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Abstract The paper discusses stability and instability properties of difference
equation y(n + 1) + ay(n − � + 1) + by(n − �) = 0 with real parameters a, b.
Beside known results about its asymptotic stability conditions a deeper analysis
of instability properties is introduced. An instability degree of difference equation’s
solution is introduced in analogy with theory of differential equations. Instability
regions of a fixed degree are introduced and described in the paper. It is shown that
dislocation of instability regions of various degrees obeys some rules and qualita-
tively depends on parity of difference equation’s order.
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1 Introduction

We are going to consider a three term linear difference equation

y(n + 1) + ay(n − � + 1) + by(n − �) = 0, n = 0, 1, 2, . . . , (1)

where a, b ∈ R and � ∈ N. Our aim is to analyze asymptotic stability and instability
conditions for the equation with respect to parameters a, b and �. We recall that a
linear difference equation with constant parameters is asymptotically stable if any
of its solution tends to zero while n tends to infinity. This property is ensured if and
only if all zeros λ1,λ2, . . . ,λ�+1 of the equation’s characteristic polynomial

P. Tomášek is supported by the Czech Science Foundation under the grant GA17-03224S: Asymp-
totic theory of ordinary and fractional differential equations and their numerical discretizations.

P. Tomášek (B)
Faculty of Mechanical Engineering, Brno University of Technology, Institute of Mathematics,
Technická 2896/2, 616 69 Brno, Czech Republic
e-mail: tomasek@fme.vutbr.cz
URL: http://www.vutbr.cz/en/people/petr-tomasek-13984

© Springer Nature Switzerland AG 2020
M. Bohner et al. (eds.), Difference Equations and Discrete Dynamical Systems
with Applications, Springer Proceedings in Mathematics & Statistics 312,
https://doi.org/10.1007/978-3-030-35502-9_16

355

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35502-9_16&domain=pdf
mailto:tomasek@fme.vutbr.cz
http://www.vutbr.cz/en/people/petr-tomasek-13984
https://doi.org/10.1007/978-3-030-35502-9_16


356 P. Tomášek

P(λ) = λ�+1 + aλ + b (2)

lie inside the unit disk in a complex plane.
While the stability conditions are widely analyzed, the instability counterpart

analysis remains submarginal. Since we are going to make a more detailed insight
to instability properties of (1), we introduce a degree of instability of difference
equation (1) in analogy with theory of delay differential equations (see [9, 11]). The
following definition is formulated for (1), but it can be analogously considered also
for another difference equations.

Definition 1 A number of polynomial (2) roots λk counted with their multiplicities,
which satisfy |λk | > 1, is called instability degree of Eq. (1).

The degree of instability of (1) splits the parameter’s plain (a, b) to disjoint domains.
The subject of investigation in this paper is a description and some properties of the
instability regions of (1).

2 Stability and Instability Regions

We start with a notion of stability region:

Definition 2 Let � ∈ N. The set S� of all pairs (a, b) ∈ R
2 for which (1) is asymp-

totically stable is called asymptotic stability region.

Remark 1 A fundamental necessary restriction for asymptotic stability region loca-
tion is the following: Let (1) be asymptotically stable. Then |b| < 1. The assertion is
obvious with respect to the fact that |b| is a modulus of product of all the roots of (2).
If (1) is asymptotically stable, then all roots of (2) have modulus lower then 1 and
hence for modulus of their product it holds |b| < 1. From a graphical point of view
it means that S� must be dislocated within the stripe −1 < b < 1 in (a, b) plane.

Remark 2 We can also mention a sufficient condition of asymptotic stability, which
constructs the so-called Cohn domain of asymptotic stability, which is in the case of
(1) in a form |a| + |b| < 1. This condition defines an opened square in (a, b) plane
with circumradius one and with vertices situated on axes a and b symmetrically.

In a connection with a description of the region S�, we can recall necessary and
sufficient conditions for (1) to be asymptotically stable. In [5] such conditions had
been introduced, but as it was later shown, they were incorrect. It was pointed out
in [14] that there was some ambiguity in a proof in [4] for a more general case of
trinomial difference equation, but similar one depreciates the result in [5]. Correct
conditionswere later obtained and can be found in various forms in [2, 3, 12, 13]. The
last mentioned recent paper also introduces a generalization of difference equation
stability notion called r−stability. We present the asymptotic stability conditions for
(1) in a form which can be obtained as a conclusion of result introduced in [1].
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Lemma 1 Let a, b ∈ R and � ∈ N. If � is odd then (1) is asymptotically stable if
and only if |a| < 1 + b and either

b − 1 < |a| ≤ 1 − b

or

|a| > |1 − b|, � <
arccos −a2+b2−1

2|a|
arccos −a2−b2+1

2|ab|
.

If � is even then (1) is asymptotically stable if and only if |b| < 1 + a and either

a − 1 < |b| ≤ 1 − a

or

|b| > |1 − a|, � <
arccos −a2+b2−1

2|a|
arccos −a2−b2+1

2|ab|
.

Definition 3 Let �, k ∈ N. The set I�,k of all pairs (a, b) ∈ R
2 for which (1) has

degree of instability k is called region of the kth degree of instability.

For a detailed description of S� and I�k , k = 1, 2, . . . � + 1 we employ the bound-
ary locus technique. We consider λ = eωi , ω ∈ R as a root of polynomial (2), i.e.

e(�+1)ωi + aeωi + b = 0.

Applying the Euler’s rule and considering real and imaginary parts separately we
get

cos((� + 1)ω) + a cos(ω) + b = 0, (3)

sin((� + 1)ω) + a sin(ω) = 0, (4)

respectively. It is enough to consider ω ≥ 0 since the left-hand sides of the above
equations are even and odd, respectively. In the sequel we determine representation
of curves in (a, b) plane of such pairs of parameter (a, b) for which P(λ∗) = 0.
There are only three possible cases to consider with respect to value of ω:

Case 1. For ω = 0 we have a straight line b = −a − 1.
Case 2. Forω = mπ,m ∈ NEq. (4) is fulfilled trivially and (3) gives straight lines

b = a − 1 for � odd,

b = a + 1 for � even.

Case 3. For ω �= rπ, r ∈ N0. Equations (4) and (3) give
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Fig. 1 Stability and instability regions for � = 1 (left) and � = 2 (right)

a = − sin((� + 1)ω)

sin(ω)
(5)

b = sin((� + 1)ω) cot(ω) − cos((� + 1)ω) = sin(�ω)

sin(ω)
. (6)

Consideringω ∈ (0,π) the above introduced pair of a, b gives parametric expression
of a curve C where some root of P(λ) stands on the boundary of the unit circle. The
straight lines from cases 1 and 2 together with the curve C represent the boundary
between stability region and regions of various instability degrees.

It is enough to consider ω ∈ (0,π) to express the boundary curve, since for ω �=
rπ, r ∈ N0 the points of the same curve are obtained. Analyzing the limits of (a, b)
for ω → 0+ and ω → π− we obtain the boundary curve C endpoints A and B,
respectively.

A = lim
ω→0+

(a, b) = (−� − 1, �)

and

B = lim
ω→π−

(a, b) = (� + 1, �) for � odd,

B = lim
ω→π−

(a, b) = (−� − 1,−�) for � even.

In the following figures the stability and instability regions are introduced. They
are separated by a bold curve C and bold straight lines corresponding to cases 1 and
2. The asymptotic stability region S� is highlighted by grey color (Figs. 1 and 2).

To have a better insight into the regions dislocation we introduce some of their
properties.

Lemma 2 The axis b is a part of the asymptotic stability region S� for b ∈ (−1, 1)
and of instability region of the highest degree I�,�+1 for b /∈ [−1, 1].
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Fig. 2 Stability and instability regions for � = 3 (left) and � = 4 (right)

Proof In the case of a = 0 the characteristic polynomial P(λ) of (1) has the form

P(λ) = λ�+1 + b

which all � + 1 roots have modulus |b|1/(�+1). �

A similar situation occurs for the axis a:

Lemma 3 The axis a is a part of the asymptotic stability region S� for a ∈ (−1, 1)
and of instability region of the second highest degree I�,� for a /∈ [−1, 1].
Proof In the case of b = 0 the characteristic polynomial P(λ) of (1) has the form

P(λ) = λ�+1 + aλ,

which has one root λ = 0 and all the other � roots have modulus |a|1/�. �

Now we move our attention to another property, which can be observed from the
above figures. The bold straight lines represent the pairs (a, b) for which a real root
of modulus one occurs in (2). Thence there is a change just for 1 degree of instability
between the neighboring regions on the segments of these lines, where there is no
intersection with another curve of boundary. Similarly, on the curve segments of C
free of any intersections points with another part of region boundary a switch for
two degrees of instability is expected between the neighboring regions since two
complex conjugate roots with unit modulus are present. There is sketched a situation
for general odd and even � at Figs. 3 and 4. It can be also observed that curve C is
dislocated within two stripes of width

√
2 which long axes coincide with quadrants

symmetry axes. In another words C ∈ T , where T = {(a, b) ∈ R
2 : (−a − 1 ≤ b ≤

−a + 1) ∨ (a − 1 ≤ b ≤ a + 1)}. This observation can be formulated and proved
as follows:
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Theorem 1 Let C be curve in plane (a, b) defined by (5), (6), where ω ∈ (0,π),
� ∈ N. Then C ⊂ T , where T = {(a, b) ∈ R

2, |b| ≤ |a| + 1, |a| ≤ |b| + 1}.
Proof From (6) we get |b| = |a cos(ω) + cos((� + 1)ω)| ≤ |a cos(ω)| + | cos((� +
1)ω)| which gives |b| ≤ |a| + 1.

To show |a| ≤ |b| + 1 we consider (5) which implies |a| =
∣
∣
∣
sin((�+1)ω)

sin(ω)

∣
∣
∣ =

|b cos(ω) + cos(�ω)| ≤ |b cos(ω)| + | cos(�ω)| ≤ |b| + 1. �

Corollary 1 Let U = {(a, b) ∈ R
2, |b| > |a| + 1}. Then U ⊂ I�,�+1.
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Proof The assertion follows from Lemma2 and Theorem1 with respect to disloca-
tion of instability regions boundaries. �

Corollary 2 Let V = {(a, b) ∈ R
2, |a| > |b| + 1}. Then V ⊂ I�,�.

Proof The assertion follows from Lemma3 and Theorem1 with respect to disloca-
tion of instability regions boundaries. �

From the above assertions it follows that for instability regions up to instability
degree � − 1 it holds I�,k ⊂ T , k = 1, 2, . . . , � − 1. Naturally, the same holds for
the stability region: S� ⊂ T . A general instability degree regions portrait can be
assembled in the (a, b) plane with respect to the previous considerations.

Instability regions can be determined by their boundary, which consists of the
curve C segments and eventually segments of straight lines b = −a − 1, b = −a + 1
and b = a − 1. From the parametric Eq. (5), (6) of the curve C it follows that crossing
the curve C in the point (a, b) in the direction (a, b) (faraway from the origin of the
plane) the instability degree rises for two in the points where C does not intersect
itself. In such points the curve C has just two simple complex conjugate roots. The
fact that the conjugate pair of the roots crosses the unit disk boundary outwards
follows immediately from the parametric expression of the curve in (a, b). Indeed,
consider roots of the characteristic polynomial P(λ) on the circle with a general
radius ρ, i.e. λ = ρ exp(iω). Then using the same steps as in the case of the curve C
description we introduce curve C⊂, which is connecting pairs (a, b) where roots of
P(λ) with modulus ρ are presented. Parametric expression of C⊂ is then

a = −ρ� sin((� + 1)ω)

sin(ω)

b = ρ�+1 sin(�ω)

sin(ω)
.

where ω ∈ (0,π). Considering fixed parameters ω and � a positive perturbation of
modulus ρ in any pair (a, b) ∈ C moves this point away from the origin in a direction
of (�a, (� + 1)b) vector.

For description of instability regions we split the curve C to 2� curve seg-
ments Ci given by (5), (6) with ω ∈ Ji = [(i − 1) π

2� , i
π
2� ], i = 1, 2, . . . , 2�. Next

we denote K = (0, 1), L = (1, 0), M = (0,−1), N = (−1, 0) points in (a, b) plane
(see Fig. 1). These points are boundary points of Ci , i = 1, 2, . . . , 2� curve segments.
Notice that they are the only points where C can intersect itself. The sequence of these
points along C by increasing ω ∈ [0,π] is A, K , L , M , [: N , K , L , M :]�/2−1, B for
� even and A, [: K , L , M, N :](�−1)/2 , K , B for � odd, where subsequence between
symbols [: :]s repeats s times.

Let us consider C as a function b = f (a) in a suitable neighbourhood of points
K , L , M, N . Local analysis of this function enables us to determine which segments
Ci bound the considered instability regions. Particularly the slopes of consequential
segments Ci , Ci+1 connected in these points give the sequence of boundaries we cross
going along the axis of appropriate quadrant away from the origin. We illustrate the
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analysis in the point K . In this point there are connected neighbour segment pairs
(C4k+1, C4k+2), k = 0, 1, 2, . . . , k f , where k f = (� − 1)/2 for � odd and k f = �/2 −
1 for � even. For these segment pairs the corresponding points K representations on
C are in ω = ωk := (4k+1)π

2� , k = 0, 1, . . . , k f , respectively. From (5), (6) we get

f ′(a(ω)) = � cos(�ω) sin(ω) − sin(�ω) cos(ω)

sin((� + 1)ω) − (� + 1) cos((� + 1)ω)
. (7)

Particularly for ω = ωk we obtain the values representing the slopes of C in the point
K as f ′(a(ωk)) = − cos(ωk)/(1 + � sin2(ωk)), k = 0, 1, 2, . . . , k f . Now consid-
ering continuous function ϑ(u) = − cos(u)/(1 + � sin2(u)), u ∈ (0,π), we have
ϑ′(u) = (1 + � cos2(u) + �) sin(u)/(� cos2(u) − 1 − �)2 > 0 for u ∈ (0,π). Since
ϑ(u) is increasing in u ∈ (0,π), the studied sequence of the slopes is increasing too.
On that account moving along the axis of the first quadrant from the origin we cross
the segments C4k+2, k = 0, 1, 2, . . . , k f in sequence. We recall that each crossing
corresponds to the instability degree shift by 2. This gives (in restriction to the first
quadrant) that I�,2k+2 is bounded by C4k+2 and C4k+6, k = 0, 1, 2, . . . , k f − 1. In the
case of odd � the last segment C4k f +6 connects K with B and therefore the region
I�,�−1 is bounded by C2�, C2�−4 and straight line segment BL . On the other hand, the
increasing slope sequence in K gives in the second quadrant case conclusion that
moving along the axis of the quadrant away from the origin we cross the segments
C4k+1, k = k f , k f − 1, . . . , 2, 1, 0 in sequence. Summarizing the previous analysis
and considering analogous steps in other points L , M, N enables us to formulate the
survey of stability and instability regions given by their boundary.

Theorem 2 Consider Eq. (1), where a, b ∈ R and � is odd integer. Then the stability
region S� boundary and instability regions boundaries are given by the sets of curves

S� {C2; LM; MN ; C2�−1}
I�,1 {MN ; C4}, {LM; C2�−3}

I�,p, even
p = 2, 4, . . . , � − 3

{C2p−2; C2p+2}, {C2�−2p+3; C2�−2p−1}

I�,m , odd
m = 3, 5, . . . , � − 2

{C�−2m+6; C�−2m+2}, {C�+2m−5; C�+2m−1}

I�,�−1 {C1; C5; AN }, {C2�; C2�−4; BL}
I�,�

{b = −a − 1, a ∈ (−∞,−1]; C2�−2; b = a − 1, a ∈ (−∞, 0]}
{b = −a − 1, a ∈ [0,∞); C3; b = a − 1, a ∈ [1,∞)}

I�,�+1
{ b = −a − 1, a ∈ (−∞,−� − 1]; C1;
C2�; b = a − 1, a ∈ [� + 1,∞)}

Notice that the stability and instability regions dislocation is symmetric with respect
to the axis b for � odd.

Theorem 3 Consider Eq. (1), where a, b ∈ R and � is even integer. Then the stability
region S� boundary and instability regions boundaries are given by the sets of curves
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S� {C2; C2�−1; MN ; NK }
I�,1 {MN ; C4}, {NK ; C2�−3}

I�,p, even
p = 2, 4, . . . , � − 2

{C2p−2; C2p+2}, {C2�−2p+3; C2�−2p−1}

I�,m , odd
m = 3, 5, . . . , � − 3

{C2m−2; C2m+2}, {C2�−2m+3; C2�−2m−1}

I�,�−1 {C1; C5; AN }, {C2�; C2�−4; N B}
I�,�

{a = −|b| − 1},
{b = −a − 1, a ∈ [0,∞); C3; C2�−2; b = a + 1, a ∈ [0,∞)}

I�,�+1
{b = −a − 1, a ∈ (−∞,−� − 1]; C1; b = a + 1, a ∈ [0,∞)}
{b = −a − 1, a ∈ [0,∞); C2�; b = a + 1, a ∈ (−∞,−� − 1]}

Notice that the stability and instability regions dislocation is symmetric with respect
to the axis a for � even.

3 Final Remarks

As it was remarked in the introduction, instability degree regions are not investigated
in the literature as wide as the stability regions are, especially in the case of difference
equations. As it was shown above, the dislocation of I�,k regions obey some rules.

Notice that with respect to the structure of linear difference equations solution
there exists a periodic solution of (1) for any point [a, b] from the curve C and
from relevant straight line boundaries of instability regions, where a P(λ) root with
modulus one occurs. Deeper analysis considering this phenomena can be found in [6,
7], where a more general difference system was analyzed from the periodic solution
existence point of view.

The introduced considerations have also an impact to the theory of polynomials:
a dislocation of pairs (a, b) for which the polynomial (2) has a fixed number of
roots inside the unit disk in complex plane, is introduced. There are several kinds
of algebraic criteria to determine number of polynomial roots in specified area of
complex plane. The description of such criteria including their proofs can be found
in [8] or [10]. Most common are questions about location of all characteristic poly-
nomial roots with respect to the left half-plane and unit circle in study of stability of
differential equations and difference equations, respectively. But these criteria also
enable us to determine a number of roots inside the specified area and outside of
it. On that account we can numerically determine the instability degree of studied
equation for the given parameters. Then we can develop an instability regions por-
trait in a computational way. But the above discussion presents another approach: it
gives some rules of stability and instability regions dislocation of Eq. (1) in analytical
way using boundary locus technique and supplementary considerations. The author
believes that research of instability regions dislocation properties can be interesting
and fruitful also in another cases of difference equations.
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