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Abstract We discuss relations between the four formulations of the problem of
assignability of the Lyapunov spectrum for discrete linear time-varying systems by a
time-varying feedback. For two of them: global assignability and proportional local
assignability,wehave already [2–4] obtained sufficient conditions in termsof uniform
complete controllability and certain asymptotic properties of the free system. In the
present paper we discuss the assumptions of our papers and demonstrate the use of
the obtained conditions by numerical examples. We also compare our results with
the classical pole placement problem. Finally, we formulate a couple of directions
for further research in this area.
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1 Introduction

One of the main methods of designing the control strategy for linear systems with
time-invariant coefficients is pole placement method [17]. This method is based on
the selection of feedback in such a way that the poles of the closed-loop system are in
advance given points on the complex plane. The theoretical basis of thismethod is the
following classical theorem [8, p. 458] (see also [7]): the pair (A, B) ∈ R

s×s × R
s×t

is completely controllable if andonly if for any setΛ = {μ1,μ2, . . . ,μs}of arbitrary s
complex numbers such thatΛ = {μ1,μ2, . . . ,μs} = Λ, there exists a constantmatrix
U ∈ R

t×s such that the eigenvalues of A + BU form the setΛ. At the same time, for
such systems, relationships between the location of the poles and dynamic properties
such as stability, stability and oscillation degrees, and the size of overshoot are well
known and described in the literature [1].

This problem for time-varying systems is much more complex and less studied.
In the literature most of the results are for continuous-time systems and they are
summarized in [14]. For time-varying systems, there are various concepts of stability
(asymptotic, uniform, exponential, etc. [13]). Similarly, the concept of controllability
of such systems can be understood in several different ways (uniform, complete,
output, etc. [12]). Moreover, for time-varying systems, we do not have an obvious
notion which fully matches the concept of the poles of time-invariant systems. The
Lyapunov exponents play, to a certain extent, the same role as the logarithms of
absolute values of poles of discrete-time systems and real parts of poles of continuous-
time systems.

The problems of assignability of the Lyapunov spectrum for discrete-time systems
were considered by us in [2–4]. In this article, we summarize these results and
compare time-invariant versions of them with pole placement theorem, give some
examples and formulate directions of further research.

The paper is organized as follows. In Sect. 2, we introduce the basic notation and
definitions. We present four different formulations of the assignability of the Lya-
punov spectrum: global, proportional global, local and proportional local assignabil-
ity. In Sect. 3 we recall our previous results from [2–4], discuss the assumptions
and relations between them and present two examples to depict the relation between
global and proportional local assignability, and uniform complete controllability. The
work is ended with conclusions and formulations of some open questions.

2 Problem Statement

Let Rs be the s-dimensional Euclidean space with a fixed orthonormal basis and the
Euclidean norm ‖ · ‖. By R

s×t we will denote the space of all real matrices of the
size s × t with the spectral norm, i.e. with the operator norm generated in R

s×t by
Euclidean norms in Rs and Rt , respectively; I ∈ R

s×s is the identity matrix. For any
sequence F = (

F(n)
)
n∈N ⊂ R

s×t we define
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‖F‖∞ = sup
n∈N

‖F(n)‖.

A bounded sequence
(
L(n)

)
n∈N ⊂ R

s×s of invertible matrices such that(
L−1(n)

)
n∈N is bounded, will be called the Lyapunov sequence. By R

s≤ we denote
the set of all nondecreasing sequences of s real numbers. For a fixed sequence
μ = (μ1, . . . ,μs) ∈ R

s≤ and any δ > 0 let us denote by Oδ(μ) the set of all sequences
ν = (ν1, . . . , νs) ∈ R

s≤ such that max
j=1,...,s

|ν j − μ j | < δ.

We consider a discrete linear time-varying system

x(n + 1) = A(n)x(n) + B(n)u(n), n ∈ N, (1)

where A = (A(n))n∈N ⊂ R
s×s is a Lyapunov sequence, B = (B(n))n∈N ⊂ R

s×t is a
bounded sequence, and u = (u(n))n∈N ⊂ R

t is a control sequence.
We denote the transition matrix of the free system

x(n + 1) = A(n)x(n) (2)

by ΦA(n,m), n,m ∈ N, and by (x(n, x0))n∈N its solution with the initial condition
x(1, x0) = x0.

For x0 ∈ R
s , x0 �= 0, the Lyapunov exponent λ(x0) of the solution x =

(x(n, x0))n∈N is defined as

λ(x0) = λ[x] .= lim sup
n→∞

1

n
ln ‖x(n, x0)‖

and λ(0)
.= −∞. It is well known (see [6], [9, pp. 51–52]) that if A = (A (n))n∈N

is a Lyapunov sequence, then the set of the Lyapunov exponents of all nontrivial
solutions of system (2) contains at most s elements, say

−∞ < Λ1(A) < Λ2(A) < · · · < Λq(A) < ∞,

where q ≤ s. For each i ∈ {1, . . . , q}, we consider the linear subspace

Ei = {
x0 ∈ R

s : λ(x0) ≤ Λi (A)
} ⊂ R

s .

We also set E0 = {0}. The multiplicity si of the Lyapunov exponent Λi (A) is
defined as

dim Ei − dim Ei−1, i = 1, . . . , q.

Note that s1 + · · · + sq = s. The sequence of s numbers

(
Λ1(A), . . . , Λ1(A), . . . , Λq(A), . . . , Λq(A)

)
,
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where each Lyapunov exponent Λi (A) appears si times, is called the Lyapunov
spectrum of (2) (see [6], [9, p. 57]) and is denoted by

λ(A) = (λ1(A),λ2(A), . . . ,λs(A)) .

We assume that the Lyapunov spectrum is numbered in nondecreasing order, i.e.
λ(A) ∈ R

s≤.
For any bounded sequenceU = (U (n))n∈N ⊂ R

t×s , we consider a linear feedback
control

u(n) = U (n)x(n), n ∈ N

for system (1). We identify this control u with the sequenceU and call this sequence
U a feedback control for system (1).

Definition 1 A bounded sequence

U = (U (n))n∈N ⊂ R
t×s

is said to be an admissible feedback control for system (1) if the sequence

(A (n) + B (n)U (n))n∈N

is a Lyapunov sequence.

LetU = (U (n))n∈N be any admissible feedback control for system (1). Then, for
the closed-loop system

x(n + 1) = (A(n) + B(n)U (n)) x(n) (3)

we can define the Lyapunov spectrum

λ(A + BU ) = (
λ1(A + BU ), . . . ,λs(A + BU )

) ∈ R
s
≤.

The next definition expresses one of the possible way of formulation of the Lya-
punov spectrum assignability problem.

Definition 2 The Lyapunov spectrum of system (3) is called globally assignable if
for each μ ∈ R

s≤ there exists an admissible feedback control U such that

λ(A + BU ) = μ. (4)

In this definition there is in general no bound on the norm of the feedback control.
In some practical applications it is desirable to have a bound on the control which
tends to zero in case the placed Lyapunov spectrum tends to the Lyapunov spectrum
of the free system. This requirement is the base for the following definition.
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Definition 3 The Lyapunov spectrum of system (3) is called proportionally globally
assignable if for allΔ > 0 there exists � = �(Δ) > 0 such that for any sequence μ =(
μ1, . . . ,μs

) ∈ OΔ

(
λ (A)

)
there exists an admissible feedback controlU , satisfying

the estimate
‖U‖∞ ≤ � max

j=1,...,s
|λ j (A) − μ j | (5)

and such that equality (4) is satisfied.

Onemay also consider the local version of assignability of theLyapunov spectrum.

Definition 4 The Lyapunov spectrum of system (3) is called locally assignable if
for each ε > 0 there exists δ > 0 such that for all μ ∈ Oδ

(
λ(A)

)
there exists an

admissible feedback control U such that

λ (A + BU ) = μ and ‖U‖∞ < ε.

Definition 5 The Lyapunov spectrum of system (3) is called proportionally locally
assignable if there exist � > 0 and δ > 0 such that for all μ ∈ Oδ

(
λ(A)

)
there exists

an admissible feedback controlU , such that estimate (5) and equality (4) are satisfied.

All the proposed definitions of the assignability problem were formulated for
continous-time systems in [14] and our Definitions 2, 4 and 5 are direct translations
of their continuous counterparts. However, the direct translation of definition of
proportional global assignability is as follows: the Lyapunov spectrum of system
(3) is called proportionally globally assignable if there exists � > 0 such that for all
μ = (μ1, . . . ,μs) ∈ R

s≤ there exists a feedback control U , satisfying (4) and (5).
The next example justifies our modification.

Example 6 Let us consider a linear discrete-time control system

x(n + 1) = x(n) + u(n). (6)

Here the matrices A(n), B(n) have the sizes 1 × 1 and A(n) = B(n) = 1 for all n.
Therefore, for the transition matrix of the free system

x(n + 1) = x(n)

we have ΦA(n,m) = 1 for all n,m. Thus, system (6) is uniformly completely con-
trollable with K = 1 (see Definition 7 below). Since every solution x(n, x0) of the
free system is constant, it follows that the Lyapunov spectrum coincides with 0. Let
us close system (6) by a feedback u(n) = U (n)x(n). Then we get a system

x(n + 1) = (1 +U (n)) x(n). (7)

By the Theorem 4.7 from [2] the Lyapunov spectrum of system (7) is globally
assignable, so for every α ∈ Rwe can construct a controlU , such that the Lyapunov
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spectrum of system (7) coincides with the number α. Let us find out whether it is
possible to find a number � > 0, such that for all α > 0 there exists a control U for
which we have

λ (A + BU ) = α, ‖U‖∞ ≤ �α. (8)

Here we restrict ourselves to the consideration of positive numbersα, since belowwe
will prove that even for this case it is impossible. Suppose that for each α > 0 there
exists a control U for which both conditions (8) are satisfied. Then for an arbitrary
nontrivial solution xU (n, x0) of system (7) we have estimates

α = λ(A + BU ) = lim sup
n→∞

1

n
ln |xU (n, x0)|

= lim sup
n→∞

1

n
ln

∣∣∣
n−1∏

j=1

(
1 +U ( j)

)
x0

∣∣∣ ≤ lim sup
n→∞

1

n
ln

n−1∏

j=1

(
1 + |U ( j)|)|x0|

≤ lim sup
n→∞

1

n
ln

n−1∏

j=1

(
1 + �α

)|x0| = lim sup
n→∞

1

n
ln

(
1 + �α

)n−1|x0| = ln(1 + �α).

Thus, there exists � > 0 such that for each α > 0 the inequality α ≤ ln (1 + �α)

holds, that is, eα ≤ 1 + �α. But this is impossible, since the exponential function
grows faster than any linear function. But if we choose an arbitraryΔ > 0, then there
exists an � = � (Δ) > 0 such that for each α ∈ R, |α| < Δ there exists a control U
for which the conditions (8) are satisfied. Here we can take U (n) = eα − 1. Then

‖U‖∞ = |eα − 1| ≤ e|α| − 1 ≤ �|α|,

where � = eΔ−1
Δ

.

In our further consideration we will present some conditions for solvability of
assignability problems of the Lyapunov spectrum for discrete-time systems. Uniform
complete controllability is the first of these conditions.

Definition 7 ([10]) System (1) is called uniformly completely controllable if there
exist K ∈ N and γ > 0 such that

W (k0, k0 + K ) ≥ γ I,

for all k0 ∈ N, where

W (k, n)
.=

n−1∑

j=k

ΦA(k, j + 1)B( j)BT ( j)ΦT
A (k, j + 1)

is the Kalman controllability matrix.
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3 Comparisons and Discussions of Assignability Problems

The next theorem presents a sufficient condition for global assignability of the Lya-
punov spectrum.

Theorem 8 ([2]) If system (1) is uniformly completely controllable, then the Lya-
punov spectrum of system (3) is globally assignable.

The next example taken from [3] shows that the global assignability of the Lya-
punov spectrum does not imply in general the uniform complete controllability.
Therefore, uniform complete controllability is only a sufficient, but not a necessary,
condition for the global assignability.

Example 9 ([3]) Let us define a sequence (nk)k∈N by the recurrent formulae

n1 = 1, n2m = mn2m−1, n2m+1 = m + n2m

for all m ∈ N, define

b(n) =
⎧
⎨

⎩

1 for n = 1,
1 for n ∈ [n2m−1, n2m − 1],
0 for n ∈ [n2m, n2m+1 − 1],

for m = 2, 3, . . . , and consider the scalar linear control equation

x(n + 1) = x(n) + b(n)u(n). (9)

Equation (9) is not uniformly completely controllable. Indeed, for each K ∈ N, there
exists a numberm

.= K such that theKalman controllabilitymatrix of Eq. (9) is equal
to zero on the interval [n2m, n2m + K ]:

W (n2m, n2m + K ) = W (n2m, n2m + m) = W (n2m, n2m+1) =
n2m+1−1∑

j=n2m

b2( j) = 0.

The closed-loop equation corresponding to Eq. (9) has the form

x(n + 1) = (
1 + b(n)U (n)

)
x(n), x ∈ R, U ∈ R, n ∈ N. (10)

Now, let us show that the above equation has the global assignability property of
the Lyapunov spectrum. Fix any α ∈ R, denote β = eα − 1 and define U (n) ≡ β,
n ∈ N. TheLyapunov exponent of eachnontrivial solutionofEq. (10)with the defined
admissibleU coincides with the upper mean value of the function 1 + βb(·), that is,
with the value

μ
.= lim sup

n→∞
n−1

n−1∑

j=1

ln
(
1 + βb( j)

)
.

Our aim is to prove that μ = α.
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Put ϕ(1) = 0 and

ϕ(n) = 1

n

n−1∑

j=1

ln
(
1 + βb( j)

)

for natural number n > 1.
It is clear that

ln
(
1 + βb(n)

) =
⎧
⎨

⎩

α for n = 1,
α for n ∈ [n2m−1, n2m − 1],
0 for n ∈ [n2m, n2m+1 − 1],

for m = 2, 3, . . . .
Let α ≥ 0. Then,

0 ≤ ln(1 + βb(n)) ≤ α

and therefore, ϕ(n) ≤ α for all n ∈ N. Hence, μ ≤ α. By the definition of the
sequence (nk)k∈N we know that the sequence (nk)k∈N is strictly increasing for k ≥ 2,
tends to +∞ and satisfies the relations

lim
m→∞

n2m−1

n2m
= lim

m→∞
1

m
= 0,

lim
m→∞

m

n2m
= lim

m→∞
1

n2m−1
= 0

and

lim
m→∞

n2m
n2m+1

= lim
m→∞

1

1 + m/n2m
= 1.

Therefore,

μ ≥ lim sup
m→∞

ϕ(n2m) = lim sup
m→∞

1

n2m

n2m−1∑

j=1

ln
(
1 + βb( j)

)

≥ lim sup
m→∞

1

n2m

n2m−1∑

j=n2m−1

α = α lim
m→∞

n2m − n2m−1

n2m
= α.

Thus, μ = α.
Now let α ≤ 0. Then,

0 ≥ ln(1 + βb(n)) ≥ α

and therefore 0 ≥ ϕ(n) ≥ α for all n ∈ N. Hence, μ ≥ α.
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On the other hand, for each k ∈ [n2m−1, n2m] with any natural number m > 1, we
have

ϕ(k) = 1

k

(n2m−1−1∑

j=1

ln
(
1 + βb( j)

) + (k − n2m−1)α
)

= k−1
(
ϕ(n2m−1)n2m−1 + (k − n2m−1)α

)

= n2m−1

k
ϕ(n2m−1) + α

k − n2m−1

k
≤ ϕ(n2m−1).

In addition, for k = n2m , we obtain

ϕ(n2m) ≤ α
n2m − n2m−1

n2m
= α

(
1 − 1

m

)
. (11)

For each k ∈ [n2m, n2m+1] with any m ∈ N, we also have

ϕ(k) = k−1ϕ(n2m)n2m ≤ n−1
2m+1ϕ(n2m)n2m = ϕ(n2m+1). (12)

Thus, ϕ(k) ≤ ϕ(n2m+1) for all k ∈ [n2m, n2m+2]. Moreover, from (11) and (12), we
get

ϕ(n2m+1) = n2m
n2m+1

ϕ(n2m) ≤ α
n2m
n2m+1

(
1 − 1

m

)
,

so

ϕ(k) ≤ α
n2m
n2m+1

(
1 − 1

m

)

for all k ∈ [n2m, n2m+2]. Note that

lim
m→∞ α

n2m
n2m+1

(
1 − 1

m

)
= α.

Put

r(k) =
⎧
⎨

⎩

0, k = 1,
αn2m
n2m+1

(
1 − 1

m

)
, k ∈ [n2m, n2m+2 − 1].

It is clear that r(k) → α as k → ∞. Since ϕ(k) ≤ r(k) for all k ∈ N, we have

μ = lim sup
k→∞

ϕ(k) ≤ lim sup
k→∞

r(k) = α.

Therefore, μ = α.
Thus, Eq. (10) with the defined control U has the Lyapunov spectrum consisting

of α, and the Lyapunov spectrum of the Eq. (10) is globally assignable.
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To present a deeper relation between global assignability and uniform complete
controllability let us introduce the concept of Bebutov hull of a sequence. For
any bounded sequence F0 = (F0(n))n∈N ⊂ R

q×r and any m ∈ N, let us consider
a sequence Fm = (Fm(n))n∈N , where Fm(n) = F0(n + m) is a shift of F0(n) by m.
Let us denote by R(F0) the closure in the topology of pointwise convergence on N

of the set {Fm(·) : m ∈ N}. It is well known that R(F0) is metrizable by means of
the metric


(F, F̂) = sup
n∈N

min{‖F(n) − F̂(n)‖, n−1}.

The space (R(F0), 
) is compact [15, p. 34] and it is called the Bebutov hull of the
sequence F0 (see [11, p. 32], [16]).

Let us identify system (1) with the sequence (A, B) = (
A(n), B(n)

)
n∈N ⊂

R
s×(s+t). The space R(A, B) will be called the Bebutov hull of system (1).

Theorem 10 ([3]) System (1) is uniformly completely controllable if and only if
for each system from R(A, B) the corresponding closed-loop system has globally
assignable Lyapunov spectrum.

For a given system (1), which is not uniformly completely controllable, the prob-
lem of finding a system from R(A, B) such that corresponding closed-loop system
does not have assignable Lyapunov spectrum is in general a difficult task. The proof
of Theorem 10 does not give a recipe to find a “bad” system from the hull, but only
establishes the fact of its existence. The example below presents this “bad” system
explicitly.

Example 11 ([3]) Let us consider a linear control system

x(n + 1) = A0(n)x(n) + B0(n)u(n), x ∈ R
2, u ∈ R

2, n ∈ N, (13)

where

A0(n) = I ∈ R
2×2, B0(n) =

(
1 0
0 b(n)

)
,

and the sequence b(n) is defined in Example 9. Since the Kalman controllability
matrix of system (13) has the form

W0(k, n) =
n−1∑

j=k

B0( j)B
T
0 ( j) =

⎛

⎝
1 0

0
n−1∑

j=k
b2( j)

⎞

⎠ ,

it follows that for each K ∈ N there exists a number m
.= K such that

W0(n2m, n2m + K ) =
(
1 0
0 0

)
.

It means that system (13) is not uniformly completely controllable.
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We will show that the hull of this system contains the system

x(n + 1) = A0(n)x(n) + B(n)u(n), (14)

where

B(n) =
(
1 0
0 0

)
.

In fact, let us consider the sequence
(
n2m

)
m∈N and any n ∈ N. Then we have

‖Bn2m (n) − B(n)‖ = |b(n2m + n)|.

For any m > n the following inequalities

n2m < n2m + n < n2m + m = n2m+1

hold, therefore b(n2m + n) = 0. It means, that

lim
m→∞ ‖Bn2m (n) − B(n)‖ = 0

for any n ∈ N, what implies that
(
A0, B

) ∈ R
(
A0, B0

)
.

Now, we will show that the Lyapunov spectrum of the closed-loop system

x(n + 1) = (
A0 + BU (n)

)
x(n) (15)

is not assignable. In fact, for any feedback control U (n) = {ui j (n)}i, j=1,2 the coef-
ficient matrix of the closed-loop system (15) has the following form

A0 + BU (n) =
(
1 + u11(n) u12(n)

0 1

)
.

For the second coordinate x2(n) of any solution x(n) of system (15) we have the
equality

x2(n + 1) = x2(n), n ∈ N,

whichmeans that the second coordinate is constant. It is clear, that every fundamental
system of solutions of system (15) contains a solution with the nonzero second
coordinate and for this solution we have λ[x] ≥ λ[x2] = 0. It means that for any
admissible feedback control U the Lyapunov spectrum of system (15) contains a
nonnegative number and therefore the Lyapunov spectrum of system (15) is not
assignable. Moreover, the stationarity of the second coordinate of any solution of
this system, when choosing the arbitrary matrix control U , implies that system (15)
is not stabilizable. Thus, system (14) is the “bad” system from the hull of system (13).
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To conclude the example, we show that the Lyapunov spectrum of the original
system

x(n + 1) = (
A0(n) + B0(n)U (n)

)
x(n) (16)

is assignable.
The Lyapunov spectrum of the free system

x(n + 1) = A0(n)x(n)

coincides with the sequence (0, 0). Let us fix any numbers α1 ≤ α2, denote βi =
eαi − 1, i = 1, 2, and apply to system (16) the feedback control

U (n) = diag (β1,β2).

Then the closed-loop system (16) has the diagonal form

x(n + 1) = diag
(
1 + β1, 1 + b(n)β2

)
x(n), (17)

and therefore its Lyapunov spectrum consists of upper mean values of the diagonal
elements [9, p. 55], i.e. of the numbers

μ1 = lim sup
n→∞

n−1
n−1∑

j=1

ln(1 + β1) = α1,

μ2 = lim sup
n→∞

n−1
n−1∑

j=1

ln
(
1 + β2b( j)

) = α2.

Here the second equality follows from Example 9. It means that the spectrum of
system (16) is globally assignable.

Nowwewill present a result about local proportional assignability of the spectrum
of system (3). It will be expressed in terms of certain concepts from the asymptotic
theory of linear systems, which are defined below.

Definition 12 ([9, p. 63]) System (2) is called regular (in the Lyapunov sense) if the
following equality

s∑

i=1

λi (A) = lim inf
n→∞

1

n

n−1∑

j=1

ln | det A( j)|

holds.
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Definition 13 (see [9, p. 100], [10, p. 15]) Let
(
L(n)

)
n∈N ⊂ R

s×s be a Lyapunov
sequence. A linear transformation

y = L(n)x, n ∈ N, (18)

of the space Rs is called a Lyapunov transformation.

Definition 14 (see [10, p. 15]) We say that system (2) is dynamically equivalent to
the system

y(n + 1) = C(n)y(n), n ∈ N, y ∈ R
s, (19)

if there exists a Lyapunov transformation (18) which connects these systems, i.e. for
every solution x(n) of system (2) the function y(n) = L(n)x(n) is a solution of sys-
tem (19) and for every solution y(n) of system (19) the function x(n) = L−1(n)y(n)

is a solution of system (2).

Definition 15 System (2) is called diagonalizable if it is dynamically equivalent to
a system (19) with a diagonal matrix C = (

C(n)
)
n∈N.

Definition 16 ([5]) The Lyapunov spectrum of system (2) is called stable if for any
ε > 0 there exists δ > 0 such that for any Lyapunov sequence R = (R(n))n∈N ⊂
R

s×s the inequality ‖R − I‖∞ < δ implies that λ(AR) ∈ Oε

(
λ(A)

)
, where λ(AR)

is the Lyapunov spectrum of the multiplicatively perturbed system

z(n + 1) = A(n)R(n)z(n), n ∈ N, z ∈ R
s .

Theorem 17 ([4]) Let system (1) be uniformly completely controllable and assume
that at least one of the following conditions holds:

1. system (2) is regular;
2. system (2) is diagonalizable;
3. the Lyapunov spectrum of system (2) is stable.

Then the Lyapunov spectrum of system (3) is proportionally locally assignable.

Let us compare the form of Theorems 8, 10 and 17 for time-invariant systems to
the classical pole placement theorem cited in the introduction section.

The main differences are as follows:

(i) the problems are posed and solved for systems, not for a pair of matrices;
(ii) in our problem the Lyapunov spectrum is assigned, which coincides with the

logarithms of the absolute values of eigenvalues of the coefficient matrix of
the system, and not with the usual spectrum of this matrix as in the classical
statement of the problem;

(iii) in case of Theorem 17 the assigned values of the spectrum lie in some neighbor-
hood of the spectrum of the original system and not in the whole set of possible
values of the spectrum;
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(iv) in case of Theorem 17 there is a Lipschitz-type estimate of the norm of the
feedback control needed to shift the spectrum by a given value from the original
one;

(v) the feedback U constructed by us to assign the spectrum may depend on time;
(vi) in contrast to the classical theorem, our result provides only sufficient conditions

for the assignability of the spectrum of system (3).

4 Conclusions and Open Problems

In this paper we formulated four statements of the problem of assignability of the
Lyapunov spectrum for discrete linear time-varying systems: global, proportional
global, local and proportional local assignability. We showed in [2] and [3] that uni-
form complete controllability is a sufficient but not a necessary condition for global
assignability but it is a necessary and sufficient condition for global assignability
of the spectrum of any system from the Bebutov hull of the original system. In [4]
we also showed that diagonalizability, as well as Lyapunov regularity or stability
of Lyapunov spectrum ensures the solvability of the problem of proportional local
assignability for any uniformly completely controllable system. The proof of this
result does not give reasons to suppose that the property of diagonalizability, regu-
larity or stability of the Lyapunov exponents are necessary for the proportional local
assignability or even close to those. The instability of the Lyapunov exponents of the
original system means that the Lyapunov spectrum, considered as a function defined
on the space of systems with the topology of the uniform convergence on N, has a
discontinuity at the point corresponding to the system under consideration, i.e. for
arbitrarily small perturbations some of exponents may vary considerably having the
so-called jumps. In this case, if the free system is neither diagonalizable nor regular,
some of the corresponding control systems may not have the property of local pro-
portional assignability of the exponents. However, even the construction of examples
of such systems, not mentioning the study of the assignability of their exponents, is
a difficult task that must be further investigated. The problem of the necessity of the
condition of uniform complete controllability for local proportional assignability of
the Lyapunov spectrum is also unsolved in general case. The problems of finding
conditions for global proportional and local assignability remain open.

It is clear from the definitions that:

(1) global proportional assignability implies global assignability;
(2) local proportional assignability implies local assignability;
(3) global proportional assignability implies local proportional assignability.

The other relations between the proposed definitions of assignability are unknown.
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