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Finite Size Effects in Topological
Quantum Phase Transitions
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Abstract The interest in the topological properties of materials brings into question
the problem of topological phase transitions. As a control parameter is varied, one
may drive a system through phases with different topological properties. What is the
nature of these transitions and how can we characterize them? The usual Landau
approach, with the concept of an order parameter that is finite in a symmetry broken
phase is not useful in this context. Topological transitions do not imply a change of
symmetry and there is no obvious order parameter. A crucial observation is that they
are associated with a diverging length that allows a scaling approach and to introduce
critical exponents which define their universality classes. At zero temperature the
critical exponents obey a quantum hyperscaling relation. We study finite size effects
at topological transitions and show they exhibit universal behavior due to scaling.
We discuss the possibility that they become discontinuous as a consequence of these
effects and point out the relevance of our study for real systems.

12.1 Topological Phase Transitions

Topology studies the stability of forms, shapes under different operations. Thesemay
occur in abstract spaces as inmomentum space reciprocal to crystalline structures [1–
3]. If certain symmetries are present, they give rise to invariants that are robust under
different operations. In many cases, in condensed matter systems, these topological
invariants are directly related to physical observables [1–3]. The existence of non-
trivial topological phases derives from their symmetry properties, but may occur only
for restricted regions of the parameter space characterizing the system. As a conse-
quence, if these parameters are changed, the system may transit from one non-trivial
topological phase to another or even to a trivial topological phase. Here we will be
interested in topological transitions that occur at zero temperature (T = 0) [4], as a
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physical parameter like the chemical potential is varied. The critical fluctuations in
this case are purely quantum mechanical and the topological transition is a quantum
phase transition [5]. These phase transitions that are of great interest nowadays dif-
fer [6], but also share many features with conventional ones. A significant difference
is the lack of an order parameter since in general there is no symmetry breaking at
a topological transition. The use of a topological invariant as an order parameter is
not a valid option as it changes abruptly. This may wrongly suggest that the phase
transition is discontinuous and does not fully develops. The main consequence of
the absence of an order parameter is that a Landau expansion [7] of the ground state
energy in terms of a small quantity near the transition is not possible.

The most important feature that characterizes a topological transition as a
genuine critical phenomenon is the existence of a characteristic length ξ that
diverges at this transition. If g is a control parameter, such that, the transition
occurs at g = 0, we can write

ξ = ξ0|g|−ν, (12.1)

where we will refer to ν as the correlation length exponent and ξ0 is a natural
length of the system, as the lattice spacing.

The identification of this characteristic length is guided by a unique attribute of
non-trivial topological phases, namely, the existence of surface states that decay
as they penetrate the bulk of the material [8]. This penetration length diverges at
the topological transition and can be identified as the characteristic length scale
associated with this critical phenomenon [4, 9–13].

The existence of this diverging length allows to develop a scaling theory for
topological transitions [5]. The singular part of the temperature dependent free
energy as a function of the distance g to the transition can be written as [5],

fs ∝ |g|ν(d+z)F

[
T

|g|νz
]

. (12.2)

If hyperscaling holds, the quantum hyperscaling relation implies

2 − α = ν(d + z), (12.3)

where we introduced two new quantum critical exponents, α and z. Since
the scaling function F[0] = constant, the former characterizes the singular
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behavior of the ground state energy density [14]. The latter is the dynamic
critical exponent and d is the dimension of the system.

The dynamic critical exponent z plays a fundamental role in quantum critical
phenomena [5]. Here, it is defined by the form of the dispersion relation of the
excitations at the QCP, g = 0, i.e., ω(g = 0) ∝ kz . In general for isotropic systems
close to the topological transition, the spectrum of excitations can be written as,
ω = √|g|2νz + k2z [15]. Thewavevector k is that for which the gapΔ = |g|νz closes
at the transition. In the cases of interest here the dynamic exponent z takes the Lorentz
invariant value z = 1, as a consequence of the Dirac-like nature of the dispersion
relation at the transition [15].

It is important to mention that the quantum hyperscaling relation, (12.3), that
relates the quantum critical exponents to the dimension of the system can be violated
in several ways [5]. For example, when the critical exponent α determined by this
relation becomes negative. For the systems studied here with z = 1 and ν = 1, as
obtained below, this occurs for d > 1. In this case theremay be analytic contributions
to the free energy, like f ∝ |g|2 that for α < 0 will vanish more slowly close to the
QCP than the scaling contribution [16]. This implies that the exponent α remains
fixed at α = 0 for all d ≥ 1. For d = 1, the marginal dimension, there may be also
logarithmic corrections for the ground state energy (see below). Hyperscaling may
also breakdown if the dispersion relation of the system is highly anisotropic, such
that, the correlation length exponent is not uniquely defined but depends on a given
direction [17].

Notice that in conventional quantum phase transitions the algebraic decay of
correlations of the order parameter at theQCP requires introducing a critical exponent
η [5]. This is related to the exponent β of the order parameter through another
hyperscaling relation 2β = ν(d + z − 2 + η) [5]. The exponents η and β play no
role in the characterization of topological quantum phase transitions as discussed
here.

In the next sections, we study two models exhibiting topological transitions and
determine their universality classes, essentially the critical exponents ν, z and α.
We start with the one-dimensional (1d) Su–Schrieffer–Heeger (SSH) [3] model for
a dimerized tight-binding chain, which is one of the simplest model to exhibit a
quantum topological phase transition. We also consider the two-dimensional (2d)
Bernevig–Hugues–Zhang model [3] and obtain the correlation length exponents ν

for both models. Finally, we discuss a 3d model of a topological insulator and the
possible occurrence of a discontinuous transition in this system.

12.2 The Su–Schrieffer–Heeger Model

TheSu–Schrieffer–Heeger (SSH)model [3] has been proposed to study the electronic
properties of the polymer composed of repeating units of polyacetylene organic
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molecules (C2H2)n . The Hamiltonian in real space can be written as

H =
∑
n

ψ†
n Aψn + ψ†

n Bψn−1 + ψ†
n B

†ψn+1, (12.4)

whereψn = (ψa
n , ψb

n )T is thewave function vector of a unit cell nwithwave function
components ψa and ψb from a and b sublattices, respectively. The intra and inter
cell hoppings are given by 2 × 2 matrices (A)i, j = t∗1 δi, j−1 + t1δi−1, j and (B)i, j =
t∗2 δi, j−1, respectively, where t1 and t2 are real numbers that represent the intra and
inter cell hopping terms. After a Fourier transformation of the Hamiltonian, (12.4),
we get

H =
∑
k

ψ
†
k H(k)ψk, (12.5)

such that, ψk = (ψa
k , ψb

k )T and (H(k))i, j = t (k)δi, j−1 + t∗(k)δi−1, j with t (k) =
t1 + t2eika . A diagonalization process allows to obtain the energies of the electronic
states of the model as

E(k) = ±|t (k)| = ±
√
t21 + t22 + 2t1t2 cos k, (12.6)

where the lattice spacing was taken equal to unity. Notice that, for |t1| �= |t2|, this
energy dispersion presents a gap around zero energy. Therefore, if the Fermi level μ
is taken at zero energy, the ground state describes an insulating phase. On the other
hand, this model undergoes a topological phase transition at the quantum critical
point, g = t1 − t2 = 0, with a gap closing at k = π .

The insulating phase that arises when |t1| > |t2| is a trivial topological phase,
since the topological invariant winding number W is equal to zero. For |t1| < |t2|,
the insulating phase is topologically non-trivial with winding number equal to
one. In the topological non-trivial phase, there are edge states with zero energy,
(ψa

n (E = 0), ψb
n (E = 0)), that are protected by the topology of the Bloch bulk elec-

tronic states.
Solving recursively for the zero-energy eigenstates of the Hamiltonian (12.4), we

find for the ratio of the wave functions at sites n and 1 at the edge of the a sub-lattice,

δψa
n = ψa

n (E = 0)

ψa
1 (E = 0)

=
(

− t1
t2

)n−1

. (12.7)

These edge states are mostly located at the edges of the chain, more precisely in the
unit cells 1 and N of the SSH model. Their existence is guaranteed by the condition
E = 0 in (12.6) that leads to t (k̃0) = 0 or eik̃0 = −(t1/t2). Notice that in the case of
edges states with zero energy, k̃0 is a complex number. Substituting, (t1/t2) = −eik̃0

in (12.7), the ratio of wave functions for the a sub-lattice can be written as
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g

Fig. 12.1 The square of the wave function (Edge states) as a function of the sites. Solid lines are
solutions for the a sublattice. The penetration depth ξ is shown for g = 0.02 (black curve). At ξ the
wave function satisfies the condition Ψn(ξ) = Ψ1/e. The inset shows the penetration depth versus
g. Different colors represent different values of g as depicted in the inset. The angular coefficient
of the straight line is formally the critical exponent, ν = 1

δψa
n = eik̃0(n−1). (12.8)

The value of k̃0 as a function of the distance from the critical point can be obtained
from the following equation

E(k) ∼
√
g2 + t1t2k2, (12.9)

which is a series expansion of (12.6) near the QCP. We have introduced g = t1 − t2
to represent the distance from this QCP. For an edge state E(k̃0) = 0 and therefore
(12.9) yields k̃0 = i(g/

√
t1t2).

Finally, substituting k̃0 in (12.8), we obtain for the wave functions ratio

δψa
n = e−(n−1)/ξ , (12.10)

where ξ = √
t1t2|g|−1. The normalized wave function decays exponentially with n

within the bulk with a penetration depth ξ that diverges with critical exponent ν = 1.
Notice that this result can also be obtained directly from (12.7).

Figure12.1 shows the square of the wave functions (|ψa
n (E = 0)|2) of the edge

states obtained numerically from (12.4). The solid lines in the figure are the solutions
for a sub-lattice as a function of the sites. There are similar solutions for the b sub-
lattice (not shown) that in this case are localized near the last site.

We have defined the penetration depth ξ as the distance, relative from the initial
site, for which Ψn(x0 + ξ) = Ψ1(x0)/e. Now, by considering several values of g,
varying from g = 0.01 to 0.05, we obtain ξ(g) and determine the critical exponent
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ν, as shown in the inset of Fig. 12.1. We get, ν = 1 in perfect agreement with the
analytic result of (12.10), showing that the numerical method is very reliable. In the
next section, we use the numerical approach to obtain the critical exponent ν of the
2d BHZ model.

12.3 The Bernevig–Hugues–Zhang (BHZ) Model

The first experimental observation of a 2d topological quantum phase transition was
in a CdTe/HgTe/CdTe heterostructure. This consisted of a layer of HgTe sandwiched
between CdTe yielding a semiconductor quantum well [18]. At some critical thick-
ness value of these quantum wells, the topological quantum phase transition takes
place, from a conventional insulating phase to a quantum Hall effect phase with
helical edge states protected by the non-trivial topology of the bulk. This topological
quantum phase transition can be described by the BHZ model [19] associated with
the following Hamiltonian

H(kx , ky) = σ · h(k), (12.11)

where h(k) takes values on the two-dimensional Brillouin zone (kx , ky) and σ =
{σx , σy, σz} are the Pauli matrices. Specifically, hx = tsp sin kx , hy = tsp sin ky and
hz = 2t1(cos kx + cos ky) + t2 − 4t1. In this Hamiltonian, the sub-lattice space rep-
resents the orbitals s and p for each atom. In order to describe the quantum wells in
HgTe/CdTe layers, the simplified spinless BHZ model introduces the hopping terms
tsp and t1, as well as, a mass term t2. The antisymmetric hybridization between the
orbitals of different parities, s and p has an amplitude given by tsp, and the hopping
between the same orbitals s or p of nearest neighbors atoms has an amplitude t1.

A topological phase can be identified by some proper topological invariant. For the
2d BHZ model, we can consider the Chern number invariant C [20, 21] obtained at
the high-symmetry points [kx , ky] = {[0, 0], [0, π ], [π, 0], [π, π ]}. It predicts a non-
trivial topological phase for the intervals 0 < t2 < 4t1 withC = 1 and 4t1 < t2 < 8t1
with C = −1. A trivial phase with C = 0 occurs for t2 > 8t1. The Chern number
signs C = ±1 are related to edge states with propagation in opposite directions.

Here we are interested in determining numerically the correlation length critical
exponent for the two-dimensional BHZ model. For this purpose, we study the pen-
etration of the edge states, which requires one of the dimensions of the lattice to be
finite. Since these edge states are indeed connected to the real terminations of the
system, for a square lattice to keep one of the dimensions finite means to deform
the lattice into a cylinder. The finite axis takes the direction of the main axis of the
cylinder and the other dimension with periodic boundary conditions is represented
by the body of the cylinder.

The correlation length critical exponent as before characterizes the decay of the
edge states into the bulk close to the topological transition. Let us consider the edge
states of the BHZ model in one dimension. One way to get one of the dimensions
finite is to perform a Fourier transformation as
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HI,J (ky) = 1

Nx

∑
kx

eikx (m−m ′)HI,J (kx , ky), (12.12)

where Nx is the number of sites along the finite x-axis and {I, J } indexes run over
the matrix elements of (12.11). The positions of the atoms along the finite x-axis
are denoted by m and vary from 0 to Nx . For example, considering the element
H1,1(kx , ky) = hz we have

H1,1(ky) = 1

Nx

∑
kx

eikx (m−m ′)H1,1(kx , ky)

= 1

Nx

∑
kx

eikx (m−m ′) [2t1 cos kx + C]

= 1

Nx

∑
kx

eikx (m−m ′) [
t1(e

ikx + e−ikx ) + C
]

= 1

Nx

∑
kx

[
t1

(
eikx (m−m ′+1) + eikx (m−m ′−1)

)
+ Ceikx (m−m ′)

]

= t1[δm,m ′+1 + δm,m ′−1] + Cδm,m ′ , (12.13)

where C = 2t1 cos ky + (t2 − 4t1) is independent of kx and the same procedure
should be applied to all the other matrix elements.

The sum over kx allows to work in real space along the x-axis. Notice that we
chose the kx to be in the finite direction, but since we consider a square lattice the
choice between kx or ky is irrelevant due the symmetry of the lattice. For the diagonal
directions of the square lattice [22], or formore complex lattices this is not necessarily
true. For instance, for the honeycomb lattice, the choice of the finite axis along one
or other direction means different edge arrangements [23].

Accordingly, after Fourier transforming (12.12), from momentum to real space
along the x-axis, we have

H(ky) =
(
H11 H12

H21 H22

)
. (12.14)

Following the procedure of (12.13) yields H11 = [2t1 cos ky + (t2 − 4t1)]δm,m ′ +
t1[δm,m ′+1 + δm,m ′−1] that stands for sub-lattice a and H22 = −H11 for sub-lattice
b. Here, the sub-lattices indexes a and b represent the subspace of the orbitals s
and p, respectively. The matrix elements responsible for the mixing of the different
orbitals or sub-lattices are given by H12 = −i tsp sin kyδm,m ′ − i tsp

2 [δm,m ′−1 − δm,m ′+1]
and H21 = H †

12. The m index counts the unit cells or atoms along the finite x-axis
and in the same way m ′ can be interpreted as a neighbor site in the real space
Hamiltonian, (12.14). Besides, the order of each matrix element HI,J is increased to
Nx × Nx , which means that the order of the final matrix becomes 2Nx × 2Nx .

For the purpose of obtaining the energy dispersion in real space, a numerical study
of the 2d BHZmodel was developed to diagonalize the Hamiltonian, (12.14). We fix
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Fig. 12.2 (Color online)
Energy dispersion of the
BHZ model as a function of
t2, for a fixed t1 = 1. The red
lines are obtained for ky = 0
and for Nx = 50 sites.
Topological quantum phase
transition takes place for
t2 = 0 and t2 = 4. Along the
line E = 0, we highlighted
the presence of the two edge
states with thick lines

the energy scale as t1 = 1 and take Nx = 50 sites. In Figs. 12.2 and 12.3, respectively,
we present the energy E as a function of the topological transition control parameter
(mass) t2 at the high symmetry points, ky = 0 and ky = π . In the first case, ky = 0,
topological quantum phase transitions take place for t2 = 0 and t2 = 4. The thick
lines in the figures show the presence of the edge states with zero energy. The same
is observed for ky = π , but the transition points are now given by t2 = 4 and t2 = 8.

For the study of the penetration of the edge states, we identify the eigenvectors
responsible for the zero energy dispersions in Figs. 12.2 and 12.3. For Nx = 500, we
show in Fig. 12.4 the square of the wave function of the edge states in the vicinity of
the critical points. Actually, just one half of the lattice is presented, since the behavior
is the same on both sides. In addition, the results for sub-lattice a and b coincide. The
edge states are obtained for distances to the critical point ranging from g = 0.01 to
g = 0.05. As g increases, the edge states become more localized at the edges of the
lattice. The inset presents the characteristic length ξ as a function of g and the points
are obtained from the numerical study of the model. From the linear fitting of these
points, we can conclude with accuracy that the correlation length critical exponent
for the 2d BHZ model is ν = 1. As mentioned before, in real space the lattice is a
cylinder and Fig. 12.4 presents a pictorial view of the penetration of the edge states
from the perspective of this cylinder. The top cylinder represents the case where the
edge states penetration decays very fast. The color gradient follows the penetration
intensity of the edge state. In the same way, the bottom cylinder shows a case where
the edge state extends almost along the entire lattice. The color gradient here holds
inside the cylinder body. These results reflect strictly the behavior obtained for all
critical points t2 = 0, t2 = 4 and t2 = 8.
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Fig. 12.3 (Color online)
The same of Fig. 12.2, but
the blue lines are obtained
for ky = π . In this case, the
topological quantum phase
transition takes place for
t2 = 4 and t2 = 8. Again, we
highlighted the presence of
the two edge states with
thick lines along E = 0

In the process of varying the distance to the quantum critical point, we notice that
as the system moves away from the QCP, the behavior of the penetration length for
the orbitals s and p (sub-lattices a and b) becomes distinct at the different edges.
Figure12.5 shows that for g ≥ 0.068, the wave function of the left edge state is
nearly localized and has mostly s-character, while that of the right edge has mostly
p-character. We also observe that the amplitude of the wave functions at the edges
and consequently their localization at these sites becomes larger as g increases. The
cylinders here indicate the correspondence between the edge states of the subspaces
and the termination of the lattice for each case. Finally, close to the QCP the wave
functions of the edge states have a mixed character, as shown in Fig. 12.4, due to
their strong hybridization.

In summary our numerical study of the 2d BHZ model shows that the critical
exponent for the penetration depth takes the value ν = 1, the same we have obtained
for the 1d SSH and for a 1d sp-chain [5]. We have also pointed out a qualitative
change in the nature of the edge states for the 2d BHZ model as the distance to the
QCP of the topological transition changes.

12.4 Finite Size Effects at Topological Transitions

Quantum topological transitions as conventional phase transitions also exhibit finite
size scaling properties [15]. For a finite system close to quantum criticality, the
characteristic length ξ and the finite size L are the relevant length scales. The singular
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Fig. 12.4 The square of the wave function (edge states) as a function of sites (Nx = 500) sites close
to the quantum critical point, t2 = 0.We show just half of the lattice (Nx = 250) for one sub-lattice,
since the behavior is the same on both sides for the two sub-lattices a and b. The color scheme and
the penetration depth follows that of Fig. 12.1. The inset shows the penetration depth versus g and
yields with high accuracy the value ν = 1 for the critical exponent of the penetration depth. For
all the QCPs as g increases and the system moves away from these QCPs, the edge states become
more localized at the ends. The cylinders represent the finite BHZ lattice along the x-axis direction
(main axis of the cylinder) with periodic boundary conditions in y-axis (body of the cylinder). The
top cylinder shows the penetration of the wave-function of the edge states for g = 0.04 according
to the color gradient (green). Similarly, the bottom cylinder shows the same (red), but for g = 0.01.
In this case the wave function of the edge state penetrates almost the entire lattice

part of its free energy δFC(g, L) is expected to have a finite size contribution that
can be written as [15],

δF
sing
C (g, L) = ΔC L

−(d+z−1) f (L/ξ). (12.15)

This follows from dimensional analysis and a finite size scaling assumption. It is
a natural generalization of the classical result for the quantum case [24] and for topo-
logical transitions [15]. In (12.15), the dimension d of the classical system is replaced
by the effective dimension d + z as in the quantum hyperscaling relation [25]. At
the QCP of the bulk system, the characteristic length is infinite, and the scaling
function f (L/ξ = 0) = 1. For d + z = 1 + 1, conformal invariance implies that the
amplitudes ΔC are universal quantities [26].
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sp

s
p

sp

Fig. 12.5 (Color online) The same of Fig. 12.4, but exploring the effect of the proximity to criticality
on the nature of the edge states. In the close vicinity of the topological quantum phase transition
the edge states of the subspace of the orbitals s and p, in purple color, coincide and exhibit the
same amplitudes in both sides of the lattice. This is represented by the bottom cylinder filled with
the same purple color in each edge. However, far away from the critical point (g ≥ 0.068) the edge
states on different sides begin to present mostly s (left) or p (right) character. For instance, the wave
function of the edge state nearly localized at the left end has a very strong s character. The opposite
for the right end with a wave function with mostly p-character. This is indicated by the top cylinder
where the blue and red colors represent the s and p orbitals, respectively

The scaling form, (12.15), of the finite size contribution to the free energy has
been successfully verified for several systems exhibiting topological quantum phase
transitions [15], as the 1d p-wave superconductor model of Kitaev, the 3d SSH
model and a 3d model for topological insulators [15]. In all these cases, the dynamic
exponent is given by z = 1 and the correlation length exponent turns out to be ν = 1.

For the purpose of calculating the finite size properties of a system, it is useful to
consider it as confined within two parallel planes of area S separated by a distance
L. The free energy per unit area of this slab can be written as [24, 25, 27]

lim
S→∞

F (g, L)

J S
= LFbulk(g) + Fsurface(g) + δFC(g, L), (12.16)

where Fbulk(g) is the dimensionless bulk free energy per unit volume of the uncon-
fined system, Fsurface is the sum of the free energies of the surfaces, per unit surface
area, due to the confining planes and J is a natural energy scale of the bulk mate-
rial. If one uses periodic boundary conditions, the surface terms do not arise in the
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expression above [15]. The last term represents the finite size contribution to the
free energy per unit area from the slab of width L . It can be imagined as mediating
interface-interface interactions at a distance L . Close to criticality its singular part
has the scaling form given by (12.15) above. In the next sections, we use (12.16) to
obtain this term and explore the physics it contains.

12.4.1 Multi-band Topological Insulator

In this section we focus on a 3d multi-band topological insulator. Recently [28], a
theory has been formulated that points out the existence of a time-reversal invariant in
these systems with Θ2 = −1. This occurs whenever a band of conduction electrons
hybridizes with the mJ = ±1/2 doublet arising from the f -multiplet of a rare-earth
system in a crystalline environment for which this doublet is the ground state. The
theory considers an effective four-band model of dispersive quasi-particles, with
different effective masses. The parity of the orbitals forming these bands is such that
the k-dependent hybridization between them is antisymmetric [28]. The Hamiltonian
belongs to class AI I , and is characterized by aZ2 invariant. The dispersion relations
of the hybridized bands [28] of the model are given by,

ω1/2 = 1

2

[
(εak + εbk ) ±

√
(εak − εbk )

2 + 4|V (k)|2
]

, (12.17)

where
εak = −εa0 + 2t (cos kxa + cos kya + cos kza),

εbk = εb0 + 2α̃t (cos kxa + cos kya + cos kza)

are the dispersions of the originals non-hybridized bands.
The quantity α̃ multiplying the hopping term above accounts for the different

effective masses of the quasi-particles and ε
a,b
0 are the centers of the bands. The k

dependent hybridization is given by

|V (k)|2 = V 2
0 (sin2 kxa + sin2 kya + sin2 kza),

where V0 measures the intensity of the (antisymmetric) effective hybridization.
We consider here the simplest case of α̃ = 1 and inverted bands, i.e, εbk = −εak =

−εk , such that, εa0 = εb0 = ε0. This preserves the topological properties of the original
model. In this case we get,

ω1/2 = ±
√

ε2k + |V (k)|2. (12.18)

In the continuum limit and for k → 0, we obtain
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εk = −ε0 + 6t − t (ak)2 = g − t (ak)2

and
|V (k)|2 = V 2

0 (ak)2,

with k2 = k2x + k2y + k2z and g = 6t − ε0. This model has a topological transition at
g = 0 from a non-trivial topological insulator for g < 0 to a trivial one for g > 0 [28].
The dispersion relations close to the transition can be cast in the general form [29],

ω1/2/V0 = ±
√
M2 + (1 − 2MB)(ak)2 + B2(ak)4, (12.19)

where M = g/V0 and B = t/V0. Notice that at the QCP, M = 0 and for k → 0,
ω ∝ kz with the dynamic exponent z = 1. Alternatively, at k = 0 there is a gap in
the spectrum, ω ∝ |g| that vanishes at the QCP with the gap exponent νz = 1. The
dispersion relations, (12.19), describe a large variety of topological insulators [29].
The ground state energy density associated with these dispersions is given by

fs = EGS

V0V
= 1

(2π)3

∫
d3k

√
M2 + (1 − 2MB)(ak)2 + B2(ak)4, (12.20)

where V is the volume of the system. Close to the topological transition, we introduce
a characteristic length ξ ∝ M−1 ∝ g−1, such that, the ground state energy density
can be written in the scaling form,

fs ∝ ξ−4
∫ Λξ

0
4πd(kξ)(kξ)2

√
1 + (kξ)2, (12.21)

where Λ is a cut-off and we considered only the most singular terms close to the
QCP. This equation can be cast in the scaling form,

fs ∝ |g|ν(d+z)F[Λξ ], (12.22)

where ν = 1, z = 1, as identified previously and d = 3.

Performing the integration of (12.21) and taking the limit Λξ → ∞, one
obtains different contributions for the free energy,

• a cut-off independent term that corresponds to the scaling contribution, fS ∝
|g|ν(d+z) = |g|4.

• a cut-off independent term, fs ∝ |g|4 log |g| that violates hyperscaling [29].
Cut-off dependent contributions including,
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• a constant term, i.e., independent of g, that represents to the most singular
cut-off dependent term.

• a term of order |g|2 with a cut-off dependent coefficient. This appears for
all d ≥ 1.

For the one, two and three dimensional systems studied here, the correlation length
exponents take the value ν = 1, the dynamical exponents z = 1 and consequently
the gap exponents νz = 1. When these are substituted in the quantum hyperscaling
relation, (12.3), we obtain that α < 0 for d > 1. In this case the non-universal, cut-off
dependent |g|2 term in the free energy, present for all d ≥ 1, dominates its behavior as
g → 0. Since this is the leading term for d > 1, then d = 1 plays the role of an upper
critical dimension for these topological transitions. According to this interpretation,
we expect the critical exponents to be fixed at their 1d values for all d > 1. The
presence of a logarithmic correction to the ground state energy in d = 1 is consistent
with its role as a marginal dimension.

If one considers an expansion of the more general expression for the free energy,
(12.20), in powers of B (B = (t/V0) < 1), we find that the contribution proportional
to |g|4 log |g| remains and acquires a B dependent coefficient [29]. Subtracting the
diverging, cut-off dependent terms in this expansion, this simple type of renormaliza-
tion leads to a free energy fs(M, B) that exhibits a discontinuous transition between
the trivial, M < 0 and topological insulator, M > 0 as a function of B [29]. This
possibility of a first order topological transition associated with a gap that never
closes [30] is very interesting and we wish to examine it using a type of renormal-
ization different from that of [29].

12.4.2 Casimir Effects in Topological Insulators

The first order topological transition found in [29] at B = Bc relies on the renormal-
ization procedure to dealwith the cut-off in (12.20).We explore here the possibility of
a discontinuous topological transition using a new scenario and a different renormal-
ization procedure. For this purpose we consider, as in Sect. 12.4, that the system with
the spectrum of excitations corresponding to (12.17) is confined within two parallel
plates of area S separated by a distance L . The free energy per unit area of this system
is given by (12.16). Here we present calculations of the quantity δF

sing
C (g, L) for a

slab of a multi-band topological insulator using a method similar to that for obtaining
the Casimir force between parallel plates in the theory of electromagnetism [31, 32].
Since Casimir’s calculation is also a renormalization procedure, we investigate the
possibility of a discontinuous topological transition in the multi-band topological
insulator using this approach. The boundary conditions in the slab are that the wave
functions assume the same constant value in both planes, at z = 0 and z = L . The
energy of the insulating slab can be written as,
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ES

V0
= 4π2Sa

L3

∫ ∞

0
dyy

∞∑
n=−∞

√
M2

L + (1−2MLBL)(y2 + n2) + B2
L(y

2 + n2)2.

(12.23)
where y = k⊥L/2π , with k2⊥ = k2x + k2y ,ML = M(L/2πa) and BL = B(2πa/L) =
L0/L where we introduced a new length scale L0 = 2πaB = 2πat/V0 associated
with the hybridization (a is the lattice spacing). The energy of the insulator occupying
the whole space is given by,

EB

V0
= 4π2Sa

L3

∫ ∞

0
dyy

∫ ∞

−∞
dt

√
M2

L + (1−2MLBL)(y2 + t2) + B2
L(y

2 + t2)2,

(12.24)
with t = kz L/2π .

The calculation of the energy difference, ΔE = ES − EB yields the scaling con-
tribution according to (12.16). It is carried out in [15] using the techniques to obtain
the Casimir force in critical slabs. We obtain for this energy difference at M = 0, or
ξ = ∞, i.e., at the topological transition

ΔE

SV0
= −π2a

15
L−3, (12.25)

which obeys the finite size scaling form

ΔE

SV0
= ΔC L

−(d+z−1), (12.26)

with d = 3, z = 1 and theCasimir amplitudeΔC = −π2a/15.Away from criticality,
since ML = L/ξ , we can write

ΔE

SV0
= −16π2aL−3 f (L/ξ). (12.27)

For L/ξ � 1, the scaling function f (L/ξ) ∝ exp(−2πL/ξ) and the finite size con-
tribution vanishes exponentially for L � ξ .

The full expression for the energy difference is given by [15],

ΔE

SV0
= −32π3B

L4

(∫ x1

x2

dt
f1(t)

e2π t − 1
+

∫ ∞

x1

dt
f2(t)

e2π t − 1

)
, (12.28)

which is a function of M, B and L . The quantities x1,2 are given by

x21,2 = 1

2B2
L

[
(1 − 2MB) ± √

1 − 4MB
]
. (12.29)

The functions in the integrand are
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Fig. 12.6 (Color online)
The ground state energy
E(M, B, L) as a function of
M for L = 3 fixed and
different values of B. Dotted
line (red) B = 0.41, Full line
(black) B = Bc = 0.39,
Dot-dashed line (purple)
B = 0.37 and dashed line
(blue) B = 0.35. For
B = Bc ≈ 0.39, the
minimum at small, negative
M exchanges stability with
the one at positive M

Fig. 12.7 The ground state
energy E(M, B, L) as a
function of M for different
values of L and
B = Bc = 0.39 fixed. From
bottom to top (at M = 0):
dotted line (grey) L = 2.8,
full line (black) L = 3,
dashed line (blue) L = 3.5,
dot-dashed line (brown)
L = 5 full line (red) L = 9.
For L ≈ 3 there is a first
order topological transition
(full line) (see text)

f1(t) = 1

16
x41

[
π

2
(1 − α2)2 − 2

√
(η2 − α2)(1 − η2)(1 − 2η2 + α2) − (12.30)

(1 − α2)2 tan−1 1 − 2η2 + α2

2
√

(η2 − α2)(1 − η2)

]
,

for x2 < t < x1, where η = t/x1, α2 = (x22/x
2
1 ) and

f2(t) = π

16
x41(1 − α2)2, (12.31)

that is independent of t (t > x1).
Finally, the expression for the free energy difference E(M, B, L) = ΔE/SV0,

(12.28), canbe integrated numerically and the results are shown inFigs. 12.6 and12.7.
In Fig. 12.6, E(M, B, L) is plotted as a function of M for a fixed separation L = 3
between the plates and different values of the parameter B. One notices the presence
of two minima, one at small negative values of M and another for positive M . These
minima exchange stability at a critical value of B = Bc ≈ 0.39. The quantity M
plays the role of an order parameter being negative in the trivial phase and positive in
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the topologically non-trivial phase [29]. For B > Bc the stable minimum occurs for
positive M and the system is in the topological phase. For B < Bc the minimum at
small negative M is the more stable and the system is in the trivial insulating phase.
They exchange stability at B = Bc where a first order transition occurs.

In Fig. 12.7, E(M, B, L) is plotted as a function of M , now for a fixed value
of B = Bc and increasing separations L between the plates. For L ≈ 3 there is a
first order topological phase transition (full black line), such that, for systems with
L > 3, the stable phase is the topologically trivial with M < 0. As L increases the
minimum at negativeM moves to zero and the curve E(M, Bc, L → ∞) has a single
minimum at this value of M . The amplitude of the minimum at M = 0 decreases
according to thefinite size scaling law, (12.25) and the curve for E(M, B, L)becomes
progressively flat and small as a function of M .

A phenomenon similar to the one we have obtained, i.e., a first order transition in
finite slabs that eventually evolves to a continuous one for large separations between
plates has also been shown to occur in a strongly interacting system [33] exhibiting
a fermionic condensate. In both cases the discontinuous character of the transition is
due to finite size effects. Ultrathin films of topological insulators can provide ideal
platforms to investigate these finite size effects [34].

12.5 Conclusions

In this work we discussed how to describe and characterize topological quantum
phase transitions. We identified a characteristic length in this problem, namely the
penetration length of the surface modes in the non-trivial topological phase of the
system. It diverges as ξ ∝ |g|ν where ν is the correlation length exponent and g the
distance to the transition. For simplicity, we neglected interactions, to put in evidence
the purely topological aspects of the phenomenon and avoid the interference of any
competing long range ordering. The role of interactions in topological systems is an
active area of investigation [35] and these may give rise to new universality classes.

We have obtained numerically the critical exponent ν = 1 for two well known
systems exhibiting topological transitions, the SSH model in one dimension and
the two dimensional BHZ model. Besides ν, two other critical exponents, z and
α determine the universality class of the topological transition. The former is the
dynamic critical exponent that for the systems studied here assumes the value z = 1
implying their Lorentz invariance. This value of z is also connected with the Dirac-
like spectrum of excitations at the QCP. The exponent α determines the singular
behavior of the free energy at zero temperature. These exponents are not independent
but related through the quantum hyperscaling relation [5]. We have however pointed
out that hyperscaling can break down and indicated how this may occur for non-
interacting systems. We discussed the existence of an upper critical dimension dC
for the Lorentz invariant systems treated here and argued that it takes the value
dC = 1. We expect that for all d > dC , the critical exponents remain fixed at their
values for d = dC .
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Finally, we have studied the possibility of discontinuous topological transitions
where the gap in the spectrum never closes. Our approach is inspired on that used
to study the Casimir effect, It turns out to be an efficient method of renormalization
that allows to get rid of infinities. We have shown that for a 3d slab with one finite
dimension, finite size effects can give rise to an exchange of stability between the
trivial and topological phases in a discontinuous transition. However, as the distance
between the plates of the slab increases, these effects disappear.
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