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Abstract We consider the delayed antibody-antigen competition model for two-
dimensional array of biopixels

xi, j (n + 1) = xi, j (n) exp
{
β − γyi, j (n − r) − δx xi, j (n − r)

} + Ŝ
{
xi, j (n)

}
,

yi, j (n + 1) = yi, j (n) exp
{ − μy + ηγxi, j (n − r) − δy yi, j (n)

}
, i, j = 1, N ,

n, r ∈ N. Here xi, j (t) is the concentration of antigens, yi, j (t) is the concentra-
tion of antibodies in biopixel (i, j), i, j = 1, N . Ŝ{xi, j (n)} = (D/Δ2){xi−1, j (n) +
xi+1, j (n) + xi, j−1(n) + xi, j+1(n) − 4xi, j (n)} is spatial diffusion-like operator. Per-
manence of the system is investigated. Stability research uses approach of Lyapunov
functions. Numerical simulations are used in order to investigate qualitative behav-
ior when changing the value of time delay r ∈ N and diffusion D/Δ2. It was shown
that when increasing the value of time delay r , we transit from steady state through
Hopf bifurcation, increasing period and finally to chaotic behavior. The increase of
diffusion causes an appearance of chaotic solutions also.
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1 Introduction

One of the most important current research is related with design of sensor devices.
They are considered as cornerstones of Industry 4.0 [2, 20] relying primarily on
cyber-physical systems, which include smart sensors with supervision and commu-
nication purposes. A lot of modern applications in biology, medicine, ecology, food
industry are dealt with biosensors. They are kind of sensors aimed for measurements
of biological substances. The design of biosensor devices includes estimation of
parameters enabling us their stable functioning.

Themost ofmodels describingbiosensors uses partial differential equations.How-
ever it does not take into account discrete nature of spatial coordinates of the biosen-
sor, which is based on two- or three-dimensional biopixels array. That is why in series
of works (see [15, 19]) finite lattice differential equations were offered to describe
biosensor devices.

Differential equations which are used in the biosensors modelling are based
on population dynamics for describing different biological species interaction. For
example, in case of immunosensors, which are kind of biosensors, we use antigens
and antibodies, which play roles of preys and predators respectively. In such awaywe
result in well-known predator-prey differential equations in the biosensor modelling.

A lot of results for the predator-prey models with discrete or distributed time
delays has been obtained. As it was mentioned in [13], the problem is that the most
of these results are related with the continuous-time systems but discrete-time mod-
eling is more appropriate in cases “when populations have a short life expectancy,
nonoverlapping generations in real world”.

Let xi, j (t) be concentration of antigens, yi, j (t) be concentration of antibodies in
biopixel (i, j), i, j = 1, N .

The model is based on biological assumption for arbitrary biopixel (i, j), which
are described in [15]. It includes the following constant parameters: birthrate for anti-
gen population, β > 0; death rate of antigens, δx ; probability rate of neutralization
of antigens by antibodies, γ > 0; birthrate of antibodies, μy ; death rate of antibod-
ies, δy ; probability rate of immune response with respect to antibodies, η. Immune
response appears with some constant time delay τ > 0. For the sake of simplicity we
assume the same delay τ for the death rate of antigens. We have some diffusion of
antibodies from four neighboring pixels (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1).
The complete biological reasoning and description of the model is presented in [15].

So we start from considering a very simple delayed antibody-antigen competition
model for biopixels two-dimensional arraywhichwas offered and investigated in [15]

dxi, j (t)

dt
= (β − γyi, j (t − τ ) − δx xi, j (t − τ ))xi, j (t) + Ŝ{xi, j },

dyi, j (t)

dt
=

(
− μy + ηγxi, j (t − τ ) − δy yi, j (t)

)
yi, j (t)

(1)
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with given initial functions

xi, j (t) = x0i, j (t) ≥ 0, yi, j (t) = y0i, j (t) ≥ 0, t ∈ [−τ , 0),

xi, j (0), yi, j (0) > 0.
(2)

For a square N × N array of traps, we use the following discrete diffusion form of
the spatial operator, which was already applied for modelling biosensors (see [19])

Ŝ{xi, j } = DΔ−2

[
xi−1, j + xi+1, j + xi, j−1 + xi, j+1 − 4xi, j

]
i, j = 1, N (3)

Each colony is affected by the antigen produced in four neighboring colonies, two
in each dimension of the array, separated by the equal distance Δ.

We use the boundary condition xi, j = 0 for the edges of the array i, j = 0, N + 1.
The techniques, which are used in the work for discretization, permanence and

stability investigation are primarily based on the approach developed in [13] for
predator-prey system. Here they were extended in case of finite lattice model with
diffusion.

The paper is structured in the following way. In the Sect. 2 we employ the dis-
cretization technique to derive the discrete version of system (1). The conditions for
quasi-permanence are investigated in Sect. 3. Global stability research is presented in
Sect. 4. Results of modeling (1) are displayed in Sect. 5. It can be seen that qualitative
behavior of the system is determined mostly by the time of immune response τ (or
time delay) and diffusion rate D.

Within this paper we use the following notation:

– the symbol i = m, n for some integer i , m, n , m < n means i = m,m + 1, ..., n;
– �x� denotes the greatest integer less than or equal to the real value x ;
– au = supn∈N a(n) and al = infn∈N a(n) for any bounded sequence {a(n)};
– R

+ denotes the set of nonnegative real numbers;
– N be the sets of nonnegative integers;
– ⊗ denotes the direct product of matrices.

2 Deriving the Difference Equations Model

The system (1) without diffusion is approximated by the following differential equa-
tions with piecewise constant arguments

dxi, j (t)

dt
=

(
β − γyi, j (�t/h�h − �τ/h�h) − δx xi, j (�t/h�h − �τ/h�h)

)
xi, j (t),

dyi, j (t)

dt
=

(
− μy + ηγxi, j (�t/h�h − �τ/h�h) − δy yi, j (�t/h�h)

)
yi, j (t)

(4)
for t ∈ [nh, (n + 1)h), n ∈ N.
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Noting that �t/h� = n, �τ/h� = r ∈ N, we integrate (4) over [nh, t), where t <

(n + 1)h, then (4) can be reformulated as

dxi, j (t)

dt
=

(
β − γyi, j (nh − rh) − δx xi, j (nh − rh)

)
xi, j (t),

dyi, j (t)

dt
=

(
− μy + ηγxi, j (nh − rh) − δy yi, j (nh)

)
yi, j (t).

Denoting xi, j (n) = xi, j (nh), yi, j (n) = yi, j (nh), then we have

xi, j (t) = xi, j (n) exp

{
β − γyi, j (n − r) − δx xi, j (n − r)

}
,

yi, j (t) = yi, j (n) exp

{
− μy + ηγxi, j (n − r) − δy yi, j (n)

}
.

(5)

Setting t → (n + 1)h in (5) and simplifying, adding diffusion to the first equa-
tion,1 we get a discrete analogue of continuous time system (1) with the form

xi, j (n + 1) = xi, j (n) exp

{
β − γyi, j (n − r) − δx xi, j (n − r)

}
+ Ŝ

{
xi, j (n)

}
,

yi, j (n + 1) = yi, j (n) exp

{
− μy + ηγxi, j (n − r) − δy yi, j (n)

}
,

(6)

We pay attention that behavior of the system (6) may not be the same as for
the differential one (1). The equivalence of differential versus difference equations
trajectories, which are obtained with help of forward Euler, backward Euler or cen-
tral difference schemes, may be for “sufficiently small discretization time steps”
only [12]. The problems of equivalence of difference and differential Lotka–Volterra
equations were firstly studied in [18]. The derivation of the discrete model (6) is the
standard connection between Lotka–Volterra continuous time model and discrete
time Nicholson–Bailey model [18]. The Nicholson–Bailey model was derived in
order to have similar dynamical properties as Lotka–Volterra ones.

In [16] nonstandard Mickens scheme of time-discretization was described, which
was further used in order to get dynamical consistency between discrete-time and
continuous-time models in a lot of research and applications [17].

With respect to time-discretization of lattice reaction-diffusion equations we have
a wide range of research—in the one-dimensional lattice [5, 6], higher dimensional
lattices [9], papers dealing with the exact role of the time discretization on the exis-
tence of travellingwaves [10] or validity ofmaximumand comparison principles [23]
which is the main reason which led authors to the alternative discretization. There
are also numerous contributions in the case of delayed lattice differential equations,
for example [14, 25].

1Diffusion term is considered be additive in order to get clear permanence and stability results.
Actually the diffusion on discrete space may be represented by a matrix multiplication also [4].
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In Sect. 5 we investigate the problem of qualitative consistency between (6) and
(1) numerically.

We introduce the following definitions for finite lattice difference equations (6).

Definition 1 It is said that system (6) is quasi-permanent if there exist pos-
itive constants mx , Mx , my,i, j , My,i, j , i, j = 1, N that every positive solution{(

xi, j (n), yi, j (n)

)}
, i, j = 1, N of system (6) satisfies

mx ≤ lim inf
n→∞

N∑

i, j=1

xi, j (n) ≤ lim sup
n→∞

N∑

i, j=1

xi, j (n) ≤ Mx ,

my,i, j ≤ lim inf
n→∞ yi, j (n) ≤ lim sup

n→∞
yi, j (n) ≤ My,i, j .

Definition 2 A positive solution

{(
x�
i, j (n), y�

i, j (n)

)}
, i, j = 1, N of system (6) is

globally attractive if each other positive solution
{(

xi, j (n), yi, j (n)

)}
, i, j = 1, N

of system (6) satisfies

lim
n→∞ |xi, j (n) − x�

i, j (n)| = 0, lim
n→∞ |yi, j (n) − y�

i, j (n)| = 0, i, j = 1, N .

3 Permanence

In spite of the fact that a series of results were obtainedwhen considering permanence
of Nicholson models without diffusion, e.g. recent ones are [7, 13, 26], much more
less permanence results were established for discrete reaction-diffusionmodels. Here
we mention work [1] for on one- and two-dimensional lattices. These results were
approved numerically in [3].

Here we have already introduced the notion of quasi-permanence of the system
(6) which is “weaker” as compared with traditional permanence. The reason is the
taking into account diffusion of xi, j within the finite lattice. In turn, the system is
permanent with respect to yi, j (n) in a traditional sense.

In order to prove quasi-permanence of the system (6), we need the following
auxiliary results from [26].

Lemma 1 It holds

max
x∈R

x exp (β(1 − x)) = exp (β − 1)

β
(7)

for β > 0.

Lemma 2 Assume that x(n) satisfies x(n) > 0 and
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x(n + 1) ≤ x(n) exp {s(n)(1 − ax(n))} (8)

for n ∈ [n1,∞), where a is a positive constant. Then

lim
n→∞ sup x(n) ≤ 1

asu
exp

{
su − 1

}
. (9)

Lemma 3 Assume that {x(n)} satisfies

x(n + 1) ≥ x(n) exp {s(n)(1 − ax(n))} , n ≥ N0, (10)

limn→∞ sup x(n) ≤ xu and x(N0) > 0, where a is a constant such that axu > 1 and
N0 ∈ N. Then

lim
n→∞ inf x(n) ≥ 1

a
exp

{
su(1 − axu)

}
. (11)

The next auxiliary result is related to necessary condition to the positive invariance
of the positive orthant

Ω =
{(

xi, j (n), yi, j (n)

)
: i, j = 1, N , xi, j (n) > 0, yi, j (n) > 0

}

Lemma 4 Assume that the positive orthant Ω is positive invariant for the system
(6), i.e. xi, j (0) > 0, yi, j (0) > 0 implies xi, j (n) > 0, yi, j (n) > 0, n ∈ N, i, j = 1, N.

Then

eβ >
4D

Δ2
(12)

holds.

Proof We assume for purposes of contradiction that eβ ≤ 4D
Δ2 . Consider a counterex-

ample, if N = 1. Then the first equation (6) together with the boundary conditions
x0,1 = x2,1 = x1,0 = x1,2 = 0 = y0,1 = y2,1 = y1,0 = y1,2 introduced above, yields

x1,1(n + 1) = x1,1(n) exp
{
β − γy1,1(n − r) − δx x1,1(n − r)

} − (4D/Δ2)x1,1(n)

≤ x1,1(n)(eβ − 4D/Δ2) ≤ 0

for any x1,1(0) > 0, y1,1(0) > 0, contradicting the original supposition.

The next result introduces a sufficient condition for the underlying grid size ensur-
ing that the solution of (6) is non-vanishing.

Lemma 5 Let for the system (6) the positive orthantΩ be positive invariant. Besides
that, let N be such that fextnc(N ) < 1 holds, where

fextnc(N ) = max
k,l=1,N

∣∣∣∣e
β − 4D

Δ2

(
1 + cos

π(k + l)

2(N + 1)
cos

π(k − l)

2(N + 1)

)∣∣∣∣. (13)
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Then limn→∞ xi, j (n) = 0, i, j = 1, N.

Proof It requires a comparison principle for difference equations (see [24], Theorem
2.1, p. 241).

The following inequalities hold for xi, j (n + 1)

xi, j (n + 1) < xi, j (n)eβ + Ŝ
{
xi, j (n)

}
.

Consider N 2-vector of the form

X (n) =
(
x1,1(n), x1,2(n), . . . , x1,N (n), x2,1(n), . . . , x2,N (n), . . . ,

xN ,1(n), . . . , xN ,N (n)

)

.

We compare X (n + 1) ≤ CX (n), where C = IN ⊗ A + B ⊗ IN ,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

eβ − 4D
Δ2

D
Δ2

D
Δ2 eβ − 4D

Δ2
D
Δ2

D
Δ2

. . .

. . .

eβ − 4D
Δ2

D
Δ2

D
Δ2 eβ − 4D

Δ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 D
Δ2

D
Δ2 0 D

Δ2

D
Δ2

. . .

. . .

0 D
Δ2

D
Δ2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,

IN is N × N identity matrix. The N 2 eigenvalues of C are of the form (see [11],
Theorem 8.3.1) λk,l(C) = λk(A) + λl(B), k, l = 1, N , where the eigenvalues of A

λk(A) = eβ − 4D

Δ2
− 2D

Δ2
cos (πk/(N + 1)), k = 1, N ,

the eigenvalues of B

λl(B) = −2D

Δ2
cos (πl/(N + 1)), l = 1, N .
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The comparison system Z(n + 1) = CZ(n) tends asymptotically to zero if∣∣∣∣λk,l

∣∣∣∣ < 1. That is,

max
k,l=1,N

∣∣∣∣e
β − 4D

Δ2
− 2D

Δ2

(
cos

πk

N + 1
+ cos

πl

N + 1

)∣∣∣∣ < 1.

Theorem 1 Consider the system (6) satisfying the positive invariance of the setΩ .2

Let

α1,i, j = −μy + ηγMx,i, j
exp(β − 1)

δx
,

α2,i, j = β − γ
exp(α1,i, j − 1)

δy
,

α3,i, j = −μy + ηγ

δx
exp(α2,i, j (1 − δxζi, j )),

(14)

where ζi, j , i, j = 1, N are some constants.
If there exist Mx,i, j (r) > 1, i, j = 1, N such that for any ζi, j > 0, i, j = 1, N

conditions
min

{
αk,i, j , k = 1, 3, i, j = 1, N

}
> 0 (15)

hold, then system (6) is quasi-permanent.

Proof SinceΩ is a positive invariant set of (6), we assume that

{(
xi, j (n), yi, j (n)

)
,

i, j = 1, N
}
is its arbitrary positive solution.

Firstly we prove that

{(
xi, j (n), yi, j (n)

)
, i, j = 1, N

}
is uniformly upper

bounded. Consider the first equation of (6). We get

xi, j (n + 1) ≤ xi, j (n) exp
{
β − δx xi, j (n − r)

} + Ŝ
{
xi, j (n)

}

= xi, j (n) exp

{
β

(
1 − δx

β
xi, j (n − r)

)}
+ Ŝ

{
xi, j (n)

}
.

(16)

Let n1,i, j (r) ∈ N be such that

xi, j (n)

xi, j (n − r)
< Mx,i, j , n > n1.

Applying Lemma 1 it implies for n > n1,i, j (r)

2Lemma 4 offers necessary condition (12).
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xi, j (n + 1) ≤ Mx,i, j (r)xi, j (n − r) exp

{
β

(
1 − δx

β
xi, j (n − r)

)}
+ Ŝ

{
xi, j (n)

}

≤ Mx,i, j (r)
β

δx

exp (β − 1)

β
+ Ŝ

{
xi, j (n)

}

= Mx,i, j (r)
exp (β − 1)

δx
+ Ŝ

{
xi, j (n)

}
.

Hence, for n > n1(r) = maxi, j=1,N n1,i, j (r) we have

lim
n→∞ sup

N∑

i, j=1

xi, j (n) ≤ exp(β − 1)

δx

N∑

i, j=1

Mx,i, j (r) =: Mx (r).

Moreover, there exists a sufficiently large n2(ε) ∈ N, that for any constant ε > 0
it holds3

xi, j (n) ≤ Mx,i, j (r)
exp (β − 1)

δx
+ ε, n ≥ n2(ε). (17)

Consider the second equation of (6). Hence we get

yi, j (n + 1) ≤yi, j (n) exp

{
−μy + ηγ[Mx,i, j (r)

exp(β − 1)

δx
+ ε] − δy yi, j (n)

}

=yi, j (n) exp

{

αε
x,i, j

(

1 − δy

αε
x,i, j

yi, j (n)

)}

.

Here

αε
1,i, j := −μy + ηγ

[
Mx,i, j (r)

exp(β − 1)

δx
+ ε

]

Applying Lemma 2 and letting ε → 0, we have

lim
n→∞ sup yi, j (n) ≤ exp(α0

1,i, j − 1)

δy
=: Fu

i, j . (18)

3In order to substantiate it, we assume the contrary, namely, there are ε1 > 0 and i�, j� ∈ 1, N such
that xi�, j� (n) > Mx,i�, j� (r)

exp(β−1)
δx

+ ε1, for all n > 0. Then

lim
n→∞ sup

N∑

i, j=1

xi, j (n) ≤ exp(β − 1)

δx

N∑

i, j=1

Mx,i, j (r) <
exp(β − 1)

δx

N∑

i, j=1,i �=i�, j �= j�
Mx,i, j (r)

+xi�, j� − ε1 ≤ exp(β − 1)

δx

N∑

i, j=1

Mx,i, j (r) + Ŝ
{
xi�, j� (n − 1)

} − ε1,

which is a contradiction at n → ∞.
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Hence it follows that

lim
n→∞ sup

N∑

i, j=1

yi, j (n) ≤
N∑

i, j=1

exp(α0
1,i, j − 1)

δy
=: My .

Further we prove that
{
(xi, j , yi, j ), i, j = 1, N

}
is uniformly ultimately lower

bounded.
According to (18), there exists an n3(ε) > n2(ε) such that

yi, j (n) ≤ exp(α0
1,i, j − 1)

δy
+ ε

for n > n3 and constant ε determined above.
Due to the first equation of (6) we have

xi, j (n + 1) ≥ xi, j (n) exp

{

β − γ

(
exp(α0

1,i, j − 1)

δy
+ ε

)

− δx xi, j (n − r)

}

.

Wehave to differ two cases.Case 1.There exists n4(ε) > n3(ε) such that xi, j (n) <

xi, j (n − r), n > n4. It implies

xi, j (n + 1) ≥ xi, j (n) exp
{
αε
2,i, j (1 − δx xi, j (n)

}
.

Here

αε
2,i, j := β − γ

(
exp(α0

1,i, j − 1)

δy
+ ε

)

.

Due to Lemma 3 we get

xi, j (n) ≥ 1

δx
exp

{
αε
2,i, j (1 − δx

(
Mx,i, j (r)

exp(β − 1)

δx
+ ε

)}

Let ε → 0. It implies

lim
n→∞ inf xi, j (n) ≥ 1

δx
exp

{
α0
2,i, j

(
1 − δx Mx,i, j (r)

exp(β − 1)

δx

)}

Case 2. For all n > n2(ε) we have xi, j (n) ≥ xi, j (n − r). It follows that
limn→∞ xi, j (n) = xui, j exists, where xui, j := xi, j (0) expβ. On the other hand xui, j ≥
1
δx
. It follows that

lim
n→∞ inf xi, j (n) ≥ 1

δx
exp

{
α2,i, j (1 − δx x

u
i, j )

}
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Considering the second equation of (6), we get

yi, j (n + 1) ≥ yi, j (n) exp

{
κi, j

(
1 − δy

κi, j
yi, j (n)

)}
.

Here
κi, j := −μy + ηγ

δx
exp

{
α0
2,i, j (1 − δx x

u
i, j )

}
.

Further we use the following inequality4

δy

κi, j
yui, j = exp(α0

1,i, j ) − 1

κi, j
≥ exp(α0

1,i, j ) − 1

α0
1,i, j

> 1.

Applying Lemma 3, we have

lim
n→∞ inf yi, j (n) ≥ κi, j

δy
exp

{
κi, j

(
1 − δy

κi, j
yui, j

)}
.

4 Stability Investigation for the Finite Lattice Difference
Model of Immunosensor

4.1 Steady States

The complex topology of set of endemic steady states for lattice Nagumo reaction-
diffusion dynamical systems were studied in [6]. Moreover, when considering
Nagumo equation on graphs, in [22] they observed that for sufficiently strong reac-
tions (or sufficiently weak diffusion) there are exponentional growth of the number
of endemic steady states.

In general case steady state Ei, j ≡
(
xi, j , yi, j

)
, i, j = 1, N for difference system

(6) can be found as a result of solution of the algebraic system:

xi, j = xi, j exp

{
β − γyi, j − δx xi, j

}
+ Ŝ

{
xi, j

}
,

yi, j = yi, j exp

{
− μy + ηγxi, j − δy yi, j

}
,

(19)

with respect to (xi, j , yi, j ), i, j = 1, N . We have to distinguish the following cases.

4Here we use that 1
x exp(x − 1) > 1 for x > 0.
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Antigen and antibody-free steady state E0,0
i, j ≡ E0,0 =

(
0, 0

)
, i, j = 1, N .

Antibody-free endemic5 steady state. The system (6) has so-called antibody-free
steady state, namely

E∗,0
i, j ≡ E∗,0 =

(
β

δx
, 0

)
, i, j = 1, N

Identical endemic steady state. In case if xi, j ≡ x > 0, i, j = 1, N (it yields

Ŝ

{
xi, j

}
≡ 0) we get steady state Ei, j ≡ E idnt =

(
xidnt , yidnt

)
, where

xidnt = βδy + γμy

ηγ2 + δxδy
, yidnt = −μyδx + ηγβ

ηγ2 + δxδy
.

We see that if −μyδx + ηγβ > 0, then E idnt is endemic.
Nonidentical endemic steady state. In general caseweneed to solve the algebraic

system (19) to find endemic steady state, which we call here as nonidentical steady

state Enonidnt =
(
xnonidnti, j , ynonidnti, j

)
, i, j = 1, N . In case if all (xnonidnti, j , ynonidnti, j ) >

0, then Enonidnt is endemic. We note that the values of xidnt and yidnt can be used
as initial approximations for numerical methods to solve nonlinear algebraic sys-
tem (19).

4.2 Global Attractivity

In [21, 28] there were studied the global attractivity of the positive equilibrium of the
discrete Nicholsons model. Global attractivity of Nicholson’s differential equation
with continuous diffusion was investigated in [27] with help of maximum princi-
ple. In case of continuous-time reaction-diffusion model from R

n on graphs, it was
shown that at some parameters there are 3n stationary solutions, out of which 2n are
asymptotically stable [22].

It is natural to expect a possible global attractivity of large number of positive
solutions for difference model (6). The next result offers the sufficient conditions of
global attractivity, which were obtained with help of Lyapunov functions.

Theorem 2 Assume that conditions of the Theorem 1 hold and there exists a positive
constant ξ such that

5Here we use epidemiological term “endemic” meaning the state when the “infection” (in this
context, antigen) is constantly maintained at a baseline level in an area without external inputs.
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exp
{
γmy + δxmx − β

} − δx − 1

mx
− ηγ ≥ ξ,

min

{
δy,

2

My
− δy

}
− γ ≥ ξ.

(20)

Then any positive solution

{(
x�
i, j (n), y�

i, j (n)

)
, i, j = 1, N

}
of system (6) is globally

attractive.

Proof Consider

{(
xi, j (n), yi, j (n)

)
, i, j = 1, N

}
is arbitrary positive solution of

system (6). Let

V1,1,i, j (n) = |ln
(
xi, j (n) − Ŝ

{
xi, j (n − 1)

})
− ln

(
x�
i, j (n) − Ŝ

{
x�
i, j (n − 1)

})
|

Then it follows from the first equation of (6) that

V1,1,,i, j ≤|ln xi, j (n) − ln x�
i, j (n)| + γ|yi, j (n − r) − y�

i, j (n − r)|
+ δv|xi, j (n − r) − x�

i, j (n − r)|. (21)

By the Mean Value theorem, we get

ln xi, j (n) − ln x�
i, j (n) = 1

θ1(n)
(xi, j (n) − x�

i, j (n)),

where θ1(n) lies between xi, j (n) and x�
i, j (n),

ln(xi, j (n) − Ŝ
{
xi, j (n − 1)

}
) − ln(x�

i, j (n) − Ŝ
{
x�
i, j (n − 1)

}
)

= 1

θ2(n)
((xi, j (n) − x�

i, j (n)) − (Ŝ
{
xi, j (n − 1)

} − Ŝ
{
x�
i, j (n − 1)

}
)),

where θ2(n) lies between xi, j (n) − Ŝ
{
xi, j (n − 1)

}
and x�

i, j (n) − Ŝ
{
x�
i, j (n − 1)

}
.

We consider

|ln xi, j (n) − ln x�
i, j (n)|

= |ln(xi, j (n) − Ŝ
{
xi, j (n − 1)

}
) − ln(x�

i, j (n) − Ŝ
{
x�
i, j (n − 1)

}
)|

− |ln(xi, j (n) − Ŝ
{
xi, j (n − 1)

}
) − ln(x�

i, j (n) − Ŝ
{
x�
i, j (n − 1)

}
)|

+ |ln xi, j (n) − ln x�
i, j (n)|

≥ V1,1,i, j (n) −
(

1

θ2(n)
− 1

θ1(n)

)
|xi, j (n) − x�

i, j (n)|

− 1

θ2(n)

(
Ŝ

{
xi, j (n − 1)

} − Ŝ
{
x�
i, j (n − 1)

} )
.

(22)
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Combining (21) and (22), we have

ΔV1,1,i, j (n) = V1,1,i, j (n + 1) − V1,1,i, j (n)

≤ −
(

1

θ2(n)
− 1

θ1(n)

)
|xi, j (n) − x�

i, j (n)|
+ γ|yi, j (n − r) − y�

i, j (n − r)|
+ δx |xi, j (n − r) − x�

i, j (n − r)|
− 1

θ2(n)

(
Ŝ

{
xi, j (n − 1)

} − Ŝ
{
x�
i, j (n − 1)

})
.

(23)

Next, we let

V1,2,i, j (n) =
n−1∑

s=n−r

δv|xi, j (s) − x�
i, j (s)| +

n−1∑

s=n−r

γ|yi, j (s) − y�
i, j (s)|

Then we have

ΔV1,2,i, j (n) = V1,2,i, j (n + 1) − V1,2,i, j (n)

=
n∑

s=n+1−r

δx |xi, j (s) − x�
i, j (s)| +

n∑

s=n+1−r

γ|yi, j (s) − y�
i, j (s)|

−
n−1∑

s=n−r

δx |xi, j (s) − x�
i, j (s)| −

n−1∑

s=n−r

γ|yi, j (s) − y�
i, j (s)|

= δx |xi, j (n) − x�
i, j (n)| − δx |xi, j (n − r) − x�

i, j (n − r)|
+ γ|yi, j (n) − y�

i, j (n)| − γ|yi, j (n − r) − y�
i, j (n − r)|.

(24)

We let W1,i, j = V1,1,i, j (n) + V1,2,i, j (n). Then it follows from (23) and (24) that

ΔV1,i, j (n) = ΔV1,1,i, j (n) + ΔV1,2,i, j (n)

≤
(

δx − 1

θ2(n)
+ 1

θ1(n)

)
|xi, j (n) − x�

i, j (n)|
+ γ|yi, j (n) − y�

i, j (n)|
− 1

θ2(n)

(
Ŝ

{
xi, j (n − 1)

} − Ŝ
{
x�
i, j (n − 1)

} )

(25)

In a similar way we define for the second equation of (6)

V2,i, j (n) = V2,1,i, j (n) + V2,2,i, j (n),

where
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V2,1,i, j (n) = |ln yi, j (n) − ln y�
i, j (n)|,

V2,2,i, j (n) =
n−1∑

s=n−r

ηγ|xi, j (s) − x�
i, j (s)|.

Then we have

ΔV2,1,i, j (n) = V2,1,i, j (n + 1) − V2,1,i, j (n)

≤ −
(

1

θ3(n)
− | 1

θ3
− δy |

)
|yi, j (n) − y�

i, j |
+ ηγ|xi, j (n − r) − x�

i, j (n − r)|,

where θ3 is between yi, j (n) and y�
i, j (n),

ΔV2,2,i, j (n) = ηγ|xi, j (n) − x�
i, j (n)| − ηγ|xi, j (n − r) − x�

i, j (n − r)|.

Hence
ΔV2,i, j (n) = ΔV2,1,i, j (n) + ΔV2,2,i, j (n)

≤ −
(

1

θ3(n)
− | 1

θ3
− δy|

)
|yi, j (n) − y�

i, j (n)|
+ ηγ|xi, j (n) − x�

i, j (n)|.
(26)

Now, we introduce for any pixel (i, j) Lyapunov function

Vi, j (n) = V1,i, j (n) + V2,i, j (n). (27)

According to (25)–(27) we have

ΔVi, j (n) = ΔV1,i, j (n) + ΔV2,i, j (n)

≤
(

δx − 1

θ2(n)
+ 1

θ1(n)
+ ηγ

)
|xi, j (n) − x�

i, j (n)|

+
(

γ − 1

θ3(n)
− | 1

θ3
− δy |

)
|yi, j (n) − y�

i, j (n)|

− 1

θ2(n)

(
Ŝ

{
xi, j (n − 1)

} − Ŝ
{
x�
i, j (n − 1)

})
.

We let V (n) = ∑N
i, j=1 Vi, j (n). When summing ΔVi, j (n) through i, j = 1, N , and

taking into account the diffusion properties of spatial operator, we get
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ΔV (n) ≤
(

δx − 1

θ2(n)
+ 1

θ1(n)
+ ηγ

) N∑

i, j=1

|xi, j (n) − x�
i, j (n)|

+
(

γ − 1

θ3(n)
− | 1

θ3
− δy|

) N∑

i, j=1

|yi, j (n) − y�
i, j (n)|

≤
(

δx − exp
{
γmy + δxmx − β

} + 1

mx
+ ηγ

) N∑

i, j=1

|xi, j (n) − x�
i, j (n)|

+
(

γ − min

{
δy,

2

My
− δy

} ) N∑

i, j=1

|yi, j (n) − y�
i, j (n)|

≤ −ξ

( N∑

i, j=1

|xi, j (n) − x�
i, j (n)| +

N∑

i, j=1

|yi, j (n) − y�
i, j (n)|

)
.

It completes the proof.

5 Numerical Investigation

In work [15] we investigated numerically the continuous-time model of immunosen-
sor (1) at parameters values:

β = 2min−1, γ = 2 mL
min·μg , μy = 1min−1, η = 0.8/γ, δx = 0.5 mL

min·μg , δy =
0.5 mL

min·μg , D/Δ2 = 2.22min−1.
Here we analyze its discrete analogue, which we obtain with help of scaling some

of the corresponding parameters due to discretization step h = 0.01 and choosing
the others experimentally6,7:

β = 2h, γ = 2 h, μy = h, η = 0.01184/γ, δx = 0.5 h, δy = 0.5 h, D/Δ2 =
2.22

√
h.

We see that the scaling of the parameters should be studied deeper. But the exact
numerical consistency with the continuous-time system is not the objective of this
work. We leave it for our future research.

We start from investigating of positivity of the solutions. Firstly, we see that
the necessary condition (12) of positive invariance of the set Ω holds. Then,
in order to check that limn→∞ xi, j (n) �= 0, i, j = 1, N , we analyze the function
fextnc(N ) (Fig. 1). We see that the value N = 14 is the threshold below which
fextnc(N ) < 1, that is limn→∞ xi, j (n) �= 0. Moreover, since fextnc(16) > 1, we con-
clude that limn→∞ xi, j (n) �= 0.

6Hereinafter we omit units of dimensions of parameters.
7After scaling of γ the value η = 0.8/γ may not be applicable for Nicholson-type difference system
(it causes number overflow). So, we have decreased it to 0.01184 experimentally.
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Fig. 1 The values of the function fextnc(N ) for N ∈ {1, 2, . . . , 100} (black points) as compared
with one (blue line)

Table 1 Numerical simulation of the system (6) at r = 8

After calculating the steady states for pixels (identical and nonidentical ones), we
can apply the global stability conditions (20).

Similarly to differential equations in the discrete-timemodel we can see that when
changing the value of time delay r we have changes of qualitative behavior of pixels



314 V. Martsenyuk et al.

Table 2 The phase planes of the system (6) for antibody populations yi, j versus antigen populations
xi, j , i, j = 7, 9. Numerical simulation of the system (6) at r = 12. Here • indicates initial state, •
indicates identical steady state, • indicates nonidentical steady state. The solution converges to a
stable limit cycle

and entire model. We considered the parameter value set given above and computed
the long-time behavior of the system (6) describing two-dimensional 16 × 16-pixels
array (N = 16) for r = 8, 12 and 15. The phase diagrams of the antibody vs. antigen
populations for the pixel (8, 8) and its neighborhood for these values of r are shown
in Tables 1, 2, 3.

For example, at r ≤ 10 we can see trajectories corresponding to stable node for
all pixels (see Tables 1). At values r = 10 Hopf bifurcation occurs and further trajec-
tories correspond to stable limit cycles of ellipsoidal form for all pixels (see Table 2).
We note that in order that the numerical solutions regarding Hopf bifurcation were in
agreement with the theoretical results, we should apply a Hopf bifurcation theorem
from the work [8] which proves appearance of small invariant attracting cycles of
radius O(

√
h).

For r = 12, the phase diagrams in Table 2 show that the solution is a limit cycle
with two local extrema (one local maximum and one local minimum) per cycle.
Then for r = 14, 15 the solution is a limit cycle with twelve local extrema per cycle
(see Table 3). Finally, for r = 16, the behavior looks like chaotic one. Similarly as
in continuous-time model [15], we have regarded behavior as chaotic if no periodic
behavior could be found in the long-time behavior of the solutions.
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Table 3 The limit cycles on the phase plane plots of the system (6) for antibody populations yi, j
versus antigen populations xi, j , i, j = 7, 9. Numerical simulation of the system (6) at r = 15. Here
• indicates identical steady state, • indicates nonidentical steady state. Limit cycles are obtained as
trajectories for t ∈ [4000, 5000]. The solution converges to a stable limit cycle with twelve local
extrema per cycle

At D = 0 (i.e., without diffusion) a numerical bifurcation diagram showing the
maximum and minimum points for the limit cycles for the antigen population x1,1
as a function of time delay is given in Fig. 2. The Hopf bifurcation from the stable
equilibrium point to a simple limit cycle can be clearly seen at r = 18. Further
all dynamical behavior is characterized as limit cycles, which can be evidenced
numerically (see Fig. 3).

At D/Δ2 = 0.02 a numerical bifurcation diagram showing the maximum and
minimum points for the limit cycles for the antigen population V1,1 as a function of
time delay is given in Fig. 4. The Hopf bifurcation from the stable equilibrium point
to a simple limit cycle and the sharp transitions at critical values of the time delay
between limit cycles with increasing numbers of maximum and minimum points per
cycle can be clearly seen.

As a check that the solution is chaotic for r ≥ 16, we perturbed the initial con-
ditions to test the sensitivity of the system. Figures 5, 6, 7 show a comparison of
the solutions for the antigen population x1,1 with initial conditions x1,1(n) = 1 and
x1,1(n) = 1.001, n ∈ [−r, 0], and identical all the rest ones. In Figs. 6, 7 near the
initial time the two solutions appear to be the same, but as time increases there is a
marked difference between the solutions supporting the conclusion that the system
behavior is chaotic at r ≥ 16.
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Fig. 2 A numerical bifurcation diagram at D = 0. The points show the local extreme points for
the V1,1 population at n ∈ [3300, 5000]. Hopf-type bifurcation appears at r = 18

Fig. 3 The time series of the solutions to the system (6) for the antigen population x1,1 from
n = 0 to 5000 with D/Δ2 = 0.0 and r = 24 for initial conditions x1,1(n) = 1 and x1,1(t) = 1.001
(deviated), n ∈ [−r, 0], and identical all the rest ones. The two solutions appear to be the same,
supporting the conclusion that the system behavior is not chaotic

When analyzing an influence of diffusion on qualitative behavior of the model
we pay attention on one more the way to chaos presented in Fig. 8. We see that
increasing the values of D/Δ2 we transit from steady state to limit cycles and finally
to chaotic behavior at values D/Δ2 ≈ 0.025.
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Fig. 4 A numerical bifurcation diagram at D/Δ2 = 0.02 showing the “bifurcation path to chaos”
as the time delay r is increased. The points show the local extreme points per cycle for the x1,1
population. Chaotic-type solutions occur at r = 16. Note that at r = 27, 28 we have unbounded
solutions

Fig. 5 The time series of the solutions to the system (6) for the antigen population x1,1 from
n = 0 to 5000 with D/Δ2 = 0.02 and r = 15 for initial conditions x1,1(n) = 1 and x1,1(t) = 1.001
(deviated), n ∈ [−r, 0], and identical all the rest ones. The two solutions appear to be the same,
supporting the conclusion that the system behavior is not chaotic
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Fig. 6 The time series of the solutions to the system (6) for the antigen population x1,1 from
n = 0 to 5000 with D/Δ2 = 0.02 and r = 16 for initial conditions x1,1(n) = 1 and x1,1(t) = 1.001
(deviated), n ∈ [−r, 0], and identical all the rest ones. At the beginning the two solutions appear to
be the same, but as time increases there is a marked difference between the solutions supporting
the conclusion that the system behavior is chaotic

Fig. 7 The time series of the solutions to the system (6) for the antigen population x1,1 from
n = 0 to 5000 with D/Δ2 = 0.02 and r = 26 for initial conditions x1,1(n) = 1 and x1,1(t) = 1.001
(deviated), n ∈ [−r, 0], and identical all the rest ones. At the beginning the two solutions appear to
be the same, but as time increases there is a marked difference between the solutions supporting
the conclusion that the system behavior is chaotic
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Fig. 8 A numerical
bifurcation diagram at
r = 12 showing the
“bifurcation path to chaos”
as the diffusion D/Δ2 is
increased. The points show
the local extreme points per
cycle for the x1,1 population.
Chaotic-type solutions occur
at τ ≈ 0.025 with value 0 for
the number of extreme points

6 Conclusions

In the work we offered model of immunosensor which is based on the reaction-
diffusion system of the finite lattice difference equations with delay. Themain results
of thework are conditions of permanence and global asymptotic stability for endemic
state. Unfortunately, we are not able to say about permanence of the solution in usual
sense. So, here we introduced some “weaker” notion of quasi-permanence allowing
us to get conditions in a clear form.

It was shown that the dimension of pixels array N should be large enough (suffi-
cient condition) and the diffusion D/Δ2 should be small enough (necessary condi-
tion) to guarantee the positive invariance.

For the purpose of stability investigation we have used method of Lyapunov
functions (it is more correct to say “functionals” here). It combines general approach
for construction of Lyapunov functions of predator-prey models with finite lattice
differential equations.

Numerical examples showed us influence on stability of different parameters.
Increasing time delay we transmit from stable node to limit cycles and finally to
chaotic behavior. Such behavior is dynamically consistent with the behavior of
continuous-time model, which was studied in [15].

We note that difference with continuous-time model is the way to chaos. Namely,
in case of differential equations it was period-doubling, which was characterized
by the doubling of the number of local extrema. In case of difference equations we
have “chaos” as a result of increasing the number of local extrema (not doubling).
It is caused by the discrete nature of the delay r in contrary to the continuous-time
system.
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Another parameter causing changes in dynamic behavior of the system (6) is the
diffusion. Namely, it was numerically shown that when increasing D, we transit from
periodic solutions to chaotic ones also.
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