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Abstract We formulate fractional difference equations of Riemann–Liouville and
Caputo type in a functional analytical framework. Main results are existence of
solutions on Hilbert space-valued weighted sequence spaces and a condition for
stability of linear fractional difference equations. Using a functional calculus, we
relate the fractional sum to fractional powers of the operator 1 − τ−1 with the right
shift τ−1 on weighted sequence spaces. Causality of the solution operator plays a
crucial role for the description of initial value problems.
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1 Introduction

1.1 Notation

We write R>0 := {x ∈ R; x > 0} and for μ, � ∈ R we define for the comprehen-
sion C|·|<μ := {z ∈ C; |z| < μ} and C|·|>μ, C|·|≤μ, C|·|≥μ and Cμ≥|·|≥� are defined
similarly. For � > 0 we denote the complex ball with radius � centered at 0 by
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B(0, �) := {z ∈ C; |z| < �} and the circle with radius � centered at 0 by S� :=
∂B(0, �). We set N := Z≥0 := {0, 1, 2, . . . }. For sets X,Y we denote the set of
functions from Y to X by XY := { f : Y → X} and for f ∈ XY we write ran f :=
{ f (y) ∈ X; y ∈ Y } for the range of f . In particular, for any M ⊆ Z, XM is the space
of sequences in X on M and for u ∈ XM , n ∈ M we write un := u(n). The identity
mapping on a vector space V is denoted by 1. For a sequence u ∈ V Z we denote
spt u := {n ∈ Z; un �= 0}. If V is a normed vector space we denote with ‖·‖V the
norm on V .

We recall the binomial coefficient and the binomial series including some of their
properties. Proofs of the following propositions can be found in [11, 14].

Proposition 1 (Binomial coefficient [11, pp. 164–165], [14, p. 34]) For α ∈ C and
n ∈ Z≥1 the binomial coefficient is defined by

(
α

0

)
:= 1,

(
α

n

)
:= α(α − 1) · · · (α − n + 1)

n! .

For α ∈ C and n ∈ N we have

(−1)n
(

α

n

)
=

(−α + n − 1

n

)
and

n∑
k=0

(−1)k
(

α

k

)
= (−1)n

(
α − 1

n

)
.

Proposition 2 (Binomial series [14, pp. 65, 73]) Let α ∈ C. The binomial power
series is defined by

(1 + z)α :=
∞∑
k=0

(
α

k

)
zk .

The series converges absolutely in B(0, 1). In particular, the mapping C|·|>1 →
C, z 
→ (1 − z−1)α is holomorphic. For each α,β ∈ C we have (1 + z)α(1 + z)β =
(1 + z)α+β .

Binomial coefficients can be expressed with the gamma function.

Lemma 3 (Falling factorial [11, p. 164]) With the falling factorial

(x)(n) := Γ (x + 1)

Γ (x − n + 1)
, x ∈ C \ Z, n ∈ N,

we have for each α ∈ C \ Z and n ∈ N

(−1)n
(

α

n

)
=

(−α + n − 1

n

)
= 1

Γ (−α)
(n − (1 + α))(−(1+α)). (1)

Lemma 4 Let α ∈ (0, 1) and � > 1. Then we have for each z ∈ S�

(1 − �−1)α ≤ ∣∣(1 − z−1)α
∣∣ .
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Proof Let z ∈ S�. For every n ∈ Z≥1 we observe that (−1)n
(
α
n

)
< 0 and therefore

(−1)n
(
α
n

)
z−n = − ∣∣(α

n

)∣∣ z−n . We show by induction that for every n ∈ N

∣∣∣∣∣
n∑

k=0

(−1)k
(

α

k

)
z−k

∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
k=0

(−1)k
(

α

k

)
�−k

∣∣∣∣∣
and when letting n tend to infinity the inequality follows. The induction basis is
trivial. For the induction step for n ∈ Nwe use the lower triangle inequality to obtain

∣∣∣∣∣
n+1∑
k=0

(−1)k
(

α

k

)
z−k

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=0

(−1)k
(

α

k

)
z−k + (−1)n+1

(
α

n + 1

)
z−(n+1)

∣∣∣∣∣
≥

∣∣∣∣∣
∣∣∣∣∣

n∑
k=0

(−1)k
(

α

k

)
z−k

∣∣∣∣∣ −
∣∣∣∣(−1)n+1

(
α

n + 1

)
z−(n+1)

∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣∣
∣∣∣∣∣

n∑
k=0

(−1)k
(

α

k

)
z−k

∣∣∣∣∣ + (−1)n+1

(
α

n + 1

)
�−(n+1)

∣∣∣∣∣
≥

∣∣∣∣∣
n+1∑
k=0

(−1)k
(

α

k

)
�−k

∣∣∣∣∣ .

1.2 Fractional Difference Operators

Let V be a real or complex vector space.
The fractional sum can be motivated by the iterated sum formula and is also

related to iterating the backward difference operator (see e.g. [15]). For α ∈ R>0 the
fractional sum ∇−α : VN → VN is defined by (cf. [3, p. 3])

(∇−αu)n =
n∑

k=0

(
n − k + α − 1

n − k

)
uk =

n∑
k=0

(−1)k
(−α

k

)
un−k . (2)

There is also a definitionmotivated by iterating the forward difference operatorwhich
is studied at least since [15] and can be found in [3, p. 3] as well. Note that (∇−αu)n
in general depends on u0, . . . , un .

The approach to defining the fractional differential operators in the Riemann–
Liouville and Caputo sense (cf. [8]) was applied mutatis mutandis to difference
operators (see e.g. [1] and the references therein).Recall that forΔ : V N → V N, u 
→
(un+1 − un)N we have (Δu)n = (∇u)n+1 for n ∈ N. For α ∈ (0, 1) the Riemann–
Liouville forward fractional difference operator is defined by (cf. [16, p. 3813])

Δα : VN → VN, u 
→ Δ∇−(1−α)u. (3)
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The Caputo forward fractional difference operator is defined by (cf. [16, p. 3813])

Δα
C : VN → VN, u 
→ ∇−(1−α)Δu. (4)

In this paperwe study sequences in aHilbert spaceV = H onZ anddefine a fractional
difference sum operator using the binomial series and a functional calculus which is
not purely algebraic as in the case of∇−α. The connection between operators defined
on HZ with those defined on HN will be causality and we analyze how the Riemann–
Liouville and theCaputo operator fit into the calculus developed for sequences in HZ.
An important step for the development of the discrete, functional analytic framework
which is introduced in this paper has been done in the continuous case for fractional
derivatives in [19]. Lastly we study the asymptotic stability of the zero solution of
a linear fractional difference equation with the Riemann–Liouville and the Caputo
forward difference operator. The interest in the study of linear problems in the context
of stability analysis stems from Lyapunov’s first method, which has been analyzed
in [6] for fractional differential equations. The results regarding asymptotic stability
will be in terms of the Matignon criterion (cf. [18]), however, for bounded operators
on a Hilbert space H and will be compared to those in [1, 5]. A useful tool when
analyzing the asymptotic stability of linear problems is theZ transformwhich is also
used in [1, 5] but which is studied here for sequences in HZ. Asymptotic stability has
also been studied using the Riemann–Liouville and the Caputo backward difference
operators in [4, 16].

2 Exponentially Weighted � p Spaces

We denote by (H, ‖·‖H ) a complex and separable Hilbert space. The scalar product
〈·, ·〉H on H shall be conjugate linear in the first argument and linear in the second
argument. We recall several of the concepts of weighted �p,�(Z; H) spaces and the
Z transform (see also [13]).

Lemma 5 (Exponentially weighted �p spaces [13]) Let 1 ≤ p < ∞, � > 0. Define

�p,�(Z; H) :=
{
x ∈ HZ;

∑
k∈Z

‖xk‖p
H �−pk < ∞

}
,

�∞,�(Z; H) :=
{
x ∈ HZ; sup

k∈Z
‖xk‖H �−k < ∞

}
.

Then �p,�(Z; H) and �∞,�(Z; H) are Banach spaces with norms

‖x‖�p,�(Z;H) :=
( ∑

k∈Z
‖xk‖p

H �−pk
) 1

p
(x ∈ �p,�(Z; H))
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and
‖x‖�∞,�(Z;H) := sup

k∈Z
‖xk‖H �−k (x ∈ �∞,�(Z; H)),

respectively. Moreover, �2,�(Z; H) is a Hilbert space with the inner product

〈x, y〉�2,�(Z;H) :=
∑
k∈Z

〈
xk, yk

〉
H�−2k (x, y ∈ �2,�(Z; H)).

We write �p(Z; H) := �p,1(Z; H) for 1 ≤ p ≤ ∞.

Proposition 6 (One sided weighted sequence spaces [13]) For 1 ≤ p ≤ ∞, a ∈ Z

and � > 0 we define

�p,�(Z≥a; H) := {
x |Z≥a ; x ∈ �p,�(Z; H)

}
.

And for 1 ≤ p ≤ ∞, � > 0, a ∈ Z and for x ∈ HZ≥a , we define ιx ∈ HZ by

(ιx)k :=
{
0 if k < a,

xk if k ≥ a.

Then �p,�(Z≥a; H) is a Banach space with norm ‖·‖�p,�(Z≥a;H) := ‖ι·‖�p,�(Z;H), and

ι : �p,�(Z≥a; H) ↪→ �p,�(Z; H)

is an isometric embedding. Write �p,�(Z≥a; H) ⊆ �p,�(Z; H).
For 1 ≤ p < q ≤ ∞, �, ε > 0, a ∈ Z we have

(a) �p,�(Z≥a; H) � �q,�(Z≥a; H),

(b) �q,�(Z≥a; H) � �p,�+ε(Z≥a; H).

Definition 7 For x ∈ H and n ∈ Z we define δnx ∈ HZ by

(δnx)m :=
{
x, if m = n,

0, if m �= n,

and χZ≥n x ∈ HZ by

(χZ≥n x)m :=
{
x, if m ≥ n,

0, if m < n.

Note that for � > 0, δnx ∈ �p,�(Z; H) and for � > 1, χZ≥n x ∈ �p,�(Z; H).

Lemma 8 (Shift operator [13]) Let 1 ≤ p ≤ ∞, � > 0. Then
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τ : �p,�(Z; H) → �p,�(Z; H),

(xk)k∈Z 
→ (xk+1)k∈Z,

is linear, bounded, invertible, and

∥∥τ n
∥∥
L(�p,�(Z;H))

= �n (n ∈ Z).

3 Z Transform

Lemma 9 (L2 space on circle and orthonormal basis [13]) Let � > 0. Define

L2(S�; H) :=
{
f : S� → H ;

∫
S�

‖ f (z)‖2H
dz

|z| < ∞
}

.

Then L2(S�; H) is a Hilbert space with the inner product

〈 f, g〉L2(S�;H) := 1

2π

∫
S�

〈
f (z), g(z)

〉
H

dz

|z| ( f, g ∈ L2(S�; H)).

Moreover, let (ψn)n∈Z be an orthonormal basis in H. Then (pk,n)k,n∈Z with

pk,n(z) := �k z−kψn (z ∈ S�)

is an orthonormal basis in L2(S�; H).

Theorem 10 (Z transform [13]) Let � > 0. The operator

Z� : �2,�(Z; H) → L2(S�; H),

x 
→
(
z 
→

∑
k∈Z

〈ψn, �
−k xk〉H pk,n(z)

)

is well-defined and unitary. For x ∈ �1,�(Z; H) ⊆ �2,�(Z; H) we have

Z�(x) =
(
z 
→

∑
k∈Z

xkz
−k

)
.

Remark 11 (Z transform of x∈�2,�(Z; H) \ �1,�(Z; H)) Let � > 0, x∈�2,�(Z; H) \
�1,�(Z; H). Then ∑

k∈Z
xkz

−k
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does not necessarily converge for all z ∈ S�. For example if H = C, x ∈ �2,�(Z; H) \
�1,�(Z; H) with xk := �k

k and z = �.

Lemma 12 (Shift is unitarily equivalent to multiplication [13]) Let � > 0. Then

Z�τZ
∗

� = m,

where m is the multiplication-by-the-argument operator acting in L2(S�; H), i.e.,

m : L2(S�; H) → L2(S�; H),

f 
→ (z 
→ z f (z)).

Next, we present a Paley–Wiener type result for the Z transform.

Lemma 13 (Characterization of positive support [13]) Let � > 0, x ∈ �2,�(Z; H).
Then the following statements are equivalent:

(i) spt x ⊆ N,
(ii) z 
→ ∑

k∈Z xkz−k is analytic on C|·|>� and

sup
μ>�

∫
Sμ

∥∥∥∥∥
∑
k∈Z

xkz
−k

∥∥∥∥∥
2

H

dz

|z| < ∞. (5)

Definition 14 (Causal linear operator) We call a linear operator B : �2,�(Z; H) →
�2,�(Z; H) causal, if for all a ∈ Z, f ∈ �2,�(Z; H), we have

spt f ⊆ Z≥a ⇒ spt B f ⊆ Z≥a .

Recall [12, VIII.3.6, p. 222] that for A ∈ L(H) with spectrum σ(A), the spectral
radius

r(A) := sup {|z|; z ∈ σ(A)}

of A satisfies
r(A) = lim

n→∞
∥∥An

∥∥1/n
L(H)

.

Let A ∈ L(H) and � > 0. We denote the operators �2,�(Z, H) → �2,�(Z, H), x 
→
(Axk), and L2(S�, H) → L2(S�, H), f 
→ (z 
→ A f (z)), which have the sameoper-
ator norm as A, again by A.

Proposition 15 (Convolution) Let c ∈ �1,�(Z; C) and u ∈ �2,�(Z; H). Then

c ∗ u :=
( ∞∑
k=−∞

ckun−k

)

n∈Z
∈ �2,�(Z; H).

We have Young’s inequality
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‖c ∗ u‖�2,�(Z;H) ≤ ‖c‖�1,�(Z;C) ‖u‖�2,�(Z;H) .

Moreover,
Z�(c ∗ u) = Z�cZ�u.

Proof Let n ∈ Z. With the Cauchy–Schwarz inequality we compute

( ∞∑
k=−∞

‖ckun−k‖H

)2

�−2n =
( ∞∑
k=−∞

|ck |1/2�−k/2|ck |1/2�−k/2 ‖un−k‖H �−(n−k)

)2

≤ ‖c‖�1,�(Z;C)

( ∞∑
k=−∞

|ck |�−k ‖un−k‖2H �−2(n−k)

)
.

Therefore using Fubini’s theorem

∞∑
n=−∞

‖(c ∗ u)n‖2H �−2n ≤
∞∑

n=−∞

( ∞∑
k=−∞

‖ckun−k‖H

)2

�−2n

≤ ‖c‖�1,�(Z;C)

∞∑
n=−∞

( ∞∑
k=−∞

|ck |�−k ‖un−k‖2H �−2(n−k)

)

= ‖c‖2�1,�(Z;C) ‖u‖2�2,�(Z;H) .

This shows Young’s inequality. If additionally u ∈ �1,�(Z; H) then

∞∑
n=−∞

‖(c ∗ u)n‖H �−n ≤
∞∑

n=−∞

∞∑
k=−∞

‖ckun−k‖H �−n

=
∞∑

k=−∞

∞∑
n=−∞

|ck |�−k ‖un−k‖H �−(n−k)

= ‖c‖�1,�(Z;C) ‖u‖�1,�(Z;H) ,

i.e., c ∗ u ∈ �1,�(Z; H) ∩ �2,�(Z; H) which simplifies the Z transform of c ∗ u.
Using Fubini’s theorem, we compute for u ∈ �1,�(Z; H) ∩ �2,�(Z; H) and z ∈ S�

Z�(c ∗ u)(z) =
∞∑

n=−∞

( ∞∑
k=−∞

ckun−k

)
z−n =

∞∑
n=−∞

( ∞∑
k=−∞

ckz
−kun−k z

−(n−k)

)

=
∞∑

k=−∞
ckz

−k

( ∞∑
n=−∞

un−k z
−(n−k)

)
= Z�(c)Z�(u).

For u ∈ �2,�(Z; H) the formula follows by density of �1,�(Z; H) ∩ �2,�(Z; H) ⊆
�2,�(Z; H).
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Example 16 (The operator (1 − τ−1)α) Let � > 1 and α ∈ C. For the operator 1 −
τ−1 : �2,�(Z; H) → �2,�(Z; H), we compute

(1 − τ−1) = Z ∗
� (1 − z−1)Z�.

We have |z−1| < 1 for all z ∈ S� and therefore

(1 − τ−1)α := Z ∗
� (1 − z−1)αZ� : �2,�(Z; H) → �2,�(Z; H)

is well-defined. This is an application of the holomorphic functional calculus (cf.
[10, pp. 13–18], [9, p. 601]).

We define c ∈ �1,�(Z; C) by

ck :=
{

(−1)k
(α
k

)
if k ≥ 0,

0 if k < 0.

Then

Z�c =
∞∑
k=0

(−1)k
(

α

k

)
z−k = (1 − z−1)α.

Thus we compute for u ∈ �2,�(Z; H)

Z�(c ∗ u) = Z�cZ�u = (1 − z−1)αZ�u.

Thus for α ∈ C and u ∈ �2,�(Z; H) we obtain

(1 − τ−1)αu = c ∗ u =
( ∞∑
k=0

(−1)k
(

α

k

)
un−k

)

n∈Z
=

(
n∑

k=−∞
(−1)n−k

(
α

n − k

)
uk

)

n∈Z
,

i.e., (1 − τ−1)α is a convolution operator and by Young’s Theorem (1 − τ−1)α is
bounded and

∥∥(1 − τ−1)α
∥∥
L(�2,�(Z;H))

= ‖c‖�1,�(Z;H).
If u ∈ �2,�(Z; H) with spt u ⊆ N, we have

(1 − τ−1)αu =
(

n∑
k=0

(−1)k
(

α

k

)
un−k

)

n∈Z
.

Since τ commutes with (1 − τ−1)α, we deduce that (1 − τ−1)α is causal.
On �2,�(Z; H) we compute for α,β ∈ C

(1 − τ−1)α(1 − τ−1)β = Z ∗
� (1 − z−1)αZ�Z

∗
� (1 − z−1)βZ�

= Z ∗
� (1 − z−1)α+βZ� = (1 − τ−1)α+β .
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In particular, for α ∈ C, (1 − τ−1)α is invertible with inverse (1 − τ−1)−α.

4 Fractional Difference Equations on �2,�(Z; H)

Fractional Operators

Let � > 1 and α ∈ (0, 1). We consider the operators (2), (3) and (4) defined on
V = H . For comparing operators defined on spaces of sequences on Z with those
defined for sequences on N, we recall the embedding of �2,�(N; H) into �2,�(Z; H)

by ι in Proposition 6. Moreover, we extend the operator Δ on N to Z by

Δ : �2,�(Z; H) → �2,�(Z; H), u 
→ χN(τ − 1)u = χNτ (1 − τ−1)u.

Note that the left shift on N cuts of the first value of a sequence and embedded
sequences have positive support. This is the reason for multiplying with χN in the
definition of Δ on �2,�(Z; H).

Let v ∈ �2,�(N; H) and set u := ιv ∈ �2,�(Z; H). We compare the operator (1 −
τ−1)−α definedon �2,�(Z; H) and the fractional sum (2).Wehave spt

(
(1 − τ−1)−αu

)
⊆ N and obtain

ι∇−αv = (1 − τ−1)−αu.

Using definitions (3) and (4) of the Riemann–Liouville and Caputo difference
operators, and the fact that Δu = (τ − 1)(u − χNu0) = τ (1 − τ−1)(u − χNu0), we
compute

Δ(1 − τ−1)−(1−α)u = χNτ (1 − τ−1)αu = τ (1 − τ−1)αu − δ−1u0,

(1 − τ−1)α−1Δu = (1 − τ−1)α−1χNτ (1 − τ−1)u = τ (1 − τ−1)α(u − χNu0).

Moreover, we have

ιΔαv = χNτ (1 − τ−1)αu,

ιΔα
Cv = τ (1 − τ−1)α(u − χNu0).

In view of τ (1 − τ−1)α, the Caputo and the Riemann–Liouville operators are
equal whereby the Caputo operator regularizes u first. In particular, for n ∈ N by
Proposition 1, we have ((1 − τ−1)αχNu0)n = ∑n

k=0(−1)k
(
α
k

)
u0 = (−α+n

n

)
u0 and so

(Δαv)n = (Δα
Cv)n +

(−α + n + 1

n + 1

)
u0.
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It is notable that the operator (1 − τ−1)α when H = C maps real valued sequences
to real valued sequences. We could have started with a real Hilbert space H and
analyze (1 − τ−1)α spectral-wise by the complexification H ⊕ H .

Proposition 17 (Equivalence of difference equation and sequence equation) Let
� > 1 andα ∈ (0, 1). Let x ∈ H, F : �2,�(Z; H) → �2,�(Z; H) and u ∈ �2,�(Z; H).
Let spt u ⊆ N and spt F(u) ⊆ N. In view of the Riemann–Liouville operator, the
following are equivalent:

(i) τ (1 − τ−1)αu = F(u) + δ−1x,

(i i) u0 = x, ((1 − τ−1)αu)n+1 = F(u)n for n ∈ N,

(i i i) u0 = x, un+1 = (−1)n+1

( −α

n + 1

)
u0+

n∑
k=0

(−1)n−k

( −α

n − k

)
F(u)k for n ∈ N.

In view of the Caputo operator, the following are equivalent:

(iv) τ (1 − τ−1)αu = F(u) + (1 − τ−1)αχZ≥−1x,

(v) u0 = x, ((1 − τ−1)αu)n+1 = F(u)n + (−1)n+1

(
α − 1

n + 1

)
u0 for n ∈ N,

(vi) u0 = x, un+1 = u0 +
n∑

k=0

(−1)n−k

( −α

n − k

)
F(u)k for n ∈ N.

Proof We only proof the equivalence of (i), (i i) and (i i i).
(i) ⇔ (i i): If we evaluate (i) at n ∈ Z we obtain

(τ (1 − τ−1)αu)n = ((1 − τ−1)αu)n+1 = F(u)n + (δ−1x)n.

Since ((1 − τ−1)αu)n and F(u)n = 0 for n ∈ Z<0, and since (δ−1x)n = x if and only
if n = −1 and ((1 − τ−1)αu)0 = u0, it follows that (i) and (i i) are equivalent.
(i) ⇔ (i i i): If we apply (1 − τ−1)−α to (i) we see that (i) is equivalent to

τu = (1 − τ−1)−αF(u) + (1 − τ−1)−αδ−1u.

This equation is equivalent to (i i i), since

(1 − τ−1)−αδ−1x =
{
0, if n < −1,

(−1)n+1
(−α
n+1

)
x, if n ≥ −1,

and since spt F(u) ⊆ N,

(1 − τ−1)−αF(u) =
n∑

k=0

(−1)n−k

( −α

n − k

)
F(u)k .
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Remark 18 Note that the right hand side F in Proposition 17(i), (iv)maps sequences
instead of values of H . Ifwe have a function f : H → H such that foru ∈ �2,�(Z; H)

we have ( f (un))n∈Z ∈ �2,�(Z; H), we may set F(u) := ( f (un))n∈Z in Proposi-
tion 17.

Remark 19 (Grünwald–Letnikov difference operator) The Grünwald–Letnikov dif-
ference operator is defined for h > 0 and α ∈ (0, 1) by (c.f. [17, p. 708]):

Δ̃α
h : V hN → V hN, u 
→

(
t 
→ 1

hα

t/h∑
k=0

(−1)k
(

α

k

)
ut−kh

)
, (6)

where hN = {hn; n ∈ N}. It can be shown (cf. [17, p. 708], [20, p. 43]) that forV = R

the Grünwald–Letnikov operator can be used to approximate the Riemann–Liouville
integral of sufficiently smooth functions.

Let α ∈ (0, 1). For v ∈ �2,�(N; H) and u := ιv we calculate for the Grünwald–
Letnikov operator (6), (1 − τ−1)αu = Δ̃α

1 v. Let h > 0, x ∈ H and F : H → H . A
Grünwald–Letnikov difference equation has the form

(Δ̃α
hv)(t + h) = F(v(t)), v(0) = x (t ∈ hN).

For h = 1 the Grünwald–Letnikov equation resembles the Riemann–Liouville equa-
tion of Proposition 17 and for h ∈ R>0, we may treat a Grünwald–Letnikov problem
by considering the problem

τ (1 − τ−1)αu = hαF(u) + δ−1x .

Linear Equations on Sequence Spaces

Remark 20 Let A ∈ L(H) and x ∈ H . In view of the Riemann–Liouville difference
operator we ask whether the linear equation

τ (1 − τ−1)αu = Au + δ−1x (7)

of Proposition 17 has a unique so-called causal solution that is supported in N. In
the spaces �2,�(Z; H), we have a unique solution of (7) for every initial value if
τ (1 − τ−1)α − A is invertible in �2,�(Z; H). In view of Proposition 17, the solution
(τ (1 − τ−1)α − A)−1δ−1x should be causal. For the corresponding Caputo equation

τ (1 − τ−1)αu = Au + (1 − τ−1)αχZ≥−1x, (8)

the treatment is similar since χZ≥−1x = χNx + δ−1x .

Lemma 21 Let α ∈ (0, 1) and A ∈ L(H). We define f : C|·|>1 → C, z 
→ z(1 −
z−1)α and set f� := f |S�

for � > 1. For � > 1, the operator τ (1 − τ−1)α − A is
invertible in �2,�(Z; H) if and only if ran f� ∩ σ(A) = ∅. Moreover, there is � > 1
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such that for all μ > �, ran fμ ∩ σ(A) = ∅, that is {
z(1 − z−1)α; |z| > �

}
is in the

resolvent set of A.

Proof Recall themultiplication operatorm ofLemma12.Using theZ transform, the
operator τ (1 − τ−1)α − A is invertible in �2,�(Z; H) if and only ifm(1 − m−1)α − A
is invertible in L2(S�, H), sinceZ� is unitary. This is the case, however, if and only if
ran f� ∩ σ(A) = ∅. UsingLemma4, there is � > 1 such that for allμ > � and z ∈ Sμ,
r(A) < μ(1 − μ−1)α ≤ ∣∣z(1 − z−1)α

∣∣. That is, for all μ > �, ran fμ ∩ σ(A) = ∅.
Proposition 22 (Causality of (τ (1 − τ−1)α − A)−1) Let � > 1, α ∈ (0, 1) and A ∈
L(H). Let f� be defined as in Lemma 21. The following are equivalent:

(i) (τ (1 − τ−1)α − A)−1 ∈ L
(
�2,�(Z; H)

)
is causal,

(i i) (τ (1 − τ−1)α − A)−1 ∈ L
(
�2,�(Z; H)

)
and ∀x ∈ H : spt(τ (1 − τ−1)α − A)−1δ−1x ⊆ N,

(i i i) ∀μ ≥ � : ran fμ ∩ σ(A) = ∅.

Proof (i) ⇒ (i i): Let x ∈ H and u := (τ (1 − τ−1)α − A)−1δ−1x . Using causality
assumed in (i), we obtain spt u ⊆ Z≥−1. Moreover, u−1 = ((1 − τ−1)−αAu)−2 +
((1 − τ−1)−αδ−1x)−2 = 0 so that spt u ⊆ N.
(i i) ⇒ (i i i): Suppose by contradiction that there is �′ > � with ran f�′ ∩ σ(A) �= ∅.
The set

{
z ∈ C|·|≥�′ ; z(1 − z−1)α ∈ σ(A)

}
is closed, since σ(A) is closed and since

f is continuous, and the set is bounded, since by Lemma 21 there is a �̃ > �′ such that
f (C|·|≥�̃) is in the resolvent set. Thus, there is z′ ∈ {

z ∈ C|·|≥�′ ; z(1 − z−1)α ∈ σ(A)
}

with maximal absolute value. Therefore there is a sequence (zn)n∈N in C with |zn| >∣∣z′∣∣, that is, zn(1 − z−1
n )α is in the resolvent set of A (n ∈ N) and limn→∞ zn = z′.

Using the resolvent estimate (cf. [21, p. 378]), we have limn→∞
∥∥(zn(1 − z−1

n )α −
A)−1

∥∥
L(H)

= ∞. By applying the Banach–Steinhaus theorem (cf. [21, p. 141]),

there is x ∈ H with limn→∞
∥∥(zn(1 − z−1

n )α − A)−1x
∥∥
H

= ∞. By assumption,
(τ (1 − τ−1)α − A)−1δ−1x ∈ �2,�(Z; H) and spt(τ (1 − τ−1)α − A)−1δ−1x ⊆ N.
Hence for v := (τ (1 − τ−1)α − A)−1δ0x ∈ �2,�(Z; H), we have v ∈ �2,�(Z; H) and
spt v ⊆ N. Applying Lemma 13, it follows that F : C|·|>� → H, z 
→ ∑∞

k=−∞ vk z−k

is analytic. Since v ∈ �2,μ(Z; H) for μ >
∣∣z′∣∣, it follows that for G : C|·|>|z′| →

H, z 
→ (z(1 − z−1)α − A)−1x , we have G = F |C|·|>|z′ | . This means that
limn→∞ ‖F(zn)‖H = limn→∞ ‖G(zn)‖H = ∞. Since F is continuous, this is a con-
tradiction in that limn→∞ ‖F(zn)‖H �= ∞.
(i i i) ⇒ (i): We have (τ (1 − τ−1)α − A)−1 ∈ L(�2,μ(Z; H)) for μ > � by Lemma
21. Since the resolvent of A is analytic, the mapping z 
→ (z(1 − z−1)α − A)−1

is analytic on C|·|>�. Moreover the mapping z 
→ ∥∥(z(1 − z−1)α − A)−1
∥∥
L(H)

is
continuous and hence bounded on compact sets Cμ≥|·|≥� where μ ≥ �, i.e. the
mapping attains its maximum on Cμ≥|·|≥�. By Lemma 4 and since A is bounded,
supz∈Sμ

∥∥(z(1 − z−1)α − A)−1
∥∥
L(H)

decays to zero when μ tends to infinity. It fol-

lows that μ 
→ supz∈Sμ

∥∥(z(1 − z−1)α − A)−1
∥∥
L(H)

is bounded on [�,∞) and there-
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fore the conditions of Lemma 13(i i) are satisfied for (τ (1 − τ−1)α − A)−1u, where
u ∈ �2,�(Z; H), spt u ⊆ N. It follows that (τ (1 − τ−1)α − A)−1 is causal.

Remark 23 Let A ∈ L(H), � > 1 andα ∈ (0, 1). By Lemma 21 and Proposition 22,
we can always choose � large enough such that τ (1 − τ−1)α − A is invertible with
causal inverse. As a consequence the linear fractional difference Eq. (7) or (8) has
a unique solution u ∈ �2,�(Z; H). Moreover, from the previous Theorem it follows
that (7) or (8) has a unique solution in �2,μ(Z; H) for μ ≥ �which coincides with the
solution u, since �2,�(N; H) ⊆ �2,μ(N; H). Therefore we can speak of the solution
operator (τ (1 − τ−1)α − A)−1.

The difference equation for an initial value x ∈ H and A ∈ L(H)

(Δαu)n = Aun, u0 = x,

or
(Δα

Cu)n = Aun, u0 = x,

can be solved algebraically with a unique solution u ∈ HN (cf. Proposition 17(i i i),
(vi)). Recall the embedding ι of Proposition 6. Since A has bounded spectrum,
when by the previous theorem, there is � > 1 such that ιu ∈ �2,�(Z; H) is the unique
solution of (7) or (8).

Asymptotic Stability

We discuss asymptotic stability of linear fractional difference equations. For an anal-
ysis of rates of convergence, see also [5, 7].

Definition 24 (Asymptotic stability) Let A ∈ L(H). The zero equilibrium of Eq. (7)
or (8), i.e., the solution u = 0 for the inital value 0, is said to be asymptotically
stable if for every � > 1, every solution u ∈ �2,�(Z; H) of (7) or (8) with spt u ⊆ N

satisfies limn→∞ un = 0 in H .

Remark 25 If a sequence u ∈ HZ satisfies spt u ⊆ N and limn→∞ un = 0, then
necessarily for all � > 1 we have u ∈ �2,�(Z; H). One could say that the spaces
�2,�(Z; H), � > 1, are large enough to look for asymptotically stable solutions of a
linear sequence equation.

Proposition 26 (Necessary condition for asymptotic stability) Let A ∈ L(H) such
that the zero equilibrium of Eq. (7) or (8) is asymptotically stable and let fμ (μ > 1)
be as in Lemma 21. Then for all μ > 1, τ (1 − τ−1)α − A is invertible in �2,μ(Z; H)

with causal inverse, i.e., for each μ > 1, σ(A) ∩ ran fμ = ∅.
Proof Assume by contradiction there is z′ ∈ ran f� ∩ σ(A) �= ∅ where � > 1. We
may assume that ran fμ ∩ σ(A) = ∅ for μ >

∣∣z′∣∣. Then there is a sequence (zn)n∈N
with |zn| >

∣∣z′∣∣ such that zn(1 − z−1
n )α is in the resolvent set of A (n ∈ N) and such
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that zn → z′ (n → ∞). Using the resolvent estimate, we have
limn→∞

∥∥(zn(1 − z−1
n )α − A)−1

∥∥
L(H)

= ∞. Using the Banach–Steinhaus theorem,

there is x ∈ H with limn→∞
∥∥(zn(1 − z−1

n )α − A)−1x
∥∥
H = ∞. By Lemma 21 and

Proposition22, forμ >
∣∣z′∣∣,weknow that τ (1 − τ−1)α − A is invertible in�2,μ(Z; H)

and v := (τ (1 − τ−1)α − A)−1δ0x satisfies spt v ⊆ N. Since the zero equilibrium is
asymptotically stable, we have v ∈ �2,�′(Z; H) for some �′ ∈ (1,

∣∣z′∣∣) by Remark 25.
Then the mapping F : C|·|>�′ → H, z 
→ ∑∞

k=−∞ vk z−k is analytic and equals G :
C|·|>|z′| → H, z 
→ (z(1 − z−1)α − A)−1δ0x onC|·|>|z′| by Lemma 13. Therefore we
have limn→∞ F(zn) < ∞, since F is analytic which contradicts limn→∞ F(zn) =
limn→∞ G(zn) = ∞.

For a sufficient condition of asymptotic stability we observe that if u ∈ �2,1(Z; H)

with spt u ⊆ N then limn→∞ un = 0.

Proposition 27 (Sufficient condition for asymptotic stability) Let A ∈ L(H). For
all � > 1 let τ (1 − τ−1)α − A be invertible in �2,�(Z; H) with causal inverse. If for
all x ∈ H the mapping C|·|>1 → H, z 
→ ∑∞

k=−∞[(τ (1 − τ−1)α − A)−1δ−1x]k z−k

has a continuous continuation to the unit circle S1, then the zero equilibrium of
Eq. (7) or (8) is asymptotically stable.

Proof Let g be the continuous continuation. Then g|S1 ∈ L2(S1, H) and v :=
Z −1

1 g|S1 ∈ �2,1(Z; H). Moreover, u = v that is u ∈ �2,1(Z; H).

Remark 28 We believe that the necessary conditions for stability in Proposition 26
are not sufficient, neither are the sufficient conditions for stability in Proposition
27 necessary. Already for semigroups the asymptotic stability can in general not be
characterized by spectral conditions solely. The shift operator on continuous func-
tions from R

+ to R which decay at infinity, for example, is asymptotically stable
although its spectrum consists of all complex numbers with non-positive real part
[2, Example 2.5(c)]. The characterization of asymptotic stability for linear fractional
difference equations is an intricate problem which still needs to be addressed.

Example 29 Let H = C, A : C → C, z 
→ λz where λ ∈ R and α ∈ (0, 1). We
study the asymptotic behavior of the linear fractional equations (7) and (8) on
�2,�(Z; H) (� > 1) in view of Proposition 26 and Proposition 27 and therefore want
to apply the Z transform to Eq. (7) and (8). In order to obtain an asymptotically
stable zero equilibrium by Proposition 26, we must have σ(A) ∩ ran f = ∅ where
f : C|·|>1 → C, z 
→ z(1 − z−1)α is defined as in Lemma 21 and σ(A) = {λ}. We
remark that for z ∈ C|·|>1, f (z) ∈ R if and only if z ∈ R since f is injective and since
f (z) = f (z). Moreover f (C|·|>1 ∩ R) = (−∞,−2α) ∪ (0,∞) and so λ /∈ ran f if
and only if λ ∈ [−2α, 0]. By Proposition 26, we necessarily have λ ∈ [−2α, 0] if
the zero equilibrium of (7) or (8) is asymptotically stable. Let λ ∈ [−2α, 0], and for
u ∈ �2,�(Z; H) we denote û := Z u.

We consider (7) with x ∈ C first. Also for z ∈ S� we have (Z δ−1x)(z) = zx .
Applying the Z transform to Eq. (7), we obtain for z ∈ S�
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z(1 − z−1)αû(z) = Aû(z) + zx .

If λ ∈ (−2α, 0), the mapping C|·|>1 → H, z 
→ zx
z(1−z−1)α−λ

has a continuous con-
tinuation to S1 and by Proposition 27, we obtain that the zero equilibrium of (7) is
asymptotically stable.

Wenowconsider Eq. (8)where x ∈ C. For z ∈ S�, we have (Z χZ≥1x)(z) = zx
1−z−1 .

Applying the Z transform to Eq. (8), we obtain for z ∈ S�

z(1 − z−1)αû(z) = Aû(z) + z(1 − z−1)α−1x .

If λ ∈ (−2α, 0), the mapping C|·|>1 → H, z 
→ z(1−z−1)α−1x
z(1−z−1)α−λ

has a continuous con-
tinuation to S1 and using Proposition 27, we obtain that the zero equilibrium of (8)
is asymptotically stable.

The cases λ = 0 and λ = −2α are discussed in [5].
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5. Čermák, J., Győri, I., Nechvátal, L.: On explicit stability conditions for a linear fractional
difference system. Fract. Calc. Appl. Anal. 18(3), 651–672 (2015)

6. Cong,N.D., Doan, T.S., Siegmund, S., Tuan,H.T.: Linearized asymptotic stability for fractional
differential equations. Electron. J. Qual. Theory Differ. Equ., paper no. 39, 13 (2016)

7. Cong, N.D., Tuan, H.T., Trinh, H.: On asymptotic properties of solutions to fractional differ-
ential equations. Submitted (2018)

8. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented
Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol.
2004. Springer, Berlin (2010)

9. Dunford, N., Schwartz, J.T.: Linear operators. Part I. Wiley Classics Library. Wiley, New York
(1988). General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint
of the 1958 original, A Wiley-Interscience Publication

10. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators. Vol. I, vol. 49.
Birkhäuser Verlag, Basel (1990)



A Hilbert Space Approach to Fractional Difference Equations 131

11. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer
Science, 2nd edn. Addison-Wesley Publishing Company, Reading (1994)

12. Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press,
Cambridge (2004)

13. Kitzing, K., Picard, R., Siegmund, S., Trostorff, S., Waurick, M.: A Hilbert space approach to
difference equations. Submitted (2018)

14. Königsberger, K.: Analysis. 1. Springer-Lehrbuch, 6th edn. Springer, Berlin (2004)
15. Kuttner, B.: On differences of fractional order. Proc. London Math. Soc. 3(7), 453–466 (1957)
16. Lizama, C.: The Poisson distribution, abstract fractional difference equations, and stability.

Proc. Amer. Math. Soc. 145(9), 3809–3827 (2017)
17. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)
18. Matignon, D.: Stability properties for generalized fractional differential systems. In: Systèmes

différentiels fractionnaires (Paris, 1998), volume 5 of ESAIMProc., pages 145–158. Soc.Math.
Appl. Indust., Paris (1998)

19. Picard, R., Trostorff, S., Waurick, M.: On evolutionary equations with material laws containing
fractional integrals. Math. Methods Appl. Sci. 38(15), 3141–3154 (2015)

20. Podlubny, I.: Fractional Differential Equations, volume 198 of Mathematics in Science and
Engineering. Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of their applica-
tions

21. Werner, D.: Funktionalanalysis, extended edn. Springer, Berlin (2000)


	 A Hilbert Space Approach to Fractional Difference Equations
	1 Introduction
	1.1 Notation
	1.2 Fractional Difference Operators

	2 Exponentially Weighted ellp Spaces
	3 mathcalZ Transform
	4 Fractional Difference Equations on ell2, ρ(mathbbZ; H)
	References




