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Abstract We review some theorems and mistakes in linearized oscillation results
for difference equations with variable coefficients and constant delays, as well as
develop linearized oscillation theory when delays are also variable. Main statements
are applied to discrete models of population dynamics. In particular, oscillation of
generalized Pielou, Ricker and Lasota–Wazewska equations is considered.
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1 Introduction

Linearized theory usually relates properties of nonlinear equations to their linearized
versions. Results connecting oscillation properties of a nonlinear delay difference
equation

x(n + 1) − x(n) +
m∑

k=1

rk(n) fk[x(n − τk)] = 0 for n ≥ n0, (1)

The authors were partially supported by NSERC, grant RGPIN-2015-05976.
Elena Braverman acknowledges the support of both ICDEA-2018 in Dresden and NSERC, grant
RGPIN-2015-05976.

E. Braverman (B)
Department of Mathematics and Statistics, University of Calgary, 2500 University Dr. NW,
Calgary, AB T2N 1N4, Canada
e-mail: maelena@ucalgary.ca

B. Karpuz
Department of Mathematics, Dokuz Eylül University, Buca, 35160 İzmir, Turkey
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where {rk(n)} ⊂ R
+
0 := [0,∞), τk ∈ N0 := {0, 1, . . .}, k = 1, 2, . . . ,m, with the

linear equation

x(n + 1) − x(n) +
m∑

k=1

rk(n)x(n − τk) = 0 for n ≥ n0 (2)

go back to 1990ies [14]. Here in (1), u fk(u) > 0 for u ∈ R\{0} and either

lim inf
u→0

fk(u)

u
= 1 or | fk(u)| ≥ |u| in some neighborhood of the origin for any

k = 1, 2, . . . ,m.
In [14, Theorem6], under natural assumptions,Yan andQian stated that oscillation

of (2) implies oscillation of (1). However, in [10, p. 478], Tang and Yu disproved
the statement by Yan and Qian by constructing a counterexample in the case of
a single constant delay to show that (1) may have a nonoscillatory solution while
every solution of (2) is oscillatory. This happens in the critical case when the variable
coefficient is close to the boundary of the oscillation domain, see [11] formore details.

It is mentioned in [9] that to explore linearized oscillation of the autonomous
equation

x(n + 1) − x(n) +
m∑

k=1

pk fk[x(n − τk)] = 0 for n ≥ n0, (3)

it is sufficient to imply limitations on nonlinear functions in a small neighbourhood
of zero.

Proposition 1 ([9, p. 570]) Assume that pk ∈ R
+ := (0,∞), fk ∈ C(R,R) satis-

fies u fk(u) > 0 for all u ∈ (−δ, δ)\{0}, where δ ∈ R
+, and lim

u→∞
fk(u)

u
= 1 for

k = 1, 2, . . . ,m. Every solution of (3) is oscillatory if and only if every solution of
the autonomous equation

x(n + 1) − x(n) +
m∑

k=1

pkx(n − τk) = 0 for n ≥ n0 (4)

is oscillatory.

However, a slight modification of [9, p. 574] disproves this statement.

Example 1 Let τ ∈ N and p ∈ [1,∞). Consider the nonlinear equation

x(n + 1) − x(n) + p sin
(
x(n − τ )

) = 0 for n ≥ 0. (5)

As any eventually positive solution of the linearized equation

x(n + 1) − x(n) + px(n − τ ) = 0 for n ≥ 0
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should be monotone decreasing for n ≥ n0, we get x(n0 + 1) < 0. Similarly, there
are no eventually negative solutions. However, (5) has an infinite number of constant
nonoscillatory solutions {x(n)} = { jπ}, j = ±1,±2, . . ., both positive and negative.

Reducing conditions to a small neighbourhood of zero as in Proposition 1 is
allowed only when all nonoscillatory solutions {x(n)} tend to zero as n → ∞.

The purpose of the present paper is to establish connections between oscillation
properties of the nonlinear equation with variable coefficients and delays

x(n + 1) − x(n) +
m∑

k=1

rk(n) fk
[
x
(
hk(n)

)] = 0 for n ≥ n0 (6)

and the linear equation

x(n + 1) − x(n) +
m∑

k=1

rk(n)x
(
hk(n)

) = 0 for n ≥ n0, (7)

as well as to apply the obtained results to some models of population dynamics
models.

We consider (6) under some the following assumptions:

(A1) For k = 1, 2, . . . ,m, {rk(n)} ⊂ R
+
0 .

(A2) For k = 1, 2, . . . ,m, {hk(n)} ⊂ Z, hk(n) ≤ n, n ≥ n0 and lim
n→∞ hk(n) = ∞.

(A3) For k = 1, 2, . . . ,m, fk ∈ C(R,R) satisfies u fk(u) > 0 for all u ∈ R\{0}.
(A4) lim

u→0

fk(u)

u
= 1 for k = 1, 2, . . . ,m.

(A5) There exists δ ∈ R
+ such that either

0 ≤ fk(u) ≤ u for all u ∈ [0, δ] and k = 1, 2, . . . ,m, (8)

or
0 ≥ fk(u) ≥ u for all u ∈ [−δ, 0] and k = 1, 2, . . . ,m. (9)

For all results concerning (6), we assume that (A1) and (A2) hold. Define

n−1 := min
k

min{hk(n) : n ≥ n0},

which exists and is finite by (A2). By a solution of (6), we mean a sequence
{x(n)}∞n=n−1

for which

x(n + 1) = x(n) −
m∑

k=1

rk(n) fk
[
x
(
hk(n)

)]
for n = n0, n0 + 1, . . . .

It is well known that (6) has a unique solution satisfying the initial condition
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x(n) = ϕn−n−1 for n = n−1, n−1 + 1, . . . , n0,

where ϕ0,ϕ1, . . . ,ϕn0−n−1 are prescribed real numbers.
A solution {x(n)} of (6) is said to be oscillatory if x(n) are neither eventually

positive nor eventually negative. Equation (6) is oscillatory if all its solutions are
oscillatory. Otherwise, (6) is called nonoscillatory.

After linearization, we have to apply oscillation results for linear equation (7), so
we present below some of them.

Proposition 2 ([7, Corollary 7.1.1]) Assume that pk ∈ R and τk ∈ Z for
k = 1, 2, . . . ,m. Linear autonomous equation (4) is oscillatory if and only if the
characteristic equation

λ − 1 +
m∑

k=0

pkλ
−τk = 0 (10)

has no positive roots.

Proposition 3 ([12, Theorem 1]) Let (A1) and (A2) hold and

lim inf
n→∞ inf

λ∈(0,1)

{ m∑

k=1

rk(n)

λ(1 − λ)n−hk (n)

}
> 1.

Then, (7) is oscillatory.

Proposition 4 ([15, Corollary 3]) Assume that (A1) and (A2) are satisfied and there
exist λ0 ∈ (0, 1) and n1 ≥ n0 such that

m∑

k=1

rk(n)

λ0(1 − λ0)n−hk (n)
≤ 1 for n ≥ n1.

Then, (7) is nonoscillatory.

Denoting

{μ(n)} =
{

u(n)

1 − u(n)

}

in [3, Theorem 2.1], we get the following.

Proposition 5 ([15, Corollary 3]) If (A1) and (A2) hold, the following statement are
equivalent.

(i) Equation (7) is nonoscillatory.
(ii) There exists n0 ∈ Z such that the inequality

x(n + 1) − x(n) +
m∑

k=1

rk(n)x
(
hk(n)

) ≤ 0
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has an eventually positive solution for n ≥ n0 and/or

x(n + 1) − x(n) +
m∑

k=1

rk(n)x
(
hk(n)

) ≥ 0

has an eventually negative solution for n ≥ n0.
(iii) There exist n0 ∈ Z and a sequence {μ(n)} ⊂ R

+
0 such that

μ(n) ≥
m∑

k=1

rk(n)

n∏

j=hk (n)

[1 + μ( j)] for n ≥ n1, (11)

where n1 ≥ n0 satisfies hk(n) ≥ n0 for all n ≥ n1 and k = 1, 2, . . . ,m.

Remark 1 Proposition 4 follows from Proposition 5 with {μ(n)} ≡
{

λ0

1 − λ0

}
.

Next, we quote an oscillation result for nonlinear equation (6).

Proposition 6 ([7, Theorem 7.4.1]) Assume that (A4) and (A5) hold, pk ∈ R
+ and

τk ∈ N0 for k = 1, 2, . . . ,m. The autonomous nonlinear equation

x(n + 1) − x(n) +
m∑

k=1

pk fk[x(n − τk)] = 0 for n ≥ n0 (12)

is oscillatory if and only if the autonomous linear equation

x(n + 1) − x(n) +
m∑

k=1

pkx(n − τk) = 0 for n ≥ n0

is oscillatory.

Proposition 7 Assume (A4) and (A5). The autonomous nonlinear equation (12) is
oscillatory if and only if the characteristic equation (10) has no positive roots.

By analyzing the characteristic equation

λ − (1 − p) + qλ−τ = 0,

we get the following result.

Proposition 8 Assume f, g ∈ C(R,R) satisfy (A4) and (A5), p ∈ [0, 1), q ∈ R
+
0

and τ ∈ N0. The autonomous nonlinear equation

x(n + 1) − x(n) + p f [x(n)] + qg[x(n − τ )] = 0 for n ≥ n0
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is oscillatory if and only if

q(τ + 1)τ+1 > (1 − p)τ+1τ τ .

Further, Sect. 2 contains known and some new auxiliary statements that will be
required to prove main results in Sect. 3. In Sect. 4, we apply linearization theorems
to equations of mathematical biology generalizing Pielou’s equation, Ricker’s model
and Lasota–Wazewska equation. Some final comments are presented in Sect. 5.

2 Auxiliary Results

Wewill assumewithout further mentioning that (A1)–(A3) hold. Let us start with the
statement that under (A1)–(A3), unlike Example 1, there is a nonoscillatory solution
which does not tend to zero if and only if the series of the sum of coefficients
converges.

Theorem 1 The following statements are equivalent.

(i)
∞∑

j

m∑

k=1

rk( j) < ∞.

(ii) Equation (6) has a nonoscillatory solution {x(n)} such that lim
n→∞ x(n) 	= 0.

Proof (i) =⇒ (ii): Pick L > 0 and denote M := max
k

max
L≤x≤2L

{ fk(x)}. Since the

series
∞∑

j

m∑

k=1

rk( j) converges, we can find n1 ≥ n0 such that

∞∑

j=n

m∑

k=1

rk( j) ≤ L

M
for n ≥ n1.

By (A2), there is n2 ≥ n1 such that hk(n) ≥ n1 for n ≥ n2. Define x0(n) :≡ 1 for
n ≥ n1 and {x�(n)} for � ∈ N as

x�(n) :=

⎧
⎪⎨

⎪⎩

L +
∞∑

j=n

m∑

k=1

rk( j) fk
[
x�−1

(
hk( j)

)]
, n ≥ n2,

2L , n1 ≤ n ≤ n2.

Inductive arguments yield that 2L ≥ x�(n) ≥ x�+1(n) ≥ L for n ≥ n1 and � ∈ N.
Define {x(n)} by x(n) := lim

�→∞ x�(n) for n ≥ n1.

Then,we see that {x(n)} is a positive solution of (6) satisfying lim
n→∞ x(n) = L > 0.
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(ii) =⇒ (i): We may suppose without loss of generality that {x(n)} is an eventually
positive solution of (6) such that lim

n→∞ x(n) 	= 0. By (A1)—(A3) and (6), {x(n)} is
eventually nonincreasing. Then, lim

n→∞ x(n) =: L > 0. We can find n1 ≥ n0 such that

x(n) > 0 and L
2 ≤ x(hk(n)) ≤ 3L

2 for all n ≥ n1. Setm := min
k

min
|L−x |≤ L

2

{ fk(x)}, then
m > 0 by (A3). Summing (6) from n1 to (n − 1), we get

0 = x(n) − x(n1) +
n−1∑

j=n1

m∑

k=1

rk( j) fk
[
x
(
hk(n)

)]
for all n ≥ n1,

which yields
n−1∑

j=n1

m∑

k=1

rk( j) ≤ x(n1)

m
for all n ≥ n1.

This proves (i) provided that {x(n)} is eventually positive. The case of {x(n)} being
eventually negative is similar and thus is omitted.

Let us illustrate that in Theorem 1 the limit assumption on variable delays in (A2)
is necessary, as well as continuity and the sign condition on f in (A3), with two
examples.

Example 2 The equation

x(n + 1) − x(n) + x(−1) = 0 for n ≥ 0

with the initial conditions x(−1) = −1 and x(0) = 0 has an eventually positive
solution {x(n)} = {n}, which does not tend to zero, because the delay obviously
does not satisfy lim

n→∞ h(n) = ∞ of (A2).

Example 3 For the equation

x(n + 1) − x(n) + 2 f [x(n − 1)] = 0 for n ≥ 0, (13)

where f is either

f1(u) :=
{
u, u ≤ 1
1
8 (u − 1), u > 1

or f2(u) :=
{

1
2 − ∣∣ 1

2 − u
∣∣, u ≤ 1

1
8 (u − 1), u ≥ 1,

all the conditions but one (continuity for f1 or sign condition for f2) in (A3) are
satisfied.However, all solutions of its linearized counterpart are obviously oscillatory,
while {x(n)} = {1 + 2−n} is a positive solution of (13) with the initial conditions
x(−1) = 3 and x(0) = 2 since

x(n + 1) = 1 + 2−(n+1) = 1 + 2−n − 1

2
2−n = x(n) − 2 f1[x(n − 1)] for n = 0, 1, . . . .
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With f = f2, it is easy to verify that {x(n)} = {1} is also a solution of (13) with the
initial conditions x(−1) = 1 and x(0) = 1.

Now, consider the condition

∞∑

j

m∑

k=1

rk( j) = ∞. (14)

Corollary 1 Every nonoscillatory solution {x(n)} of (6) tends to zero as n → ∞ if
and only if (14) holds.

Remark 2 If (6) is oscillatory, then (14) holds.

Lemma 1 Assume that every nonoscillatory solution {x(n)} of (7) satisfies
lim
n→∞ x(n) = 0. Then, there exists a solution {μ(n)} of inequality (11) satisfying

lim
n→∞

(n−1∏

j

[1 + μ( j)]
)−1

= 0.

Proof Without loss of generality, let {x(n)} be an eventually positive solution of (7)
such that x(n) → 0 as n → ∞. Then, we can find n1 ≥ n0 such that x(n) > 0 and
x(hk(n)) > 0 for all n ≥ n1 and k = 1, 2, . . . ,m. From (7), x(n + 1) ≤ x(n) for all

n ≥ n1. Now, define μ(n) := x(n)

x(n + 1)
− 1 ≥ 0 for n ≥ n1, then

x(n) = x(n1)

( n−1∏

j=n1

[1 + μ( j)]
)−1

for n ≥ n1. (15)

Substituting (15) into (7), we get

μ(n) =
m∑

k=1

rk(n)

n∏

j=hk (n)

[1 + μ( j)] for n ≥ n2,

where n2 ≥ n1 is such that hk(n) ≥ n1 for all n ≥ n1 and k = 1, 2, . . . ,m, i.e., {μ(n)}
satisfies (11) with equality. Further, we have

lim
n→∞

( n−1∏

j=n1

[1 + μ( j)]
)−1

= lim
n→∞

x(n)

x(n1)
= 0.

This completes the proof.
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3 Main Results

Our first main result states that oscillation of the perturbed linear equation implies
oscillation of the nonlinear equation.

Theorem 2 Assume that (A4) holds, and there exists θ ∈ (0, 1) such that the linear
equation

x(n + 1) − x(n) + θ

m∑

k=1

rk(n)x
(
hk(n)

) = 0 for n ≥ n0 (16)

is oscillatory. Then, (6) is oscillatory.

Proof Assume the contrary that {x(n)} is a nonoscillatory solution of (6). First,
suppose that {x(n)} is eventually positive. Then, we can find n1 ≥ n0 such that
x(n) > 0 and x(hk(n)) > 0 for alln ≥ n1 and k = 1, 2, . . . ,m. From (6), x(n + 1) ≤
x(n) for all n ≥ n1. By Corollary 1, we see that lim

n→∞ x(n) = 0. Thus, we can find

n2 ≥ n1 such that

fk
[
x
(
hk(n)

)] ≥ θx
(
hk(n)

)
for all n ≥ n2 and k = 1, 2, . . . ,m.

From (6), we obtain the inequality

x(n + 1) − x(n) + θ

m∑

k=1

rk(n)x
(
hk(n)

) ≤ 0 for all n ≥ n2.

By Proposition 5, Eq. (16) also has a nonoscillatory solution. The case where {x(n)}
is eventually negative is similar, which concludes the proof.

Next, we show that oscillation of a nonlinear equation implies oscillation of its
linearized counterpart.

Theorem 3 Assume that (A5) holds and (6) is oscillatory. Then, (7) is also oscilla-
tory.

Proof Assume the contrary, let {x(n)} be a nonoscillatory solution of (7). By
Corollary 1 and Remark 2, we have lim

n→∞ x(n) = 0. By Proposition 5, there exists a

positive sequence {μ0(n)} such that

μ0(n) ≥
m∑

k=1

rk(n)

n∏

j=hk (n)

[1 + μ0( j)] for all n ≥ n1,

where n1 ≥ n0. Thus, by Lemma 1, we have

lim
n→∞

⎛

⎝
n−1∏

j=n1

[1 + μ( j)]
⎞

⎠
−1

= 0.
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First, suppose that there exists δ ∈ R
+ satisfying (A5) with (8). We can find n2 ≥ n1

such that

⎛

⎝
n−1∏

j=n1

[1 + μ( j)]
⎞

⎠
−1

≤ δ for all n ≥ n2. By (A2), we can find n3 ≥ n2 such

that hk(n) ≥ n2 for all n ≥ n3 and k = 1, 2, . . . ,m. Note that

⎛

⎝
hk (n)−1∏

j=n1

[1 + μ( j)]
⎞

⎠
−1

≤ δ for all n ≥ n3 and k = 1, 2, . . . ,m. Define {μ�(n)} by

μ�(n) =
m∑

k=1

rk(n) fk

⎡

⎣
(hk (n)−1∏

j=n1

[1 + μ�−1( j)]
)−1

⎤

⎦
n∏

j=n1

[1 + μ�−1( j)]

for any n ≥ n3 and � ∈ N. Clearly,μ0(n) ≥ μ1(n) ≥ · · · ≥ μ�(n) ≥ μ�+1(n) > 0 for
n ≥ n3 and � ∈ N. Let μ(n) := lim

�→∞ μ�(n) for n ≥ n3, and define

y(n) :=
( n−1∏

j=n3

[1 + μ( j)]
)−1

for n ≥ n3.

Then {y(n)} is an eventually positive solution of (6). If (A5) holds with (9), we
can proceed similarly and show that (6) has an eventually negative solution, which
completes the proof.

4 Applications

Discrete population models are usually constructed assuming that per capita pro-
duction rate g is density-dependent x(n + 1) − x(n) = x(n)g[x(n)]. However, this
rate may depend on population size at one of the previous stages x(n + 1) − x(n) =
x(n)g[x(h(n))]. To account for reference population sizes at different moments in
the past, either additive

x(n + 1) − x(n) = x(n)

m∑

k=1

rk(n)gk
[
x
(
hk(n)

)]
for n ≥ n0

or multiplicative

x(n + 1) − x(n) = x(n)

m∏

k=1

rk(n)gk
[
x
(
hk(n)

)]
for n ≥ n0

extensions can be considered.
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4.1 Pielou’s Equation with Several Arguments

First, consider the following Pielou’s difference equation with variable delays

N (n + 1) = N (n)

m∏

k=1

[
αk

1 + βk N
(
hk(n)

)
]pk (n)

for n ≥ n0, (17)

where {hk(n)} satisfies (A2), αk ∈ (1,∞), βk ∈ R
+ and {pk(n)} ⊂ R

+
0 for

k = 1, 2, . . . ,m (see [8, p. 22]). One can show that if N (n) ≥ 0 for n < n0 and
N (n0) > 0, Eq. (17) has a unique positive solution.

In the case of a single delay term, (17) includes the so-called logistic equation

N (n + 1) − N (n) = γN (n + 1)

(
1 − N

(
h(n)

)

K

)
for n ≥ n0,

where {h(n)} satisfies (A2), γ ∈ (0, 1) and K ∈ R
+.

Let us suppose that there exists K ∈ R
+ such that

αk − 1 = Kβk for k = 1, 2, . . . ,m. (18)

If we let

x(n) := ln

[
N (n)

K

]
for n ≥ n0, (19)

then (17) takes the form

x(n + 1) − x(n) +
m∑

k=1

pk(n) ln
[
1 + γk

(
ex(hk (n)) − 1

)] = 0 for n ≥ n0, (20)

where γk := 1 − 1
αk

∈ (0, 1) for k = 1, 2, . . . ,m.
We therefore showed the equivalence between oscillation of all solutions of non-

linear equation (17) about K and oscillation of nonlinear equation (20) about zero.
Note that for k = 1, 2, . . . ,m, the function fk(u) := 1

γk
ln[1 + γk(eu − 1)] for

u ∈ R satisfies 0 ≥ fk(u) ≥ u for x ≤ 0, i.e., for k = 1, 2, . . . ,m, fk fulfills (A5)
with (9) and any δ ∈ R

+. In view of our discussion in Sect. 3, we associate (17) with
the linear equation

x(n + 1) − x(n) +
m∑

k=1

γk pk(n)x
(
hk(n)

) = 0 for n ≥ n0. (21)

Thus, we obtain some explicit oscillation and nonoscillation tests for (17).
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Proposition 9 Assume that {hk(n)} satisfies (A2),αk ∈ (1,∞),βk ∈ R
+, {pk(n)} ⊂

R
+
0 for k = 1, 2, . . . ,m. Assume further that there exists K ∈ R

+ such that (18)
holds.

(i) If there exists θ ∈ (0, 1) such that the linear equation

x(n + 1) − x(n) + θ

m∑

k=1

γk pk(n)x
(
hk(n)

) = 0 for n ≥ n0 (22)

is oscillatory then (17) is oscillatory about K .
(ii) If (21) is nonoscillatory then (17) is nonoscillatory about K .

Corollary 2 Assume that {hk(n)} satisfies (A2), αk ∈ (1,∞), βk ∈ R
+, {pk(n)} ⊂

R
+
0 for k = 1, 2, . . . ,m. Assume further that there exists K ∈ R

+ such that (18)
holds.

(i) If

lim inf
n→∞ inf

λ∈(0,1)

{ m∑

k=1

γk pk(n)

λ(1 − λ)n−hk (n)

}
> 1 (23)

then (17) is oscillatory about K .
(ii) If there exist λ0 ∈ (0, 1) and n1 ≥ n0 such that

m∑

k=1

γk pk(n)

λ0(1 − λ0)n−hk (n)
≤ 1 for n ≥ n1 (24)

then (17) is nonoscillatory about K .

Proof (i) From (23), there exists θ ∈ (0, 1) such that

lim inf
n→∞ inf

λ∈(0,1)

{
θ

m∑

k=1

γk pk(n)

λ(1 − λ)n−hk (n)

}
> 1. (25)

Due to Proposition 3, (25) implies that (22) is oscillatory. An application of
Proposition 9 completes the proof.

(ii) The proof follows from Propositions 4 and 9.

The following result for autonomous equations follows from Proposition 7.

Proposition 10 Assume that τk ∈ N0, αk ∈ (1,∞), βk, pk ∈ R
+, and there exists

K ∈ R
+ such that (18) holds. The equation

N (n + 1) = N (n)

m∏

k=1

[
αk

1 + βk N (n − τk)

]pk

for n ≥ n0
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is oscillatory about K if and only if the characteristic equation

λ − 1 +
m∑

k=1

γk pkλ
−τk = 0, (26)

where γk := 1 − 1
αk

for k = 1, 2, . . . ,m, has no positive roots.

4.2 Generalized Ricker Model with Variable Arguments

Next, consider Ricker’s stock and recruitment model with variable delays

N (n + 1) = N (n) exp

{ m∑

k=1

pk(n)

(
1 −

[
N

(
hk(n)

)

K

]γk)}
for n ≥ n0, (27)

where all {hk(n)} satisfy (A2), {pk(n)} ⊂ R
+
0 , γk ∈ R

+ and K ∈ R
+ (see [1, p. 91]).

Substitution (19) transforms (27) into

x(n + 1) − x(n) +
m∑

k=1

pk(n)
[
eγk x(hk (n)) − 1

] = 0 for n ≥ n0. (28)

This implies the equivalence of oscillation of nonlinear equation (27) about K to
oscillation of (28) about zero.

Note that for k = 1, 2, . . . ,m, the function fk(u) := 1

γk
(eγku − 1) for u ∈ R sat-

isfies 0 ≥ fk(u) ≥ u for u ≤ 0, i.e., for k = 1, 2, . . . ,m, fk fulfills (A5) with (9)
and any δ ∈ R

+. We associate linear equation (21) with (27), see Sect. 3. Since (27)
is associated with the same equation as Pielou’s equation (17), we can give the
following results without a proof.

Proposition 11 Assume that K ∈ R
+, {hk(n)} satisfies (A2), {pk(n)} ⊂ R

+
0 and

γk ∈ R
+ for k = 1, 2, . . . ,m.

(i) If there exists θ ∈ (0, 1) such that (22) is oscillatory then (27) is oscillatory
about K .

(ii) If (21) is nonoscillatory then (27) is nonoscillatory about K .

Corollary 3 Assume that K ∈ R
+, {hk(n)} satisfies (A2), {pk(n)} ⊂ R

+
0 andγk ∈R

+
for k = 1, 2, . . . ,m.

(i) If (23) holds then (27) is oscillatory about K .
(ii) If there exists λ0 ∈ (0, 1) such that (24) holds then (27) is nonoscillatory

about K .
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Proposition 12 Assume that K ∈ R
+, τk ∈ N0 and pk, γk ∈ R

+ for k = 1, 2, . . . ,m.
The equation

N (n + 1) = N (n) exp

{ m∑

k=1

pk

(
1 −

[
N (n − τk)

K

]γk)}
for n ≥ n0

is oscillatory about K if and only if the characteristic equation (26) has no positive
roots.

4.3 Lasota–Wazewska Equation

Finally, consider the discrete retarded Lasota–Wazewska equation for the survival of
red-blood cells (see [13])

N (n + 1) − N (n) = −p(n)N (n) + q(n)e−γN (h(n)) for n ≥ n0, (29)

where {h(n)} satisfies (A2), {p(n)} ⊂ [0, 1)describes probability of cell death at each
step, {q(n)} ⊂ R

+
0 and γ ∈ R

+ are production parameters such that p(n) = Kq(n)

for some K ∈ R
+ and n = n0, n0 + 1, . . .. We will suppose that {p(n)} or {q(n)}

does not vanish eventually. Then, there exists a unique number N ∗ ∈ R
+ such that

K N ∗ = e−γN ∗
,

which is called the equilibrium of (29). By applying the change of variables

x(n) := γ
[
N (n) − N ∗] for n ≥ n0,

we transform (29) into another nonlinear equation

x(n + 1) − x(n) + p(n)x(n) + γN ∗ p(n)
[
1 − e−x(h(n))

]
= 0 for n ≥ n0. (30)

Denote r1(n) := p(n), f1(u) := u, h1(n) := n, r2(n) := γN ∗ p(n), f2(u) :=
1 − e−u , h2(n) := h(n). Obviously f1 and f2 satisfy (A4) and (A5).

Therefore oscillation of nonlinear equation (29) about N ∗ is equivalent to oscil-
lation of (30) about zero.

Proposition 13 Let {h(n)} ⊂ Z, h(n) ≤ n for all n ≥ n0, lim
n→∞ h(n) = ∞, {p(n)} ∈

[0, 1), {q(n)} ⊂ R
+
0 , γ ∈ R

+ and there exist K ∈ R
+ such that p(n) = Kq(n) for

n = n0, n0 + 1, . . ..

(i) If there exists θ ∈ (0, 1) such that the linear equation

x(n + 1) − x(n) + θp(n)x(n) + θγN ∗ p(n)x
(
h(n)

) = 0 for n ≥ n0 (31)

is oscillatory then (29) is oscillatory about N ∗.
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(ii) If the linear equation

x(n + 1) − x(n) + p(n)x(n) + γN ∗ p(n)x
(
h(n)

) = 0 for n ≥ n0

is nonoscillatory, Eq. (29) is nonoscillatory about N ∗.

Corollary 4 Let {h(n)} ⊂ Z, h(n) ≤ n for all n ≥ n0, lim
n→∞ h(n) = ∞, {p(n)} ∈

[0, 1), {q(n)} ⊂ R
+
0 and γ ∈ R

+. Assume further that there exists K ∈ R
+ such that

p(n) = Kq(n) for n = n0, n0 + 1, . . ..

(i) If

lim inf
n→∞ inf

λ∈(0,1)

{
γN ∗ p(n)

λ(1 − λ)n−h(n)
∏n

j=h(n)

(
1 − p( j)

)
}

> 1, (32)

then (29) is oscillatory about N ∗.
(ii) If there exists λ0 ∈ (0, 1) such that

γN ∗ p(n)

λ0(1 − λ0)n−h(n)
∏n

j=h(n)

(
1 − p( j)

) ≤ 1 for all large n,

then (29) is nonoscillatory about N ∗.

Proof (i) From (32), there exists θ ∈ (0, 1) such that

lim inf
n→∞ inf

λ∈(0,1)

{
θγN ∗ p(n)

λ(1 − λ)n−h(n)
∏n

j=h(n)

(
1 − θp( j)

)
}

> 1. (33)

Note that (31) transforms into

y(n + 1) − y(n) + θγN ∗ p(n)
∏n

j=h(n)

(
1 − θp( j)

) y
(
h(n)

) = 0 for n ≥ n0 (34)

by the sign-preserving substitution

y(n) := x(n)
∏n−1

j=n0

(
1 − θp( j)

) for n ≥ n0.

Due to Proposition 3, (33) yields that (34) (and hence (31)) is oscillatory.
Therefore, an application of Proposition 13 completes the proof.

(ii) The proof follows from Propositions 4 and 13.

Theorem 4 ([5, Theorem 1]) Assume that p ∈ [0, 1), q ∈ R
+
0 , γ ∈ R

+ and τ ∈ N0.
The equation

N (n + 1) − N (n) = −pN (n) + qe−γN (n−τ ) for n ≥ n0 (35)
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is oscillatory about N ∗ if and only if

pγN ∗(τ + 1)τ+1 > (1 − p)τ+1τ τ .

Proof For (35), linearized Eq. (30) has the form

x(n + 1) − x(n) + px(n) + pγN ∗
[
1 − e−x(n−τ )

]
= 0 for n ≥ n0

for which Proposition 8 applies, which concludes the proof.

5 Final Comments

In the present paper, we have reviewed some known results and mistakes connected
to linearized oscillation of difference equations. Sufficient linearization results are
obtained for equations with variable coefficients and delays. They are illustrated
with examples and applications to discrete delay models of population dynamics.
Let us note that Proposition 12 solves [6, Problems 1–3 of Exercise 7.3]. Theorem 4,
obtained here as an illustration of the main linearization method, is the main result
of [5].

It is well known that the properties of difference equation with constant and vari-
able delays and variable coefficients are usually essentially different when delays are
unbounded. Itwould be interesting to consider linearization in the case of pantograph-
type difference equations. In particular, it is possible to explore models studied in
the present paper:

N (n + 1) = N (n)

m∏

k=1

[
αk

1 + βk N (� n
τk


)
] pk

n

for n ≥ n0,

N (n + 1) = N (n) exp

{ m∑

k=1

pk
n

(
1 −

[N (� n
τk


)
K

]γk)}
for n ≥ n0,

N (n + 1) = N (n) exp

{ m∑

k=1

pk
n

(
1 −

[N (� n
τk


)
K

]γk)}
for n ≥ n0,

where n0 ∈ N and �·
 is the floor function, i.e., �u
 is the greatest integer not exceed-
ing u ∈ R. We expect that the result onmonotonicity of oscillation properties on time
scales [4] can be applied to connect pantograph differential and difference equations.

In addition, careful treatment of the critical case known for differential equations
[2] will also be interesting for difference equations. Asmentioned in the introduction,
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it is the area of parameters where the discrepancy between the properties of linearized
and original equations is observed.
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