
Chapter 6
Holographic Kondo Models

Johanna Erdmenger

Abstract These lecture notes are devoted to studying the Kondo problem from the
perspective of gauge/gravity duality. This duality is a major recent development
within theoretical physics. It maps strongly coupled quantum systems to weakly
coupled gravity theories and thus provides a new approach to their description. The
Kondomodel as originally proposed by J. Kondo in 1961 played a decisive role in the
development of major concepts in quantum field theory, such as the renormalization
group and the use of conformal symmetry. It describes describes a spin impurity
interacting with a free electron gas: At low energies, the impurity is screened and
there is a logarithmic rise of the resistivity. In quantum field theory, this amounts to a
negative beta function for the impurity coupling and the theory flows to a non-trivial
IR fixed point. In these lectures we construct and examine a variant of the Kondo
model within gauge/gravity duality. The motivation is twofold: On the one hand,
the model may be used for calculating observables for the case of a spin impurity
interacting with a strongly correlated electron gas. On the other hand, the models
allows for new insights into the working mechanisms of gauge/gravity duality. For
constructing the gravity dual, we consider a version of the Kondomodel with SU (N )

spin at large N , in which the ambient electrons are strongly coupled even before the
interactionwith the impurity is switched on.We present the brane constructionwhich
motivates a gravity dual Kondo model and use this model to calculate the impurity
entanglement entropy. The resistivity has a power-law behaviour in this model. We
also study quantum quenches, and discuss the relation to the Sachdev-Ye-Kitaev
model.
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6.1 Introduction

Dualities are special relations between theories in physics as given by a Hamiltonian
or Lagrangian. Two different theories describing the same physical system are dual
to each other. A familiar example is the duality between the Thirring model and
the sine-Gordon model. The Thirring model describes fermions in 1 + 1 dimensions
with a quartic interaction. As discovered by Coleman [1], it may be mapped to the
bosonic sine-Gordon model via bosonization. Both theories thus describe the same
physics.

Gauge/gravity duality, as first realized by the AdS/CFT correspondence of
Maldacena [2], is a very special duality in the sense that it relates a gravity the-
ory to a gauge theory, i.e. a quantum field theory without gravity. This new relation
implies new questions about the nature of gravity itself: How is gravity related to
quantum physics? It is equivalent to a non-gravity theory at least in this special
context-does this imply that it is non-fundamental? This is an open question which
we will not explore in detail here. Nevertheless we note that gauge/gravity duality
opens up new issues about the nature of gravity. It is important to emphasize in this
context that so far the known examples of gauge/gravity duality involve gravity the-
ories with negative cosmological constant, different from the theory describing our
Universe in which the cosmological constant is extremely small but positive.

The best understood example of gauge/gravity duality is the AdS/CFT correspon-
dence. For a quantum field theory in 3 + 1 dimensions, it maps N = 4 SU (N )

supersymmetric Yang–Mills theory to supergravity on the space AdS5 × S5, where
AdS stands for Anti-de Sitter space and S5 for the five-dimensional sphere. Anti-
de Sitter space is a hyperbolic space with a negative cosmological constant and a
boundary. The N = 4 supersymmetric quantum field theory is a conformal field
theory, i.e. its coupling is not renormalized and the theory is invariant unter local
scale transformations. It may be viewed as being defined on the boundary of the
4 + 1-dimensional Anti-de Sitter space.

The equivalence between the two theories in the AdS/CFT correspondence may
be made plausible by two arguments: First, the holographic principle [3, 4], and
second, the fact that the symmetries of both theories coincide. The holographic
principle states that the information contained in a volume is stored on its boundary.
More precisely, in the context of semiclassical considerations for quantum gravity,
the holographic principle states that the information stored in a spatial volume Vd is
encoded in its boundary area Ad−1, measured in units of the Planck area ld−1

p . This
principle is realized for black holes for instance, for which according to the famous
result of Bekenstein [5], their entropy scales with the area of its horizon. Secondly,
in a string theory approach it may be seen that the symmetries under which the fields
of the quantum field theory involved transform is realized geometrically in the dual
gravity solution.

Applications of gauge/gravity duality. The fact that gauge/gravity duality relates
strongly coupled quantum field theories to weakly coupled classical gravity theo-
ries provides a new approach to calculating observables in these strongly coupled
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quantum field theories. Generically, such theories are hard to study since there is no
universal approach for calculating observables in them. This is crucially different
from weakly coupled quantum field theories, for which perturbation theory is the
method of choice and provides very accurate results. An example for an approach to
strongly coupled theories are advanced numerical techniques such as Monte Carlo
methods, in which space-time is discretized. This approach is very successful in
calculating observables such as bound state masses and determining the structure of
the phase diagram. However, it is afflicted by the sign problem which renders the de-
scription of transport properties very complicated, in particular at finite temperature
and density. It is thus desirable to have an alternative approach at hand which allows
for comparison. Gauge/gravity duality provides such an approach.

Strongly coupled quantum field theories appear in all areas of physics, including
particle and condensed matter physics. Weakly coupled theories may successfully be
described in a quasiparticle approach. Quasiparticles are quantum excitation in one-
to-one correspondence with the states in the corresponding free (non-interacting)
theory. In strongly-coupled systems however, this map is no longer present. In gen-
eral, the excitations in these systems are collective modes of the individual degrees of
freedom. Gauge/gravity duality provides an elegant way of describing these modes
by mapping them to quasinormal modes of the gravity theory. These modes are com-
plex eigenfrequencies of the fluctuations about the gravity background: Their real
part is related to the mass of the fluctuations and their complex part to the decay
width.

Before we proceed, it is important to stress that to the present day, gauge/gravity
duality is a conjecture which has not been proved. The proof is hard in particular
since it would require a non-perturbative understanding of string theory in a curved
space background, which is not available so far.

Holographic Kondo model. As an example of how to generalize the original
example of the AdS/CFT correspondence to more general cases of gauge/gravity
duality, we will study in this lecture how to obtain a gravity dual of the well-known
Kondo model of condensed matter physics.

The original Kondo model [6] describes the interaction of a free electron gas
with a localized magnetic spin impurity. A crucial feature is that at low energies,
the impurity is screened by the electrons. The Kondo model is in agreement with
experiments involving metals with magnetic impurities, as it correctly predicts a
logarithmic rise of the resistivity as the temperature approaches zero.

The significance of the Kondo model goes far beyond its origin as a model for
metals with magnetic impurities. In particular, it played a crucial role in the develop-
ment of the renormalization group (RG). The impurity coupling in the Kondo model
has a negative beta function and perturbation theory breaks down at low energies,
a property it shares with quantum chromodynamics (QCD). In some respects the
Kondo model may thus be viewed as a toy model for QCD. Moreover, the Kondo
model corresponds to a boundary RG flow connecting two RG fixed points. These
correspond to a UV and a IR CFT, respectively. CFT techniques have proved very
useful in studying the Kondo model, as reviewed in [7]. Moreover, the Kondo model
has a large N limit in which it may be exactly solved using the Bethe ansatz [8, 9].
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The holographic Kondo model we will introduce below differs from the original
condensed matter model in that the ambient electrons are strongly coupled among
themselves even before the interactionwith themagnetic impurity is turned on.More-
over, the impurity is an SU (N ) spin with N → ∞. The ambient degrees of freedom
are dual to a gravity theory in an AdS3 geometry at finite temperature. The impurity
degrees of freedom are dual to an AdS2 subspace. As we will see in detail below,
the dual gravity model corresponds to a holographic RG flow dual to a UV fixed
point perturbed by a marginally relevant operator, which flows to an IR fixed point.
In addition, in the IR a condensate forms, such that the model has some similarity to
a holographic superconductor [10]. For this model, we may calculate spectral func-
tions and compare their shape to what is expected for the original Kondo model. This
may be relevant for the physics of quantum dots. Including the backreaction of the
impurity geometry on the ambient geometry allows to calculate the entanglement
entropy. Quantum quenches of the Kondo coupling may also be considered.

Related sets of lecture notes including discussions of the holographic Kondo
model by the same author may be found in [11, 12]. Detailed information on
gauge/gravity duality, the AdS/CFT correspondence and its applications may be
found for instance in the books [13–17].

6.2 AdS/CFT Correspondence

6.2.1 Statement of the Correspondence

Let us begin by considering the best understood example of gauge/gravity duality,
the AdS/CFT correspondence. Here, ‘AdS’ stands for ‘Anti-de Sitter space’ and and
‘CFT’ for ‘conformal field theory. The Dutch physicist Willem de Sitter was a friend
of Einstein. The prefix ‘Anti’ refers to the fact that a crucial sign changes from plus to
minus. In fact, Anti-de Sitter space is a hyperbolic spacewith a negative cosmological
constant.

In this example a four-dimensional CFT,N = 4 SU (N ) Super Yang–Mills the-
ory, is conjectured to be dual to gravity in the space AdS5× S5. This was proposed
along with other examples for AdS/CFT by Maldacena in his seminal paper [2] in
1997. As we will see, the two theories have the same amount of degrees of freedom
per unit volume and the same global symmetries. We will first state the duality and
then explain it in detail. The AdS/CFT correspondence states that
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N = 4 Super Yang–Mills (SYM) theory
with gauge group SU (N ) and Yang–Mills coupling constant gYM

is dynamically equivalent to

IIB superstring theory
with string length ls = √

α′ and coupling constant gs
on AdS5 × S5 with radius of curvature L , and N units of F(5) flux on S5.

The two free parameters on the field-theory side, i.e. gYM and N , are related to
the free parameters gs and L/

√
α′ on the string theory side by

g2YM = 2πgs and 2g2YMN = L4/α′2.

For understanding this duality and its motivation in detail, let us first recall some
properties of the ingredients involved. We begin with the field theory side and intro-
duce conformal field theories and N = 4 supersymmetry.

6.2.2 Prerequisites for AdS/CFT

6.2.2.1 Conformal Symmetry

An essential aspect for the AdS/CFT correspondence is that the quantum field theory
involved is a conformal field theory (CFT). Such a theory consists of fields that
transformcovariantly under conformal coordinate transformation. These leave angles
invariant (locally) and in flat d-dimensional spacetime are defined by the following
transformation law of the metric,

dx ′
μdx

′μ = Ω−2(x)dxμdx
μ . (6.1)

Infinitesimally, with Ω(x) = 1 − σ(x) and x ′μ = xμ + vμ(x), this gives rise to the
conformal Killing equation

∂μvν + ∂νvμ = 2σ(x)ημν , σ (x) = 1

d
∂ · v . (6.2)

In d = 2 dimensions, this reduces to the Cauchy–Riemann equations, which are
solved by any holomorphic function. This implies that in d = 2, conformal symmetry
is infinite dimensional and thus leads to an infinite number of conserved quantities.
In more than two dimensions however, conformal symmetry is finite dimensional
and the only solutions to the conformal Killing equation (6.2) are

vμ(x) = aμ + ωμ
νx

ν + λxμ + bμx2 − 2(b · x)xμ ; ωμν = −ωνμ , σ (x) = λ − 2b · x . (6.3)
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In d > 2, the conformal Killing vector vμ(x) is at most quadratic in x . It contains
translations (of zeroth order in x), rotations and scale transformations (both linear in
x) and special conformal transformations (quadratic in x). The scalar λ, the vectors
aμ and bμ and the antisymmetric matrix ωμν contain a total of

1 + 2d + d(d − 1)/2 = (d + 1)(d + 2)/2 (6.4)

free parameters. In Euclidean signature, the symmetry group generated by these
transformations is SO(d + 1, 1), while in Lorentzian signature, it is SO(d, 2). Let
us examine the algebra associated to the infinitesimal transformations (6.3) with
parameters (aμ, ωμν, λ, bμ) for the Lorentzian case. The generator for translations
is the momentum operator Pμ. The generator for Lorentz transformations is denoted
by Lμν . The generator for scale transformations is D and the generator for special
conformal transformations is Kμ. The conformal algebra consists of the Poincaré
algebra supplemented by the relations

[Lμν, Kρ] = i(ημρKν − ηνρKμ) , [D, Pμ] = i Pμ , (6.5)
[
D, Kμ

] = −i Kμ , [D, Lμν] = 0 , [Kμ, Kν] = 0 , (6.6)
[
Kμ, Pν

] = −2i(ημνD − Lμν) . (6.7)

For the representations we postulate

[D, φ(0)] = −iΔφ(0) (6.8)

for any field φ(x). This implies

φ(x) → φ′(x ′) = λ−Δφ(x) (6.9)

for x → x ′ = λx . Δ is the scaling dimension of the field φ. For an infinitesimal
transformation this gives

δDφ ≡ [D, φ(x)] = −iΔφ(x) − i xμ∂μφ(x) , (6.10)

with similar relation for the other conformal transformations δPφ, δLφ, δKφ.
For organising the representations, it is useful to define the quasiprimary fields

which satisfy
[Kμ, φ(0)] = 0 . (6.11)

This defines the fields of lowest scaling dimension in an irreducible representation of
the conformal algebra. All other fields in this multiplet, the conformal descendents
of φ, are obtained by acting with Pμ on the quasiprimary fields.

The infinitesimal transformations δφ give rise to the conformal Ward identities
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n∑

i=1

〈φ1(x1) . . . δφi (xi ) . . . φn(xn)〉 = 0 . (6.12)

For scalar conformal fields this implies

〈φ1(x1)φ2(x2)〉 =
{

c
(x1−x2)2Δ

if Δ1 = Δ2 = Δ,

0 otherwise.
(6.13)

For fields with spin, the conformal transformation acts also on the spacetime indices
and reads

δvO(x) = −LvO(x) , Lv ≡ v · ∂x + Δ

d
∂ · v − i

2
∂ [μvν]Lμν , (6.14)

for an operator O(x) of arbitrary spin. The Lorentz generator Lμν acts on the spin
indices. For these operators, the conformal correlation functions are more involved.
However, conformal symmetry still fixes them up to a small number of independent
contributions.

6.2.2.2 N = 4 Supersymmetry

TheN = 4 SU (N )SuperYang–Mills theory has somevery special propertieswhich
are at the origin of it possessing a gravity dual. First of all, it was shown [18, 19] that
this theory is conformally invariant even when quantised; its beta function vanishes
to all orders in perturbation theory and also non-perturbative contributions are absent.
A further important property is that this theory has a global SU (4) symmetry, which
is isomorphic to SO(6). We will see that both the SO(4, 2) conformal symmetry as
well as SU (4) are also realized as isometries in the dual gravity theory.

For theN = 4 theory, the global SU (4) symmetry is realized as anR symmetry of
the supersymmetry algebra. This algebra has four supersymmetry generators which
satisfy the anticommutation relations

{Qa
α, Q̄bβ̇} = 2σμ

αβ̇ Pμδab , a = 1, 2, 3, 4 , (6.15)

with σμ = (1, σ ) and σ the three Pauli matrices. Equation (6.15) is invariant under
SU (4) rotations. This algebramay be combinedwith the conformal algebra into a su-
perconformal algebra. This requires the introduction of further fermionic generators,
the special superconformal generators Saα that satisfies

{Saα, S̄bβ̇} = 2σμ
αβ̇Kμδab , a = 1, 2, 3, 4, (6.16)

with Kμ the generator of special conformal transformations. We note that the anti-
commutation relation for the generators Saα (6.16) is formally similar to the one for
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Table 6.1 Supermultiplet of N = 4 supersymmetry

Fields SU (4) rep.

Gauge field Aμ 1

Complex fermions λaα 4

Real scalars Xi 6

the generators Qa
α given by (6.15), with the momentum operator Pμ replaced by the

special conformal transformations Kμ. The operators Pμ, Lμν, D, Kμ together with
the Qa

α, Saα form the superconformal algebra associated to the superconformal group
SU (2, 2|4).

Theelementaryfields ofN = 4SuperYang–Mills theory are organized in a single
multiplet of SU (4), as shown in Table6.1. The SU (N ) gauge field is a singlet of
SU (4). Moreover, the supermultiplet involves four complexWeyl fermions λa

α in the
fundamental representation 4 of SU (4) and six real scalars Xi in the representation
6 of SU (4). Note that due to the supersymmetry, both the Weyl fermions and the
scalars are in the adjoint representation of the gauge group SU (N ) since they are in
the same multiplet as the gauge field.

The action of N = 4 Super Yang–Mills theory reads

S = tr
∫
d4x

(

− 1

2gYM2 FμνF
μν − i

4∑

a=1

λ̄a σ̄ μDμλa −
6∑

i=1

Dμφi Dμφi

+gYM
∑

a,b,i

Cab
iλa[φi , λb] + gYM

∑

a,b,i

C̄iabλ̄
a[φi , λ̄b] + gYM2

2

∑

i, j

[φi , φ j ]2
⎞

⎠ , (6.17)

with ggYM the Yang–Mills coupling. The Cab
i are Clebsch–Gordan coefficients that

couple two 4 representations to one 6 representation of the algebra of SU (4)R . We
note that in addition to the kinetic terms, this action contains interactions between
three and four gauge fields via the non-abelian gauge-field commutators in Fμν , as
well as Yukawa interaction terms between two fermions and a scalar, and a quartic
scalar interaction.

6.2.2.3 Large N Limit

The large N limit plays an essential role for the AdS/CFT correspondence. It cor-
responds to a saddle point approximation. As realized by ’t Hooft in 1974 [20], the
perturbative expansion of fields in the adjoint representation of the SU (N ) gauge
group may be reorganized using a double-line notation.

A field φ in the adjoint representation may be written as

φ = φAT A ⇔ (φ)i j = φA(T A)i j , (6.18)
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Fig. 6.1 Double-line
propagator

where the T A are the N 2 − 1 generators of SU (N ). These are matrices with indices
i, j . If φ is a scalar field in 3 + 1 dimensions, then its propagator in configuration
space is given by

〈φi
j (x)φ

k
l(y)〉 = δi lδ

k
j

g2

4π2(x − y)2
, (6.19)

where g is a typical coupling in the theory. The Kronecker deltas enter from the
SU (N ) completeness relation

N 2−1∑

A=1

(T A)i j (T
A)k l = δi lδ

k
j − 1

N
δi jδ

k
l , (6.20)

in which the second term is suppressed for N → ∞. The double-line propagator for
(6.19) is shown in Fig. 6.1.

For scalar fields, g in (6.19) may be the coupling of a cubic interaction term; a
quartic interaction term may then enter with coefficient g2. In Yang–Mills theory,
g will be the gauge coupling. It will turn out to be extremely useful to define the
’t Hooft coupling

λ = g2N . (6.21)

Let us now count how the contributions corresponding to Feynman diagrams scale
with N and with λ. Note that in the normalization for the propagators chosen in
(6.19), the vertices scale as 1/g2. Also, the sum over traces of indices contributes a
factor of N for every closed loop. Assembling all the ingredients, we find that the
Feynman diagrams scale as

f (λ, N ) ∼ NV−E+FλE−V = NχλE−V , (6.22)

where V , E and F are the numbers of vertices, edges and faces of the surfaces created
by the Feynman diagrams, respectively. χ is the Euler characteristic given by

χ = V − E + F = 2 − 2G , (6.23)

withG the genus of the surface.We see that the leading order in N is given byG = 0,
i.e. by planar diagrams. We note that double-line Feynman diagrams are similar to
string-theory diagrams, with strings splitting and joining. This provides a hint that
large N quantum field theories are related to string theories. In the simple example
with scalar fields considered here, it is not possible to determine exactly which
string theory is given by the collection of large N field-theory Feynman diagrams.
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The AdS/CFT correspondence however provides a map between well-defined field
theories and string theories.

6.2.2.4 AdS Spaces

Anti-de Sitter (AdS) spaces play an important role in the AdS/CFT correspondence.
This has several reasons: First of all, the isometries of AdS space in d + 1 dimensions
form the group SO(d, 2), which corresponds to the conformal group of a CFT in d
dimensions. Moreover, AdS space has a constant negative curvature and a boundary
at which we may imagine this CFT to be defined.

The embedding of (d + 1)-dimensional AdS space into (d + 2)-dimensional flat
Minkowski spacetime is provided by the surface satisfying

X1
2 + X2

2 + · · · + Xd
2 − X0

2 − Xd+1
2 = −L2 , (6.24)

where X0, X1, . . . Xd+1 are the coordinates of (d + 2)-dimensionalMinkowski space.
L is referred to as the AdS radius. We note that in Lorentzian signature, the symmetry
of the isometries of AdSd+1 is thus SO(d, 2), which coincides with the symmetry
of a CFTd , i.e. a conformal field theory in d dimensions with Lorentzian signature.
In Euclidean signature, the sign in front of X0

2 becomes a plus and the symmetry is
SO(d + 1, 1).

The boundary of AdSd+1 is located at the limit of all coordinates XM becoming
asymptotically large. For large XM , the hyperboloid given by (6.24) approaches the
light-cone inRd,2, given by

− X0
2 +

d∑

i=1

Xi
2 − Xd+1

2 = 0 . (6.25)

The boundary corresponds to the set of all lines on the light cone given by (6.25)
which originate from the origin of Rd,2, i.e. 0 ∈ Rd,2. This space corresponds to a
conformal compactification of Minkowski space.

A set of coordinates that solves (6.24) is

X0 = L cosh ρ cos τ ,

Xd+1 = L cosh ρ sin τ ,

Xi = L Ωi sinh ρ , for i = 1, . . . , d ,

(6.26)

where Ωi with i = 1, . . . , d are angular coordinates satisfying
∑

i Ω
2
i = 1.The

remaining coordinates take the ranges ρ ∈ R+ and τ ∈ [0, 2π [. The coordinates
(ρ, τ,Ωi ) are referred to as global coordinates of AdSd+1. It is convenient to in-
troduce a new coordinate θ by tan θ = sinh ρ. Then the metric associated to the
parametrization (6.26) becomes that of the Einstein static universe R × Sd ,
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ds2 = L2

cos2 θ

( − dτ 2 + dθ2 + sin2 θ dΩ2
d−1

)
. (6.27)

Since 0 ≤ θ < π
2 , this metric covers half of R × Sd .

It is often useful to consider a metric in local coordinates on AdSd+1. This is
obtained from the parametrization, with x = (x1, . . . , xd−1),

X0 = L2

2r

(
1 + r2

L4
(x2 − t2 + L2)

)
,

Xi = r xi
L

for i ∈ {1, . . . , d − 1} ,

Xd = L2

2r

(
1 + r2

L4
(x2 − t2 − L2)

)
,

Xd+1 = r t

L
. (6.28)

This covers only one half of the AdS spacetime since r > 0. The corresponding
metric is referred to as Poincaré metric and reads

ds2 = L2

r2
dr2 + r2

L2
ημνdx

μdxμ . (6.29)

The boundary is located at r → ∞. The embedding of the Poincaré patch into global
AdS is shown in Fig. 6.2.

Note that the Ricci scalar and cosmological constant for Anti-de Sitter space are
both negative,

R = −d(d + 1)

L2
, Λ = −d(d − 1)

2L2
. (6.30)

A further choice of coordinates is obtained by introducing the coordinate z ≡ L2/r ,
for which the Poincaré metric (6.29) becomes

ds2 = L2

z2
(
dz2 + ημνdx

μdxν
)

. (6.31)

In this case, the boundary is located at z → 0. Note that in this limit, there is a
coordinate singularity but the space remains regular since the curvature remains
finite.

6.2.3 String Theory Origin of the AdS/CFT Correspondence

In full generality, the Maldacena conjecture [2] states that N = 4 SU (N ) Super
Yang–Mills theory is dual to type IIB string theory on AdS5 × S5 for all values of
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Fig. 6.2 Within AdS2, the
poincaré coordinates cover
the triangular region shown.
The dashed lines correspond
to fixed constant values of r .
The boundary is at r = ∞. θ
and τ are as defined in (6.27)

N and λ. While this is a very beautiful idea, performing actual explicit calculations
for testing this proposal requires to consider particular low-energy limits which we
will discuss in detail. This is due to the fact that quantum string theory on curved
backgrounds has not yet been formulated. This is also a reason why it is hard to
provide an actual proof for the AdS/CFT proposal.

6.2.3.1 Motivating AdS/CFT from String Theory

As a particular limit, we consider weakly coupled string theory with string coupling
gs  1, keeping L/

√
α′ fixed. The leading order is the classical string theory with

gs = 0, which means to only tree-level string diagrams are taken into account. On
the CFT side, since g2YM = 2πgs this implies g2YM = λ/N → 0. This in turn im-
plies that N → ∞ since λ = L4/(2α′2) remains finite. We are thus considering the
’t Hooft limit. The duality conjectured in this limit, where λ is fixed but may be small,
and the dual field theory contains classical strings, is often referred to as the strong
form of the AdS/CFT correspondence. There is also the weak form of AdS/CFT in
which additionally, λ is taken to be very large such that the CFT involved becomes
strongly coupled. In this case, the strongly coupled CFT is mapped to a classical
gravity theory of pointlike particles, since α′ = �2s (with � the string length) becomes
asymptotically small. The gravity theory involved is type IIB supergravity in the
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Table 6.2 Different forms of the AdS/CFT correspondence

N = 4 SYM theory IIB theory on AdS5 × S5

Strongest form any N and λ Quantum string theory,
gs �= 0, α′ �= 0

Strong form N → ∞, λ fixed but arbitrary Classical string theory,
gs → 0, α′ �= 0

Weak form N → ∞, λ large Classical supergravity,
gs → 0, α′ → 0

Table 6.3 Embedding of N coincident D3–branes in flat ten-dimensional spacetime

0 1 2 3 4 5 6 7 8 9

N D3 • • • • – – – – – –

example considered. Type IIB supergravity admits D3-brane solutions. The possible
limits of the AdS/CFT correspondence are collected together in Table6.2.

Let us now consider D3-branes to motivate the weak form of the AdS/CFT corre-
spondence. These branes may be viewed from two different perspectives: The open
and the closed string perspective. It is crucial for the correspondence that in the low-
energy limit where only massless degrees of freedom contribute, open strings give
rise to gauge theories while closed strings give rise to gravity theories.

Open string perspective. We begin with the open string perspective on D3-
branes. For gs N  1, D-branes may be visualised as higher-dimensional charged
objectd on which open strings may end. The ‘D’ stands for Dirichlet boundary condi-
tion. Consider a stack of N D3-branes embedded in 9 + 1 flat spacetime dimensions.
(Recall that in 9 + 1 dimensions, superstring theory is anomaly free and thus consis-
tent.) Neumann and Dirichlet boundary conditions are imposed on the string modes
according to Table 6.3.

For N coincidentD3-branes, the open strings are described by aDirac-Born-Infeld
(DBI) action with gauge group U (N ), with integration over the 3 + 1-dimensional
worldvolume of the branes. In flat ten-dimensional space, the DBI action is given by

SDBI = − T3 tr
∫
d4xe−ϕ

√−det(P[g] + 2πα′F)

+ fermionic partners , (6.32)

where T3 ≡ 2/((2π)3α′2gs) is the brane tension, ϕ is the dilaton, and P[g] is the
pullback of the metric to the worldvolume of the branes. F is the field strength
tensor of the gauge field associated to the brane charge. We now consider low-
energy excitations with E  α′−1/2, such that only massless excitations are taken
into account. In this limit, the DBI action reduces to
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SDBI = − 1

2πgs
tr

∫
d4x

⎛

⎝1

2
FμνF

μν +
6∑

i=1

∂μφi∂μφi − πgs

6∑

i, j=1

[φi , φ j ]2
⎞

⎠

+ fermions + O(α′) , (6.33)

where the six scalars φi = φi AT A in the adjoint representation of U (N ) arise from
the pull-back of the metric to the world-volume of the N D3-branes. They are given
by Xi+3 = 2πα′φi with the Xi + 3 the coordinates in the directions perpendicular
to the brane.

The total action for the D3-branes is

SD3 = SDBI + Sclosed + Sint , (6.34)

where Sclosed describes the closed string excitations in the ten-dimensional space
and Sint the interaction between open and closed string modes. In the low-energy
limit α′ → 0, the open strings decouple from any closed string excitations in the
9 + 1-dimensional space: In (6.34), Sclosed becomes a free theory of massless metric
fluctuations, and Sint goes to zero. In this limit we are thus left with the low-energy
modes in the DBI action as given by (6.33), plus free massless gravity excitations
about flat space. The low-energy modes described by the DBI action coincide with
the field-theory action ofN = 4 Super Yang–Mills theory as given by (6.17),

lim
α′→0

SDBI = SN =4 SYM , (6.35)

subject to identifying 2πgs = g2YM . We thus recover the action of N = 4 Super
Yang–Mills theory in this limit. By modding out the center of the gauge group,
we may reduce the U (N ) gauge symmetry to SU (N ). Note that the limit taken is
α′ → 0 while keeping u = r/α′ fixed, with r any length scale. This is referred to as
theMaldacena limit.

Closed string perspective. We now turn to the closed string perspective on
D-branes. In the limit gs N � 1, the N D3-branes may be viewed as massive ex-
tended charged objects sourcing the fields of type IIB supergravity. Closed strings
will propagate in this background. The supergravity solution of N D3-branes pre-
serving SO(3, 1) × SO(6) symmetry in 9 + 1 dimensions is given by

ds2 = H(r)−1/2ημνdx
μdxν + H(r)1/2δi jdy

idy j , (6.36)

eϕ(r) = gs , C(4) = (
1 − H(r)−1) dx0 ∧ dx1 ∧ dx2 ∧ dx3 + . . . ,

with μν ∈ {0, 1, 2, 3} and i, j ∈ {1, 2, . . . , 6}. Here, r2 = y21 + y22 + · · · + y26 and
the terms denoted by the dots . . . in the expression for the four-form C(4) ensure
self-duality of F(5) = dC(4), i.e. the five-form given by the exterior derivative ofC(4).
Inserting the ansatz (6.36) into the Einstein equations of motion in 9 + 1 dimensions,
we find that H(r) must be harmonic, i.e.
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� H(r) = 0 , for r �= 0 , (6.37)

with � the Laplace operator in six Euclidean dimensions. The Laplace equation is
solved by

H(r) = 1 +
(
L

r

)4

. (6.38)

We will determine L below.
Similarly to the open string case considered before, we now investigate low-

energy limits within the closed string perspective. First we note that asymptotically
for r → ∞, we have H(r) → 1, i.e. asymptotically for large r we recover flat 9 + 1-
dimensional space. On the other hand, there is the near-horizon limit inwhich r  L .
Then, H(r) ∼ L4/r4 and the D3-brane metric becomes

ds2 = r2

L2
ημνdx

μdxν + L2

r2
δi jdy

idy j ,

= L2

z2
(
ημνdx

μdxν + dz2
) + L2dΩ2

5 , (6.39)

where in the second linewe define the new radial coordinate z ≡ L2/r and introduced
polar coordinates on the space spanned by the six yi coordinates, dyidyi = dr2 =
r2dΩ2

5 with dΩ2
5 the angular element on S5. We see that in the near-horizon limit,

the D3-brane metric becomes AdS5 × S5!
L , i.e. the radius of both the AdS5 and the S5, may be determined from string

theory. For this we note that the flux of F(5) through the S5 has to be quantized. The
sphere S5 surrounds the six Euclidean dimensions perpendicular to the D3-branes at
infinity. The charge Q of the D3-branes is determined by

Q = 1

16πG10

∫

S5

∗F(5) . (6.40)

The charge has to coincide with the number of D-branes, i.e. Q = N . This implies
the important relation

L4 = 4πgs Nα′2 , (6.41)

since 16πG10 = 2κ2
10 = (2π)7α′4g2s .

For stating the correspondence, we note that asymptotically, we observe two kinds
of closed strings: Those in flat space at r → ∞, and those in the near-horizon region.
Both kinds decouple in the low-energy limit. For an observer at infinity, the energy
of fluctuations in the near-horizon region is redshifted,

E∞ ∼ r

L
Er → 0 . (6.42)
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Recall that
√

α′ is fixed, but r  L . This implies that for an observer at infinity, the
energy of fluctuations in the near-horizon region is very small. We thus have two
types of massless excitations: Massless modes in flat space at r → ∞ and the modes
in the near-horizon region, which appear as massless too.

Combining open and closed string perspectives.TheAdS/CFT correspondence
is now motivated by identifying the massless modes in the open and closed string
perspectives. First we note that as discussed above, both in the open and closed
string pictures there are massless modes corresponding to free gravity in flat 9 + 1-
dimensional space. Moreover, in the open string picture further massless modes are
given by the Lagrangian of 3 + 1-dimensional N = 4 SU (N ) Super Yang–Mills
theory. On the other hand, in the closed string picture we have gravity in the near-
horizon region, which is given by IIB supergravity on AdS5 × S5. Identifying these
second types of massless modes in the open and closed string pictures gives rise to
the AdS/CFT conjecture.

As a final remark in this section, we note that in the near-horizon limit of the
closed string picture, it is not possible to locate the D3-branes. In particular, it is not
correct to state that they sit at r = 0. Rather, the D3-brane is a solitonic solution to
10d supergravity which extends over all values of r and which gives rise to AdS5 ×
S5 in the near-horizon limit.

6.2.3.2 Field-Operator Map

The argument given in Sect. 6.2.3 motivates the conjectured duality between a quan-
tum field theory and a gravity theory. The map between these two theories may be
refined to a one-to-one map between individual operators, i.e. between gauge in-
variant operators in N = 4 SU (N ) Super Yang–Mills theory and classical gravity
fields in AdS5 × S5. Each pair is given by identifying entries transforming in the
same representation of the superconformal group SU (2, 2|4). The most prominent
example are the 1/2 BPS or chiral primary operators in the [0,Δ, 0] representation of
the algebra of SU (4). Here, the three entries are the Dynkin labels, with Δ the con-
formal dimension of the corresponding operator.1 The corresponding gauge invariant
field theory operators are

OΔ(x) = Str
(
X (i1(x)Xi2(x) . . . XiΔ)(x)

) = CΔ
i1...iΔ tr

(
X (i1(x)Xi2(x) . . . XiΔ)(x)

)
,

(6.43)
with the elementary real scalar fields Xi as in (6.17). Str denotes the symmetrized
trace over the indices (a, b) of the SU (N ) representation matrices T Ab

a . The sym-
metrization involves the totally symmetric SU (4) rank Δ tensor representation
CΔ
i1...iΔ

. An important property of the 1/2 BPS operators is that their two- and three-
point functions in N = 4 Super Yang–Mills theory are not renormalized and thus
independent of the ’t Hooft coupling λ. The perturbative small λ results for these

1A review of the group theory concepts mentioned here may for instance be found in Appendix B
of [13].
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two- and three-point functions may then directly be compared to their counterparts
calculated from the gravity side, which apply to large λ. However, since these cor-
relation functions are independent of λ, an exact matching of the field theory and
gravity results is expected and was indeed obtained in explicit computations [21,
22]. This provides a non-trivial test of the AdS/CFT proposal.

To obtain the corresponding fields on the supergravity side of the correspondence,
a Kaluza–Klein reduction is performed on S5, i.e. the fields in ten dimensions are
expanded in spherical harmonics on S5,

φ(x, z,Ω5) =
∞∑

l=0

φl(x, z)Y l(Ω5) ,

�S5Y
l(Ω5) = − 1

L2
l(l + 4)Y l(Ω5) . (6.44)

This calculation was already performed in 1985 in [23]. From the Kaluza–Klein
modes of the supergravity metric and five-form, we may construct five-dimensional
scalars sl(x, z) that are in the same representation [0,Δ, 0] as the field-theory oper-
ators OΔ if l = Δ. These scalars satisfy

�AdS5s
l(z, x) = − 1

L2
l(l − 4)sl(x, z) . (6.45)

Asymptotically, near the AdS boundary at z → 0, the solutions to this equation
satisfy

s I (z, x) ∼ s I(0)z
4−Δ + 〈O〉zΔ + subleading terms. (6.46)

According to [24], the leading term s I(0) may be identified with a source for the 1/2
BPS operator O I , while the subleading term involves the vacuum expectation value
of this operator.

For writing the AdS/CFT conjecture in terms of an equation, we add sources for
any gauge invariant composite operators to the CFT action,

S′ = S −
∫
d4xφ(0)(x)O(x) . (6.47)

Wick rotating to Euclidean time, the generating functional for these operators then
reads

Z [φ(0)] = e−W [φ(0)] =
〈
exp

(∫
dd xφ(0)(x)O(x)

)〉

CFT

. (6.48)

The AdS/CFT conjecture may then be stated as

W [φ(0)] = SSUGRA[φ]
∣∣∣
lim
z→0

(φ(x,z)zΔ−4)=φ(0)(x)
. (6.49)
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Fig. 6.3 Witten diagram for
a three-point function

The boundary values of the supergravity fields are identified with the sources of
the dual field theory. Within AdS/CFT, the operator sources of the CFT become
dynamical classical fields propagating into the AdS space in one dimension higher.
Note also that AdS/CFT has elements of a saddle point approximation since the CFT
functional is given by a classical action on the gravity side. This is expected in the
large N limit which also amounts to a saddle point approximation.

From the proposal (6.49) we may calculate connected Green’s functions in the
CFT by taking functional derivatives with respect to the sources on both sides of this
equation. On the field theory side we have

〈O1(x1) . . .On(xn)〉 = − δnW

δφ1
(0)(x1) . . . δφn

(0)(xn)

∣∣∣
φi

(0)=0
. (6.50)

Using (6.49) we may thus calculate CFT correlation functions from the propagation
of the source fields through AdS space. Since the gravity action is classical, only tree
diagrams contribute. The classical propagators on the gravity side are given by the
Green’s functions of the operator �AdS5 , while the vertices are obtained from higher
order terms in the Kaluza–Klein reduction of the ten-dimensional gravity fields on
S5. The corresponding Feynman diagrams are referred to as Witten diagrams [25].
These are usually drawn as a circle depicting the boundary of AdS space, with the
interior of the circle corresponding to the AdS bulk space. An example for a Witten
diagram leading to a three-point function is shown in Fig. 6.3. Here, each of the
three lines in the bulk of AdS corresponds to bulk-to-boundary propagator, i.e. to the
appropriate Green’s function of �AdS5 with one endpoint at the boundary. For scalar
operators, the bulk-to-boundary propagator is given by

KΔ(z0, z; x) = �(Δ)

πd/2�
(
Δ − d

2

)
(

z0
z20 + (z − x)2

)Δ

(6.51)

in Euclidean AdS space with five-dimensional coordinates z ≡ (z0, z) with z0 the
radial coordinate and z the four coordinates parallel to the boundary. For the second
coordinate, x0 = 0 since x is located at the boundary. The index Δ corresponds to
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the dimension of the dual scalar operator. Moreover, the vertex in theWitten diagram
corresponds to a cubic coupling obtained from the Kaluza–Klein reduction of the
type IIB supergravity action on S5. For four-point functions or even higher correlation
functions, there are contributions involving bulk-to-bulk propagators that link two
vertices in the bulk of AdS space. The calculation of two- and three point functions
of 1/2 BPS operators inN = 4 Super Yang–Mills theory and in IIB supergravity on
AdS5 × S5 provides an impressive test of the AdS/CFT conjecture: The results for
the three-point function in field theory and gravity coincide, subject to an appropriate
normalization using the expressions for the two-point function [21, 22].

6.2.4 Finite Temperature

Let us now consider how the AdS/CFT correspondence may be generalized to quan-
tum field theory at finite temperature. In fact, there is a natural way to proceed, which
is based on the following. In thermal equilibrium, quantum field theories may be de-
scribed in the imaginary time formalism. This means that the ensemble average of
an operator at temperature T is given by

〈O〉β = tr

(
exp(−βH)

Z
O

)
, Z = tr exp(−βH) , (6.52)

where β = 1/(kBT ) and we set kB = 1. H is the Hamiltonian of the theory consid-
ered. Formally, β corresponds to an imaginary time, t = iτ . An important point is
that the analyticity properties of thermal Green’s functions require τ ∈ [0, β]. This
implies that the imaginary time τ is compactified on a circle.

Let us consider the gravity dual thermodynamics of N = 4 Super Yang–Mills
theory on IR3. We note that the compactification of the time direction breaks su-
persymmetry, since antiperiodic boundary conditions have to be imposed on the
fermions present in the field theory Lagrangian.

The essential point for constructing the gravity dual is that on the gravity side,
the field theory described above is identified with the thermodynamics of black D3-
branes in Anti-de Sitter space. The solitonic solution for these branes is given by the
metric

ds2 =H(r)−1/2
(− f (r)dt2 + dx2

) + H(r)1/2
(

dr2

f (r)
+ r2dΩ5

2

)
, (6.53)

f (r) = 1 −
(rH
r

)4
, H(r) = 1 + L4

r4
, (6.54)

The blackening factor f (r) vanishes at the Schwarzschild horizon rh of the black
brane. The difference between a black brane and a black hole is that the black brane
is infinitely extended in the spatial x directions, which span IR3. Setting z = L2/r ,
Wick rotating to imaginary time and taking the near-horizon limit as before, this
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gives

ds2 = L2

z2

⎛

⎝
(
1 − z4

z4H

)
dτ 2 + dx2 + 1

1 − z4

z4H

dz2

⎞

⎠ + L2dΩ2
5 , (6.55)

with zH theSchwarzschild radius.As for a blackhole,wenote that gττ → 0, gzz → ∞
for z → zH . Let us now introduce a further variable

z = zH

(
1 − ρ2

L2

)
. (6.56)

Here, ρ is a measure for the distance from the horizon at zH , outside the black hole.
We expand about the horizon. To lowest order in ρ, the (τ, z) contribution to the
Euclidean metric becomes

ds2 � 4ρ2

z2H
dτ 2 + dρ2 . (6.57)

Withφ ≡ 2τ/zH , this becomes ds2 = dρ2 + ρ2dφ2. For regularity atρ = 0,we have
to impose that φ is periodic with period 2π , such that we have a plane rather than
a conical singularity. This implies that τ becomes periodic with period Δτ = π zH .
From the field-theory side we know that Δτ = β = 1/T , which implies

zH = 1

πT
. (6.58)

Thus the field-theory temperature is identified with the Hawking temperature of the
black brane!

We may now compute the field-theory thermal entropy from the Bekenstein-
Hawking entropy of the black brane [26]. In general, the Bekenstein-Hawking en-
tropy is given by the famous result

SBH = Ad−1

4Gd+1
, (6.59)

where Ad−1 is the area of the black brane horizon and Gd+1 is the Newton constant.
For a black D3-brane, the horizon area is given by

A3 =
∫
d3x

√
g3d

∣∣
∣
z=zH

· Vol(S5) , g3d = g11g22g33 = L6

z6

= π6L8T 3Vol(R3) , (6.60)

where we used the useful formulae Vol(S5) = π3L5,
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G5 = G10

Vol(S5)
= πL3

2N 2
, (6.61)

2κ10 = 16πG10 = (2π)7α′4g2s and L4 = 4πgs Nα′2. Combining all results, we find

SBH = π2

2
N 2T 3Vol(R3) . (6.62)

This result, valid at strong coupling, differs just by its prefactor from the free field
theory result

Sfree = 2π2

3
N 2T 3Vol(R3) . (6.63)

We note that the result at strong coupling is small by a factor of 3/4.

6.3 Kondo Model Within Field Theory and Condensed
Matter Physics

We now turn to the discussion of models for magnetic impurities. We begin by
considering the original model of Kondo [6], which describes the interaction of a
free electron gas with a SU (2) spin impurity. The electrons are also in the spin 1/2
representation of a second SU (2). Using field-theory language, the corresponding
Hamiltonian may be written as

H = vF
2π

iψ†∂xψ + vF
2

λK δ(x)J · S . (6.64)

Here, vF is the Fermi velocity, and S is the magnetic impurity satisfying

[
Sa, Sb

] = iεabcSc , (6.65)

which takes values in the internal SU (2) spin space. The spin impurity interacts with
the electron current

Ja = ψ†σ aψ , (6.66)

withσ a thePaulimatrices.TheHamiltonian consists of a kinetic term for the electrons
and an interaction localized at the site of the impurity. Hence the interaction term
involves a delta distribution.

The Kondo model is simplified in the s-wave approximation, where the prob-
lem becomes spherically symmetric. We thus introduce polar coordinates (r, θ, φ).
The dependence on the two angles becomes trivial and we are left with a 1 + 1-
dimensional theory in the space spanned by (r, t). The radial coordinate r runs from
zero to infinity. The impurity sits at the origin and provides a boundary condition.
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Fig. 6.4 Analytic continuation to negative values of r . The right-movers become left-movers trav-
elling at negative values of r

Fig. 6.5 One-loop Feynman graph contributing to the renormalization of the Kondo coupling, with
an electron (solid line) scattering off the impurity (dashed line)

The electrons separate into left- and right movers. It is now convenient to analytically
continue r to negative values. Then, the previous right-movers become left-movers
travelling at negative values of r , i.e. ψR(r) → ψL(−r), as shown in Fig. 6.4.

The Hamiltonian (6.64) was proposed and solved perturbatively by Jun Kondo
[6]. To first order in perturbation theory, the quantum correction to the resistivity is

ρ(T ) = ρ0

[
λK + νλ2

K ln
D

T
+ · · ·

]2

, (6.67)

where ν is the density of states and D a UV cut-off, for instance the bandwidth.
The corresponding Feynman graph is shown in Fig. 6.5. This correction explains the
experimental result for a logarithmic rise at low temperatures. From a theoretical
perspective, we note that perturbation theory breaks down at a temperature scale

TK = D exp

(
− 1

νλK

)
, (6.68)

which defines the Kondo temperature TK . At this scale, the first order perturbative
correction is of the same order as the zeroth order term, which implies that pertur-
bation theory breaks down.

For the coupling itself, thefirst order perturbative correctiongives the beta function

β(λK )one−loop = T
dλK

dT
= −νλ2

K . (6.69)

So the beta function is negative. This is analogous to the gauge beta function in QCD,
which is also negative—a property associated with asymptotic freedom in the UV.
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By analogy, we see that the Kondo temperature TK plays a similar role as the scale
ΛQCD in QCD, at which perturbation theory breaks down.

A resummation of (6.69) leads to the effective coupling

λeff(T ) = λK

1 − νλK ln(D/T )
. (6.70)

λeff(T ) diverges at T ∼ TK = D exp(−1/(νλK )). In the IR for T → 0, the theory
has a strongly coupled fixed point where the effective coupling vanishes. In fact, the
impurity is screened: The impurity spin forms a singlet with the electron spin,

|ψ〉 = 1√
2

(| ⇑↓〉 − | ⇓↑〉) . (6.71)

This is reminiscent of the formation of meson bound states in QCD.
The theories at the UV and IR fixed points of the flow are described by boundary

conformal field theories (bCFT). Using the analytic continuation described above, In
theUV, the theory is free, andwemay impose the boundary conditionψL (0) = ψR(0)
for the left- and right moving electrons introduced above. In the IR however, due to
the screening it costs energy to add a further electron to the singlet at r = 0. The
probability for an electron to be at r = 0 in the ground state is zero. This observation is
encoded in the antisymmetric boundary condition ψR(0) = −ψL(0). Within bCFT,
the Kondo model was analyzed extensively by Affleck and Ludwig [27], making
non-trivial use of the appropriate representations of the conformal and the spin Kac–
Moody algebra.

Both the UV and the non-trivial IR fixed point of the Kondo RG flow may be
described using CFT techniques. Essentially, the interaction may be translated into
a boundary condition at r = 0. Let us sketch this approach, considering a general
SU (N ) spin group instead of the SU (2) considered above, as well as k species
(also called channels or flavours) of electrons. In the UV, the boundary condition
relating the left- and right movers is just ψL(0) = ψR(0). In the IR, a bound state
involving the impurity spin forms, which is a singlet when N = k = 2. This implies
that it costs energy to add another electron at r = 0, and the probability of finding
another electron there is zero. This is described by an antisymmetric wave function
as provided by the boundary condition ψL(0) = −ψR(0).

It may be shown [7] that by introducing the currents

Jcharge =: ψ†αiψαi : , Jaspin =: ψ†αi T a
α

βψβi : , J A
channel =: ψ†αiτ A

i
jψα j : ,

(6.72)
where the colon denotes normal ordering, T a

α
β are SU (N ) generators and τ A

i
j are

SU (k) generators, the Kondo Hamiltonian may be written as



178 J. Erdmenger

H = 1

2π(N + k)
Jaspin J

a
spin + 1

2π(k + N )
J A
channel J

A
channel +

1

4πNk
(Jcharge)

2

+ λK δ(r)Sa J aspin . (6.73)

In the IR, by writing
J a

spin = Jaspin + λK δ(r)Sa , (6.74)

the interaction term may be absorbed into a new current J a
spin. Written in terms of

this new current, the Hamiltonian again reduces to the Hamiltonian of the free theory
without interaction. The interaction is thus absorbed and replaced by the non-trivial
boundary condition discussed above.

At the conformal fixed points, the spin, channel and charge currents may be
expanded in a Laurent series,

Ja(z) =
∑

n∈Z
z−n−1 Jan . (6.75)

The mode expansions then satisfy Kac–Moody algebras,

[Jan , J b
m] = i f abc J c

n+m + n

2
kδabδm+n,0 , (6.76)

as shown here for the spin current with SU (N )k symmetry, where k denotes the level
of the Kac–Moody algebra. Similarly, for the channels we have a SU (k)N symmetry.
The total symmetry of themodel is SU (N )k × SU (k)N ×U (1). The representations
of the two Kac–Moody algebras are fused in a tensor product. The two different
boundary conditions in the UV and in the IR lead to different representations and
thus operator spectra for the total theory.

In the simplest example when the spin is s = 1/2 and there is only one species of
electrons, k = 1, then in the IR a singlet forms. More generally, a singlet is present
when 2s = k, which is referred to as critical screening. When k < 2s, however, the
impurity has insufficient channels to screen the impurity completely, and there is a
residual spin of size |s − k/2|. This is referred to as underscreening. On the other
hand, when k > 2s there are too many electron species for a critical screening of the
spin, which leads to non-Fermi liquid behaviour, a situation called overscreening.

6.4 Large N Kondo Model

As was found by condensed matter physicists in the eighties [28, 29], the Kondo
model simplifies considerably when the rank N of the spin group is taken to infinity.
In this limit, the interaction term J · S reduces to a product OO† involving as scalar
operatorO , and the screening corresponds to the condensation ofO . For comparison
to gauge/gravity duality, it will be useful to consider this large N solution in which
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the Kondo screening appears as a condensation process in 0 + 1 dimensions. In the
large N limit, a phase transition is possible in such low dimensions since long-range
fluctuations are suppressed. Moreover, there is an alternative large N solution of the
Kondo model using the Bethe ansatz [8, 9].

The large N limit of the Kondo model involves N → ∞, λ → 0 with λN fixed.
The vector large N limit of the Kondo model provides information about the spec-
trum, thermodynamics and transport properties everywhere along the RG flow, even
away from the fixed points. 1/N corrections may be calculated.

We consider totally antisymmetric representations of SU (N ) given by a Young
tableau consisting of one column with q boxes, q < N . We write the spin in terms
of Abrikosov pseudo-fermions χ , which means that we consider

Sa = χ†i T a
i
jχ j , a = 1, 2, . . . , N 2 − 1 , (6.77)

with χ in the fundamental representation of SU (N ). A state in the impurity Hilbert
space is obtained by acting on the vacuum state with q of the χ†. This gives rise to
a totally antisymmetric tensor product with rank q. Since (6.77) is invariant under
phase rotations of the χ ’s, there is an additional new U (1) symmetry. This implies
that we need to impose a constraint since considering the χ ’s instead of Sa should
not introduce any new degrees of freedom. We impose

χ†χ = q , (6.78)

i.e. the charge density of the Abrikosov fermions is given by the size of the totally
antisymmetric representation. Together with the fermions ψ of the Kondo model,
we have a SU (N ) singlet operator

O(t) ≡ ψ†χ , ΔO = 1

2
. (6.79)

Now in the large N limit, the Kondo interaction J · S simplifies considerably as
follows. We make use of the Fierz identity (6.20). For the Kondo interaction this
implies

λδ(x)JaSa = λδ(x)(ψ†T aψ)(χ†T aχ) = 1

2
λδ(x)

(
OO† − q

N
(ψ†ψ)

)
, (6.80)

where for sufficiently small q we may neglect the last term in the limit N → ∞.
In the large N limit, the Kondo coupling is thus the coupling of a ‘double-trace’

deformation OO†, with two separately gauge invariant operators O and O†. This
is similar to double-trace operators where two separately gauge-invariant operators
are multiplied to each other. For operators involving fields in the adjoint represen-
tation, traces have to be taken to generate gauge-invariant operators. Here however,
O is gauge invariant without trace, since both ψ and χ are in the fundamental of
SU (N ). The operatorOO† is of engineering dimension one. As defect operator, it is
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marginally relevant, i.e. it is marginal at the classical level, but quantum corrections
make it relevant.

In the large N limit, the solution of the field-theory saddle point equations re-
veals a second order mean-field phase transition in which O condenses: There is a
critical temperature Tc above which 〈O〉 = 0 and below which 〈O〉 �= 0. The critical
temperature Tc is slightly smaller than the Kondo temperature TK and may be calcu-
lated analytically. The condensate spontaneously breaks the U (1) symmetry of the
χ fermions. 1/N corrections smoothen this transition to a cross-over.

At large N , the Kondo model thus has similarity with superconductivity that is
triggered by a marginally relevant operator. This observation provides a guiding
principle for constructing a gauge/gravity dual of the large N Kondo model.

6.5 Gravity Dual of the Kondo Model

The motivation of establishing a gravity dual of the Kondo model is twofold: On
the one hand, this provides a new application of gauge/gravity duality of relevance
to condensed matter physics. On the other hand, this provides a gravity dual of
a well-understood field theory model with an RG flow, which may provide new
insights into the working mechanisms of the duality. It is important to note that our
holographic Kondo model will have some features that are distinctly different from
the well-known field theory Kondo model described above. Most importantly, the
1 + 1-dimensional electron gas will be strongly coupled even before considering
interactions with the impurity. This has some resemblance with a Luttinger liquid
coupled to a spin impurity. Moreover, the SU (N ) spin symmetry will be gauged.
The holographic Kondo model has provided insight into the entanglement entropy
of this system. Moreover, quenches of the Kondo coupling in the holographic model
provide a new geometric realization of the formation of the Kondo screening cloud.
It is conceivable that further work will also lead to new insight into the Kondo lattice
that involves a lattice of magnetic impurities. The Kondo lattice is a major unsolved
problem within condensed matter physics. Preliminary results in this direction that
were obtained using holography may be found in [30]. Further holographic studies
of holographic Kondo models include [31].

6.5.1 Brane Construction for a Holographic Kondo Model

Here we aim at constructing a holographic Kondo model realizing similar features to
the ones of the large N field theory Kondo model described in the previous section,
including a RG flow triggered by a double-trace operator [32]. For this purpose,
consider an appropriate configuration of D-branes which allows us to realize the
field theory operators needed.
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Table 6.4 Brane configuration for a holographic Kondo model

0 1 2 3 4 5 6 7 8 9

N D3 X X X X

1 D7 X X X X X X X X

1 D5 X X X X X X

The field theory involves fermionic fields ψ in 1 + 1 dimensions in the funda-
mental representation of SU (N ), as well as Abrikosov fermion fields χ localized at
the 0 + 1-dimensional defect. These transform in the fundamental representation of
SU (N ) as well. From these we will construct the required operators. For the brane
configuration we will use probe branes, which means that a small number of coinci-
dent branes are embedded into a D3-brane background, neglecting the backreaction
on the geometry. For a holographic Kondo model, a suitable choice of probe branes
consists of D7- and D5-branes embedded as shown in Table 6.4. Fields in the fun-
damental representation are obtained from strings stretching between the D3- , D5-
and D7-branes. The D7-brane probe extends in 1 + 1 dimensions of the worldvol-
ume of the D3-branes. As we discuss below, strings stretching between the D3- and
D7-branes give rise to chiral fermions, which we identify with the electrons of the
Kondo model. On the other hand, since the D5-brane only shares the time direction
with the D3-branes, the D3–D5 strings give rise to the 0 + 1 dimensional Abrikosov
fermions.

We note that in a in absence of the D5-branes, the D3/D7-brane system has eight
ND directions, such that half of the original supersymmetry is preserved. However,
the D5/D7-system has only two ND directions, such that supersymmetry is broken.
This leads to the presence of a tachyon potential and a condensation as required for
the large N Kondo model. The tachyon, a complex scalar field Φ, is identified as the
gravity dual of the operator O = ψ†χ .

As discussed in [33, 34], the D7-brane gives rise to an action

S7 = 1

π

∫
d2xψ†

L(i∂− − A−)ψL (6.81)

of chiral fermions which are coupled to theN = 4 supersymmetric gauge theory in
3 + 1dimensions. A− is a restriction of a component of theN = 4SuperYang–Mills
gauge field to the subspace of the fermions. These fermions are in the fundamental
representation of the gauge group SU (N ). For simplicity, from now on we drop the
label L for left-handed. The gauge field A− is a component of the N = 4 theory
gauge field on the 1 + 1-dimensional subspace spanned by theD7-brane.We identify
the ψL with the electrons of the Kondo model.

Similarly, for the Abrikosov fermions χ we obtain from the D3/D5-brane system
the action

S5 =
∫

dtχ†(i∂t − At − Φ9)χ . (6.82)
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Table 6.5 Field-operator map for the holographic Kondo model

Operator Gravity field

Electron current Jμ = ψ̄γ μψ ⇔ Chern-Simons gauge field A in AdS3
Charge density q = χ†χ ⇔ 2d gauge field a in AdS2
Operator O = ψ†χ ⇔ 2d complex scalar Φ in AdS2

Here,Φ9 is the adjoint scalar ofN = 4 Super Yang–Mills theory whose eigenvalues
represent the positions of the D3-branes in the x9 direction. In (6.82), both At and
Φ9 are restricted to the subspace of the χ fields. Note that unlike the original Kondo
model, the SU (N ) spin symmetry is gauged in this approach. Also, the background
N = 4 theory is strongly coupled in the gravity dual approach and provides strong
interactions between the electrons.

Let us now turn to the gravity dual of this configuration. The N D3-branes provide
an AdS5 × S5 supergravity background as before. The probe D7-brane wraps an
AdS3 × S5 subspace of this geometry, while the probe D5-branes wraps AdS2 × S4.
The Dirac-Born-Infeld action for the D5-brane contains a gauge field aμ on the AdS2
subspace spanned by (t, r), with t the time coordinate and r the radial coordinate in
the AdS geometry. The at component of this gauge field is dual to the charge density
of the Abrikosov fermions, q = χ†χ . The D7-brane action contains a Chern–Simons
term for a gauge field Aμ on AdS3. As noted before, the D5–D7 strings lead to a
complex scalar tachyon field.

We may thus establish the holographic dictionary for the operators of the field-
theory large N Kondomodel. This is listed in Table 6.5. The electron current in 1 + 1
dimensions is dual to the Chern–Simons field in 2 + 1 dimensions. The Abrikosov
fermion charge density q in 0 + 1 dimensions is dual to the gauge field component
at in 1 + 1 dimensions. Finally, the operator O = ψ†χ in 0 + 1 dimensions is dual
to the complex scalar field Φ in 1 + 1 dimensions.

The brane picture has allowed us to neatly establish the required holographic dic-
tionary. Unfortunately, it is extremely challenging to derive the full action describing
the brane construction given. In particular, the exact form of the tachyon potential is
not known.

For making progress towards describing a variant of the Kondo model holograph-
ically, we thus turn to a simplified model consisting of a Chern–Simons field in
AdS3 coupled to a Yang–Mills gauge field and a complex scalar in AdS2. This sim-
plification still allows us to use the holographic dictionary established above. The
information we lose though is about the full field content of the strongly coupled
field theory. On the other hand, this simplifield model allows for explicit calculations
of observables such as two-point functions and the impurity entropy, as we discuss
below. It is instructive to compare the results of these calculations with features of
the field-theory large N Kondo model, as we shall see.

The simplified model we consider is
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S = 1

8πGN

∫
dzdxdt

√−g (R − 2Λ) − N

4π

∫

AdS3

A ∧ d A

− N
∫

dxdt
√−g

(
1

4
tr f mn fmn + (DmΦ)†(DmΦ) − V (Φ)

)
. (6.83)

Here, z is the radial AdS coordinate, x is the spatial coordinate along the boundary
and t is time. The defect sits at x = 0. The first term is the standard Einstein–Hilbert
action with negative cosmological constant Λ. The second term is a Chern–Simons
term involving the gauge field Aμ dual to the electron current Jμ. We take Aμ to be
an Abelian gauge field, which implies that we consider only one flavour of electrons,
or—in condensed matter terms—only one channel. fmn is the field strength tensor
of the gauge field am with m ∈ {t, z}, which we take to be Abelian too. Its time
component at is dual to the charge density χ�χ , which at the boundary takes the
value Q = q/N with q the dimension of the antisymmetric prepresentation of the
spin impurity. Dm is a covariant derivative given by Dm = ∂m + i AmΦ − iamΦ. For
the complex scalar, we assume its potential to take the simple form

V (Φ†Φ) = M2Φ†Φ . (6.84)

We write the complex field as Φ = φ exp iδ with φ = |Φ|. We choose M2 in such a
way that Φ†Φ is a relevant operator in the UV limit. It becomes marginally relevant
when perturbing about the fixed point. Moreover, for the time being we consider the
matter fields as probes, such that they do not influence the background geometry. For
this background geometry we take the solution to the gravity equations of motion
which corresponds to the AdS BTZ black hole, i.e.

ds2BTZ =1

z

(
1

h(z)
dz2 − h(z)dt2

)
,

h(z) = 1 − z2

z2h
, (6.85)

where we set the AdS radius to one, L = 1, and zh is related to the temperature by

T = 1

2π zh
. (6.86)

The non-trivial equations of motion for the matter fields are given by

∂z Ax = 4πδ(x)
√
ggttatφ

2 ,

∂z(
√−ggzzgtt∂zat ) = 2

√−ggttatφ
2 ,

∂z(
√−ggzz∂zφ) = √−ggtta2t φ + √−gM2φ . (6.87)
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The three-dimensional gauge field Aμ is non-dynamical, but will be responsible for
a phase shift similar to the one observed in the field-theory Kondo model.

Above the critical temperature Tc where O dual to the scalar field condenses,
we have φ = 0. Then, asymptotically near the boundary, we have at (z) ∼ Q

z + μ,
where μ is a chemical potential for the spurious U (1) symmetry rotating the χ ’s.
The charge density is given by χ†χ = NQ, with Q = q/N .

For generating the Kondo RG flow, we need to turn on the marginally relevant
‘double-trace’ operator OO†. We choose the mass M in the potential such that the
field φ(z) is at the Breitenlohner–Freedman stability bound [35]. The asymptotic
behaviour of φ(z) near the boundary is then

φ(z) = αz1/2 ln(Λz) − βz1/2 + O(z3/2 ln(Λz)) . (6.88)

Following [36, 37], the gravity dual of a double-trace perturbation is obtained by
imposing a linear relation between α and β,

α = κβ . (6.89)

We choose α to correspond to a source for the operator O , while β is related to is
vacuum expectation value. The physical coupling φ(z) should be a RG invariant,
i.e. invariant under changes of the cut-off Λ. This implies

κ = κ0

1 + κ0 ln(Λ0/Λ)
. (6.90)

At finite temperature, we obtain the analogous result

κT = κ0

1 + κ0 ln(Λzh)
(6.91)

This expression for the coupling κT diverges at the temperature

TK = 1

2π
Λe1/κ0 , (6.92)

where TK is theKondo temperature. A similar behaviour is observed in the condensed
matterKondomodels.Moreover, this behaviour bears some similarity toQCD,where
the coupling becomes strong at a scale ΛQCD, below which bound states provide the
natural description of the degrees of freedom. Of course, in the holographic Kondo
model there are two couplings, one between the electrons themselves and secondly
the Kondo coupling κT . While the first is strong along the entire flow, κT diverges at
the Kondo temperature and then becomes small again at lower temperatures, where
the condensate forms.

For determining the physical properties of themodel considered, we have to resort
to numerics to solve the equations of motion (6.87). We find a mean-field phase
transition as expected for a large-N theory, as shown in Fig. 6.6. In the screened
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Fig. 6.6 Expectation value of the operator O = ψ†χ as function of the temperature. Below Tc,
a condensate forms. a Close to the transition temperature, displaying that the phase transition is
mean-field; b Log-log plot showing a larger temperature range. The VEV appears to approach a
constant at low temperatures, however further stabilisation by a quartic potential contribution is
expected to be required in the limit T → 0. Figures from [32]

phase, a condensate of the operator O = ψ†χ forms. We note that for very small
temperatures, the numerical solution of the equations of motion becomes extremely
time-consuming and thus our results are less accurate in this regime. We expect that
in the limit T → 0, to obtain a stable constant solution for 〈O〉 requires to add a
quartic term to the potential (6.84).

Our holographic model allows for a geometrical description of the screening
mechanism in the dual strongly-coupled field theory. For this we consider the electric
fluxF of the AdS2 gauge field at (z). At the boundary of the holographic space, this
flux encodes information about the impurity spin representation,

lim
z→0

F = lim
z→0

√−g f zt = a′
t (z)|z→0 = Q , (6.93)

with Q = q/N and q as in (6.78). When φ = 0, this flux is a constant and takes the
same value at the black hole horizon.However for T < Tc, the non-trivial profileφ(z)
draws electric charge away from at (z), reducing the electric flux at the horizon. This
implies that the effective number of impurity degrees of freedom is reduced, which
corresponds to screening. This is shown in Fig. 6.7 which shows the flux Fz→zh at
the horizon as a function of temperature. The numerical solution of the equations of
motion yields a decreasing flux when the temperature is decreased.

The temperature dependence of the resistivity may be obtained by an analysis
of the leading irrelevant operator at the IR fixed point, i.e. by perturbing about the
IR fixed point by this operator. This gives ρ(T ) ∝ T γ with γ ∈ R a real number.
A similar behaviour occurs also in Luttinger liquids [38]. The model thus does not
reproduce the logarithmic rise of the resistivitywith decreasing temperature observed
in the original Kondo model. This behaviour is expected since the model is at large
N and the ambient electrons are strongly coupled.

Let us emphasize again the differences between the holographic Kondo model
considered here and the large N Kondo model of condensed matter physics: Here,
the electrons are strongly coupled among themselves even before coupling them to
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Fig. 6.7 Electric flux
through the boundary of
AdS2 at the black hole
horizon. This is a measure
for the number of degrees of
freedom. Its decrease at low
temperatures indicates that
the impurity is screened. For
T/Tc � 0.2, the decrease is
only logarithmic. The radial
variable is normalized such
that z = 1 at the horizon.
Figure from [32]

the spin defect. The system thus has two couplings: the electron-electron coupling
which is always large, and the Kondo coupling to the defect that triggers the RG flow.
Moreover, we point out that in our model, the SU (N ) symmetry is gauged, while it
is a global symmetry in the condensed matter models.

To conclude, let us consider different applications of the holographicKondomodel
we introduced. These involve three aspects: the impurity entropy, quantum quenches
and correlation functions.

6.6 Applications of the Holographic Kondo Model

6.6.1 Entanglement Entropy

The concept of holographic entanglement entropy introduced byRyu andTakayanagi
in 2006 has proved to be an important ingredient to the holographic dictionary [39],
opening up new relations between gauge/gravity duality and quantum information.
In general, the entanglement entropy is defined for two Hilbert spacesHA andHB .
In the AdS/CFT correspondence, it is useful to consider A and B to be two disjunct
space regions in the CFT. Defining the reduced density matrix to be

ρA = trBρ , (6.94)

where ρ is the density matrix of the entire space, the entanglement entropy is given
by its von Neumann entropy

S = −trAρA ln ρA . (6.95)

The entanglement entropy bears resemblance with the black hole entropy since
it quantifies the lost information hidden in B. Ryu and Takayanagi proposed the
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Fig. 6.8 The impurity
entropy in the holographic
Kondo model is obtained
from the entanglement
entropy. The entanglement
area is a line of length � in
the dual field theory. The
holographic minimal surface
is a geodesic. For the
impurity entropy, the
entanglement entropy in
absence of the defect is
subtracted from the one in
presence of the defect

holographic dual of the entanglement entropy to be

S = AreaγA

4Gd+1
, (6.96)

where Gd+1 is the Newton constant of the dual gravity space and γA is the area of
the minimal bulk surface whose boundary coincides with the boundary of region A.
For a field theory in 1 + 1 dimensions, the region A may be taken to be a line of
length �, and the bulk minimal surface γA becomes a bulk geodesic joining the two
endpoints of this line, as shown for the holographic Kondo model in Fig. 6.8. We
note that for a 1 + 1-dimensional CFT at finite temperature, with the BTZ black hole
as gravity dual, it is found both in the CFT [40] and on the gravity side [39] that the
entanglement entropy for a line of length � is given by

SBH(�) = c

3
ln

(
1

πεT
sinh(2π�T )

)
, (6.97)

with ε a cut-off parameter.
For the Kondo model, a useful quantity to consider is the impurity entropy which

is given by the difference of the entanglement entropies in presence and in absence
of the magnetic impurity,

Simp = Simpurity present − Simpurity absent . (6.98)

In the previous sections, we considered the probe limit of the holographic Kondo
model, in which the fields on the AdS2 defect do not backreact on the AdS3 geometry.
However, including the backreaction is necessary in order to calculate the effect of
the defect on the Ryu–Takayanagi surface. A simple model that achieves this [41,
42] consists of cutting the 2 + 1-dimensional geometry in two halves at the defect at
x = 0 and joining these back together subject to the Israel junction condition [43]
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Fig. 6.9 Cutting and joining of two halves of the AdS BTZ geometry subject to the Israel junction
at the defect. Figure by Mario Flory

Fig. 6.10 Geometry in a vicinity of the backreacting defect brane at positive brane tension. The
horizontal black line corresponds to the boundary of the deformed AdS space, as in Fig. 6.9. The
volume is increased in a given region around the defect as compared to the case when the brane
tension vanishes. This will lead to a longer geodesic for a given entanglement interval and thus to
a non-zero positive impurity entropy. Figure by Mario Flory

Kμν − γμνK = −κG

2
Tμν , (6.99)

This procedure is shown in Fig. 6.9. We refer to the joining hypersurface as ‘brane’.
In (6.99), γ and K are the induced metric and extrinsic curvature at the joining
hypersurface extending in (t, z) directions. Tμν is the energy-momentum tensor for
the matter fields a and Φ at the defect, and κG is the gravitational constant with
κ2
G = 8πGN .
Thematter fieldsΦ anda lead to a non-zero tension on the brane,which varieswith

the radial coordinate. The higher the tension on this brane, the longer the geodesic
joining the two endpoints of the entangling interval will be, as shown in Fig. 6.10.
A numerical solution of the Israel junction condition reveals that the brane tension
decreases with decreasing temperature, which leads to a shorter geodesic. This in
turn leads to a decrease of the impurity entropy (6.98). This decreases is expected
and in agreement with the screening of the impurity degrees of freedom.

In the holographic Kondo model, the brane is actually curved since the brane
tension depends on the radial coordinate. For large entangling regions �, we may
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Fig. 6.11 Left: Quench of the ‘double-trace’ Kondo coupling from the unscreened to the screened
phase. Right: Reaction of the system to this quench: A condensate forms. There are no oscillations
about the new equilibrium configuration. Figure from [46]

approximate the impurity entropy to linear order by noting that the length decrease
of theRyu–Takayanagi geodesic γA translates into a decrease of the entangling region
� itself. To linear order, this implies that the entangling region is given by � + D in the
UV and by � in the IR, for D  �. Using (6.97) we may thus write for the difference
of the impurity between its UV and IR values

ΔSimp = SBH(� + D) − SBH(�)

� D · ∂�SBH(�) = 2πDT

3
coth(2π�T ) . (6.100)

It is a non-trivial result that subject to identifying the scale D with the Kondo cor-
relation length of condensed matter physics, D ∝ ξK , then the result agrees with
previous field-theory results for the Kondo impurity entropy [44, 45].

6.6.2 Quantum Quenches

A quantum quench corresponds to introducing a time dependence of the Kondo
coupling. On the gravity side, this implies that the equations of motion become
partial differential equations (PDEs), since both the dependence on the AdS radial
coordinate and on time are relevant. Quenches of the holographic ‘double trace’
Kondo coupling κT were considered in [46]. Figure6.11 shows a quench from the
unscreened to the screened phase. The system reacts to this quench of the coupling
by forming a condensate. There is a certain time lapse before this happens. It is also
noteworthy that the reaction is overdamped, i.e. there are no oscillations around the
new equilibrium value. This behaviour follows from the structure of the quasinormal
modes, i.e. the eigenmodes of the gravity system. The leading eigenmode is purely
imaginary in this system. This is in agreement with the behaviour of the correlation
functions discussed in the next section.
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6.6.3 Correlation Functions

AdS/CFT allows to calculate retarded Green’s functions by adapting the methods
presented in Sect. 6.2.3.2 to Lorentzian signature [47]. The required causal structure
is obtained by imposing infalling boundary conditions on the gravity field fluctuations
at the black hole horizon. Moreover, a careful regularization using the methods of
holographic regularization [48] is essential. This approach was used in [49, 50] to
calculate spectral functions for the Kondo operator O = ψ†χ of (6.79). Spectral
functions are generally obtained from the retarded Green’s function by virtue of

ρ(ω) = −2 ImGR(ω) . (6.101)

The spectral function measures the number of degrees of freedom present at a given
energy. The results for the holographic Kondo model obtained in [49, 50] are shown
in Fig. 6.12.

Above the critical temperature, these spectral functions show a spectral asym-
metry related to a Fano resonance [51]. In the holographic case, this asymmetry is
characteristic of the interaction between the ambient strongly coupled CFT and the
localized impurity degrees of freedom. A similar spectral asymmetry also appears
in the condensed-matter large N Kondo model (which involves free electrons) at
vanishing temperature [52]. In the screened phase, the holographic spectral function
displayed in Fig. 6.12 is antisymmetric, consistent with the relation

ωP ∝ −i |〈O〉|2 (6.102)

between the condensate and the leading poleωP in the retardedGreen’s function. This
relation is also satisfied by the condensed matter large-N Kondo model involving
free electrons [53].

A similar spectral asymmetry also arises in the context of the Sachdev-Ye-Kitaev
(SYK) model that received a lot of attention recently [54, 55]. In fact, the original
variant of this model due to Sachdev and Ye [54] involvesWeyl fermions, as opposed
to theMajorana fermions of the SYKmodel. This Sachdev-Ye may be obtained from
the Ising model by the same mechanism as discussed in (6.77) above, i.e. by writing
the Ising spin in terms of a bilinear of auxiliary fermions. In this case, the Isingmodel
is given by

HS = − 1√
N

∑

A<B

JA,B S
aASaB , Sa = χ†T aχ , (6.103)

where the A, B label the different sites of the Ising lattice, and the index a refers
to spin space as in (6.77). We see that inserting the fermion bilinear expression for
Sa into the Ising model will give rise to a four-fermion model. Indeed, as explained
in [54, 56], reducing (6.103) to a single-site model by averaging over disorder, and
taking the large N limit, gives rise to the Sachdev-Ye model
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Fig. 6.12 Spectral functionρ(ω) for theKondooperatorO at the defect, as function of the frequency
ω. a Left: In the unscreened phase above Tc. The spectral function corresponds to a Fano resonance
with a spectral asymmetry. b Right: In the screened phase below Tc. The spectral function is
antisymmetric. The Green’s functions’ poles leading to the extrema in ρ(ω) are determined by the
size of the condensate for O . Figures from [49]

HSY = 1

(2N )3/2

N∑

i, j,k,l=1

Ji j,kl χ
†iχ jχ†kχ l − μ

∑

i

χ†iχ i , (6.104)

where the second term involving the chemical potential μ is added to fix the repre-
sentation q of the spin impurity. As discussed in [57], the Sachdev-Ye model also
displays a spectral asymmetry. This asymmetry is of an analogous form to the one
found above for the holographic Kondo model. In [57], it is shown that the spectral
asymmetry in the Sachdev-Ye model may be mapped to the entropy of a black hole
in AdS2 space. A similar mechanism is expected to be at work in the holographic
Kondo model introduced above.



192 J. Erdmenger

6.7 Conclusion and Outlook

The holographic Kondo model demonstrates nicely how the original concept of
the AdS/CFT conjecture may be applied to more involved configurations, in this
case involving a marginally relevant perturbation by a ‘double-trace’ operator and a
condensation process. It also demonstrates that holographic models may be linked to
previous results, in this case the large N Kondo model of condensed matter physics.
On the other hand, they also add new features, in this case the coupling of themagnetic
impurity to a strongly coupled electron system, leading in particular to new features
in quantum quenches and in the spectral function.

The AdS/CFT correspondence and gauge/gravity duality are undoubtedly one of
the most exciting developments in physics within the last twenty years. As discussed,
new avenues are opening up and are expected to lead to further important discoveries
in the future.
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