
Discrete Reaction-Dispersion Equation

Zdeněk Pospíšil

Abstract The paper introduces a discrete analogy of the reaction-diffusion partial
differential equation. Both the time and the space are considered to be discrete, the
space is represented by a simple graph. The equation is derived from “first princi-
ples”. Basic qualitative properties, namely, existence and stability of equilibria are
discussed. The results are demonstrated on a particular system that can be interpreted
as a model of metapopulation on interconnected patches with a deadly boundary. A
condition for size of habitat needed for population survival is established.
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1 Motivation

An auto-catalytic reaction of a “substance” and its diffusion on one dimensional
continuous space is described by the parabolic PDE

∂u

∂t
= D

∂2u

∂x2
+ f (u) , t > 0 , x ∈ (0, L) ; (1)

the state variable u represents a substance density, the function f (non-linear, in
general) describes the reaction, and D is the diffusivity (the coefficient appearing
in the Fickian law). The same equation stands for a model of spatially distributed
population—it can be found in any textbook on mathematical ecology or population
dynamics, cf. e.g. [4, pp. 265–343]. Let us remind two results concerning the reaction-
diffusion equation that are of importance in a context of theoretical ecology.

Let f : [0,∞) → [0,∞) be a continuous function satisfying the conditions
f (0) = 0, (u − K ) f (u) < 0 for some positive constant K and 0 < u �= K . Then
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the Eq. (1) possesses the spatially homogeneous equilibrium u ≡ 0 (the extinction
equilibrium). The Eq. (1) with the homogeneous Neumann boundary condition

∂u(0)

∂x
= 0 = ∂u(L)

∂x
(2)

has the positive asymptotically stable equilibrium u ≡ K and the extinction equi-
librium is unstable. If f is differentiable in a right neighbourhood of 0 with
r = f ′(0) > 0 and L > π

√
D/r then the trivial equilibrium u ≡ 0 of the Eq. (1)

with the homogeneous Dirichlet boundary condition

u(0) = 0 = u(L) (3)

is unstable and the boundary value problem (1), (3) possesses an asymptotically
stable spatially non-homogeneous equilibrium u(t, x) = u∗(x) such that

0 < max
0<x<L

u∗(x) = u
(
1
2 L

)
< K .

The last case serves as a theoretical explanation of the fact that a spatially distributed
population needs some minimal size of its habitat.

The aim of the contribution is to present discrete counterparts of the reminded
results. The discrete diffusion (heat) equation is a matter of textbooks, cf. [3, p.
168–172]. Here, the discrete space is a grid and the equation is linear autonomous
difference system with Toeplitz matrix. The reaction term can be simply added to
such a system. Systems of this type represent accurate discretization of thementioned
PDEs and they were studied not only on grids [2] but, recently, also on general graphs
[8]. This approach brings reasonable results. But, by my opinion, this is not the only
possibility how to model phenomena consisting of a reaction and dispersal of a
“substance” on a discrete space, namely, on networks or graphs.

First, the word “diffusion” takes different meanings in different contexts. Hu-
manities mean by it a very complex and complicated process [7]. In metapopulation
ecology, it denotes a form of dispersal, in which the flux of individuals between two
patches is proportional to the difference in their densities [1, p. 65]. Such a process
coincide with a random walk. A more precise determination distinguishes diffusion
from random walk. Diffusion is described by the Laplacian matrix (discrete Lapla-
cian operator), while random walk by a matrix derived from the Markovian one. An
important difference between the two processes is that diffusion tends to a state with
uniformly distributed values in all nodes, while random walk tends to a state where
the values are proportional to node degrees. Hence, the two processes coincide for
regular graphs [6, Sects. 6.13 and 6.14]. Because of these terminological reasons, I
use the more general word “dispersion” instead of the specific “diffusion”.

Second, the process of reaction can be separated (at least mentally) from the
one of dispersion. This idea was utilized already in framework of linear models of
(meta)population dynamics [5] and it forms a basis for the subsequent considerations.
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In the next section, the proposed reaction-dispersion system is derived frommech-
anistic presuppositions (“first principles”). The dispersion process is represented by
the random walk and the model presented is more general than necessary for the rest
of the paper. This generality may show that a scope of applicability exceeds the one
indicated in the third section where a spatially homogeneous reaction and simple
dispersion is considered. Results that can be regarded as analogues to the mentioned
results from continuous spatial population dynamics are shown.

The notation used is standard. The vectors are considered to be the column ones,
v = (v1, v2, . . . , vk)

T; we will also denote the entries of the vector v by vi = (v)i .
The symbol diag v denotes the diagonal matrix M with diagonal entries mii = vi ,
the symbols o, 1, and I denote zero vector, vector with all of entries equal to 1, and
identity matrix, respectively.

2 The Model

Of course, a reaction-dispersion equation should describe two processes—a reaction,
i.e. constitution and dissociation of a substance or birth and death of individuals
forming a population, and dispersion, i.e. random spreading of it to a space. Assume
that the space is represented by a simple connected graph G = {N , E}, where N =
{1, 2, . . . , k} is a set of nodes and E ⊆ {{i, j} : i, j ∈ N , i �= j

}
is the set of edges.

Let A be the adjacency matrix of the graph G and denote σ j = ∣∣{i : {i, j} ∈ E
}∣∣ =

∑k
i=1 ai j = (

1TA
)
j
the degree of the node j ∈ N .

Let xi (t) denote an expected concentration of a substance in the node i ∈ N at
the time t ; naturally, we suppose xi ≥ 0.

Let us suppose that the reaction take place entirely in the nodes and the dispersion
consists in relocation of particles (individuals) along the edges. Let us start with a
description of the two processes separately.

2.1 Reaction

Let τr > 0 be a “typical reaction time”.We assume that the change of concentration in
the node i ∈ N depends on the concentration xi only, i.e. it is given by the recurrence
relation

xi (t + τr) = fi
(
xi (t)

)
.

Here fi : [0,∞) → [0,∞), i = 1, 2, . . . , k are functions satisfying

fi (0) = 0 (4)
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that are non-linear in general. Denoting f(x) = (
f1(x1), f2(x2), . . . , fk(xk)

)T
, we

can write the relation in the simple vector form

x(t + τr) = f
(
x(t)

)
. (5)

2.2 Dispersion

Let us suppose that a particle in a node can either remain in it or it can move to a
randomly chosen neighbor node. We can call this process “elementary dispersion
event”. Let us denote by τd > 0 the time necessary for replacement of a particle to
a neighbor node and by d, 0 < d ≤ 1, the probability that a particle leaves its node.
The adopted assumptions yield the recurrence relations

xi (t + τd) = (1 − d)xi (t) +
∑

{i, j}∈E

d

σ j
x j (t) , i ∈ N ,

for the expected concentrations xi . Let us define the matrix K with the entries κi j =
ai j/σ j , that is K = A(diagA1)−1. Since

∑

{i, j}∈E

d

σ j
x j (t) = d

k∑

j=1

ai j
σ j

x j (t) = d
(
Kx(t)

)
i ,

we can rewrite the derived recurrence relation in the vector form

x(t + τd) = (
I − d(I − K)

)
x(t) . (6)

The matrix on the right hand side characterizes the described dispersion process.
Obviously,

k∑

j=1

κi j =
k∑

j=1

ai j
σ j

= 1.

that is, the matrix K is left (row) stochastic and, subsequently, the dispersion matrix

D = I − d(I − K) (7)

is left stochastic as well. The matrix D is used to describe random walk on a graph,
cf. comment in the first section and the reference therein.
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2.3 Reaction and Dispersion

Let us suppose that the two processes are separated in time. First, the reaction occurs
and then it is followed by the dispersion. Such an assumption may be satisfied in
population dynamic—e.g., a plant grows, flowers and produces seeds and then the
seeds are spread. If this is the case, we can define the time unit (length of projection
interval) to be the sum of the “typical reaction and dispersion times”, 1 = τr + τd
and, combining (5), (6) and (7), we obtain the non-linear recurrence relation

x(t + 1) = x
(
(t + τr) + τd

) = Dx(t + τr) = Df
(
x(t)

)
.

Let us note that the above form of the recurrence fixes the “observation times” to
moments before “reaction event” and after “dispersion event”. This is just an arbitrary
choice. The other one leads to the relation x(t + 1) = f

(
Dx(t)

)
; wewill not deal with

this option in the present paper.
The situation need not to be simple alternation of reaction and “elementary disper-

sion event”. We can consider the possibility that the reaction is followed by several
“elementary dispersions”. If the number of them is n then we define the time unit by
1 = τr + nτd and the process is described by the recurrence relation

x(t + 1) = Dnf
(
x(t)

)
. (8)

2.4 Homogeneous Boundary Conditions

The Neumann boundary condition (2) for the continuous equation (1) states that no
amount of the “substance” goes out of the regionwhere it disperses, that is, the process
is spatially isolated. The discrete equation (8) is defined on the underlying graph G
only. That is, no “outer space” is considered and hence no additional condition is
needed.

The Dirichlet boundary condition (3) determines the concentration on the two
boundary points to be zero. This property can be mimic for the discrete equation (8)
as well. Let us determine some of the nodes to be the boundary ones and prescribe
the zero value of the concentration on them for each time t . This is equivalent to left
multiplication of the vector x(t) by the “boundary” matrix B defined as

bi j =
{
1, i = j /∈ NB,

0, otherwise,

where NB ⊆ N is the set of boundary nodes. The matrix B is obviously idempotent.
Of course, if NB = ∅ then the “boundary” matrix B = I expresses the “Neumann-
type” condition.
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Let us suppose first that each “elementary dispersion event” is followed by an
immediate “disappearance” of the substance in the boundary nodes. E.g., consider-
ing metapopulations we can regard the boundary patches to be be deadly ones. In
this case, the matrix describing dispersion equals BD. Due to the condition (4), the
identities x = Bx, f(x) = Bf(x) hold true for any vector x satisfying the boundary
condition xi = 0 for i ∈ NB . Hence, the discrete reaction-dispersion equation with
homogeneous boundary condition can be written in one of the equivalent forms

x(t + 1) = (BD)nf
(
x(t)

)
, or x(t + 1) = (BD)nBf

(
x(t)

)
. (9)

But the process of “disappearance” of particles/individuals in the boundary nodes
may be a matter of the reaction only. If this is the case, the model can be written in
one of the equivalent forms

x(t + 1) = BDnf
(
x(t)

)
, or x(t + 1) = BDnBf

(
x(t)

)
. (10)

3 Equilibria and Their Stability

Now, let us consider the system (9) or (10) with n = 1, i.e. the system

x(t + 1) = BDBf
(
x(t)

)
. (11)

Let x∗ be the equilibrium of the equation (11), i.e. BDB f (x∗) = x∗. If the vec-
tor function f is differentiable one can check the stability of the equilibrium using
linearization of the system. Since

∂

∂x j

(
f(x∗)

)
i
= ∂

∂x j
fi (x

∗
i ) =

{
f ′
j (x

∗
j ), i = j,

0, i �= j,

the variation matrix of the system (11) equals J(x∗) = BDBdiag f ′(x∗), where f ′(x∗)
stands for

(
f ′
1(x

∗
1 ), f

′
2(x

∗
2 ), . . . , f

′
k(x

∗
k )

)T
. Consequently, the stability of the equilib-

rium x∗ is determined by the spectrum of the matrix BDBdiag f ′(x∗).
Let us pay attention to eigenvalues of the matrices BDB and BKB. Obviously,

if NB �= ∅ then the both matrices possesses zero eigenvalues with corresponding
eigenvectors w satisfying wi = 0 for all i /∈ NB , i.e. Bw = o. That is, the geomet-
ric multiplicity of zero eigenvalues is at least |NB |. The following statement says
something on the others eigenvalues.

Proposition 1 Let vector w satisfy the boundary condition, i.e., w = Bw. Then w is
the eigenvector of thematrixBDB if and only if it is the eigenvector of thematrixBKB.
The corresponding eigenvalues λ̃ and λ of the matrices BDB and BKB, respectively,
satisfy the equality λ̃ = 1 − d(1 − λ).
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Proof Let w = Bw. Then by (7),

BDBw = B
(
I − d(I − K)

)
Bw = w − dw + dBKBw .

Now, if BKBw = λw then BDBw = (
1 − d(1 − λ)

)
w, if BDBw = λ̃w then

(
(λ̃ −

1 + d)/d
)
w = BKBw. �

The Proposition1 allows to prove a statement on stability of particular equilibria
of the system (11).

Proposition 2 Let the reaction function be the same on all non-boundary nodes, i.e.

f(x) = (
f (x1), f (x2), . . . , f (xk)

)T
, where f : [0,∞) → [0,∞) is differentiable

function, and let x∗B1 be an equilibrium of the system (11). If

∣∣ f ′(x∗)
(
1 − d(1 − λ)

)∣∣ < 1 (12)

for each eigenvalue λ of the matrix BKB such that the corresponding eigenvector w
satisfies the boundary condition w = Bw, then the equilibrium is stable.

If there exists an eigenvalueλwith corresponding eigenvectorw of thematrixBKB
satisfying the boundary condition and the inequality is reversed, then the equilibrium
is unstable.

Proof We have Bdiag f ′(x∗B1) = f ′(x∗)B. Consequently J(x∗B1) = f ′(x∗)BDB.
Hence, if | f ′(x∗)λ̃| < 1 for all eigenvalues λ̃ of thematrixBDB, then the equilibrium
is stable. The condition is fulfilled for λ̃ = 0 such that the corresponding eigenvector
w̃ satisfies w̃ �= Bw̃ = o. Now, the statement follows from the Proposition1. �

Let us consider the system (11) with symmetric matrix K and no boundary node.
Since κi j = ai j/σ j , the assumption on symmetry is satisfied if and only if σi = σ j

for all i, j , i.e., for regular graphs only. In this case, a random walk coincides with
diffusion. Since the matrix K is left stochastic and symmetric, it is double stochastic
and its spectral radius equals 1 and one eigenvalue equals 1. Hence, if B = I, then
the condition (12) holds if and only if it holds for λ = 1. If x∗ is a fixed point of the
function f , then

D(x∗1) = x∗(I − d(I − K)
)
1 = x∗(1 − d1 + d1) = x∗1

and x∗1 is an equilibrium of the system (11) with B = I and D = DT.
Hence, we have obtained an analogy to the statement that, under some condition,

the continuous boundary value problem (1), (2) possesses a spatially homogeneous
stable equilibrium: Let K > 0 and differentiable function f : [0,∞) → [0,∞) sat-
isfy

(
f (x) − K

)
(x − K ) < 0 for x �= K . Then the system

x(t + 1) = Df
(
x(t)

)
(13)

with symmetric matrix D has the positive stable equilibrium K1.
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The Proposition2 speaks on stability of spatially homogeneous equilibria of the
system (11) with equal “reaction functions” on each node. Due to the property (4),
the zero vector o is a spatially homogeneous equilibrium; if the system is interpreted
as a model of metapopulation the vector o represents the extinction equilibrium.
The system (13) without boundary nodes and symmetric matrix D may possess a
non-zero spatially homogeneous equilibrium. An example of a system with a non-
empty boundary and a non-zero spatially homogeneous equilibrium is presented in
the following subsection.

3.1 Particular Case

Let us consider the complete graph with k ≥ 3 nodes, one of nodes (the last one,
say) be the boundary one. Let the reaction be the same on each non-boundary node
and let it be of the form

f (x) = xg(x) ,

where the function g : [0,∞) → [0,∞) is differentiable with

g(0) = r > 1, g′(x) < 0, (x − K )
(
g(x) − 1

)
< 0 for x �= K > 0 .

Finally, let one reaction be followed by one dispersion event. Now, the system (11)
might represent amodel ofmetapopulation on kmutually interconnected patches, one
of them is deadly and the others exhibit the same condition for the local populations.

We have f ′(x) = g(x) + xg′(x) and

B =

⎛

⎜⎜⎜
⎜⎜
⎝

1 0 . . . 0 0
0 1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 0

⎞

⎟⎟⎟
⎟⎟
⎠
, K =

⎛

⎜⎜
⎜
⎝

0 1
k−1 . . . 1

k−1
1

k−1 0 . . . 1
k−1

...
...

. . .
...

1
k−1

1
k−1 . . . 0

⎞

⎟⎟
⎟
⎠
, BKB =

⎛

⎜⎜⎜
⎜⎜
⎝

0 1
k−1 . . . 1

k−1 0
1

k−1 0 . . . 1
k−1 0

...
...

. . .
...

...
1

k−1
1

k−1 . . . 0 0
0 0 . . . 0 0

⎞

⎟⎟⎟
⎟⎟
⎠
.

One can easily verify that the matrix BKB has the following eigenvalues with corre-
sponding eigenvectors

λ1 = k − 2

k − 1
, w1 =

⎛

⎜
⎜⎜⎜⎜
⎝

1
1
...

1
0

⎞

⎟
⎟⎟⎟⎟
⎠
, λ2 = 0 , w2 =

⎛

⎜
⎜⎜⎜⎜
⎝

0
0
...

0
1

⎞

⎟
⎟⎟⎟⎟
⎠
,
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λ3 = λ4 = · · · = λk = 1

1 − k
, w3 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1
0
0
...

0
−1
0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, w4 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0
1
0
...

0
−1
0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, . . . , wk =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0
0
0
...

1
−1
0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

Thus, we have

1 − d(1 − λ1) = 1 − d

k − 1
, 1 − d(1 − λ j ) = 1 − dk

k − 1
, j = 3, 4, . . . , k .

Obviously, 1 − dk/(k − 1) < 1 − d/(k − 1). The assumptions d ≤ 1 and k ≥ 3
yield

0 ≤ 1 − d

k − 1
and

dk

k − 1
− 1 ≤ 1 − d

k − 1
,

since 1
2d ≤ 1

2 ≤ (k − 1)/(k + 1). Consequently

∣∣
∣∣1 − dk

k − 1

∣∣
∣∣ ≤ 1 − d

k − 1
.

That is, the criterion of equilibrium stability from the Proposition2 reads

∣∣ f ′(x∗)
∣∣
(
1 − d

k − 1

)
< 1 .

The zero vector o is one equilibrium (the extinction equilibrium) of the system.
The assumption f ′(0) = g(0) = r > 1 now implies that if

r

(
1 − d

k − 1

)
< 1 , i.e. k < 1 + dr

r − 1
,

then the extinction equilibrium is stable.
Now, let us search conditions for the existence of equilibrium of the form x∗B1

with x∗ > 0, that is, the equilibrium spatially homogeneous on the non-boundary
nodes.

Let us note that under the assumptions listed above, the system (11) becomes

xi (t + 1) = (1 − d)xi (t)g
(
xi (t)

) + d

k − 1

∑

{i, j}∈E
j �=k

x j (t)g
(
x j (t)

)
, i = 1, 2, . . . , k − 1

and xk(t) ≡ 0. Consequently
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g(x∗)
(
1 − d + (k − 2)

d

k − 1

)
= 1, or, g(x∗) = k − 1

k − 1 − d
.

Since the function g is strictly decreasing with g(0) = r , g(K ) = 1, the last equation
possesses unique solution x∗ satisfying 0 < x∗ < K if and only if

k − 1

k − 1 − d
< r , i.e. k > 1 + dr

r − 1
. (14)

If this is the case, we have

f ′(x∗) = g(x∗) + x∗g′(x∗) = k − 1

k − 1 − d
+ x∗g′(x∗),

∣∣ f ′(x∗)
∣∣
(
1 − d

k − 1

)
=

∣∣∣
∣1 + k − 1 − d

k − 1
x∗g′(x∗)

∣∣∣
∣ =

∣∣∣
∣1 + x∗ g′(x∗)

g(x∗)

∣∣∣
∣

and the criterion of stability becomes

−2 < x∗ g′(x∗)
g(x∗)

< 0 .

The last inequality is satisfied due the assumption g′ < 0.
Now, we can conclude: If k < 1 + dr/(1 − r) then the extinction equilibrium o

is stable, if k > 1 + dr/(1 − r) then the equilibrium o is unstable and there exists
the interior equilibrium x∗B1 which is stable provided −2 < x∗g′(x∗)/g(x∗).

This statement (namely, the second inequality (14)) can be considered to be one
of possible analogies to the one that the boundary value problem (1), (3) possesses
non-trivial equilibrium just for L “large enough”, that is for sufficient “size” k of the
space.
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