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Abstract The main purpose of this paper is to show how a transformation of
independent variable in dynamic equations combined with suitable statements on
a general time scale can yield new results or new proofs to known results. It seems
that this approach has not been extensively used in the literature devoted to dynamic
equations. We present, in particular, two types of applications. In the first one, an
original dynamic equation is transformed into a simpler equation. In the second one,
a dynamic equation in a somehow critical setting is transformed into a noncritical
case. These ideas will be demonstrated on problems from oscillation theory and
asymptotic theory of second order linear and nonlinear dynamic equations.
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1 Introduction

It is well known that the chain rule in the “pure” form ( f ◦ g)Δ(t) = f ′(g(t))gΔ(t)
does not hold on a general time scale T, even if the derivative f ′ and the delta deriva-
tive gΔ exist, see, e.g., [3]. This is the reason why the transformation of independent
variable, a useful tool in the theory of differential equations, is not fully at our disposal
for dynamic equations.Naturally, the problems can occur alsowith using the substitu-
tion method in delta integrals. There exist variants of chain rule on time scales, such

as ( f ◦ g)Δ(t) =
[∫ 1

0 f ′(g(t) + hμ(t)gΔ(t)) dh
]
gΔ(t) [5, Theorem 1.90] involv-

ing the classical, say Riemann, integral, or ( f ◦ g)Δ(t) = f ′(g(ξ))gΔ(t) [5, Theo-
rem 1.87] with an unspecified value ξ coming from the Lagrange mean value the-
orem; they are however unsuitable for the use in many situations. Another ver-
sion of the chain rule, ( f ◦ g)Δ = ( f Δ̃ ◦ g)gΔ [5, Theorem 1.93], involves two
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generally different time scales T, T̃, which are related through the inner function
g by T̃ = g(T). The problem with applications of the last variant, when being inter-
ested in the transformation of independent variable, is that a dynamic equation on
a time scale is transformed into a dynamic equation on a different time scale. On
the other hand, if we take into account that nowadays a lot of results for dynamic
equations hold on a general time scale, we can successfully use this approach, for
instance, in the below described way.

As it is well known, transformations of independent and dependent variables in
differential equations are useful, among others, when it is possible to transform a
given differential equation into a differential equation which is in some way simpler.
In this paper, we deal with dynamic equations and use some existing results that are
valid on a general time scale to obtain new results or new proofs of known statements.
We consider, in particular, two types of applications. In one we transform certain
second order dynamic equations with a general coefficient at the leading term into
dynamic equations of a similar type, on a different time scale, but with the leading
coefficient equaling to one. In the other type of application we transform a dynamic
equation under somehow critical setting (this will be specified later) into a dynamic
equation on a different time scale under certain non-critical setting which can be
handled by existing results.

Some analysis of basic aspects related to transformations of difference and
dynamic equations that are close to our topic has already occurred in the litera-
ture. Transformations in linear Hamiltonian systems on time scales are treated in [3],
Sturm–Liouville expressions on Sturmian time scales (the time scales that contain
only isolated or l-d/r-d points) are, from this point of view, studied in [4], and the
transformations for even order difference operators are considered in [25]. On the
other hand, it seems that the ideas from our paper, although being practically known
in the differential equations case, have not been extensively applied in dynamic
equations in the literature, in spite of availability of various results on a general time
scale.

For an outline of the first mentioned type of applications, let us give one prob-
lem from oscillation theory. Let us say we have oscillation criteria (for definite-
ness, the so-called Hille–Nehari criteria, see Sect. 2) for the difference equation
Δ2yk + pk yk+1 = 0 at disposal, and we are interested in criteria for the more general
equationΔ(rkΔyk) + pk yk+1 = 0. It is problematic, in contrast to the corresponding
differential equations case, to transform the latter form of the equation into the former
one. Thus one would say that we have to analyse the difference equation directly in
the more general form. However, there is also other possibility which is character-
istic for what we do in this paper. If we know the criteria for the dynamic equation
of the form yΔΔ + p(t)yσ = 0 on a general time scale, then a suitable transforma-
tion of independent variable (which preserves oscillation properties) in the equation
Δ(rkΔyk) + pk yk+1 = 0 can transform it into the former dynamic equation, which
is then examined by existing results. Note that historically, the Hille–Nehari type
criteria for the former, and simpler, difference equation were obtained as first, see,
e.g., [7, 10]. It is worthy of mention also the following interesting fact related to this
discrete oscillation problem. The Hille–Nehari type criteria for the simpler equation
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Δ2yk + pk yk+1 = 0 involves the well known critical constant 1/4. But passing to
the more general case, to the criteria for the equation Δ(rkΔyk) + pk yk+1 = 0, we
find out that the critical constant can have a value different from 1/4, in contrast to
the differential equations case, and depends on the coefficient r . In fact, as we will
see later, for dynamic equations we reveal also its dependence on the graininess of
time scale.

To outline the second type of applications, we consider the difference equation
Δ(rkΔyk) = pk yk+1,where r, p > 0. It is known [18] that under the condition (which
in fact can be weakened) limk→∞ kΔpk/pk = δ we are able to establish quite precise
asymptotic formulae via the discrete theory of regular variation provided δ �= −1.
The critical case δ = −1 leads to a somehowdelicate setting; it turns out that a suitable
transformation of independent variable can help here, and brings us to dynamic
equations which are in a non-critical setting in the above sense.

The paper is organized as follows. In the next section we deal with the so-called
Hille–Nehari criteria for half-linear dynamic equations; we give a new proof to
existing results.New results are obtained inSect. 3wherewederive oscillation criteria
for nonlinear dynamic equations. In Sect. 4 we study two variants of Euler type
equations for which we establish the values of their oscillation constant. In addition
to transformation of independent variable, a transformation of dependent variable
plays a role, too. In the last section, we present also a new result.We do an asymptotic
analysis of linear dynamic equations and establish asymptotic formulae for solutions
in a critical case which is missing in the existing literature.

Let, as usually, T denote a time scale, which is assumed to be unbounded
from above in our paper. We use the standard time scale notation, see [5, 6].
In particular, the symbols σ, μ, f σ, f Δ,

∫ b
a f (s)Δs, [a, b]T, and Crd stand for

forward jump operator, graininess, f ◦ σ, delta derivative, delta integral, a time
scale interval, and the class of rd-continuous functions, respectively. The sym-
bols σ̃, μ̃, f Δ̃,

∫ b
a f (s) Δ̃s have an analogous meaning, with being associated to

a time scale T̃. For functions defined on T we denote: f (t) ∼ g(t) as t → ∞ if
limt→∞ f (t)/g(t) = 1; f (t) = o(g(t)) as t → ∞ if limt→∞ f (t)/g(t) = 0; f (t) =
O(g(t)) as t → ∞ if ∃c ∈ (0,∞) such that | f (t)| ≤ c|g(t)| for large t ∈ T.

2 Oscillation of Half-Linear Dynamic Equations

We start with a simple observation concerning Hille–Nehari type oscillation criteria
for half-linear dynamic equations. For information about these and other criteria for
linear and half-linear differential and difference equations see [1, 2, 8, 24]. The
result presented in the next theorem is actually known, see [16]. However, as already
indicated, our aim is to demonstrate how the ideas based on a transformation can serve
to establish a new proof where the result for the original equation will be obtained
from the result for a simpler equation. A similar approach can be used whenever



338 P. Řehák

criteria for half-linear dynamic equations (including functional ones) or some other
types of second order equations with the leading coefficient 1 are at disposal.

Consider the half-linear dynamic equation

(r(t)Φ(yΔ))Δ + p(t)Φ(yσ) = 0, (1)

where Φ(u) = |u|α−1sgnu with α > 1, and assume p ∈ Crd([a,∞)T,R), 1/r ∈
Crd([a,∞)T, (0,∞)),

∫ ∞
a r1−β(s)Δs = ∞, 1/α + 1/β = 1, and

∫ ∞
t p(s)Δs exists,

is nonnegative and eventually nontrivial for large t . Thanks to the Sturm type separa-
tion result, one (nontrivial) solution of (1) is oscillatory (i.e., it is neither eventually
positive nor eventually negative) if and only if all solutions are oscillatory. Hence, we
can classify Eq. (1) as oscillatory (all its solutions are oscillatory) or nonoscillatory
(all its solutions are nonoscillatory).

Note that the constants which appear on the right-hand sides of the criteria in
Theorem 1 depend on the graininess of time scale and the coefficient r . Denote

Rα(t) =
∫ t

a
r1−β(s)Δs, M∗ = lim inf

t→∞
μ(t)r1−β(t)

Rα(t)
, M∗ = lim sup

t→∞
μ(t)r1−β(t)

Rα(t)
,

and

γα(x) = lim
t→x

(
(t + 1)

α−1
α − 1

t

)α−1 (
1 − 1 − (t + 1)−

(α−1)2

α

1 − (t + 1)1−α

)
.

Examples of particular settings are presented in Remark 1 and Sect. 4. The form of
the constant γα(x) is related to the roots of a certain algebraic equation which is
associated to a generalized Riccati type dynamic equation [16]; here the generalized
Riccati dynamic equation is the first order nonlinear equation arising from (1) through
the substitution w = rΦ(yΔ/y) [1, 13, 16].

Theorem 1 If

lim inf
t→∞ Rα−1

α (t)
∫ ∞

t
p(s)Δs > γα(M∗), (2)

then (1) is oscillatory. If

lim sup
t→∞

Rα−1
α (t)

∫ ∞

t
p(s)Δs < γα(M∗), (3)

then (1) is nonoscillatory.

Proof Let y be a solution of (1). Set u(s) = y(t), s = τ (t), where τ : T → R, being
more precisely defined later, is strictly increasing. Denote T̃ = {τ (t) : t ∈ T}. Here
we assume that the delta derivatives which are involved in our computations exist;
later we will see that it indeed holds under our particular setting. Moreover, our τ
will always be at least in C1

rd (so, in particular, will be continuous) and our T̃ will
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be (an unbounded) time scale. In view of the chain rule [5, Theorem 1.93], we have
yΔ = (uΔ̃ ◦ τ )τΔ. Using the chain rule again,

(rΦ(yΔ))Δ =
(
rΦ(τΔ)Φ(uΔ̃ ◦ τ )

)Δ =
[
[(rΦ(τΔ)) ◦ τ−1 ◦ τ ] Φ(uΔ̃ ◦ τ )

]Δ

=
[
[(rΦ(τΔ)) ◦ τ−1]Φ(uΔ̃)

]Δ̃ ◦ τ τΔ.

(4)

Thanks to the properties of τ , we have τ ◦ σ = σ̃ ◦ τ , and so (u ◦ τ )σ = uσ̃ ◦ τ .
Therefore, in view of (4), u satisfies the equation

(
r̃(s)Φ(uΔ̃)

)Δ̃ + p̃(s)Φ(uσ̃) = 0 (5)

on T̃, where

r̃ = (rΦ(τΔ)) ◦ τ−1 and p̃ = p

τΔ
◦ τ−1.

Now we set τ = Rα. Then T̃ = τ (T) is an unbounded time scale and, in partic-
ular, the interval [a,∞)T is transformed into the interval of the form [̃a,∞)

T̃
.

Further, τΔ = r1−β , thus r̃ = (rr (α−1)(1−β)) ◦ τ−1 = (r/r) ◦ τ−1 = 1. From [16]
we know that (5) is oscillatory provided lim infs→∞ sα−1

∫ ∞
s p̃(η) Δ̃η > γα(M̃∗)

and nonoscillatory provided lim sups→∞ sα−1
∫ ∞
s p̃(η) Δ̃η < γα(M̃∗), where M̃∗ =

lim infs→∞ μ̃(s)/s, M̃∗ = lim sups→∞ μ̃(s)/s, and the integral
∫ ∞
s p̃(η) Δ̃η is non-

negative and eventually nontrivial for large s. We have

μ̃(s)

s
= σ̃(s) − s

s
= (̃σ ◦ Rα)(t) − Rα(t)

Rα(t)

= Rσ
α(t) − Rα(t)

Rα(t)
= μ(t)RΔ

α (t)

Rα(t)
= μ(t)r1−β(t)

Rα(t)
,

and so M̃∗ = M∗ and M̃∗ = M∗. Further, applying the substitution method in delta
integrals [5, Theorem 1.98], see also [6, Theorem 5.40], we obtain

sα−1
∫ S

s
p̃(η) Δ̃η = Rα−1

α (t)
∫ Rα(T )

Rα(t)

( p

RΔ
◦ R−1

)
(η) Δ̃η

= Rα−1
α (t)

∫ T

t

p(ξ)

RΔ(ξ)
RΔ(ξ)Δξ = Rα−1

α (t)
∫ T

t
p(ξ)Δξ,

where S = Rα(T ), T ∈ [t,∞)T. Letting T to ∞, we get

sα−1
∫ ∞

s
p̃(η) Δ̃η = Rα−1

α (t)
∫ ∞

t
p(ξ)Δξ.
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Since our transformation preserves (non)oscillation of the equation, the statement is
now clear. �

Remark 1 (i) Let M := M∗ = M∗. Then the constants on the right-hand sides of (2)
and (3) are the same and we have

γα(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
α

(
α−1
α

)α−1
if M = 0,(

(M+1)
α−1
α −1

M

)α−1
(
1 − 1−(M+1)−

(α−1)2
α

1−(M+1)1−α

)
if 0 < M < ∞,

0 if M = ∞.

For example, if μ(t) = 0 or r(t) = 1 with μ(t) = o(t) as t → ∞, then M∗ = M∗ =
0. If μ(t) = (q − 1)t , q > 1, (as in q-calculus), then M∗ = M∗ = q − 1 > 0. In the
case corresponding to linear equations we have

γ2(M) =

⎧
⎪⎨
⎪⎩

1
4 if M = 0,

1
(
√
M+1+1)2

if 0 < M < ∞,

0 if M = ∞.

In particular, γ2(0) = 1/4, which is the well known constant from oscillation theory
of linear DEs, ee e.g. [24]. See also [7, 10] for the linear discrete case where r(t) = 1.
We again emphasize that if r(t) �≡ 1, then even in the difference equation case, the
value 1/4 does not need to be maintained; taking, e.g., r(t) = 2−t , we get M = 2,
and so γ2(M) = (

√
2 + 1)−2. Further, the constant γ2(M) can differ from 1/4 also

when r(t) = 1. For instance, if T = qN0 := {qk : k ∈ N0}, q > 1, then M = q − 1,
and so γ2(M) = (

√
q + 1)−2.

(ii) In view of the previous remark, as very special cases of Theorem 1, we get the
following criteria. Let

∫ ∞
t p(s)Δs ≥ 0 for large t . Assuming T = R,α = 2, r(t) =

1, if lim inf t→∞ t
∫ ∞
t p(s) ds > 1/4 (lim supt→∞ t

∫ ∞
t p(s) ds < 1/4), then y′′ +

p(t)y = 0 is oscillatory (nonoscillatory), cf. [24]. Assuming T = Z,α = 2, r(t) =
1, if lim inf t→∞ t

∑∞
j=t p( j) > 1/4 (lim supt→∞ t

∑∞
j=t p( j) < 1/4), then Δ2

y(t) + p(t)y(t + 1) = 0 is oscillatory (nonoscillatory), cf. [7, 10].
(iii) In the previous proof we used the criteria from [16]. The proof of those

results is based on the function sequence technique combined with Riccati type
transformation. Note that another possibility how to prove those criteria could be,
for example, to combine the information about the oscillation constant of a certain
Euler type half-linear dynamic equation (providedwehave it at disposal)with integral
comparison theorem, see [14, Theorem 11] and [16, Sect. 7].

(iv) Looking at the conditions posed on the coefficients of (1) in Theorem 1, a
natural problem arises out, namely to obtain analogous criteria when the integral∫ ∞
a r1−β(s)Δs converges. The trouble in this case is that the same transformation
as in the previous proof transforms the range of definition into a bounded set. We
do not aim to treat this problem in our paper. Note only that in the linear case,
we can use the transformation of dependent variable y = hu, h(t) = ∫ ∞

t 1/r(s)Δs
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(similarly as below in Sect. 4), where the original equation is transformed into an
equation of the same type, but with the divergent integral of the reciprocal of its
leading term. This approach is not at our disposal in the half-linear case, since it
requires the linearity of solution space. However, we can think—and we believe
it could work—about replacement for half-linear equations in the sense that the
corresponding transformation is made in terms of the associated generalized Riccati
equations; the nonlinear term in the Riccati equation associated to the original half-
linear equation is somehow quadrated in asymptotic sense. For some applications
of this idea in the differential equations case see e.g. [9, 19]. Other possibility is
to utilize the so-called reciprocity principle (see e.g. [1]); the original equation is
transformed via the relation u = rΦ(yΔ) into an equation of the same type, where the
new equation satisfies the assumption of the divergence of the integral containing the
leading term. This approach however requires to overcome some technical problems
since the delta derivative and the jump operator do not commute on a general time
scale; a possibility is to consider the transformed equation in an integral form or to
work with systems of two first order equations. Finally note that Hille–Nehari type
criteria under the condition

∫ ∞
a r1−β(s)Δs < ∞ are directly in this setting proved in

[17] via the function sequence technique involving aweightedRiccati transformation.
For further information related to oscillation and other qualitative properties of half-
linear equations see [8] (differential equations case), [2, 12] (difference equations
case), and [1, 13] (dynamic equations case).

3 Oscillation of Nonlinear Dynamic Equations

Here we prove sharp criteria, which generalize existing ones (see Remark 2), for
nonlinear dynamic equations of the form

(r(t)yΔ)Δ + p(t) f (y) = 0, (6)

where p ∈ Crd([a,∞)T,R) 1/r ∈ Crd([a,∞)T, (0,∞)),
∫ ∞
a 1/r(s)Δs = ∞, and

f is a continuous function on R satisfying x f (x) > 0 for x �= 0. Denote R(t) =∫ t
a 1/r(s)Δs.

Theorem 2 (a) If there exists λ ∈ R with λ > 1/4 such that

R(t)Rσ(t)r(t)p(t)
f (x)

x
≥ λ (7)

for t ∈ [a,∞)T large and |x | large, then all nontrivial solutions of (6) are oscillatory.
(b) If

R(t)Rσ(t)r(t)p(t)
f (x)

x
≤ 1

4
(8)
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for t ∈ [a,∞)T large and x > 0 or x < 0with |x | large, then (6) has a nonoscillatory
solution.

Proof (a) Let y be a solution of (6). Set u(s) = y(t), s = R(t). Then, using the
arguments similar to those in the proof of Theorem 1, we get that u satisfies the
equation

uΔ̃Δ̃ + p̃(s) f (u) = 0 (9)

on the time scale T̃ = {R(t) : t ∈ T}, where p̃ = (p/RΔ) ◦ R−1 = (pr) ◦ R−1. The
coefficient in the leading term of (9) is equal to 1 since r RΔ = r/r = 1. The result
now follows from the transformation relations and [22, Theorem 5.1] applied to
Eq. (9); that theorem says that all nontrivial solutions of (9) are oscillatory provided
there is λ > 1/4 such that sσ̃(s) p̃(s) f (x)/x ≥ λ for large s ∈ T̃ and |x |.

(b) The proof is similar to that of part (a); here we apply [22, Theorem 5.2] to
transformed equation (9). �
Remark 2 (i) If r(t) = 1 and p(t) = 1/(r(t)R(t)Rσ(t)) with a = 0, i.e., p(t) =
1/(tσ(t)), then Theorem 2-(a) reduces to [22, Theorem 1.1] and Theorem 2-(b)
reduces to [22, Theorem1.2]. If p = 1/(r RRσ), then the left-hand sides of (7) and (8)
read as f (x)/x and depend only on f . If p = 1/(r R2), then (6) can be seen as a “more
natural time scale discretization” (when comparedwith the setting p = 1/(r RRσ)) of
the differential equation (r(t)y′)′ + f (y)/(r(t)R2(t)) = 0 onT = R. Conditions (7)
and (8) read as f (x)/x ≥ λR(t)/Rσ(t) and f (x)/x ≤ R(t)/(4Rσ(t)), respectively,
and we see how a larger graininess is “more favorable” to oscillation in this case.

(ii) For more information on the criteria of the type presented in Theorem 2 see
[23] (in differential equations case) and [26] (in difference equations case). See also
the last paragraph of the next section.

4 Oscillation Constants for Euler Type Linear Dynamic
Equations and Their Perturbations

In this section we establish the so-called oscillation constant for two variants of Euler
type dynamic equation. By oscillation constant of the equation yΔΔ + p(t;λ)yσ = 0
wemean the number λ0 such that the equation is oscillatory for λ > λ0 and nonoscil-
latory for λ < λ0. For other equations we define this concept similarly. As indicated
in several points in this paper, Euler type equations (or their perturbations) are impor-
tant for comparison purposes, see also e.g. [2, 8, 16, 22–24, 26]. By (non)oscillation
of the equation we mean (non)oscillation of all its nontrivial solutions.

It is worthy of note that while in Theorem 3, the oscillation constant has the fixed
value 1/4, the oscillation constant for the equation considered in Theorem 4 depends
on the coefficient r and the graininess of a time scale.

Consider first the equation

(r(t)yΔ)Δ + λp(t)y = 0, (10)
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where 1/r ∈ Crd([a,∞)T, (0,∞)) and p(t) will be specified in Theorem 3. An
interesting fact is that for both equations considered in Theorem 3 we can write their
general solutions, see Remark 3. The Sturmian theory (in particular, the separation
result) does not hold in general for equations of the form (10), in contrast to equations
of the form (11). Thismeans thatwe have not guaranteed the implication: one solution
is (non)oscillatory implies all solutions are (non)oscillatory. In spite of this fact, under
our special setting, we state the “true” oscillation constant which is defined as above,
i.e., via (non)oscillation of equation.

The next result is new, it is an improvement of [22, Proposition 2.3]. Actually,
Theorem3-(a) can be obtained as an immediate consequence of Theorem2.However,
we offer an alternative way of the proof—it is based on a suitable transformation.

Theorem 3 (a) Let
∫ ∞
a 1/r(s)Δs = ∞. Then Eq. (10) with

p(t) = 1

r(t)R(t)Rσ(t)
, R(t) =

∫ t

a

1

r(s)
Δs,

has the oscillation constant λ = 1/4.
(b) Let

∫ ∞
a 1/r(s)Δs < ∞. Then Eq. (10) with

1

p(t)
= r(t)Rc(t)R

σ
c (t)

(
1 − Rc(t)

Rc(a)

) (
1 − Rσ

c (t)

Rc(a)

)
, Rc(t) =

∫ ∞

t

1

r(s)
Δs,

has the oscillation constant λ = 1/4.

Proof (a) Let y be a solution of (10). Set u(s) = y(t) and s = R(t). Then, simi-
larly as in the proof of Theorem 1, we get that u satisfies the equation (̃r(s)uΔ̃)Δ̃ +
λ p̃(s)u = 0 on the time scale T̃ = {R(t) : t ∈ T}, where r̃(s) = (r RΔ) ◦ R−1(s) =
1 and p̃(s) = (p/RΔ) ◦ R−1(s) = (1/(RRσ)) ◦ R−1(s) = 1/(sσ̃(s)), i.e., the equa-
tion uΔ̃Δ̃ + (λ/(sσ̃(s)))u = 0. Applying [22, Proposition 2.3] and the ideas of its
proof, we obtain that the oscillation constant of the latter equation is λ = 1/4. From
the transformation relations it is clear that λ = 1/4 is the oscillation constant also
for original Eq. (10).

(b) First we introduce the dynamic operatorsL[y] = (r yΔ)Δ + py (note that here
r and p can be general) and L̂[y] = (̂r yΔ)Δ + p̂y, where r̂ = rhhσ and p̂ = phhσ. It
can be shown that if h = Rc, but also if h = R, then hσL[hz] = L̂[z] for a sufficiently
smooth z. Consequently, if y is a solution of (10) and we set y = hz, where h = Rc,
then z satisfies the equation (̂r(t)zΔ)Δ + p̂(t)z = 0, where r̂ = r RcRσ

c and

p̂(t) = λ

r(t)(1 − Rc(t)/Rc(a))(1 − Rσ
c (t)/Rc(a))

.

We have

∫ t

a

1

r̂(s)
Δs =

∫ t

a

(
1

Rc(s)

)Δ

Δs = 1

Rc(t)
− 1

Rc(a)
→ ∞
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as t → ∞. Denote R̂(t) = ∫ t
a 1/̂r(s)Δs. Then

λ

r̂(t)R̂(t)R̂σ(t)
= λ

r(t)Rc(t)Rσ
c (t)(1/Rc(t) − 1/Rc(a))(1/Rσ

c (t) − 1/Rc(a))

= λ

r(t)(1 − Rc(t)/Rc(a))(1 − Rσ
c (t)/Rc(a))

= p̂(t).

Now we can apply part (a) to the equation (̂r(t)zΔ)Δ + p̂(t)z = 0 to obtain that its
oscillation constant is λ = 1/4 and, in view of the transformation relations, it is also
the oscillation constant of (10). �

Remark 3 (i) Note that for the coefficient p(t) in part (b) of the previous theorem
we have p(t) ∼ 1/(r(t)Rc(t)Rσ

c (t)) as t → ∞. This means that for typical (namely
asymptotic) comparison purposes involving (10) the coefficient p(t) in the setting
of (b) can be replaced by 1/(r(t)Rc(t)Rσ

c (t)).
(ii) It is worthy of note that for the equations considered in Theorem 3 (in contrast

for those in Theorem 4), we can establish the exact form of a general solution. We
omit details. Let us note just that the arguments for such a statement are based on
the transformation of independent variable in case (a) and the transformation of
independent and dependent variable in case (b) and the knowledge (see [11]) of the
general solution for the equation uΔ̃Δ̃ + (λ/(sσ̃(s)))u = 0.

In the next theoremwe consider a different variant of Euler type equation, namely

(r(t)yΔ)Δ + λp(t)yσ = 0, (11)

where 1/r ∈ Crd([a,∞)T, (0,∞)) and p(t) will be specified in Theorem 4. As we
will see, the difference between (10) and (11) is only seemingly slight—notice how
the form of the oscillation constant is affected. The next result is known, but here we
offer an alternative approach to its proof.

Theorem 4 (a) Let
∫ ∞
a 1/r(s)Δs = ∞ and the limit

lim
t→∞

μ(t)

r(t)
∫ t
a 1/r(s)Δs

=: M ∈ [0,∞) ∪ {∞}

exist. Then equation (11) with

p(t) = 1

r(t)R(t)Rσ(t)
, R(t) =

∫ t

a

1

r(s)
Δs,

has the oscillation constant λ = (
√
M + 1 + 1)−2 provided M < ∞. If M = ∞,

then this equation is oscillatory for all λ > 0 (thus it is strongly oscillatory) and
nonoscillatory otherwise.
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(b) Let
∫ ∞
a 1/r(s)Δs < ∞ and the limit

lim
t→∞

μ(t)

r(t)
∫ ∞
σ(t) 1/r(s)Δs

=: N ∈ [0,∞) ∪ {∞}

exist. Then Eq. (11) with

p(t) = 1

r(t)(Rσ
c (t))2

, Rc(t) =
∫ ∞

t

1

r(s)
Δs,

has the oscillation constant λ = (
√
N + 1 + 1)−2 provided N < ∞. If N = ∞,

then this equation is oscillatory for all λ > 0 (thus it is strongly oscillatory) and
nonoscillatory otherwise.

Proof (a) Let y be a solution of (11). Set u(s) = y(t) and s = R(t). Then by the
arguments similar to those in the proof of Theorem 1, u can be shown to satisfy
the equation uΔ̃Δ̃ + (λ/(sσ̃(s)))uσ̃ = 0 on the time scale T̃ = {R(t) : t ∈ T}. From
[15]we know that the oscillation constant for this equation isλ = (

√
M0 + 1 + 1)−2,

where M0 := lims→∞ μ̃(s)/s ∈ [0,∞). Since (assuming here that M < ∞)

μ̃(s)

s
= σ̃(s) − s

s
= Rσ(t) − R(t)

R(t)
= μ(t)RΔ(t)

R(t)
= μ(t)

r(t)R(t)
.

the (finite) limit M0 indeed exists and we have

M0 = lim
s→∞

μ̃(s)

s
= lim

t→∞
μ(t)

r(t)R(t)
= M.

Thus the oscillation constant for the original Eq. (11) isλ = (
√
M + 1 + 1)−2. Oscil-

lation of (11) for all λ > 0 when M = ∞ follows from strong oscillation (see [15])
of the equation uΔ̃Δ̃ + (λ/(sσ̃(s)))uσ̃ = 0 when M0 = ∞. Alternatively, the result
can be proved by a direct application of Theorem 1.

(b) The statement can be proved via transforming the equation under consid-
eration into an equation satisfying the setting of (a) in the following sense. If we
denote Ls[y] = (r yΔ)Δ + pyσ and L̂s[y] = (̂r yΔ)Δ + p̂yσ , where r̂ = rhhσ and
p̂ = hσLs[h], then hσLs[hz] = L̂s[z]. Therefore, being y a solution ofLs[y] = 0 and
setting y = hz, h �= 0,we get that z is a solution of L̂s[z] = 0. Since

∫ ∞
a 1/̂r(s)Δs =

∞ when h = Rc, we find ourselves in the setting of (a). The details are left to the
reader. �

Remark 4 We emphasize that the fact whether we consider or not the jump opera-
tors in the coefficient λ/(tσ(t)) of the equations which appear in the proofs (or in
their generalized versions presented in the theorems) plays an important role. Let us
demonstrate it on the time scale T = qN0 := {qk : k ∈ N0}, q > 1, for the equation
yΔΔ + λ

tσ(t) y
σ = 0 and its variants. Since M = limt→∞ μ(t)/t = q − 1, the oscil-
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lation constant for this equation is λ = 1
(
√
q+1)2 and it (linearly) decreases to zero as

q → ∞. The oscillation constant for the q-difference equation yΔΔ + λ
(σ(t))2 y

σ = 0
is λ = q

(
√
q+1)2 and it increases to 1 as q → ∞. Finally, the oscillation constant

for the q-difference equation yΔΔ + λ
t2 y

σ = 0 is λ = 1
q(

√
q+1)2 and it (quadratically)

decreases to 0 as q → ∞. In all these cases the oscillation constant tends to 1
4 as

q → 1+.

Perturbed Euler type equations In view of the previous considerations a natural
problem arises out: to consider an Euler type equation where the parameter in the
coefficient reaches its critical value and to study how perturbations of this term affect
oscillatory properties of the equation; note that there can be revealed the relation of
this critical setting with the double root case of the associated algebraic equation
in some instances. Let us recall that a suitable combination of transformations of
dependent and independent variable, precisely, s = ln t and u(s) = t−1/2y(t), can
transform the perturbed Euler differential equation (the so-called Riemann–Weber
equation)

y′′ + 1

t2

(
1

4
+ λ

ln2 t

)
y = 0

into the equation
d2u

ds2
+ λ

s2
u = 0.

This trick can be applied repeatedly, thus equations such as

y′′ + 1

t2

(
1

4
+ 1

4

n−1∑
k=1

1

Ln2k t
+ λ

Ln2nt

)
y = 0,

where Lnk t = ∏k
j=1 ln j t and ln j+1 t = ln(ln j t), can be treated. We believe that

utilizing suitable transformations of dependent and independent variable in combi-
nation with existing theory on time scales, will enable us to examine, for example,
the equation

yΔΔ + 1

tσ(t)

(
ω0 + λ

�(t)�σ(t)

)
yσ = 0 (12)

or equations of similar forms, where ω0 is the oscillation constant of the equation
yΔΔ + (ω/tσ(t))yσ = 0 and � is a function which is somehow related to a logarith-
mic function. For instance, we conjecture that under the assumption μ(t) = o(t),
the substitutions y(t) = (u(t)/2)

∫ t
a s

−1/2 Δs, z(s) = u(t), s = �(t) = ∫ t
a (1/s)Δs

transforms (12) with ω0 = 1/4 into the equation

(
(1 + o(1))zΔ̃

)Δ̃ + (1 + o(1))
λ

sσ̃(s)
zσ̃ = 0
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on the time scale T̃ = �(T), and this equation can be further transformed introducing
new independent variable η (similarly as in the proof of Theorem 1) into the equation

wΔΔ + (1 + o(1))
λ

ησ(η)
wσ = 0

on a certain (unbounded) time scale T. Having at disposal information about per-
turbed Euler type dynamic equations, we can apply them, in combination with some
comparison principle, to obtain (non)oscillation criteria for related linear or nonlin-
ear dynamic equations, see, e.g. [1, 2, 14, 16, 22]. Note that there are also other
equations, which can be understood as a perturbation of the equation under a certain
critical setting, for example,

(t yΔ)Δ + L(t)

t
yσ = 0, (13)

where L varies slowly in some way (see Remark 5); likewise this setting corresponds
somehow with the above mentioned critical double root case. The applications are
expected not only in oscillation theory, but also in asymptotic theory. Indeed, the
setting which is considered in below given Theorem 5 (see also Remark 5-(ii), (vi)),
where we deal with asymptotic formulae, includes Eq. (13) as a special case.

5 Asymptotic Formulae

Consider the equation
(r(t)yΔ)Δ = p(t)yσ, (14)

where p, 1/r ∈ Crd([a,∞)T, (0,∞)). This equation is nonoscillatory (see e.g. [1])
and any its nontrivial solution is eventuallymonotone (see [21]). Thus the set of even-
tually positive solutions of (14) consists of eventually positive decreasing solutions
and eventually positive increasing solutions. Both these classes are nonempty [21].
Next we prove a new result which can cover the missing case in [21, Theorem 4],
see also Remark 5-(ii) below.

Theorem 5 Let τ (t) = ∫ t
a 1/s Δs and Ψ (t) = tτ (t)p(t)/r(t). Assume that μ(t) =

o(tτ (t)) as t → ∞,

∃q ∈ C1
rd such that q(t) ∼ tp(t),

qΔ(t)

q(t)
tτ (t) → γ as t → ∞, (15)

and

lim
t→∞(tτ (t))2

p(t)

r(t)
= 0. (16)
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(a) Let
∫ ∞
a 1/r(s)Δs = ∞ and γ < −1. Then any eventually positive decreasing

solution y of (14) satisfies tτ (t)yΔ(t)/y(t) → 0, r(t)yΔ(t) → 0 as t → ∞, and
one has:

(a1) If
∫ ∞
a Ψ (s)Δs = ∞, then

y(t) = exp

{∫ t

a
(1 + o(1))

Ψ (s)

γ + 1
Δs

}
(17)

and y(t) → 0 as t → ∞.
(a2) If

∫ ∞
a Ψ (s)Δs < ∞, then

y(t) = �y exp

{
−

∫ ∞

t
(1 + o(1))

Ψ (s)

γ + 1
Δs

}
(18)

and y(t) → �y ∈ (0,∞) as t → ∞.

(b) Let
∫ ∞
a 1/r(s)Δs < ∞ and γ > −1. Then any eventually positive increasing

solution y of (14) satisfies tτ (t)yΔ(t)/y(t) → 0, r(t)yΔ(t) → ∞ as t → ∞, and
one has:

(b1) If
∫ ∞
a Ψ (s)Δs = ∞, then (17) holds and y(t) → ∞ as t → ∞.

(b2) If
∫ ∞
a Ψ (s)Δs = ∞, then (18) holds and y(t) → �y ∈ (0,∞) as t → ∞.

Proof Let y be a solution of (14). Set u(s) = y(t), s = τ (t), where τ can be, at this
moment, a general strictly increasing function in C1

rd(T) with T̃ = τ (T) unbounded
from above. Then, similarly as in the proof of Theorem 1, u satisfies the equation

(̃r(s)uΔ̃)Δ̃ = p̃(s)uσ̃, (19)

where r̃ = (rτΔ) ◦ τ−1 and p̃ = (p/τΔ) ◦ τ−1. Applying the substitution method in
delta integrals [5, Theorem 1.98], we have, with S = τ (T ) and ã = τ (a),

∫ S

ã

1

r̃(s)
Δ̃s =

∫ τ (T )

τ (a)

(
1

rτΔ
◦ τ−1

)
(s) Δ̃s =

∫ T

a

τΔ(t)

r(t)τΔ(t)
Δt =

∫ T

a

1

r(t)
Δt.

Hence, in particular,
∫ ∞
ã 1/̃r(s) Δ̃s converges if and only if

∫ ∞
a 1/r(s)Δs converges.

Further, with s = τ (t), using the chain rule [5, Theorem 1.93] and the formula for
delta derivative of the inverse [5, Theorem 1.97], we obtain

s(q ◦ τ−1)Δ̃(s)

(q ◦ τ−1)(s)
= s(qΔ ◦ τ−1)(s)(τ−1)Δ̃(s)

(q ◦ τ−1)(s)

= s(qΔ ◦ τ−1)(s)

(q ◦ τ−1)(s)(τΔ ◦ τ−1)(s)
= τ (t)qΔ(t)

τΔ(t)q(t)
.

(20)
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Set τ (t) = ∫ t
a 1/s Δs. Then limt→∞ τ (t) = ∞ by [22, Lemma 2.1] and τΔ(t) = 1/t .

Hence, in view of (15) and (20),

s(q ◦ τ−1)Δ̃(s)

(q ◦ τ−1)(s)
= tτ (t)

qΔ(t)

q(t)
→ γ (21)

as t → ∞ (i.e., as s → ∞). By (15), we also have

p̃(s) =
( p

τΔ
◦ τ−1

)
(s) = τ−1(s)p(τ−1(s)) ∼ (q ◦ τ−1)(s) (22)

as s → ∞. Relations (21) and (22) mean that

p̃ ∈ RV
T̃
(γ), (23)

where RV
T̃
(γ) denotes the class of regularly varying functions of index γ on the

time scale T̃, see, e.g., [21] and also Remark 5-(i). Further,

s2 p̃(s)

r̃(s)
= s2

( p

τΔrτΔ

)
◦ τ−1(s) =

(
τ (t)

τΔ(t)

)2 p(t)

r(t)
= (tτ (t))2

p(t)

r(t)
.

Hence, in view of (16),

lim
s→∞

s2 p̃(s)

r̃(s)
= 0. (24)

Finally,

μ̃(s)

s
= σ̃(s) − s

s
= σ̃(τ (t)) − τ (t)

τ (t)
= τσ(t) − τ (t)

τ (t)
= μ(t)τΔ(t)

τ (t)
= μ(t)

tτ (t)
→ 0

(25)
as t → ∞ (i.e., as s → ∞). Conditions (23)–(25) guarantee that the assumptions of
[21, Theorem 4] are fulfilled for Eq. (19), and thus we can apply that result in the
next steps.

Consider now case (a), thus we assume that γ < −1 and
∫ ∞
a 1/r(s)Δs = ∞.

Take an eventually positive decreasing solution y of (14). Since u ◦ τ = y and yΔ =
(uΔ̃ ◦ τ )τΔ, u is eventually positive decreasing solution of (19). By [21, Theorem 4-

(i)], u ∈ NSV
T̃
, i.e., u is normalized slowly varying on T̃, i.e., suΔ̃(s)/u(s) → 0 as

s → ∞. Consequently, y ◦ τ−1 ∈ NSV
T̃
. Therefore, with using the ideas similar to

those in (20),

tτ (t)
yΔ(t)

y(t)
= s(y ◦ τ−1)Δ̃(s)

(y ◦ τ−1)(s)
→ 0

as s → ∞. Further, with S = τ (T ) and ã = τ (a), applying the substitution method
in delta integrals, we obtain
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∫ S

ã

s p̃(s)

r̃(s)
Δ̃s =

∫ τ (T )

τ (a)

s
( p

τΔrτΔ

)
◦ τ−1(s) Δ̃s

=
∫ T

a

τ (t)p(t)

(τΔ(t))2r(t)
τΔ(t)Δt =

∫ T

a

τ (t)p(t)

τΔ(t)r(t)
Δt =

∫ T

a
Ψ (t)Δt.

(26)
In particular,

∫ ∞
ã s p̃(s)/̃r(s) Δ̃s converges if and only if

∫ ∞
a Ψ (t)Δt converges.

Assume that
∫ ∞
a Ψ (t)Δt = ∞. Then

∫ ∞
ã s p̃(s)/̃r(s) Δ̃s = ∞, and, by [21, Theo-

rem 4-(i)],

u(s) = exp

{∫ s

ã
(1 + o(1))

η p̃(η)

(γ + 1)̃r(η)
Δ̃η

}
(27)

and u(s) → 0 as s → ∞. From y(t) = u(s), (26), and (27), we get (17). If∫ ∞
a Ψ (t)Δt < ∞, then

∫ ∞
ã s p̃(s)/̃r(s) Δ̃s < ∞, and, by [21, Theorem 4-(i)],

u(s) = �u exp

{
−

∫ ∞

s
(1 + o(1))

η p̃(η)

(γ + 1)̃r(η)
Δ̃η

}
(28)

as s → ∞ with �u := lims→∞ u(s) ∈ (0,∞). Similarly as before, using now (26)
and (28), we get (18). Moreover, �y = limt→∞ y(t) = limt→∞ u(τ (t)) = lims→∞
u(s) = �u .

(b) This part can be proved similarly as part (a); we apply [21, Theorem 4-(ii)] to
transformed equation (19). �

Remark 5 (i) A closer examination of the proof shows that condition (15) can (equiv-
alently) be replaced by τ−1 · (p ◦ τ−1) ∈ RV

T̃
(γ). Here,RVT(ϑ) denotes the class

of regularly varying functions of index ϑ on time scale T. An rd-continuous positive
function f belongs toRVT(ϑ) if and only if there is g ∈ (C1

rd(T), (0,∞)) such that
f (t) ∼ g(t) and tgΔ(t)/g(t) → ϑ as t → ∞, see [21].
(ii) Let us consider Eq. (14) and assume that p ∈ RVT(δ). Notice that [21, The-

orem 4] (which was applied in the previous proof to the transformed equation)
requires δ �= −1. A natural problem is therefore to consider the critical case δ = −1.
This setting is somehow delicate and the method of the proof of [21, Theorem 4]
does not work. However, the previous theorem enables us to treat this case, as
the following example shows. Let μ(t) = o(t) as t → ∞, p(t) = L(t)/t , where
L(t) = (ln t)−2(ln(ln t))−ω with ω > 0, and r(t) = t . If τ (t) is as in the theo-
rem, then τ (t) ∼ ln t as t → ∞, see the next item (iii). We have p ∈ RVT(−1),∫ ∞
a 1/r(s)Δs = ∞, and

(tτ (t))2
p(t)

r(t)
∼ (t ln t)2

p(t)

r(t)
= 1

(ln(ln t))ω
→ 0

as t → ∞. Further, as s → ∞,

τ−1(s)p(τ−1(s)) = 1

(ln τ−1(s))2(ln(ln τ−1(s)))ω
∼ 1

s2 lnω s
∈ RV

T̃
(−2).
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In view of the previous item (i), condition (15) is fulfilled with γ = −2 < −1. Thus
Theorem 5-(a) can be applied and we get that any eventually positive decreasing
solution y of (14) satisfies t ln t yΔ(t)/y(t) → 0, r(t)yΔ(t) → 0 as t → ∞, and
obeys one of the formulae (17) or (18), according to whether

∫ ∞
a Ψ (s)Δs = ∞

or
∫ ∞
a Ψ (s)Δs < ∞, respectively, where, because of τ (t) ∼ ln t as t → ∞, the

function Ψ can be taken as

Ψ (t) = 1

t ln t (ln ln t)ω
.

(iii) The condition μ(t) = o(tτ (t)) as t → ∞ in Theorem 5, where τ (t) =∫ t
a 1/s Δs, allows us to cover any time scale with a bounded graininess, for example,

R, Z, hZ, or the harmonic numbers H := {∑k−1
j=1 1/j : k ∈ N}, but also some time

scales with an unbounded graininess such as Nα := {nα : n ∈ N} with α > 1 (here
we have μ(t) = αt (α−1)/α + O(t−1/α)) or the quantum calculus case qN0 := {qn :
n ∈ N0} with q > 1 (here we have μ(t) = (q − 1)t). If we strengthen the condition
μ(t) = o(tτ (t)) to the condition μ(t) = o(t) as t → ∞ (which is satisfied, e.g., for
R, Z, hZ, H, Nα), then τ (t) ∼ ln t as t → ∞. Indeed, by the time scale L’Hospital
rule and the Lagrange mean value theorem, we have

lim
t→∞

ln t

τ (t)
= lim

t→∞
(ln t)Δ

1/t
= lim

t→∞
t

ξ(t)
,

where t ≤ ξ(t) ≤ σ(t). Further,

1 = t

t
≤ ξ(t)

t
≤ σ(t)

t
= t + μ(t)

t
= 1 + μ(t)

t
.

Since μ(t) = o(t), we get limt→∞ t/ξ(t) = 1 and so limt→∞ ln t/τ (t) = 1 Conse-
quently, the formulae in Theorem 5 can be rewritten as follows: Instead of τ (t) in
Ψ (t), (15), and (16), we can write directly ln t . Finally note that if T = qN0 , then
limt→∞ ln t/τ (t) = limt→∞[(ln q)/t]/[(q − 1)/t] = ln q/(q − 1), and so τ (t) ∼
(q − 1) ln t/ ln q as t → ∞.

(iv) Consider the transformation involving τ (t) = ∫ t
a 1/s Δs, as in the proof of

Theorem 5. Then q-difference equations (that is, equations defined on T = qN0 )
are actually transformed intodifference equations since τ (t) = ∫ t

1 1/sΔs = ∑
s∈[1,t)T

(1/s)(q − 1)s = ∑
s∈[1,t)T(q − 1) = ∑k−1

j=0(q − 1) = (q − 1)k, where t = qk . Fur-
ther, difference equations are by the same form of the substitution transformed into
dynamic equations on the harmonic numbers. Relations between difference and q-
difference equations are utilized in [20, Theorems 7.1–7.4], where asymptotic prop-
erties of solutions to q-difference equations under the critical setting are studied.

(v) In the proof of Theorem 5 we have used the transformation involving mapping
τ in the special form τ (t) = ∫ t

a 1/s Δs. This suggests an idea to consider a transfor-
mation in a general form which could lead to a generalization of the existing results
and a refinement of the concept of regular variation on time scales.
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(vi) We believe that a combination of suitable transformations (see also the last
paragraph in Sect. 4) alongwith existing resultswill enable us to examine asymptotics
of other equations in critical cases which are close, for instance, to Euler type or
Riemann–Weber type equations (see (12)), such as the equation yΔΔ + p(t)yσ = 0,
withμ(t) = o(t), where t2 p(t) → 1/4 and (1/4 − t2 p(t)) ln2 t → 0 as t → ∞, and
|1/4 − t2 p(t)| belongs to a suitable subclass of slowly varying functions on T.

Acknowledgements The research has been supported by Brno University of Technology, specific
research plan no. FSI-S-17-4464 and by the grant 17-03224S of the Czech Science Foundation. The
author would like to thank two anonymous reviewers for their helpful and constructive comments.

References
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15. Řehák, P.: How the constants in Hille-Nehari theorems depend on time scales. Adv. Differ.
Equ. 2006, Art. ID 64534 (2006)
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