A(k)S = Aβ(k) =

⎛
⎜⎜⎝
A11(k) βA12(k) · · · β p−1A1p(k)

0 A22(k) · · · β p−2A2p(k)
· · · · · ·
0 0 · · · App(k)

⎞
⎟⎟⎠ .

This means the constant kinematic similarity u = Sv takes (20) into the system
v(k + 1) = Aβ(k)v(k), where

Aβ(k) =

⎛
⎜⎜⎝
A11(k) 0 · · · 0

0 A22(k) · · · 0
· · · · · ·
0 0 · · · App(k)

⎞
⎟⎟⎠

⎡
⎢⎢⎢⎣I +

⎛
⎜⎜⎜⎝
0 βA−1

11 (k)A12(k) · · · β p−1A−1
11 (k)A1p(k)

· · · · · ·
· · · · · βA−1

p−1,p−1(k)Ap−1,p(k)

0 0 · · · 0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

However, when A−1
i i (k)Ai j (k) is bounded for i < j , the last matrix is small when

β is small. Then it follows from Theorem 1 that v(k + 1) = Aβ(k)v(k) is strongly
exponentially separated if β is sufficiently small. From this it follows that (20) is
strongly exponentially separated.

Example 4 These examples show that in Proposition 7 the boundedness condition
on A−1

i i (k)Ai j (k) for i < j is necessary. In both examples the diagonal system is
strongly exponentially separated. In the first example the triangular system is not
exponentially separated but in the second example it is exponentially separated but
not strongly so. Note we use the maximum norm in R

2.
(i) Consider the system

u(k + 1) =
(
e ek

0 1

)
u(k).
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Clearly the diagonal system is strongly exponentially separated on Z+ having the
solutions

us(k) =
(
0
1

)
, uu(k) =

(
ek

0

)
, k ≥ 0.

Howeverwewill show that the upper triangular system is not exponentially separated.
The solution with u(0) = (a, b) is u(k) = (ek−1(ea + bk), b). When b �= 0, we see
that |uu(k)|/|u(k)| → 0 as t → ∞. So if the system is exponentially separated on
Z+, uu(k) must be the unique stable solution and we may take w(k) = (kek−1, 1) as
the unstable solution. Then there must exist positive constants K and α such that

|uu(k)| |w(m)|
|uu(m)| |w(k)| ≤ Ke−α(k−m), k ≥ m.

That is,
m

k
≤ Ke−α(k−m), for any k ≥ m ≥ 1.

But, with k = 2m, m ≥ 1, this gives

1

2
≤ Ke−αm → 0 as m → ∞,

a contradiction. Hence the system is not exponentially separated.
(ii) Next consider the system:

u(k + 1) =
( 2

k+1 δ

0 1
k+1

)
u(k).

When δ = 0 it is strongly exponentially separated on Z+ with constant projection(
0 0
0 1

)
. The stable solution is

(
0, 1

k!
)
and the unstable is

(
2k

k! , 0
)
. When δ �= 0, the

transition matrix is

Φ(k, 0) =
(

2k

k!
2k+1δ
k!

(
1 − k+2

2k+1

)
0 1

k!

)
.

Let u(k) be the solution
(−δ k+2

k! , 1
k!

)
and let v(k) be the solution

(
2k

k! , 0
)
. Then, for

k ≥ m ≥ δ−1 − 2,

|u(k)| |v(m)|
|u(m)| |v(k)| = k + 2

m + 2
2−(k−m) ≤ e(k−m)/(m+2)2−(k−m) ≤ e−(log 2− 1

2 )(k−m).

So this system is exponentially separated. However it is not strongly exponentially
separated. To see this, note that taking u(k) = (− k+2

k! , 1
δk!

)
as the stable solution and

v(k) =
(
2k

k! , 0
)
as the unstable corresponds to taking the projection P(0) as
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P(0) =
(
0 −2δ
0 1

)
.

Then, by invariance, a projection for the exponential separation is

P(k) = Φ(k, 0)P(0)Φ(0, k) =
(
0 −δ(k + 2)
0 1

)
.

Since |P(k)| → ∞ as k → ∞, it follows from Proposition 5 that the system is not
strongly exponentially separated.

We finish the sectionwith two propositions about upper triangular systems, that is,
block upper triangular systems where the blocks are scalars. We need the following
lemma, which gives information about the stable subspace of (21) when it is strongly
exponentially separated. Actually we only need it for scalar diagonal systems but
prove it for the block diagonal case.

Lemma 4 Assume (21) is exponentially separated on Z+ (resp. Z−). Then the sta-
ble (resp. unstable) subspace is a Cartesian product V1 × V2 × · · · × Vp, where Vi

is a subspace of Rni . Moreover, if 1 ≤ dim Vi ≤ ni − 1, ui (k + 1) = Aii (k)ui (k) is
exponentially separated with stable (resp. unstable) subspace Vi and strongly expo-
nentially separated if (21) is.

Proof First we prove the case p = 2. Define V1 as the subspace of Rn1 consisting
of those ξ for which (Φ1(k, 0)ξ, 0) is in the stable (resp. unstable) subspace for
(21) and V2 as the subspace of Rn2 consisting of those η for which (0, Φ2(k, 0)η) is
in the stable (resp. unstable) subspace, where Φi (k,m) is the transition matrix for
ui (k + 1) = Aii (k)ui (k). Then V1 × V2 is a subspace of the stable (resp. unstable)
subspace for (21) at k = 0.

Suppose z(k) = (u1(k), u2(k)) is a solution of (21) (still with p = 2) in the stable
(resp. unstable) subspacewith u1(0) �= 0, u2(0) �= 0 and suppose there existsα andβ
with αβ �= 0 for which w(k) = (αu1(k),βu2(k)) is not in the stable (resp. unstable)
subspace. Then we can choose the unstable (resp. stable) space so as to includew(k).
Then, in the Z+ case, there exist positive constants K and γ such that

|z(k)| |w(m)|
|z(m)| |w(k)| ≤ Ke−γ(k−m), k ≥ m.

However note that w(k) = Dz(k), where D =
(

αIn1 0
0 βIn2

)
, so that

|w(m)|
|w(k)| ≥ |z(m)|

|z(k)|
1

|D| |D−1| .

This implies that
1

|D| |D−1| ≤ Ke−γ(k−m), k ≥ m,
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which is clearly absurd. In the Z− case, there exist positive constants K and γ such
that |w(k)| |z(m)|

|w(m)| |z(k)| ≤ Ke−γ(k−m), k ≥ m.

However |w(k)|
|w(m)| ≥ |z(k)|

|z(m)|
1

|D| |D−1|
which, as before, leads to an absurdity. Sowehaveproved that if z(k) = (u1(k), u2(k))
is a solution in the stable (resp. unstable) subspace, then all solutions (αu1(k),βu2(k))
with αβ �= 0 are in the stable (resp. unstable) subspace. Then we can let (α,β) →
(1, 0) and (0, 1) and conclude, by continuity, that (u1(k), 0) and (0, u2(k)) are in
the stable (resp. unstable) subspace. It follows that z(0) ∈ V1 × V2. Thus we have
shown that the stable (resp. unstable) subspace at k = 0 is V1 × V2.

Then we let Wi be subspaces such that Rni = Vi ⊕ Wi . Then by Proposition 2
we may take W = W1 × W2 as the unstable (resp. stable) subspace at k = 0 for
the whole system. Then the conclusion about exponential separation of ui (k + 1) =
Aii (k)ui (k) follows easily. Note also that when (21) is strongly exponentially sep-
arated, it follows from Proposition 5 that the angle between V1(k) × V2(k) and
W1(k) × W2(k) (here Vi (k) = Φi (k, 0)Vi , etc.) is bounded below by a positive num-
ber. Hence the angles between the Vi (k) and Wi (k) are bounded below by positive
numbers also, and so the systems ui (k + 1) = Aii (k)ui (k) are strongly exponentially
separated also.

The proof for general p ≥ 2 follows by induction on p using the p = 2 case.

Now we give a necessary and sufficient condition that a diagonal system be
strongly exponentially separated. As we shall see, strong exponential separation
and exponential separation are equivalent for diagonal systems.

Proposition 8 The diagonal system

ui (k + 1) = ai (k)ui (k), i = 1, . . . , n (23)

is exponentially separated on J = Z, Z+ or Z− with rank r if and only if there exists
I ⊂ {1, . . . , n}, where #I = r , and there exist constants K and α > 0 such that

k−1∑
p=m

[log |ai (p)| − log |a j (p)|] ≤ K − α(k − m) (24)

for i ∈ I , j /∈ I and k ≥ m in J . Morever, if (23) is exponentially separated, it is
also strongly exponentially separated.

Proof Suppose (23) is exponentially separated on Z+ (resp.Z−). Then by Lemma 4,
there exists I such that the stable (resp. unstable) subspace is span{ei : i ∈ I } (resp.
span{ei : i /∈ I }), where the ei form the standard basis in Rn . Then we may take the
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unstable (resp. stable) subspace as span{ei : i /∈ I } (resp. span{ei : i ∈ I }). If (23) is
exponentially separated on Z, then these must of course be the stable and unstable
subspaces. Then if xi (k) = ∏k−1

p=0 ai (p)ei , there exist positive constants K and α
such that |xi (k)||x j (m)|

|xi (m)||x j (k)| ≤ Ke−α(k−m), k ≥ m in J,

for i ∈ I , j /∈ I , from which the inequalities (24) follow with log K instead of K .
Suppose conversely that inequalities (24) hold. Let P be the projection with range

span{ei : i ∈ I } and nullspace span{ei : i /∈ I }. Then, for k ≥ m, if Φ(k,m) is the
transition matrix for (23), Φ(k,m)P is a diagonal matrix with

∏k−1
p=m ai (p) in the

i th position when i ∈ I and 0 otherwise and Φ(m, k)(I − P) is a diagonal matrix
with

∏k−1
p=m(1/a j (p)) in the j th position when j /∈ I and 0 otherwise. If we use the

maximum norm for matrices, then for all k ≥ m there exist i ∈ I and j /∈ I such that

|Φ(k,m)P| |Φ(m, k)(I − P)| =
k−1∏
p=m

|ai (p)|
k−1∏
p=m

(1/|a j (p)|) ≤ eK e−α(k−m).

The strong exponential separation follows.

Finally we examine the relation between the strong exponential separation of an
upper triangular system and its associated diagonal system.

Proposition 9 If the upper triangular system

u(k + 1) = A(k)u(k) =

⎛
⎜⎜⎝
a11(k) a12(k) · · · a1n(k)
0 a22(k) · · · a2n(k)
· · · · · ·
0 0 · · · ann(k)

⎞
⎟⎟⎠ u

is strongly exponentially separated on a half-axis with rank r , then there exists
I ⊂ {1, . . . , n}, where #I = r , and there exist constants K and α > 0 such that

k−1∑
p=m

[log |aii (p)| − log |a j j (p)|] ≤ K − α(k − m)

for i ∈ I , j /∈ I and k ≥ m. The converse holds if ai j (k)
aii (k)

is bounded for i < j and on
the whole axis also.

Proof Immediate from Propositions 8, 6 and 7.
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7 Exponential Separation in Linear Symplectic Systems

In this section we restrict to bounded systems so that exponential separation is equiv-
alent to strong exponential separation.We begin with the observation that, in general,
exponential separation does not imply that the dichotomy spectrum (or Sacker–Sell
spectrum) has at least two components. For example, consider the diagonal system

x(k + 1) =
(
a(k) 0
0 eγa(k)

)
x(k)

onZ+, with 0 < γ < β − α, where a(k) is a bounded real sequence such that 1/a(k)
is also bounded satisfying

α = lim inf
k−m→∞

k−1∑
p=m

log |a(p)| < β = lim sup
k−m→∞

k−1∑
p=m

log |a(p)|.

This is clearly exponentially separated. However for any λ > 0,

x(k + 1) =
(

λ−1a(k) 0
0 λ−1eγa(k)

)
x(k)

has an exponential dichotomy if and only if each scalar equation has (see Theorem
3.1 in [12]) and hence if and only if (see Proposition 2.4 in [12])

1 /∈ [eα/λ, eβ/λ], that is, λ /∈ [eα, eβ]

and
1 /∈ [eα+γ/λ, eβ+γ/λ], that is, λ /∈ [eα+γ, eβ+γ].

So the dichotomy spectrum of the system is the single interval [eα, eβ] ∪ [eα+γ,

eβ+γ] = [eα, eβ+γ].
However in this section, we show when the system is bounded linear symplectic

and it is exponentially separated with subspaces of the same dimension, the system
has an exponential dichotomy with stable and unstable subspaces having the same
dimension and hence the dichotomy spectrum has at least two components.

Let
x(k + 1) = A(k)x(k), x(k) ∈ R

2n (25)

be a linear system,where A(k) is bounded togetherwith its inverse, and is symplectic,
that is,

A∗(k)J A(k) = J , where J =
(

0 In
−In 0

)
.
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Theorem 2 Let (25) be a linear symplectic system, where A(k) is bounded together
with its inverse. Suppose (25) is exponentially separated on an interval J = Z, Z+
or Z− such that the stable and unstable subspaces have the same dimension n. Then
(25) has an exponential dichotomy on J with stable subspace of dimension n.

Proof The transition matrix Φ(k,m) associated with (25) is symplectic. So, as in
[2], we have the Iwasawa decomposition

Φ(k, 0) = G(k)R(k),

where G(k) is orthogonal and

R(k) =
(
R11(k) R12(k)

0 (R∗
11(k))

−1

)
,

R11(k) being upper triangular with positive diagonal entries. Note that

A(k) = Φ(k + 1, k) = Φ(k + 1, 0)Φ(0, k) = G(k + 1)R(k + 1)R−1(k)G−1(k).

The transformation x(k) = G(k)y(k) takes system (25) to

y(k + 1) = B(k)y(k) = G−1(k + 1)A(k)G(k)y(k) = R(k + 1)R−1(k)y(k).
(26)

It is clear that B(k) and its inverse are bounded. Of course, it is trivial that G(k) and
its inverse are bounded. It follows that (25) and (26) share those dynamical properties
preserved by kinematic similarity.

B(k) is a block upper triangular matrix

B(k) = R(k + 1)R−1(k) =
(
B11(k) B12(k)

0 B22(k)

)
,

where B11(k) = R11(k + 1)R−1
11 (k) is upper triangular and

B22(k) = (R∗
11(k + 1))−1R∗

11(k) = (B∗
11)

−1(k).

Then B22(k) is lower triangularwith diagonal entries the reciprocal of those in B11(k).
Since (25), and therefore also (26), is exponentially separated with rank n on an

interval J = Z, Z+ or Z−, we conclude using Proposition 6 that the block diagonal
system

y(k + 1) =
(
B11(k) 0

0 B22(k)

)
y(k)

is exponentially separated with rank n on J also. We can turn this into an upper
triangular system by reversing the order of the last n variables. Thenwe can conclude,
by Proposition 9, that on each half-axis (that is, on J when J = Z+ or Z− and on
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Z+ and Z− when J = Z), its diagonal part is also strongly exponentially separated
with rank n. Returning to the original variables, this diagonal system has the form

yi (k + 1) = ai (k)y(k), i = 1, . . . , 2n,

where ai+n(k) = 1/ai (k) for i = 1, . . . , n. It follows from Proposition 8 that there
exist constants K and α > 0 such that the set {1, 2, . . . , 2n} can be divided into two
disjoint subsets I1 and I2 of cardinality n with

k−1∑
p=m

[log |ai (p)| − log |a j (p)|] ≤ K − α(k − m), k ≥ m

when i ∈ I1 and j ∈ I2. Suppose we have i ∈ I1 and i + n ∈ I1 for some i . We
subtract n from those numbers in I1 or I2 which exceed n. So there must be a number
j , 1 ≤ j ≤ n, which after this subtraction does not appear in I1. This means j ∈ I2
and j + n ∈ I2. Then

k−1∑
p=m

[log |ai (p)| − log |a j (p)|] ≤ K − α(k − m), k ≥ m

and
k−1∑
p=m

[log(|ai+n(p)| − log |a j+n(p)|] ≤ K − α(k − m), k ≥ m.

The latter means that

k−1∑
p=m

[− log(|ai (p)| + log |a j (p)|] ≤ K − α(k − m), k ≥ m.

and we conclude that

−K + α(k − m) ≤
k−1∑
p=m

[log |ai (p)| − log |a j (p)| ≤ K − α(k − m)

so that
α(k − m) ≤ K , k ≥ m,

which is clearly impossible. Hence i and i + n cannot both belong to I1. Similar
reasoning shows that they cannot both belong to I2.

Suppose i ∈ I1. Then i + n ∈ I2, where we interpret i + n as i − n when i > n.
Then
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k−1∑
p=m

[log |ai (p)| − (− log |ai (p)|] ≤ K − α(k − m), k ≥ m

so that
k−1∑
p=m

log |ai (p)| ≤ K/2 − (α/2)(k − m), k ≥ m.

Next suppose i ∈ I2. Then i + n ∈ I1, where we interpret i + n as i − n when i > n.
Then

k−1∑
p=m

[− log |ai (p)| − log |ai (p)|]u ≤ K − α(k − m), k ≥ m

so that
k−1∑
p=m

log |ai (p)| ≥ −K/2 + (α/2)(k − m), k ≥ m.

Hence the diagonal system has an exponential dichotomy on J with projection of
rank n when J is a half-axis and on each half-axis when J = Z. Then, by Theorem
4.1 in [12], system (26) and hence (25) has an exponential dichotomy on J with
projection of rank n when J is a half-axis and on both half-axes when J is the whole
axis. This finishes the proof when J = Z+ or Z−.

When J = Z, we know from Corollary 1 that on Z+ the stable subspace (for the
exponential separation) onZ+ and the unstable subspace onZ− intersect in 0 and each
has dimension n. However, by Corollary 3, since (25) has an exponential dichotomy
with projection not equal to zero or the identity, it is exponentially separated with
the same stable and unstable subspaces, the stable (resp. unstable) subspace being
unique when J = Z+ (resp. Z−). Hence, by the discrete analogue of Proposition 1
in [1], system (25) has an exponential dichotomy on Z with projection of rank n.
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