
Springer Proceedings in Physics 239

Alvaro Ferraz
Kumar S. Gupta
Gordon Walter Semenoff
Pasquale Sodano   Editors

Strongly Coupled 
Field Theories
for Condensed 
Matter and Quantum 
Information Theory
Proceedings, International Institute 
of Physics, Natal, Rn, Brazil, 2–21 August 
2015



Springer Proceedings in Physics

Volume 239



Indexed by Scopus

The series Springer Proceedings in Physics, founded in 1984, is devoted to timely
reports of state-of-the-art developments in physics and related sciences. Typically
based on material presented at conferences, workshops and similar scientific
meetings, volumes published in this series will constitute a comprehensive
up-to-date source of reference on a field or subfield of relevance in contemporary
physics. Proposals must include the following:

– name, place and date of the scientific meeting
– a link to the committees (local organization, international advisors etc.)
– scientific description of the meeting
– list of invited/plenary speakers
– an estimate of the planned proceedings book parameters (number of pages/

articles, requested number of bulk copies, submission deadline).

More information about this series at http://www.springer.com/series/361

http://www.springer.com/series/361


Alvaro Ferraz • Kumar S. Gupta •

Gordon Walter Semenoff •

Pasquale Sodano
Editors

Strongly Coupled Field
Theories for Condensed
Matter and Quantum
Information Theory
Proceedings, International Institute of Physics,
Natal, Rn, Brazil, 2–21 August 2015

123



Editors
Alvaro Ferraz
International Institute of Physics-UFRN
Natal-Rn, Rio Grande do Norte, Brazil

Kumar S. Gupta
Theory Division
Saha Institute of Nuclear Physics
Kolkata, India

Gordon Walter Semenoff
Department of Physics and Astronomy
University of British Columbia
Vancouver, BC, Canada

Pasquale Sodano
International Institute of Physics-UFRN
Natal-Rn, Rio Grande do Norte, Brazil

ISSN 0930-8989 ISSN 1867-4941 (electronic)
Springer Proceedings in Physics
ISBN 978-3-030-35472-5 ISBN 978-3-030-35473-2 (eBook)
https://doi.org/10.1007/978-3-030-35473-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35473-2


Why with the time do I not glance aside
to new-found methods and to compounds
strange?
William Shakespeare,
Sonnet 76.



Preface

The discovery and the control of new quantum behaviors of strongly interacting
systems is by now a crucial issue for the advancement of the quantum technologies
needed for quantum information processing and quantum devices. The aim of
engineering and manipulating new classes of quantum devices poses, at the same
time, many fundamental science problems since one has to describe the collective
behavior of strongly interacting quantum particles when they are confined to per-
tinent geometries and topologies at the nanometer scale.

It is well known that, as one proceeds to smaller and smaller length scales,
quantum properties can be substantially modified by the presence of interactions
and correlations leading to the emergence of non-perturbative regimes which cannot
be described by conventional mean-field theory approaches. In their most spec-
tacular form, interactions at the nanoscale lead to strongly correlated states of matter
already evidenced in fractional quantum Hall fluids, high critical temperature
superconductors, some topological insulators and superconductors, graphene
bilayers, and in “synthetic materials” such as Josephson superconducting networks
and arrays, or junctions of quantum wires and one-dimensional ultracold atomic
systems. In many instances, non-perturbative, as well as counterintuitive, properties
of these materials may be used to engineer new platforms for the solid-state
implementation of quantum devices.

Impurities are ubiquitous in condensed matter systems: the discovery of the
Kondo effect and of Anderson localization have brought to the forefront their
relevance for stabilizing new and unexpected behaviors of a quantum system. When
realized in a condensed matter system, such features are expected as emergent
phenomena. There is, indeed, growing evidence that by judiciously engineering the
coupling of impurities to their environment, i.e., to the other modes of the con-
densed matter system containing the impurity, one can:

(A) Set new stable phases, frustrate decoherence, and facilitate enhanced responses
to external perturbations in quantum devices;

(B) Engineer devices useful for topological quantum computation;
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(C) Generate long-distance correlations (entanglement) and improve the efficiency
of quantum communication in spin systems;

(D) Apply to the engineering of solid-state devices analytical methods recently
developed in string and boundary conformal field theories.

Paradigmatic examples of experimentally well controllable systems, where
Kondo-like impurities lead to the emergence of new behaviors relevant for their
applications to quantum devices, are provided by spin chains, ultracold atoms
trapped in optical lattices, anti-dots in fractional quantum Hall (FQH) systems, and
junctions of either quantum wires or superconducting Josephson junction arrays.
For these systems, boundary field theories together with the Tomonaga–Luttinger
liquid description have been providing useful insights for the existence of new fixed
points escaping conventional mean-field theory analyses as well as for establishing
remarkable connections with Kondo physics.

It is by now well known that progresses in condensed matter physics and other
disciplines may influence each other. Long ago, the study of superconductivity has
been closely related to structures underlying the standard model of elementary
particle physics such as spontaneous symmetry breaking and the Higgs mechanism.
A generation later, the understanding of renormalization in field theories describing
elementary particles was beautifully mirrored in an almost complete solution of the
theory of critical phenomena and second-order phase transition.

In more recent years, in addition to quantum field theory, some new approaches
have entered the fray. In fact, condensed matter theory has been more and more
informed by string theory, through the holographic study of strongly coupled
systems. This approach maps certain quantum dynamical systems in their strong
coupling limit onto purely classical gravitational systems in higher dimensions;
questions about the highly correlated deep quantum limit of the dynamical system
are then answered by solving the Einstein equations which govern classical gravity.
This has the promise of a quantitative approach to certain quantum systems in the
limit where the interactions among their constituents are very strong, to the point
where their analysis is inaccessible to any other known analytic technique short of
brute force numerical simulations. Not only would this strongly correlated limit be
analyzable in a quantitative way, but it would be systematically correctable.
Whether it can be used to study realistic models of condensed matter systems is still
an open question which is currently under investigation. At the very least, this
approach will provide models which give a qualitative description of entirely new
states of matter and, more importantly, new paradigms which should aid physicists
in understanding and classifying the behavior of such systems. This idea is relevant
since some unsolved problems in condensed matter physics—such as high-
temperature superconductivity or heavy fermion systems—almost invariably
involve strong coupling physics and perhaps new states of matter.

Condensed matter physics shows also an interesting interface with quantum
information theory. In fact, condensed matter physicists are gradually learning that,
in a study of the states of a quantum mechanical system with a large number of
degrees of freedom, there is invariably an advantage to be gained in taking into
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account the quantum information that is stored in the states, and in describing the
states themselves in an information-theoretic framework. The storage, transport,
and manipulation of quantum information have become relevant issues in modern
condensed matter physics; for instance, systems with minimal environmental
decoherence will no doubt lead to many interesting developments for condensed
matter. Moreover, one of the most utile diagnostics of the storage of quantum
information, the entanglement entropy, in strongly coupled systems is, these days,
in many examples, computed using a string theory holographic formula.

Another line of development is a new interface withmathematics and considers the
classification of the topological phases of matter such as topological insulators and
topological superconductors. TheK-theoretical classification of topological insulators
is the prototypical example. This subject is only at its beginning, as the most complete
developments so far apply only to non-interacting and to weakly interacting systems.
A full understanding of the topological phases of strongly correlated matter is still an
open problem.Approaches to this problem couldwellmake use of holographic duality
and already have made use of ideas from quantum information theory. Properties
of the reduced density matrix and the information about quantum entanglement that
they contain, for example, are thought to carry the information as to whether a system
is in a “topological” or a “non-topological” phase. It is likely that string theory
holography will have something to say about these systems at strong coupling.

Another important interface of condensed matter is with atomic physics and cold
atoms. Cold atoms provide an experimental technique where important statistical
mechanical systems can be engineered and studied in a wide array of circumstances.
Analogs of systems which are strongly correlated in the real world can be simulated at
various values of the coupling and studies in a variety of regimes. This is combined
with the fact that the experimentalmeasurements that can be performed on a cold atom
system are often complementary to those available in the condensed matter system.
This has the potential of yielding unprecedented information about models, like the
Hubbard model, in regimes which are important for their physical applications, for
example, in the regime where they model high-temperature superconductivity.

Recently, new low-energy neutral fermionic excitations (Majorana edge modes)
have been claimed to be relevant in a variety of condensed matter systems, also
providing new insights for the investigation of non-Fermi liquid states in correlated
systems.Majorana fermions were first proposed in 1937 by EttoreMajorana (19) who
considered a modification to the relativistic Dirac equation for conventional spin ½
particles (Dirac fermions) that gave purely real (as opposed to complex) solutions.
These Majorana fermions are particles that are their own antiparticles—their creation
operator in quantum theory is equal to their annihilation operator, unlike the case for
conventional (Dirac) fermions such as electrons and holes which are different due to
their opposite charge. Being real they are neutral excitations.

Low-energy Majorana modes have been recently the object of many theoretical
and experimental investigations. Located at the edges of one-dimensional (1D)
devices are responsible for the emergence of stretched non-local electron states
allowing for distance-independent tunneling, crossed Andreev reflection,
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teleportation-like coherent transfer of a fermion, and fractional Josephson effects.
Their effects emerge in a variety of condensed matter platforms.

The huge interest in Majorana fermions goes beyond fundamental curiosity since
there is enormous potential for future quantum information technology if devices
can be made based on manipulation of Majorana fermions, which are effectively
fractionalized particles (anyons) obeying non-Abelian rather than Fermi–Dirac
statistics. This would allow a qubit to be stored non-locally in a pair of widely
separated Majorana bound states. These could be more insensitive to the effect of
local sources of decoherence, which is currently the major obstacle to realizing a
scalable quantum computer.

One can easily convince oneself that the breadth of the technical skills needed to
synthesize these research directions is truly staggering. Condensed matter systems
such as high Tc superconductors, topological insulators, and superconductors, and
Kondo systems realized with pertinently engineered quantum devices all exhibit a
variety of new behaviors, which may be accounted by pertinent strongly coupled
field theories. The book will provide an insightful panorama on some of these topics
emphasizing interesting connections between them. The contents are based on the
lectures given at the program (conference +workshop) on “Strongly Coupled Field
Theories for Condensed Matter and Quantum Information Theory” held at the
International Institute of Physics in Natal during August 2015. The book suffered an
undue delay caused by a serious illness of the corresponding editor who is very
grateful to all the authors for the extra effort done in updating their lectures.
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Science, Technology, Innovation and Communication (MCTIC) and to the CNPq
for financial support for granting them a “Bolsa de Produtividade em Pesquisa”.
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Chapter 1
Effective Field Theories for Topological
States of Matter

Thors Hans Hansson and Thomas Klein Kvorning

Abstract Since the discovery of the quantum Hall effect in the 1980s it has been
clear that there exists states of matter characterized by subtle quantum mechani-
cal effects that renders certain properties surprisingly stable against dirt and noise.
The theoretical understanding of these topological quantum phases have continued
to develop during the last few decades and it has really surged after the discov-
ery of the time-reversal invariant topological insulators. There are many examples
of topological phases that have been important for the theoretical understanding
of topological states of matter as well as being of great physical relevance. In this
chapter we will focus on some examples that we find particularly enlightening and
relevant, but we will not make a complete classification. Some of the most important
tools for the understanding of topological quantum matter are based on effective
field theory methods. We shall employ two different types of effective field theories.
The first, which is valid at intermediate length and time-scales, will not capture the
physics at microscopic scales. Such theories are the analogs, for topological phases,
of the Ginzburg–Landau theories used to describe the usual symmetry breaking non-
topological phases. The second type of theories describe the physics on scales where
non-topological gapped states would be very boring, namely at distances and times
much larger than the correlation length and the time set by the inverse gap. On these
scales everything is independent of any distance and the theories will be topological
field theories, which do not describe any dynamics in the bulk, but do carry informa-
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2 T. H. Hansson and T. Klein Kvorning

tion about topological properties of the excitations, and also about excitations at the
boundaries of the system. Finally, we will also study effective response actions. In
a strict sense these are not effective theories, since they do not have any dynamical
content, but encode the response of the system to external perturbations, typically
an electromagnetic field. As we shall see, however, the effective response action for
topological states can be used to extract parts of the dynamic theory through amethod
called functional bosonization.

1.1 Introduction

In school we learn about three states of matter: solids, liquids and gases. Typically
these occur at different temperatures so that heating a solid first melts it into a liquid,
then evaporates the liquid into a gas. The transition between two such phases ofmatter
does not happen gradually as the temperature changes, but is a drastic event, a phase
transition, that occur at a precisely defined transition temperature. The classification
of matter according to the three states just mentioned is not at all exhaustive. For
example, solids can be insulating or conducting and depending on the temperatures
they can, or cannot, be magnetic.

Over the years, this picture has become more and more refined, but most of the
fundamental ideas governing phases of matter was for a long time based on the work
of Lev Landau in the 1930s. However, a few decades ago this completely changed
with the advent of topological phases of matter. As you will see, these phases are of
a fundamentally different nature, and they are the subject of these notes. But before
we get there some words on terminology:

Matter denote systems with many degrees of freedom, typically collections of
“particles” that can be atoms or electrons, but also quantum mechanical spins or
quasiparticles such as phonons or magnons. In these notes we shall however only
deal with systems composed of fermions, and typically these fermions should be
thought of as electrons in a solid.

With a phase of matter wemean matter with certain characteristic properties such
as rigidity, superfluid density, or magnetization. A phase is however not defined by
any specific values for these quantities, but by whether they are at all present—
for example, the transition between a solid and a liquid happens when the rigidity
vanishes. Thus, by definition, one cannot gradually interpolate between two phases—
they are only connected via the drastic event of a phase transition.

We shall here study properties of matter which is kept at such low temperatures
that the thermal fluctuations can be neglected; the temperature is effectively zero. In
a quantum systemwhere the ground-state is separated from the first excited state by a
finite energy gap, ΔE , this amounts to having kB T � ΔE , where kB is Bolzmann’s
constant. Although there is a lot of current interest in gapless phases, we shall only
consider those that are gapped.

Contrary to what you might think, not all matter solidifies even at the lowest
temperatures. Many interesting phenomena such as superconductivity and superflu-
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idity persist even down to zero temperature and this is due to quantum rather than
thermal fluctuations. Phase transitions occur also at zero temperature, but are then
driven by quantum rather than by thermal fluctuations, and are induced by changes in
some external parameter. The transition from a superconductor to a normal metal by
changing the magnetic field is a well know example of such a quantum phase transi-
tion. While the usual finite temperature phase transitions show up as abrupt changes
in various thermodynamical quantities, quantum phase transitions are signaled by
qualitative changes in the quantum mechanical ground-state wave function.

Since these quantumphases occur at zero temperature their properties are encoded
in qualitative properties of the ground-state of the system. Thus, classifying and
characterizing zero temperature states ofmatter is equivalent to doing this for ground-
state wave functions with a very large number of degrees of freedom.More precisely,
two systems at zero temperature are said to be in different phases when, in the
thermodynamic, i.e., large volume, limit, there is no continuous way to transform
one state (i.e., the ground-state wave function) into the other while remaining at zero
temperature and not closing the energy gap. So when we say that one state cannot
continuously be transformed into another we mean that this cannot be done in the
thermodynamic limit while keeping the energy gap finite.

There are two complementary ways to precisely characterize (quantum) phases of
matter. The first, which goes back to the work of Lev Landau in the 1930s, is based
on symmetries [1]. The basic idea is that of spontaneous symmetry breaking which
means that the ground-state has less symmetry than the microscopic Hamiltonian.
An important concept is the order parameter, ψa , which transforms according to
some representation of a symmetry group. The archetypal example is a ferromagnet
where the order parameter is the magnetization, M, which transforms as a vector
under spatial rotations, and is non-zero below the Curie temperature. While the
order parameter is essentially a classical concept, and the phase transitions studied
by Landau are driven by thermal fluctuations, the Landau approach equally well
applies to quantum systems. These can also be classified according to their pattern
of spontaneous symmetry breaking, and the order parameter appears as the ground-

state expectation value, ψa =
〈
ψ̂a

〉
, where ψ̂a(x, t) is an operator with appropriate

symmetry properties that can be measured locally. Low-lying excitations around
the symmetry broken ground-state corresponds to long wave length oscillations in
ψa(x, t) which are gapless if the broken symmetry is continuous—these are the
famous Goldstone modes.

The second way phases can be distinguished, which is special to quantum sys-
tems, was developed in the last decades, and is drastically different from the Lan-
dau paradigm. Such phases differ by properties of the quantum entanglement of
the ground-state wave functions, and they cannot directly be distinguished by local
measurements. They are referred to as topological phases of matter or topological
quantum matter and are the main topic of these notes.

Topology is the mathematical study of properties that are preserved under con-
tinuous transformations, and in this context it refers to properties of the ground-state
wave function preserved under continuously changing external parameters. The dis-
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tinctions between different topological phases of matter are somewhat intricate and
require a systematic study using tools developed in the field of mathematical topol-
ogy, motivating “topological” in the expression topological quantum matter.

There are two classes of topological phases with quite different properties: the
symmetry protected topological states (SPT-states) and the topologically ordered
states (TO-states). As already mentioned, two states are in different phases if one
cannot continuously transform the ground-state wave function of one into that of the
other. In many situations this turns out to be too restrictive and would not allow us
to identify important topological phases. The reason is that there can be symmetries
that all physically realizable perturbations respect. The natural question to ask is then
what the possible phases are if one is restricted to systems with a certain symmetry—
symmetry protected phases. That is, we widen the definition and say that two states
which respect a specific symmetry S are in different SPT phases as long as any
continuous transformations between them violate S.

A most striking property of the SPT states is that they support boundary states
which can be used to classify them. The boundary state of a d-dimensional SPT state
is described by a d − 1 dimensional field theory which cannot describe a bona fide
d − 1 system which preserves the symmetry (we will use lower-case d to denote the
number of spatial dimension, while upper-case D will denote the number of space-
time dimensions, i.e., D = d + 1). Typically, what happens is that the application
of an external field makes the conserved charge, corresponding to the symmetry,
flow from bulk to edge, thus preventing them from being individually consistent.
As you will see, for some of these topological states this goes hand in hand with a
quantization of certain transport coefficients, most notably the Hall conductance.

Symmetry protected phases have been known, at least as a theoretical possibility,
since the work of Haldane on topological effects in 1d spin chains [2]. However, the
field got a renaissance after the fairly recent both theoretical and experimental dis-
covery of the time-reversal invariant topological insulators, see e.g., [3]. These states
can be realized by non-interacting fermions and their discovery led to a systematic
study of those states that continuously can be transformed into each other, restricting
one self to only non-interacting systems. Soon, there was a complete classification
of non-interacting fermionic systems with U (1) symmetry and/or non-unitary sym-
metries in terms of non-interacting topological invariants [4, 5].

Since, in the real world, there are generally some interactions present, this clas-
sification would seem to apply only to very fine-tuned situations and be, at best,
of marginal interest. Fortunately, however, for many (but not all) of the systems
with non-interacting topological invariants there are characterizing properties, such
as boundary states and quantized transport coefficients that do not dependent on
interactions being absent. At a more theoretical level, it has also been shown that
many of the non-interacting topological classes are characterized by various quantum
anomalies, which are known to be insensitive to (at least weak) interactions [6].

The non-interacting classification has been essential for pinpointing these char-
acteristics and is of great importance for the understanding of topological quantum
matter in general. All SPT states that we will discuss in these notes can be real-
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ized with non-interacting fermions, but note that SPT phases appear in more general
settings. For instance, all non trivial bosonic SPT states are interacting.

The meaning of TO has varied over time and there still no complete consensus
concerning the nomenclature. However, some states are considered topologically
ordered regardless of convention, namely the ones that support localized fraction-
alized bulk excitations with non-trivial topological interactions. The most famous
examples are in 2d where these excitations are anyonic quasi-particles, anyons,
which have a remarkable type of interaction. At first sight they do not seem to inter-
act at all, at least not at long distances, but a closer look will reveal that there is a
subtle form of interaction, referred to as anyonic, or fractional, statistics1: the state
of the system will depend not only on the positions of the individual particles, but
also on their history. Or more precisely, on how their world lines have braided.

In fact, one can classify the TO ground-states in terms of the properties of the
quasi-particles they support without specifying the Hamiltonian. At first this may
seem strange: If you only know the ground-state, any states could be made the low
lying excited ones by judiciously picking the Hamiltonian. However, if you assume
that the Hamiltonian is local, meaning a sum of local terms, Ĥ =∑{x} ĥx where

each ĥx only has exponentially small support outside of a region close to x, then
there is a close connection between the properties of the ground-state, and those of
the excitations, see e.g., [7, 8].

We discuss 2d states that support anyons but also touch upon analogous states
in other dimensions. In 1d, there are none, and in dimensions higher than two the
states will support higher dimensional excitations (such as strings and membranes)
that can realize higher dimensional analogs of anyons.

There are also phases that are topologically ordered in the sense that they are well
defined without requiring the presence of a symmetry, but they have no excitations
which interact topologically and their physical characteristics resemble that of SPTs.
It is for these states that the conventions on whether they are topologically ordered
or not vary. With an abuse of the concept they can be considered SPTs but the
“symmetries” that protect them are not really symmetries, in the sense that they
cannot be broken. An important example (that we will discuss) is the Majorana
nano-wire [9] which can be considered protected by fermion parity conservation
[10]. Fermion parity conservation is not really a symmetry since it cannot be broken,
it is a property that always is present.

There are many examples of topological quantummatter that have been important
for the development of the theoretical understanding of the field as well as being of
great physical relevance. However, in these notes you will neither find an exhaustive
list of such examples nor attempts to a complete classification. But rather focus on a
few examples that we find particularly enlightening and relevant.

1The topological interaction between anyons is a generalization of the Berry phase of −1 acquired
by the exchange of two identical fermions. This minus sign is directly related to Fermi statistics
and in the same way the topological interaction is related to a specific “exclusion statistics”. This
is the reason for the term “statistics” in anyonic statistics.
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Sincewe only consider gapped localHamiltonianswe have characteristic time and
length scales τ = �/Egap and the correlation length ξ . We will employ two different
types of effective field theories. The first, which is valid at length and time scales
at the order of ξ , τ and longer, will not capture the physics at microscopic scales
(like the lattice spacing a ∼ Å or the bandwidth Δε ∼ eV ). Such theories are the
analogs, for topological phases, of theGinzburg–Landau theories used to describe the
usual symmetry breaking non-topological phases. Examples are the Chern–Simons–
Ginzburg–Landau theories for QH liquids, see e.g., [11], and the Ginzburg–Landau–
Maxwell theories for superconductors.2 These theories have information both about
topological quantities, such as charges and statistics of quasi-particles, and of col-
lective bosonic excitations such as plasmons or magnetorotons.

The second type of theories describe the physics on scales where non-topological
gapped states would be very boring, namely at distances and times much larger than
ξ and τ . On these scales everything is independent of any distance and the theories
will be topological field theories, which do not describe any dynamics in the bulk,
but do carry information about topological properties of the excitations, and also
about excitations at the boundaries of the system. Typical examples we shall study
are theWen-Zee Chern–Simons theories for QH liquids [16, 17] and the BF-theories
for superconductors and topological insulators [18, 19].

Finally, we will also study effective response actions. In a strict sense these are
not effective theories, since they do not have any dynamical content, but encode
the response of the system to external perturbations, typically an electromagnetic
field. As you will see the effective response action for topological states can however
be used to extract parts of the dynamic theory through a method called functional
bosonization.

We have tried to make these notes reasonably self-contained, but of course we
will often refer to other texts. The list of references is by no mean exhaustive; when
there are good reviews we often cite these rather than the original papers.

1.2 The Quantized Hall Conductance

Figure1.1 shows a schematic viewof the experiment by vonKlitzing et al. [20],where
the quantumHall effect was discovered, and also the original data. The quantumHall
effect will be discussed again later, but for now it suffices to know that the quantum
Hall effect is observed in a two-dimensional electron gas, which is gated so that
the chemical potential increases monotonically with the gate voltage Vg shown in
Fig. 1.1. von Klitzing’s experiment was performed at a temperature of 1.5K and a
magnetic field of 18 T. A constant current I = 1 µA was driven through the system

2Most textbooks in condensed matter theory will cover the Ginzburg–Landau–Maxwell theory.
For a modern text see e.g., [12]. Reference [13], by S. Weinberg, one of the founders of effective
field theory, gives a good presentation from the field theoretic point of view. There are also several
excellent recent textbooks, as for instance [14, 15], on the general subject of these notes.
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Fig. 1.1 Data from the original paper [20] with a set-up as is schematically depicted above: a two
dimensional electron gas is subject to amagnetic field, B, and a constant current, I , is driven through
the system. The chemical potential of the electron gas increases monotonically with Vg and there
are clear plateaux with constant Hall resistance RH . Figure by S. Holst

and the perpendicular voltageUH wasmeasured. InFig. 1.1 you can see clear plateaux
where the resistance is constant, and on a closer inspection these plateaux are located
at integer multiples of the von Klitzing constant, RK up to relative errors of the order
�10−8.

Since then, similar experiments been performed a large number of times on dif-
ferent systems and in different parameter ranges including at room temperature [21].
The result is always the same, the Hall resistance is quantized at multiples or rational
fractions of RK . This is remarkable! Remember that we are dealing with macro-
scopic systems which depend on a practically infinite number of parameters. Even
so, if you keep a constant current the voltage will be exactly the same in samples
that can vary extensively. How can this be? In this section you will not only find the
answer to this question and its related consequences, you will also become familiar
with response actions, and topological field theories. These are important tools for
analyzing topological states of matter, and they will be used extensively throughout
these notes.

1.2.1 The Hall Conductance as a Chern Number

We now explain why the Hall conductance is quantized in gapped 2d system at tem-
peratures kB T � ΔE . This is amost important fact: a quantized value cannot change
continuously, so there has to be a phase transition between states with different Hall
conductance—the quantized value is one of the phase-distinguishing characteristics
mentioned in the introduction.

The argument given here is based on the work by Niu, Thouless, and Wu [22].
There are however many important earlier contributions that lay the ground work for
the understanding, most notably [23–26].

By definition, the conductivity tensor gives the linear current density response to
an electric field and in two spatial dimension it can be parametrized as,
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Fig. 1.2 A torus with flux
φx /φx encircled by the two
independent non-contractible
loops and an example of a
curve Γ which encircle the
flux φy . Figure by S. Holst

φy

φx

Γ
xy

j i = σ i j E j = σHεi j E j + σL Ei , (1.1)

which defines the usual longitudinal conductivity σL , and the transverse, or Hall,
conductivityσH .What ismeasured in an experiment, is however, not the conductivity,
but the conductance for somemacroscopic (ormesoscopic) sample. The conductance
gives the current response to a voltage, or an electromotive force, E , which is defined
by,

E =
∫

γ

dl · E , (1.2)

where the integral is along some curve γ . For an open curve, E is just the voltage dif-
ference between the endpoints, as in the Hall bar shown in Fig. 1.1, while in toroidal,
cylindrical or Corbino geometry, the curve is closed, and the electromotive force
should be understood as generated by a time dependent magnetic field through a
hole, as in Fig. 1.2. Multiplying the definition of longitudinal and Hall conductances
(1.1) with εi j and integrating along a curve γ gives,

Iγ =
∫

γ

dl · E σH +
∫

γ

dl × E σL , (1.3)

where conductances Iγ is the current passing through the curve γ . Assuming a
homogeneous sample, so that the Hall conductivity is constant, this become

Iγ = σH Eγ + σL

∫

γ

dl × E , (1.4)

which shows that in a pure 2d sample the Hall conductance actually equals the Hall
conductivity which is a material property. In particular notice that no geometrical
factors, that would be hard to measure with high precision, enter the relation.3

3This is not true in higher dimensions, and it is also not true for the longitudinal 2d conductance.
Even for a pure sample does not equal the conductivity. For a rectangular Hall bar as in Fig. 1.1
the longitudinal conductance is (W/L)σ where W and L are the widths and length of the bar
respectively.
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Now consider a 2d Hall bar which is large enough that the transport properties
do not depend on the boundary conditions. We can then pick them to be periodic,
which is the same as assuming that the space is a torus. Furthermore assume that the
spectrum on the torus has a gap ΔE � kB T above an N -dimensional subspace of
degenerate states (up to splittings that vanish in the thermodynamic limit). We will
also imagine having magnetic fluxes, φx/y , through the torus as illustrated in Fig. 1.2.
Our assertion is then that for a big system the Hall conductance will not depend on
these fluxes, and will also equal that for a physical Hall bar.

Inserting an arbitrary flux, φx/y , through any of the non-contractible loops on
the torus (see Fig. 1.2) does not change the conductance, but it does change the
Hamiltonian.4 However, for the special case of inserting a flux quantum, φ0 = hc/e,
the resulting Hamiltonian is identical to the one where there is no flux. Thus, the
Hamiltonian depends on the parameters φx/y which are defined on a space where
the points (φx , φy) and (φx + nxφ0, φy + nyφ0) are identified. Put differently, the
parameter space T 2

φ = {(φx , φy
)}

is a torus, which we will refer to as the flux-torus
to distinguish it from the physical space, which, because of the periodic boundary
conditions, also is a torus.

The idea is now to consider maps from the parameter space into the space of
ground-state wave functions. Such maps are characterized by an integer ch1, called
the first Chern number. The proper mathematical setting for this concept is the theory
of fiber bundles, andmore precisely, the degenerate ground-statewave functions form
a complex vector bundle over the parameter space T 2

φ . For a brief introduction to
Berry phases and Chern numbers we refer to Sect. 1.8.1.

The basic result is that the Hall conductance σH is given by the formula,

σH = σ0
ch1

N
, (1.5)

where σ0 = e2/h and N is the number of degenerate ground-states. We are now
ready for the actual calculation.

Let us first pick the gauge potential as

A = Ã + φx

Lx
x̂ + φy

L y
ŷ , (1.6)

where the integral of Ãi along any of the non-contractible torus-loops is zero. Chang-
ing φx/y → φx/y + φ0 would give back the same physical Hamiltonian but in a dif-
ferent gauge; so, φx/y is used not only label the fluxes through the holes, but also
the gauge choice. Assume now that we have a monotonically increasing φy(t) such
that in time τ a full unit of flux is inserted in the hole, i.e., φy(τ ) = φy(0) + φ0.
According to Faraday’s law, this generates an electromotive force,

4In some references you will come across the notion of “twisted boundary conditions” this is
equivalent to inserting flux through the holes of the torus.
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Eγy =
∫

γy

dl · E = 1

c

∂φy

∂t
, (1.7)

where γy is any of the non-contractible loops encircling the fluxφy once. The conduc-
tance is defined in the limit of vanishing electric field so we should assume τ → ∞
and, since there is an energy gap to all excited states, the time dependence is thus
given by the adiabatic theorem. We choose an orthonormal basis of the ground-state
manifold, for each φx , at φy = φy(0) = 0,

{∣∣(φx , φy);α
〉}

α=1,...N

∣∣∣
φy=0

, (1.8)

which is taken as a smooth function of φx . Under the adiabatic time evolutionU (t) ≡
U (φy(t)) (recall that φy(t) is monotonic) this evolves into,

∣∣(φx , φy);α
〉 = U (φy) |(φx , 0);α〉 . (1.9)

Now we are ready to calculate the current. With no loss of generality we shall take
the curve γ to be a straight line in the y-direction, and get,

Iγy = 1

Lx

∫
d2x x̂ · j(x) = 1

Lx

∫
d2x ψ∗(x, t)

c ∂ H(A)

∂ Ax
ψ(x, t)

=
∫
d2x ψ∗(x, t)

c ∂ H(A)

∂φx
ψ(x, t) = c

〈
ψ | (∂φx H

) |ψ 〉 ,

(1.10)

where we used the definition of current density operator j(x) = c ∂ H(A)/∂A, and
our decomposition of the gauge potential, (1.6). We can, with out loss of generality,
assume that we start out in the state

∣∣(φx , φy); 1
〉
, and we then have the expression,

Iγy (φy) = c
〈
(φx , φy); 1|

(
∂φx H

) |(φx , φy); 1
〉

(1.11)

which by, repeated use of Leibniz rule and using

H
∣∣(φx , φy); 1

〉 = i�
∂φy

∂t
∂φy

∣∣(φx , φy); 1
〉
, (1.12)

and E0 = 〈(φx , φy); 1|H |(φx , φy); 1
〉
, can be rewritten as

Iγy (φy) = c∂φx E0 + i�c
∂φy

∂t
. (1.13)

When averaging over φy and τ , the first term vanishes since E0(φx , φy) = E0(φx +
2π, φy) and we get
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Īγy = hc

φ0

1

τ

∫ φ0

0

∫ φ0

0
dφxdφyε

i j∂φi

〈
(φx , φy); 1

∣∣ ∂φ j

∣∣(φx , φy); 1
〉

. (1.14)

The integrand equals a term in the trace of the Berry field strength corresponding to
the state

∣∣(φx , φy); 1
〉
, see (1.186) in Sect. 1.8.1; so, if we average over the different

states in the degenerate ground-state manifold we end up with

Īγy = hc

Nφ0

1

τ

∫ φ0

0

∫ φ0

0
dφxdφy

Tr (F )

2π
= 1

N

e

τ
ch1 , (1.15)

where the first Chern number, ch1, is defined in Sect. 1.8.1.Wenowargue thatwithout
loss of generality we can do just that: Let us for simplicity assume that there are two
ground-states, and compare their conductivity in some bounded region. (This can in
principle can bemeasured by a local probe.) One possibility is that the conductivity is
in fact the same in the two states, so that the conductance trivially equals the average
of the conductances in the two states. The other possibility is that there is a region
where the conductivities do differ, which means that there are local operators with
different expectation values in the two states. Now think of weakly perturbing the
Hamiltonian in some region with such terms. This will break the degeneracy, and
result in a unique ground-state an the question of averaging is gone.

To get the conductance we are left with calculating the electromotive force. From
Faraday’s law, (1.7) we get,

Ēy = 1

φ0τc

∫ φ0

0

∫ τ

0
dφydt

∂φx

∂t
= φ0

τc
, (1.16)

and then finally,

σH = Īx

Ēy

= σ0
ch1

N
, (1.17)

which concludes the proof of (1.5)—the quantization of the Hall conductance.
This formula allows for a conductance which is a fraction of the quantum of

conductanceσ0, but only if the ground-state degeneracy cannot be broken by any local
operator. This is in fact a characteristic property of topologically ordered states—
the ground-state degeneracy is a topologically protected number. We will return to
this point briefly in Sect. 1.6, and you should note that this type of degeneracy is very
different from what you are used to. Normally a degeneracy is either “accidental”,
that is dependent some fine tuning of parameters, or due to some symmetry. In both
cases the degeneracy can be broken by adding local terms, which in the second case
has to violate the symmetry.

As we just mentioned the states with a conductance of a fraction of σ0, are topo-
logically ordered. But what about the states which have a conductance of an integer
times σ0. Are they topologically ordered or symmetry protected?

The Hall conductance is a charge response and one could at least in principle
imagine breaking the U (1)-charge conservation symmetry by proximity to a super-
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conductor. The Hall-conductance would then no longer be well-defined and could
no longer be used as a characteristic for a phase of matter. You might therefore think
that the states with integer quantized Hall conductance are SPTs protected by U (1)-
symmetry. And you would be right; One could, in principle, imagine an SPT with
quantized Hall conductance. However, in all realistic situations the quantized charge
Hall conductance goes hand in hand with a quantized thermal conductance: the heat
current is proportional to a quantized constant, the temperature, and the temperature
gradient. This quantized constant is harder to access experimentally than the charge
Hall conductance, but it is by no means impossible, see e.g., [27]. However, it is the
theoretical importance that is of main interest here; energy conservation is part of
the definition of quantum matter (without it you could not define zero-temperature),
so one cannot get rid of the thermal conductance in the same way as with the charge
conductance. The states with integer quantized Hall conductance are therefore topo-
logically ordered but of the kind, mentioned in the introduction, that are similar to
SPTs.

1.2.2 The Chern–Simons Response Action

In this section we shall first encode the quantum Hall response, derived above, in an
effective response action. From now on we put c = 1, and often � = 1. We assume
there is a conservedU (1) current (typically the electric current) which we can couple
to a gauge field Aμ. The effective action, Γ [Aμ], is the generating functional for
connected n-point functions,

Γ [Aμ] ≡ −i logZ [Aμ] ≡ −i log
〈
GS|T ei

∫
dt H(Aμ(t))|GS

〉
, (1.18)

where |GS〉 is the ground-state and T denotes time-ordering. Taking derivatives of
Γ [Aμ] gives time-ordered connected current n-point functions. Most importantly
the current expectation value,

δ

c δA′
μ(x, t)

Γ [A′
μ]
∣∣∣∣∣

A′
μ=Aμ

≡ jμ(x, t) =
〈
GS| ĵμ(x, t)|GS

〉
; (1.19)

ĵμ(x, t) ≡ T ei
∫∞

t dt ′ H(Aμ(t ′)) ĵμ(x)T ei
∫ t
−∞ dt ′ H(Aμ(t ′)) , (1.20)

where Aμ is a back-ground gauge potential.
Since we consider gapped systems, which by definition have have no mobile

charge carriers, and thus do not conduct, we first remind ourselves of the effective
action for usual insulators. In these materials, external electric and magnetic fields
gives rise to dielectric and diamagnetic effects, such as a polarization charge, ρpol =
−χe∇ · E. This linear response is captured by the effective action,
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Γmed =
∫

dtd3x
(χe

2
E2 − χm

2
B2
)

, (1.21)

where χe and χm are the electric and magnetic susceptibilities respectively. This is
the expression with the lowest number of derivatives, which is quadratic in the fields
(and thus gives linear response), and is invariant under rotations, reflections (parity),
time reversal and gauge transformations. Thus it describes the response of a large
class of isotropic materials in weak and slowly varying electromagnetic fields.

We now turn to the Hall response. The relation j i = σHεi j E j can be written as

j i = σHεi j
(
∂0 A j − ∂ j A0

)
, (1.22)

where 0 is the time index, the roman letters i, j, . . . are the space indices. Equation
(1.22) together with current conservation, ∂i j i = ∂0 j0 gives the Streda formula,

∂0 j0 = ∂i j i = σHεi j ∂i
(
∂0 A j − ∂ j A0

) = σH∂0B ,

where B is the component of the magnetic field perpendicular to the 2d system.
Assuming B = 0 at t = −∞, this can be combined with (1.22) to give

jμ = σH εμνσ ∂ν Aσ , (1.23)

and, by integration, the corresponding term,

ΓH [A] = σH

2

∫
d3x εμνσ Aμ(x)∂ν Aσ (x) , (1.24)

in the effective response action.
As opposed to Γmed., the Hall term, ΓH , violates both time-reversal and parity

symmetry. Thuswe can conclude that in a systemwhere these symmetries are present
we have zero Hall conductance. In the quantumHall systems the symmetry is broken
by a backgroundmagnetic field, but as you will see, a magnetic field is not necessary;
other physical systems which violates the symmetry in other ways can also produce
a non-zero Hall conductance.

Another point to notice is that the Hall term is not written only in terms of field
strengths, so one might worry that it is not gauge invariant. Under the gauge trans-
formation

Aμ → Aμ + ∂μλ (1.25)

one gets the variation

δ

∫

V
d3x εμνσ Aμ(x)∂ν Aσ (x) =

∫

∂V
dxi Ei (x)λ(x) , (1.26)
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where ∂V is the boundary of the space-time volume V . The Hall term is thus gauge
invariant only up to a boundary term. Since gauge invariance is a consequence of
current conservation, this means that we do not have current conservation if the
system of consideration has a boundary. The resolution to this quandary is that there
is an extra piece in the effective action that only resides on the boundary and describes
an edge current in the quantum Hall sample. Such edge currents are known to be
present and it is important to find a formulation of the effective low energy theory
that incorporates them in a natural way.

1.2.3 The Topological Field Theory

The basic tool to find a formulation of the effective low energy theory will be that
of topological field theory. We shall return to this concept several times later, but for
now just look at the simplest example and see that it has the desired properties. We
take the Lagrangian

L (b; A, j) = − 1

4π
εμνσ bμ∂νbσ − e

2π
εμνσ bμ∂ν Aσ − jμ

q bμ , (1.27)

where b is an auxiliary gauge field,5 and jq a quasi-particle current. The first term
in (1.27) is called the Chern–Simons (CS) term, and this particular topological field
theory is thus calledCS theory. To understand themeaning of the field, b, we calculate
the electric current j ,

jμ = δL

δAμ

= − e

2π
εμνσ ∂νbσ . (1.28)

So, b is just a way to parametrize j . Note that j , which by definition is conserved, is
invariant under the gauge transformation

bμ → bμ + ∂μχ , (1.29)

where χ is a scalar, since it is the field strength corresponding to the vector potential
b. Since b is related to the conserved current, we shall refer to it as “hydrodynamic”.

Why is this theory is referred to as topological? First you notice that it does not
depend on the metric tensor. A normal kinetic term has the general covariant form
∼gμν DμφDνφ, and thus depends on the geometry of the space onwhich it is defined.
If the action does not depend on the metric, correlation functions of operators cannot
depend on the metric either, specifically they cannot depend on any distance or time.
Furthermore, the equation of motion for the b field is,

5Note that the conventions for this field differ. We use the notation from [11], while in the work by
Wen [17] the field here denoted by b is denoted by a.
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εμνσ ∂νbσ = −eεμνσ ∂ν Aσ − 2π jμ
q , (1.30)

that is the field strength is completely determined by the external sources. This
means that, as opposed to usual Maxwell electrodynamics, there are no propagating
photons—the equations of motion are just constraints. For instance, the zeroth com-
ponent of (1.30) is 2πρ = εi j∂i b j ≡ B(b), which relates B(b), to the charge density,
ρ = j0, of the external sources. The analysis just given is, only for a system on an
infinite plane, the case of boundaries will be discussed below, in Sect. 1.2.4.

Since the Lagrangian, (1.27), is quadratic in b we can integrate it out to get an
effective action for A only. We can use the following path integral formula,

eiΓ [A, j] =
∫

D[b]ei
∫
d3r L (b;A, j) , (1.31)

to get the response action. Performing the integral we get,

Γ [A, j] =
∫

d3x
[σH

2
εμνσ Aμ(x)∂ν Aσ (x) + ejμ

q (x)Aμ(x)
]

+
∫

d3xd3y jμ
q (x)

(π

d

)
μν

(x − y) jν
q (y) ,

(1.32)

where you should recall that σH = e2/2π , and where (1/d)μν(x − y) is the inverse
of the Chern–Simons operator kernel εμνσ ∂σ . The first term in this expression is
just the Chern–Simons response term, (1.24), derived earlier, while the last term is
a topological interaction between the particles described by the source jq . The last
term provides the minus sign that the wave function acquires when two identical
fermions are exchanged. A simple way to understand this phase is to recall that the
equation of motion (1.30) associates charge with flux and that the resulting charge-
flux composites will pick up an Aharanov–Bohm like phase when encircling each
other. (The story is a little more subtle and we will come back to in the last section
on the fractional quantum Hall effect.) We again stress that the above result is only
correct on an infinite plane, since it does not conserve current at the edge.

1.2.3.1 Functional Bosonization

You might find the above discussion somewhat unsatisfactory since the topological
field theory in the previous section was merely postulated. Here we amend this by
describing a rather general method to actually derive a topological field theory given
an effective response action [28]. After a general exposition of the method we then
specialize to Hall response.

The starting point is the path-integral formula for the partition function,
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Z [Aμ] =
∫

D[ψ̄, ψ]ei S[ψ̄,ψ,A] , (1.33)

where the action S describes the system of interest. We will not do the integral
explicitly, but make use of the fact that for a gapped system at zero temperature the
functional Z [Aμ] will be local.

Because of current conservation, the effective response action, and therefore also
Z , needs to be gauge invariant meaning that

Z [Aμ + aμ] = Z [Aμ] , (1.34)

for any a being a pure gauge, i.e., satisfying,

fμν ≡ ∂μaν − ∂μaν = 0 . (1.35)

Thus one can express Z as

Z [A] =
∫

D[a]Z [A + a]
∏
μν···

εμνλ...αβδ[ fαβ(a(x))] , (1.36)

where the delta functionals under the product sign enforce the zero field-strength
constraint.Here, x is a point in D = d + 1dimensional space-time, and εμνλ...αβ is the
D-dimensional totally anti-symmetric Levi-Civita symbol. Introducing an auxiliary
tensor field bμ1μ1...μD−2 to express the delta functional as a functional Fourier integral,
we get,

Z [A] =
∫

D[a]D[b]Z [A + a]ei 1
2

∫
d D x εμνλ...αβbμνλ... fαβ (a) , (1.37)

and by the shift a → a − A, finally,

Z [A] =
∫

D[a]D[b]Z [a]ei 1
2

∫
d D x εμνλ...αβbμνλ...[ fαβ (a)−Fαβ (A)]

≡
∫

D[a]D[b]ei
∫

d D xL , (1.38)

where the last equality defines the LagrangianL . Note that this action, by construc-
tion, is invariant under gauge transformations of the electromagnetic potential Aμ,
since the electrical current is conserved in the model of consideration. Below you
will see that this implies the existence of edge modes.

Given this one can calculate the expectation value of the U (1) current as

〈 jμ(x)〉 = i
δ lnZ [A]
δAμ(x)

= 〈εμνλρ...∂νbλρ...(x)
〉

, (1.39)
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and similarly for higher order correlation functions. Note that by construction the
current is conserved. To appreciate the meaning of the field bμνλ..., let us look at the
simplest special cases. For D = 2, b is a scalar, and the above relation reads,

〈 jμ(x)〉 = 〈εμν∂νb(x)〉 , (1.40)

which you might recognize if you are familiar with the method of bozonization in
1 + 1 dimension. This case is special, in the sense that it holds even if the average is
removed, that is it holds as an operator identity. A concise account of the fascinating
physics and mathematics of (1 + 1)D systems can be found in the books [14, 29].

For D = 3, b is vector field and

〈 jμ(x)〉 = 〈εμνσ ∂νbσ (x)〉 . (1.41)

Up to a normalization, which we will discuss below this is the same as the previously
derived relation for the electric current, (1.28).

Clearly the expression for Z [Aμ] derived above, (1.38), is useful only if we
can, at least approximately, evaluate the fermionic functional integral to get Z [a].
In 1 + 1 dimensions this can sometimes be done exactly. In higher dimensions this
is not possible. However one can find an approximation by assuming there is a gap
and making a derivative expansion.

In the case of 2d systems with quantumHall response, we already know one piece
in Z [a] that will for sure be present namely the Hall term, (1.24). Combining this
with the just derived expression for Z [Aμ] (1.38), gives the effective Lagrangian,

L = − 1

2π
εμνσ bμ∂ν(aσ − Aσ ) + σH

2
εμνσ aμ∂νaσ , (1.42)

where we renormalized the field b so that it, up to the factor (−e), is identical to the
previous expression for the electromagnetic current, (1.28).

Above we used a seemingly arbitrary argument to fix the normalization of the
field b, and you should worry about this since a different convention would give
a different value for σH when b is integrated over to obtain the effective response
action. To understand this point, we must look closer at the first term in the above
Lagrangian, (1.42) which is the 2d incarnation of the topological BF theory which
is defined in any dimension as,

LB F = −1

2
εμνλ...αβbμνλ... fαβ(a) . (1.43)

In Sect. 1.6.2 we shall briefly discuss the 3d case in the connection with fluctuating
superconductors. There is a rich mathematical literature on BF theory, [30, 31], but
here we shall only cover material of direct relevance for physics. One such point
is the question of normalization brought up above. With the chosen normalization
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the ground-state is unique, as is required for a number of filled Landau levels. A
derivation of this result is given in Sect. 1.8.2.

1.2.4 The Bulk-Boundary Correspondence

We now show how the Chern–Simons topological field theory (1.27) in a natural
way incorporates the presence of edge excitations. For a more thorough discussion
you should consult the paper by Stone [32] and the review by Wen [33]. We specify
the action by integrating the CS Lagrangian, (1.27), over a bounded and simply
connected region D, and for simplicity we will put σH = σ0 throughout this section,

S[b; A] =
∫

D
d3x L (b, A) . (1.44)

This action is not gauge invariant since we get a non-zero variation at the boundary
∂ D. What this means is that the pure gauge mode, ∂μχ which in the bulk has no
physical meaning, (and would be removed by gauge fixing) will at the edge manifest
itself as a physical degree of freedom. To see this explicitly we substitute bμ = ∂μχ

into the Lagrangian to get,

S[b, χ; A] = − 1

4π

∫

D
d3x εμνσ bμ∂νbσ +

∫

∂ D
dtdx χ ∂x (∂t − v∂x )χ(x, t) ,

(1.45)

where for simplicity we neglected the external field A (which is easily reintroduced),
and where the field χ(x, t) has support only on the boundary ∂ D parametrized by
the coordinate x . We also added an extra term ∼χ ∂2

x χ that does not follow from
the Chern–Simons action (1.44), but which will be present if there is an electrostatic
confining potential [33], which is needed e.g., in the quantum Hall effect to define
the quantum Hall droplet. The meaning of this term is clear from the equation of
motion for the χ -field,

(∂t − v∂x )χ(x, t) = 0 , (1.46)

which shows that v is the velocity of a gapless edge-mode propagating in one direc-
tion. The physical origin of this velocity is obvious: it is the E × B drift velocity
of the electrons in the external magnetic field and the confining electric field at the
boundary. If we reintroduce the electromagnetic field and study the current conserva-
tion at the boundary, we will see that the non-conservation of the bulk current, which
follows from the non gauge-invariant part of the Chern–Simons action, (1.26), is
compensated by a corresponding non-conservation of the boundary current; so the
total charge is conserved [32].
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The mathematics related to this result is quite interesting. The boundary theory
should after all just be a model for electrons moving in one direction along a line, and
as such we would expect the theory just to be that of a Fermi gas, or if interactions are
present, a Luttinger liquid. In both cases we would expect the boundary charge to be
conserved. What is special here is that the mode is chiral, i.e., it only propagates in
one direction. From the theory of Luttinger liquids, we learn that in the presence of
an electric field, the right and left moving currents are not separately conserved, but
only their sum, which is the electromagnetic current. The difference, which defines
the axial current, which in Dirac notation reads j A

μ = ψ̄γ3γμψ , is not conserved
because of the axial anomaly. The subject of anomalies in quantum field theory is
fascinating, but will not be discussed in these lectures.

1.3 Physical Systems with Quantized Hall Conductance

In this sectionwemove from the general discussion to real physical systems that have
a quantized Hall response. We begin with the integer quantum Hall effect (IQHE),
which started the whole field of topological states of matter. Given the previous
general analysis, we can use a simple symmetry argument to explain it.

We then turn to the systems that have been game changers for the last decade—the
various kinds of topological band insulators. Recall that one of the early successes
of quantum mechanics was the division of crystalline materials into conductors,
semiconductors and insulators depending on whether or not the Fermi level is inside
a band gap (there is no sharp distinction between insulators and semi-conductors;
only a conventional classification depending on the size of the gap). The insulators
seem to be the most boring states, and it was an important discovery that they can
belong to different topological classes which differ in their quantum Hall response.

In an intermediate step, we study a system with both a magnetic field, and a weak
periodic potential. This is instructive not only for providing amore realisticmodel for
the quantumHall effect, but also for showing how to calculate a topological invariant
for a clean (non-interacting) band insulator.We then turn to the first example a system
with a quantized Hall effect without any magnetic field, the Chern Hall insulator,
and stress the importance of breaking time-reversal invariance.

1.3.1 The Integer Quantum Hall Effect

The integer quantum Hall effect is observed when a very clean two dimensional
electron gas is cooled and subjected to a strong perpendicular magnetic field.

If we neglect electron–electron interactions, this is the famous Landau problem
andwe know that the energy is quantized as En = n�ωc with the cyclotron frequency
ωc = eB/m. Each of these Landau levels (LLs) has a macroscopic degeneracy such
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that there is one quantum state in the area 2π�2B ≡ 2π�/eB which corresponds to a
unit flux, φ0 = h/e = 2π/e.

In Sect. 1.2.1 you learnt that for a gapped state the Hall conductance is always
quantized in integer multiples of the quantum of conductance divided by the degen-
eracy of the ground-state. For a number of filled Landau levels, the ground-state
is non-degenerate, and one can obtain the Hall conductance by a simple symmetry
argument: Let us start from the idealized case of non-interacting electrons moving
in the xy-plane, and no impurities. Having p completely filled LLs corresponds to a
charge density ρ = −ne, where n = p/(2π�2B) is the electron number density. From
this we get

B = ρ

p

2π�

e2
= 1

p σ0
ρ , (1.47)

where B = Bẑ.
Now assume that in our frame we have an electric field E = 0 and vanishing cur-

rent density j = 0. Then consider a frame moving with velocity −v, v � c, relative
to us. In this frame B is unchanged, but E = −v × B, so

j = ρ v = pσ0 ẑ × E , (1.48)

from which follows that the Hall conductivity is σH = pσ0, and since our system is
invariant under Galilean transformation, this result holds in any inertial frame. We
now return to a realistic system with electron–electron interactions, and impurities.
Since we have already shown that the conductance is quantized as long as the gap
remains we know that the conductance must stay the same as these potentials are
turned on under the assumption that the gap does not close.

1.3.2 The Hall Conductance in a Periodic Potential

Weshall nowpresent a special case of a problemoriginally treated in a very influential
paper by Thouless et al. [24]. Recall that in a constant magnetic field, the (magnetic)
translation operators, T1 and T2, which commute with the Hamiltonian, do not com-
mute among themselves. This follows because T −1

1 T −1
2 T1T1 does not equal identity,

since it amounts to a closed path that encloses flux and thus by the Aharonov-Bohm
argument gives a phase to the wave function. From this we learn that if one picks a
flux lattice, which is defined such that there is exactly one flux-quantum through a
unit cell, the lattice translation operators will all commute and can be simultaneously
diagonalized.

We shall consider the case where the Bravais lattice of the periodic potential is
such that the unit cell of the flux lattice contains an integer number of unit cells of the
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potential.6 In this case we can still diagonalize the magnetic translations, and then
invoke Bloch’s theorem to express the wave functions as,

ψk n(x) = eik·xuk n(x) , (1.49)

where n is a band index (here theLL index) andk the crystal, or quasi,momentum that
lives in the “magnetic Brillouin zone”, |ki | ≤ π/�B = π

√
eB.7 The Bloch functions

uk n(x) are eigenfunctions of the Bloch Hamiltonian,

HBl = �
2

2m
(−i∇ + eA + k)2 + Vlat . (1.50)

We will assume that the periodic potential is weak enough that the cyclotron gap
persist, and that the lowest N bands are completely filled. For each k in the Brillouin-
zone (B Z ) there are N wave functions

{
eik·xuk n(x)

}
n=1,...,N

, (1.51)

so associated to each k ∈ B Z there is an N dimensional sub-Hilbert-space, h(k), of
the full single particle Hilbert space. The set {k, h(k)}k where k ∈ B Z , is thus a fiber
bundle over the Brillouin-zone, see Sect. 1.8.1. By definition the Berry connection
on this fiber bundle is

A nm
ki

(k) = −i
〈
ψk n(x)|∂ki |ψkm(x)

〉 ≡ −i
∫

d2x ψ∗
k n(x)∂ki ψkm(x) .

This can also be written as the anti-commutator of the creation and annihilation
operators,

A nm
i = −i

{
ak n, ∂ki a

†
k m

}
(1.52)

where a†
k n and ak n are the Fourier components of the electron creation and annihi-

lation operators ψ(x) and ψ†(x) satisfying
{
ψ†(x), ψ(x′)

} = δ2(x − x′). The cor-
responding Berry field-strength, which we denote by B to distinguish it from the
previously defined flux-torus field strength, becomes

Bnm
ki ,k j

= ∂kiA
nm

k j
− ∂kiA

nm
k j

+ iA np
ki

A pm
k j

− iA np
ki

A pm
k j

, (1.53)

where the repeated index p should be summed over. Since the Brillouin-zone is
two-dimensional, the field strength has only one independent component

6Reference [24] treated the case where the ratio between the areas of the unit cells in the flux lattice
and the Bravais lattis of the potential is a rational number q/p. In case one has to consider a larger
unit cell, and each filled band will in general have a larger Hall conductance.
7In a translationally invariant system, the shape of this zone is arbitrary, but the area is fixed to
support n units of magnetic flux. In our case the shape has to be taken as to be commensurate with
the Bravais lattice of the potential.
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B ≡ εi jBnm
ki ,k j

. (1.54)

From now on we will suppress the upper indices m, n etc. and multiplications ofB
or A has the meaning of matrix multiplication. In this short hand notation we have

B = εi j
(
∂kiAk j + iAkiAk j

)
, (1.55)

for the the Berry “magnetic” field in the Brillouin-zone.
Although this Brillouin zone bundle is conceptually quite different from the flux

bundle, with Berry curvatureF , introduced in Sect. 1.2.1, they turn out to be closely
related in the present case where electron–electron interactions and random impuri-
ties are neglected. To see this, first recall that the non-interacting many body ground-
state is given by

|GS〉 =
N∏

n=1

∏
k∈B Z

a†
k n |0〉 . (1.56)

Secondly, from the Bloch Hamiltonian, HBl , we can, by taking a vector potential
describing fluxes through the holes in the torus, infer that the Bloch functions at
finite flux are related to those at zero flux by,

u
φx ,φy

k n (x) = u0,0
k′ n(x); k′ =

(
kx + 2π

Lx

φx

φ0
, ky + 2π

L y

φy

φ0

)
, (1.57)

where φx and φy denote the fluxes encircled by the two independent non-contractible
loops on the torus, see Fig. 1.2. This means that a derivative with respect to a the flux
φi can be turned into a derivative with respect to the crystal momentum ki . We can
also define the Chern number for the flux-torus fiber bundle, defined by the N first
LLs,

|GS,φ〉 =
N∏

n=1

∏
k∈B Z

a†
k n φ |0〉 ; a†

k n =
∫

d2x ψ†(x)ψφx ,φy

k n (x) , (1.58)

i.e., with Berry connection

Aφi = 〈GS,φ|∂φi |GS,φ
〉

. (1.59)

In Sect. 1.2.1 we showed that the Chern number of this connection is proportional
to the Hall conductance, and in Sect. 1.8.1.4 we show that the first Chern number
for the flux-torus fiber bundle, and the Brillouin zone bundle are equal. Combining
these results yields the formula
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σH = σ0

2π

∫
d2k TrB , (1.60)

for the Hall conductance. Thus, in this case we can express the Hall conductance in
terms of the first Chern number of the BZ bundle. This result was originally obtained
in [24] by using linear response and properties of the Bloch wave functions.

The above calculation using theBrillouin bundle relies on translational invariance,
and the absence of interactions and is thus much less general than the result derived
in Sect. 1.2.1. When applicable the formula derived here is however much simpler to
handle, and it has been essential in developing the classification of non-interacting
topological matter—its theoretical importance should not be underestimated.

1.3.3 The Chern Insulator

The formula (1.60) for the Hall conductance opens the possibility of having a topo-
logical phase in a crystalline system even in the absence of a magnetic field. Impor-
tantly, it demonstrates that topological band theory can be used to determine the
actual values of the topological invariants.

In an important paper from 1988, Haldane showed that one can have a quantum
Hall effect without any net magnetic field [34]. He constructed an effective model
of electrons hopping on a hexagonal lattice penetrated by a staggered magnetic field
that is on average zero. The model did, however, break time-reversal invariance and
is today referred to as a Chern insulator that exhibits a quantized anomalous Hall
effect. A model that is slightly simpler than the one used by Haldane is free electrons
hopping on a square lattice, with a π -flux on each elementary plaquette [35]. Since
the main theme of these notes are continuum field theory descriptions, we will not
give the position space lattice Hamiltonian, which you can find in the original work
[35]. For the present purpose, it suffices to say that the Chern insulator can be
modelled by the following two-band momentum space Hamiltonian,

HC =
∑
k

c†k αhαβ(k)ck β , (1.61)

with

hαβ(k) = da(k)σ a
αβ; d = (sin kx , sin ky, M + cos kx + cos ky) , (1.62)

where both energy and M are measured in units of some hopping strength, t .
To calculate the Berry flux, we note that hαβ(k) is nothing but the Hamiltonian

for a spin-half particle moving in a magnetic field d. The spectrum, given by the
Zeeman energy, is thus ±|d|, and the eigenfunctions satisfy,

d̂ · σ |Ek;±〉 = ± |Ek;±〉 . (1.63)
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Fig. 1.3 Diagram giving
rise to the CS action as the
lowest term in a derivative
expansion

Assuming that there is no gap closing, i.e., |d| > 0, and taking the Fermi energy to
be zero, the Berry field strength can be shown to be

B±(k) = εi j∂iA
±
j = ∓1

2
εi j d̂ · ∂i d̂ × ∂ j d̂ , (1.64)

where the lower sign corresponds to the filled band and we used the short hand
notation ∂i/j ≡ ∂ki/j . The most direct way to show the above formula, although a bit
tedious, is to first find |Ek;−〉 and then just calculate. An alternative derivation that
does not require the explicit wave functions is given in Sect. 1.8.3.

The expression on the right hand side of the above expression is the Jacobian of
the function d̂(k), and we define the integer valued Pontryagin index by

Q = 1

8π

∫
d2k εi j d̂ · ∂i d̂ × ∂ j d̂ , (1.65)

which measures howmany times the surface of the unit sphere on which d̂ is defined,
is covered by the map from the compact manifold where k is defined.

It remains to determine the value of n = Q. For large |M |, where the hopping
can be neglected, the eigenfunctions |Ek〉 become k-independent and the Pontryagin
density is identically zero. (M � 1 is the atomic limit where the wave functions are
sharply localized at the lattice sites.)Q is a topological quantity, so it can only change
when the gap in the Fermi spectrum closes and d̂ no longer is a smooth function of k.
From the expression Ek = −|d(k)|, one realizes that the gap closes for M = −2 (at
k = 0), for M = 2 (at k = (π, π)) and for M = 0 (at k = (0, π) and k = (π, 0)).

Let us now analyze what happens when M increases from a large negative value
towards −2. Putting M = −2 + m, and linearizing the Hamiltonian one gets,

Hlin = kxσ1 + kyσ2 + mσ3 , (1.66)

which we recognize as the Hamiltonian for a D = 2 + 1 Dirac particle. Since the
topological nature of a phase is a low-energy property, one should be able to capture
the change in phase by analyzing the continuum theory in the vicinity of m = 0. We
now show how to do this.

The continuum D = 2 + 1 Dirac theory is defined by the Lagrangian,

LD = ψ̄
(
γ μ(i∂μ − eAμ) − m

)
ψ (1.67)
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with γ μ = (σ3, iσ2,−iσ1).We calculate the electromagnetic response by integrating
out the fermions, which, to lowest order in Aμ, amounts to calculating the loop
diagram in Fig. 1.3. This was originally done by Redlich [36] with the result,

ΓD[A] = m

|m|
e2

8π

∫
d3x εμνσ Aμ∂ν Aσ . (1.68)

Note that a Dirac mass term in 2d breaks the parity symmetry, so it is not surprising
that a Chern–Simons term appears in the effective action. The term persists even
in the limit m → 0, where the classical Lagrangian respects parity, and is therefore
often referred to a parity anomaly.8 In Sect. 1.8.4 we give an alternative derivation
of this result by calculating the response to a constant magnetic field. Just as the
Schrödinger case, the eigenvalues of the Dirac equation falls into Landau levels,
En = ±√

neB + m2, for n > 0, and the contribution from these states to σH cancel.
Only the lowest Landau level, with n = 0 and energy E0 = m, contributes. This
derivation stresses that even though anomalies seem to be related to the short distance
behaviour of the theory, they should be considered as a low energy effect.

Note that the coefficient in the response action derived from the Dirac Lagrangian,
(1.68), translates into a Hall conductivity σH = ±σ0/2 which is half of the one
calculated above. This is surprising since we have argued that the Hall conductivity,
for topological reasons, must be an integer times σ0. The solution to this apparent
contradiction, is that it is not possible to consistently formulate the Dirac equation
on a lattice without “doubling” the number of low-energy fermions. This result, first
obtained in the context of high energy physics by [37], basically says that the low-
energy physics of fermions in a band of finite width, cannot be faithfully represented
by a single Dirac field.9 We now return to the two-band model (1.61). Recall that we
put M = −2 + m, and we want to know what happens as m is tuned from a small
negative value to a small positive value. Doing this changes the spectrum only in the
close vicinity of k = 0, so the change in σH should be faithfully represented by the
linearized Dirac theory. From the response action derived from the Dirac Lagrangian
(1.68) we get the change ΔσH = 1

2 (1 − (−1))σ0 = σ0. A similar analysis can be
made for the other gap closing points. The result is that σH , in units of σ0 changes
as 0 → 1 → −1 → 0 as M is tuned from −∞ to ∞. It should now also be clear,
that the effective topological theory for the Chern insulator is identical to that for the
IQHE given by (1.42). Note that at M = 0 the gap closes at two points, so to model
this transition we need two Dirac fields, and thus the change of two units in σH .

In 2013, a quantizedHall effectwas observed in thin films ofCr-doped (Bi,Sb)2Te3
at zero magnetic field, thus providing the first experimental detection of a Chern
insulator [38].

8As explained in [36] a gauge invariant regularization of the ultraviolet divergence (e.g., using the
Pauli-Villars method) gives rise to the anomaly term, but does not fix the sign.
9See Sect. 16.3.3 in [14] for more details.
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1.4 Generalizing to Other Dimensions

1.4.1 The 1d Case

Until now we discussed the 2d systems with U (1) symmetry and showed that in the
topological scaling limit, their response action is the Hall term

Γ [Aμ] = σH

2

∫
d3x εμνσ AμFνσ , (1.69)

which encodes the Hall response. We again emphasize that this expression is inde-
pendent of the metric.

In 2d we knew from the start that we where looking for, a Hall response. Now
assume that we had not known that, but would anyway have asked the question: Is
there a possible topological response? A strategy in this hypothetical case would
have been to write down all possible response actions that are gauge invariant and
independent of the metric (and thus of any length or time scale). On a technical
level the absence of a metric implies that the only way to contract indices is by the
anti-symmetric epsilon tensor. In (2 + 1)D this leaves only one option namely the
Chern–Simons action (1.69). In (1 + 1)D, there is also only one choice namely

Γ [Aμ] = e

4π

∫
d2x θ εμν Fμν , (1.70)

which we will refer to as the 1d θ -term. This is the integral of the electric field
strength, and is thus, as opposed to the Chern Simons term, fully gauge invariant,
and it does not contribute to the equations of motion. The choice of the symbol θ ,
which indicates an angle, is not accidental as will be clear below.

The θ -term is different from the Chern–Simons term in (2 + 1)D in that uniform
fields do not induce any currents but only polarization. In the static case, polarization
amounts to creating a dipole density that partially screens the external electric field,
D = (1 + χe)E, or equivalently it creates edge charges. To see how the topological
term alters this, consider a line segment with endpoints at x = x±. Choosing the
gauge with Ax = 0, and assuming θ in the 1d θ -term, (1.70), to be constant gives,

Γ = −e
θ

2π

∫
dt [A0(x+, t) − A0(x−, t)] . (1.71)

Varying Γ with respect to A0(x±, t) gives the charge at x±,

Q± = ∓e
θ

2π
, (1.72)

where Q+ and Q− are the charges on the right and left ends of the line segment
respectively. Thus the topological term adds a constant to the edge charge. Including
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the usual non-topological action ∼ ∫ d2x χeE2 (cf. the 2d linear response action
(1.21)) for a dielectric gives

Q± = ±χeeV ∓ e
θ

2π
, (1.73)

where V = A0(x+, t) − A0(x−, t) is the voltage difference between the left and right
end.

We can now see why θ should be regarded as an angular variable. Making the shift
θ → θ + k 2π , amounts simply to adding k unit charges at the ends of the wire which
is a local effect that for instance can be due to impurities. A non integer value of
θ/2π , on the other hand, is a bulk polarization effect, and we now show that it differs
from the usual polarization ∼χe in being quantized as long as certain symmetries
are respected.

For this, we again look at a systemwith periodic boundary conditions, i.e., a circle.
Now imagine that we adiabatically transform a system from a trivial insulator to an
insulator with a non-trivial 1d θ -term (1.70). During this process, a charge, Q, will
be transported around the circle and this charge is, as we will see, given purely by θ .
This is directly related to the bulk polarization, since to create a polarization charge
Q, it has to flow past every point except close to the edges where it accumulates.

Varying the 1d θ -term, with respect to Aμ, the current

jx = e
∂tθ(t)

2π
, (1.74)

and the total charge that has been transported around when θ(t) is changed from θ1
to the final value θ2, is

Q =
∫

dt jx =
∫

dt e
∂tθ(t)

2π
= e

θ2 − θ1

2π
.

Now lets calculate this in amicroscopic picture using amany body state |ψ(t, φ)〉 that
start out in the atomic limit, and then evolves adiabatically to some state |ψ(t2, φ)〉 (φ
denotes the magnetic flux passing through the circle). A similar set of manipulations
as those used to show that the Hall conductance is the first Chern number gives

jx = 〈∂tψ |∂φψ
〉− 〈∂φψ |∂tψ

〉 de f.= Ftφ . (1.75)

HereFtφ is the Berry field strength of the fiber bundle with the cartesian product of
the time-interval [t1, t2] and the space of flux-values through the circle as base space
and on-dimensional fibers spanned by |ψ(t, φ)〉. The total charge passing through a
point on the circle during the process is now obtained by integrating over t . Also,
as in the case of the Hall conductance, we invoke locality to average over the flux
(here meaning that the polarizability cannot depend on the flux through the circle).
We get,
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Q = 1

2π

∫ 2π

0
dφ
∫ t2

t1

dt F =
∫ 2π

0
dφ Aφ(t2) −

∫ 2π

0
dφ Aφ(t1) , (1.76)

where
Aφ(t) = 〈ψ |∂φψ

〉− 〈∂φψ |ψ 〉 (1.77)

is the φ component of the Berry connection of the just mentioned fiber bundle. We
now refer to Sect. 1.8.1, where the 1d Chern–Simons invariant is defined as,

C S1[A (t)] = 1

2π

∫ 2π

0
Aφ(t)dφ , (1.78)

and where it is shown that 2π times the exponent of this is a well defined basis
independent property. At t1 the state is just a product state of localized electrons, so
we can choose a gauge where Aφ(t1) = 0 and it follows that

e2πC S1[A (t1)] = 1; ei2π Q/e = e2πC S1[A ] , (1.79)

where t2 is suppressed since the state |ψ(t2)〉 is the many-body state of interest i.e.,
we define Aφ ≡ 〈ψ(t2)|∂φψ(t2)

〉− 〈∂φψ(t2)|ψ(t2)
〉
.

The above phase (1.79) has an alternative interpretation as the Berry phase accu-
mulated when a unit flux is adiabatically inserted through the circle. Since both
time-reversal and chiral symmetry (that is charge conjugation composed with time
reversal) maps inserting an upward flux to inserting a downward flux, one can con-
clude that if any of these symmetries are present during the adiabatic process, one
has

e
∫ 2π
0 Aφdφ = e− ∫ 2π0 Aφdφ , (1.80)

which leaves only two possibilities,

ei Q/e = e2πC S1[A ] =
{

eiπ non-trivial

0 trivial
, (1.81)

corresponding to having θ = 0 or θ = πmod 2π .
If we have a non-interacting system with lattice translation invariance we will as

in 2 + 1 dimensions have a fiber bundle defined by the Bloch states over the Brillouin
zone circle. Again, in the same way as the Chern number, the exponent of the Chern–
Simons invariant of the flux-circle bundle will be the same as the exponent of the
Chern–Simons invariant of the Brillouin zone circle. We will make use of this in the
next section where we study a model which has a topological polarization response.
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1.4.2 Realization with Dirac Fermions

Rather than studying a lattice model, we shall pick a continuum model with a global
chiral symmetry, and would therefore be expected to be characterized by the Chern–
Simons invariant and thus fall into one of the two classes we found above. Since
topological response is a long distance effect, we expect that such a continuum
theory will also describe chiral symmetric lattice models.

With this motivation, we shall investigate the 1d Dirac fermion ψ , with mass
m, coupled to a gauge field a using path integral methods. Our starting point is the
partition function,

Z [a] =
∫

D[ψ̄, ψ]ei
∫
d2x ψ̄(γ μ(i∂μ−aμ)−m)ψ . (1.82)

We parametrize the gauge field as aμ = εμν∂νξ + ∂μλ, so that F = εμν∂μaν =
−∂2ξ ; the term containing λ is just a gauge transformation which does not con-
tribute to the action (provided we are on a simply connected manifold). One can now
verify that the chiral transformation

ψ →e−iγ3ξψ , (1.83)

where γ3 = iγ0γ1, eliminates the transverse gauge field εμν∂νξ from the action,while
the mass term is changed,

ψ̄(γ μ(i∂μ − aμ) − m)ψ →ψ̄(γ μi∂μ − me−2iγ3ξ )ψ . (1.84)

This looks very strange, since for the massless case it seems like we by this transfor-
mation can get rid of a non-trivial field. The resolution of the apparent contradiction
is that the path integral measure is not invariant under the transformation. Using tech-
niques pioneered by Fujikawa [39], one can show that under the chiral transformation
(1.83),

D[ψ̄, ψ] →D[ψ̄, ψ]e− i
2π

∫
d2x ξ∂2ξ , (1.85)

which is the path integral incarnation of the axial anomaly referred to at the end
of Sect. 1.2.4. In particular we shall be interested in a (space-time) constant chiral
transformation ξ(x) = −θ/2, which does not change the coupling to aμ but only
affects the mass term, and introduces a 1d θ -term, (1.70), in the response action.

For the case of the continuum Dirac equation we shall follow the same logic
as in the 2 + 1 dimensional case, and only calculate how the value of θ differs
between different phases. From (1.84) one realizes that taking 2ξ = θ = π amounts
to changing the sign of the fermion mass. Taking the gamma matrices,

γ 0 = σ 1; γ 1 = iσ 3; γ 3 = iσ 2 , (1.86)
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we have

H =
(

0 m − ik
m + ik 0

)
=
(
0 Q†

Q 0

)
. (1.87)

It is straightforward to obtain the wave functions, and calculate the Brillouin-zone
Berry potential,

A = 1

2

m

k2 + m2
. (1.88)

We can now form the corresponding Chern–Simons invariant by integrating over the
filled states labeled by k,

C S1[A ] = 1

2π

∫ ∞

−∞
dk A . (1.89)

Using the expression for the Berry connection of the Brillouin-zone fiber bundle
(1.88) and the definition of the Chern–Simons invariant (1.89) we get

C S1 = 1

2π

∫ ∞

−∞
dk

1

2

m

k2 + m2
= 1

4

m

|m| (1.90)

for the filled Dirac sea. Previously, in the discussion of the Chern insulator, we
saw that the Chern number of the Brillouin-zone fiber bundle and the flux-torus
fiber bundle were equal. Analogously the just derived Brillouin zone Chern–Simons
invariant equals the flux-circle Chern–Simons invariant, which was introduced in the
previous section and was shown to be proportional to the topological polarisation.

There is an alternative way to characterize the topology of Hamiltonian of the
form on the right hand side of (1.87). (It can be shown that a general Hamiltonian
with chiral symmetry can be written in this form [5], so it applies to more than the
Dirac equation.) This alternative characteristic is by the winding number defined by,

w = i

2π

∫
dk Q−1∂k Q = i

2π

∫
dk

−im

k2 + m2
= 1

2

m

|m| , (1.91)

i.e., it equals twice the invariant C S1. Note that the winding number changes by one
unit when the sign of the mass changes, consistent with θ in (1.70) changing by π .

Just as in the discussion of the Chern number for the Dirac sea, you might wonder
how something that is called a winding number can be non-integer. The resolution
is again related to the regularization of the continuum Dirac theory. If we instead
consider the lattice version,

Hlat = sin(k)σ 2 + (m − 1 + cos(k))σ 1 (1.92)

so that Q = −i sin(k) − (m − 1 + cos(k)) we get
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w = i

2π

∫ π

π

dk ∂k ln(m − 1 + e−ik) . (1.93)

For m < 0 the curve m − 1 + e−ik does not wind around the origin, so the logarithm
can be picked to be single valued and thus w = 0. For 0 < m < 2 it winds one turn
in the negative direction and w = 1. The change of the winding at m = 0 is the same
as in the continuum model.

1.4.3 Higher Dimensions

Both in the 2 + 1 and the 1 + 1 dimensional cases, there is only one possible topo-
logicalU (1) symmetric response term. This is the case in any dimension, and it turns
out that all odd space time dimension cases are similar to the (2 + 1)D case while
all even ones are similar to the (1 + 1)D case.

To find topological response terms in D space-time dimension we need a D-form
to contract with the anti-symmetric epsilon tensor with a result that is gauge invariant
in the bulk. These conditions are very restrictive, and leave us with,

Γ [Aμ] ∝
∫

d2x εμν Fμν D = 2 (1.94)

Γ [Aμ] ∝
∫

d3x εμνσ AμFνσ D = 3 (1.95)

Γ [Aμ] ∝
∫

d4x εμνσλFμν Fσλ D = 4 (1.96)

Γ [Aμ] ∝
∫

d5x εμνσλκ AμFνσ Fλκ D = 5 (1.97)

...
...

You notice a difference between even and odd space time dimensions. In the even
case the actions are Chern–Simons terms that only are gauge invariant up to edge
terms. The most important example is the already discussed 2d case, and the higher
dimensional analogs are very similar:

Using similar arguments to the ones for the (2 + 1)D case one can show that
the response in D = 2k + 1 following from the response above (1.97) is the kth
Chern number of the flux-torus bundle and for a non-interacting system in a periodic
potential this equals the kth Chern number of the bundle of filled states over Brillouin
zone (there are 2k independent fluxes that one can thread in a d = 2k dimensional
torus). Thus, just as in 2d, there is a quantized current response.

Using similar arguments as in the (1 + 1)D case one can show that the response
in D = 2k is given by the exponent of 2π times the kth Chern–Simons invariant of
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the flux torus bundle. This is as in (1 + 1)D, not quantized unless one can assume
either time-reversal or chiral symmetry.

Let us brieflymention the most important example of these topological responses,
namely the one in (3 + 1)D that describes a 3d time-reversal invariant topological
insulator:

Γ [Aμ] = θσ0

16π

∫
d4x εμνσλFμν Fσλ = θσ0

2π

∫
d4x E · B .

This term has many important implications that we will list without any derivations:

• A time-reversal invariant system with θ = π mod 2π , i.e., a 3d topological insu-
lator, has a gapless surface mode.

• If the time-reversal invariance is weakly broken at the surface, the system will
have a quantized Hall response with σH = 1

2σ0 mod σ0 [40].
• The Witten effect [41]: A magnetic monopole will be accompanied by a local-
ized electric charge of 1

2e mod e, and conversely, putting an electric charge near
the surface of a topological insulator, will induce a “magnetic monopole” in the
bulk! [42].

1.5 Systems Characterized Only by Edge Modes

The topological phases we have considered so far were all characterized by their
U (1) response. All of them also supported gapless edge modes; so, you might think
that these characteristics go hand in hand. As we shall now discuss, this is not true:
there are topological phases of matter which have no topological response, but still
exhibit topologically protected gapless edge modes. We shall exemplify with two of
the most important cases: the 2d time-reversal invariant topological insulator, and
the Kitaev chain with and without time-reversal invariance, which is also referred to
as a 1d topological superconductor.

1.5.1 The Time-Reversal Invariant Topological Insulator

Although you learned that a magnetic field is not necessary for having a quantized
Hall response, clearly time-reversal invariance has to be broken since the current is
flowing in a particular direction. This invites the question of whether it is possible to
have topologically non-trivial states which are time-reversal invariant. An obvious
way to get such a system is to add two copies of a Chern insulator, and since the
particles are electrons, the natural candidates for the two “species” are the two spin
directions: up and down. Such a system will exhibit a quantized spin Hall effect that
can be described very similarly to the Chern insulator. Just as in case of the integer
QH effect, we can construct a topological field theory to describe the quantum spin



1 Effective Field Theories for Topological States of Matter 33

Hall effect. Since there are now two conserved currents, corresponding to spin up
and spin down, we expect a topological action with two gauge fields b↑ and b↓.

LQSH = − 1

4π

(
εμνσ b↑

μ∂νb↑
σ + εμνσ b↓

μ∂νb↓
σ

)
. (1.98)

This is an example of a doubled Chern–Simons theory. There is no QH effect, since
the contributions to σH obtained by coupling to an external electromagnetic field
come with different signs and cancel each other. Similarly, there is no chiral electric
edge current, but instead a chiral spin current. This is however only relevant in the
cases where one component of the spin is conserved, which is normally not the case
in real materials. Surprisingly, however, there are topologically distinct states even
when the spin current is not conserved. It is these time-reversal invariant states that
are commonly referred to as topological insulators. To arrive at this conclusion using
field theorywould require that we break the symmetry asU (1) × U (1) → U (1), and
show that the resulting theory still has protected gapless edge modes. As of now, we
do not know of any way to do this. However, since the seminal work by Kane and
Mele [43, 44], it has been known that the gapless edge modes persists even when
the symmetry is broken. Furthermore they showed that there is new topological “Z2

invariant” that tells whether the insulator is trivial with no edgemodes, or topological
with gapless edge modes. The analysis by Kane and Mele was for non-interacting
systems, and, at least in this limit, the topological insulator is a time-reversal protected
SPT state. The edgemodes are seen inmany experiments with topological insulators,
and are believed to be a generic feature of a large class of materials, see e.g., [3].

1.5.2 The Kitaev Chain

All phases we have discussed so far have a U (1) symmGennestry corresponding to
conservation of electric charge. There are, however, important phases ofmatterwhich
are most easily described using a formalism where this symmetry is broken. This is
when there is a condensate, either of fundamental bosons (like in 4He), orCooper pairs
(as in a superconductor) that act as a reservoir of charged particles. Mathematically
this amounts to having terms of the type ∼Δψψ in the Hamiltonian, and in this
section we will consider the “reservoir”Δ as static, and the electromagnetic fields as
a background with no dynamics. An important physical situation where this happens
realized is when Δ is generated by proximity to a superconductor.

Wewill refer to quadraticHamiltonianswith termsbreakingU (1) asBogolliobov–
de Gennes (BdG) Hamiltonians. It has been realized for quite some time [4, 5]
that BdG systems are also part of the comprehensive classification schemes of free
fermion theories that was alluded to in the introduction.

Of particular interest are the chiral systems of p-wave type, since their bound-
ary theories typically support Majorana modes which can be thought of as a
“half fermion”. This is in fact one of the most striking examples of edges of
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topological phases that cannot be realized as bona fide boundary systems not con-
nected to a bulk. The simplest example of this is the Kitaev chain, which is of large
current interest since it can be experimentally realized in quantum wires with strong
spin-orbit coupling [45] or in chains of magnetic atoms on top of a superconductor
[46].

The following presentation is a shortened, and somewhat simplified, adaption of
[9]. The Kitaev chain is a model for spinless fermions hopping on a 1d lattice, and
is given by the Hamiltonian

HK =
∑

j

[
−t (a†

j a j+1 + a†
j+1a j ) − μ(a†

j a j − 1
2 ) + Δ�a j a j+1 + Δa†

j+1a
†
j

]
.

(1.99)

Here t is a hopping amplitude, μ a chemical potential, and Δ an induced supercon-
ducting gap. In terms of the Majorana fields,

c2 j−1 = a j + a†
j ; c2 j = 1

i
(a j − a†

j ) , (1.100)

the Hamiltonian becomes

HK = i

2

∑
j

[−μc2 j−1c2 j + (t + Δ)c2 j c2 j+1 + (−t + Δ)c2 j−1c2 j+2
]

. (1.101)

Let us now consider two special cases.

1. The trivial case: Δ = t = 0, μ < 0.

H1 = −μ
∑

j

(
a†

j a j − 1

2

)
= i

2
(−μ)

∑
j

c2 j−1c2 j (1.102)

The Majorana operators c2 j−1, c2 j related to the fermion ψ j on the site j are
paired together to form a ground-state with the occupation number 0.

2. Δ = t > 0, μ = 0. In this case

H2 = i t
∑

j

c2 j c2 j+1, (1.103)

and here the Majorana operators c2 j , c2 j+1 from different sites are paired. We
can define new annihilation and creation operators

ã j = 1

2
(c2 j + i c2 j+1); ã†

j = 1

2
(c2 j − i c2 j+1) , (1.104)

which are shared between sites j and j + 1. The Hamiltonian becomes
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Fig. 1.4 Winding numbers ν of d(k) for the full Kitaev chain, in a trivial phase with w = 0, for
0 < t < μ/2,Δ > 0, b topological phasewithw = 1 forμ = 0, 0 < t = Δ and c topological phase
with w = −1 for μ = 0, 0 < t = −Δ. The arrows denote the direction in which k increases

H2 = 2t
L−1∑
j=1

(
ã†

j ã j − 1

2

)
. (1.105)

Note that neither c1 nor c2L is part of the Hamiltonian, and as a consequence the
ground-state is degenerate, since these two Majorana operators can be combined to
a fermion,

Ψ = i

2
(c1 + i c2L) , (1.106)

which can be occupied or unoccupied, corresponding to a two-fold degeneracy. The
fermion number corresponding to this field, is, however, delocalized at the two ends
of the chain. Thus, no local perturbation can change the occupation of this state. It is
this property that has made fractionalized fermions an interesting object for quantum
information technology. If a qubit could be stored in a pair of spatially separated
Majorana fermions, it would be very robust against noise [47].

Although the above analysis was only for two very special points in the parameter
space, Kitaev established that the whole parameter region Δ �= 0, and |μ| < 2|t | is
topological.

It is illustrative to see how a topological index appears if we assume Δ ∈ R,
which corresponds to time-reversal invariance. To this end, we introduce the Nambu
spinorΨ †

k = (a†
k , a−k) in terms of which the Hamiltonian (1.99) in momentum space

becomes,

HK =
∑

k

Ψ
†
k HK (k)Ψk , (1.107)

withHK (k) given by

HK (k) = (−μ/2 − t cos(k)
)
τz − Δ sin(k)τy = −d(k) · τ (1.108)
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where the Pauli-matrices τi act in the particle-hole spinor space. Just as in the
case of the 1d insulator discussed, the topological invariant takes the form of
a winding number. To show this, consider the curve traced out by the vector
d(k) = (0,Δ sin(k), μ/2 + t cos(k)) in the (τy, τz)-plane (i.e., the space of Hamil-
tonians), as k sweeps through the full Brillouin zone. This is illustrated in Fig. 1.4,
where we schematically show the curve swept by d(k) in the trivial phase, with
winding w = 0, and the two different topological phases, with winding w = ±1.

One can construct Hamiltonians that realize any integer number of windings (a
simple way is just to take many copies of the Kitaev wire), and one would think that
there is one topologically distinct state for every integer, a so called Z classification.
However, it turns out that this is true only in the absence of interaction. Fidkowski
and Kitaev [48] showed that including carefully chosen four-fermion interactions,
there are only eight distinct phases which amounts to a Z8 classification.

Note that the result so far is based on time-reversal invariance symmetry that
ensures that Δ is real. So, the eight states are time-reversal protected SPT states. If
the time-reversal symmetry is broken (e.g., by a current in the s-wave superconductor
inducingΔ) the phase ofΔwill vary, and the winding number will no longer be well
defined. However, the Majorana modes are still present for general Δ, but there is
only aZ2 index—either there is aMajorana or not.10 TheMajoranamodes are present
even in the presence of interactions, and no symmetry was assumed; So, this is an
example of TO, but of the kind, mentioned in the introduction, that resembles SPT
states. One can thus regard the Majorana chain as being protected by fermion parity
[10], which is not a symmetry but a property common to all fermionic systems.

1.6 Superconductors Are Topologically Ordered

In this section we shall discuss the perhaps simplest example of a topologically
ordered state, namely an usual s-wave paired BCS superconductor coupled to elec-
tromagnetism described by Maxwell theory. We start by some general remarks and
then turn to examples.

It is known that even a weak attractive interaction will turn a Fermi liquid into
a superconductor at sufficiently low temperature. The mechanism is the formation
of Cooper pairs composed of two electrons with equal but opposite momenta. Such
pairs form, not because of the strength of the interaction, but because of the large
available phase space, given by the Fermi surface. This means that even though the
theory is weakly coupled (in conventional superconductors by an electron-phonon
interaction) the ground-state is non-perturbative.

10This has a direct consequence for the spectrum of Josephson junctions. In the first (real) case, the
junction between two topological states with winding number ±1, will host two Majorana zero-
modes, which amounts to a single Dirac zero-mode, while in the second (complex) case such a
junction will have no zero-mode, see e.g., [49].
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Most common superconductors have Cooper pairs where the spins form a singlet,
which forces the orbital wave function to be symmetric. The simplest possibility is an
s-wave, and this is in fact the symmetry of the order parameter in most conventional,
or low Tc, superconductors. From the quantum field theory point of view, the BCS
approach to superconductivity amounts to a self-consistentmeanfield approximation,
based on the pairing field Δ(x) = ψ↑(x)ψ↓(x).

The fermions are now gapped and can be integrated out. The resulting field theory
is to a good approximation the Ginzburg–Landau theory for superconductors.

The Ginzburg–Landau theory supports vortex solutions. The elementary vortex
has a core that captures half a unit of magnetic flux, since the Cooper pair has charge
2e. This means that a quasi-particle will pick up a phase eiπ = −1 when encircling
a vortex at a distance large enough for it not to penetrate the vortex core. This is an
example of a topological braiding phase, which can, as we shall show, readily be
captured by a topological field theory. We will now clarify the distinction between a
real, “fluctuating”, superconductor coupled to electromagnetism, and a model super-
conductor described by a BdG theory without a dynamical electromagnetic field.
The difference, which was first clearly pointed out by [50], is that the former totally
screens the electromagnetic current while the second does not. Thus, in the fluctu-
ating superconductor, the only low energy degrees of freedom are the vortices, and
electrically neutral fermionic quasi-particles. That this is a topologically ordered
phase was first pointed out by [51]. The topological field theory that describes the
low-energy properties of the s-wave superconductor is the very same BF theory that
we already discussed in connection with the IQHE and the Chern insulator. For sim-
plicity we will focus on the 2d case, but with a short comment on the 3d case in
Sect. 1.6.2. For pedagogical reasons we shall first give a heuristic derivation of the
BF theory, using an analogy with the Chern–Simons theory discussed in Sect. 1.2.3.
Later, in Sect. 1.6.3, we outline a derivation of the BF theory from a microscopic
model.

1.6.1 BF Theory of s-Wave Superconductors—Heuristic
Approach

We first consider the (2 + 1)D case where both quasi-particles and vortices are
particles, and we can proceed in close analogy to the bosonic Chern–Simons theory
for the quantum Hall effect. Recall that in that case the equations of motion relating
charge and flux, and the statistics of the quasi-particles (which in that case is simply
holes in the filled Landau level) followed from the coupling to the gauge field. The
present case differs from the above in that we have two distinct excitations, quasi-
particles and vortices, and we will describe them with two conserved currents, jμ

q

and jμ
v , which we couple to two different gauge fields, a and b, by the Lagrangian,

Lcurr = −aμ jμ
q − bμ jμ

v . (1.109)
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A simple calculation shows that in order to get a phase π when moving a jq quantum
around a jv quantum we should take

LB F = 1

2π
εμνσ bμ f (a)

νσ , (1.110)

where f (a)
μν = ∂μaν − ∂νaμ. This we recognize as the BF action, but with a coefficient

that differs from (1.42) derived in the QH context. Putting the parts together we have
the topological action,11

Ltop = 1

π
εμνσ bμ∂νaσ − aμ jμ

q − bμ jμ
v . (1.111)

The topological nature ofLtop is clear from the equations of motion,

jμ
v = 1

π
εμνσ ∂νaσ = 1

2π
εμνσ f (a)

νσ ; jμ
q = 1

π
εμνσ ∂νbσ = 1

2π
εμνσ f (b)

νσ ,

(1.112)

which show that the gauge invariant field strengths are fully determined by the cur-
rents, just as in the Chern–Simons theory. These equations both have a very direct
physical interpretation. For instance, if wewrite (1.112) as jμ

q + (1/π)εμνσ ∂νbσ = 0
this expresses that the quasi-particle current is totally screened by the superconduct-
ing condensate shows that (−1/π)εμνσ ∂νbσ should be interpreted as the screening
current. This observation can indeed be used to give an alternative derivation, or
rather motivation, for our topological field theory; the potential aμ is nothing but a
Lagrange multiplier that enforces the constraint of total screening of the current jq .
For a more detailed discussion, see [18].

It is interesting to consider the quantization and conservation of charge in our
topological field theory. Quantisation of charge implies that the current couples to a
U (1) gauge field Aμ that is not only invariant under

Aμ → Aμ + ∂μΛ , (1.113)

where Λ is a continues well-defined (i.e., single valued) function, but the more
general transformation

Aμ → Aμ + 1

q
eiΛi∂μe−iΛ , (1.114)

11The symmetry properties of the Lagrangian (1.111) are worth a comment. Under the parity
transformation (x, y) → (−x, y) the two potentials transform as (a0, ax , ay) → (a0,−ax , ay) and
(b0, bx , by) → (−b0, bx ,−by), while under time reversal the transformations are, (a0, ax , ay) →
(a0,−ax ,−ay) and (b0, bx , by) → (−b0, bx , by), respectively. The unusual transformation prop-
erties of the potential bμ follow from those of the vortex current. It is easy to check that the B F
action is invariant under both P and T .
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where q is the minimal charge, and eiΛ is a well defined function, althoughΛ is not a
continues well-defined function. We call a gauge field with this property compact. A
simple example will clarify the distinction between compact and non-compact gauge
fields. Consider a 2d gauge field and use polar coordinates (ρ, ϕ). An usual gauge
transformation (1.113) with Λ = nϕ is not allowed since Λ is not a continues well-
defined function. However, einϕ is, and the gauge transformation (1.114) reads Aϕ →
Aϕ + n/qρ. Although this transformation introduces a singularity in the gauge field,
it leaves the Wilson loop exp(iq

∮
Aϕ), for any closed curve (including one that

encircles the singularity at the origin) invariant, and you can think of the gauge
transformation as inserting an invisible flux in the system.

If we want the two currents jμ
v and jμ

q to be integer valued, the above argument
leads us to require the gauge fields aμ and bμ to be compact and transform as

aμ → aμ + eiΛa i∂μe−iΛa ; bμ → bμ + eiΛb i∂μe−iΛb . (1.115)

The question of current conservation is more subtle. Since the world line of a point-
like vortex can be thought of as a vortex line in space-time, non-conservation of
the vortex charge would amount to having such world lines ending at a point. This
could happen if there were unit charge magnetic monopoles in space-time, on which
two such world lines could terminate. Such monopoles in space-time are called
instantons and are known to exist in many field theories. Since we do not have any
magnetic monopoles, this is however not a realistic option, and the vortex charge
is conserved. The situation is quite different when it comes to the electric charge.
Here the Cooper-pair condensate acts as a source of pairs of electrons, and in our
topological theory such processes, corresponding to formation or breaking of pairs,
this could be incorporated by having instantons in the b field.

1.6.2 The 3 + 1 Dimensional BF Theory

Turning to the case of 3 + 1 dimensions, we have essentially the same construc-
tion, but with the difference that the vortices are now strings, and the field b is an
antisymmetric tensor, bμν . The action is still again of the B F type and reads,

LB F = 1

π
εμνσλbμν∂σ aλ . (1.116)

The gauge transformations of the b field are given by

bμν → bμν + ∂μξν − ∂νξμ , (1.117)

where ξμ is a vector-valued gauge parameter. Theminimal coupling of the b potential
to the world sheet, �, of the string is given by the action,
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Svort = −
∫

�

dτdσμν bμν = −
∫

�

dτdσ

∣∣∣∣
d(xμ, xν)

d(τ, σ )

∣∣∣∣ bμν , (1.118)

where (τ, σ ) are time and space like coordinates on the worldsheet. This is a direct
generalization of the coupling of a to the world line, Γ , of a spinon,

Ssp = −
∫

Γ

dxμ aμ = −
∫

Γ

dτ
dxμ

dτ
aμ . (1.119)

Combining these elements we get the topological action for the 3 + 1 dimensional
superconductor,

Stop =
∫

d4x LB F + Ssp + Svort . (1.120)

The proof that this action indeed gives the correct braiding phases can be found
e.g., in [31], and a discussion of this action in the context of superconductivity has
appeared before in [52].

1.6.3 Microscopic Derivation of the BF Theory

So far, we did not derive the BF theory, but rather constructed it, or guessed it, from
the braiding properties of quasi-particles and vortices. It would obviously be more
reassuring if the theory could be derived from a microscopic model. Here we outline
such a derivation starting not from the original fermionic theory, but from an effective
Ginzburg–Landau model coupled to a quasi-particle source. (The derivation of this
theory from a model with paired electrons is a standard exercise that can be found
e.g., in the book by [12].) For simplicity, we shall follow [18] and consider a toy
version of the Ginzburg–Landau theory, namely the (2 + 1)D relativistic Abelian
Higgs models defined by the Lagrangian,12

LAH = 1

2M
|i Dμφ|2 − λ

4
(φ†φ)2 − m2

2
φ†φ − 1

4
F2

μν − eAμ jμ
q , (1.121)

where we used a standard particle physics notation where φ is the charge −2e scalar
field representing the Cooper pair condensate, i Dμ = i∂μ + 2eAμ is the covariant
derivative, Fμν is the electromagnetic field strength and the conserved current jμ

q ,

12This is a toy model not only because we use a relativistic form for the kinetic energy, but also
because we use 2 + 1D Maxwell theory, which amounts to a logarithmic Coulomb interaction. The
generalization to the more realistic case is straightforward, and the result is qualitatively the same.
The derivation, however, becomes less transparent. For the interested reader [53] is a good reference
to see how to include fermions and also see how the chiral d-wave case works.
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with charge e, is introduced to describe the gapped quasi-particles discussed above.13

Just as in the usual Ginzburg–Landau theory the Abelian Higgs model supports
vortex solutions, which are characterized by a singularity in the phase of the Cooper-
pair field. Defining φ = √

ρ eiϕ , and writing ϕ = ϕ̃ + η, where η is regular, and
can be removed by a proper gauge transformation, the vorticity is encoded in the
gauge field aμ = 1

2∂μϕ, which depends on the vortex positions. The corresponding
conserved vortex current is parametrized as jv = (1/π)εμνσ ∂μaσ . It is now a matter
of algebraic manipulations, involving integrating out gapped degrees of freedom, to
derive the topological theory (1.111), see [18]. For this to work, it is crucial that we
include a dynamical electromagnetic field, it is only then that the external currents
are completely screened and all bulk modes are gapped and can be integrated over.
Making a derivative expansion, and keeping terms to second order results in the
effective Lagrangian,

Le f f = 1

π
εμνσ bμ∂νaσ − 1

4e2
( f (a)

μν )2 − 1

4

(
e

msπ

)2

( f (b)
μν )2 − aμ jμ

q − bμ jμ
v .

(1.122)

where m2
s = 4e2ρ̄/M , and ρ̄ is the average density. Note that the topological theory

emerges as the leading term in this expansion! The higher derivative terms, which
are of Maxwell form, are not topological, and have the effect of introducing bulk
degrees of freedom. These are however gapped, and can be identified as the plasmon
mode. At low energies the plasmons can be neglected and we can retain only the
topological part.Another physical effect capturedby theMaxwell terms is theLondon
penetration lengthλL which is the size of themagnetic flux tube associated to a vortex.
In the purely topological theory, the vortices are strictly point-like. In this section
we strictly dealt with s-wave superconductors. The extension to the d-wave case is
relatively straightforward, but since there are gapless quasi-particles associated to
the nodal lines, the effective theory must include these, and becomes quite a bit more
complicated [54]. The p-wave case is considerably more difficult because of the
Majorana modes associated to vortices.

1.6.4 The Two-Dimensional p-Wave Superconductor

In the previous section we assumed that the fermionic part of the Lagrangian was
gapped and could be integrated out. In the p-wave case this cannot be done since there
are Majorana modes associated with vortices. These modes form a finite degenerate
subspace of the Hilbert space, and the system has a most amazing feature: Quasi-
adiabatic braidings of the vortices correspond to non-commuting unitary operators
acting on the finite-dimensional Hilbert space. Since the vortices should are identical

13Note that in spite of the relativistic form we normalize the kinetic term such that |φ|2 has the
dimension of density.
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particles, this amounts to having non-Abelian fractional statistics. There is a very
close resemblance between this state and the strongly correlatedMoore-Read pfaffian
quantum Hall state [55], that is a candidate wave function for the plateau observed
at filling fraction ν = 5/2. (This state will be discussed briefly in the last section.)

The simplest realization of a 2d chiral p-wave superconductor is by spin-less elec-
trons with a parabolic dispersion relation, i.e., taking the single-particle Hamiltonian
to be H1 = (−i∇ − eA)2/2m and adding an attractive short-range interaction,

V̂ = λ

2

∫
d2xd2y

[
ψ†(r′)ψ†(r)∇2δ2(r − r′)ψ(r)ψ(r′)

]
reg , (1.123)

where reg denotes that the potential can be approximated by λ∇2δ2(x − y) only
for small momentum transfers close to the fermi surface. (The precise form of the
potential is not needed for the coming discussion.)

Since we expect a condensation of Cooper pairs, it is practical to introduce a
Hubbard-Stratonovich boson, �, which mediates the interaction. More precisely,
we add an action for � so that the classical solution is �cl = λ(ψ∇ψ)reg, meaning
that we can, at the mean-field level, replace the quartic interaction by a term � ·
ψ

†∇ψ† + h.c. (h.c. means Hermitean conjugate).
To proceed we assume a chiral condensate and make the mean-field ansatz Δ ≡

Δz̄ = λ〈ψ∂z̄ψ〉reg and Δz = λ〈ψ∂zψ〉reg = 0. For simplicity we will from now on
drop the subscript reg, but all momentum sums involving Δ should be understood to
have a cutoff. With these assumptions we get the Hamiltonian,

H =
∫

d2x ψ† (H1 − μ) ψ + ψ†Δ∂zψ
† + h.c. , (1.124)

and proceed to find a homogeneous solution Δ = const. Fourier transforming the
field operator, ψ(r) =∑k e−ik·rck/

√
V , we get

H = 1

2

∑
k

(
c†k c−k

) ( ξk Δ(ky + ikx )

Δ(ky − ikx ) −ξk

)

︸ ︷︷ ︸
Hk

(
ck

c†−k

)
,

where ξk = k2/2m − μ. From the property

σx H∗
kσx = −H−k , (1.125)

it follows that all negative-energy solutions at−k can be written in terms of positive-
energy solutions Hk(Uk, Vk)

T = Ek(Uk, Vk)
T , at k. We can thus diagonalize the

Hamiltonian with the positive-energy solutions Γ
†
k = Ukc†k + Vkc−k that ,

H = E0 +
∑
k

EkΓ
†
k Γk ,
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and the positive eigenvalues are obtained by directly diagonalizing Hk ,

Ek =
√

ξ 2
k + |Δk|2 .

Note that the normalization |Uk|2 + |Vk|2 = 1 follows from requiring
{
Γ

†
k , Γk′

}
=

δkk′ . The ground-state (|BC S〉) is thus the state annihilated by allΓk, i.e.,∝∏k Γk|0〉.
To get the normalization right, we note that

ΓkΓ−k|0〉 = V ∗
−k

(
U ∗

k + V ∗
k c†−kc†k

)
|0〉 ,

and from the requirement |Uk|2 + |Vk|2 = 1, we realize that the correctly normalized
ground-state is

|BC S〉 =
′∏
k

(
U ∗

k + V ∗
k c†−kc†k

)
|0〉 ,

where
∏′ indicates that the product is over half of the k values, as for instance,

k ∈ {kx > 0 or kx = 0, ky ≥ 0
}

. (1.126)

To show that the ansatzΔz = 0 andΔz̄ = constant is self-consistent,we calculate
the mean field Δx±iy ,

Δx±iy = λ〈ψ∂x±iyψ〉 =
∑
k

(ky ± ikx )UkV ∗
k =

∑
k

f (|k|,Δ)(k2
x ± k2

y) , (1.127)

where f is a function determined by UkV ∗
k . In the last step we used (Uk, Vk) ∝(

f (|k|,Δ)(ky + ikx ), 1
)
which is obtained by explicitly diagonalizing Hk. Since the

above sum is symmetric in interchange of kx and ky we infer that Δz = 0. For Δ we
instead get a gap-equation which determines its ground-state value.

We are now ready to see how the Majorana modes appear in the vortices. In a
vortex solution the phase of Δ winds around some points (vortex cores). Close to a
vortex core r′ we have

Δz(r′) = 0; Δ(r) = |Δ| ein arg(r−r′)+iλ n ∈ Z ,

where λ is a regular function. There are no analytical self-consistent solutions to the
vortex problem, but we do not need the precise form, just the fact that a solution
exists. Since Δ carries charge 2e we infer that for a solution to have finite energy
there must be a magnetic flux with strength nhc/2e associated to the vortex. We
will now show that in the presence of vortices with odd strength there are fermionic
zero-modes, and that hese zero-modes imply non-Abelian statistics see [56, 57].
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The fermionic mean field Hamiltonian (1.124) is quadratic so it can be diagonal-
ized by single-particle operators

φ†
u,v =

∫
d2x
(
ψ†(r) ψ(r)

) (u(r)
v(r)

)
, (1.128)

and the Heisenberg equation of motion [φ†
u,v, H ] = Eφ†

u,v becomes

(
H1 − μ 1

2 {Δ, ∂z}
− 1

2 {Δ∗, ∂z̄} −H∗
1 + μ

)

︸ ︷︷ ︸
H

(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
. (1.129)

The single particle HamiltonianH has a number of discretemodes and a continuum.
Using the property

σxH
∗σx = −H (1.130)

we notice that an odd number of discrete modes implies an odd number of zero-
modes. Changing the parameters, modes can come down from the continuum and
become discrete and vice versa, but because of the property (1.130) theymust always
come in pairs. Therefore we can with certainty say that one cannot change the parity
of the number of zero-modes. If we have one zero-mode we will continue to have
(at least) one. If, by chance, there is an extra pair of zero-modes, interactions would
most likely gap out two of the three, so for generic parameters we expect exactly
one zero mode. Note that (1.130) is not a physical symmetry that can be broken
by changing the Hamiltonian. Instead it follows from the structure of the second-
quantized Hilbert-space.

The above argument is only valid for a single vortex on the infinite plane. For
any finite system there will necessarily be an even number of discrete modes and it
seems like the argument fails. However, as long as the vortexmodes are exponentially
localized, and the vortices are well separated compared to this length scale, the
vortices can still be treated as isolated up to small perturbations.

These perturbations will allow tunneling of one vortex zero-mode into another,
which turns them into two non-localized non-zero energy modes. But the splitting
will be proportional to the tunneling rate, and therefore exponentially small in λZ/L ,
where L is the distance between the vortices, and λZ is the size of the vortex zero-
modes. We are thus left with proving that the zero-modes are (exponentially) local-
ized, and that there is only one (or an odd number) of them at each vortex. Although
we cannot solve the (1.129) in general, we can find analytical expressions for the
zero-modes if we make some approximations. We begin by considering an isolated
vortex and no disorder potential. With this assumption, and taking (r, θ) as polar
coordinates centered around the vortex core, the only θ dependence in (1.129) is
in the phase of Δ, and we can assume Δ = f (r)ei� with � = inθ + iλ and λ a
constant. Next we notice that the ansatz,
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(
u
v

)
= eilθ

(
ei(n−1)θ/2+iλ/2ul(r)

e−i(n−1)θ/2−iλ/2v−l(r)

)
, (1.131)

with (ul(r), v−l(r)) real, diagonalizesH in the θ variable so we are left with a one-
dimensional problemHl(ul(r), v−l(r))T = E(ul(r), v−l(r))T . Note that if n is odd l
must be an integer, and if n is even, l must be a half integer. Analogous to (1.125) the
effective 1d Hamiltonian Hl has the property σx H∗

l σx = −H−l . So, for each zero
energy solution (ul(r), v−l(r))T there is necessarily a dual solution, (v−l(r), ul(r))T .
It therefore seems that all zero-modes come in pairs, and we could not possibly get
an odd number. However, when the vortex strength n is odd, we have a self-dual
solution,

(u0(r), v0(r))T = (v0(r), u0(r))T ,

and thus an odd number of zero-modes.
Let us examine the equation for the self-dual mode in more detail. Since

u0(r) = v0(r) we are left with a single one-dimensional second-order equation. It
can be brought to a more familiar form by the gauge choice A = Aθ (r)θ̂ and the
transformation,

u0(r) = χ(r) exp

(
−m

2

∫ r

f (r ′)dr ′
)

.

Substituting this into (1.129) gives

−χ ′′(r)

2m
− χ ′(r)

2mr
+ ((n − 1)/2)2

2mr2
χ(r) + (n − 1)eAθ (r)

2m
χ(r) + m f 2

8
χ(r) = μχ(r) ,

which we identify as a Schrödinger equation for a particle of mass m, with angular
momentum k = (n − 1)/2, moving in a potential m f 2/8, and a radially symmetric
magnetic field B = 1

r Aθ + ∂r Aθ . Further assuming that the coherence length ξ (i.e.,
the radius of the region where |Δ| differs substantially from its asymptotic value
|Δ0|) is much smaller than λZ , and the London length λL (i.e., the radius of region
with non-zero magnetic field) is much larger than the same length scale, we obtain
the solution,

u0(r) =
⎧
⎨
⎩

e−m|Δ0|r/2 Jk

(
r
√
2μm − (m|Δ0|)2/4

)
for μ > m|Δ0|2/8

e−m|Δ0|r/2 Ik

(
r
√

(m|Δ0|)2/4 − 2μm
)

for 0 < μ < m|Δ0|2/8 ,

which is exponentially localized. The approximations we made were to assume that
we have an extreme type II superconductor, but the result holds independent of this
approximation as long as μ > 0.

We here found the vortexMajorana zero modes from a detailed calculation. How-
ever, we want to stress that they are directly related to anyonic nature of the vortices
and therefore also the topological order. So, the existence of the modes does not rely
on any of the detailed assumptions. As long as the energy gap remains open the zero
modes cannot disappear even if the system is changed considerably.
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1.7 Fractional Quantum Hall Liquids

Our second example of states with topological interactions are the archetypical ones,
namely the quantum Hall liquids. We start with the most celebrated ones.

In 1982, not long after the discovery of the IQHE, Tsui, Stormer and Gossard
observed a plateau in the conductance at σH = 1/3σ0 [58]. Later, many more states
were discovered with σH = p/qσ0, the vast majority with an odd denominator q.
This is the celebrated fractional quantum Hall effect (FQHE). The FQHE poses a
much more difficult theoretical challenge than the integer one. The basic difficulty
is the massive degeneracy of the free electron states in an partially filled Landau
level. Neglecting the lattice potential, the only energy scale is that of the Coulomb
interaction EC ∼ e2ρ−1/2, where ρ1/2 is the mean distance between the particles.
(We assume that the cyclotron gap, EB ∼ eB/m is large, so that for all practical
purposes EC/EB = 0.) As a consequence there is no small parameter, and thus no
hope to understand the FQHE by using perturbation theory.

The first, and in a sense most successful, approach to the FQH problem was
due to [59], who, by an ingenious line of arguments, managed to guess a many-
electron wave function, that gives an essentially correct description of the states with
conductance σH = σ0/m.

Another approach, which which we will take, is to try to find an effective low
energy theory, and we will outline how this can be done. This resulting low-energy
theory is called the Chern–Simons–Ginzburg–Landau theory.

1.7.1 The Chern–Simons–Ginzburg–Landau Theory

The starting point is the microscopic Hamiltonian for N electrons in a constant
transverse magnetic field B, interacting via a two-body potential V (r), which should
be thought of as a (suitably screened) Coulomb potential,

H = 1

2m

N∑
i=1

(pi − eA(xi ))
2 +

N∑
i< j

V (|xi − x j |) , (1.132)

whereA(x) = B
2 (−y, x). Our aim is to find an equivalent bosonic formulation of this

theory, which should be amenable to a mean-field description. A direct application
of the method of functional bosonization described in Sect. 1.2.3.1, will not work
since we would not be able to compute the partition function Z [a], for a partially
filled Landau level. Another approach that might come to mind is to invoke pairing
and introduce a Cooper pair field. This will however also not work since it would
describe a superconductor, not an insulating QH state. Instead we proceed by first
performing a statistics changing transformation on the electrons.
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The idea is to relate the fermionic wave functions to their bosonic counterparts
by the unitary transformation

ΨF (x1, . . . xN ) = φk(x1 . . . xN )ΨB(x1, . . . xN ) (1.133)

where the phase factor φk is given by

φk(x1 . . . xN ) = eik
∑

a<b αab , (1.134)

with k an odd integer, and αab the polar angle between the vectors xa and xb. The
corresponding bosonic Hamiltonian is identical to the fermionic one, except that it
includes a coupling to a statistical, or Chern–Simons, gauge potential,

a(xa) = k ∇
∑
b �=a

αab . (1.135)

Thus, instead of studying the original fermionic Hamiltonian (1.132) we can study
the bosonic Hamiltonian

HB = 1

2m

N∑
a=1

[
pa − eA(xa) + a(xa)

]2 −
∑
a<b

V (|xa − xb|) . (1.136)

To proceed we first notice that although a looks like a pure gauge, it is singular at
the positions of the particles, so that the statistical magnetic field is given by,

εi j∂i a j ≡ b(a) = 2πk
∑
b �=a

δ2(xa − xb) , (1.137)

which amounts to attaching a singular flux tube of strength k to each particle. The
statistical exchange phase, θ = kπ can thus be seen as an Aharanov–Bohm effect.14

We are now ready to construct a quantum field theory describing our bosonized
electron in a path integral formulation. The variables will be a non-relativistic boson
field, φ, describing the electrons, and the statistical gauge field a. The expression for
the statistical magnetic field (1.137) implies that a is such that there is a flux tube
tied to each particle, i.e.,

2πkρ = 2θφ�φ = εi j∂i a j . (1.138)

14The naive picture of the “composite bosons” flux-charge composites, is however slightly mis-
leading since that would implies that you get a phase 2 × k2π when taking one particle a full turn
around another; there are equal contributions from the charge circling the flux and the flux circling
the charge. This is not what happens, the correct phase is k2π corresponding to the exchange phase
kπ [60].
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This local constraint is implemented by a Lagrange multiplier field a0, and the result
is the non-relativistic Chern–Simons–Ginzburg–Landau (CSGL) field theory,

LB = Lφ + 1

2πk
a0ε

i j∂i a j , (1.139)

where

Lφ = φ�(i∂0 − a0 + eA0)φ − 1

2m
|(p + eA − a)φ|2 − V (|φ|) , (1.140)

and where Aμ is an external electromagnetic field, that includes the constant back-
groundmagnetic field B, and ρ = φ�φ is the density. The term∼a0ε

i j∂i a j is nothing
but the Coulomb gauge version (i.e., ∇ · a = 0) of the full CS action ∼εμνσ aμ∂νaσ ;
so, we can finally write the partition function as

Z [Aμ] =
∫

D[φ�]D[φ]D[aμ] ei
∫
d3x LC SGL (φ,a;A) (1.141)

with

LC SGL = Lφ + 1

2πk
εμνσ aμ∂νaσ . (1.142)

To proceed we employ a mean field approach. To do so we first assume V in Lφ to
be a contact potential,

V (|φ|) = −μ

2
|φ|2 + λ

4
|φ|4 ,

where both μ and λ are positive, so the minimum occurs at finite density. In the
mean field approach we assume that the thin flux tubes that make up the statistical
gauge field b = εi j∂i a j , can be replaced by a smeared out field that can be cancelled
against the constant external field B, i.e., εi j∂i a j = eεi j∂i A j . With this, we can
choose a gauge where the combination eA − a = 0, and the vector potential terms
inLφ then disappear. The equation of motion for the a0 field gives the constraint,

εi j∂i a j = 2πkφ∗φ = 2πkρ , (1.143)

which combined with the mean field assumption results in

ρ = φ∗φ = eB

2πk
.

To get the full mean field solution, the mean density ρ̄ is picked as to minimise V (ρ),
and in summary we have,
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φ = φ0 = ρ̄ =
√

μ

λ
; a = eA . (1.144)

This is only possible if

ρ̄ = 1

2θ
b = 1

2πk
eB = ρ0

k
(1.145)

(where ρ0 is the density of a filled Landau level). Or in other terms, the filling fraction
is ν = 1/k, where k can be any odd integer.

Just as in the usual Ginzburg–Landau theory, the GLCS theory supports mean
field vortex solutions, which in Coulomb gauge, for a unit strength vortex is,

φ ∼
r→∞

√
ρ̄ eiϕ; aϕ ∼

r→∞
1

r
; ar = 0 . (1.146)

Since the statistical magnetic field is tied to the charge density (1.138), we can
calculate the excess charge related to the vortex by integrating the expression for the
statistical magnetic field (1.145),

Qv =
∫

d2r ρ(x) = νe

2π

∫
d2xεi j∂i a j = ν

2π
e
∫

dx · a = νe . (1.147)

So, the vortex describes a quasi-particle with fractional charge νe. In [11, 61] you
find a more detailed analysis of the CSGL theory including the demonstration that
the quasi-particles are Abelian anyons with a statistics angle νπ . Here we shall show
how it can be used to extract an effective topological theory for the Laughlin states.

1.7.2 From the CSGL Theory to the Effective Topological
Theory

In the presence of a collection of vortices, we parametrize the field φ as

φ = √ρ(x)eiθ(x)ξv(x) , (1.148)

where we have extracted the singularities in ξv and θ is a smooth fluctuating phase.
Next we substitute this parametrization (1.148) into the CSLG Lagrangian (1.142)
and expand the Lagrangian around the mean-field solution,

φ =
(√

ρ̄ + δρ

2
√

ρ̄

)
ξveiθ , (1.149)

and the temporal term then become
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Ltemp = δρ
(−∂tθ + iξ�

v ∂tξv − a0 + eA0
)+ O

(
δρ2
)+ O (δρ(eA0 − a0)) .

(1.150)
The term ρ̄∂tδρ vanishes when the derivative is integrated over and does not con-
tribute. The leading contribution from the kinetic energy is

Lkin = − ρ̄2 + O(δρ)

2m

(∇θ − iξ ∗
v ∇ξv − a + eA

)2 + O (∂iδρ) , (1.151)

and we linearize this quadratic term by introducing a Hubbard Stratonovich field X,
to get,

Lkin = m

2ρ̄
X2 + X · (∇θ − iξ ∗

v ∇ξv − a + eA
)+ h.o. , (1.152)

where h.o. denote terms of higher order in the expansion. We now recognise θ as a
Lagrange multiplier field, imposing conservation of the three-current (δρ,X), which
therefore can be parametrized in terms of a field bμ as

(δρ,X)μ = 1

2π
εμνσ ∂νbσ . (1.153)

The terms containing ξv can now be taken together and written as

1

2π i
εμνσ

(
ξ ∗

v ∂μξv
)
∂νbσ . (1.154)

To interpret this term, let’s look closer at ξv. The integral

∫

γ

dl · ξ ∗
v ∇ξv (1.155)

gives the change of the phase of ξv along the curve γ and thus, by definition, if γ is
a closed curve

1

2π i

∫

γ

dl · ξ ∗
v ∇ξv = qv , (1.156)

whereqv denotes the number of right handedminus the number of left handed vortices
encircled by γ , i.e., the vortex charge encircled by γ . Using the 2d version of Stokes
theorem we can thus conclude

1

2π i

∫

S
εi j∂iξ

∗
v ∂ jξv = qv , (1.157)

where qv is the vortex charge in the region S. It follows that the vortex charge density
is

ρv = 1

2π i
εi j∂iξ

∗
v ∂ jξv . (1.158)
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Generalizing this argument by letting γ be a general space-time curve, we can write
the full vortex current as

jμ
v = 1

2π i
εμνσ ∂νξ

∗
v ∂σ ξv . (1.159)

By integration by parts, of the derivative ∂ν , and using the above identity for jμ
v ,

(1.159), the term that contain the ξv of the Lagrangian (1.154) can be written as
bμ jμ

v . Collecting everything, we get the full Lagrangian,

L = 1

2π
εμνσ (eAμ − aμ)∂νbσ + bμ jμ

v + 1

4πk
εμνσ aμ∂νaσ + h.o , (1.160)

where h.o. denote all higher derivative terms in bμ. Finally, integrating out aμ we
end up with

Ltop = − k

4π
εμνσ bμ∂νbσ − e

2π
εμνσ Aμ∂νbσ + bμ jμ

v . (1.161)

Note that for a filled Landau level, i.e., ν = 1, this exactly reproduces the previ-
ously derived expression for the topological Lagrangian (1.27), and just as before
the gauge field b parametrizes the current. For the Laughlin states k = 3, 5, . . .
the theory superficially looks very similar, but the higher integer values of k have
far reaching consequences: fractional charge and statistics for the quasi-particles,
ground-state degeneracy on higher genus surfaces, and chiral bosonic edge modes
with k-dependent correlation functions [33].

1.7.3 The Abelian Hierarchy

In experiments on very clean samples, one sees a large number of FQH states [62].
Most of them fit beautifully into a hierarchical scheme [63, 64], where “daughter”
states are formed by the condensation of anyonic quasi-particles in a “parent” FQH
state, just as the Laughlin states can be thought of as a condensation of the original
electrons.

Starting from the just derived topological Lagrangian (1.161) we can deduce what
possible topological states can emerge from condensing quasi-holes. To do so, we
need a dynamical theory for the holes, that in principle could be obtained by keeping
higher order terms in above derivation of the effective theory. This is however difficult
so we shall use a heuristic approach.

The basic, and quite reasonable, assumption is that the condensation of the quasi-
holes can be described by the same procedure as was used above for the electrons.
This amounts to taking the following Ginzburg–Landau theory for the quasiholes,
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Lξv = φ�
v (i∂0 − b0)φv − 1

2m
|(p + b)φv|2 − V (ρv) , (1.162)

whereφv is a bosonic vortex field associated to the quasiholes.We can again introduce
a statistical gauge potential a and couple it to φv, but this time with the coefficient
1/4πk2 where k2 is an even integer,

L̃ξv = φ�
v (i∂0 + b0 − a0)φv − 1

2m
|(p + b − a)φv|2 − V (ρv) + 1

4πk2
εμνσ aμ∂νaσ .

(1.163)
This is a trivial statistical transmutation, which adds the phase ei2πk to each particle
exchange. In the mean-field approach, it will however have the effect to make the
hole condensate thinner, just as in the original electron condensation. We can now,
as before, find a mean-field solution where aμ cancel against bμ. The equation of
motion for the density is obtained by varying b0 and a0,

ρv = − k

2π
εi j∂i b j + e

2π
B; ρv = 1

2πk2
εi j∂i a j . (1.164)

Combining this with the requirement εi j∂i b j = εi j∂i a j imply that the mean-field
solution is possible only when ρc = εi j∂i b j/2π equals

ρc = 1

2π

eB

k + 1
k2

= ρ0
1

k + 1
k2

.

To obtain the vortices in the field φv we can do almost exactly as above, with the
result,

Ltop = − k

4π
εμνσ bμ∂νbσ− k2

4π
εμνσ b2

μ∂νb2
σ − 1

4π
εμνσ bμ∂νb2

σ

− 1

4π
εμνσ b2

μ∂νbσ − e

2π
εμνσ Aμ∂νbσ + bμ jμ

v1 + b2
μ jμ

v2 .

To see how this generates a whole hierarchy of states, we consider condensation of
the vortices in the previous state and so on. At level n that is with n consecutive
condensations we end up with n gauge fields and the Lagrangian

L = − 1

4π

∑
α,β

Kαβεμνσ bα
μ∂νbβ

σ −
∑

α

e

2π
tα Aμεμνσ ∂νbα

σ +
∑

α

lαbα
μ jμ , (1.165)

where the K-matrix K and the the charge vector t takes the values

Kαβ = kαδαβ − δα+1,β − δα,β+1; tα = δα,1 , (1.166)
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and where the vector l is integer valued and describes all possible the quasi-particles
excitations. As we realize from how this was constructed kα is an even integer except
for k1 which is odd. It is explained in detail in [17] how to extract the topological
information from this Lagrangian, and here we just quote the following important
results for the filling fraction ν, and the charge (Qα) and statistics angle (θα) for the
αth quasi-particle:

ν = tTK−1t; Qα = −etTK−1l; θα = π lTK−1l . (1.167)

1.8 Mathematical Background and Proofs

In this section you will find mathematical background that complement the main text
of this chapter. You will also find proofs, too technical for the main text, of some of
the statements made in the text.

1.8.1 Vector Bundles and Chern Numbers in Quantum
Mechanics

Consider a N dimensional subspace h(b) of a Hilbert spaceH that varies continu-
ously with the parameters b in some manifold b ∈ B. The space

E =
⋃
b∈B

{b} × h(b) ,

which is a subspace of B × H , is an example of a fiber bundle. The manifold B is
called the base space, and the space h(b) is called the fiber at b. More specifically
this is an example of a complex vector bundle, since the fibers are complex vector
spaces. In the main text we encounter two distinct cases:

1. Aquantummechanicalmany-body systemona2d toruswithfluxesφ = (φx , φy)

through the two holes. For each value the fluxes there are N degenerate ground-
states (recall Fig. 1.2 in Sect. 1.2.1). In this case the base manifold B ≡ T 2

φ is the
flux-torus from Sect. 1.2.1, H is the many-body Hilbert space and h(φ) is the
N -dimensional sub-space consisting of the degenerate ground-states at φ.

2. A systems of non-interacting fermions on a lattice. The base manifold B ≡ B.Z .

is the Brillouin-zone torus, H is the single-particle Hilbert space and h(k) is
the space of occupied single-particle states at lattice momentum k.

Complex fiber-bundles are geometrical structures which have certain characteris-
tics which take discrete vales, and which therefore cannot be altered by continuous
transformations. Below we will construct one set of such characteristics, the Chern
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numbers. For the two above examples of fiber bundles, these Chern numbers are
related to experimentally measurable transport coefficients.

We will also describe another set of characteristics called the Chern–Simons
invariants. Contrary to the Chern numbers they are not topological invariants of
the fiber-bundle, but for the two-mentioned examples, they are quantized if certain
symmetries are invoked.

Both these quantities are defined in terms of a Berry connection which we will
now define.

1.8.1.1 The Berry Connection

The Berry connection Aμ is an operator taking h(b) to h(b + dbμ); it relates an
element |b〉 ∈ h(b) to the element in h(b + dbμ) closest to |b〉. If h(b) is independent
of b the closest element to |b〉 in h(b + dbμ) trivially is |b〉 itself, while if h(b) varies
with b that is not necessarily the case. The notion of distance in the Hilbert space
H is given by the inner product and the vector closest to |b〉 in h(b + dbμ) is the
orthogonal projection of |b〉 into h(b + dbμ),

P (b + dbμ) |b〉 . (1.168)

The Berry connection is defined by

P (b + dbμ) |b〉 = (1 − iAμdbμ
) |b〉 , (1.169)

where Aμ are operators from h(b) to h(b + dbμ).
Although this abstract form sometimes is useful we usually have to choose a

specific basis to do any calculation. We therefore pick a basis

{|b;α〉}α=1,...,N , (1.170)

that varies smoothly in some region B and we can write

|b〉 =
∑

α

aα(b) |b;α〉 , (1.171)

for some coefficients aα(b). In this basis the projection operator from h(b) to h(b +
dbμ) is represented by,

〈b + dbμ;α|P (b + dbμ) |b;β〉 = δ β
α −

〈
b;α| ∂

∂bμ
|b;β

〉
dbμ , (1.172)

(the relation ( ∂
∂bμ 〈b;α|)|b;β)〉 = − 〈b;α| ∂

∂bμ |b;β
〉
was used) andwe get the expres-

sion
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aα(b) −
∑

β

〈
b;α| ∂

∂bμ
|b;β

〉
aβ(b)dbμ (1.173)

for the left hand side of the definition (1.169) of the Berry connection. We can then
read of

A β
α μ = i

〈
b;α| ∂

∂bμ
|b;β

〉
. (1.174)

1.8.1.2 The Berry Field Strength

The Berry connection relates coefficients of vectors in two different Hilbert spaces,
one at h(b) and the other at h(b + dbμ). Thus, the matrixA β

α μ can be taken arbitrary
since one could change the basis of h(b) independent from the basis of h(b + dbμ).
The representation, A β

α μ, thus cannot be used to characterise the fiber bundle, we
clearly have to look for something else.

The strategy is to consider a closed curve to define a matrix acting in a single
Hilbert space h(b). A matrix is a representation of an operator, and the precise form
of the matrix is not basis independent, the trace however is, and we now show how
it can be used to define the Chern numbers.

Consider an infinitesimal loop obtained by first moving the dbμ in the bμ-
direction, then dbν in the ν-direction, dbμ backward in the μ-direction and finally
back to where we started. We start out with the fiber |b〉 then take the fiber closest to
it in h(b + dbμ), i.e.,

P (b + dbμ) |b〉 , (1.175)

then take the fiber closest to that in h(b + dbμ + dbν) etc. until the loop is closed;
we end up with

P (b) P (b + dbν) P (b + dbμ + dbν) P (b + dbμ) |b〉 . (1.176)

The Berry field strengthFμν is defined from this expression by

P (b) P (b + dbν) P (b + dbμ + dbν) P (b + dbμ) |b〉 = (1 − iFμνdbμdbν
) |b〉 .

(1.177)
By Taylor expanding the projectors it is straight forward to write the field strength
in terms on the connection,

Fμν = ∂μAν − ∂νAμ + iAμAν − iAνAμ , (1.178)

or written as matrices in a specific basis,

F β
α μν = ∂μA

β
α ν − ∂μA

β
α ν + iA γ

α μA
β

γ ν − iA γ
α νA

β
γ μ , (1.179)
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where summation over repeated indices is understood. If B is two-dimensionalFμν

has only one non-trivial component and we suppress the lower indices and use the
notation

F ≡ F12 = −F21 = 1

2
εμνFμν . (1.180)

The field strenght Fμν is an operator that act within a fiber h(b) and the trace of it
equals the sum of the diagonal components

Tr[Fμν] = F α
α μν , (1.181)

in any basis (remember that the repeated index α is summed over). The Berry connec-
tion on the other hand is different.Aμ(b) is an operator from the fiber h(b) to the fiber
h(b + bμ) and an operator between two different spaces have no notion of a trace.15

We will still write Tr[Aμ] (and similar for products Tr[AμAν] etc.) as a short-hand
for A α

α μ, but you have to remember that this is a basis dependent expression. It is
instructive to see how this comes about in an explicit calculation: From the definition
of the Berry connection (1.169) it follows, that under a coordinate transformation,

|b;α〉 →
∑

β

Uαβ(b) |b;β〉 ,

the coefficients of the Berry connection transforms as

A β
α μ → U γ

α A δ
γ μU † β

δ − iU † γ
α ∂μU β

γ , (1.182)

while the field strength just rotates,

F β
α μν → U γ

α F δ
γ μνU † β

δ . (1.183)

So from the cyclic property one realize that F α
α μν is basis independent and equals

the trace of the operator Fμν . One the other hand, Tr[Aμ] ≡ A α
α μ transforms as

Tr[Aμ] → Tr[Aμ] − iU † γ
α ∂μU α

γ (1.184)

under a basis transformation.
We will end this section with a useful formula for the trace of Fμν . Note that in

the expression for the Berry field-strength (1.179) the two terms without derivatives
come with different sign and thus vanishes when traced over, because of the cyclic

15Youmight object sinceAμ(b) is an operator within the full Hilbert spaceH , so one should be able
to define its trace. That is, in principle, a correct assumption but the trace ofAμ(b) does not depend
only on the structure of the fibers but of the full Hilbert space H and it does not necessarily equal
A α

α μ(b), in a particular basis. The reason is the fact that the basis {|b; α〉} varies with b; A β
α μ(b) is

the representation of the operator Aμ(b) where the bras are written in the basis {|b + bμ; α〉} and
the kets in the basis {|b; α〉, see (1.172).
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property of the trace,

Tr
[−iAμAν + iAνAμ

] ≡ iA γ
α μA

α
γ ν − iA γ

α νA
α

γ μ = 0 . (1.185)

One can therefore write

Tr
(
Fμν

) ≡ F α
α μ1ν1

= − i
∑

α

(
∂

∂bμ

〈
b;α| ∂

∂bν
|b;α

〉
− ∂

∂bν

〈
b;α| ∂

∂bμ
|b;α

〉)
.

(1.186)

1.8.1.3 First Chern Number and Chern–Simons Invariant

Let us now assume that B is two-dimensional (or think of a two-dimensional sub-
manifold of a general B), and form,

ch1[F ](S) = 1

4π

∫

B
d2b εμνTr[Fμν] . (1.187)

This expression defines the first Chern number, ch1, and the integrand (including the
prefactor) is called the first Chern character.

One can in general cannot define a basis for each h(b) that varies continuously
for all b ∈ B. For any region topologically equivalent to a subset of Rn one can
define a continuous basis. If B is topologically equivalent to a disc we can define a
continuous basis in the whole of B, and we can use the basis dependent expression
A β

α μ throughout B. Then by using εμνTr[AμAν] = 0 (remember that Tr[AμAν]
is defined by the basis dependent expression A β

α μ) we can write εμνTr[Fμν] =
2εμν∂μTr[Aν]. This allows us to use Stokes theorem to rewrite the Chern number as

1

2π

∫

∂ B
dlμ Tr[Aμ] . (1.188)

The integrand (again including the prefactor) is called the first Chern–Simons form.
Next we assume that B is a sphere16 and to evaluate the integral in (1.187) we cover
the sphere with two caps, the northern hemisphere (α) and the southern hemisphere
(β). With this we have

1

4π

∫

B
d2b εμνTr[Fμν] = 1

4π

∫

α

d2b εμνTr[Fμν] + 1

4π

∫

β

d2b εμνTr[Fμν] .

(1.189)
Since both the caps are topologically equivalent to the disc, we can in each one of
them pick a continuous basis. Using Stokes theorem we get,

16The fact that the first Chern number is an integer, proven here, hold for a general closed manifold
as e.g., the torus. The proof is more involved since one has to divide B into more regions, but the
arguments are analogous to the one for the sphere.
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1

4π

∫

B
d2b εμνTr[Fμν] = 1

2π

∫

∂α

dlμ Tr[A (α)
μ ] − 1

2π

∫

∂α

dlμ Tr[A (β)
μ ] , (1.190)

where we used the fact that ∂β is the same curve as ∂α, but with opposite orientation,
and where the superscript α means that A (α)

μ is defined with respect to a coordinate
system that is continuous in the region α, and similarly for A (β)

μ . On the equator
both coordinate systems are continuous and they are thus related by some unitary
transformation U ,

Tr[A (β)
μ ] = Tr[A (α)

μ ] − iTr[U †∂μU ] . (1.191)

Putting this together we get

1

4π

∫

B
d2bεμνTr[Fμν] = 1

2π i

∫

∂α

dlμTr[U †∂μU ] . (1.192)

The matrix trace is the same in all basis so we can consider it in the basis where U
is diagonal

U = diag
(
eiθ1 , eiθ2 , . . .

)
, (1.193)

to get

ch1(S) = 1

2π i

∫

γ

dlμ Tr[U †∂μU ] = 1

2π i

∑
i

∫

∂α

dlμe−iθi ∂μeiθi . (1.194)

The i th term in this sum gives the change of the phase angle θi accumulated when
integrating over ∂α, but since this is a closed curve this change has to equal 2πn for
some integer n, which completes the proof that ch1(S) is an integer.

The formula (1.191) allows for another important conclusion. Since Tr[Aμ]
changes by −iTr[U †∂μU ] under a basis transformation and

∫
dlμTr[U †∂μU ] =

2πni for some integer n, the exponent of 2π times the first Chern–Simons invariant

C S1[A ](γ ) = 1

2π

∫

γ

dlμTr[Aμ]

is also a basis independent quantity, meaning that exp(iC S1) is well defined. It is
however not necessarily quantized as an integer.

1.8.1.4 Relating the Brillouin-Zone and the Flux-Torus Chern Numbers

For a non-interacting fermionic system on lattice with periodic boundary conditions
we can define two different fiber bundles. The first is the flux-torus fiber bundle with
the flux torus T 2

φ as base space and fibers h(φ) the one-dimensional Hilbert spaces
spanned by |GS;φ〉 (i.e., the ground-state at flux φ which are the fluxes encircled
by the two independent non-contractible loops on the torus).
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The other fiber bundle has the Brillouin-zone as the base space and the fibers at
lattice momentum k are spanned by the single particle wave functions,

ψk n(x) = eik·xuk n(x) , (1.195)

of the N filled bands. The Berry connection over the Brillouin-zone fiber bundle is
given by

A m
n ki

(k) = −i
〈
ψk n(x)|∂ki |ψk n(x)

〉 ≡
∫

d2x ψ∗
k n(x)∂ki ψk n(x) . (1.196)

This can also be written as the anti-commutator of the creation and annihilation
operators,

A m
n ki

(k) = −i
{

ak n, ∂ki a
†
k m

}
(1.197)

where

a†
k n =

∫
d2x ψ†(x)ψk n(x); ak n =

∫
d2x ψ(x)ψ∗

k n(x)) (1.198)

and ψ†(x) is the operator that creates an electron at position x,

{
ψ†(x), ψ(x′)

} = δ2(x − x′) . (1.199)

The corresponding Berry field-strength is (which we denote by B to distinguish it
from the previously defined flux torus field strength F )

B m
n ki k j

= ∂kiA
m

n k j
− ∂k jA

m
n ki

+ iA p
n ki

A m
p k j

− iA p
n k j

A m
p ki

, (1.200)

where the repeated index p should be summed over. Since the Brillouin-zone is
two-dimensional the field-strength has only one independent component

B ≡ εi jBki k j . (1.201)

We can then write

Tr[B] = εi j Tr[∂kiAk j ] = −i
∑

n

{
ak n, ∂ki a

†
k m

}
, (1.202)

for the the defining component of the Brillouin-zone Berry field-strength. Now turn
to the other fiber bundle. The fibers are spanned by the ground-states at flux φ,

|GS;φ〉 =
∏

n

∏
k∈B.Z .

a†
k n φ |0〉 , (1.203)
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where

a†
k n φ =

∫
d2x ψ†(x)ψk n φ(x) , (1.204)

and ψk n φ(x) is the single particle wave function in band n, at lattice momentum k
and at flux φ. The Berry connection is given by

Aφi = −i
〈
GS;φ|∂φi |GS;φ

〉
(1.205)

and the defining component of the Berry field strength is

F = −iεi j∂φi

〈
GS|∂φ j |GS

〉
. (1.206)

Using the commutation realtions

{
ak m φ, a†

k′ n φ

}
= δmnδk k′ ; {

ak m φ, ak′ n φ

} =
{

ak m φ, a†
k′ n φ

}
= 0 , (1.207)

we can write

〈
GS;φ|∂φi |GS;φ

〉 =
∑

n

∫
d2k
{

ak n φ, ∂φi a
†
k n φ

}
, (1.208)

and

F (φi , φ j ) = −iεi j∂φi

∑
n

∫
d2k
{

ak n φ, ∂φ j a
†
k n φ

}
. (1.209)

We now pick the gauge potential

A = Ã + φx

Lx
x̂ + φy

L y
ŷ , (1.210)

where the integral of Ãi along any of the non-contractible loops on the torus is zero.
With this, the Bloch Hamiltonian become

HBl = �
2

2m

(
−i∇ + eÃ + k + 2π

φ0

(
φx/Lx , φy/L y

))2

+ Vlat . (1.211)

Comparing with the Bloch Hamiltonian at zero flux,

HBl = �
2

2m
(−i∇ + eA + k)2 + Vlat , (1.212)

we realize that we can put φ = 0 and replace
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∂φi → 2π

Li

1

φ0
∂ki , (1.213)

which results in

F (φ) = −i
εi j

φ2
0

∫
d2k ∂ki

{
ak n, ∂k j a

†
k n

}
= 1

φ2
0

∫
d2k Tr (B) , (1.214)

where we used (1.202). Finally integrating over the flux torus concludes the proof
that the two Chern numbers are equal.

1.8.2 How to Normalize the Current

Here we shall study the first term∼εμνσ bμ∂νaσ in (1.42) a bit more carefully. Just as
the Chern–Simons term this is a topological action, and the two fields a and b have
no bulk dynamics. This is however not the full story. If the system is defined on a
finite area, Lx × L y , with periodic boundary conditions, the zero-modes of the fields
do acquire dynamics. To understand this, we write the action on the Hamiltonian
form,

SB F = k

2π

∫
d3x εμνσ bμ∂νaσ (1.215)

= k

2π

∫
d3x [εi j ȧi b j + a0(ε

i j∂i b j ) + b0(ε
i j∂i a j )] .

Note that although the Hamiltonian formally vanishes in the a0 = b0 = 0 gauge,
these fields are Lagrange multiplier fields that impose the “Gauss law” constraints
εi j∂i a j = εi j∂i b j = 0, which can be solved by,

ai = ∂iλa(x, t) + 2π

Li
āi (t) (1.216)

bi = ∂iλb(x, t) + 2π

Li
b̄i (t)

where āi and b̄i are spatially constant, and λa/b are periodic functions on the torus.
Inserting this into (1.215) gives the Lagrangian

SB F = k 2π
∫

dt εi j ˙̄ai b̄ j . (1.217)

From this we can read the canonical commutation relations.17

17In case you do not know how to handle actions that are first order in time derivatives, you can
learn in e.g., [65].
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[āi , b̄ j ] = i

2πk
εi j . (1.218)

The Wilson lines along the cycles of the torus given by,

Ai = ei
∮
dxi ai = e2π i ā Bi = ei

∮
dxi bi = e2π i b̄ (1.219)

are invariant under the large gauge transformations āi → ai + na
i , and b̄i → bi + nb

i ,
corresponding to threading unit fluxes though the holes in the torus.

To assume that the charges that couple to the gauge fields a and b are conserved
is equivalent to taking the these fields to be compact, which means that field config-
urations differing by the large gauge transformations are identified. Put differently,
the dynamical variables are not the constant U (1) fields āi and b̄i , but the Wilson
loop operators Ai and Bi , which satisfy the commutation relations,

AlBm − e
2π i

k BmAl = 0 l �= m . (1.220)

For k = 1 all operators commute, and there is a unique ground-state, while for k = 2
we have the algebra,

AxBy + ByAx = 0 and AyBx + BxAy = 0 . (1.221)

Each of these algebras have a two dimensional representation (think of the Pauli
matrices!) and thus the ground-state is 2 × 2 = 4 fold degenerate.

1.8.3 The Relation Between the Chern Number and the
Pontryagin Index

We will use the notation, d̂(k) · σ ξ±(k) = ∓ξ±(k) and ξ ≡ ξ+ which means that
the creation operator for the filled band takes the form

a†
k =

∑
α

ξα
−(k)c†k,α (1.222)

and using the definition (1.55) the Berry connection is

Ai = −i{ak, ∂ki a
†
k} = −iξ †(k)∂ki ξ(k) (1.223)

Now suppressing the k dependence and using the short hand notation ∂i/j ≡ ∂ki/j we
have,
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(∂iξ
†)∂ jξ = ∂i (ξ

†d̂ · σ )∂ jξ = (∂iξ
†)d̂ · σ∂ jξ + ξ †(∂i d̂ · σ )∂ jξ

= (∂iξ
†)d̂ · σ∂ jξ + ξ †(∂i d̂ · σ )∂ j (d̂ · σ ξ) (1.224)

= (∂iξ
†)d̂ · σ∂ jξ − ξ †(∂i d̂ · σ )∂ jξ + ξ †(∂i d̂ · σ )(∂ j d̂ · σ )ξ

where we in the last equality used σ aσ b = −σ bσ a + 2δab and d̂ · ∂i d̂ = 0. Making
similar manipulations we get,

(∂iξ
†)∂ jξ = (∂iξ

†)d̂ · σ∂ jξ + 1

2
ξ †(∂i d̂ · σ )(∂ j d̂ · σ )ξ (1.225)

Next winvokee need the spectral decomposition of the Hamiltonian, d̂ · σ = ξξ † −
ξ−ξ

†
− and the resolution of unity 1 = ξξ † + ξ−ξ

†
− to get the two identities,

(∂iξ
†)d̂ · σ∂ jξ = (∂iξ

†)(ξξ † − ξ−ξ
†
−)∂ jξ = −AiA j + (ξ †∂iξ−)(ξ

†
−∂ jξ) (1.226)

(∂iξ
†)∂ jξ = (∂iξ

†)(ξξ † + ξ−ξ
†
−)∂ jξ = −AiA j − (ξ †∂iξ−)(ξ

†
−∂ jξ)

where we used ξ †∂iξ = −(∂iξ
†)ξ etc. Combining (1.225) and (1.226) gives,

(∂iξ
†)∂ jξ = −AiA j + 1

4
ξ †(∂i d̂ · σ )(∂ j d̂ · σ )d̂ · σ ξ (1.227)

Again using the σ matrix algebra, we finally get,

B(k) = iεi j∂iξ
†∂ jξ = −1

2
(∂i d̂ × ∂ j d̂) · d̂ (1.228)

1.8.4 The Parity Anomaly in 2 + 1 Dimensions

The most direct way to extract the effective action (1.68) is to simply calculate the
Feynman diagram in Fig. 1.3 with a suitable regularization [36]. An alternative, and
quite instructive, way is to pick a specific background field where the Dirac equation
can be solved exactly and then invoke gauge and Lorentz invariance to find the
general result.

We define the Dirac α-matrices by,

(β, α1, α2) = (σ 3,−σ 2, σ 1) (1.229)

and will use complex coordinates

z =
√

eB

2
(x + iy) (1.230)
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and the notation ∂ = ∂z and ∂̄ = ∂z̄ . In the symmetric gauge, A = B
2 (−y, x), where

B is a constant magnetic field. The Hamiltonian for the relativistic massless Landau
problem becomes,

H = α · (p − eA) (1.231)

= √
eB

(
0 − 1√

2
(∂ − z̄)

1√
2
(∂̄ + z) 0

)
= √

eB

(
0 a†

a 0

)

where p = −i∇, and [a, a†] = 1. Introducing the corresponding number operator
state a†a |n〉 = n |n〉, we easily find the following solutions to the Schrodinger equa-
tion,

|Ψ0〉 =
( |0〉

0

)
; E0 = 0 (1.232)

|Ψn±〉 = 1√
2

( |n〉
± |n − 1〉

)
; E± = ±√

neB . (1.233)

Note that after adding a mass term, Hm = βm, |ψ0〉 is still a solution but with the
eigenvalue E0 = m.

The energy levels are however massively degenerate, and in the radial gauge the
relevant extra quantum number is the angular momentum. Defining,

b† = a + √
2z (1.234)

we have [b, b†] = [a, a†] = 1 with all other commutators vanishing, so the full
Schrodinger spectrum is obtained from (1.232), by the replacement

|n〉 → (b†)k

√
k!

(a†)n

√
n! |0, 0〉 . (1.235)

Next we expand the Dirac field operator in the eigenfunctions ψn,k± = 〈x〉 Ψk,n±

ψ̂(x) =
∑
n,k

[
ψn,k+e−i En t cn,k + ψn,k−ei Ent d†

n,k

]
+
∑

k

ψ0,ke−imt e (1.236)

where we regularized the zero-mode by adding a small mass m2 � eB, and intro-
duced the fermionic operators cn,k and dn,k satisfying {c†

ñ,k̃
} = δn,ñδk,k̃ etc., and the

Majorana operator e which satisfies e2 = 0 and anti-commutes with all other Fermi
operators.

For simplicity we considered the m = 0 case, but it is not too hard to find the
full solution even for m �= 0. The zero-modes we have already found, and the only
thing we shall need for the following is that the rest of the spectrum is gapped and
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symmetric around E = 0 which follows from charge conjugation symmetry; fact the
energies are En = √

neB + m2.
The next step is to calculate the vacuum expectation value of the current operator

jμ = e

2
[ψ̄, γ μψ] (1.237)

and for simplicitywe shall just consider the time component, i.e., the charge. Realling
that γ 0 = β, we get

j0 = ρ = e

2
(ψ†ψ − ψψ†) (1.238)

and because of the charge conjugation symmetry, only the zero-modes contribute to
the expectation value

〈ρ〉 = ± e

2

∑
k

|ψ0,k |2 . (1.239)

where the positive sign corresponds to a negative m meaning that the (almost) zero-
modes are all filled so the contribution comes from the first term in (1.238); the
negative sign amounts to these modes all being empty. A direct calculation of the
zero-mode wave functions gives,

∑
k

|ψ0k |2 =
∑

k

|
√

eB

2π

√
2k

k! zke−|z|2 |2 =
∑

k

eB

2π
(2|z|2)ne−|z|2 = eB

2π
(1.240)

which just shows that the density of state in the lowest Landau level is the same as
in the non-relativistic case. Inserting this in (1.238) gives

〈ρ〉 = m

|m|
e2B

4π
(1.241)

and by Lorentz and gauge invariance we get

〈 jμ〉 = m

|m|
e2

4π
εμνσ ∂ν Aσ = −δΓD[A]

δAμ

, (1.242)

for any constant electric, or magnetic, field. Integrating this expression to get the
effective response action, we get the result (1.68) quoted in the main text. Note
that although the Chern–Simons term is not gauge invariant, its variation, given by
(1.242), is.
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Chapter 2
An Introduction to Entanglement
Measures in Conformal Field Theories
and AdS/CFT

Erik Tonni

2.1 Introduction

Entanglement in quantum systems and many quantities introduced to study is has
attracted a lot of research during the last decade, in particular in quantum information
theory, condensed matter theory and quantum gravity.

Many excellent reviews have collected all the relevant results about the aspects
of entanglement that are relevant for the various communities. In particular, let us
mention [1, 2] for quantum field theories (QFT), with particular focus on confor-
mal field theories (CFT), [3] for condensed matter theory and [4, 5] for quantum
gravity within the approach based on the gauge/gravity correspondence (AdS/CFT
correspondence).

The entanglement entropy is the measure of entanglement that has been mostly
studied in the literature because it fully quantifies the bipartite entanglement of pure
states. For mixed states a quantity characterising completely the bipartite entangle-
ment is not known and various proposals have been suggested (e.g. the logarithmic
negativity).

These introductory lectures focus on the following topics: the entanglement
entropies and logarithmic negativity in quantumfield theories,with particular empha-
sis on the analytic results obtained in two dimensional conformal field theories, and
the holographic entanglement entropy within the holographic (AdS/CFT) correspon-
dence.
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2.2 Bipartite Entanglement

Let us consider a quantum system whose Hilbert space H can be bipartite, namely
it can be written as H = H1 ⊗ H2. The quantum state is characterised by a density
matrix ρ and it can be either pure or mixed. In the former case the density matrix is
a projector ρ = |�〉〈�| on a vector |�〉 of the Hilbert space.

Let us first consider pure states. By introducing an orthonormal basis {|�(i)
m 〉, 1 �

m � di } forHi , a pure state |�〉 ∈ H can be written as

|�〉 =
d1∑

a1=1

d2∑

a2=1

Aa1a2 |�(1)
a1 〉 ⊗ |�(2)

a2 〉 (2.2.1)

where the coefficients Aa1a2 can be collected into a rectangular matrix A. By employ-
ing the singular value decomposition of a generic complex matrix, A can be written
as A = UD V †, whereU and V are unitary matrices of order d1 and d2 respectively,
while D is a d1 × d2 matrix whose elements λa can be non vanishing only along a
diagonal, hence 1 � k � d0, where d0 = min(d1, d2). The unitary matrices U and
V can be used to change the local basis ofH1 andH2 respectively. Writing the state
(2.2.1) in terms of the new orthonormal basis {|�(i)

m 〉, 1 � k � di } forHi , we get the
Schmidt decomposition

|�〉 =
d0∑

k=1

λk |�(1)
k 〉 ⊗ |�(2)

k 〉 (2.2.2)

where λk are the Schmidt coefficients. The Schmidt rank r0 � d0 is defined as the
number of non vanishing Schmidt coefficients. The normalization 〈�|�〉 = 1 is
equivalent to the constraint

∑r0
k=1 |λk |2 = 1 on the Schmidt coefficients.

The properties of the bipartite entanglement associated to the pure state |�〉 and
the bipartition H1 ⊗ H2 are encoded into the Schmidt coefficients. For instance,
when λk = 0 for all k �= k0, then |�〉 = |�(1)〉 ⊗ |�(2)〉 is a product state, hence it is
not entangled. In any other case |�〉 is entangled. When all the Schmidt coefficients
have equal size, namely |λk | = 1/

√
r0 for all values of k, then |�〉 is maximally

entangled.
The bipartite entanglement of mixed states is more difficult to evaluate. A quantity

measuring it is discussed in Sect. 2.4.

2.2.1 Entanglement Entropies

Given a state characterised by the density matrix ρ and the bipartitionH1 ⊗ H2, the
reduced density matrix ρi associated to Hi is the hermitean operator obtained by
tracing over the complementary part of the Hilbert space, i.e.
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ρi ≡ TrH j ρ (2.2.3)

Thus, two reduced density matrices ρ1 and ρ2 can be introduced.
The entanglement entropy is the Von Neumann entropy associated to the reduced

density matrix ρi , namely
Si ≡ −Tr(ρi log ρi ) (2.2.4)

An important family of entanglement quantifiers parameterised by an integer
n � 2 is given by the Rényi entropies

S(n)
i ≡ 1

1 − n
log

(
Trρn

i

)
(2.2.5)

A crucial feature of these scalar quantities is that they provide the entanglement
entropy (2.2.6) once a proper analytic continuation in n is performed. In particular,
the entanglement entropy can be computed as

Si = lim
n→1

S(n)
i = − ∂nTr(ρ

n
i )

∣∣
n=1 (2.2.6)

The entanglement entropy satisfies important inequalities for any state ρ of the
system.

Given the bipartition H1 ⊗ H2 of the Hilbert space and adopting the notation
Si = S(ρi ) the Araki-Lieb inequality [6] is given by

∣∣S(ρ1) − S(ρ2)
∣∣ � S(ρ) � S(ρ1) + S(ρ2) (2.2.7)

The second inequality is also called subadditivity condition.
Another characteristic feature of the entanglement entropy is given by strong

subadditivity inequalities [7]

{
S(ρ12) + S(ρ23) � S(ρ2) + S(ρ123)

S(ρ12) + S(ρ23) � S(ρ1) + S(ρ3)
(2.2.8)

where the notation ρ12 the reduced density matrix obtained by tracing overH3.When
H2 = ∅, the first inequality of (2.2.8) reduces to the subadditivity condition.

The entanglement entropy fully characterises the bipartite entanglement of pure
states.

The density matrix associated to the pure state |�〉 is the projector ρ = |�〉〈�|.
By employing the Schmidt decomposition (2.2.2), the reduced density matrix ρi can
be written as

ρi =
d j∑

a j =1

〈�( j)
a j

| ρ |�( j)
a j

〉 =
r0∑

k=1

|λk |2 |�(i)
k 〉〈�(i)

k | j �= i (2.2.9)
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This expression tells that: (a) the reduced density matrices ρi are linear combinations
of projectors, hence they describe mixed states; (b) the two reduced density matrices
ρ1 and ρ2 have the same non vanishing eigenvalues wk ≡ |λk |2.

When the entire system is in a pure state |�〉, the expression (2.2.9) holds for
ρi , hence the corresponding entanglement entropy can be written in terms of the
Schmidt coefficients as follows

Si = −
r0∑

k=1

wk logwk (2.2.10)

This tells us that S1 = S2 for pure states, hence (2.2.10) provides the entanglement
entropy of the bipartition when the system is in a pure state.

When the pure state |�〉 is a product state, then S1 = S2 = 0, while when it is
maximally entangled we have that S1 = S2 = log r0.

For pure states we can employ (2.2.9), where {|�(i)
k 〉} an orthonormal basis for

Hi , finding

Trρn
i =

r0∑

k=1

wn
k (2.2.11)

Thus, also the Rényi entropies can be determined from the Schmidt coefficients, and
this implies that S(n)

1 = S(n)
2 also for the Rényi entropies.

2.3 Geometric Entanglement Entropies in QFT

When the bipartition of the Hibert space corresponds to a spatial bipartition A ∪ B of
a slice of the spacetime at constant time, the bipartite entanglement depends also on
the geometry of the bipartition itself. In these cases (2.2.5) and (2.2.6) are sometimes
called geometric entanglement entropies [8–13] and they are denoted as S(n)

A and
S(n)

B .
In a Quantum Field Theory, a state can be represented by employing the path

integral.Denotingby t E theEuclidean time coordinate andby x ∈ R
d−1 the remaining

spatial coordinates, at fixed t E = 0 we have that

|�(
φ0(x)

)〉 = 1

Z1/2

∫

t E<0
Dφ δ

(
φ(t E = 0, x) − φ0(x)

)
e−S[φ] (2.3.1)

where we have denoted by φ0(x) the field configuration at t E = 0. Similarly, the path
integral representation of 〈�(

φ0(x)
)| involves the integration over t E > 0. Given

these expressions, the density matrix ρ = |�〉〈�| can be written as follows
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Fig. 2.1 Riemann surface RN ,n corresponding to an interval (N = 1) and n = 3

ρ
(
φ+(x), φ−(x)

) = 1

Z
∫

t E<0
Dφ

∫

t E>0
Dφ δ

(
φ(0+, x) − φ+(x)

)
δ
(
φ(0−, x) − φ−(x)

)
e−S[φ]

(2.3.2)
which can be roughly understood as the continuum limit of a matrix where φ+(x)

and φ−(x) are the continuum limit of the rows and the columns respectively.
The reduced density matrix is obtained by identifying the fields φ+(x) and φ−(x)

only for x ∈ B and performing the path integration corresponding to this region.
This gives

ρA
(
φ+(xA),φ−(xA)

) =
∫

t E=0
Dφ

∏

xB

δ
(
φ+(xB) − φ−(xB)

)
ρ
(
φ+(x),φ−(x)

)

(2.3.3)
wherewehave adopted the notation x = xB ∈ B and x = xA ∈ A.Notice that (2.3.3)
depends on the field configurations φ+(xA) and φ−(xA), which are defined respec-
tively slightly above and below A along the Euclidean time direction.

Given the path integral representation (2.3.3) for the reduced density matrix, the
Rényi entropies can be constructed in a similar way by taking n copies of (2.3.3)
and tracing them along A in the proper way. In particular, the field configuration
φ+(xA) of the j th copy must be identified with the field configuration φ−(xA) of
the ( j + 1)th copy in a cyclic way. This procedure, which holds for any number
of spatial dimensions, is described in Fig. 2.1 for the simplest case case where the
spacetime has two dimensions and A is an interval.

The net result is that the Rényi entropies can be written in terms of the partition
function Zn of n copies of the model coupled through the boundary conditions
imposed by joining the copies as above. Thus

Tr ρn
A = Zn

Zn
(2.3.4)
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which is normalised to Tr ρA = 1, being Z the partition function of a single copy of
the model. Equivalently, Zn can be evaluated as the partition function of the model
defined on the n-sheeted hypersurface defined by the joining procedure described
above. We remark that (2.3.4) holds for a generic number of dimensions and also
when A is made by disconnected regions. In Fig. 2.2 we show an example where A
is made by two disjoint intervals having equal length.

Another useful way to compute the Rényi entropies (2.3.4), and then the entangle-
ment entropy through the analytic continuation n → 1, is to introduce some partic-
ular operators along ∂ A whose expectation value provides the moments Trρn

A of the
reduced density matrix. These operators belong to a particular class of twist fields.
In the context of entanglement they have been first used in [13].

When the Euclidean spacetime is two dimensional and A = (u, v) is an interval
on the infinite line, ∂ A is made by two isolated points. In this case the moments
(2.3.4) can be computed also as the following two point function

Trρn
A = 〈Tn(u) T̄n(v)〉 (2.3.5)

where the twist fields Tn and T̄n , that are one the inverse of the other one, are located
respectively at the left and at the right endpoint of the interval. This procedure allows
to treat the case where A is made by N disjoint intervals in a straightforward way.
The Riemann surface underlying the partition function Zn occurring in (2.3.4) will
be denoted by RN ,n . For instance, for two disjoint intervals A = (u1, v1) ∪ (u2, v2)

we have
Trρn

A = 〈Tn(u1) T̄n(v1) Tn(u2) T̄n(v2)〉 (2.3.6)

which can be easily extended to the case where A = ∪N
i=1(ui , vi ) is made by N

disjoint intervals, finding

Trρn
A = 〈Tn(u1) T̄n(v1) Tn(u2) T̄n(v2)〉 (2.3.7)

For higher dimensional spacetimes, the twist fields are non local operators whose
support is given by a connected component of ∂ A, which has codimension two. Thus,
for instance, in a four dimensional Euclidean spacetime, when A = A1 ∪ A2 is made
by the union of a disk A and an ellipse A2, the corresponding Rényi entropies can
be computed as a two point function of two twist fields whose supports are ∂ A1 and
∂ A2. The twist fields can be understood also as special class of defects [14, 15].

Conformal field theories (CFT) provide an important class of quantum field the-
ories for our purposes because this symmetry allows to get analytic results for the
entanglement entropies of some configurations. We mainly focus on two spacetime
dimensions because in this case the conformal symmetry is infinite dimensional,
while in higher dimensions it has a finite number of generators. The generators of
the conformal symmetry in two spacetime dimensions satisfy the Virasoro algebra,
which is determined by an important model dependent constant c known as central
charge.
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2.3.1 Intervals in 2D CFT

In quantum systems defined in one spatial dimension, the simplest configuration
to consider is a single interval A when the entire system is in its ground state. In
this case the moments of the reduced density matrix ρA can be written as (2.3.5).
Focussing on Conformal Field Theories, the conformal symmetry can be employed
to evaluate (2.3.5). In particular, in [13] it has been shown that the twist fields Tn

and T̄n are primary operators. For these operators, conformal symmetry constraints
the two point function to depend on the distance � ≡ |u − v| between the positions
of the operators and on their common conformal dimension. For the twist fields, we
have

Trρn
A = cn

(�/ε)2�n
(2.3.8)

where ε is the UV cutoff and

�n = c

12

(
n − 1

n

)
(2.3.9)

is the scaling dimension of the twist fields Tn and T̄n , being c is the central charge of
themodel and cn is the normalisation constant. The normalisation conditionTrρA = 1
is guarantee by the requiring c1 = 1. Taking the replica limit (2.2.6) for the moments
(2.3.8), one obtains [10–12]

SA = c

3
log(�/ε) + const (2.3.10)

We remark that the Riemann surface underlying the computation of Zn is the two
dimensional sphere.

The conformal symmetry allows also to explore the cases where A is an interval
in the infinite line while the entire system is at finite temperature T ≡ 1/β. In this
case, one obtains

Trρn
A = cn

[ β
πε
sinh(π�/β)

]2�n
SA = c

3
log

[
β

πε
sinh(π�/β)

]
+ const (2.3.11)

Notice that for � � β the zero temperature results (2.3.8) and (2.3.10) are recov-
ered, as expected. In the large temperature regime �  β and (2.3.11) gives SA =
πc �/(3β) + . . . , which is the extensive Gibbs entropy for a system of length �.

Another configuration that can be studied analytically by exploiting the conformal
symmetry is the one given by an interval of length � in a circumference of length
L > �, when the entire system is at zero temperature. For this configuration the
moments of the reduced density matrix read
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Fig. 2.2 Riemann surface RN ,n corresponding to two disjoint intervals (N = 2) and n = 3 (left)
or n = 4 (right) (Figure on the right reprinted with permission from [33])

Trρn
A = cn

[
L
πε
sin(π�/L)

]2�n
SA = c

3
log

[
L

πε
sin(π�/L)

]
+ const (2.3.12)

In the limit �  L the results (2.3.8) and (2.3.10) for the interval in the infinite line
are recovered, as expected.

In the framework of the two dimensional CFT, also models with physical bound-
aries, namely boundaryCFT (BCFT) canbe considered. In thesemodels the boundary
conditions imposed on the fields enter in a crucial way to determine the spectrum of
the allowed operators. In the context of entanglement, an analysis similar to the one
performed to get (2.3.10) allows to study the configuration where A is an interval of
length � in a semi-infinite line adjacent to the boundary, i.e. whose endpoint coincides
with the initial point of the semi-infinite line. In this case one finds

SA = c

6
log(�/ε) + const (2.3.13)

where the subleading term depends on the boundary conditions characterising the
BCFT.

When A is made by two or more disjoint intervals in the infinite line and the
entire system is in its ground state, the Riemann surface RN ,n obtained through the
replica method that occurs in (2.3.4) has higher genus given by g = (n − 1)(N − 1),
where N � 1 is the number of disjoint intervals and n � 2 the number of copies.
In the simplest case of N = 2 intervals, R2,n has genus g = n − 1 but it is not the
most generic Riemann surface having this genus. Indeed,RN ,n obtained through the
replica method provide a small subclass of Riemann surfaces (see Fig. 2.2, on the
right, where R2,4 is shown). Furthermore, focussing on two dimensional CFTs, the
conformal symmetry does not allow to fix entirely the dependence on the positions
of the endpoints of the intervals. Thus, these configurations are more difficult to treat
analytically.
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The simplest case within this class of configurations is given by A = (u1, v1) ∪
(u2, v2), namely two disjoint intervals in the infinite line. In two dimensional CFT, the
conformal symmetry allows to write the four point function (2.3.7) in the following
form

Trρn
A = c2n

( |u1 − u2| |v1 − v2|
|u1 − v1| |u2 − v2| |u1 − v2| |u2 − v1|

)2�n

Fn(x) (2.3.14)

where �n is the scaling dimension (2.3.9) and x is the harmonic ratio of the four
endpoints, i.e.

x = (u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
(2.3.15)

The function Fn(x) is model dependent and it is known analytically only in few
cases. Furthermore, its dependence on the replica index n can be highly non trivial,
making the replica limit very difficult to perform.

For instance, for the two dimensional Ising CFT, which has c = 1/2, it has been
found that [16, 17]

F Ising
n (x) =

∑
e

∣∣�[e](0|τ (x))
∣∣

2n−1
∣∣�(0|τ (x))

∣∣ (2.3.16)

being � the Riemann theta function with characteristic et = (εt, δt), that is defined
as

�[e](z|�) =
∑

m∈Zp

exp
[
iπ(m + ε)t · � · (m + ε) + 2πi(m + ε)t · (z + δ)

]

(2.3.17)
where z ∈ C

p/(Zp + �Z
p) is the independent variable, while ε and δ are vectors

whose entries are either 0 or 1/2, and ω is a p × p complex, symmetric matrix with
positive imaginary part. In (2.3.16), the sum in the numerator is performed over all
the possible characteristics and the elements of the (n − 1) × (n − 1) complex and
symmetric matrix τ (x) are given by

(τ2)i j = i
2

n

n−1∑

k=1

sin(πk/n)
2F1(k/n, 1 − k/n; 1; 1 − x)

2F1(k/n, 1 − k/n; 1; x)
cos[2πk/n(i − j)]

(2.3.18)
in terms of the hypergeometric function 2F1.

The function Fn(x) can be written analytically also for the free massless boson
compactified on a circle and for the free massless Dirac fermion, which have central
charge c = 1 [16, 17].

For these three simple CFTs, analytic results can be obtained also for the most
general case where A is made by N disjoint intervals on the infinite line [18].

The analytic continuation of (2.3.14) with Fn given by (2.3.16) is difficult to
perform. Thus, a numerical method based on the rational interpolation has been
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employed [19], finding agreement with the corresponding results obtained through
spin chains calculations [20] (see also [21]).

2.3.2 Higher Dimensional CFT

Evaluating the entanglement entropy SA of a spatial domain A in a CFTd+1 with
d > 1 is challenging also because the shape of A occurs in a highly non trivial way.

When the CFT is in its ground state and for smooth entangling hypersurfaces ∂ A,
the following expansion of the entanglement entropy as ε → 0 is obtained

SA = α1
Area(∂ A)

εd−1
+ C3

εd−3
+ C5

εd−3
+ · · · −

{
Fd + o(1) even d

C log log
(
R/ε

) + O(1) odd d
(2.3.19)

where R is a typical length of A (e.g. the radius for a spherical region) the coefficients
Ck of the divergent terms depends on the geometry of ∂ A. The coefficient of the
leading divergences is proportional to the area of the entangling hypersurface and
this property is known as area law of the entanglement entropy. For odd values of
d, notice that a logarithmic divergence occurs. This is very important because its
coefficient C log contains the central charges of the underlying CFT. The simplest
example is given by d = 1, where C log = c/3, being c the central charge of the CFT2.

Various techniques have been employed to study the coefficients occurring in the
expansion (2.3.19). For spherical regions, conformal mappings have be very suc-
cessful because they lead to important results also for the corresponding reduced
density matrix [22]. For generic shapes, a promising approach is based on the com-
putation of the moments of the reduced density matrix as correlation function of
proper defect operators [14, 15], which are the higher dimensional generalisation of
the twist fields.

Configurations where A is made by disjoint regions have been also explored [23].

2.4 Entanglement Negativity

The bipartite entanglement of mixed states, i.e. the entanglement associated of a
bipartition of the Hilbert space H = H1 ⊗ H2 when the entire system is in a mixed
state, is difficult to quantify and various quantities have been introduced. Unfortu-
nately, many of them require to perform extremization procedures that make very dif-
ficult to get quantitative results. Here we focus on the logarithmic negativity because
these extremisation procedures to not occur in its evaluation.

In order to define the logarithmic negativity, we must introduce the partial trans-
pose. Considering the density matrix ρ characterising the mixed state in the bipartite
Hilbert space H = H1 ⊗ H2, its partial transpose with respect e.g. to H2, that will
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be denoted by ρT2 , is defined by introducing its elements as follows

〈e(1)
i e(2)

j | ρT2 | e(1)
r e(2)

s 〉 = 〈e(1)
i e(2)

s | ρ | e(1)
r e(2)

j 〉 (2.4.1)

The partial transpose ρT1 w.r.t.H2 can be defined in a similar way [24, 25].
It is important to remark that, while ρ is semipositive definite, ρT2 can have also

negative eigenvalues. By considering the trace norm of ρT2 , we obtain

∣∣∣∣ρT2
∣∣∣∣ ≡ Tr

∣∣ρT2
∣∣ =

∑

i

∣∣λi

∣∣ =
∑

λi >0

λi −
∑

λi <0

λi = 1 − 2
∑

λi <0

λi ≡ 1 + 2N (2.4.2)

where the normalisation condition
∑

i λi = 1 has been employed. In (2.4.2) we
have introduced the negativity N as minus the sum of the negative eigenvalues. The
logarithmic negativity is defined as follows

E = log
∣∣∣∣ρT2

∣∣∣∣ (2.4.3)

The logarithmic negativity E satisfies the conditions required by a measure of the
bipartite entanglement formixed states. For instance, for any bipartition of theHilbert
space we have

E1 = E2 (2.4.4)

A useful approach to study the logarithmic negativity is based on a replica limit
similar to the one introduced for the entanglement entropy [26, 27]. In particular, let
us consider the moments of the partial transpose

Tr
(
ρT2

)ne =
∑

i

λne
i =

∑

λi >0

|λi |ne +
∑

λi <0

|λi |ne (2.4.5)

Tr
(
ρT2

)no =
∑

i

λno
i =

∑

λi >0

|λi |no −
∑

λi <0

|λi |no (2.4.6)

where ne is an even positive integer and no is an odd positive integer. Thus, the parity
of n plays a crucial role due to the occurrence of negative eigenvalues.

From the last expression in (2.4.5) it is straightforward to realise that the trace
norm (2.4.2) can be also obtained through the following analytic continuation

∣∣∣∣ρT2
∣∣∣∣ = lim

ne→1
Tr

(
ρT2

)ne (2.4.7)

implying that the logarithmic negativity (2.4.3) can be computed through the follow-
ing replica limit

E = lim
ne→1

log
(
Tr

(
ρT2

)ne
)

(2.4.8)
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where only the sequence of the moments corresponding to even n’s must be con-
sidered. The same limit performed on the moments Tr

(
ρT2

)no gives zero identically,
because of the normalisation condition Tr ρT2 = 1. The result is based only on the
definition (2.4.3), hence it holds for any quantum systemand for any stateρ. The usual
technical difficulties related to the analytic continuation occur also in this analysis.

When ρ is pure state, the Schmidt decomposition can be employed to show that

Tr
(
ρT2

)n =
⎧
⎨

⎩
Tr2

(
ρ

ne/2
2

)2
even n = ne

Tr2 ρno
2 odd n = no

(2.4.9)

where Tr2 ≡ TrH2 and is the reduced density matrix ρ2 ≡ TrH1 ρ. Combining (2.4.9)
and (2.4.8), it is straightforward to find that for pure states the logarithmic negativity
is equal to the Rényi entropy of order 1/2, i.e.

E = S(1/2)
2 (2.4.10)

In the remaining part of this section, we will consider partitions of the Hilbert
space corresponding to a geometric partitions of a spatial slice of the spacetime. In
order to study the bipartite entanglement of a mixed state, one can study a spatial
bipartition A ∪ B of a system in a pure state (e.g. its ground state) and consider the
mixed state defined by the reduced density matrix ρA. Then, by introducing a spatial
bipartition A = A1 ∪ A2, the partial transpose w.r.t. either A1 or A2 can be explored.

For quantum field theories, the twist field approach has been employed to study
also the moments of the partial transpose [26, 27]. Then, the logarithmic negativity
is obtained through the replica limit (2.4.8).

In two dimensional spacetimes (one spatial dimension), the most intuitive config-
uration to consider is the one where A = A1 ∪ A2 is made by two disjoint intervals
A1 = (u1, v1) and A2 = (u2, v2). The moments of the partial transpose w.r.t. A2 can
be computed through the following four point function of twist fields

Tr
(
ρT2

A

)n = 〈Tn(u1) T̄n(v1) T̄n(u2) Tn(v2)〉 (2.4.11)

where the order of the fields along the line is the crucial difference with respect to the
moments of the reduced density matrix in (2.3.7). The four point function in (2.4.11)
can be also evaluated through the partition function of the model on the Riemann
surface shown in Fig. 2.3 in the case of two disjoint intervals having the same length.

From the previous result we can find how to employ the twist fields to evaluate the
moments of the partial transpose for the configuration where A1 and A2 are adjacent
intervals. Indeed, taking the limit u2 → v1, for two adjacent intervals A1 = (u, w)

and A2 = (w, v) we find that

Tr
(
ρT2

A

)n = 〈Tn(u) T̄ 2
n (w) Tn(v)〉 (2.4.12)
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Fig. 2.3 Riemann surface underlying the evaluation of Tr
(
ρT2

A

)n when A = A1 ∪ A2 is made by
two disjoint intervals of equal length

where in this correlator the new field T̄ 2 occurs.
Finally, we can also address the configuration where the system is in a pure state

ρ = |ψ〉〈ψ| and the bipartition of the spatial dimension is given by A1 ∪ A2. This
configuration can be studied by taking the limit B → ∅ of the previous one made by
two adjacent interval. The result reads

Tr
(
ρT2

A

)n = 〈T 2
n (u) T̄ 2

n (v)〉 (2.4.13)

We remark that, in quantum field theories, finding the properties of composite
fields (like T 2 and T̄ 2) from the elementary ones is a highly non trivial task.

In our case the geometrical interpretation of the twist fields allows to conclude
that T 2 and T̄ 2 implement a jump from the i th copy to the (i + 2)th copy once one
encircles the branch point where either T 2 or T̄ 2 is located.

In two or higher spatial dimensions the analysis of the moments of the partial
transpose becomes more complicated because the underlying twist fields are non
local. Numerical analysis for some free lattice models have been performed in [28,
29].

2.4.1 Intervals in 2D CFT

In two dimensional conformal field theories, the infinite dimensional conformal sym-
metry allows to get analytic results for some of the correlation function mentioned
above. In the following we report some results obtained in [26, 27].

For the spatial bipartition of a pure state, the two point function (2.4.13) occurs
and, by employing (2.3.8) and (2.4.9), one finds that
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Tr
(
ρT2

A

)n = c(2)
n

|u − v|2�(2)
n

(2.4.14)

where the scaling dimensions of the twist fields T 2 and T̄ 2 can be written in terms
of the scaling dimensions �n in (2.3.9) of the twist fields T and T̄ as follows

�(2)
n =

{
2�ne/2 even n = ne

�no odd n = no

(2.4.15)

The moments of the partial transpose and the logarithmic negativity can be com-
puted also for some bipartitions of mixed states. In particular, for two adjacent inter-
vals, by employing the general structure of the three point functions in CFT with
the proper scaling dimensions given in (2.3.9) and (2.4.15), the replica limit (2.4.8)
provides the following universal expression for the logarithmic negativity

E = c

4
log

(
�1�2

�1 + �2

)
+ const (2.4.16)

where c is the central charge and the constant term is non universal.
The moments of the partial transpose for the configuration where A = A1 ∪ A2 is

made by two disjoint intervals is more complicated and non universale because the
four point function (2.4.11) occurs. In particular, since all the fields in the correlator
have the same scaling dimension, we have that

Tr
(
ρT2

A

)n = c2n

( |u1 − u2| |v1 − v2|
|u1 − v1| |u2 − v2| |u1 − v2| |u2 − v1|

)2�n

Gn(x) (2.4.17)

where the function Gn(x) is a model dependent function of the ratio (2.3.15). It can
be shown that this function is related to the one introduced in (2.3.14) for the Rényi
entropies of two disjoint intervals as follows

Gn(x) = (1 − x)c(n−1/n)/3 Fn

(
x

x − 1

)
(2.4.18)

where we stress that the function Fn depends on the underlying CFT.
Taking the replica limit (2.4.8) by employing the expressions (2.4.17) and (2.4.18),

one finds that the logarithmic negativity of two disjoint intervals in CFT is given by

E = lim
ne→1

Fne

(
x

x − 1

)
(2.4.19)

This analytic continuation is very difficult to find analytically. Furthermore, the
function Fn is known in very few cases. For instance, for the Ising model on the
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infinite line the function Fn is given by (2.3.16) and it has been shown that it can be
extended also to complex values of x .

In the literature, the moments of the partial transpose have been checked against
lattice calculations both in fermionic chains [30–33] and harmonic chains [26, 27].
Then, in some cases numerical extrapolations have been performed [19].

2.5 Holographic Entanglement Entropy

In the context of quantum gravity, the gauge/gravity correspondence (also called
AdS/CFT correspondence) provide a crucial arena to explore quantitatively quantum
gravitymodels (coming from string theories asmicroscopicmodel) through quantum
field theory methods. According to the gauge/gravity duality, the strong coupling
regime of a (d + 1) dimensional CFT can be described through the semiclassical
limit of gravity model where the background is given by an asymptotically (d + 2)
dimensional Anti de Sitter (AdS) spacetime. For instance, for a C FT2 with central
charge c, the regime described by a semiclassical gravitational model in AdS3 is
given by c → ∞.

The AdSd+2 spacetime is a maximally symmetric spacetime with constant nega-
tive curvature. In Poincaré coordinates, it is defined by the following metric

ds2 = L2
AdS

z2

(
− dt2 + dz2 + dx2

1 + · · · + dx2
d

)
(2.5.1)

where L AdS is the radius of AdSd+2. The dual CFTd+1 is defined on the boundary of
AdSd+2, at z = 0.

Considering a constant time slice of a CFTd+1 and introducing a spatial bipar-
tition A ∪ B, the entanglement entropy SA in the regime of strong coupling can be
computed through a gravitational computation in the corresponding asymptotically
AdSd+2 spacetime. This formula has been found by Ryu and Takayanagi in [34, 35]
and it requires to compute the area AA of the minimal area surface γ̂A anchored
to ∂ A (sometimes called entangling hypersurface) and extending into the gravita-
tional asymptotically AdSd+2 background. In particular, the holographic entangle-
ment entropy reads

SA = AA

4G N

(2.5.2)

where G N is the gravitational Newton constant in (d + 2) spacetime dimensions.
The covariant prescription for the holographic entanglement entropy, that is crucial
to study e.g. the time dependent gravitational backgrounds like the one describing
the formation of a black hole, has been proposed in [36].

In AdS4, that is described by (2.5.1) with d = 2, a constant time slice is the
Euclidean hyperbolic space H3. In this case A is a two dimensional spatial region
in the boundary at z = 0 and its boundary ∂ A is a closed curve whenever A is
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Fig. 2.4 Minimal area surfaces γ̂A in the Euclidean hyperbolic space H3 (a constant time slice of
AdS4) anchored the entangling curve ∂ A (red curves) defined in the boundary. In the left panel
the entangling curve is smooth, while in the right panel it contains a corner (Figures reprinted with
permission from [41, 52] respectively)

finite. In Fig. 2.4 we show two examples of minimal area surfaces γ̂A anchored to the
entangling curve ∂ A (red curves in the figure): in the left panel ∂ A is smooth, while
in the right panel it contains a singular point given by the vertex of a corner.

The area of AA is divergent because γ̂A reaches the boundary z = 0 of the AdS
space, that is a non compact spacetime. Thus, in order to evaluate (2.5.2), first one
introduces a small cutoff ε > 0, evaluating the area of the part of γ̂A having z � ε.
Then, the holographic entanglement entropy (2.5.2) can be written as an expansion
as ε → 0 whose coefficients depends on various features of the minimal surface γ̂A.
For smooth regions A, an expansion like (2.3.19) is obtained, where the coefficients
of the divergent terms depend on the geometry of ∂ A, i.e. only on the part of γ̂A

close to the boundary.
It is important to remark that the definition of the holographic entanglement

entropy (2.5.2) includes the condition that γ̂A must be homologous to A, i.e. it must
be possible to obtain A by deforming γ̂A in a smooth way inside the spacetime [37].
This condition (called homology constraint) is relevant when the asymptotically AdS
gravitational background contains a black hole.

The formula (2.5.2) for the holographic entanglement entropy has been tested in
various ways. It has been shown in [37] that it satisfies the highly non trivial con-
straints given by the strong subadditivity condition (2.2.8). Furthermore, also the
Araki-Lieb inequality (2.2.7) has been discussed through the holographic formula
(2.5.2) [37, 38]. Besides the characteristic features of the entanglement entanglement
entropy, the holographic entanglement entropy (2.5.2) satisfies additional properties
that could be employed to identify conformal field theories that can have a gravita-
tional dual description. The main example is given by the monogamy of the mutual
information. In order to define this property, let us consider three regions A1, A2 and
A3 and introduce the tripartite mutual information as

I3(A1, A2, A3) ≡ SA1 + SA2 + SA3 − SA1∪A2 − SA1∪A3 − SA2∪A3 + SA1∪A2∪A3

(2.5.3)
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The sign of I3(A1, A2, A3) is not determined by fundamental properties of the entan-
glement entropy. For the holographic entanglement entropy given by (2.5.2), it has
been shown that I3(A1, A2, A3) � 0 for any choice of the regions [39].

Finding minimal area surfaces analytically and then computing their area can be
a very hard task. The difficulty originates both from the shape of the region A and
on the type of gravitational background that must be considered. In the simplest
case of AdSd+2 and for very simple regions like infinite strips and spherical regions,
where some symmetry can be employed, γ̂A and their regularised area have been
found already in the original references [34, 35]. Other smooth domains and more
complicated backgrounds have been explored e.g. in [40–42].

There are other important features of the holographic entanglement entropy (2.5.2)
that can be used to characterise the field theory with a holographic dual descrip-
tion. Here we mention the occurrence of transitions in the holographic entanglement
entropy of a domain made two or more disjoint components as the distances between
the different components change [43–45]. The simplest case is when A = A1 ∪ A2

is made by two disjoint intervals on the line. It is not difficult to realise that the
geodesic in AdS3 connecting the endpoints of an interval on the boundary is given
by half circumference. Thus, given A1 = (u1, v1) and A2 = (u2, v2), when the two
intervals are very far apart γ̂A is made by two half circumferences anchored to A1

and A2; while when they are very close, γ̂A is made by two half circumferences
anchored to (u1, v2) and (v1, u2). These two configurations are geometrically very
different and a transition between them occurs at some critical distance.

A more complicated example in AdS4 is given in Fig. 2.5, where we show the
the minimal area surface γ̂A when A is made by three disjoint disks with the same
radius whose distances between the centres compared with the radius guarantee the
existence of a connected γ̂A. Obviously, when the disks are very far apart from each

Fig. 2.5 Minimal area surfaces γ̂A in H3 anchored to ∂ A, with A made by the union of three
disjoint disks having the same radius (Figure reprinted with permission from [40])
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Fig. 2.6 Minimal area surfaces γ̂A in AdS4/BCFT3 anchored to ∂ A given by the red curve. The
surface intersects orthogonally the green brane delimiting the bulk gravitational dual, that encodes
the boundary conditions of the dual BCFT3 whose spatial slice is the grey horizontal half plane
(Figure reprinted with permission from [53])

other γ̂A is made be three disconnected surfaces anchored to the boundaries of the
three disks. Thus, as the distances change, transitions occur in the tripartite mutual
information (2.5.3). The occurrence of these transitions is a characteristic feature of
the holographic entanglement entropy (2.5.2).

In the above discussion we have considered only smooth regions. Focussing on
the case of AdS4/CFT3 for simplicity, when the entangling curve ∂ A is smooth,
we have that AA = PA/ε − FA + o(1) as ε, being PA the perimeter of A. When A
contains corners, i.e. the entangling curve is singular, also a logarithmic divergence
occurs, namely

AA = PA

ε
− b log(PA/ε) + O(1) (2.5.4)
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where the coefficient b = ∑
i f (θi ) is a sum over the corners of a function f (θ) of

the opening angle of the corner. The function f is often called corner function. This
logarithmic divergence for singular entangling curves occurs also for a generic CFT3

and the corner function is model dependent. For AdS4/CFT3, the corner function has
been computed analytically in [46], while for some free theories it has been found
in [47, 48].

The holographic entanglement entropy formula (2.5.2) has been employed also
in the context of the so called AdS/BCFT correspondence [49–53], where the con-
formal field theory has a physical boundary whose holographic gravitational dual
corresponds to an hypersurface in the bulk that enclose the gravitational bulk. In
Fig. 2.6 we show a minimal surface.

Finally, we find worth remarking that the covariant prescription for the holo-
graphic entanglement entropy given in [36] has been largely employed to study
the holographic evolution of the entanglement entropy in gravitational backgrounds
describing the formation of a black hole [54–61].
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Chapter 3
Entanglement Content of Many-Body
States via Concurrence, Negativity
and Schmidt Gap

Sougato Bose, Abolfazl Bayat, Henrik Johannesson and Pasquale Sodano

Abstract Quantum entanglement is nearly ubiquitous in equilibrium and non-
equilibrium many-body states. Although it has been largely studied through the
von Neumann entropy of a subsystem, which quantifies the entanglement between
two complementary parts of a many-body system, this is not necessarily the only
way. Here we review how some other measures can be fruitful in characterizing
the entanglement content of many-body states. For example, we can look at the
entangement between two individual spins through the concurrence or between two
non-complementary, but in principle large, parts of a many-body system through the
negativity. Alternatively, a quantity inspired through entanglement studies, but not
itself a measure of entanglement, namely the Schmidt gap, can be effective as an
order parameter for phase transitions in which only the entanglement structure of a
many-body system changes. We exemplify using equilibrium states of short-range
and impurity models and their quantum phase transitions.
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3.1 Quantum Entanglement and Its Quantification

An example of an entangled state of two spin-1/2 systems (two qubits) with states
|0〉 and |1〉 is

|ψ−〉 = 1√
2
(|0〉|1〉 − |1〉|0〉) (3.1)

which can never be written down as a pure product of states of the individual systems
such as in the form |χ〉|φ〉. A general separable (not entangled) state of two systems
A and B is one given by the equation

ρAB =
∑

i

Pi |ψ〉〈ψ |A ⊗ |φ〉〈φ|B . (3.2)

Any state which is not of the above form is called an entangled state.
Entanglement is a huge area of quantum information science, with several reviews

such as [1]. It is a quantifiable, as well as a measurable entity. Simply stating,
the “harder” it is to approximate a state as a probability distribution over prod-
ucts of pure states, the “higher” is its entanglement. For example, for the case
of two qubits, the state |ψ−〉 is the most entangled, whose amount is generally
set to unity, while a product state of the form |χ〉|φ〉 or mixed states of the form
p|χ1〉〈χ1|A ⊗ |φ1〉〈φ1|B + (1 − p)|χ2〉〈χ2|A ⊗ |φ2〉〈φ2|B have zero entanglement.

Quantification of entanglement has been accomplished in several ways. The cru-
cial property for an entanglement measure to satisfy is that it cannot be increased
between two systems held by distant parties Alice and Bob if they are solely using
local operations and classical communications (LOCC). The first measure of entan-
glement to be introduced was the von Neumann entropy of entanglement [2]. It
applies to the entanglement of two systems of arbitrary dimensions (such as when
each system is a multi-qubit system), but only for pure states. This is computed by
first computing the reduced density matrix ρA of system A from the state ρAB of
the total system using the procedure ρA = TrB(ρAB), where TrB( ) denotes partial
tracing over system B. The entanglement of the two systems A and B in the pure
state ρAB is then given by the von Neumann entropy [2]

S = −Tr{ρA log2 ρA}, (3.3)

which in terms of the eigenvalues ηi of ρA, is S = −∑
i ηi log2 ηi . This measure

has been studied and computed for a vast majority of (pure) ground states quantum
many-body systems when they are divided into two complementary parts [3]. We
will thus not concentrate on the von Neumann entropy in this article.

Here, wewould rather concentrate on applying thosemeasures of entanglement to
condensed matter systems which are less common. They give entanglement between
two non-complementary parts of a many body systems—such as well separated
blocks of spins or pairs of individual spins. For the case of two qubits (e.g. spin-1/2
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systems) in a mixed state, given by a density matrix ρ, its entanglement can be
computed [4]. The procedure is to first compute the matrix

ρ̃AB = σy ⊗ σyρ
∗
ABσy ⊗ σy (3.4)

where the complex conjugate ρ∗ of ρ is taken in the basis |00〉, |01〉, |10〉, |11〉. Then
the entanglement can be quantified by a number called concurrence E given by [4]

E = max{0, λ1 − λ2 − λ3 − λ4}, (3.5)

where λi s are the square roots of the eigenvalues of ρρ̃ in decreasing order.
However, at times you may have two larger dimensional systems in a mixed state

and want to compute their entanglement—for example, for two non-complementary
blocks of spins. Then it is best to use another measure of entanglement termed the
negativity. The reduced density operators ρAB carry the information on the entan-
glement between the blocks A and B. As ρAB is a mixed state, the block entropy
is inappropriate as a measure of the entanglement. We have to use instead the neg-
ativity [5, 6] N ≡ (

∑
i |ai | − 1) where |ai | denote the modulus of the eigenval-

ues of the partial transpose (ρAB)TA of ρAB with respect to the subsystem A, i.e.,
〈wA

i wB
j |ρTS

AB |wA
k wB

l 〉 = 〈wA
k wB

j |ρAB |wA
i wB

l 〉 [1]. {|wS〉} and {|wE 〉} are the orthog-
onal basis states of A and B respectively, chosen by the DMRG procedure. This is a
widely used genuine measure of quantum correlations (entanglement monotone [7])
and provides a bound to the fidelity of teleportation with a single copy of the state [8].

Moreover, we will be using another measure, which, although, is not a measure of
entanglement, it does indicate, in the broadest coarse grained way, the entanglement
present between two complementary halves of a pure state system. This is called
the Schmidt gap. We cut the system in two parts, A and B, and write the Schmidt
decomposition of a pure state, say the ground state |GS〉, as

|GS〉 =
∑

k

√
λk |Ak〉 ⊗ |Bk〉, λk ≥ 0, (3.6)

with mutually orthogonal Schmidt basis states |Ak〉 and |Bk〉. The density matrix of
each part is diagonal in the Schmidt basis,

ρα =
∑

k

λk |αk〉〈αk |, α = A, B. (3.7)

with the eigenvalues λ1 ≥ λ2 ≥ ... in descending order forming the entanglement
spectrum (frequently defined as {− ln λi }i=1,2,... in the literature). Then the Schmidt
gap is defined as ΔS =λ1−λ2 − where λ1 and λ2 are the two largest eigenvalues of
the reduced ground state density matrix as defined above.
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3.2 Concurrence Between Two Spins of a Many-Body
System

As an illustration, we will first study a model of an open ended chain of four spin-1/2
particles coupled through a nearest neighbor isotropic Heisenberg interaction, so that
the Hamiltonian is

H =
3∑

i=1

σ i .σ i+1 (3.8)

The ground state of this chain

|GS〉 =
(√

2

3
|ψ−〉|ψ−〉 − 0.1494(|00〉|11〉 − |01〉|01〉 − |10〉|10〉 + |11〉|00〉

)

(3.9)
is manifestly an entangled state (just looking at the form of the state is enough to spot
that) and for a long time condensed matter physicists have known that the ground
states of such systems are indeed entangled. What is more important, though, is
the “amount” of entanglement between two spins of the system. This had not been
computed till the advent of quantum information. In order to do this, we first obtain
the reduced density matrix ρi j of the spins i and j . From the expression of |GS〉,
it is clear that ρ12 for example, is a mixed state with a significant proportion (2/3)
of the maximally entangled state |ψ−〉. The entanglement between spins i and j
is computed as the concurrence E from the formula given in Sect. 3.1. However,
it is worth mentioning here that because of certain symmetries of the Heisenberg
model, the concurrence E reduces to a very simple formula and one need not involve
all elements of the reduced density matrix ρi j for the calculation of concurrence.
Note that all the states involved in the expression for |GS〉 have the same number of
zeros. This is a consequence of the commutation of H with

∑
i σ

i
z and holds for all

eigenstates of H, and consequently also for their mixtures such as thermal states. It
is then easy for the reader to verify (I leave it as an exercise here) that the density
matrix ρi j cannot have any off diagonal terms (or coherence) between spaces with
different values of σ i

z + σ
j
z . In the standard basis |00〉, |01〉, |10〉, |11〉, ρi j will thus

be of the form ⎛

⎜⎜⎝

x 0 0 0
0 y1 z 0
0 z∗ y2 0
0 0 0 w

⎞

⎟⎟⎠

For such a simple form of ρi j , the concurrence is given by the simple formula E =
2max{0, |z| − √

xw}.
The concurrence between spins 1 and 2 is found to be 0.866, which is quite

high (the highest possible value, for a maximally entangled state, being 1). These
are nearest neighbors. On the other hand, no entanglement exists between 2 and 3,
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Fig. 3.1 A plot of the entanglement between two spins interacting via exchange in a magnetic
field as quantified by their concurrence. It shows that entanglement ca persist at finite temperatures,
and can even increase due to heating when the system is under an applied magnetic field. This
latter case, while counter-intuitive, can be qualitatively understood as the ordering tendency of an
external magnetic field competing with the fluctuations of the temperature to give rise to a finite
entanglement

though they are nearest neighbors. The entanglement pattern of the chain is dimerized
because of its open ends and there is no entanglement between any of the non-nearest
neighbor spins (such as 1 and 3 or 1 and 4). Interestingly, the entanglement between
two spins as quantified by concurrence can persist even in systems in a thermal
state ρ(T ) = e−H/kT /Z for a system described by a Hamiltonian H at non-zero
temperatures (thermal entanglement) and moreover, given a can also be tuned by
a magnetic field. With respect to the simplest rudimentary case, namely, two spins
coupled by an exchange interaction and placed in an external magnetic field,

H =
N∑

i=1

(Bσ i
z + Jσ i .σ i+1) (3.10)

where σ i = (σ i
x , σ

i
y, σ

i
z ) in which σ i

x/y/z are the Pauli matrices for the i th spin (we
assumecyclic boundary conditions 1 + N = 1),with J > 0 (antiferromagnetic inter-
actions), the entanglement is shown as a function of the magnetic field and temper-
ature in Fig. 3.1 which is taken from [9]. Reference [9], which was the first study of
entanglement between individual spins of a spin chain in its natural (thermal/ground)
state, also described the entanglement between spins of longer spin chains. Subse-
quently, the variation of such entanglement was also studied across quantum phase
transitions [10]—when the ground state of certain quantum many-body systems
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undergo a sudden “qualitative” change due to the variation of a parameter of the
Hamiltonian. Speaking very roughly and qualitatively, the ground state near a quan-
tum phase transition is a highly entangled state because of a competition between
different ordering tendencies of different terms of a Hamiltonian. On either side of
the transition different tendencies win and impose their order, while at the transition
neither can win and only an entangled state can be the lowest energy state. This com-
petition between different ordering tendencies was shown to be captured in terms of
the entanglement between two spins i and j , usually nearest and next nearest neigh-
bors, by a peak of the entanglement near the point of a quantum phase transition
[11, 12].

3.3 Entanglement Negativity in a Many-Body System: Case
Study with the Kondo Model

In the context of spin chains, entanglement negativity was first studied in simulta-
neous papers [13, 14]. For critical ground states which have no built-in scale, it was
found to be scale invariant in the sense that it only depended on the ratio μ = x/L
of the separation x of two noncomplementary blocks of spins in a spin chain, and
the length of the blocks L (length of both the blocks are taken to be equal here). This
is shown in Fig. 3.2. A combination of an exponential and a power-law dependence
of the entanglement in the ratio μ was found numerically in these papers [13], while
subsequently the exponential dependence has also been analytically proved [15].
Entanglement negativity can also be used for quantification of multipartite entangle-
ment in many-body systems which also shows scaling behavior near quantum phase
transition [16]. Here we will next concentrate on how the entanglement negativity
can be used to extract the Kondo cloud in a spin chain emulation of the Kondo model
as discussed in [17].

The simplest Kondo model [18] describes a single impurity spin interacting with
the conduction electrons in a metal; the ground state is a highly nontrivial many
body state in which the impurity spin is screened by conduction electrons in a large
orbital of size ξ , termed as the Kondo cloud. Many physical observables vary on the
characteristic length scale ξ , which is a well defined function of the Kondo coupling
[18]. Determining the spatial extent of the Kondo cloud has been so far a challeng-
ing problem repeatedly addressed by various means [19, 21, 22]. This includes an
investigation which introduces a quantity called “impurity entanglement entropy”
which, however, is not a bonafide measure of entanglement [19, 20]. Kondo systems
are expected to have a more exotic form of entanglement than the widely studied
spin-spin and complementary block entanglements. Indeed, in Kondo systems, the
impurity spin is expected to be mostly entangled with only a specific block of the
whole system. This is, of course, merely an intuition which needs to be quantitatively
verified with a genuine measure of entanglement: this is indeed a task that negativity
can accomplish as we will elucidate in this section following [17].
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Fig. 3.2 The figure shows the dependence of the entanglement between two blocks of spins in a
spin chain as quantified by the entanglement negativity. The entanglement is depicted as a function
of the ratio μ = L/x of each block L and their separation x

It is known [23] that universal low energy long distance physics of this Kondo
model arises also in a spin chain when a magnetic impurity is coupled to the end of
a gapless Heisenberg anti-ferromagnetic J1 − J2 spin 1/2 chain, where J1 (J2) is the
(next) nearest neighbor coupling. This is described by the Hamiltonian

H = J ′(σ1.σ2 + J2σ1.σ3) +
N−1∑

i=2

σi .σi+1 + J2

N−2∑

i=2

σi .σi+2, (3.11)

where the nearest neighbor coupling J1 has been normalized to 1, σi = (σ x
i , σ

y
i , σ z

i )

is a vector of Pauli operators at site i , N is the total length of the chain. The impurity
spin, located at one end of the chain, is accounted for by weaker couplings J ′ to the
rest of the system. When J2 exceeds a critical value, the spin chain enters a gapped
dimerized regime and its relation to the Kondo model breaks down. Namely, for
0 ≤ J2 ≤ J c

2 = 0.2412, the spin system is gapless and it supports a Kondo regime
[19, 20]. For J2 > J c

2 , the system enters the gapped dimer regime, where the ground
state takes a dimerised form (Fig. 3.3).

To study the entanglement of the ground state can be accomplished using DMRG
as described in [17]. We determine the size of the block A when the entanglement
between the impurity and block B is almost zero; by this procedure we measure
an Entanglement Healing Length (EHL) L∗, i.e. the length of the block A which is
maximally entangled with the impurity. We show that, in the gapless Kondo regime,
EHL scales with the strength of the impurity coupling just as the Kondo screening
length, ξ , does. Thus, in the gapless regime of the Kondo spin chain, our approach
yields a method to detect the Kondo screening length [19, 21, 22] based on a true
measure of entanglement. In addition, we find that entanglement in the Kondo regime
is essentially unchanged if one rescales all the length scales with the EHL L∗.
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(a)

(b)

Fig. 3.3 (Color online) aKondo Spin chain with next nearest neighbor Heisenberg interaction with
one impurity at one end. b The chain is divided into three parts, an impurity, a block A and a block
B. Entanglement is computed between the impurity and block B
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Fig. 3.4 (Color online) a L∗ versus 1/
√
J ′ for both Kondo (J2 = 0) and dimer regime

(J2 = 0.42). b Entanglement versus L/N for fixed N/L∗ = 4 when J2 = 0. c Entangle-
ment versus L/N for fixed N/L∗ = 4 at the critical point J2 = J c2 . d Entanglement versus
L/N for fixed N/L∗ = 4 in the dimer regime (J2 = 0.42)
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We find that there is an EHL L∗ so that, for L > L∗, the entanglement between the
impurity and block B is almost zero: L∗ provides us with an estimate of the distance
for which the impurity is mostly entangled with the spins contained in block A. For
large chains (N > 200) in the Kondo regime, one finds that L∗ is almost independent
of N and depends only on J ′. In the Kondo regime, i.e. for J2 < J c

2 , L
∗ depends on J ′

just as the Kondo screening length ξ does [19, 20]; for small J ′, L∗ ∝ eα/
√
J ′
, where

α is a constant. We plot L∗ as a function of 1/
√
J ′ in Fig. 3.4a. In a semilogarithmic

scale, the straight line plot exhibited in the Kondo regime (J2 = 0) shows that L∗
may be regarded as the Kondo screening length. Moreover, the nonlinearity of the
same plot in the dimer regime (J2 = 0.42), especially for small J ′, shows that, here,
no exponential dependence on 1/

√
J ′ holds.

We observe also a remarkable scaling of negativity in the Kondo regime. This
scaling may be regarded as yet another independent evidence of the fact that L∗ is
indeed the Kondo length ξ . In general, the entanglement E between the impurity and
block B is a function of the three independent variables, J ′, L and N which, due to
the one to one correspondence between J ′ and L∗, can be written as E(L∗, L , N ).
We find that, in the Kondo regime, E = E(N/L∗, L/N ). To illustrate this, we fix
the ratio N/L∗ and plot the entanglement in terms of L/N for different values of J ′
(or equivalently L∗) for J2 = 0 (Fig. 3.4b) and for J2 = J c

2 (Fig. 3.4c). The complete
coincidence of the two plots in Figs. 3.4b and c shows that, in the Kondo regime,
the spin chain can be scaled in size without essentially affecting the entanglement as
long as L∗ is also scaled. In the dimer regime the entanglement stays a function of
three independent variables, i.e. E = E(L∗, L , N ), and, as shown in Fig. 3.4d, the
entanglement does not scale with L∗. In our approach, the Entanglement Healing
Length L∗ may be evaluated in both the Kondo and the dimer regime: the scaling
behavior, as well as the dependence of L∗ on J ′, discriminates then between the very
different entanglement properties exhibited by the spin chain Kondo model as J2
crosses J c

2 .
We defined L∗ such that there is no entanglement between the impurity and block

B when block A is made of L∗ spins. Conventional wisdom based on previous
renormalization group analysis suggests that, in both regimes, the impurity and the
block A of length L∗ form a pure entangled state, while block B is also in a pure state.
This is indeed approximately true in the dimer regime (exactly true for J2 = 0.5)
but it turns out to be dramatically different in the Kondo regime. To check this, [17]
also computed the von Neumann entropy of the block B when block A has L∗ spins
and found it to be non zero. Thus, the blocks A and B are necessarily entangled
in the Kondo regime as there is no entanglement between the impurity and B. In
fact, after a distance L∗, the impurity is “screened” i.e, the block B feels as if it is
part of a conventional gapless chain and has a diverging von Neumann entropy. The
Kondo cloud is maximally entangled with the impurity as well as being significantly
entangled with block B. Based on the above, a simple ansatz for the ground state
|GS〉 in the Kondo regime is provided by

|GS〉 =
∑

i

αi
| ↑〉|L↑

i (J
′)〉 − | ↓〉|L↓

i (J
′)〉√

2
⊗ |Ri (J

′)〉, (3.12)
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where αi are constants, {|L↑
i (J

′)〉, |L↓
i (J

′)〉} and {|Ri (J ′)〉} are sets of orthogonal
states on the cloud and the remaining system, respectively. At the fixed point J ′ → 0
all spins except the impurity are included in |L↑

i (J
′)〉 and |L↓

i (J
′)〉. At J ′ → 1, very

few spins are contained in |L↑
i (J

′)〉 and |L↓
i (J

′)〉 while {|Ri (J ′)〉} represents most
of the chain.

The above exercise illustrates the efficacy of Negativity as a mixed state entangle-
ment measure to capture emergent structures in many-body states such as the Kondo
cloud, and use that to infer variational representations of the states.

3.4 Schmidt Gap for Signalling Quantum Criticality: Case
Study with an Impurity Phase Transition

We now move to studying another quantity, the Schmidt gap, as defined in Sect. 3.1,
which, although not a bonafide measure of entanglement, is an indicator of the same.
It is extremely useful as an indicator of quantum phase transitions which do not have
a local order parameter, such as generic impurity quantum phase transitions in which
it is only the entanglement structure of the ground state which is re-arranged as one
crosses the critical point.

As case studywe again turn to aKondomodel, but nowwith two localized spin-1/2
impurities, coupled to the spins of the conduction electrons by an antiferromagnetic
Kondo interaction and to each other via aRuderman–Kittel–Kasuya–Yosida (RKKY)
interaction. This is the two-impurity Kondomodel [25], a theoretical workhorse in the
study of impurity quantum phase transitions.When theKondo interaction dominates,
the electron spins screen the impurity spins (similar to the screening of a single spin-
1/2 impurity in the ordinary Kondo model), while in the opposite limit the two
impurity spins form a local singlet. The crossover between the two regimes sharpens
into a quantum phase transition when each impurity is connected to its own distinct
reservoir of conduction electrons [26]. The resulting “non-Fermi liquid” response
of transport and thermodynamic observables has attracted much attention, with the
first experiment reported in 2015 [27]. The lack of an easily identifiable local order
parameter which exhibits scaling at the phase transition has triggered a search for
alternativemarkers of the transition, the Schmidt gap being one viable candidate [28].

For a numerical computation of the Schmidt gap, using a Density Matrix Renor-
malization Group (DMRG) approach, it is convenient to first map the spin sector
of the two-impurity Kondo model onto a spin chain, similar to what was done in
the previous section for the ordinary Kondo model. One thus obtains a Hamiltonian
H = ∑

m=L ,R Hm + HI , where

Hm = J ′
m

(
J1σ

m
1 ·σm

2 + J2σ
m
1 ·σm

3

) + J1

Nm−1∑

i=2

σm
i ·σm

i+1 + J2

Nm−2∑

i=2

σm
i ·σm

i+2, (3.13)

HI = J1Kσ L
1 ·σ R

1 .
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Fig. 3.5 a Schmidt gap as a function of the RKKY coupling K for different system sizes. b The
derivative of the Schmidt gap with respect to the RKKY coupling K which shows non-analytic
behavior as the system size increases. The figures are taken from [28]

Herem = L , R labels two chains, denoted “left” and “right” respectively,withσm
i the

vector of Pauli matrices at site i in chain m, and with J1 (J2) nearest- (next-nearest-)
neighbor spin-exchange amplitudes. The parameters J ′

L > 0 and J ′
R > 0 play the

role of antiferromagnetic Kondo couplings, with K the RKKY coupling between the
impurity spins σ L

1 and σ R
1 . The total number of sites is thus N = NL + NR . Similar

to the spin chain representation of the ordinary Kondo model, the ratio J2/J1 is fine
tuned to the dimerization point (J2/J1)c = 0.2412 of the spin chain [29], in this way
killing off logarithmic corrections to the numerical finite-size data. In Fig. 3.5a we
plot the Schmidt gap ΔS (cf. Sect. 1) as a function of the RKKY coupling K when
the system is cut across the bond between the two impurities. In other words, we
regard the left (or right) chain as a subsystem of the full composite chain. As seen in
the figure, the order-parameter-like profile of ΔS becomes sharper as the size N of
the chain increases, suggesting that ΔS drops to zero at some critical value, K = Kc

in the thermodynamic limit. The interpretation of Kc as a critical point is evidenced
by the sharp cusp of ∂ΔS/∂K at Kc as seen in Fig. 3.5b, with the cusp serving as a
finite-size precursor of a critical non-analyticity in Δ′

S in the thermodynamic limit.
Moreover, as shown in [28], by monitoring how the cusps move as functions of the
Kondo coupling J ′, one finds, for sufficiently large systems, an almost perfect fit
to the known exponential scaling of the quantum critical point Kc ∼exp(−α/J ′) of
the two-impurity Kondo model (with α a positive constant) [30]. It may be worth
pointing out that cuts taken far away from the impurities yield Schmidt gaps which
depend only weakly on the RKKY coupling, as expected from the local character of
the transition [28]. Such cuts are thus less useful for spotting an impurity quantum
phase transition.

A finite-size scaling analysis, with the Ansatz

ΔS = N−β/ν fΔS (|K − Kc|N 1/ν), (3.14)
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gives further support for using the Schmidt gap ΔS as a stand-in for a conventional
order parameter. Here fΔS is a scaling function, with β and δ the critical exponents
governing the scaling of ΔS and the crossover scale ξ [31] at the critical point:
ΔS ∼ |K − Kc|β and ξ ∼ |K − Kc|−ν respectively. The choice β = 0.2 ± 0.05 and
ν = 2 ± 0.1 yields a near-perfect data collapse when plotting Nβ/νΔS as a function
of |K − Kc|N 1/ν for different N and different impurity couplings J ′ [28]. The value
ν =2 agrees with results from conformal field theory [32].

To summarize, DMRG data on the two-impurity Kondo model strongly suggests
that the Schmidt gap faithfully captures its critical behavior. It is important to note that
while the Schmidt gap is a nonlocal quantity, it can be represented as a superposition
of n-point spin correlation functions, and therefore, in principle, be measured. To
carry this out in an experiment clearly remains a challenge for the future. In the
meantime, it would be interesting to attempt a characterization of impurity quantum
phase transitions for other models using the Schmidt gap.

3.5 Entanglement Negativity as a Measurable Entity

In fact, the measure of negativity that we have used in large part of this article to
quantify the entanglement, is also a measurable entity and one can accomplish it as
long as one has the experimental access to several replicas of a system. In this section
we show how to estimate logarithmic negativity using experimentally measurable
quantities.

Logarithmic Negativity: For a generic mixed state, logarithmic negativity [5–8]
is an entanglement measure. As logarithmic negativity does not rely on usual opti-
mization over Hilbert space, needed in other entanglement measures, is computable
efficiently. For a generic mixed state ρAB which explain the quantum state of two
subsystems A and B the logarithmic negativity is defined as It is defined as:

E = log2

∣∣∣ρTA
AB

∣∣∣ = log2

∣∣∣ρTB
AB

∣∣∣ = log2
∑

k

|λk | (3.15)

with | · | the trace norm, ρTX
AB the partial transpose with respect to subsystem X , and

{λk} the eigenvalues of ρ
TX
AB . Because of the non-trivial dependence of E on ρAB ,

there is no state-independent observable that can measure it—generally demanding
full state tomography. The {λk} are the roots of the characteristic polynomial, P(λ) =
det(λ − ρ

TB
AB) = ∑

n cnλ
n , where each cn is a polynomial function of the partially

transposed moments:
μm = Tr [(ρTB

AB)m] =
∑

k

λm
k . (3.16)

This means that, {μm} contains full information about the spectrum {λk}. Interest-
ingly, even though partially transposed density matrices are generically unphysical,
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Fig. 3.6 Schematics: Example measurement set-up for the moments, μm = Tr [(ρTB
AB)m ], here for

m = 3, from which one can extract the logarithmic negativity E between A and B. The generic
mixedness of ρAB could arise from entanglement with environmentC . Here the subsystems contain
NA, NB and NC particles respectively. The scheme involves three copies of the original system,
and two counter propagating sets of measurements on A and B, ordered by the shown numbers,
with direction depicted by the filled arrows

measurement of theirmoments is possible. In fact, there area fewproposals in the liter-
ature for computing the themomentsμm usingm copies of the system. This includes,
replica techniques [15] proposed for conformal field theory models, exploiting con-
trolled swap operators between the copies [33, 34] and counter propagating swap
measurements [35]. In the following, we provide a brief review of how to measure
the moments based on the scheme of [35].

Measuring the Moments of ρ
TB
AB: Here, we show that any moment can be mea-

sured using only SWAP-operators between the individual constituents of them copies
of the state ρAB , namely ρ⊗m

AB = ⊗m
c=1 ρAc Bc . This general set-up is shown in Fig. 3.6,

where the mixedness of ρAB arises from possible entanglement with a third system
C , such that ρAB = TrC |ΨABC 〉〈ΨABC |with |ΨABC 〉 being a pure tripartite state. The
first step is to write the matrix power as an expectation of a permutation operator on
the partially transposed copies:

μm = Tr [(
m⊗

c=1

ρ
TBc
Ac Bc

)Pm]

= Tr [(
m⊗

c=1

ρAc Bc)(P
m)TB ] , (3.17)

where Pm is any linear combination of cyclic permutation operators of order m and
the second line makes use of the identity Tr(ρTB

ABO) = Tr(ρABOTB ), valid for any
operator O . A schematic of the equality in (3.17) for m = 3 is shown in Fig. 3.6. For
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spin lattices, our choice of Pm to measure the moments μm results to the following
steps in practice:

1. prepare m copies of the state ρAB ;
2. sequentially measure a ‘forward’ sequence of adjacent swaps, Sc,c+1

A between
neighbouring copies of system A from c = 1 to m − 1;

3. sequentially measure a ‘backward’ sequence of adjacent swaps, Sc,c−1
B between

neighbouring copies of system B from c = m to 2;
4. repeat these steps in order to yield an expectation value.

This procedure is also depicted for m = 3 in Fig. 3.6. For each m ≤ 2 we require
O(NA + NB) measurements. This is in stark contrast to tomography, which gener-
ically for qubit systems requires 22(NA+NB ) measurement settings. It is also worth
emphasizing the difference between this procedure and other operational methods
for measuring Renyi entropies [36–38]. First of all, Renyi entropies only quantify
entanglement for pure states, and cannot be used in the more general mixed state
scenario. Secondly, while for entropies the operations are only performed on a single
subsystem, here, one performs both ‘forward’ and ‘backward’ operations on two
subsystems at once, as explained above.

Estimating the logarithmic negativity from the moments of μm: To estimate
the logarithmic negativity, a precise knowledge of all λk is not required. Since − 1

2 ≤
λk ≤ 1 for all k [39] and

∑
k λk = 1, generically, the magnitude of the moments

quickly decreases with m, with the first few carrying the most information. This is
crucial to help computing the logarithmic negativity with measuring only very few
moments. One approach using only the even moments has been proposed in the
quantum field theory literature [15] by exploiting numerical extrapolation. However,
this method neglects the odd moments and generally requires a large number of
moments and thus copies. In [35], it has been shown that the moments required,
{μm : m ≤ M}, to accurately estimate the entanglement can number as fewasM = 3.
This is achieved by avoiding reconstruction of the spectrum or state and instead
employing machine learning to directly map moments to logarithmic negativity.
Note that μ0 is simply the dimension of the systems Hilbert space, while μ1 = 1 in
all cases. Additionally, it can be easily shown that μ2 is equal to the purity of the
state = Tr [ρ2

AB], and as such, M ≥ 3 is needed to extract any information about E .
Therefore, using M = 3 copies is optimal in terms of resources.

Machine Learning Entanglement: Machine learning is as a key tool for mod-
eling an unknown non-linear map between sets of data. In the supervised machine
learning setup, one trains a model with a set of known inputs and their corresponding
outputs. Once trained, the model can then be used to predict the unknown output of
new input data. We follow the machine learning algorithm of the [35] for estimating
the logarithmic negativity from the information contained in the moments, μm . The
moments μm are taken as the input and the logarithmic negativity E as the output for
training a deep neural networks [40, 41]. Training is performed by taking a large set
of states for which μm and E can be computed on a classical computer. This model
can then be used to predict E from a set of experimentally measured moments.
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Training the neural network with random states: From an entanglement per-
spective, relevant states in condensed matter physics can be classified as either area-
law, or volume-law. In the first case, the entanglement of a subsystem A with the
rest is proportional to the number of qubits along their boundary. In the second,
this entanglement is instead proportional to NA, the number of qubits in A. Area-law
states arise as low energy eigenstates of local gapped Hamiltonians, with logarithmic
corrections in critical systems. Volume-law states however, are associated with the
eigenstates found in the mid-spectrum, and as such arise in non-equilibrium dynam-
ics. In order to train a neural network, a set of suitable training states, including both
volume and area law quantum states, are required for which both the moments and
logarithmic negativities are known. To encompass both area- and volume-law states,
we consider two classes of states |ΨABS〉: (i) randomgeneric pure states (R-GPS), e.g.
sampled from theHaarmeasure, which typically have volume-law entanglement [42,
43]; (ii) random matrix product states (R-MPS) with fixed bond dimension, which
satisfy an area-law by construction [44]. In order to generate a training set with a
wide range of entanglement features, subsystem sizes, and mixedness, we perform
the following procedure:

1. For a fixed number of qubits N , take either a R-GPS, or R-MPS with bond
dimension D.

2. Take different tri-partitions such that N = NA + NB + NC , and for each calculate
μm and E for ρAB .

3. Repeat for different random instances, while separately varying N and D.

Fig. 3.7 Machine learning entanglement.Estimated logarithmic negativityEML
M , using amachine

learning versus actual logarithmic negativity E , for the same set of random states described in the
main text. Training and prediction is performed using the moments μm generated from: a M = 3
copies; b M = 10 copies. The respective insets show the distribution of error, EML

M − E . The figure
is taken from the [35]
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To check the performance of the neural network, we take the set of random states
and split it in two, one half for training the neural network model, and the other
as ‘unseen’ test data. In Fig. 3.7a we plot the machine learning model’s predictions,
EML
M , for the test data, using onlyM = 3 copies, in which a high degree of accuracy is

achieved. In the inset of Fig. 3.7a, we plot a histogram of the errors EML
M − E , which

displays a very sharp peak at zero error with standard deviation ∼ 0.09 A further
improvement, particularly in outliers, is achieved by increasing the number of copies
M to 10, see Fig. 3.7b, where the error standard deviation decreases to ∼ 0.07.
Regardless, the machine learning method is already very accurate for extracting
entanglement using only three copies.

3.6 Conclusions

We have reviewed here the study of entanglement in many-body systems from an
angle which is slightly different from the bulk of the literature. Most of the lit-
erature has concentrated on the entanglement between two complementary blocks
in a many-body system or a quantum field theory. On the other hand, if we were
to examine entanglement between two non-complementary parts of a system, this
strategy will not work—in those cases concurrence and, for arbitrary dimensional
systems, negativity, has to be employed. We have exemplified that study with exam-
ples: thermal entanglement and evidencing the Kondo cloud as an “entanglement
cloud” around the impurity spin. We have also presented a strategy of how negativity
can actually be measured in a many-body system using replicas in the laboratory, and
how machine-learning can be used to make this more efficient. On a different vein,
we have also exemplified how the Schmidt gap, which is not an entanglement mea-
sure, but a somewhat broad-brush indicator of entanglement, can be used to identify
impurity quantum phase transitions.
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Chapter 4
Generalized Entanglement Entropy
in New Spin Chains

Fumihiko Sugino and Vladimir Korepin

Abstract Motzkin and Fredkin spin chains are new spin chain models exhibiting
extraordinary amount of entanglement entropy scaling as a square root of the volume
in spite of local interactions. This is a distinguished feature of the models from other
spin chains with entanglement of at most logarithmic scaling. We first compute
generalized entanglement entropy, called as the Rényi entropy, of these models. The
Rényi entropy has further importance, since it can provide the whole spectrum of an
entangled subsystem.We find non-analytic behavior of the Rényi entropy that can be
regarded as a phase transition never seen in any other spin chain investigated so far.
This new phase transition indicates unique and rich structures of the entanglement
spectrum.

4.1 Introduction

Entanglement is one of themost characteristic features of quantummechanics, which
provides correlations to objects unable to be explained in classical mechanics. In case
that a given full system S is divided into two subsystems A and B, the reduced density
matrix of A is defined by tracing out the degrees of freedom of B in the densitymatrix
of the full system ρ:

ρA = Tr Bρ, (4.1)

where Tr B means the trace over the Hilbert space belonging to B. Even if ρ is a
pure state, i.e., can be expressed as the form ρ = |ψ〉 〈ψ | for some state |ψ〉, ρA is
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no longer so in general and takes a form like ρA = c1 |ψ1〉 〈ψ1| + c2 |ψ2〉 〈ψ2| + · · ·
(ci ’s are positive numbers summed to 1) that is called a mixed state. Entanglement
is normally measured by the von Neumann entanglement entropy (EE):

SA = −Tr (ρA ln ρA), (4.2)

which vanishes for the pure states but not for the mixed states. ρA carries information
of interactions between A and B, some ofwhich can be read off through (4.2).We can
say that difference of the behavior of (4.2) reflects difference of dynamical property
of the system.

Rényi entropy [16] is a generalization of the EE and defined by

SA, α = 1

1 − α
ln Tr ρα

A, (4.3)

where α is a positive number not equal to 1. It is easy to see that (4.3) reduces to
(4.2) in the limit α → 1. The Rényi entropy has further importance than the EE,
because the whole spectrum (entanglement spectrum) of ρA or equivalently of the
entanglement Hamiltonian

Hent,A = − ln ρA (4.4)

can be obtained once the Rényi entropy is known as a function of α. In terms of
(4.4), the Rényi entropy takes a form analogous to the “thermal free energy” with
the “temperature” 1/α:

SA, α = 1

1 − α
ln Tr e−αHent, A . (4.5)

In this article, we compute the EE and Rényi entropy for highly entangled spin
chains to be introduced in the next section, and find a new phase transition with
respect to the parameter α. Figure4.1 shows a phase diagram for the EE and Rényi
entropy of the models with respect to α.

4.2 Motzkin and Fredkin Spin Chains

Let us consider ground states of quantummany-body systemswith local interactions,
Normally, their EEs are proportional to the area of the boundaries of A and B, which
is called as an “area law” [9]. In gapped systems, it can be naturally understood from
that the correlation length is finite and relevant interactions to the EE are localized
around the boundaries. There is amathematical proof only for the case of gapped one-
dimensional systems [10]. In gapless systems described by the (1 + 1)-dimensional
conformal field theories (CFTs), we can see violation of the area law [6, 11, 12]:
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0 1/α1

SA, α :

h :

O(lnn)

O(n0) O(
√

n)

O(
√

n)

O(n)

O(n)

Fig. 4.1 Phase diagram for the EE and Rényi entropy of themodels with respect to α. SA, α = O(n)

for 0 < α < 1 (“high temperature”), whereas SA, α = O(ln n) for α > 1 (“low temperature”). At
the transition point α = 1, the EE behaves as O(

√
n). At the bottom, height of paths dominantly

contributing to the EE and Rényi entropy is shown

SA ∼ c + c̄

6
ln L , (4.6)

where c and c̄ are central charges of the holomorphic and anti-holomorphic sec-
tors of the CFT, and L denotes the length scale of the subsystem A. Equation (4.6)
is the asymptotic form for L large. In one spatial dimension the boundary is a
(zero-dimensional) point, which implies that the area law means SA asymptotically
approaching to a finite constant as L grows. In addition, it was pointed out in space-
time physics that black holes have entropy proportional to the area of their horizons
from an analogy to thermodynamics [1, 2]. A possibility has been discussed that the
entropy of black holes can be interpreted as an EE satisfying the area law [3, 7, 19].

In gapless systems in D spatial dimensions, the EE had been believed to violate
the area law as SA = O(LD−1 ln L) over decades. Namely, the violation would be at
most logarithmic. Recent discovery of a highly entangled spin chain by Movassagh
and Shor [14], called as Motzkin spin chain, is striking in this sense. In spite that
the Hamiltonian of the model consists of local (nearest neighbor) interactions, the
EE exhibits the square-root violation of the area law: SA = O(

√
L), which is much

larger than logarithmic. A different spin chain whose EE behaves similarly, called
as the Fredkin spin chain, has been constructed by Salberger and one of the authors
(V.K.) [17] (see also [8]). In the remaining of this section, we introduce these two
spin chains.

4.2.1 Fredkin Spin Chain

The Fredkin spin chain [17] of length 2n has up and down quantum spin degrees of
freedomwith multiplicity (called as color) s at each of the lattice sites {1, 2, . . . , 2n}.
We express the up- (down-)spin state with color k at the site i as

∣
∣uki

〉

(
∣
∣dk

i

〉

) with
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k = 1, . . . , s. The Hamiltonian is defined as the sum of projection operators and has
local interactions ranging up to next-to-nearest neighbors:

HF,s =
2n−2
∑

j=1

s
∑

k1,k2,k3=1

{∣
∣
∣U

k1,k2,k3
j, j+1, j+2

〉 〈

U
k1,k2,k3
j, j+1, j+2

∣
∣
∣ +

∣
∣
∣D

k1,k2,k3
j, j+1, j+2

〉 〈

D
k1,k2,k3
j, j+1, j+2

∣
∣
∣

}

+
2n−1
∑

j=1

∑

k �=�

{∣
∣
∣ukj , d

�
j+1

〉 〈

ukj , d
�
j+1

∣
∣
∣ + 1

2

(∣
∣
∣ukj , d

k
j+1

〉

−
∣
∣
∣u�

j , d
�
j+1

〉) (〈

ukj , d
k
j+1

∣
∣
∣ −

〈

u�
j , d

�
j+1

∣
∣
∣

)}

+
s
∑

k=1

{∣
∣
∣dk1

〉 〈

dk1

∣
∣
∣ +

∣
∣
∣uk2n

〉 〈

uk2n

∣
∣
∣

}

, (4.7)

where

∣
∣
∣Uk1,k2,k3

j, j+1, j+2

〉

= 1√
2

(∣
∣
∣uk1j , uk2j+1, d

k3
j+2

〉

−
∣
∣
∣uk1j , dk2

j+1, u
k3
j+2

〉)

, (4.8)

∣
∣
∣Dk1,k2,k3

j, j+1, j+2

〉

= 1√
2

(∣
∣
∣uk1j , dk2

j+1, d
k3
j+2

〉

−
∣
∣
∣dk1

j , uk2j+1, d
k3
j+2

〉)

. (4.9)

4.2.1.1 Ground State and Dyck Walks

For colorless case (s = 1), the up- and down-spin states can be represented as arrows
in the (x, y)-plane pointing to (1, 1) (up-step) and (1,−1) (down-step), respectively.
Each spin configuration of the chain corresponds to a length-2n walk consisting of
the up- and down-steps. The Hamiltonian has a unique ground state of zero energy,
which is superposition of states with equal weight. Each of the states is identified
with each path of length-2n Dyck walks that is random walks starting at the origin,
ending at (2n, 0), and not allowing paths to enter y < 0 region.

For s-color (s > 1) case, the above identification goes on with additional color
degrees of freedom. Namely, each spin configuration of the chain corresponds to a
length-2n walk consisting of the up- and down-steps with color. The ground state
is unique, and corresponds to length-2n colored Dyck walks in which the color of
each up-step should be matched with that of the subsequent down-step at the same
height. The other is the same as the colorless case.

The ground state is given by

∣
∣PF, 2n, s

〉 = 1
√

NF, 2n, s

∑

w∈PF, 2n, s

|w〉 , (4.10)

where PF, 2n, s denotes the formal sum of length-2n colored Dyck walks, w runs over
monomials appearing in PF, 2n, s , and NF, 2n, s stands for the number of the length-2n
colored Dyck walks:

NF, 2n, s = sn NF, 2n = sn

n + 1

(

2n
n

)

. (4.11)
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Fig. 4.2 Colored Dyck
walks corresponding to the
two states of the summand in
(4.12). Colors k and � are
represented by red and blue

+

Fig. 4.3 A path in case of
2n = 8, r = 0 and h = 2.
Colors of violet and orange
are matched in A itself and B
itself, respectively. On the
other hand, colors of blue
(κ1) and green (κ2) are
unmatched in A or B alone
and matched across the
boundary of A and B

A B

1

2

2

3

3

40 1 5 6 7 8 x

y

κ1κ1

κ2κ2

NF, 2n denotes the number of colorless Dyck walks of length 2n, which is equal to
the n-th Catalan number Cn . Note that NF, 2n, s can be obtained by setting all the uk

and dk to 1 in PF, 2n, s . For example, 2n = 4 case reads

∣
∣PF, 4, s

〉 = 1√
2s2

s
∑

k,�=1

{∣
∣uk1, d

k
2 , u

�
3, d

�
4

〉 + ∣
∣uk1, u

�
2, d

�
3 , d

k
4

〉}

. (4.12)

The two states of the summand are drawn as colored Dyck walks in Fig. 4.2.
We take the first (n + r) sites as the subsystem A (and the remaining (n − r)

sites as B), and compute the EE and Rényi entropy in case of n ± r = O(n) (r takes
(positive or negative) integers). This gives a generalization of our previous paper
of the half-chain (r = 0) case [20]. Let P (0→h)

F, n+r, s be a part of colored Dyck paths
belonging to A that is from the origin to (n + r, h) in the (x, y)-plane. The height h
takes non-negative integers. Similarly, the remaining part belonging to B is denoted
by P (h→0)

F, n−r, s . Each path in P (0→h)
F, n+r, s has h unmatched up-steps that are supposed to be

matched across the boundary with h unmatched down-steps in P (h→0)
F, n−r, s . We write

as P̃ (0→h)
F, n+r, s({κm}) (P̃ (h→0)

F, n−r, s({κm})) the paths with the color degrees of freedom of
the unmatched up- (down-) steps fixed to κ1, . . . , κh , where κm denotes the color of
unmatched up- or down step connecting the heights m − 1 and m. An example of a
path in case of 2n = 8, r = 0 and h = 2 is depicted in Fig. 4.3.

The numbers of the paths are given by

N (0→h)
F, n+r, s = P(0→h)

F, n+r, s

∣
∣
∣
uk=dk=1

= s
n+r+h

2 N (h)
F, n, Ñ (0→h)

F, n+r, s = s−h N (0→h)
F, n+r, s = s

n+r−h
2 N (h)

F, n+r

(4.13)
with
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N (h)
F, n+r = 1 + (−1)n+r+h

2

h + 1
n+r+h

2 + 1

(

n + r
n+r+h

2

)

. (4.14)

By considering the reverse of paths, it is easy to see N (h→0)
F, n−r, s = N (0→h)

F, n−r, s and

Ñ (h→0)
F, n−r, s = Ñ (0→h)

F, n−r, s . The ground state is decomposed as a linear combination of
tensor products of two states belonging to A and B (Schmidt decomposition):

∣
∣PF, 2n, s

〉 =
n−|r |
∑

h=0

s
∑

κ1=1

· · ·
s

∑

κh=1

√

p(h)
F, n+r,n−r, s

∣
∣
∣P̃ (0→h)

F, n+r, s({κm})
〉

⊗
∣
∣
∣P̃ (h→0)

F, n−r, s({κm})
〉

.

(4.15)
Here,

∣
∣
∣P̃ (0→h)

F, n+r, s({κm})
〉

= 1
√

Ñ (0→h)
F, n+r, s

∑

w∈P̃ (0→h)
F, n+r, s ({κm })

|w〉 , (4.16)

∣
∣
∣P̃ (h→0)

F, n−r, s({κm})
〉

= 1
√

Ñ (0→h)
F, n−r, s

∑

w∈P̃ (h→0)
F, n−r, s ({κm })

|w〉 , (4.17)

and

p(h)
F, n+r,n−r, s = Ñ (0→h)

F, n+r, s Ñ
(0→h)
F, n−r, s

NF, 2n, s
= s−h N

(h)
F, n+r N

(h)
F, n−r

NF, 2n
. (4.18)

From the density matrix of the ground state ρ = ∣
∣PF, 2n, s

〉 〈

PF, 2n, s

∣
∣ with (4.15),

the reduced density matrix is obtained as

ρA = Tr B ρ =
n−|r |
∑

h=0

s
∑

κ1=1

· · ·
s

∑

κh=1

p(h)
F, n+r,n−r, s

∣
∣
∣P̃ (0→h)

F, n+r, s({κm})
〉 〈

P̃ (0→h)
F, n+r, s({κm})

∣
∣
∣ ,

(4.19)
where we used the orthonormal property:

〈

P̃ (h→0)
F, n−r, s({κm})

∣
∣
∣P̃ (h′→0)

F, n−r, s({κ ′
m})

〉

= δh,h′δκ1,κ
′
1
· · · δκh ,κ

′
h
. (4.20)

Since ρA is a diagonal form, the EE (4.2) and the Rényi entropy (4.3) are recast as

SF, A = −
n−|r |
∑

h=0

sh p(h)
F, n+r,n−r, s ln p(h)

F, n+r,n−r, s, (4.21)

SF, A,α = 1

1 − α
ln

n−|r |
∑

h=0

sh
(

p(h)
F, n+r,n−r, s

)α

. (4.22)
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Note p(h)
F, n+r,n−r, s does not depend on κ1, . . . , κh and the sums

∑s
κ1=1 · · ·∑s

κh=1 yield
the factor sh .

4.2.1.2 Asymptotic Form of p(h)
F, n+r,n−r, s

We plug (4.11) and (4.14)–(4.18) and evaluate its asymptotic behavior. For n, n ±
h � 1, use of Stirling’s formula x ! ∼ √

2π xx+ 1
2 e−x

[

1 + O(x−1)
]

(x → ∞) leads
to

p(h)
F, n+r,n−r, s ∼ 1 + (−1)n+r+h

2

8√
π

s−h
(

n

(n + r)(n − r)

)3/2

(h + 1)2

× exp

[

−n + r + h + 3

2
ln

n + r + h

n + r
− n + r − h + 1

2
ln

n + r − h

n + r

−n − r + h + 3

2
ln

n − r + h

n − r
− n − r − h + 1

2
ln

n − r − h

n − r

]

×
[

1 + O(n−1)
]

. (4.23)

In case of h ≤ O(n1/2), we can further expand the logarithms in the exponential in
(4.23) to find

p(h)
F, n+r,n−r, s ∼ s−h 1 + (−1)n+r+h

2

8√
π

(
n

(n + r)(n − r)

)3/2

(h + 1)2 e− n (h+1)2

(n+r)(n−r)

× [

1 + O(n−1)
]

(4.24)

4.2.2 Motzkin Spin Chain

The Motzkin spin chain [14] has additional spin degrees of freedom (we call zero-
spin) at each site compared with the Fredkin spin chain. We express the up- and
down-spin states with color k = 1, . . . , s and the zero-spin at the site i as

∣
∣uki

〉

,
∣
∣dk

i

〉

and |0i 〉, respectively. The Hamiltonian of the Motzkin spin chain of length 2n is
also defined by the sum of projection operators:

HM,s =
2n−1
∑

j=1

s
∑

k=1

{∣
∣Uk

j, j+1

〉 〈

Uk
j, j+1

∣
∣ + ∣

∣Dk
j, j+1

〉 〈

Dk
j, j+1

∣
∣ + ∣

∣Fk
j, j+1

〉 〈

Fk
j, j+1

∣
∣
}

+
2n−1
∑

j=1

∑

k �=�

∣
∣ukj , d

�
j+1

〉 〈

ukj , d
�
j+1

∣
∣ +

s
∑

k=1

{∣
∣dk

1

〉 〈

dk
1

∣
∣ + ∣

∣uk2n
〉 〈

uk2n
∣
∣
}

, (4.25)

where
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∣
∣Uk

j, j+1

〉 = 1√
2

(∣
∣0 j , u

k
j+1

〉 − ∣
∣ukj , 0 j+1

〉)

, (4.26)

∣
∣Dk

j, j+1

〉 = 1√
2

(∣
∣0 j , d

k
j+1

〉 − ∣
∣dk

j , 0 j+1
〉)

, (4.27)

∣
∣Fk

j, j+1

〉 = 1√
2

(∣
∣0 j , 0 j+1

〉 − ∣
∣ukj , d

k
j+1

〉)

, (4.28)

and the interactions are among nearest neighbors.

4.2.2.1 Ground State and Motzkin Walks

The Hamiltonian has the unique ground state at zero-energy. By the same identifica-
tion of the spins and 2D steps as beforewith the additional zero-spin corresponding to
the arrow (1, 0) (flat-step), for colorless case (s = 1) the ground state is expressed by
the equal-weight superposition of length-2nMotzkin walks, which are randomwalks
consisting of up-, down- and flat-steps, starting at the origin, ending at (2n, 0) and
forbidding paths to enter y < 0 region. For s-color case (s > 1), the color assigned
to each up-step should be matched with that of the subsequent down-step at the same
height, which is the same as in the Fredkin spin chain.

The ground state is expressed as

∣
∣PM, 2n, s

〉 = 1
√

NM, 2n, s

∑

w∈PM, 2n, s

|w〉 , (4.29)

where NM, 2n, s in the normalization factor is the number of the length-2n colored
Motzkin walks given by

NM, 2n, s =
n
∑

ρ=0

(

2n
2ρ

)

sn−ρ NF, 2n−2ρ, (4.30)

where 2ρ stands for the number of the flat-steps. For example,

∣
∣PM, 4, s

〉 = 1√
1 + 6s + 2s2

[

|01, 02, 03, 04〉

+
s

∑

k=1

{∣
∣uk1, d

k
2 , 03, 04

〉 + ∣
∣01, u

k
2, d

k
3 , 04

〉 + ∣
∣01, 02, u

k
3, d

k
4

〉

+ ∣
∣uk1, 02, d

k
3 , 04

〉 + ∣
∣01, u

k
2, 03, d

k
4

〉 + ∣
∣uk1, 02, 03, d

k
4

〉}

+
s

∑

k,�=1

{∣
∣uk1, d

k
2 , u

�
3, d

�
4

〉 + ∣
∣uk1, u

�
2, d

�
3 , d

k
4

〉}
]

. (4.31)
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We repeat similar computational steps to what was done in the Fredkin case, and
obtain

SM, A = −
n−|r |
∑

h=0

sh p(h)
M, n+r,n−r, s ln p(h)

M, n+r,n−r, s, (4.32)

SM, A,α = 1

1 − α
ln

n−|r |
∑

h=0

sh
(

p(h)
M, n,n, s

)α

(4.33)

with

p(h)
M, n+r,n−r, s = s−h N (0→h)

M, n+r, s N
(0→h)
M, n−r, s

NM, 2n, s
, (4.34)

N (0→h)
M, n±r, s =

n±r−h
∑

ρ=0

(

n ± r
ρ

)

N (h)
F, n±r−ρ s

n±r−ρ+h
2 . (4.35)

4.2.2.2 Asymptotic Form of p(h)
M, n+r,n−r, s

We rewrite (4.35) as

N (0→h)
M,m, s = sh(h + 1)

m−h
∑

ρ=0

1 + (−1)m−ρ+h

2
Cm,h,ρ, (4.36)

where

Cm,h,ρ ≡ m! s m−ρ−h
2

ρ!
(
m−ρ−h

2

)

!
(
m−ρ+h

2 + 1
)

!
, (4.37)

andm takes n + r or n − r . Use of Stirling’s formula form, m − ρ ± h � 1 yields

Cm,h,ρ ∼ 2m−ρ+1

π

mm+ 1
2 s

m−ρ−h
2

ρρ+ 1
2 (m − ρ)m−ρ+2

× exp

[

−m − ρ − h + 1

2
ln

m − ρ − h

m − ρ
− m − ρ + h + 3

2
ln

m − ρ + h

m − ρ

]

×
[

1 + O(m−1)
]

. (4.38)

We evaluate the sum of ρ in (4.36) by the saddle point method. The saddle point
equation

Cm,h,ρ = Cm,h,ρ+2, (4.39)
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reads
(4s − 1)ξ 2 + 2ξ + η2 − 1 = 0 + O(m−1) (4.40)

with ξ = ρ/m and η = h/m, which is solved by

ρ = ρ0 + O(m0), ρ0 ≡ m

4s − 1

[

−1 +
√

4s − (4s − 1)
h2

m2

]

. (4.41)

After expanding (4.38) around the saddle point as ρ = ρ0 + x (x � m), we have

Cm,h,ρ ∼ s−h/2

2πs

mm+ 1
2

ρ
m+ 5

2
0

(
m − ρ0 − h

m − ρ0 + h

) h+1
2

× exp

[

−
{

1

8sρ2
0

√

4sm2 − (4s − 1)h2 + O(m−2)

}

x2
]

× exp

[
1

4sρ2
0

(2m − 2(m + 1)ρ0 − h) x + O
(

x3/m2, x4/m3, . . .
)
]

.

(4.42)

The sum in (4.36) can be carried out by converting it to an integral as

m−h
∑

ρ=0

1 + (−1)m−ρ+h

2
(· · · ) → 1

2

∫ ∞

−∞
dx(· · · ), (4.43)

where we perform Gaussian integrations after expanding the exponential in the
last line of (4.42). As a result, contribution from the last line amounts to a factor
[

1 + O(m−1)
]

. We finally find

N (0→h)
M,m, s ∼ sh/2

√
2πs

mm+ 1
2

ρ
m+ 3

2
0

h + 1
[

4sm2 − (4s − 1)h2
]1/4

(
m − ρ0 − h

m − ρ0 + h

) h+1
2

× [

1 + O(m−1)
]

. (4.44)

NM, 2n, s is obtained by setting m = 2n and h = 0 in (4.44), and then p(h)
M, n+r,n−r, s

through the relation (4.34). When h is at most O(n1/2), the expression simplifies to

p(h)
M, n+r,n−r, s ∼ s−h

√

2

πσ 3

(
n

(n + r)(n − r)

)3/2

(h + 1)2 e− 1
2σ

n (h+1)2

(n+r)(n−r)

× [

1 + O(n−1)
]

(4.45)

with σ ≡
√
s

2
√
s+1

.
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4.3 Rényi Entropy of Colorless Fredkin Spin Chain

First, let us compute asymptotic behavior of the Rényi entropy (4.22) as n → ∞
for colorless case (s = 1). In the sum

∑n
h=0

(

p(h)
F, n+r,n−r, s=1

)α

with (4.23), there is a

saddle point h∗ = O(
√
n) . which justifies use of (4.24).

After converting the sum to an integral:

n−|r |
∑

h=0

1 + (−1)n+r+h

2
(· · · ) → 1

2

√
n
∫ ∞

0
dx (· · · ) (4.46)

with x = h√
n
, we obtain

n
∑

h=0

(

p(h)
F, n+r,n−r, s=1

)α ∼
(

8√
π(1 − r2)3/2

)α 1

2
n

1−α
2

×
(
∫ ∞

0
dx x2α e

− α

1−u2
x2 −

∫ n−1/2

0
dx x2α e

− α

1−u2
x2
)

, (4.47)

where we set u ≡ r/n. The first integral in the parenthesis is elementary and the
second one is evaluated as O(n−α− 1

2 ). The result becomes

SF, A, α = 1

2
ln

(n + r)(n − r)

n
+ 1

1 − α
lnΓ

(

α + 1

2

)

− 1

2(1 − α)

{

(1 + 2α) ln α + α ln
π

64
+ ln 16

}

+(terms vanishing as n → ∞). (4.48)

This grows logarithmically as n → ∞, and the α → 1 limit gives the EE:

SF, A = 1

2
ln

(n + r)(n − r)

n
+ 1

2
ln

π

4
+ γ − 1

2
+ (terms vanishing as n → ∞)

(4.49)
with γ being the Euler constant. This is consistent with the result obtained in [17].

4.4 Rényi Entropy of Colorless Motzkin Spin Chain

After similar calculation to the previous case, the result reads
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SM, A,α = 1

2
ln

(n + r)(n − r)

n
+ 1

1 − α
lnΓ

(

α + 1

2

)

− 1

2(1 − α)

{

(1 + 2α) ln α + α ln
π

24
+ ln 6

}

+(terms vanishing as n → ∞). (4.50)

Again, this grows logarithmically as n → ∞, and reproduces the EE obtained in [4,
13] in the α → 1 limit:

SM, A = 1

2
ln

(n + r)(n − r)

n
+ 1

2
ln

2π

3
+ γ − 1

2
+ (terms vanishing as n → ∞).

(4.51)

4.5 Rényi Entropy of s-Color Fredkin Spin Chain

Wecompute asymptotic behavior of theRényi entropy (4.22) for colored case (s > 1).
The expression (4.23) leads to

∑

h≥0

sh
(

p(h)
F, n+r,n−r, s

)α

�
(

8√
π

)α ( n

(n + r)(n − r)

) 3
2 α

eα(n+r+2) ln(n+r)+α(n−r+2) ln(n−r)

×
∑

h≥0

1 + (−1)n+r+h

2
e fF(h) × [

1 + O(n−1)
]

(4.52)

with

fF(h) ≡ (1 − α)(ln s) h

−α

2
(n + r + h + 3) ln(n + r + h) − α

2
(n + r − h + 1) ln(n + r − h)

−α

2
(n − r + h + 3) ln(n − r + h) − α

2
(n − r − h + 1) ln(n − r − h)

+2α ln(h + 1). (4.53)

We discuss two cases 0 < α < 1 and α > 1 separately.
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4.5.1 0 < α < 1 Case

We evaluate the sum in (4.52) in the saddle point method for large n. The saddle
point equation fF(h) = fF(h + 2) reads

2
1 − α

α
ln s = ln

(n + h)2 − r2

(n − h)2 − r2
+ O(n−1), (4.54)

and its solution is

h∗ = nξ∗ + O(n0), ξ∗ ≡ coth θ −
√

1

sinh2 θ
+ u2 (4.55)

with

θ = 1 − α

α
ln s, u ≡ r

n
. (4.56)

In (4.55) we chose the “−” branch, because the “+” branch leads to h∗ larger than
n for u = 0 that is unphysical. Notice that the value of h∗ is O(n), and use of (4.23)
instead of (4.24) is consistent. We obtain

f ′′
F (h∗) = −α

n

sinh2 θ

ξ∗

√

1

sinh2 θ
+ u2 × [

1 + O(n−1)
]

, (4.57)

fF(h∗) = −(1 − α) ln s − α(n + 2) ln

(

n2
2ξ∗

sinh θ

)

−α

2
nu ln

ξ∗
√

1
sinh2 θ

+ u2 + u(1 + u)

ξ∗
√

1
sinh2 θ

+ u2 − u(1 − u)
+ O(n−1), (4.58)

and evaluate the sum as an integral around the saddle point:

n−|r |
∑

h=0

1 + (−1)n+r+h

2
(h + 1)2α e fF(h)

= (h∗ + 1)2αe fF(h∗) 1

2

∫ ∞

−∞
dx e

1
2 f ′′

F (h∗)x2 × [

1 + O(n−1)
]

= h2α∗ e fF(h∗) 1

2

√

2π

− f ′′
F (h∗)

× [

1 + O(n−1)
]

. (4.59)

Combining (4.52) and (4.59), we end up with
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SA, α = 1

1 − α
ln
∑

h≥0

sh
(

p(h)
F,n+r,n−r, s

)α

= n
α

1 − α

{

ln

[

(1 + u)1+u(1 − u)1−u sinh θ

2ξ∗

]

−u

2
ln

ξ∗
√

1
sinh2 θ

+ u2 + u(1 + u)

ξ∗
√

1
sinh2 θ

+ u2 − u(1 − u)

⎫

⎬

⎭

+ 1 + α

2(1 − α)
ln
(

n(1 − u2)
) − ln s + 1

2
ln π + α

1 − α
ln
(

2 sinh2 θ
)

+ 1

2(1 − α)
ln

ξ∗
2α(1 − u2)

− 1

1 − α
ln

[

sinh θ

(
1

sinh2 θ
+ u2

)1/4
]

+O(n−1). (4.60)

The Rényi entropy grows linearly as the volume in large n. Note that we cannot take
α → 1 or s → 1 limit in (4.60). In the limit, θ becomes vanish and ξ∗ also goes
to zero, which makes invalid the computation so far for h∗ = O(n). Namely, the
n → ∞ limit does not commute with α → 1 or s → 1 limit.

For r = 0 (u = 0) case in which the subsystems A and B are the same length n,
(4.60) reduces to

SA, α = n
2α

1 − α
ln cosh

θ

2
+ 1 + α

2(1 − α)
ln n

− ln s + 1

2
ln

π

4
− 1

2(1 − α)
ln α − 1

1 − α
ln cosh

θ

2

+ 2α

1 − α
ln sinh θ + O(n−1), (4.61)

which coincides with the result in [20].

4.5.2 α > 1 Case

In this case, the summand of
∑

h≥0 s
h
(

p(h)
F,n+r,n−r, s

)α

contains a factor s−(α−1)h

which damps exponentially as h grows. Since there is no other factor compensating
this damping, we can say that h � 1

(α−1) ln s = O(n0) is relevant to the sum. Hence,
use of (4.24) leads to

n−|r |
∑

h=0

sh
(

p(h)
F, n+r,n−r, s

)α ∼
(

8√
π

)α ( n

β

)− 3
2 α

sα−1
∑

h≥1

1 − (−1)n+r+h

2
s−(α−1)hh2α

× [

1 + O(n−1)
]

, (4.62)
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where

β ≡ 1

1 − u2
, u ≡ r

n
, (4.63)

and the factor e− αβ

n (h+1)2 was further simplified as 1 + O(n−1). The sum cannot be
converted to an integral, but should be treated as it is. By introducing the Lerch
transcendent

Φ(z, s, a) =
∞
∑

k=0

zk

(k + a)s
, (4.64)

the final result is expressed as follows:

SF, A, α = 3α

2(α − 1)
ln

(n + r)(n − r)

n
+ α

2(α − 1)
ln

π

322

− 1

α − 1
lnΦ

(

s−2(α−1),−2α,
1

2

)

+ O(n−1) (4.65)

for n + r even, and

SF, A, α = 3α

2(α − 1)
ln

(n + r)(n − r)

n
− ln s + α

2(α − 1)
ln

π

322

− 1

α − 1
lnΦ

(

s−2(α−1),−2α, 0
) + O(n−1) (4.66)

for n + r odd. Both of the expressions have the common logarithmic term of the
volume, whereas the difference appears in O(n0) terms. At r = 0, these results
reduce to what is obtained in [20]. Again we cannot take α → 1 or s → 1 limit
in (4.65) or (4.66), because the damping by s−(α−1)h ceases in the limit and the
computation will become invalid.

Qualitatively, the Lerch transdents in (4.65) and (4.66) behave as

Φ

(

s−2(α−1),−2α,
1

2

)

∼ sα−1Γ (2α + 1, (α − 1) ln s)

(2(α − 1) ln s)2α+1
, (4.67)

Φ
(

s−2(α−1),−2α, 0
) ∼ Γ (2α + 1)

(2(α − 1) ln s)2α+1
, (4.68)

where Γ (z, x) is the incomplete Gamma function:

Γ (z, x) ≡
∫ ∞

x
dt t z−1e−t . (4.69)
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4.5.3 EE of s-Color Fredkin Spin Chain

In the expression of the EE (4.21) with (4.23) or (4.24), the first factor sh in the
summand cancels with s−h in p(h)

F, n+r,n−r, s , and the summand does not contain expo-
nentially growing factor with h. Then, the saddle point of h in (4.21) is O(

√
n), which

justifies the use of (4.24). By converting the sum to an integral with h = √
n x , we

have

SF, A = − 4√
π (1 − u2)3/2

∫ ∞

n−1/2
dx x2e−βx2 ln

[

s1−
√
n x 8n−1/2

√
π (1 − u2)3/2

x2e−βx2
]

× [

1 + O(n−1)
]

(4.70)

with (4.63). We divide the integral
∫ ∞
n−1/2 to

∫ ∞
0 − ∫ n−1/2

0 , where the second integral
is evaluated as O

(
ln n
n3/2

)

and negligible. After computing the first integral, we obtain

SF, A = (2 ln s)

√

(n + r)(n − r)

πn
+ 1

2
ln

(n + r)(n − r)

n
+ 1

2
ln

π

4
+ γ − 1

2
− ln s

+(terms vanishing as n → ∞). (4.71)

This is consistent with the result in [17], and coincides with the computation in [20]
at r = 0.

4.5.4 Phase Transition

The Rényi entropy SF, A, α shows different asymptotic behavior for 0 < α < 1 and
α > 1. It grows linearly with the volume for the former case, whereas logarithmically
for the latter. From the point of view of (4.5), the result can be interpreted as a phase
transition occurring at α = 1.

As we saw in the computation, Dyck walks with large height h = O(n) dom-
inantly contribute to the SF, A, α in “high temperature” region 0 < α < 1, which
leads to the volume law behavior. On the other hand, Dyck walks with low height
h = O(n0) dominate in “low temperature” α > 1, which does not give qualitative
change to the behavior of the colorless case. The transition point itself forms a phase,
where the EE behaves as a square root of the volume. Main contribution to (4.71)
comes from h = O(

√
n). These are summarized in Fig. 4.1.
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4.6 Rényi Entropy of s-Color Motzkin Spin Chain

In this section, we compute large-n behavior of the Rényi entropy of s-colorMotzkin
spin chain (s > 1). Plugging (4.34) and (4.44) to (4.33), the sum we should evaluate
becomes

n−|r |
∑

h=0

sh
(

p(h)
M, n+r,n−r, s

)α ∼
(

1√
π s1/4

)α
(2n)

3
2 α (n + r)(n+r+ 1

2 )α (n − r)(n−r+ 1
2 )α

(

2
√
s + 1

)(2n+ 3
2 )α

×
n−|r |
∑

h=0

e fM(h) × [

1 + O(n−1)
]

, (4.72)

where

fM(h) ≡ (1 − α)(ln s)h − α

(

n + r + 3

2

)

ln ρ0+ − α

(

n − r + 3

2

)

ln ρ0−

+α
h + 1

2
{ln(n + r − ρ0+ − h) + ln(n − r − ρ0− − h)

− ln(n + r − ρ0+ + h) − ln(n − r − ρ0− + h)}
−α

4
ln
[

4s(n + r)2 − (4s − 1)h2
] − α

4
ln
[

4s(n − r)2 − (4s − 1)h2
]

+2α ln(h + 1). (4.73)

ρ0± is given by ρ0 in (4.41) with m replaced by n ± r . We discuss the two cases of
0 < α < 1 and α > 1 separately.

4.6.1 0 < α < 1 Case

We try to evaluate (4.72) by the saddle point method. Noting the relation

h2 = (n ± r − ρ0±)2 − 4sρ2
0±, (4.74)

the saddle point equation reads

1 +
√

1 − 4sρ2
0+

(n+r−ρ0+)2

1 −
√

1 − 4sρ2
0+

(n+r−ρ0+)2

1 +
√

1 − 4sρ2
0−

(n−r−ρ0−)2

1 −
√

1 − 4sρ2
0−

(n−r−ρ0−)2

= s2
1−α
α + O(n−1). (4.75)
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It seems however technically difficult to solve (4.75) analytically. Let us consider
the case r = 0, in which the subsystems A and B have the same length n. Then,1

ρ0± reduces to ρ0, and (4.75) becomes

1 +
√

1 − 4sρ2
0

(n−ρ0)2

1 −
√

1 − 4sρ2
0

(n−ρ0)2

= s
1−α
α + O(n−1). (4.76)

This is solved by

h∗ = n
s

1
2α − s1−

1
2α

s
1
2α + s1−

1
2α + 1

+ O(n0), (4.77)

ρ0|h=h∗ = n

s
1
2α + s1−

1
2α + 1

+ O(n0), (4.78)

which give

f ′′
M(h∗) = −2α

n

(

s
1
2α + s1−

1
2α + 1

)2

s
1
2α + s1−

1
2α + 4s

× [

1 + O(n−1)
]

, (4.79)

fM(h∗) = −(2n + 2)α ln n + (2n + 3)α ln
(

s
1
2α + s1−

1
2α + 1

)

− (1 − α) ln s

−α

2
ln

⎡

⎢
⎣1 + 4

(

2s
1
2α + 1

) (

2s1−
1
2α + 1

)

(

s
1−α
2α − s− 1−α

2α

)2

⎤

⎥
⎦ + O(n−1). (4.80)

Evaluating the sum for r = 0, we end up with

SM, A, α = 1

1 − α
ln

n
∑

h=0

sh
(

p(h)
M,n,n, s

)α

= n
2α

1 − α
ln
[

σ
(

s
1−α
2α + s− 1−α

2α + s−1/2
)]

+ 1 + α

2(1 − α)
ln n

+1

2
ln π − 1

1 − α
ln
(

s
√

α
) + 1

2(1 − α)
ln
(

s
1
2α + s1−

1
2α + 4s

)

+ 3α

2(1 − α)
ln(2σ)

+3α − 1

1 − α
ln
(

s
1
2α + s1−

1
2α + 1

)

− α

2(1 − α)
ln

⎡

⎢
⎣1 + 4

(

2s
1
2α + 1

) (

2s1− 1
2α + 1

)

(

s
1−α
2α − s− 1−α

2α

)2

⎤

⎥
⎦

+(terms vanishing as n → ∞) (4.81)

1Although the analysis for the case r = 0 is already given in [20], we briefly present the derivation
to make this article self-contained as much as possible.
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with σ =
√
s

2
√
s+1

. The Rényi entropy has asymptotic behavior proportional to the
volume as we saw in the s-color Fredkin case (4.60). The coefficient of ln n term
coincides with that in (4.61), which implies to show some universal property.

4.6.2 α > 1 Case

As in the Fredkin case, due to the exponential damping factor s−(α−1)h in the sum
∑n

h=0 s
h
(

p(h)
M, n+r,n−r, s

)α

,we can regard h as a quantity atmostO(n0),which justifies

the use of (4.45).
With the notations (4.63) and (4.64), the sum is recast as

n−|r |
∑

h=0

sh
(

p(h)
M,n+r,n−r, s

)α �
(

4√
π

)α ( n

β

)− 3
2 α

s−1+α Φ
(

s−(α−1),−2α, 0
)

× [

1 + O(n−1)
]

. (4.82)

We thus find

SM, A, α = 3α

2(α − 1)
ln

(

2σ
(n + r)(n − r)

n

)

− ln s + α

2(α − 1)
ln

π

16

− 1

α − 1
lnΦ

(

s−(α−1),−2α, 0
) + O(n−1), (4.83)

which reduces to the result in [20] at r = 0. Qualitative behavior of Φ
(

s−(α−1),

−2α, 0) is evaluated as

Φ
(

s−(α−1),−2α, 0
) ∼ Γ (2α + 1)

((α − 1) ln s)2α+1 . (4.84)

4.6.3 EE of s-Color Motzkin Spin Chain

After similar computation to the s-color Fredkin case, we have

SM, A = (2 ln s)

√

2σ

π

(n + r)(n − r)

n
+ 1

2
ln

(n + r)(n − r)

n
+ 1

2
ln(2πσ) + γ − 1

2
− ln s

+(terms vanishing as n → ∞). (4.85)

Again this reduces to the result of the half-chain case [20] at r = 0. As mentioned
there, in the computation we should not approximate h + 1 to h in (4.45) to obtain
the O(n0) term correctly.
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4.6.4 Phase Transition

Similar to the s-color Fredkin case, theRényi entropy SM, A, α has different asymptotic
behavior for 0 < α < 1 andα > 1– linear of the volumeand logarithmof the volume.
Motzkin walks with large height h = O(n) dominantly contribute to the SM, A, α in
“high temperature” region 0 < α < 1, leading to the volume law behavior, whereas
Motzkin walks with low height h = O(n0) dominate in “low temperature” α > 1,
qualitatively same as the colorless case. The transition point itself consists of a phase,
where the EE behaves as a square root of the volume. Main contribution to (4.85)
comes from height h = O(

√
n). Figure4.1 give a summary of the result.

4.7 Discussion

Wehave analytically computed theEEand theRényi entropyof twoblocks of unequal
length (n + r and n − r ) in highly entangled Motzkin and Fredkin spin chains. In
case of 0 < α < 1 in the colored Motzkin spin chain, we presented the result of half
chains (r = 0) due to technical difficulty.

For colored cases, we found non-analyticity in the expression of the Rényi entropy
at α = 1, which is a totally new phase transition never seen before in any spin chain.
We investigated for two blocks of unequal length but both of n + r and n − r being
O(n). It is interesting to extend our analysis to the case of two blocks of different
orders of size and to see to what extent the phase transition persists. Finally, it will
be intriguing to perform similar computation to cousins of the models [5, 15, 18,
21–23].
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Chapter 5
Topological Kondo Effect

Francesco Buccheri and Reinhold Egger

Abstract We review recent theoretical progress in the understanding of the topo-
logical Kondo effect in Coulomb-blockaded Majorana devices and generalizations
thereof. The central ingredient in Majorana devices is the so-called Majorana box
which encodes a spin-1/2 degree of freedom in the Majorana subspace that can
be addressed by electron cotunneling processes. In particular, after explaining the
basic physics of the topological Kondo effect in a Majorana box connected to a set
of normal-conducting leads, we discuss the Josephson current-phase relation in a
superconducting multi-terminal setup where the central junction is again formed by
a Majorana box but the leads are phase-biased superconductors. For large Kondo
temperature, one finds that the competition between two-channel Kondo physics and
the gap opening in the leads results in a 6π periodicity of the current-phase relation.
This periodicity is due to the fractionalized charge excitations characterizing the
non-Fermi liquid two-channel Kondo fixed point. We also explore generalizations
of this Majorana-based topological Kondo setup to platforms hosting parafermionic
excitations.

5.1 Introduction

An important aim of contemporary condensed matter physics is to understand the
physics of devices containing Majorana bound states (MBSs) [1–4], or even more
exotic setups hosting parafermionic zero modes (i.e., fractionalizedMajorana states)
[5, 6]. Besides the inherent fundamental interest in such systems, a set of local-
ized zero modes can encode quantum states featuring non-Abelian braiding statis-
tics. Such states may be useful for topologically protected quantum information
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processing applications [5, 7]. While experimental signatures of MBSs have already
been reported in a variety of experimental platforms [8–24], condensed-matter real-
izations of parafermions (PFs) are still in their infancy; for recent progress towards
possible PF implementations, see [25, 26]. The physics expected to be seen in PF
devices has been addressed by a large number of theoretical works [6, 27–43]. Theo-
retical PF constructions often rely on competing gap-inducing mechanisms acting on
the edge states of topologically ordered 2D phases, e.g., bilayer fractional quantum
Hall (FQH) systems [36], proximitized fractional topological insulators [27], and
proximitized FQH systems with filling factor ν = 2/3 [33] or ν = 1/(2k + 1) (with
integer k) [27, 29]. Eventually this may allow one to realize Fibonacci anyons which
are capable of topologically protected universal quantum computation [33, 40].

For a Coulomb-blockaded superconducting island containing more than two
MBSs (the so-called Majorana box [44]), an effective impurity spin operator is
encoded by pairs of spatially separated MBSs. When normal leads are coupled
to the MBSs, this spin is screened through cotunneling processes, culminating in
the topological Kondo effect (TKE). The theory of the TKE has been laid out in a
series of recent articles [45–67]. It exhibits local quantum criticality associated with
a non-Fermi liquid fixed point. This physics should be experimentally observable at
temperatures T below the Kondo temperature TK , see below for a definition. Unlike
conventional overscreened multi-channel Kondo systems [68–71], the TKE is intrin-
sically stable against anisotropies.Majorana devices could thus realizemulti-channel
Kondo effects without delicate fine tuning of parameters.

Theoretical [72–74] and experimental [15] work has pointed out the important
role ofCoulombcharging effects in afloatingmesoscopic topological superconductor
(TS), i.e., in a Majorana box. Since charge degrees of freedom are gapped out and, in
addition, several quasiparticle poisoning channels are blocked [75, 76] by a large box
charging energy EC , theMajorana subsector of theHilbert space tends to be stabilized
by charging effects.Moreover, charging effects suppress sequential tunneling in favor
of long-ranged cotunneling events. The latter effectively connect different leads—
coupled to the Majorana box through tunnel contacts—in a phase-coherent fashion.
For that reason, Majorana boxes are also discussed as promising ingredients for
topologically protected quantum information processing applications [44, 76–79].

Consider now a Majorana box operated under Coulomb valley conditions, where
we assume that M ≥ 3 normal-conducting (and due to the MBS spin polarization
also effectively spinless [1]) leads are individually tunnel-coupled to different MBSs
on the box. In that case, theMajorana subsector of theHilbert spacewill be equivalent
to an effective quantum impurity spin with orthogonal SO(M) symmetry [45]. (The
orthogonal symmetry, as opposed to the conventional unitary one, can be traced back
to the reality condition γ = γ † imposed onMajorana fermion operators [50].) For the
minimal case M = 3, this impurity spin corresponds to a standard spin-1/2 operator,
where different spin components are nonlocally represented by distinct Majorana
bilinears on the box, see below. The lead space also has an SO(M) symmetry, and
therefore cotunneling processes effectively implement an exchange coupling of the
lead spin density at the central junction (the box). Through this exchange coupling,
the effective impurity spin undergoes screening which in the end drives the sys-
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tem to a robust non-Fermi liquid fixed point [45]. This fixed point is similar to the
overscreened multi-channel Kondo fixed point [68].

One can even include Coulomb interactions in the leads within this scenario.
Taking M ≥ 3 spinless Luttinger liquid leads with interaction parameter g, where
g = 1 for the noninteracting case and g < 1 for repulsive interactions [68, 80], the
linear TKE conductance between leads j and k has the form [47, 50]

GTKE
jk = 2ge2

h

[
1 − (T/TK )2ΔM−2 + · · · ]

(
1

M
− δ jk

)
, (5.1)

where the scaling dimension ΔM = 2g(M − 1)/M refers to the leading irrelevant
operator at the strong-coupling fixed point. Equation (5.1) holds for ΔM > 1 and in
the asymptotic low-temperature regime T � TK . The non-Fermi-liquid nature of the
TKE fixed point is visible in the power-law T dependence with rational (non-integer)
exponent. Moreover, it is worth stressing that the conductance tensor becomes com-
pletely isotropic, regardless of possible anisotropies in the bare tunnel couplings.
By observing the conductances in (5.1), experiments could detect strong evidence
for nonlocality due to MBSs. Let us give an example: For g = 1 and M = 3, the
T = 0 conductance between leads 1 and 2 has the (large) value GTKE

12 = 2e2/3h.
After decoupling lead 3 by a suitable gate voltage change, the TKE is destroyed and
only an exponentially small conductanceG12 due to residual cotunneling is expected
[74]. This offers a very distinct and hard-to-fake Majorana signature since the MBS
coupled to lead 3 is located far away from theMBSs coupled to leads 1 and 2. Recent
works have studied various other aspects and variations of the above setup, including
systems of coupled Majorana boxes [67].

In this article, after reviewing the basic TKE physics, we discuss two recent
generalizations of the above setup. The first generalization concerns the Josephson
effect for a Majorana box connected to superconducting instead of normal leads, as
we schematically illustrate in Fig. 5.1. Most theoretical works for Majorana systems
contacted by superconducting electrodes have addressed caseswithout TKE [82–86].
Below we summarize the results of [62] for the superconducting version of the TKE,
where a nontrivial competition between superconductivity and TKE arises because
no lead states below the superconducting gap Δ are available for screening the box
spin. The corresponding single-channel spin-1/2 Kondo variant is of Fermi-liquid
type and can be realized for two superconducting leads connected to an Anderson
impurity (spinful quantum dot) [87]. The latter case has been studied in great detail
over the past decades, both theoretically [88–96] and experimentally [97–102]. It
is known that a local quantum phase transition for Δ/TK � 1 separates the so-
called 0-phase (realized at smallΔ/TK ) from the so-called π -phase (at largeΔ/TK ).
Remarkably, almost the entire crossover in the free energy of the Josephson junction
was found to be described by universal scaling functions of Δ/TK . In the deep
0-phase, the Kondo resonance persists and yields the current-phase relation of a
fully transparent superconducting junction [96], while in the π -phase the Kondo
effect is almost completely quenched and one finds a negative supercurrent.
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Fig. 5.1 TKE setup for the case of M = 3 superconducting leads. As concrete platform, one may
imagine two long parallel InAs or InSb nanowires with superconducting shells. These proximitized
nanowires define 1D TS segments (green) hosting MBSs at their ends (filled red circles, shown
only on the Majorana box). The Majorana box has Majorana operators γ j , where the two central
TS segments are connected through a floating conventional s-wave superconductor (blue island).
The box has a large charging energy EC . Short non-proximitized wire sections (yellow) serve as
gate-tunable tunnel contacts. Superconducting leads are realized by contacting the outer nanowire
sectionswith large conventional superconducting electrodes (blue). Using the shown loop geometry,
onemay study the supercurrents I j as function of the superconducting phases (ϕ1, ϕ2, ϕ3) bymeans
of tuning the magnetic fluxes Φ1,2, cf. [81]

For the Majorana device in Fig. 5.1, [62] has shown that an even richer interplay
between superconductivity and (now multi-channel) Kondo screening physics takes
place. The TKE symmetry group is however changed by even a tiny gap Δ due to
the proliferation of crossed Andreev reflection processes. For Δ � TK and M = 3
attached leads, an exact strong-coupling calculation along the lines of [103–105]
predicts that two-channel Kondo physics is responsible for a 6π periodicity of the
Josephson effect, with a critical current of order Ic ≈ eΔ2/�TK . This periodicity
directly implies charge fractionalization in units of e∗ = 2e/3 for the elementary
transfer processes across the junction. One thus has to wind the phase by 6π in order
to transfer a Cooper pair. On the other hand, forΔ � TK , one obtains the 4π -periodic
current-phase relation of a parity-conserving topological Josephson junction [1–3]. In
view of the rapid experimental progress on MBSs in semiconductor-superconductor
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devices, these predictions could be put to experimental tests, e.g., using techniques
used for observing the 4π Josephson effect [106].

As second generalization of the Majorana-based TKE scenario, we here describe
what happens for fractional MBSs, i.e., parafermions (PF). References [42, 43]
have introduced a PF box device generalizing the Majorana box to a setup with
parafermionic zeromodes. This PF box can in principle be realized by using opposite-
spin FQH edge states proximitized by alternating SC and FM domains, closely fol-
lowing the proposals in [27, 29] but taking into account the charging energy EC of
the box; recent experiments reported progress along these lines [25, 26]. The PF
model then replaces the normal-conducting (Luttinger liquid) leads behind (5.1) by
chiral FQH edge states, which are described by chiral Luttinger liquid theory and
host fractional quasiparticles [68, 80, 107, 108]. Importantly, such edge states are
experimentally under control for more than two decades [109–114]. In order to see
whether PFs will also establish a–possibly modified–Kondo effect, we study whether
the TKE conductance tensor in (5.1) will be modified in the PF scenario. In fact, as
discussed below, [43] argues that such a PF generalization does not yield a Kondo
Hamiltonian which is invariant under the action of a continuous group. For M = 3
edges, the quantum impurity spin defined on the PFbox transforms in a representation
of the SU(n) group, where n = 2/ν for filling factor ν = 1/(2k + 1). Remarkably,
the effective low-energy Hamiltonian does, however, not have this symmetry. Tech-
nically, the reason behind this fact is that one cannot perform rotations in lead space
because each FQH lead necessitates different Klein factors. Nevertheless, for M ≥ 3
chiral edges attached to the PF box, one finds a non-trivial strong-coupling regime
where the conductance tensor exhibits an almost identical behavior as in (5.1). The
PF generalization therefore constitutes a newmulti-terminal quantum junction setups
for Luttinger liquids that is distinct from all previously studied cases [115–127], even
though transport exhibits qualitative similarities to the TKE [46, 47, 50] and to the
junctions considered in [125, 127]. Although both the physical realizations and the
transport characteristics differ, all three problems share key features. In particular,
the system is driven to a strong coupling regime, where at the fixed point incoming
currents are universally distributed between all outgoing channels, without producing
any shot noise.

The remainder of this article is structured as follows. In Sect. 5.2, we provide a
basic introduction to the standard TKE with normal-conducting leads. In Sect. 5.3,
we then discuss the case of superconducting leads where the TKE competes with
the gap opening in the leads [62]. In Sect. 5.4, a PF generalization of the TKE setup
is discussed [43]. Finally, in Sect. 5.5, we offer some conclusions. We often put
� = e = kB = 1, and sometimes also set the Fermi velocity vF = 1.

5.2 TKE Basics

We now turn to a theoretical description of the setup in Fig. 5.1. For convenience,
we directly allow for a superconducting gap in the leads, even though the results
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considered in this section are for Δ = 0. The M leads attached to the Majorana
box are described as semi-infinite TS wires. The effectively spinless low-energy
Hamiltonian for the leads is given by [1]

Hleads =
M∑

j=1

∫ ∞

0
dx Ψ

†
j (x)

[−i∂xσz + Δ j e
−iϕ jσzσy

]
Ψ j (x), (5.2)

whereΔ j is the absolute value and ϕ j the phase of the respective proximity gap, Pauli
matrices σx,y,z and unity σ0 act in Nambu space, and the spinors Ψ j = (ψ j,R, ψ

†
j,L)

T

are written in terms of right/left-moving fermion operators with boundary condition
ψ j,R(0) = ψ j,L(0). We shall only discuss results for identical gaps,Δ j = Δ, but see
[62]. Notably, we do not assume conventional s-wave superconductors as leads since
different pairing symmetries for the box and the leads would imply a supercurrent
blockade [82], where only above-gap quasiparticle Josephson transport is possible
[83–86]. Fortunately, leads with effective p-wave pairing symmetry may be imple-
mented in a natural way, see Fig. 5.1. For Δ = 0, we will then arrive at the canonical
TKE model first studied by Béri and Cooper in 2012 [45].

At the position of the contact to the box, which is taken at x = 0 for each lead,
the respective boundary fermion ψ j is then coupled by a tunnel amplitude t j to
the Majorana operator γ j = γ

†
j on the box, with anticommutator {γ j , γk} = δ jk . We

assume that only energy scales well below the proximity gap Δbox on the box are
probed, where Δbox and Δ (for simplicity, we take Δ < Δbox) are formally indepen-
dent parameters. Above-gap quasiparticles on the box are neglected throughout. For
large charging energy EC , charge quantization implies a parity constraint for the box
MBSs and tends to suppress certain quasiparticle poisoning events. At the same time,
the ground state of the isolated box is degenerate for all M > 2, where the Majorana
bilinears iγ jγk represent the box quantum impurity spin [45, 51]. The projection to
the Hilbert space sector with quantized box charge yields [45]

HEC =
M∑

j 	=k

λ jkψ
†
j (0)ψk(0)γkγ j , (5.3)

where the dimensionless exchange couplings λ jk = 2t j t∗k /EC describe elastic cotun-
neling between leads j ↔ k.

For the case of interest in this section, Δ = 0, [45–47] have demonstrated that
Hleads + HEC gives a TKE of SO2(M) symmetry. The Kondo temperature is given
by

TK = ECe
−π/[2(M−2)λ̄], λ̄ = 1

M(M − 1)

∑

j 	=k

λ jk, (5.4)

where the group relation SO2(3) ∼ SU4(2) implies a four-channel Kondo effect for
M = 3 [103]. The low-energy regime of this problem can be studied in an essentially
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exact manner by bosonization, exploiting the Klein-Majorana fusion trick [46, 47].
One then arrives, e.g., at the TKE conductance tensor in (5.1).

Before turning to generalizations of this basic TKE scenario, we briefly discuss
how one may realize this model for the simplest nontrivial case M = 3, cf. Fig. 5.1.
The floating box is defined by connecting two parallel TS wires by an s-wave super-
conductor. Nanowires can be fabricated with an epitaxial superconducting shell,
where a magnetic field simultaneously drives both wires into the TS phase [1]. We
assume that the TS sections on the box are so long that overlap between different
Majorana states is negligible. Non-proximitized wire parts yield gate-tunable tun-
nel barriers, and leads are defined by the outer TS wires in Fig. 5.1. Using available
Majoranawires [15], it appears possible to realize theKondo regime [45, 50, 51, 64].

5.3 Superconducting Leads: The Josephson Current-Phase
Relation

We now consider the case Δ 	= 0 in (5.2), i.e., superconducting electrodes. Here the
competition between Kondo physics and superconductivity is controlled by the ratio
Δ/TK . We note in passing that for ϕ j = 0, the above model describes junctions of
off-critical anisotropic spin chains [48, 49, 60, 61]. In a loop geometrywithmagnetic
fluxes [81], one can change the phase differences between TS leads and measure the
current-phase relation.

In our effective field-theoretical description, the free energy F of the system is
written in terms of functional integral over the Grassmann-Nambu spinor fields (see
(5.2)) and the localized Majorana fields described above. Specifically, the partition
function reads

Z = e−βF =
∫

D(Ψ j , γ j )e
−S . (5.5)

The action S = Sleads + Sbox + SEC consists of three terms, describing the dynamics
of the leads, of the Majorana box and the cotunneling of fermions through the box.
The box action is

Sbox = 1

2

∫
dτ

∑

j

γ j∂τ γ j (5.6)

and the interaction of the leads in the box is written from (5.3) as SEC = ∫
dτHEC(τ ).

It is convenient to integrate out all fermion modes in the leads away from the
boundary at x = 0, in order to write Sleads in terms of a single boundary fermionic
degrees of freedom Ψ j = Ψ j (τ ) for each chain. It reads

Sleads = −1

2

∫ β

0
dτdτ ′ ∑

j

Ψ̄ j (τ )G−1
j (τ − τ ′)Ψ j (τ

′). (5.7)
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at inverse temperature β. The Fourier transform of the boundary Green’s function
G j (τ ) is then [85]

G j (ω) = −i sgn(ω)

√

1 + Δ2
j

ω2
σ0 + Δ j e−iϕ jσz

iω
σx . (5.8)

The supercurrent I j exiting lead j and entering the box is computed from the phase
derivative of the free energy in (5.5), I j = (2e/�)∂ϕ j F . The current conservation at
the junction is encoded in the sum rule

∑

j

I j = 0 . (5.9)

A simple and instructive limit is the so-called atomic limit, defined by Δ � TK .
In other words, it is the limit in which pairing correlations are dominant with respect
to the Kondo physics. The gap is so wide, that there are no low-energy quasiparticles
in the low-temperature dynamics. Also in the leads, therefore, the only degrees of
freedom are effectively the Majorana modes localized on the boundary of the TS. In
this limit, (5.8) takes the simple form

G j (ω) � Δ j

iω
(σ0 + σx ) (5.10)

in which we have chosen, without loss of generality, a gauge which removes the
phases ϕ j from the bulk order parameter. The price to pay, of course, is to have
complex tunneling amplitudes. From (5.10), one can see that the effective action can
be written in terms of the single boundary Majorana combination

η j = ψ j + ψ
†
j√

2Δ j
(5.11)

as

Sleads � 1

2

∑

j

∫
dτ η j∂τη j . (5.12)

The effective low-energy Hamiltonian can be written from (5.3) in the form

Heff = 1

2

∑

j 	=k

√
Δ jΔkλ jke

i(ϕ j−ϕk )/2η jηkγkγ j . (5.13)

All mutually commuting products 2iη jγ j = σ j = ±1 are conserved. In fact, the set
{σ j } determines a fermion parity sector for all tunnel contacts. Setting all Δ j = Δ,
we arrive at the 4π -periodic supercurrents



5 Topological Kondo Effect 139

Fig. 5.2 TKE with
superconducting leads:
multiple tunneling through
the island generates crossed
Andreev reflection
processes, see main text.
Only the two participating
MBSs are shown

I j = eΔ

�

∑

k 	= j

λ jkσ jσk sin

(
ϕ j − ϕk

2

)
, (5.14)

We note that (5.14) also describes topological Josephson junctions with featureless
tunnel contacts [1], which can be traced back to the fact that the Kondo effect is
suppressed in the atomic limit because low-energy quasiparticles in the leads, which
are necessary to screen the box spin, are not available below the gap.

5.3.1 Renormalization Group (RG) Analysis

We now study the running of the coupling constants λ jk , using perturbation theory
up to second order. First of all, we notice that, even when absent at zeroth order,
crossed Andreev reflection will be generated at this order. This correspond to the
simultaneous cotunnelling of two fermions from two different leads, creating an
additional Cooper pair on the third lead as visualized in Fig. 5.2. The conjugated
process, i.e., the splitting of a Cooper pair, with the subsequent tunneling of two
electrons to different leads, is also generated. Together, these are modeled by the
additional term

HCAR =
∑

j<k

κ jkψ
†
j (0)ψ

†
k (0)γkγ j + h.c. (5.15)

This implies that we have to take into account also the running of the crossed
Andreev reflection amplitudes κ jk = κk j . These are generally complex-valued, since
the order parameters of the three leads have different phases. We remark that Δ

is also a running parameter in our RG scheme and that it is possible to define the
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dimensionless parameter δ(�) = e�Δ/D, with the bandwidth D � min(EC ,Δbox)

acting as a natural UV cutoff. The flow has a natural endpoint as soon as δ(�) � 1.
It is always possible to choose a gauge in which the phase dependence appears

in HEC + HCAR only. Considering the case in which all the superconducting gap
parameters are equal, i.e., Δ j = Δ for all j , we obtain the RG equations

dλ jk

d�
= 2

π

M∑

m 	=( j,k)

[√
1 + δ2

(
λ jmλmk + κ jmκ∗

mk
) + δ

(
λ jmκ∗

mk + κ jmλmk
)]

, (5.16)

dκ jk

d�
= 2

π

M∑

m 	=( j,k)

[
δ
(
λ jmλ∗

mk + κ jmκmk
) +

√
1 + δ2

(
λ jmκmk + κ jmλ∗

mk
)]

,

with j 	= k.
The phases of the coupling constants will also flow under renormalization. First,

let us consider the phase-unbiased situation, in which all ϕ j = 0. The RG equa-
tions (5.16) can be solved analytically by defining the real symmetric matrices
Λ

(±)
jk = λ jk ± κ jk . The flow Eq. (5.16) are now decoupled as

dΛ(±)
jk

d�
= 2

π
(
√
1 + δ2 ± δ)

M∑

m 	=( j,k)

Λ
(±)
jm Λ

(±)
mk , (5.17)

which are equivalent to those for the TKE, apart from the presence of the gap param-
eter δ. Analogously to [45–47, 50], even if the initial conditions for Λ

(±)
jk are chosen

to be anisotropic with respect to the pair of indices j, k, the matrices scale towards
a unique value Λ

(±)
jk (�) → Λ±(�)[1 − δ jk]. Rephrasing, anisotropies are irrelevant

perturbations.
The flow can be solved for any initial value, but the solution has a simple form

for isotropic initial conditions, Λ±(0) = λ̄. The coupling λ̄ can then be taken as the
average defined in (5.4). From (5.17), one has

Λ±(�) = λ(�) ± κ(�) = λ̄

1 − 2(M−2)λ̄
π

F±(�)
, (5.18)

in which the functions

F±(�) =
⎡

⎣
√
1 + δ2 + ln

√√
1 + δ2 − 1√
1 + δ2 + 1

± δ

⎤

⎦

δ(�)

δ(0)

. (5.19)

appear. We observe that both Λ± grow for small values of the flow parameter �, but
the fate of the couplings will depend on the bare value of Δ as well. For Δ � TK ,
with TK in (5.4), the dimensionless parameter δ reaches the value of unity before
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Λ± can catch up. In this regime, the topological Kondo effect is suppressed by the
strong electron-electron pairing and one can effectively consider the leads to be in
the atomic limit.

In the opposite regime Δ � TK , the situation Λ+ � Λ− is quickly reached and
the coupling Λ+ shows a divergence, while Λ− remains bounded. The energy scale
where Λ+(�) enters the strong-coupling regime can be estimated from (5.18) as

T+ ≈ TK + Δ
(
1 − e− π

2(M−2)λ̄

)
. (5.20)

We see from the above equation that a small pairing interaction increases the Kondo
temperature. In this regime, the difference between the λ and the κ couplings is much
smaller than their sum. For an arbitrarily small pairing Δ, finite CAR couplings κ

are generated and they flow to strong coupling together with the λ. One can then
tentatively write a strong coupling Hamiltonian in which the two sets of variables
are equal and verify that the localized Majorana modes only couple to half of the
channels in the wires, which corresponds to a SO1(M)Kondo fixed point. Therefore,
any finiteΔ destabilizes the SO2(M)Kondo fixed point and induces a flow to a stable
fixed point with symmetry group SO1(M). For M = 3, this has been shown in [60],
where the relation SO1(3) ∼ SU2(2) implies a two-channel (instead of the Δ = 0
four-channel [45, 103]) Kondo fixed point.

We now study the effect of having different phases ϕ j 	= 0 of the superconduct-
ing order parameter in the different leads. The RG flow thus only depends on the
gauge-invariant phase differences ϕ j − ϕk . In order to retain simplicity, we discuss
the limit Δ � TK for M = 3 leads. The RG equations (5.16) acquire a phase depen-
dence, which can then be studied numerically. The flow of the absolute value is
not altered by the phase bias, but, as the strong-coupling regime is approached,
λ jk(�) → λ(�)ei(ϕ j−ϕk )/2 and κ jk(�) → κ(�)eiθ jk , having isolated the phase depen-
dence. The phases of the CAR parameter are θ jk = (ϕ j + ϕk)/2 − ϕ0, where the
symmetry under exchange of the legs and gauge invariance determine the value of
the center-of-mass phase ϕ0 = (ϕ1 + ϕ2 + ϕ3)/3 at the stable strong-coupling fixed
point.

5.3.2 Physics at Low Temperatures: The Topological Kondo
Effect

Having established which couplings are expected to dominate the low-temperature
physics, we focus here on M = 3 andΔ � TK . In analogy to [105], we will consider
perturbations around the two-channel Kondo fixed point [52, 104] and argue that they
do not destabilize this fixed point.

The Hamiltonian equation (5.7) can be written in terms of a single chiral fermion
via the “unfolding” transformation
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Φ j (x > 0) = ψ j,R(x) , Φ j (x < 0) = ψ j,L(−x). (5.21)

The real and imaginary part of the fermion field define twoMajorana fieldsΦ j (x) =
[η j (x) + iξ j (x)]/

√
2 for j = 1, 2, 3. Using these definitions, out of the boundary

degrees of freedom, we can define the spin-1/2 operators

S = − i

2
γ × γ , Sη = − i

2
η(0) × η(0) , Sξ = − i

2
ξ(0) × ξ(0) (5.22)

wherewehaveused thevector notationγ = (γ1, γ2, γ3)
T , aswell asη = (η1, η2, η3)

T

and ξ = (ξ1, ξ2, ξ3)
T . The operators in (5.22) satisfy the Pauli algebra.

We argued that, once the RG flow reaches the strong-coupling regime, we have
Λ+ � Λ−. Using (5.18) this implies that λ ≈ κ for every pair of legs. Having also
determined the phases of the renormalized couplings, we find it convenient to use the
gauge transformation ψ j,R/L(x) → ei(ϕ j−ϕ0)/2ψ j,R/L(x), which removes the phase
factors from HEC + HCAR. Substituting into the interaction Hamiltonian and making
use of the definitions in (5.22), one has the residual interaction which perturbs the
Kondo fixed point in the form

HEC + HCAR = Λ+S · Sη + Λ−S · Sξ , (5.23)

inwhichwehave considered again the limitΔ � Λ±.We recognize here a competing
Kondo interaction proportional to Λ−. Whenever Δ ∼ Λ− ≈ 0, we have a single
spin-spin interaction between the island and half of the fermionic degrees of freedom
of the wire, which describes precisely the two-channel Kondo problem.

Analogously to the the description of [105], one can study the low-temperature
physics. In particular, the strong coupling fixed point is characterized by a change
in the boundary condition for the Majorana field η, which obeys twisted boundary
conditions, obtained by the substitution

η(x) → sgn(x)η(x) . (5.24)

Conversely, the other component of the complex bulk fermions still obeys ξ(x) =
ξ(−x). In terms of the original fermions, these boundary conditions correspond to
perfect Andreev reflection at the boundary, ψ j,R(0) = −ψ

†
j,L(0).

The Kondo screening of the impurity effective spin can be modeled via the
replacement S → i

√
TKγ0η(0), as in [105]. Here, the Majorana operator γ0 =

iξ1(0)ξ2(0)ξ3(0) switches between the states of the two-dimensional low-energy
manifold in which the imaginary part of boundary fermions on the legs are con-
strained. Its time-ordered (T ) correlation functions are 〈T γ0(τ )γ0(0)〉 = 1

2 sgn(τ ).
The leading irrelevant operator around the Kondo fixed point, describing the com-
petition of the kinetic term of the lead Hamiltonian against the tunneling, can then
be written as

HLIO = 2πT−1/2
K γ0η1(0)η2(0)η3(0) (5.25)
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and has scaling dimension d = 3/2. The coupling of the island to the real part of the
boundary fermions on the leads, proportional to Λ− in (5.23), is also an irrelevant
operator with dimension d = 3/2.

We now discuss the bulk pairing ∝ Δ in the leads and compute the Josephson
current. We will find a fractional dependence on the relative superconducting phases,
which is detectable by probing the system with a finite frequency electric field, as in
[106].

In order to achieve our goal, the boundary Green’s functions of the field com-
binations [ψ j,R(0) − ψ

†
j,L(0)]/

√
2 at the strong coupling fixed point are needed.

Given that “half” of the boundary spin is producing the screening on the Majorana
island, the strong-coupling theory consists of decoupled leads where the η Majo-
rana fermions obey twisted boundary conditions. Following [85], one obtains the
Majorana correlation functions at the boundary (x = 0+) in the form

〈T η j (τ )ξk(0)〉 = −iδ jkΔ cos(ϕ j − ϕ0) f (τ ), (5.26)

〈T η j (τ )ηk(0)〉 = 〈T ξ j (τ )ξk(0)〉 = −δ jk∂τ f (τ ),

where the function

f (τ ) =
∫

dω

2π

1 − e−√
ω2+Δ2/TK

√
ω2 + Δ2

cos(ωτ) (5.27)

has been employed. The Josephson current can now be computed from the relation

2e

�

∂

∂ϕα

lim
T→0

F(T ) (5.28)

in which the free energy F(T ) is evaluated to second order in perturbation theory as

F (2) = −1

2

∫
dτ 〈T H ′(τ )H ′(0)〉 . (5.29)

Using (5.26) and Wick’s theorem, one arrives at the Josephson current

I j (ϕ1, ϕ2, ϕ3) = I0
3

3∑

k 	= j

[
3 sin ϕ j,k + sin

ϕ j,p + ϕk,p

3
− sin

ϕk, j + ϕp, j

3

]
, (5.30)

where p 	= j, k. This is a function of phase differences ϕa,b = ϕa − ϕb only. The
critical current Ic, is set by

I0 = ζ
eΔ2

�TK
, ζ = Λ2− f 3(0)

3
. (5.31)
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In the non-topological version of the Kondo effect, a perturbative calculation of
the critical current in the pairing parameter has been presented in [88]. We remark,
in comparison, the additional suppression factor Δ/TK � 1 due to the residual
unscreened spin encoded by γ0. Current conservation (5.9) is satisfied, which can be
checked by inspection.

Noticeably, the phase dependence of the current (5.30) has a 6π -periodic compo-
nent, alongside a 2π -periodic component, in sharp contrast with (5.14), obtained in
the atomic limit. In general, the 6π periodicity coexists with 2π and 4π effects. Given
that the particle number and the phase of the superconducting order parameter are
conjugated variables, one can argue that the elementary charge degrees of freedom,
in proximity of the strong coupling fixed point, carry fractional charge e∗ = 2e/3.
Note that, for any finite Δ, the low-temperature fixed point is a two-channel instead
of a four-channel Kondo problem, hence this value of e∗ differs from the one for
normal leads probed by shot noise [50, 64].

5.4 Parafermionic Version

We now turn our attention to a parafermionic generalization of the TKE. The first
ingredient is naturally a set of localized parafermionic modes, which constitutes a PF
box. Subsequently, we need to engineer external leads which can probe the fractional
quasiparticles and couple them to the localized modes.

5.4.1 The Hamiltonian

Two FQH puddles are created with opposite spin orientation. We assume that only
one massless mode is running along the edge and, in particular, we consider the
series ν = 1/(2k + 1). These effectively one-dimensional modes are described by
the Hamiltonian [68, 80, 107, 108]

Hedge = v

4π

∫
dx(∂x φ̂)2, (5.32)

where v is the edge velocity. The bosonic field φ satisfies

[φ̂(x), φ̂(x ′)] = iπsgn(x − x ′) (5.33)

Counterpropagating edge modes from different FQH puddles can be gapped by
proximitizing them either with a superconductor (SC), which introduces a relevant
perturbation pinning the φ field, or with a ferromagnet (FM), which instead tends to
pin the conjugated field θ in the respective segment.
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Low-energy excitations can only originate from operators, which create localized
domainwalls between adjacent domains. The low-energyHilbert space, in particular,
is spanned by the states |Qtot, Q1mod 2, . . . , QN−1mod 2〉, where Qtot is the total
charge of the proximitizing SCs and the FQH edges within the PF box. Importantly,
Qtot can assume fractional values differing by multiples of ν. Moreover, given that
the number of Cooper pairs is undetermined in a superconductor, Qtot is only defined
module 2. Similar to the Majorana case, the operators creating a domain wall switch
between states of a zero-energymanifold, i.e., create stable zero-energymodes. These
are the PF operators α̂ j , obeying the Zn PF algebra with index n = 2/ν,

α̂ j α̂k = ωsgn(k− j)α̂k α̂ j , ω = e2π i/n = eiπν. (5.34)

The construction of the PF box is then completed by applying a backgate voltage
to the device. The Hamiltonian of the floating device, finally, is complemented by
the Coulomb charging energy depending on the total charge Qtot,

Hbox = EC

(
Q̂tot − q0

)2
. (5.35)

The parameter q0 depends on the applied voltage and can be tuned in such a way
that the box has quantized ground-state charge, given by the value of Qtot closest
to q0. When the charging energy EC is the largest energy scale, indeed, only virtual
transitions to states with a different values of Qtot are allowed. Special values of q0
correspond to charge degenerate points, but we will not consider such cases here.
This recipe has been outlined in [27, 29, 42], where more details on these localized
parafermionic modes can be found.

We now construct the external leads, which serve as probing leads in transport
studies. As shown in Fig. 5.3, it is possible to insert Ohmic contacts between different
segments of the edges of the FQH droplet, so that the boundary degree of freedom
in each segment is dynamically independent from each of the others. We denote
the bosonic field as φ̂ j , with a subscript j = 1, . . . , M denoting the edge portion.
The commutation relations between these chiral boson fields already incorporate
Klein factors [68] since (5.36) follows from a single-edge commutation relation by
imagining that all leads actually belong to one long edge.

[φ̂ j (x), φ̂k(x
′)] = iπ

[
δ jksgn(x − x ′) + sgn(k − j)

]
, (5.36)

The dynamics of the chiral bosons is encoded in the free edge Hamiltonian

Hedge =
M∑

j=1

v

4π

∫ +L/2

−L/2
dx(∂x φ̂ j )

2, (5.37)

Anisotropies in these velocities do not cause physical effects since they can be
absorbed by a renormalization of cotunneling amplitudes. Since we are not inter-
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Fig. 5.3 Schematic setup of the parafermion box for the generalization of the topological Kondo
effect. Proximitizing FM and SC domains to a pair of FQH edges with opposite spin opens spin gaps
or superconducting gaps in the different regions. At each interface, pair of parafermion operators
α̂ j are created (with opposite spin). In this realization, the different superconducting domains are
connected in order to establish a common coherent phase. A FQH drop can be shaped in such a
way that the gapless edges are close to the localized parafermions, such that tunneling becomes
possible. Dynamical independence of the edges is ensured by Ohmic contacts, the brown squares
in the figure above

ested in finite-size effects in the leads, we will also assume L → ∞. The fractional
quasiparticle operator can then be expressed as vertex operator of the respective
chiral boson field,

ψ̂ j (x) ∼ ei
√

νφ̂ j (x) , (5.38)

see [68, 80, 107, 108]. Using (5.36), the fractional quasiparticle operators (5.38)
obey the algebra

ψ̂ j (x)ψ̂k(x
′) = e−iπνsgn(k− j)−iπνδ jksgn(x−x ′)ψ̂k(x

′)ψ̂ j (x). (5.39)

Using the construction of the parafermion modes in [27], one can also show the
commutation relation [

φ̂ j (x), α̂k

]
= −π

√
ν , (5.40)

from which one also has

ψ̂ j (x)α̂k = e−iπνα̂kψ̂ j (x) . (5.41)

We can now write down a tunneling Hamiltonian for the fractional quasiparticles.
According to [27, 42], for a point-like tunnel contact at x = 0, it is given by
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Htun =
M∑

j=1

η j ψ̂ j (0)α̂
†
j + h.c. (5.42)

where the amplitudes η j are generally complex-valued and describe tunneling of
quasiparticles between the respective edge (ψ̂ j ) through the FQH bulk to the PF box
via α̂ j . The relations (5.39) and (5.40) imply that all terms in (5.42) commute with
each other. The Klein factors, which are needed to ensure proper statistical phase
relations between different edges [68], are fully taken into account by (5.36), (5.34),
(5.39) and (5.41).

Due to the large charging energy EC in (5.35), the ground state of the PF box
has a fixed value of Qtot and the dominant low-energy processes are cotunneling
of fractional quasiparticles from one edge to the box and from the box to some
other edge. By projecting the full Hamiltonian, H = Hedge + Hbox + Htun, to the
charge ground-state sector of the PF box via a Schrieffer–Wolff transformation [80,
131], one obtains the effective Hamiltonian H → Heff = Hedge + Hcot, with the the
cotunneling term Hcot in the form

Hcot = −
M∑

j,k=1; j 	=k

λ jkψ̂
†
j (0)ψ̂k(0)α̂ j α̂

†
k (5.43)

−
∑

j

∣∣η j

∣∣2
(
U−1

+ ψ̂
†
j (0)ψ̂ j (0) +U−1

− ψ̂ j (0)ψ̂
†
j (0)

)
,

where the notation
λ jk = η∗

jηk
(
U−1

+ +U−1
−

)
(5.44)

for the cotunneling amplitude from lead k to lead j has been used. Here,U+ andU−
denote the energy cost for adding one quasiparticle to the box or or for removing one
quasiparticle from it, respectively. Besides (5.43), a term describing the simultaneous
tunneling of two quasi-particles onto/off the island is obtained [131], but such a term
would change the PF box electric charge by ±2e∗ and thus can be neglected after
the projection to the low-energy subspace. The complex phases of η j can, without
loss of generality, be gauged away via the gauge transformation

φ̂ j (x) → φ̂ j (x) + const . (5.45)

After such a shift of the bosonic fields, all λ jk in (5.44) are real, non-negative and
symmetric in the leg indexes, i.e., λk j = λ jk > 0. The total electric charge on the PF
box is explicitly preserved by (5.43), as well as the total Zn charge described in [6].
Summarizing, we have obtained the parafermionic generalization of the topological
Kondo model as the effective Hamiltonian
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Heff =
M∑

j=1

v

4π

∫ ∞

−∞
dx(∂x φ̂ j )

2 −
M∑

j 	=k

λ jkψ̂
†
j (0)ψ̂k(0)α̂ j α̂

†
k , (5.46)

together with the commutation relations in (5.36), (5.34), (5.39), and (5.41).
We remark that, from (5.41), the localized parafermions are the Majorana opera-

tors of the previous section when the filling ν = 1. Therefore, the quantum impurity
spin operators in (5.46) reproduces then the definition of S in (5.22) and generate the
so(M) algebra [45, 50]. In fact, (5.46) reduces to the TKE Hamiltonian. However,
for ν < 1, the PF bilinears α̂ j α̂

†
k appearing in (5.46) do not constitute a closed Lie

algebra. On the other hand, it is always possible to close the su
(
n[(M−1)/2]) algebra,

where [x] is the integer part of x , by adding powers and products of PF bilinears.
For comparison with the TKE (i.e., n = 2), let us note that the algebra su(d), with
d = 2[(M−1)/2], contains the expected subalgebra so(M) for M ≥ 7. In the TKE,
Majorana bilinears generate this subalgebra, and leads are only coupled to this sub-
algebra [45]. For M < 7, on the contrary, the Hilbert space dimension is d < M ,
meaning that the system forms a representation of so(M) which is smaller than the
fundamental one. The quoted value for d follows by noting that one needs at least
[(M + 1)/2] PF pairs on the box to couple to M external edges (leads), where con-
straining the total Zn charge of the box is equivalent to removing one PF pair, cf. [42].
In particular, for M = 3, the algebra su(n) is generated by the set of operators

{
α̂
k1
1 α̂

k2
2 α̂

−k1−k2
3

}
, (5.47)

where integers k j are defined modulo n = 2/ν as α̂n
j = 1, and we have used the con-

vention α̂−k
j ≡ (α̂

†
j )
k for k > 0. The fact that the dimension of the quantum impurity

representation space is n follows from the PF representation in [6, 133] together with
the Zn-charge conservation constraint. For ν = 1/3, we obtain the 35 generators of
su(6) plus the identity from (5.47). The bilinears α̂ j α̂

†
k appearing in the Hamiltonian

(5.46), however, constitute only a subset out of these algebra generators.
Taken all this into account, (5.46) has the form of a quantum impurity problem, in

which M independent chiral edges interact with localized fractional quasiparticles
in the origin. The cotunneling between the edges causes transitions between the
different states of the PF box ground state manifold via the PF bilinears ∼ α̂ j α̂

†
k .

5.4.2 RG Equations

We now argue that, analogously to the Majorana box, the coupling to the PF box
will make the boundary conditions for the chiral edges unstable, driving the sys-
tem towards a non Fermi-liquid low-temperature fixed point. The operator product
expansion of the vertex operators [132] can be used to derive RG equations up to
second order in perturbation theory. Importantly, the new operator
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H ′ =
(
ψ̂

†
k (0)

)2
ψ̂ j (0)ψ̂m(0)α̂2

k α̂
†
j α̂

†
m, (5.48)

of scaling dimension Δ′ = 3ν, will be generated after contraction of two tunneling
terms. This is marginal for ν = 1/3, and irrelevant for larger filling fractions and
for ν = 2/3 in particular. Given that the cotunneling terms ∼ λ jk in (5.46) have
smaller scaling dimensionΔ jk = ν, we neglect in the following this family of terms.
Contractions of cotunneling operators can only produce PF bilinears of the type
∼ α̂ j α̂

†
k , which are in turn already present in (5.46).

Defining the variable

λ̃ jk = τ 1−ν
c√
2vν

λ jk, (5.49)

where τc denotes a ultraviolet cutoff in imaginary time, the RG equations take the
same formas those for theKondo coupling in theMajorana-basedTKEwithLuttinger
liquid parameter g = 1/ν [46, 47],

dλ̃ jk

d�
= (1 − ν)λ̃ jk +

M∑

m 	=( j 	=k)

λ̃ jm λ̃mk . (5.50)

For simplicity, let us first consider all the cotunneling amplitudes to be equal λ̃ jk =
λ̃(1 − δ jk). Then, (5.50) is simplified as

dλ̃

d�
= (1 − ν)λ̃ + (M − 2)λ̃2, (5.51)

and its solution can be readily written as

λ̃(�) = λ̃(0)e(1−ν)�

1 + M−2
1−ν

λ̃(0)[1 − e(1−ν)�] . (5.52)

We can see that λ̃(�) grows under renormalization. A Kondo temperature can be
defined as the energy scale for which (5.52) diverges, the system therefore entering
a regime which is nonperturbative in the Kondo coupling. One finds

TK � EC

(
(M − 2)λ̃(0)

1 − ν

)1/(1−ν)

. (5.53)

Comparing with the Kondo temperature characterizing the Majorana box, one sees
that the dependence on the bare cotunneling coupling λ̃(0) is now a power law, in
contrast with (5.4) [45].

We will not tackle here the analysis of the tentative strong coupling theory and
of its stability. A thorough study of the low-temperature fixed point and a derivation
of the conductance tensor can be found in [43]. Here, we limit ourselves to remark
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the similarities, both in the Hamiltonian and in the RG equations, with the Kondo
and the Topological Kondo models, which let us expect interesting nonperturbative
physics at low temperature.

5.5 Conclusions

In this article, we have provided a summary of the present activities devoted to
topological Kondo physics in Majorana devices. In particular, we have stressed two
recent noteworthy developments, namely the Josephson effect for a multi-channel
topological Kondo impurity and a parafermionic extension of the topological Kondo
setup. The former problem could be realized using a Majorana box device with
superconducting leads. The different periodicities in the atomic and in the strong-
coupling limit (4π vs 6π for three leads) are particularly interesting. Moreover, we
believe that there could be a so-far unexplored quantum phase transition at Δ ≈ TK .
This point requires a detailed numerical study.As second example,we have examined
recent progress on a parafermionic extension of the basic TKE setting. We hope that
experiments can soon start to catch up with the rapid theoretical developments.
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Chapter 6
Holographic Kondo Models

Johanna Erdmenger

Abstract These lecture notes are devoted to studying the Kondo problem from the
perspective of gauge/gravity duality. This duality is a major recent development
within theoretical physics. It maps strongly coupled quantum systems to weakly
coupled gravity theories and thus provides a new approach to their description. The
Kondomodel as originally proposed by J. Kondo in 1961 played a decisive role in the
development of major concepts in quantum field theory, such as the renormalization
group and the use of conformal symmetry. It describes describes a spin impurity
interacting with a free electron gas: At low energies, the impurity is screened and
there is a logarithmic rise of the resistivity. In quantum field theory, this amounts to a
negative beta function for the impurity coupling and the theory flows to a non-trivial
IR fixed point. In these lectures we construct and examine a variant of the Kondo
model within gauge/gravity duality. The motivation is twofold: On the one hand,
the model may be used for calculating observables for the case of a spin impurity
interacting with a strongly correlated electron gas. On the other hand, the models
allows for new insights into the working mechanisms of gauge/gravity duality. For
constructing the gravity dual, we consider a version of the Kondomodel with SU (N )

spin at large N , in which the ambient electrons are strongly coupled even before the
interactionwith the impurity is switched on.We present the brane constructionwhich
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6.1 Introduction

Dualities are special relations between theories in physics as given by a Hamiltonian
or Lagrangian. Two different theories describing the same physical system are dual
to each other. A familiar example is the duality between the Thirring model and
the sine-Gordon model. The Thirring model describes fermions in 1 + 1 dimensions
with a quartic interaction. As discovered by Coleman [1], it may be mapped to the
bosonic sine-Gordon model via bosonization. Both theories thus describe the same
physics.

Gauge/gravity duality, as first realized by the AdS/CFT correspondence of
Maldacena [2], is a very special duality in the sense that it relates a gravity the-
ory to a gauge theory, i.e. a quantum field theory without gravity. This new relation
implies new questions about the nature of gravity itself: How is gravity related to
quantum physics? It is equivalent to a non-gravity theory at least in this special
context-does this imply that it is non-fundamental? This is an open question which
we will not explore in detail here. Nevertheless we note that gauge/gravity duality
opens up new issues about the nature of gravity. It is important to emphasize in this
context that so far the known examples of gauge/gravity duality involve gravity the-
ories with negative cosmological constant, different from the theory describing our
Universe in which the cosmological constant is extremely small but positive.

The best understood example of gauge/gravity duality is the AdS/CFT correspon-
dence. For a quantum field theory in 3 + 1 dimensions, it maps N = 4 SU (N )

supersymmetric Yang–Mills theory to supergravity on the space AdS5 × S5, where
AdS stands for Anti-de Sitter space and S5 for the five-dimensional sphere. Anti-
de Sitter space is a hyperbolic space with a negative cosmological constant and a
boundary. The N = 4 supersymmetric quantum field theory is a conformal field
theory, i.e. its coupling is not renormalized and the theory is invariant unter local
scale transformations. It may be viewed as being defined on the boundary of the
4 + 1-dimensional Anti-de Sitter space.

The equivalence between the two theories in the AdS/CFT correspondence may
be made plausible by two arguments: First, the holographic principle [3, 4], and
second, the fact that the symmetries of both theories coincide. The holographic
principle states that the information contained in a volume is stored on its boundary.
More precisely, in the context of semiclassical considerations for quantum gravity,
the holographic principle states that the information stored in a spatial volume Vd is
encoded in its boundary area Ad−1, measured in units of the Planck area ld−1

p . This
principle is realized for black holes for instance, for which according to the famous
result of Bekenstein [5], their entropy scales with the area of its horizon. Secondly,
in a string theory approach it may be seen that the symmetries under which the fields
of the quantum field theory involved transform is realized geometrically in the dual
gravity solution.

Applications of gauge/gravity duality. The fact that gauge/gravity duality relates
strongly coupled quantum field theories to weakly coupled classical gravity theo-
ries provides a new approach to calculating observables in these strongly coupled



6 Holographic Kondo Models 157

quantum field theories. Generically, such theories are hard to study since there is no
universal approach for calculating observables in them. This is crucially different
from weakly coupled quantum field theories, for which perturbation theory is the
method of choice and provides very accurate results. An example for an approach to
strongly coupled theories are advanced numerical techniques such as Monte Carlo
methods, in which space-time is discretized. This approach is very successful in
calculating observables such as bound state masses and determining the structure of
the phase diagram. However, it is afflicted by the sign problem which renders the de-
scription of transport properties very complicated, in particular at finite temperature
and density. It is thus desirable to have an alternative approach at hand which allows
for comparison. Gauge/gravity duality provides such an approach.

Strongly coupled quantum field theories appear in all areas of physics, including
particle and condensed matter physics. Weakly coupled theories may successfully be
described in a quasiparticle approach. Quasiparticles are quantum excitation in one-
to-one correspondence with the states in the corresponding free (non-interacting)
theory. In strongly-coupled systems however, this map is no longer present. In gen-
eral, the excitations in these systems are collective modes of the individual degrees of
freedom. Gauge/gravity duality provides an elegant way of describing these modes
by mapping them to quasinormal modes of the gravity theory. These modes are com-
plex eigenfrequencies of the fluctuations about the gravity background: Their real
part is related to the mass of the fluctuations and their complex part to the decay
width.

Before we proceed, it is important to stress that to the present day, gauge/gravity
duality is a conjecture which has not been proved. The proof is hard in particular
since it would require a non-perturbative understanding of string theory in a curved
space background, which is not available so far.

Holographic Kondo model. As an example of how to generalize the original
example of the AdS/CFT correspondence to more general cases of gauge/gravity
duality, we will study in this lecture how to obtain a gravity dual of the well-known
Kondo model of condensed matter physics.

The original Kondo model [6] describes the interaction of a free electron gas
with a localized magnetic spin impurity. A crucial feature is that at low energies,
the impurity is screened by the electrons. The Kondo model is in agreement with
experiments involving metals with magnetic impurities, as it correctly predicts a
logarithmic rise of the resistivity as the temperature approaches zero.

The significance of the Kondo model goes far beyond its origin as a model for
metals with magnetic impurities. In particular, it played a crucial role in the develop-
ment of the renormalization group (RG). The impurity coupling in the Kondo model
has a negative beta function and perturbation theory breaks down at low energies,
a property it shares with quantum chromodynamics (QCD). In some respects the
Kondo model may thus be viewed as a toy model for QCD. Moreover, the Kondo
model corresponds to a boundary RG flow connecting two RG fixed points. These
correspond to a UV and a IR CFT, respectively. CFT techniques have proved very
useful in studying the Kondo model, as reviewed in [7]. Moreover, the Kondo model
has a large N limit in which it may be exactly solved using the Bethe ansatz [8, 9].
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The holographic Kondo model we will introduce below differs from the original
condensed matter model in that the ambient electrons are strongly coupled among
themselves even before the interactionwith themagnetic impurity is turned on.More-
over, the impurity is an SU (N ) spin with N → ∞. The ambient degrees of freedom
are dual to a gravity theory in an AdS3 geometry at finite temperature. The impurity
degrees of freedom are dual to an AdS2 subspace. As we will see in detail below,
the dual gravity model corresponds to a holographic RG flow dual to a UV fixed
point perturbed by a marginally relevant operator, which flows to an IR fixed point.
In addition, in the IR a condensate forms, such that the model has some similarity to
a holographic superconductor [10]. For this model, we may calculate spectral func-
tions and compare their shape to what is expected for the original Kondo model. This
may be relevant for the physics of quantum dots. Including the backreaction of the
impurity geometry on the ambient geometry allows to calculate the entanglement
entropy. Quantum quenches of the Kondo coupling may also be considered.

Related sets of lecture notes including discussions of the holographic Kondo
model by the same author may be found in [11, 12]. Detailed information on
gauge/gravity duality, the AdS/CFT correspondence and its applications may be
found for instance in the books [13–17].

6.2 AdS/CFT Correspondence

6.2.1 Statement of the Correspondence

Let us begin by considering the best understood example of gauge/gravity duality,
the AdS/CFT correspondence. Here, ‘AdS’ stands for ‘Anti-de Sitter space’ and and
‘CFT’ for ‘conformal field theory. The Dutch physicist Willem de Sitter was a friend
of Einstein. The prefix ‘Anti’ refers to the fact that a crucial sign changes from plus to
minus. In fact, Anti-de Sitter space is a hyperbolic spacewith a negative cosmological
constant.

In this example a four-dimensional CFT,N = 4 SU (N ) Super Yang–Mills the-
ory, is conjectured to be dual to gravity in the space AdS5× S5. This was proposed
along with other examples for AdS/CFT by Maldacena in his seminal paper [2] in
1997. As we will see, the two theories have the same amount of degrees of freedom
per unit volume and the same global symmetries. We will first state the duality and
then explain it in detail. The AdS/CFT correspondence states that
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N = 4 Super Yang–Mills (SYM) theory
with gauge group SU (N ) and Yang–Mills coupling constant gYM

is dynamically equivalent to

IIB superstring theory
with string length ls = √

α′ and coupling constant gs
on AdS5 × S5 with radius of curvature L , and N units of F(5) flux on S5.

The two free parameters on the field-theory side, i.e. gYM and N , are related to
the free parameters gs and L/

√
α′ on the string theory side by

g2YM = 2πgs and 2g2YMN = L4/α′2.

For understanding this duality and its motivation in detail, let us first recall some
properties of the ingredients involved. We begin with the field theory side and intro-
duce conformal field theories and N = 4 supersymmetry.

6.2.2 Prerequisites for AdS/CFT

6.2.2.1 Conformal Symmetry

An essential aspect for the AdS/CFT correspondence is that the quantum field theory
involved is a conformal field theory (CFT). Such a theory consists of fields that
transformcovariantly under conformal coordinate transformation. These leave angles
invariant (locally) and in flat d-dimensional spacetime are defined by the following
transformation law of the metric,

dx ′
μdx

′μ = Ω−2(x)dxμdx
μ . (6.1)

Infinitesimally, with Ω(x) = 1 − σ(x) and x ′μ = xμ + vμ(x), this gives rise to the
conformal Killing equation

∂μvν + ∂νvμ = 2σ(x)ημν , σ (x) = 1

d
∂ · v . (6.2)

In d = 2 dimensions, this reduces to the Cauchy–Riemann equations, which are
solved by any holomorphic function. This implies that in d = 2, conformal symmetry
is infinite dimensional and thus leads to an infinite number of conserved quantities.
In more than two dimensions however, conformal symmetry is finite dimensional
and the only solutions to the conformal Killing equation (6.2) are

vμ(x) = aμ + ωμ
νx

ν + λxμ + bμx2 − 2(b · x)xμ ; ωμν = −ωνμ , σ (x) = λ − 2b · x . (6.3)
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In d > 2, the conformal Killing vector vμ(x) is at most quadratic in x . It contains
translations (of zeroth order in x), rotations and scale transformations (both linear in
x) and special conformal transformations (quadratic in x). The scalar λ, the vectors
aμ and bμ and the antisymmetric matrix ωμν contain a total of

1 + 2d + d(d − 1)/2 = (d + 1)(d + 2)/2 (6.4)

free parameters. In Euclidean signature, the symmetry group generated by these
transformations is SO(d + 1, 1), while in Lorentzian signature, it is SO(d, 2). Let
us examine the algebra associated to the infinitesimal transformations (6.3) with
parameters (aμ, ωμν, λ, bμ) for the Lorentzian case. The generator for translations
is the momentum operator Pμ. The generator for Lorentz transformations is denoted
by Lμν . The generator for scale transformations is D and the generator for special
conformal transformations is Kμ. The conformal algebra consists of the Poincaré
algebra supplemented by the relations

[Lμν, Kρ] = i(ημρKν − ηνρKμ) , [D, Pμ] = i Pμ , (6.5)
[
D, Kμ

] = −i Kμ , [D, Lμν] = 0 , [Kμ, Kν] = 0 , (6.6)
[
Kμ, Pν

] = −2i(ημνD − Lμν) . (6.7)

For the representations we postulate

[D, φ(0)] = −iΔφ(0) (6.8)

for any field φ(x). This implies

φ(x) → φ′(x ′) = λ−Δφ(x) (6.9)

for x → x ′ = λx . Δ is the scaling dimension of the field φ. For an infinitesimal
transformation this gives

δDφ ≡ [D, φ(x)] = −iΔφ(x) − i xμ∂μφ(x) , (6.10)

with similar relation for the other conformal transformations δPφ, δLφ, δKφ.
For organising the representations, it is useful to define the quasiprimary fields

which satisfy
[Kμ, φ(0)] = 0 . (6.11)

This defines the fields of lowest scaling dimension in an irreducible representation of
the conformal algebra. All other fields in this multiplet, the conformal descendents
of φ, are obtained by acting with Pμ on the quasiprimary fields.

The infinitesimal transformations δφ give rise to the conformal Ward identities
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n∑

i=1

〈φ1(x1) . . . δφi (xi ) . . . φn(xn)〉 = 0 . (6.12)

For scalar conformal fields this implies

〈φ1(x1)φ2(x2)〉 =
{

c
(x1−x2)2Δ

if Δ1 = Δ2 = Δ,

0 otherwise.
(6.13)

For fields with spin, the conformal transformation acts also on the spacetime indices
and reads

δvO(x) = −LvO(x) , Lv ≡ v · ∂x + Δ

d
∂ · v − i

2
∂ [μvν]Lμν , (6.14)

for an operator O(x) of arbitrary spin. The Lorentz generator Lμν acts on the spin
indices. For these operators, the conformal correlation functions are more involved.
However, conformal symmetry still fixes them up to a small number of independent
contributions.

6.2.2.2 N = 4 Supersymmetry

TheN = 4 SU (N )SuperYang–Mills theory has somevery special propertieswhich
are at the origin of it possessing a gravity dual. First of all, it was shown [18, 19] that
this theory is conformally invariant even when quantised; its beta function vanishes
to all orders in perturbation theory and also non-perturbative contributions are absent.
A further important property is that this theory has a global SU (4) symmetry, which
is isomorphic to SO(6). We will see that both the SO(4, 2) conformal symmetry as
well as SU (4) are also realized as isometries in the dual gravity theory.

For theN = 4 theory, the global SU (4) symmetry is realized as anR symmetry of
the supersymmetry algebra. This algebra has four supersymmetry generators which
satisfy the anticommutation relations

{Qa
α, Q̄bβ̇} = 2σμ

αβ̇ Pμδab , a = 1, 2, 3, 4 , (6.15)

with σμ = (1, σ ) and σ the three Pauli matrices. Equation (6.15) is invariant under
SU (4) rotations. This algebramay be combinedwith the conformal algebra into a su-
perconformal algebra. This requires the introduction of further fermionic generators,
the special superconformal generators Saα that satisfies

{Saα, S̄bβ̇} = 2σμ
αβ̇Kμδab , a = 1, 2, 3, 4, (6.16)

with Kμ the generator of special conformal transformations. We note that the anti-
commutation relation for the generators Saα (6.16) is formally similar to the one for
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Table 6.1 Supermultiplet of N = 4 supersymmetry

Fields SU (4) rep.

Gauge field Aμ 1

Complex fermions λaα 4

Real scalars Xi 6

the generators Qa
α given by (6.15), with the momentum operator Pμ replaced by the

special conformal transformations Kμ. The operators Pμ, Lμν, D, Kμ together with
the Qa

α, Saα form the superconformal algebra associated to the superconformal group
SU (2, 2|4).

Theelementaryfields ofN = 4SuperYang–Mills theory are organized in a single
multiplet of SU (4), as shown in Table6.1. The SU (N ) gauge field is a singlet of
SU (4). Moreover, the supermultiplet involves four complexWeyl fermions λa

α in the
fundamental representation 4 of SU (4) and six real scalars Xi in the representation
6 of SU (4). Note that due to the supersymmetry, both the Weyl fermions and the
scalars are in the adjoint representation of the gauge group SU (N ) since they are in
the same multiplet as the gauge field.

The action of N = 4 Super Yang–Mills theory reads

S = tr
∫
d4x

(

− 1

2gYM2 FμνF
μν − i

4∑

a=1

λ̄a σ̄ μDμλa −
6∑

i=1

Dμφi Dμφi

+gYM
∑

a,b,i

Cab
iλa[φi , λb] + gYM

∑

a,b,i

C̄iabλ̄
a[φi , λ̄b] + gYM2

2

∑

i, j

[φi , φ j ]2
⎞

⎠ , (6.17)

with ggYM the Yang–Mills coupling. The Cab
i are Clebsch–Gordan coefficients that

couple two 4 representations to one 6 representation of the algebra of SU (4)R . We
note that in addition to the kinetic terms, this action contains interactions between
three and four gauge fields via the non-abelian gauge-field commutators in Fμν , as
well as Yukawa interaction terms between two fermions and a scalar, and a quartic
scalar interaction.

6.2.2.3 Large N Limit

The large N limit plays an essential role for the AdS/CFT correspondence. It cor-
responds to a saddle point approximation. As realized by ’t Hooft in 1974 [20], the
perturbative expansion of fields in the adjoint representation of the SU (N ) gauge
group may be reorganized using a double-line notation.

A field φ in the adjoint representation may be written as

φ = φAT A ⇔ (φ)i j = φA(T A)i j , (6.18)
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Fig. 6.1 Double-line
propagator

where the T A are the N 2 − 1 generators of SU (N ). These are matrices with indices
i, j . If φ is a scalar field in 3 + 1 dimensions, then its propagator in configuration
space is given by

〈φi
j (x)φ

k
l(y)〉 = δi lδ

k
j

g2

4π2(x − y)2
, (6.19)

where g is a typical coupling in the theory. The Kronecker deltas enter from the
SU (N ) completeness relation

N 2−1∑

A=1

(T A)i j (T
A)k l = δi lδ

k
j − 1

N
δi jδ

k
l , (6.20)

in which the second term is suppressed for N → ∞. The double-line propagator for
(6.19) is shown in Fig. 6.1.

For scalar fields, g in (6.19) may be the coupling of a cubic interaction term; a
quartic interaction term may then enter with coefficient g2. In Yang–Mills theory,
g will be the gauge coupling. It will turn out to be extremely useful to define the
’t Hooft coupling

λ = g2N . (6.21)

Let us now count how the contributions corresponding to Feynman diagrams scale
with N and with λ. Note that in the normalization for the propagators chosen in
(6.19), the vertices scale as 1/g2. Also, the sum over traces of indices contributes a
factor of N for every closed loop. Assembling all the ingredients, we find that the
Feynman diagrams scale as

f (λ, N ) ∼ NV−E+FλE−V = NχλE−V , (6.22)

where V , E and F are the numbers of vertices, edges and faces of the surfaces created
by the Feynman diagrams, respectively. χ is the Euler characteristic given by

χ = V − E + F = 2 − 2G , (6.23)

withG the genus of the surface.We see that the leading order in N is given byG = 0,
i.e. by planar diagrams. We note that double-line Feynman diagrams are similar to
string-theory diagrams, with strings splitting and joining. This provides a hint that
large N quantum field theories are related to string theories. In the simple example
with scalar fields considered here, it is not possible to determine exactly which
string theory is given by the collection of large N field-theory Feynman diagrams.
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The AdS/CFT correspondence however provides a map between well-defined field
theories and string theories.

6.2.2.4 AdS Spaces

Anti-de Sitter (AdS) spaces play an important role in the AdS/CFT correspondence.
This has several reasons: First of all, the isometries of AdS space in d + 1 dimensions
form the group SO(d, 2), which corresponds to the conformal group of a CFT in d
dimensions. Moreover, AdS space has a constant negative curvature and a boundary
at which we may imagine this CFT to be defined.

The embedding of (d + 1)-dimensional AdS space into (d + 2)-dimensional flat
Minkowski spacetime is provided by the surface satisfying

X1
2 + X2

2 + · · · + Xd
2 − X0

2 − Xd+1
2 = −L2 , (6.24)

where X0, X1, . . . Xd+1 are the coordinates of (d + 2)-dimensionalMinkowski space.
L is referred to as the AdS radius. We note that in Lorentzian signature, the symmetry
of the isometries of AdSd+1 is thus SO(d, 2), which coincides with the symmetry
of a CFTd , i.e. a conformal field theory in d dimensions with Lorentzian signature.
In Euclidean signature, the sign in front of X0

2 becomes a plus and the symmetry is
SO(d + 1, 1).

The boundary of AdSd+1 is located at the limit of all coordinates XM becoming
asymptotically large. For large XM , the hyperboloid given by (6.24) approaches the
light-cone inRd,2, given by

− X0
2 +

d∑

i=1

Xi
2 − Xd+1

2 = 0 . (6.25)

The boundary corresponds to the set of all lines on the light cone given by (6.25)
which originate from the origin of Rd,2, i.e. 0 ∈ Rd,2. This space corresponds to a
conformal compactification of Minkowski space.

A set of coordinates that solves (6.24) is

X0 = L cosh ρ cos τ ,

Xd+1 = L cosh ρ sin τ ,

Xi = L Ωi sinh ρ , for i = 1, . . . , d ,

(6.26)

where Ωi with i = 1, . . . , d are angular coordinates satisfying
∑

i Ω
2
i = 1.The

remaining coordinates take the ranges ρ ∈ R+ and τ ∈ [0, 2π [. The coordinates
(ρ, τ,Ωi ) are referred to as global coordinates of AdSd+1. It is convenient to in-
troduce a new coordinate θ by tan θ = sinh ρ. Then the metric associated to the
parametrization (6.26) becomes that of the Einstein static universe R × Sd ,
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ds2 = L2

cos2 θ

( − dτ 2 + dθ2 + sin2 θ dΩ2
d−1

)
. (6.27)

Since 0 ≤ θ < π
2 , this metric covers half of R × Sd .

It is often useful to consider a metric in local coordinates on AdSd+1. This is
obtained from the parametrization, with x = (x1, . . . , xd−1),

X0 = L2

2r

(
1 + r2

L4
(x2 − t2 + L2)

)
,

Xi = r xi
L

for i ∈ {1, . . . , d − 1} ,

Xd = L2

2r

(
1 + r2

L4
(x2 − t2 − L2)

)
,

Xd+1 = r t

L
. (6.28)

This covers only one half of the AdS spacetime since r > 0. The corresponding
metric is referred to as Poincaré metric and reads

ds2 = L2

r2
dr2 + r2

L2
ημνdx

μdxμ . (6.29)

The boundary is located at r → ∞. The embedding of the Poincaré patch into global
AdS is shown in Fig. 6.2.

Note that the Ricci scalar and cosmological constant for Anti-de Sitter space are
both negative,

R = −d(d + 1)

L2
, Λ = −d(d − 1)

2L2
. (6.30)

A further choice of coordinates is obtained by introducing the coordinate z ≡ L2/r ,
for which the Poincaré metric (6.29) becomes

ds2 = L2

z2
(
dz2 + ημνdx

μdxν
)

. (6.31)

In this case, the boundary is located at z → 0. Note that in this limit, there is a
coordinate singularity but the space remains regular since the curvature remains
finite.

6.2.3 String Theory Origin of the AdS/CFT Correspondence

In full generality, the Maldacena conjecture [2] states that N = 4 SU (N ) Super
Yang–Mills theory is dual to type IIB string theory on AdS5 × S5 for all values of
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Fig. 6.2 Within AdS2, the
poincaré coordinates cover
the triangular region shown.
The dashed lines correspond
to fixed constant values of r .
The boundary is at r = ∞. θ
and τ are as defined in (6.27)

N and λ. While this is a very beautiful idea, performing actual explicit calculations
for testing this proposal requires to consider particular low-energy limits which we
will discuss in detail. This is due to the fact that quantum string theory on curved
backgrounds has not yet been formulated. This is also a reason why it is hard to
provide an actual proof for the AdS/CFT proposal.

6.2.3.1 Motivating AdS/CFT from String Theory

As a particular limit, we consider weakly coupled string theory with string coupling
gs  1, keeping L/

√
α′ fixed. The leading order is the classical string theory with

gs = 0, which means to only tree-level string diagrams are taken into account. On
the CFT side, since g2YM = 2πgs this implies g2YM = λ/N → 0. This in turn im-
plies that N → ∞ since λ = L4/(2α′2) remains finite. We are thus considering the
’t Hooft limit. The duality conjectured in this limit, where λ is fixed but may be small,
and the dual field theory contains classical strings, is often referred to as the strong
form of the AdS/CFT correspondence. There is also the weak form of AdS/CFT in
which additionally, λ is taken to be very large such that the CFT involved becomes
strongly coupled. In this case, the strongly coupled CFT is mapped to a classical
gravity theory of pointlike particles, since α′ = �2s (with � the string length) becomes
asymptotically small. The gravity theory involved is type IIB supergravity in the
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Table 6.2 Different forms of the AdS/CFT correspondence

N = 4 SYM theory IIB theory on AdS5 × S5

Strongest form any N and λ Quantum string theory,
gs �= 0, α′ �= 0

Strong form N → ∞, λ fixed but arbitrary Classical string theory,
gs → 0, α′ �= 0

Weak form N → ∞, λ large Classical supergravity,
gs → 0, α′ → 0

Table 6.3 Embedding of N coincident D3–branes in flat ten-dimensional spacetime

0 1 2 3 4 5 6 7 8 9

N D3 • • • • – – – – – –

example considered. Type IIB supergravity admits D3-brane solutions. The possible
limits of the AdS/CFT correspondence are collected together in Table6.2.

Let us now consider D3-branes to motivate the weak form of the AdS/CFT corre-
spondence. These branes may be viewed from two different perspectives: The open
and the closed string perspective. It is crucial for the correspondence that in the low-
energy limit where only massless degrees of freedom contribute, open strings give
rise to gauge theories while closed strings give rise to gravity theories.

Open string perspective. We begin with the open string perspective on D3-
branes. For gs N  1, D-branes may be visualised as higher-dimensional charged
objectd on which open strings may end. The ‘D’ stands for Dirichlet boundary condi-
tion. Consider a stack of N D3-branes embedded in 9 + 1 flat spacetime dimensions.
(Recall that in 9 + 1 dimensions, superstring theory is anomaly free and thus consis-
tent.) Neumann and Dirichlet boundary conditions are imposed on the string modes
according to Table 6.3.

For N coincidentD3-branes, the open strings are described by aDirac-Born-Infeld
(DBI) action with gauge group U (N ), with integration over the 3 + 1-dimensional
worldvolume of the branes. In flat ten-dimensional space, the DBI action is given by

SDBI = − T3 tr
∫
d4xe−ϕ

√−det(P[g] + 2πα′F)

+ fermionic partners , (6.32)

where T3 ≡ 2/((2π)3α′2gs) is the brane tension, ϕ is the dilaton, and P[g] is the
pullback of the metric to the worldvolume of the branes. F is the field strength
tensor of the gauge field associated to the brane charge. We now consider low-
energy excitations with E  α′−1/2, such that only massless excitations are taken
into account. In this limit, the DBI action reduces to
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SDBI = − 1

2πgs
tr

∫
d4x

⎛

⎝1

2
FμνF

μν +
6∑

i=1

∂μφi∂μφi − πgs

6∑

i, j=1

[φi , φ j ]2
⎞

⎠

+ fermions + O(α′) , (6.33)

where the six scalars φi = φi AT A in the adjoint representation of U (N ) arise from
the pull-back of the metric to the world-volume of the N D3-branes. They are given
by Xi+3 = 2πα′φi with the Xi + 3 the coordinates in the directions perpendicular
to the brane.

The total action for the D3-branes is

SD3 = SDBI + Sclosed + Sint , (6.34)

where Sclosed describes the closed string excitations in the ten-dimensional space
and Sint the interaction between open and closed string modes. In the low-energy
limit α′ → 0, the open strings decouple from any closed string excitations in the
9 + 1-dimensional space: In (6.34), Sclosed becomes a free theory of massless metric
fluctuations, and Sint goes to zero. In this limit we are thus left with the low-energy
modes in the DBI action as given by (6.33), plus free massless gravity excitations
about flat space. The low-energy modes described by the DBI action coincide with
the field-theory action ofN = 4 Super Yang–Mills theory as given by (6.17),

lim
α′→0

SDBI = SN =4 SYM , (6.35)

subject to identifying 2πgs = g2YM . We thus recover the action of N = 4 Super
Yang–Mills theory in this limit. By modding out the center of the gauge group,
we may reduce the U (N ) gauge symmetry to SU (N ). Note that the limit taken is
α′ → 0 while keeping u = r/α′ fixed, with r any length scale. This is referred to as
theMaldacena limit.

Closed string perspective. We now turn to the closed string perspective on
D-branes. In the limit gs N � 1, the N D3-branes may be viewed as massive ex-
tended charged objects sourcing the fields of type IIB supergravity. Closed strings
will propagate in this background. The supergravity solution of N D3-branes pre-
serving SO(3, 1) × SO(6) symmetry in 9 + 1 dimensions is given by

ds2 = H(r)−1/2ημνdx
μdxν + H(r)1/2δi jdy

idy j , (6.36)

eϕ(r) = gs , C(4) = (
1 − H(r)−1) dx0 ∧ dx1 ∧ dx2 ∧ dx3 + . . . ,

with μν ∈ {0, 1, 2, 3} and i, j ∈ {1, 2, . . . , 6}. Here, r2 = y21 + y22 + · · · + y26 and
the terms denoted by the dots . . . in the expression for the four-form C(4) ensure
self-duality of F(5) = dC(4), i.e. the five-form given by the exterior derivative ofC(4).
Inserting the ansatz (6.36) into the Einstein equations of motion in 9 + 1 dimensions,
we find that H(r) must be harmonic, i.e.
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� H(r) = 0 , for r �= 0 , (6.37)

with � the Laplace operator in six Euclidean dimensions. The Laplace equation is
solved by

H(r) = 1 +
(
L

r

)4

. (6.38)

We will determine L below.
Similarly to the open string case considered before, we now investigate low-

energy limits within the closed string perspective. First we note that asymptotically
for r → ∞, we have H(r) → 1, i.e. asymptotically for large r we recover flat 9 + 1-
dimensional space. On the other hand, there is the near-horizon limit inwhich r  L .
Then, H(r) ∼ L4/r4 and the D3-brane metric becomes

ds2 = r2

L2
ημνdx

μdxν + L2

r2
δi jdy

idy j ,

= L2

z2
(
ημνdx

μdxν + dz2
) + L2dΩ2

5 , (6.39)

where in the second linewe define the new radial coordinate z ≡ L2/r and introduced
polar coordinates on the space spanned by the six yi coordinates, dyidyi = dr2 =
r2dΩ2

5 with dΩ2
5 the angular element on S5. We see that in the near-horizon limit,

the D3-brane metric becomes AdS5 × S5!
L , i.e. the radius of both the AdS5 and the S5, may be determined from string

theory. For this we note that the flux of F(5) through the S5 has to be quantized. The
sphere S5 surrounds the six Euclidean dimensions perpendicular to the D3-branes at
infinity. The charge Q of the D3-branes is determined by

Q = 1

16πG10

∫

S5

∗F(5) . (6.40)

The charge has to coincide with the number of D-branes, i.e. Q = N . This implies
the important relation

L4 = 4πgs Nα′2 , (6.41)

since 16πG10 = 2κ2
10 = (2π)7α′4g2s .

For stating the correspondence, we note that asymptotically, we observe two kinds
of closed strings: Those in flat space at r → ∞, and those in the near-horizon region.
Both kinds decouple in the low-energy limit. For an observer at infinity, the energy
of fluctuations in the near-horizon region is redshifted,

E∞ ∼ r

L
Er → 0 . (6.42)
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Recall that
√

α′ is fixed, but r  L . This implies that for an observer at infinity, the
energy of fluctuations in the near-horizon region is very small. We thus have two
types of massless excitations: Massless modes in flat space at r → ∞ and the modes
in the near-horizon region, which appear as massless too.

Combining open and closed string perspectives.TheAdS/CFT correspondence
is now motivated by identifying the massless modes in the open and closed string
perspectives. First we note that as discussed above, both in the open and closed
string pictures there are massless modes corresponding to free gravity in flat 9 + 1-
dimensional space. Moreover, in the open string picture further massless modes are
given by the Lagrangian of 3 + 1-dimensional N = 4 SU (N ) Super Yang–Mills
theory. On the other hand, in the closed string picture we have gravity in the near-
horizon region, which is given by IIB supergravity on AdS5 × S5. Identifying these
second types of massless modes in the open and closed string pictures gives rise to
the AdS/CFT conjecture.

As a final remark in this section, we note that in the near-horizon limit of the
closed string picture, it is not possible to locate the D3-branes. In particular, it is not
correct to state that they sit at r = 0. Rather, the D3-brane is a solitonic solution to
10d supergravity which extends over all values of r and which gives rise to AdS5 ×
S5 in the near-horizon limit.

6.2.3.2 Field-Operator Map

The argument given in Sect. 6.2.3 motivates the conjectured duality between a quan-
tum field theory and a gravity theory. The map between these two theories may be
refined to a one-to-one map between individual operators, i.e. between gauge in-
variant operators in N = 4 SU (N ) Super Yang–Mills theory and classical gravity
fields in AdS5 × S5. Each pair is given by identifying entries transforming in the
same representation of the superconformal group SU (2, 2|4). The most prominent
example are the 1/2 BPS or chiral primary operators in the [0,Δ, 0] representation of
the algebra of SU (4). Here, the three entries are the Dynkin labels, with Δ the con-
formal dimension of the corresponding operator.1 The corresponding gauge invariant
field theory operators are

OΔ(x) = Str
(
X (i1(x)Xi2(x) . . . XiΔ)(x)

) = CΔ
i1...iΔ tr

(
X (i1(x)Xi2(x) . . . XiΔ)(x)

)
,

(6.43)
with the elementary real scalar fields Xi as in (6.17). Str denotes the symmetrized
trace over the indices (a, b) of the SU (N ) representation matrices T Ab

a . The sym-
metrization involves the totally symmetric SU (4) rank Δ tensor representation
CΔ
i1...iΔ

. An important property of the 1/2 BPS operators is that their two- and three-
point functions in N = 4 Super Yang–Mills theory are not renormalized and thus
independent of the ’t Hooft coupling λ. The perturbative small λ results for these

1A review of the group theory concepts mentioned here may for instance be found in Appendix B
of [13].
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two- and three-point functions may then directly be compared to their counterparts
calculated from the gravity side, which apply to large λ. However, since these cor-
relation functions are independent of λ, an exact matching of the field theory and
gravity results is expected and was indeed obtained in explicit computations [21,
22]. This provides a non-trivial test of the AdS/CFT proposal.

To obtain the corresponding fields on the supergravity side of the correspondence,
a Kaluza–Klein reduction is performed on S5, i.e. the fields in ten dimensions are
expanded in spherical harmonics on S5,

φ(x, z,Ω5) =
∞∑

l=0

φl(x, z)Y l(Ω5) ,

�S5Y
l(Ω5) = − 1

L2
l(l + 4)Y l(Ω5) . (6.44)

This calculation was already performed in 1985 in [23]. From the Kaluza–Klein
modes of the supergravity metric and five-form, we may construct five-dimensional
scalars sl(x, z) that are in the same representation [0,Δ, 0] as the field-theory oper-
ators OΔ if l = Δ. These scalars satisfy

�AdS5s
l(z, x) = − 1

L2
l(l − 4)sl(x, z) . (6.45)

Asymptotically, near the AdS boundary at z → 0, the solutions to this equation
satisfy

s I (z, x) ∼ s I(0)z
4−Δ + 〈O〉zΔ + subleading terms. (6.46)

According to [24], the leading term s I(0) may be identified with a source for the 1/2
BPS operator O I , while the subleading term involves the vacuum expectation value
of this operator.

For writing the AdS/CFT conjecture in terms of an equation, we add sources for
any gauge invariant composite operators to the CFT action,

S′ = S −
∫
d4xφ(0)(x)O(x) . (6.47)

Wick rotating to Euclidean time, the generating functional for these operators then
reads

Z [φ(0)] = e−W [φ(0)] =
〈
exp

(∫
dd xφ(0)(x)O(x)

)〉

CFT

. (6.48)

The AdS/CFT conjecture may then be stated as

W [φ(0)] = SSUGRA[φ]
∣∣∣
lim
z→0

(φ(x,z)zΔ−4)=φ(0)(x)
. (6.49)
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Fig. 6.3 Witten diagram for
a three-point function

The boundary values of the supergravity fields are identified with the sources of
the dual field theory. Within AdS/CFT, the operator sources of the CFT become
dynamical classical fields propagating into the AdS space in one dimension higher.
Note also that AdS/CFT has elements of a saddle point approximation since the CFT
functional is given by a classical action on the gravity side. This is expected in the
large N limit which also amounts to a saddle point approximation.

From the proposal (6.49) we may calculate connected Green’s functions in the
CFT by taking functional derivatives with respect to the sources on both sides of this
equation. On the field theory side we have

〈O1(x1) . . .On(xn)〉 = − δnW

δφ1
(0)(x1) . . . δφn

(0)(xn)

∣∣∣
φi

(0)=0
. (6.50)

Using (6.49) we may thus calculate CFT correlation functions from the propagation
of the source fields through AdS space. Since the gravity action is classical, only tree
diagrams contribute. The classical propagators on the gravity side are given by the
Green’s functions of the operator �AdS5 , while the vertices are obtained from higher
order terms in the Kaluza–Klein reduction of the ten-dimensional gravity fields on
S5. The corresponding Feynman diagrams are referred to as Witten diagrams [25].
These are usually drawn as a circle depicting the boundary of AdS space, with the
interior of the circle corresponding to the AdS bulk space. An example for a Witten
diagram leading to a three-point function is shown in Fig. 6.3. Here, each of the
three lines in the bulk of AdS corresponds to bulk-to-boundary propagator, i.e. to the
appropriate Green’s function of �AdS5 with one endpoint at the boundary. For scalar
operators, the bulk-to-boundary propagator is given by

KΔ(z0, z; x) = �(Δ)

πd/2�
(
Δ − d

2

)
(

z0
z20 + (z − x)2

)Δ

(6.51)

in Euclidean AdS space with five-dimensional coordinates z ≡ (z0, z) with z0 the
radial coordinate and z the four coordinates parallel to the boundary. For the second
coordinate, x0 = 0 since x is located at the boundary. The index Δ corresponds to
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the dimension of the dual scalar operator. Moreover, the vertex in theWitten diagram
corresponds to a cubic coupling obtained from the Kaluza–Klein reduction of the
type IIB supergravity action on S5. For four-point functions or even higher correlation
functions, there are contributions involving bulk-to-bulk propagators that link two
vertices in the bulk of AdS space. The calculation of two- and three point functions
of 1/2 BPS operators inN = 4 Super Yang–Mills theory and in IIB supergravity on
AdS5 × S5 provides an impressive test of the AdS/CFT conjecture: The results for
the three-point function in field theory and gravity coincide, subject to an appropriate
normalization using the expressions for the two-point function [21, 22].

6.2.4 Finite Temperature

Let us now consider how the AdS/CFT correspondence may be generalized to quan-
tum field theory at finite temperature. In fact, there is a natural way to proceed, which
is based on the following. In thermal equilibrium, quantum field theories may be de-
scribed in the imaginary time formalism. This means that the ensemble average of
an operator at temperature T is given by

〈O〉β = tr

(
exp(−βH)

Z
O

)
, Z = tr exp(−βH) , (6.52)

where β = 1/(kBT ) and we set kB = 1. H is the Hamiltonian of the theory consid-
ered. Formally, β corresponds to an imaginary time, t = iτ . An important point is
that the analyticity properties of thermal Green’s functions require τ ∈ [0, β]. This
implies that the imaginary time τ is compactified on a circle.

Let us consider the gravity dual thermodynamics of N = 4 Super Yang–Mills
theory on IR3. We note that the compactification of the time direction breaks su-
persymmetry, since antiperiodic boundary conditions have to be imposed on the
fermions present in the field theory Lagrangian.

The essential point for constructing the gravity dual is that on the gravity side,
the field theory described above is identified with the thermodynamics of black D3-
branes in Anti-de Sitter space. The solitonic solution for these branes is given by the
metric

ds2 =H(r)−1/2
(− f (r)dt2 + dx2

) + H(r)1/2
(

dr2

f (r)
+ r2dΩ5

2

)
, (6.53)

f (r) = 1 −
(rH
r

)4
, H(r) = 1 + L4

r4
, (6.54)

The blackening factor f (r) vanishes at the Schwarzschild horizon rh of the black
brane. The difference between a black brane and a black hole is that the black brane
is infinitely extended in the spatial x directions, which span IR3. Setting z = L2/r ,
Wick rotating to imaginary time and taking the near-horizon limit as before, this
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gives

ds2 = L2

z2

⎛

⎝
(
1 − z4

z4H

)
dτ 2 + dx2 + 1

1 − z4

z4H

dz2

⎞

⎠ + L2dΩ2
5 , (6.55)

with zH theSchwarzschild radius.As for a blackhole,wenote that gττ → 0, gzz → ∞
for z → zH . Let us now introduce a further variable

z = zH

(
1 − ρ2

L2

)
. (6.56)

Here, ρ is a measure for the distance from the horizon at zH , outside the black hole.
We expand about the horizon. To lowest order in ρ, the (τ, z) contribution to the
Euclidean metric becomes

ds2 � 4ρ2

z2H
dτ 2 + dρ2 . (6.57)

Withφ ≡ 2τ/zH , this becomes ds2 = dρ2 + ρ2dφ2. For regularity atρ = 0,we have
to impose that φ is periodic with period 2π , such that we have a plane rather than
a conical singularity. This implies that τ becomes periodic with period Δτ = π zH .
From the field-theory side we know that Δτ = β = 1/T , which implies

zH = 1

πT
. (6.58)

Thus the field-theory temperature is identified with the Hawking temperature of the
black brane!

We may now compute the field-theory thermal entropy from the Bekenstein-
Hawking entropy of the black brane [26]. In general, the Bekenstein-Hawking en-
tropy is given by the famous result

SBH = Ad−1

4Gd+1
, (6.59)

where Ad−1 is the area of the black brane horizon and Gd+1 is the Newton constant.
For a black D3-brane, the horizon area is given by

A3 =
∫
d3x

√
g3d

∣∣
∣
z=zH

· Vol(S5) , g3d = g11g22g33 = L6

z6

= π6L8T 3Vol(R3) , (6.60)

where we used the useful formulae Vol(S5) = π3L5,
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G5 = G10

Vol(S5)
= πL3

2N 2
, (6.61)

2κ10 = 16πG10 = (2π)7α′4g2s and L4 = 4πgs Nα′2. Combining all results, we find

SBH = π2

2
N 2T 3Vol(R3) . (6.62)

This result, valid at strong coupling, differs just by its prefactor from the free field
theory result

Sfree = 2π2

3
N 2T 3Vol(R3) . (6.63)

We note that the result at strong coupling is small by a factor of 3/4.

6.3 Kondo Model Within Field Theory and Condensed
Matter Physics

We now turn to the discussion of models for magnetic impurities. We begin by
considering the original model of Kondo [6], which describes the interaction of a
free electron gas with a SU (2) spin impurity. The electrons are also in the spin 1/2
representation of a second SU (2). Using field-theory language, the corresponding
Hamiltonian may be written as

H = vF
2π

iψ†∂xψ + vF
2

λK δ(x)J · S . (6.64)

Here, vF is the Fermi velocity, and S is the magnetic impurity satisfying

[
Sa, Sb

] = iεabcSc , (6.65)

which takes values in the internal SU (2) spin space. The spin impurity interacts with
the electron current

Ja = ψ†σ aψ , (6.66)

withσ a thePaulimatrices.TheHamiltonian consists of a kinetic term for the electrons
and an interaction localized at the site of the impurity. Hence the interaction term
involves a delta distribution.

The Kondo model is simplified in the s-wave approximation, where the prob-
lem becomes spherically symmetric. We thus introduce polar coordinates (r, θ, φ).
The dependence on the two angles becomes trivial and we are left with a 1 + 1-
dimensional theory in the space spanned by (r, t). The radial coordinate r runs from
zero to infinity. The impurity sits at the origin and provides a boundary condition.
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Fig. 6.4 Analytic continuation to negative values of r . The right-movers become left-movers trav-
elling at negative values of r

Fig. 6.5 One-loop Feynman graph contributing to the renormalization of the Kondo coupling, with
an electron (solid line) scattering off the impurity (dashed line)

The electrons separate into left- and right movers. It is now convenient to analytically
continue r to negative values. Then, the previous right-movers become left-movers
travelling at negative values of r , i.e. ψR(r) → ψL(−r), as shown in Fig. 6.4.

The Hamiltonian (6.64) was proposed and solved perturbatively by Jun Kondo
[6]. To first order in perturbation theory, the quantum correction to the resistivity is

ρ(T ) = ρ0

[
λK + νλ2

K ln
D

T
+ · · ·

]2

, (6.67)

where ν is the density of states and D a UV cut-off, for instance the bandwidth.
The corresponding Feynman graph is shown in Fig. 6.5. This correction explains the
experimental result for a logarithmic rise at low temperatures. From a theoretical
perspective, we note that perturbation theory breaks down at a temperature scale

TK = D exp

(
− 1

νλK

)
, (6.68)

which defines the Kondo temperature TK . At this scale, the first order perturbative
correction is of the same order as the zeroth order term, which implies that pertur-
bation theory breaks down.

For the coupling itself, thefirst order perturbative correctiongives the beta function

β(λK )one−loop = T
dλK

dT
= −νλ2

K . (6.69)

So the beta function is negative. This is analogous to the gauge beta function in QCD,
which is also negative—a property associated with asymptotic freedom in the UV.
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By analogy, we see that the Kondo temperature TK plays a similar role as the scale
ΛQCD in QCD, at which perturbation theory breaks down.

A resummation of (6.69) leads to the effective coupling

λeff(T ) = λK

1 − νλK ln(D/T )
. (6.70)

λeff(T ) diverges at T ∼ TK = D exp(−1/(νλK )). In the IR for T → 0, the theory
has a strongly coupled fixed point where the effective coupling vanishes. In fact, the
impurity is screened: The impurity spin forms a singlet with the electron spin,

|ψ〉 = 1√
2

(| ⇑↓〉 − | ⇓↑〉) . (6.71)

This is reminiscent of the formation of meson bound states in QCD.
The theories at the UV and IR fixed points of the flow are described by boundary

conformal field theories (bCFT). Using the analytic continuation described above, In
theUV, the theory is free, andwemay impose the boundary conditionψL (0) = ψR(0)
for the left- and right moving electrons introduced above. In the IR however, due to
the screening it costs energy to add a further electron to the singlet at r = 0. The
probability for an electron to be at r = 0 in the ground state is zero. This observation is
encoded in the antisymmetric boundary condition ψR(0) = −ψL(0). Within bCFT,
the Kondo model was analyzed extensively by Affleck and Ludwig [27], making
non-trivial use of the appropriate representations of the conformal and the spin Kac–
Moody algebra.

Both the UV and the non-trivial IR fixed point of the Kondo RG flow may be
described using CFT techniques. Essentially, the interaction may be translated into
a boundary condition at r = 0. Let us sketch this approach, considering a general
SU (N ) spin group instead of the SU (2) considered above, as well as k species
(also called channels or flavours) of electrons. In the UV, the boundary condition
relating the left- and right movers is just ψL(0) = ψR(0). In the IR, a bound state
involving the impurity spin forms, which is a singlet when N = k = 2. This implies
that it costs energy to add another electron at r = 0, and the probability of finding
another electron there is zero. This is described by an antisymmetric wave function
as provided by the boundary condition ψL(0) = −ψR(0).

It may be shown [7] that by introducing the currents

Jcharge =: ψ†αiψαi : , Jaspin =: ψ†αi T a
α

βψβi : , J A
channel =: ψ†αiτ A

i
jψα j : ,

(6.72)
where the colon denotes normal ordering, T a

α
β are SU (N ) generators and τ A

i
j are

SU (k) generators, the Kondo Hamiltonian may be written as
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H = 1

2π(N + k)
Jaspin J

a
spin + 1

2π(k + N )
J A
channel J

A
channel +

1

4πNk
(Jcharge)

2

+ λK δ(r)Sa J aspin . (6.73)

In the IR, by writing
J a

spin = Jaspin + λK δ(r)Sa , (6.74)

the interaction term may be absorbed into a new current J a
spin. Written in terms of

this new current, the Hamiltonian again reduces to the Hamiltonian of the free theory
without interaction. The interaction is thus absorbed and replaced by the non-trivial
boundary condition discussed above.

At the conformal fixed points, the spin, channel and charge currents may be
expanded in a Laurent series,

Ja(z) =
∑

n∈Z
z−n−1 Jan . (6.75)

The mode expansions then satisfy Kac–Moody algebras,

[Jan , J b
m] = i f abc J c

n+m + n

2
kδabδm+n,0 , (6.76)

as shown here for the spin current with SU (N )k symmetry, where k denotes the level
of the Kac–Moody algebra. Similarly, for the channels we have a SU (k)N symmetry.
The total symmetry of themodel is SU (N )k × SU (k)N ×U (1). The representations
of the two Kac–Moody algebras are fused in a tensor product. The two different
boundary conditions in the UV and in the IR lead to different representations and
thus operator spectra for the total theory.

In the simplest example when the spin is s = 1/2 and there is only one species of
electrons, k = 1, then in the IR a singlet forms. More generally, a singlet is present
when 2s = k, which is referred to as critical screening. When k < 2s, however, the
impurity has insufficient channels to screen the impurity completely, and there is a
residual spin of size |s − k/2|. This is referred to as underscreening. On the other
hand, when k > 2s there are too many electron species for a critical screening of the
spin, which leads to non-Fermi liquid behaviour, a situation called overscreening.

6.4 Large N Kondo Model

As was found by condensed matter physicists in the eighties [28, 29], the Kondo
model simplifies considerably when the rank N of the spin group is taken to infinity.
In this limit, the interaction term J · S reduces to a product OO† involving as scalar
operatorO , and the screening corresponds to the condensation ofO . For comparison
to gauge/gravity duality, it will be useful to consider this large N solution in which
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the Kondo screening appears as a condensation process in 0 + 1 dimensions. In the
large N limit, a phase transition is possible in such low dimensions since long-range
fluctuations are suppressed. Moreover, there is an alternative large N solution of the
Kondo model using the Bethe ansatz [8, 9].

The large N limit of the Kondo model involves N → ∞, λ → 0 with λN fixed.
The vector large N limit of the Kondo model provides information about the spec-
trum, thermodynamics and transport properties everywhere along the RG flow, even
away from the fixed points. 1/N corrections may be calculated.

We consider totally antisymmetric representations of SU (N ) given by a Young
tableau consisting of one column with q boxes, q < N . We write the spin in terms
of Abrikosov pseudo-fermions χ , which means that we consider

Sa = χ†i T a
i
jχ j , a = 1, 2, . . . , N 2 − 1 , (6.77)

with χ in the fundamental representation of SU (N ). A state in the impurity Hilbert
space is obtained by acting on the vacuum state with q of the χ†. This gives rise to
a totally antisymmetric tensor product with rank q. Since (6.77) is invariant under
phase rotations of the χ ’s, there is an additional new U (1) symmetry. This implies
that we need to impose a constraint since considering the χ ’s instead of Sa should
not introduce any new degrees of freedom. We impose

χ†χ = q , (6.78)

i.e. the charge density of the Abrikosov fermions is given by the size of the totally
antisymmetric representation. Together with the fermions ψ of the Kondo model,
we have a SU (N ) singlet operator

O(t) ≡ ψ†χ , ΔO = 1

2
. (6.79)

Now in the large N limit, the Kondo interaction J · S simplifies considerably as
follows. We make use of the Fierz identity (6.20). For the Kondo interaction this
implies

λδ(x)JaSa = λδ(x)(ψ†T aψ)(χ†T aχ) = 1

2
λδ(x)

(
OO† − q

N
(ψ†ψ)

)
, (6.80)

where for sufficiently small q we may neglect the last term in the limit N → ∞.
In the large N limit, the Kondo coupling is thus the coupling of a ‘double-trace’

deformation OO†, with two separately gauge invariant operators O and O†. This
is similar to double-trace operators where two separately gauge-invariant operators
are multiplied to each other. For operators involving fields in the adjoint represen-
tation, traces have to be taken to generate gauge-invariant operators. Here however,
O is gauge invariant without trace, since both ψ and χ are in the fundamental of
SU (N ). The operatorOO† is of engineering dimension one. As defect operator, it is
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marginally relevant, i.e. it is marginal at the classical level, but quantum corrections
make it relevant.

In the large N limit, the solution of the field-theory saddle point equations re-
veals a second order mean-field phase transition in which O condenses: There is a
critical temperature Tc above which 〈O〉 = 0 and below which 〈O〉 �= 0. The critical
temperature Tc is slightly smaller than the Kondo temperature TK and may be calcu-
lated analytically. The condensate spontaneously breaks the U (1) symmetry of the
χ fermions. 1/N corrections smoothen this transition to a cross-over.

At large N , the Kondo model thus has similarity with superconductivity that is
triggered by a marginally relevant operator. This observation provides a guiding
principle for constructing a gauge/gravity dual of the large N Kondo model.

6.5 Gravity Dual of the Kondo Model

The motivation of establishing a gravity dual of the Kondo model is twofold: On
the one hand, this provides a new application of gauge/gravity duality of relevance
to condensed matter physics. On the other hand, this provides a gravity dual of
a well-understood field theory model with an RG flow, which may provide new
insights into the working mechanisms of the duality. It is important to note that our
holographic Kondo model will have some features that are distinctly different from
the well-known field theory Kondo model described above. Most importantly, the
1 + 1-dimensional electron gas will be strongly coupled even before considering
interactions with the impurity. This has some resemblance with a Luttinger liquid
coupled to a spin impurity. Moreover, the SU (N ) spin symmetry will be gauged.
The holographic Kondo model has provided insight into the entanglement entropy
of this system. Moreover, quenches of the Kondo coupling in the holographic model
provide a new geometric realization of the formation of the Kondo screening cloud.
It is conceivable that further work will also lead to new insight into the Kondo lattice
that involves a lattice of magnetic impurities. The Kondo lattice is a major unsolved
problem within condensed matter physics. Preliminary results in this direction that
were obtained using holography may be found in [30]. Further holographic studies
of holographic Kondo models include [31].

6.5.1 Brane Construction for a Holographic Kondo Model

Here we aim at constructing a holographic Kondo model realizing similar features to
the ones of the large N field theory Kondo model described in the previous section,
including a RG flow triggered by a double-trace operator [32]. For this purpose,
consider an appropriate configuration of D-branes which allows us to realize the
field theory operators needed.
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Table 6.4 Brane configuration for a holographic Kondo model

0 1 2 3 4 5 6 7 8 9

N D3 X X X X

1 D7 X X X X X X X X

1 D5 X X X X X X

The field theory involves fermionic fields ψ in 1 + 1 dimensions in the funda-
mental representation of SU (N ), as well as Abrikosov fermion fields χ localized at
the 0 + 1-dimensional defect. These transform in the fundamental representation of
SU (N ) as well. From these we will construct the required operators. For the brane
configuration we will use probe branes, which means that a small number of coinci-
dent branes are embedded into a D3-brane background, neglecting the backreaction
on the geometry. For a holographic Kondo model, a suitable choice of probe branes
consists of D7- and D5-branes embedded as shown in Table 6.4. Fields in the fun-
damental representation are obtained from strings stretching between the D3- , D5-
and D7-branes. The D7-brane probe extends in 1 + 1 dimensions of the worldvol-
ume of the D3-branes. As we discuss below, strings stretching between the D3- and
D7-branes give rise to chiral fermions, which we identify with the electrons of the
Kondo model. On the other hand, since the D5-brane only shares the time direction
with the D3-branes, the D3–D5 strings give rise to the 0 + 1 dimensional Abrikosov
fermions.

We note that in a in absence of the D5-branes, the D3/D7-brane system has eight
ND directions, such that half of the original supersymmetry is preserved. However,
the D5/D7-system has only two ND directions, such that supersymmetry is broken.
This leads to the presence of a tachyon potential and a condensation as required for
the large N Kondo model. The tachyon, a complex scalar field Φ, is identified as the
gravity dual of the operator O = ψ†χ .

As discussed in [33, 34], the D7-brane gives rise to an action

S7 = 1

π

∫
d2xψ†

L(i∂− − A−)ψL (6.81)

of chiral fermions which are coupled to theN = 4 supersymmetric gauge theory in
3 + 1dimensions. A− is a restriction of a component of theN = 4SuperYang–Mills
gauge field to the subspace of the fermions. These fermions are in the fundamental
representation of the gauge group SU (N ). For simplicity, from now on we drop the
label L for left-handed. The gauge field A− is a component of the N = 4 theory
gauge field on the 1 + 1-dimensional subspace spanned by theD7-brane.We identify
the ψL with the electrons of the Kondo model.

Similarly, for the Abrikosov fermions χ we obtain from the D3/D5-brane system
the action

S5 =
∫

dtχ†(i∂t − At − Φ9)χ . (6.82)
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Table 6.5 Field-operator map for the holographic Kondo model

Operator Gravity field

Electron current Jμ = ψ̄γ μψ ⇔ Chern-Simons gauge field A in AdS3
Charge density q = χ†χ ⇔ 2d gauge field a in AdS2
Operator O = ψ†χ ⇔ 2d complex scalar Φ in AdS2

Here,Φ9 is the adjoint scalar ofN = 4 Super Yang–Mills theory whose eigenvalues
represent the positions of the D3-branes in the x9 direction. In (6.82), both At and
Φ9 are restricted to the subspace of the χ fields. Note that unlike the original Kondo
model, the SU (N ) spin symmetry is gauged in this approach. Also, the background
N = 4 theory is strongly coupled in the gravity dual approach and provides strong
interactions between the electrons.

Let us now turn to the gravity dual of this configuration. The N D3-branes provide
an AdS5 × S5 supergravity background as before. The probe D7-brane wraps an
AdS3 × S5 subspace of this geometry, while the probe D5-branes wraps AdS2 × S4.
The Dirac-Born-Infeld action for the D5-brane contains a gauge field aμ on the AdS2
subspace spanned by (t, r), with t the time coordinate and r the radial coordinate in
the AdS geometry. The at component of this gauge field is dual to the charge density
of the Abrikosov fermions, q = χ†χ . The D7-brane action contains a Chern–Simons
term for a gauge field Aμ on AdS3. As noted before, the D5–D7 strings lead to a
complex scalar tachyon field.

We may thus establish the holographic dictionary for the operators of the field-
theory large N Kondomodel. This is listed in Table 6.5. The electron current in 1 + 1
dimensions is dual to the Chern–Simons field in 2 + 1 dimensions. The Abrikosov
fermion charge density q in 0 + 1 dimensions is dual to the gauge field component
at in 1 + 1 dimensions. Finally, the operator O = ψ†χ in 0 + 1 dimensions is dual
to the complex scalar field Φ in 1 + 1 dimensions.

The brane picture has allowed us to neatly establish the required holographic dic-
tionary. Unfortunately, it is extremely challenging to derive the full action describing
the brane construction given. In particular, the exact form of the tachyon potential is
not known.

For making progress towards describing a variant of the Kondo model holograph-
ically, we thus turn to a simplified model consisting of a Chern–Simons field in
AdS3 coupled to a Yang–Mills gauge field and a complex scalar in AdS2. This sim-
plification still allows us to use the holographic dictionary established above. The
information we lose though is about the full field content of the strongly coupled
field theory. On the other hand, this simplifield model allows for explicit calculations
of observables such as two-point functions and the impurity entropy, as we discuss
below. It is instructive to compare the results of these calculations with features of
the field-theory large N Kondo model, as we shall see.

The simplified model we consider is



6 Holographic Kondo Models 183

S = 1

8πGN

∫
dzdxdt

√−g (R − 2Λ) − N

4π

∫

AdS3

A ∧ d A

− N
∫

dxdt
√−g

(
1

4
tr f mn fmn + (DmΦ)†(DmΦ) − V (Φ)

)
. (6.83)

Here, z is the radial AdS coordinate, x is the spatial coordinate along the boundary
and t is time. The defect sits at x = 0. The first term is the standard Einstein–Hilbert
action with negative cosmological constant Λ. The second term is a Chern–Simons
term involving the gauge field Aμ dual to the electron current Jμ. We take Aμ to be
an Abelian gauge field, which implies that we consider only one flavour of electrons,
or—in condensed matter terms—only one channel. fmn is the field strength tensor
of the gauge field am with m ∈ {t, z}, which we take to be Abelian too. Its time
component at is dual to the charge density χ�χ , which at the boundary takes the
value Q = q/N with q the dimension of the antisymmetric prepresentation of the
spin impurity. Dm is a covariant derivative given by Dm = ∂m + i AmΦ − iamΦ. For
the complex scalar, we assume its potential to take the simple form

V (Φ†Φ) = M2Φ†Φ . (6.84)

We write the complex field as Φ = φ exp iδ with φ = |Φ|. We choose M2 in such a
way that Φ†Φ is a relevant operator in the UV limit. It becomes marginally relevant
when perturbing about the fixed point. Moreover, for the time being we consider the
matter fields as probes, such that they do not influence the background geometry. For
this background geometry we take the solution to the gravity equations of motion
which corresponds to the AdS BTZ black hole, i.e.

ds2BTZ =1

z

(
1

h(z)
dz2 − h(z)dt2

)
,

h(z) = 1 − z2

z2h
, (6.85)

where we set the AdS radius to one, L = 1, and zh is related to the temperature by

T = 1

2π zh
. (6.86)

The non-trivial equations of motion for the matter fields are given by

∂z Ax = 4πδ(x)
√
ggttatφ

2 ,

∂z(
√−ggzzgtt∂zat ) = 2

√−ggttatφ
2 ,

∂z(
√−ggzz∂zφ) = √−ggtta2t φ + √−gM2φ . (6.87)
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The three-dimensional gauge field Aμ is non-dynamical, but will be responsible for
a phase shift similar to the one observed in the field-theory Kondo model.

Above the critical temperature Tc where O dual to the scalar field condenses,
we have φ = 0. Then, asymptotically near the boundary, we have at (z) ∼ Q

z + μ,
where μ is a chemical potential for the spurious U (1) symmetry rotating the χ ’s.
The charge density is given by χ†χ = NQ, with Q = q/N .

For generating the Kondo RG flow, we need to turn on the marginally relevant
‘double-trace’ operator OO†. We choose the mass M in the potential such that the
field φ(z) is at the Breitenlohner–Freedman stability bound [35]. The asymptotic
behaviour of φ(z) near the boundary is then

φ(z) = αz1/2 ln(Λz) − βz1/2 + O(z3/2 ln(Λz)) . (6.88)

Following [36, 37], the gravity dual of a double-trace perturbation is obtained by
imposing a linear relation between α and β,

α = κβ . (6.89)

We choose α to correspond to a source for the operator O , while β is related to is
vacuum expectation value. The physical coupling φ(z) should be a RG invariant,
i.e. invariant under changes of the cut-off Λ. This implies

κ = κ0

1 + κ0 ln(Λ0/Λ)
. (6.90)

At finite temperature, we obtain the analogous result

κT = κ0

1 + κ0 ln(Λzh)
(6.91)

This expression for the coupling κT diverges at the temperature

TK = 1

2π
Λe1/κ0 , (6.92)

where TK is theKondo temperature. A similar behaviour is observed in the condensed
matterKondomodels.Moreover, this behaviour bears some similarity toQCD,where
the coupling becomes strong at a scale ΛQCD, below which bound states provide the
natural description of the degrees of freedom. Of course, in the holographic Kondo
model there are two couplings, one between the electrons themselves and secondly
the Kondo coupling κT . While the first is strong along the entire flow, κT diverges at
the Kondo temperature and then becomes small again at lower temperatures, where
the condensate forms.

For determining the physical properties of themodel considered, we have to resort
to numerics to solve the equations of motion (6.87). We find a mean-field phase
transition as expected for a large-N theory, as shown in Fig. 6.6. In the screened
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Fig. 6.6 Expectation value of the operator O = ψ†χ as function of the temperature. Below Tc,
a condensate forms. a Close to the transition temperature, displaying that the phase transition is
mean-field; b Log-log plot showing a larger temperature range. The VEV appears to approach a
constant at low temperatures, however further stabilisation by a quartic potential contribution is
expected to be required in the limit T → 0. Figures from [32]

phase, a condensate of the operator O = ψ†χ forms. We note that for very small
temperatures, the numerical solution of the equations of motion becomes extremely
time-consuming and thus our results are less accurate in this regime. We expect that
in the limit T → 0, to obtain a stable constant solution for 〈O〉 requires to add a
quartic term to the potential (6.84).

Our holographic model allows for a geometrical description of the screening
mechanism in the dual strongly-coupled field theory. For this we consider the electric
fluxF of the AdS2 gauge field at (z). At the boundary of the holographic space, this
flux encodes information about the impurity spin representation,

lim
z→0

F = lim
z→0

√−g f zt = a′
t (z)|z→0 = Q , (6.93)

with Q = q/N and q as in (6.78). When φ = 0, this flux is a constant and takes the
same value at the black hole horizon.However for T < Tc, the non-trivial profileφ(z)
draws electric charge away from at (z), reducing the electric flux at the horizon. This
implies that the effective number of impurity degrees of freedom is reduced, which
corresponds to screening. This is shown in Fig. 6.7 which shows the flux Fz→zh at
the horizon as a function of temperature. The numerical solution of the equations of
motion yields a decreasing flux when the temperature is decreased.

The temperature dependence of the resistivity may be obtained by an analysis
of the leading irrelevant operator at the IR fixed point, i.e. by perturbing about the
IR fixed point by this operator. This gives ρ(T ) ∝ T γ with γ ∈ R a real number.
A similar behaviour occurs also in Luttinger liquids [38]. The model thus does not
reproduce the logarithmic rise of the resistivitywith decreasing temperature observed
in the original Kondo model. This behaviour is expected since the model is at large
N and the ambient electrons are strongly coupled.

Let us emphasize again the differences between the holographic Kondo model
considered here and the large N Kondo model of condensed matter physics: Here,
the electrons are strongly coupled among themselves even before coupling them to
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Fig. 6.7 Electric flux
through the boundary of
AdS2 at the black hole
horizon. This is a measure
for the number of degrees of
freedom. Its decrease at low
temperatures indicates that
the impurity is screened. For
T/Tc � 0.2, the decrease is
only logarithmic. The radial
variable is normalized such
that z = 1 at the horizon.
Figure from [32]

the spin defect. The system thus has two couplings: the electron-electron coupling
which is always large, and the Kondo coupling to the defect that triggers the RG flow.
Moreover, we point out that in our model, the SU (N ) symmetry is gauged, while it
is a global symmetry in the condensed matter models.

To conclude, let us consider different applications of the holographicKondomodel
we introduced. These involve three aspects: the impurity entropy, quantum quenches
and correlation functions.

6.6 Applications of the Holographic Kondo Model

6.6.1 Entanglement Entropy

The concept of holographic entanglement entropy introduced byRyu andTakayanagi
in 2006 has proved to be an important ingredient to the holographic dictionary [39],
opening up new relations between gauge/gravity duality and quantum information.
In general, the entanglement entropy is defined for two Hilbert spacesHA andHB .
In the AdS/CFT correspondence, it is useful to consider A and B to be two disjunct
space regions in the CFT. Defining the reduced density matrix to be

ρA = trBρ , (6.94)

where ρ is the density matrix of the entire space, the entanglement entropy is given
by its von Neumann entropy

S = −trAρA ln ρA . (6.95)

The entanglement entropy bears resemblance with the black hole entropy since
it quantifies the lost information hidden in B. Ryu and Takayanagi proposed the
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Fig. 6.8 The impurity
entropy in the holographic
Kondo model is obtained
from the entanglement
entropy. The entanglement
area is a line of length � in
the dual field theory. The
holographic minimal surface
is a geodesic. For the
impurity entropy, the
entanglement entropy in
absence of the defect is
subtracted from the one in
presence of the defect

holographic dual of the entanglement entropy to be

S = AreaγA

4Gd+1
, (6.96)

where Gd+1 is the Newton constant of the dual gravity space and γA is the area of
the minimal bulk surface whose boundary coincides with the boundary of region A.
For a field theory in 1 + 1 dimensions, the region A may be taken to be a line of
length �, and the bulk minimal surface γA becomes a bulk geodesic joining the two
endpoints of this line, as shown for the holographic Kondo model in Fig. 6.8. We
note that for a 1 + 1-dimensional CFT at finite temperature, with the BTZ black hole
as gravity dual, it is found both in the CFT [40] and on the gravity side [39] that the
entanglement entropy for a line of length � is given by

SBH(�) = c

3
ln

(
1

πεT
sinh(2π�T )

)
, (6.97)

with ε a cut-off parameter.
For the Kondo model, a useful quantity to consider is the impurity entropy which

is given by the difference of the entanglement entropies in presence and in absence
of the magnetic impurity,

Simp = Simpurity present − Simpurity absent . (6.98)

In the previous sections, we considered the probe limit of the holographic Kondo
model, in which the fields on the AdS2 defect do not backreact on the AdS3 geometry.
However, including the backreaction is necessary in order to calculate the effect of
the defect on the Ryu–Takayanagi surface. A simple model that achieves this [41,
42] consists of cutting the 2 + 1-dimensional geometry in two halves at the defect at
x = 0 and joining these back together subject to the Israel junction condition [43]
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Fig. 6.9 Cutting and joining of two halves of the AdS BTZ geometry subject to the Israel junction
at the defect. Figure by Mario Flory

Fig. 6.10 Geometry in a vicinity of the backreacting defect brane at positive brane tension. The
horizontal black line corresponds to the boundary of the deformed AdS space, as in Fig. 6.9. The
volume is increased in a given region around the defect as compared to the case when the brane
tension vanishes. This will lead to a longer geodesic for a given entanglement interval and thus to
a non-zero positive impurity entropy. Figure by Mario Flory

Kμν − γμνK = −κG

2
Tμν , (6.99)

This procedure is shown in Fig. 6.9. We refer to the joining hypersurface as ‘brane’.
In (6.99), γ and K are the induced metric and extrinsic curvature at the joining
hypersurface extending in (t, z) directions. Tμν is the energy-momentum tensor for
the matter fields a and Φ at the defect, and κG is the gravitational constant with
κ2
G = 8πGN .
Thematter fieldsΦ anda lead to a non-zero tension on the brane,which varieswith

the radial coordinate. The higher the tension on this brane, the longer the geodesic
joining the two endpoints of the entangling interval will be, as shown in Fig. 6.10.
A numerical solution of the Israel junction condition reveals that the brane tension
decreases with decreasing temperature, which leads to a shorter geodesic. This in
turn leads to a decrease of the impurity entropy (6.98). This decreases is expected
and in agreement with the screening of the impurity degrees of freedom.

In the holographic Kondo model, the brane is actually curved since the brane
tension depends on the radial coordinate. For large entangling regions �, we may
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Fig. 6.11 Left: Quench of the ‘double-trace’ Kondo coupling from the unscreened to the screened
phase. Right: Reaction of the system to this quench: A condensate forms. There are no oscillations
about the new equilibrium configuration. Figure from [46]

approximate the impurity entropy to linear order by noting that the length decrease
of theRyu–Takayanagi geodesic γA translates into a decrease of the entangling region
� itself. To linear order, this implies that the entangling region is given by � + D in the
UV and by � in the IR, for D  �. Using (6.97) we may thus write for the difference
of the impurity between its UV and IR values

ΔSimp = SBH(� + D) − SBH(�)

� D · ∂�SBH(�) = 2πDT

3
coth(2π�T ) . (6.100)

It is a non-trivial result that subject to identifying the scale D with the Kondo cor-
relation length of condensed matter physics, D ∝ ξK , then the result agrees with
previous field-theory results for the Kondo impurity entropy [44, 45].

6.6.2 Quantum Quenches

A quantum quench corresponds to introducing a time dependence of the Kondo
coupling. On the gravity side, this implies that the equations of motion become
partial differential equations (PDEs), since both the dependence on the AdS radial
coordinate and on time are relevant. Quenches of the holographic ‘double trace’
Kondo coupling κT were considered in [46]. Figure6.11 shows a quench from the
unscreened to the screened phase. The system reacts to this quench of the coupling
by forming a condensate. There is a certain time lapse before this happens. It is also
noteworthy that the reaction is overdamped, i.e. there are no oscillations around the
new equilibrium value. This behaviour follows from the structure of the quasinormal
modes, i.e. the eigenmodes of the gravity system. The leading eigenmode is purely
imaginary in this system. This is in agreement with the behaviour of the correlation
functions discussed in the next section.
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6.6.3 Correlation Functions

AdS/CFT allows to calculate retarded Green’s functions by adapting the methods
presented in Sect. 6.2.3.2 to Lorentzian signature [47]. The required causal structure
is obtained by imposing infalling boundary conditions on the gravity field fluctuations
at the black hole horizon. Moreover, a careful regularization using the methods of
holographic regularization [48] is essential. This approach was used in [49, 50] to
calculate spectral functions for the Kondo operator O = ψ†χ of (6.79). Spectral
functions are generally obtained from the retarded Green’s function by virtue of

ρ(ω) = −2 ImGR(ω) . (6.101)

The spectral function measures the number of degrees of freedom present at a given
energy. The results for the holographic Kondo model obtained in [49, 50] are shown
in Fig. 6.12.

Above the critical temperature, these spectral functions show a spectral asym-
metry related to a Fano resonance [51]. In the holographic case, this asymmetry is
characteristic of the interaction between the ambient strongly coupled CFT and the
localized impurity degrees of freedom. A similar spectral asymmetry also appears
in the condensed-matter large N Kondo model (which involves free electrons) at
vanishing temperature [52]. In the screened phase, the holographic spectral function
displayed in Fig. 6.12 is antisymmetric, consistent with the relation

ωP ∝ −i |〈O〉|2 (6.102)

between the condensate and the leading poleωP in the retardedGreen’s function. This
relation is also satisfied by the condensed matter large-N Kondo model involving
free electrons [53].

A similar spectral asymmetry also arises in the context of the Sachdev-Ye-Kitaev
(SYK) model that received a lot of attention recently [54, 55]. In fact, the original
variant of this model due to Sachdev and Ye [54] involvesWeyl fermions, as opposed
to theMajorana fermions of the SYKmodel. This Sachdev-Ye may be obtained from
the Ising model by the same mechanism as discussed in (6.77) above, i.e. by writing
the Ising spin in terms of a bilinear of auxiliary fermions. In this case, the Isingmodel
is given by

HS = − 1√
N

∑

A<B

JA,B S
aASaB , Sa = χ†T aχ , (6.103)

where the A, B label the different sites of the Ising lattice, and the index a refers
to spin space as in (6.77). We see that inserting the fermion bilinear expression for
Sa into the Ising model will give rise to a four-fermion model. Indeed, as explained
in [54, 56], reducing (6.103) to a single-site model by averaging over disorder, and
taking the large N limit, gives rise to the Sachdev-Ye model
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Fig. 6.12 Spectral functionρ(ω) for theKondooperatorO at the defect, as function of the frequency
ω. a Left: In the unscreened phase above Tc. The spectral function corresponds to a Fano resonance
with a spectral asymmetry. b Right: In the screened phase below Tc. The spectral function is
antisymmetric. The Green’s functions’ poles leading to the extrema in ρ(ω) are determined by the
size of the condensate for O . Figures from [49]

HSY = 1

(2N )3/2

N∑

i, j,k,l=1

Ji j,kl χ
†iχ jχ†kχ l − μ

∑

i

χ†iχ i , (6.104)

where the second term involving the chemical potential μ is added to fix the repre-
sentation q of the spin impurity. As discussed in [57], the Sachdev-Ye model also
displays a spectral asymmetry. This asymmetry is of an analogous form to the one
found above for the holographic Kondo model. In [57], it is shown that the spectral
asymmetry in the Sachdev-Ye model may be mapped to the entropy of a black hole
in AdS2 space. A similar mechanism is expected to be at work in the holographic
Kondo model introduced above.
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6.7 Conclusion and Outlook

The holographic Kondo model demonstrates nicely how the original concept of
the AdS/CFT conjecture may be applied to more involved configurations, in this
case involving a marginally relevant perturbation by a ‘double-trace’ operator and a
condensation process. It also demonstrates that holographic models may be linked to
previous results, in this case the large N Kondo model of condensed matter physics.
On the other hand, they also add new features, in this case the coupling of themagnetic
impurity to a strongly coupled electron system, leading in particular to new features
in quantum quenches and in the spectral function.

The AdS/CFT correspondence and gauge/gravity duality are undoubtedly one of
the most exciting developments in physics within the last twenty years. As discussed,
new avenues are opening up and are expected to lead to further important discoveries
in the future.

Acknowledgements I amverygrateful tomycollaboratorsMarioFlory,CarlosHoyos,Max-Niklas
Newrzella, Andy O’Bannon, Ioannis Papadimitriou, Jonas Probst and Jackson Wu.
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Chapter 7
Local Probe of the Kondo Length at a
Y -Junction of Critical Quantum Ising
Chains

Domenico Giuliano and Pasquale Sodano

Abstract We estimate the screening length associated to the Kondo effect at a Y -
junction of quantum Ising chains from the scaling behavior of the local magnetization
at the junction. We propose a simple way to probe the Kondo screening length in
a system whose parameters, including the effective length of the chains, can be in
principle tuned at wish.

7.1 Introduction

The Kondo effect was discovered as an upturn, below a certain, nonuniversal tem-
perature, of the resistivity in conducting metals containing magnetic impurities as,
for instance, in Cu doped with Co atoms. It was explained as a consequence of the
magnetic exchange interaction between the magnetic impurities and the conduction
electrons [1–3]. It arises due to the cooperative effect of the conduction electrons sur-
rounding the magnetic impurity, whose spins adjust themselves so as to dynamically
screen the impurity magnetic moment [2].

In the energy domain, the above screening is determined by electrons with energy
ranging all the way down to a characteristic dynamically generated energy scale
DK that is invariant along the renormalization group trajectories, dubbed the (Boltz-
mann constant times the) Kondo temperature [4, 5]. As the running energy scale
D approaches DK , a crossover takes place between the weakly coupled regime, in
which the itinerant electrons perturbatively interact with the magnetic impurity with
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a small “bare” coupling constant, and the strongly coupled regime, in which coop-
erative, nonperturbative low-energy electron dynamics leads to the formation of the
Nozières Fermi-liquid state, with the itinerant electrons cooperating to screen the
impurity spin into a localized spin singlet [6]. Thus, the Kondo effect is regarded as
the crossover between an ultraviolet, weakly coupled fixed point (the isolated impu-
rity) and an infrared, strongly correlated fixed point (the Kondo correlated state).

While the crossover is typically driven by acting on a dimensionful scale such
as the energy, or the temperature, using the Fermi velocity of fermions at the Fermi
surface, v f , it is possible to trade the energy scale DK for a length scale λK ∼
v f /DK . Having an emerging length scale suggests the possibility to regard the Kondo
crossover as taking place in real space, as well. In fact, λK has been identified with
the size of the electronic cloud screening the impurity spin and accordingly it has
been dubbed the “Kondo screening length” [5, 7].

While there is a solid theoretical argument implying the existence of the Kondo
screening length, any attempt to experimentally detect it in conducting metals has
failed so far. Indeed, when considering magnetic impurities in conducting metals,
there are several reasons for this failure, such as having a finite density of mag-
netic impurities combined with the large value of λK , with the correspondingly
non-negligeable interference effects among impurities, spurious effects due to the
electronic interactions, et cetera [8]. Given the difficulty of detecting the Kondo cloud
in electronic systems, it becomes of the utmost importance to design protocols of a
possible detection of the Kondo screening length in condensed matter systems.

The Kondo effect has become by now a paradigm in the physics of many-body
correlated systems, providing a testing ground for a number of methods, includ-
ing Wilson’s numerical renormalization group technique [5], as well as Anderson’s
analytical scaling approach [4]. Indeed, a renewed interest in the Kondo effect has
recently arisen, since it became possible to realize it in a controlled way in solid
state systems, such as small quantum dots with metallic leads [9–11], or in mag-
netic impurities in gapless spin chains [12], or in “topological” devices [13–16], in
which an effective magnetic impurity could be realized by means of Majorana modes
emerging at the interface between topological superconductors in their topological
phase, and normal conducting wires [17].

The Kondo effect emerges also in Y -junctions of XX and Ising chains [18–20]
and of Tonks–Girardeau gases [21].

In the following, we see how the Kondo screening length may emerge at a Y -
junction of quantum Ising chains and point out how to estimate it by means of a
pertinent local measurement. While the onset of Kondo effect at a junction is by
now a well-established feature [19, 22], the corresponding issue of the origin and
the definition of the Kondo screening length in spin networks has so far never been
addressed in detail. To this purpose, we argue here for the emergence of a length
scale associated to the Kondo energy scale.

We shall employ the standard renormalization group approach to the Kondo prob-
lem [4], adapted to a symmetric, finite-size version of the junction (that is, with the
three chains all assumed to have a finite length �). We show that, at given values of all
the other junction parameters, the system may, or may not, crossover to the Kondo
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regime depending on the value of �. In terms of energies, this is readily related to the
appearance of a finite energy gap in the excitation spectrum of the chains, ΔFS ∝ �−1,
which depletes the corresponding spectral density at low energy, that is, in the energy
window that is relevant for the Kondo impurity screening [2]. Conversely, moving to
real space, we propose to relate the finite-� suppression of the effect to the need for
the system to fit in it the whole Kondo screening cloud, in order for Kondo screening
to be effective. Thus, we propose to naturally identify the Kondo screening length as
the length scale �∗ such that the junction does not show/does show the onset of the
Kondo effect for � < �∗ (� > �∗). Eventually, we show how our approach provides
us with estimates for the Kondo screening length that are numerically consistent with
the expected relation λK ∝ D−1

K .
The real-space picture of the Kondo cloud lies at the hearth of our proposal of a

local probe of λK , and it can be most readily formulated in Kondo spin chains [12].
In these systems, it has been shown [23–25]. That the Kondo spin cloud is formed by
all the spins fully entangled with the impurity. As a result, the impurity and the spins
of the cloud should form an extended singlet [23], and, thus, one expects that the
magnetization of the spins belonging to the cloud is equal to 0. Indeed, when fully
formed within the spin system, the Kondo screening cloud corresponds to a fully
entangled state of the magnetic impurity with the spins [23–25]. Here, we propose
to probe the Kondo length in a Y -junction of quantum Ising chains by extracting λK

from the scaling behavior (with the chain length �) of the average value of a local
spin operator at the impurity location [20, 26].

The paper is organized as follows:

• In Sect. 7.2 we review the model Hamiltonian for a Y -junction of quantum Ising
chains and we show how to implement the Jordan–Wigner transformation to map
it onto an effective Kondo Hamiltonian;

• In Sect. 7.3 we address the onset of the Kondo regime in the junction with chains
of infinite length and with the parameters chosen so that their excitation spectrum
is gapless (“critical chains”). We review then the approach of [20] to estimate the
corresponding Kondo temperature;

• In Sect. 7.4 we analyze the junction made with finite-length chains. There, we
shall focus on how the finite length of the chains—and the corresponding nonzero
finite-size gap- affects the onset of Kondo regime;

• In Sect. 7.5 we show how to effectively vary the chain length by acting on local
parameters only and we analyze how to probe the onset of Kondo regime by
looking at the local magnetization at the junction;

• Section 7.6 is devoted to concluding remarks;
• In the appendix we review known facts about Jordan–Wigner approach to a single

quantum Ising chain.
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7.2 Y -Junction of Quantum Ising Chains: Jordan–Wigner
Transformation and Effective Kondo-Like Hamiltonian

The Kondo effect at a Y -junction of quantum Ising chains (QIC’s) was originally
addressed in [19] where an appropriate version of the Jordan–Wigner mapping [27]
from quantum spin operators onto lattice fermion operators was employed, leading to
an effective overscreened Kondo Hamiltonian [6]. The model Hamiltonian proposed
in [19] consists of three critical QIC’s connected to each other at one of their endpoints
via an additional Ising exchange interaction between the spin operators lying at the
endpoints. Assuming for simplicity that the Hamiltonians of the three chains all have
the same parameters, the “bulk” Hamiltonian of the system, HBulk for three critical
QIC’s of length � is given by

HBulk =
3∑

λ=1

⎧
⎨

⎩ − 2J
�−1∑

j=1

Sx
j,λS

x
j+1,λ + H

�∑

j=1

Szj,λ

⎫
⎬

⎭ , (7.1)

with S j,λ being a quantum spin-1/2 variable lying at site- j of the chain λ, J being the
Ising magnetic exchange strength, H being the applied, transverse magnetic field. As
stated above, the three chains are connected to each other at their endpoints ( j = 1)
via the junction “boundary” Hamiltonian HΔ, given by

HΔ = −2JΔ

3∑

λ=1

Sx
1,λS

x
1,λ+1 , (7.2)

with, in general, JΔ/J < 1. In the “critical” limit, J = ±H , the total Hamiltonian
H3−Chain = HBulk + HΔ is a paradigmatic example of a junction of three quantum
spin chains mapping onto an effective two-channel Kondo Hamiltonian [19].

A multi-channel generalization has been proposed in [22] still using quantum
spin chains, and the corresponding model Hamiltonians have proven to be exactly
solvable in the continuum limit [28]. In addition, a generalization of H3−Chain to
a junction of three quantum XY -spin chains was proposed in [20]. It provides a
means to continuously interpolate between the Y -junction of three QIC’s, and the
Y -junction of three XX -chains discussed in [18]. Finally, it should be mentioned
that an effective Kondo-like Hamiltonian may arise in pertinent Josephson junction
networks [26].

To resort to the effective Kondo-like Hamiltonian, one recasts H3−Chain in
fermionic coordinates by implementing a pertinent generalization of the Jordan–
Wigner transformation, in which real-fermionic Klein factors { σ 1, σ 2, σ 3} are intro-
duced, one per each chain, to recover the correct commutation relations between
spin operators lying at sites located on different chains. Specifically, one sets
{ σλ, σ λ′ } = 2δλ,λ′ . Accordingly, one introduces the generalized Jordan–Wigner
transformations, given by [18]
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S+
j,λ = ic†

j,λ e
iπ

∑ j−1
r=1 c†

r,λcr,λ σ λ

S−
j,λ = ic j,λ e

iπ
∑ j−1

r=1 c†
r,λcr,λ σ λ

Szj,λ = c†
j,λc j,λ − 1

2
, (7.3)

with the fermionic lattice operators satisfying the algebra

{ c j,λ , c j ′,λ′ } = {c†
j,λ, c

†
j ′,λ′ } = 0

{c j,λ , c†
j ′,λ′ } = δ j, j ′ δλ,λ′

{σλ, σ λ′ } = δ λ,λ′
. (7.4)

Inserting (7.3) into (7.1), one obtains the fermionic version of the bulk Hamiltonian

HBulk =
3∑

λ=1

{
− J

2

�−1∑

j=1

{c†
j,λc j+1,λ + c†

j+1,λc j,λ} + J

2

�−1∑

j=1

{c j,λc j+1,λ + c†
j+1,λc

†
j,λ}

+ H
�∑

j=1

c†
j,λc j,λ

}
. (7.5)

From (7.5) one sees that the generalized Klein factors disappear from the bulk
Hamiltonian. At variance, they do explicitly appear in the boundary junction Hamil-
tonian; indeed, the boundary is the only place where the three chains explicitly
interact with each other. In particular, in terms of the Jordan–Wigner fermions, plus
the generalized Klein factors, one obtains [19, 20]

HΔ = 2JΔΣ1 · R, (7.6)

with

Σ j = − i

2

⎡

⎢⎢⎣

(c†
j,2 + c j,2 )(c†

j,3 + c j,3 )

(c†
j,3 + c j,3 )(c†

j,1 + c j,1 )

(c†
j,1 + c j,1 )(c†

j,2 + c j,2 )

⎤

⎥⎥⎦ ; R = − i

2

⎡

⎣
σ 2σ 3

σ 3σ 1

σ 1σ 2

⎤

⎦ . (7.7)

It is straightforward to check that the components of Σ j , as well as the ones of R,
close the algebra of the quantum angular momentum. Therefore, the Hamiltonian
in (7.5), (7.6) describes a magnetic exchange interaction between the “effective”
isolated magnetic impurity R and the angular momentum density of the network of
the three chains, Σ j , at the endpoint of the chains, j = 1. In particular, the boundary
Kondo Hamiltonian in (7.6) corresponds to the peculiar realization of overscreened,
2-channel Kondo effect put forward in [29].
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As a first observation we note that (see the appendix), even for critical chains, i.e.,
for J = ±H , in a finite-length QIC of length �, the excitation spectrum of the chain
has a finite-size gap ΔFS ∼ π J/�. As � → ∞, ΔFS → 0; accordingly, one finds that
the low-energy excitation spectrum of HBulk contains gapless excitations carrying a
nonzero Σ-spin-density. In perfect analogy with what happens with the Kondo effect
in normal metals [2], we expect that those excitation provide an effective screening
of R, that is, the mechanism that lies at the hearth of the Kondo effect in the Y -
junction of three QIC’s. Accordingly, the onset of the Kondo effect at the Y -junction
corresponds to a crossover in the running coupling associated to JΔ towards the
nonperturbative regime, JΔ ∼ J .

In the following, we review the onset of the Kondo regime in the � → ∞-limit
by means of a pertinent application of Anderson’s poor-man scaling approach to the
specific problem we are investigating here.

Before concluding this section, it is worth mentioning that the Kondo effect may be
also recovered at a Y -junction of off-critical QIC’s, provided the Kondo temperature
TK is much larger than the bulk gap of the system, ΔBulk ∼ ||J | − |H ||. Specifically,
one sees that the off-critical junction maps onto a remarkable two-channel version
of the Kondo model for a magnetic impurity connected to two superconductors [30],
which has been used to analyze the transport across a quantum dot at Coulomb
blockade connected to two superconducting leads [31–34].

In the next section, we study the onset of the Kondo regime and we estimate the
Kondo temperature in the critical system.

7.3 The Kondo Regime and the Kondo Temperature

For studying the onset of the Kondo effect at a Y -junction of critical QIC’s, we resort
to the imaginary-time formulation, in which the boundary dynamics is encoded in
the imaginary time boundary action SΔ, given by

SΔ =
∫ β

0
dτ HΔ(τ) = 2JΔ

∫ β

0
dτ Σ1(τ ) · R(τ ) , (7.8)

and β = (kBT )−1, where T is the temperature and kB is Boltzmann’s constant.
To resort to the standard poor man’s analysis, one first rewrites (7.8) in (Matsubara)

frequency space and in the T → 0-limit. Sending the temperature to 0 requires the
introduction of a cutoff D with the dimension of an energy (high-energy cutoff—
typically identified with the excitation bandwidth). Accordingly, the imaginary-time
action is rewritten as [20]

SΔ → 2JΔ

∫ D

−D

dΩ

2π

3∑

λ=1

Σλ
1 (−Ω)Rλ(Ω) . (7.9)

The renormalization group (RG) approach leads to an appropriate scaling equation
for the running coupling associated to JΔ. For this purpose, one has to effectively
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reduce the cutoff D, by pertinently taking into account the corresponding corrections
to JΔ. We first split the integral in (7.9) into the sum of an integral over [−D,−D/κ],
an integral over [D/κ, D], and an integral over [−D/κ, D/κ], with κ = 1 + ε and
0 < ε � 1; on rescaling D, one finally obtains

2JΔ

∫ D
κ

− D
κ

dΩ

2π

3∑

λ=1

Σλ
1 (−Ω)Rλ(Ω) → 2JΔ

κ

∫ D

−D

dΩ

2π

3∑

λ=1

Σλ
1

(
−Ω

κ

)
Rλ

(
Ω

κ

)
.

(7.10)

As a result [8], HΔ corresponds to a marginal boundary interaction, that is, the right-
hand side of (7.10) does not depend on κ . Therefore, the only renormalization of JΔ

comes from summing over the frequency windows [−D,−D/κ] and [D/κ, D].
In the sequel, one resorts to a method discussed in detail in [2] for the Kondo

problem in a metal and in [20] for the specific case we are addressing here. As a
result, one obtains an additional correction to the boundary action, δS(2)

Δ , arising to
the second order in JΔ and given by [20]

δS(2)
Δ = 2J2

Δ

∫ D

−D

dΩ

2π

3∑

λ=1

Σλ
1 (−Ω)Rλ(Ω) [Γ (�; D) + Γ (�; −D)]D (1 − κ−1) ,

(7.11)
with

Γ (�;Ω) = lim
β→∞

1

β

∑

ω

[
2

iΩ − iω

]
G1,1(iω) ; (7.12)

here the sum is taken over the fermionic Matsubara frequencies ω, with the Jordan–
Wigner fermion Green’s function G1,1(iω) defined in (7.59) of the appendix. In the
� → ∞-limit, Γ (Ω) has been derived in [20] along the whole critical line connect-
ing the Y -junction of XX -spin chains [18] to the junction of QIC’s. At finite-�, a
straightforward generalization of the metod of [20] yields

Γ (�; D) = 1

D

d

dD

{
2D

(� + 1)

�−1∑

n=0

{
2J sin

[
π
2

2n+1
2�+1

]
cos2

[
3π
2

2n+1
2�+1

]

D2 + 4J 2 sin2
[

π
2

2n+1
2�+1

]
}}

. (7.13)

Note that, differently from [20], here we explicitly keep the dependence of Γ on �

since, in the following, we shall use � as a control parameter. Eventually, we check
that the results of [20] are recovered in the thermodynamic limit, � → ∞.

Considering (7.11), (7.13) alltogether, we see that summing over the frequency
windows [−D,−D/κ] and [D/κ, D] provides a renormalization of the coupling
strength JΔ as JΔ → JΔ + δ JΔ, with

δ JΔ = −J 2
Δ ρ(�; D)

δD

D
. (7.14)
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Note that, in (7.14), we have defined δD so that δD/D = (1 − κ−1) and we have set
ρ(�; D) ≡ D[Γ (�; D) + Γ (�;−D)]/2, in order to recover the standard functional
form of the RG equations for the Kondo problem [2].

Introducing a running coupling strength at a given �, JΔ(�; D), one may trade
(7.14) for the differential equation given by

dJΔ(�; D)

dl
= J 2

Δ(�; D)ρ(�; D) , (7.15)

with dl = d ln(D0/D), D being the running energy scale, and D0 being an high-
energy cutoff ∼J . On integrating (7.15), one obtains for JΔ(�; D) the expression
[20, 35]

JΔ(�; D) = J (0)
Δ

1 − J (0)
Δ

∫ D0

D
ρ(�;x)

x dx
. (7.16)

The integrated scaling flow for JΔ(�; D) allows to define a scale D∗(�) as the
scale at which the denominator at the right-hand side of (7.16) vanishes. As � → ∞,
D∗(� → ∞) → DK , with DK being the Kondo energy scale associated to the Y -
junction of critical QIC’s.

To estimate DK , we note that, as � → ∞, one gets

∫ D′

D

ρ(� → ∞; x)
x

dx =
∫ π

2

0
dq

[
8J sin(q) cos2(3q)

4J2 sin2(q) + (D′)2
− 8J sin(q) cos2(3q)

4J2 sin2(q) + (D)2

]
.

(7.17)
As a result, since JΔ(� → ∞; D) ≡ JΔ(D), one eventually obtains

JΔ(D)

D0
≈ J (0)

Δ /D0

1 − J (0)
Δ

D0

4
π

ln
( D0

D

) ⇒ DK = D0 e
− πD0

4J (0)
Δ , (7.18)

with J (0)
Δ being the (bare) running coupling at the reference scale D0. Equation (7.18)

contains the expected result for the Kondo scale of the Y -junction of QIC’s in the
� → ∞-limit.

The key observation about DK is that, in general, the running coupling (as well
as the physical observables) must be a scaling function of D/DK [4]. For instance,
for the running coupling one expects a scaling relation of the form

JΔ(D)

D0
= J (0)

Δ

D0
F

(
D

DK

)
, (7.19)

with the perturbative (in JΔ) asymptotic form of F
(

D
DK

)
derived from (7.18) and

given by

F

(
D

DK

)
≈ 1

ln
(

D
DK

) + O

(
JΔ

D0

)
. (7.20)
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For finite-� QIC’s one expects the scaling relations to be violated by the presence
of the additional nonuniversal energy scale ΔFS. Roughly speaking, as long as ΔFS �
DK , the net effect of the finite-size gap is just to provide a slight renormalization
of DK itself, in perfect analogy with what happens when an additional energy scale
is introduced by means of a local magnetic field acting on the spin impurity in the
Kondo effect in the XXZ-spin chain [36, 37]. Eventually, resorting to larger values
of ΔFS/DK can strongly affect Kondo effect till possibly leading to its suppression.

To evidence this last point, one has to generalize to finite-� the definition of the
“critical Kondo coupling” JΔ,c(�). According to [35], one defines JΔ,c(�) so that a
necessary condition for the junction to crossover towards Kondo regime is that the
bare coupling J (0)

Δ > JΔ,c(�). Thus, one sets

1

JΔ,c(�)
−
∫ D0

0

ρ(�; x)
x

dx = 0 , (7.21)

which allows to recast (7.15) in the form

JΔ(�; D) = J (0)
Δ JΔ,c(�)

JΔ,c(�) − J (0)
Δ + J (0)

Δ JΔ,c(�)
∫ D

0
ρ(�;x)

x dx
. (7.22)

Equation (7.22)shows that the nonperturbative onset of the Kondo regime can
only be recovered provided that J (0)

Δ > JΔ,c(�). In [20], JΔ,c was derived for a junc-
tion between infinite XY -chains, in which case the Ising case was recovered in the
extremely asymmetric, γ → 0 limit (see [20] for details). While we expect (7.21)
to give us back the result for γ = 0 once � → ∞, for the purpose of our following
discussion it is important to discuss the explicit dependence on �, which is induced
in JΔ,c by the dependence of ρ on each QIC length.

On qualitative grounds, the reason for this dependence can be understood from
the fact that the onset to Kondo regime is basically due to impurity screening via low
energy spinful excitations in the “bulk” of the system (for instance, by low-energy
conduction electrons, close to the Fermi energy, in the “standard” electronic Kondo
effect). In our specific case, the screening is dynamically induced by the presence
of low-lying Jordan–Wigner fermions in the bulk spectrum of the chains, whose
energy is cutoff at ΔFS in the finite-size system. Therefore, a finite value of � implies
a “depletion” of the low-energy part of the fermionic excitation spectrum, so as to
make it harder for the system to crossover towards Kondo regime. Accordingly, the
less effective is the dynamical screening from bulk fermions, the larger has to be the
bare coupling for the junction to be able to crossover to Kondo regime. An explicit
dependence of JΔ,c on � is, therefore, expected and, in particular, one may infer that,
as � → ∞, JΔ,c tends to the value estimated in [20] in the Y -junction of QIC’s, for
� → ∞. This trend is ultimately confirmed by the plot in Fig. 7.1, where we display
the estimate of JΔ,c/D0 as as a function of �, for 1 ≤ � ≤ 300 and with the band
cutoff D0 = 2J . While we see that, at large values of �, JΔ,c/D0 tends to the expected
value of about 0.13 [20], it definitely increases, as � gets lowered, as expected from
the discussion above.
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Fig. 7.1 Semilogarithmic plot of JΔ,c/D0 as a function of � for � ranging from � = 1 to � = 300.
At large values of �, one obtains JΔ,c/D0 ≈ 0.13, which is the appropriate value for a Y -junction
of infinite quantum Ising chains [20]. For small values of �, JΔ,c exhibits the expected increas, as �

gets smaller, due to the depletion of the low-energy part of the Jordan–Wigner fermion spectrum,
because of the finite-size gap in their spectrum

In the following section, we analyze the effects of having a chain of finite size �.
We shall introduce a new scale �∗ such that the Kondo effect is suppressed in chains
of length � when � < �∗. In this approach �∗ is used to estimate the Kondo screening
length [38].

7.4 Modified Scaling of the Kondo Coupling at Finite-�

Having finite-length QIC’s amounts to introduce an additional dimensionful scale,
corresponding to the finite-size gap ΔFS. Accordingly, the one-parameter scaling
relation in (7.19) is modified into

JΔ(�; D)

D0
= J (0)

Δ

D0
G

[
D

DK
; ΔFS

DK

]
, (7.23)

where the generalized scaling function G (x, y) must satisfy the condition G (x, 0) =
F (x). When DK /ΔFS � 1, one might trade (7.23) for another one in which ΔFS

works as a reference scale, that is

JΔ(�; D)

D0
≈ J (0)

Δ

D0
Ĝ

[
D

ΔFS

]
. (7.24)

A rigorous derivation of the scaling functions in (7.23), (7.24) would ultimately
require a numerical derivation of the appropriate scaling functions from which to
extract the running coupling at a given � [39]. In the following, we shall provide an
approximate asymptotic expression for the right-hand side of (7.23).

By resorting to the perturbative RG approach in the infinite-� limit, one may
exhibit an approximate expression for the function Ĝ (x) by keeping � finite and
considering the approximate numerical fit given by
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Table 7.1 Table of values of �∗[J (0)
Δ ] as a function of JΔ,0

J (0)
Δ /D0 �∗[J (0)

Δ ] [Numerically
estimated]

�∗[J (0)
Δ ] [From (7.27)]

0.40 5 5.96

0.35 7 7.70

0.30 12 10.82

0.25 16 17.41

0.20 36 35.57

0.15 130 117.10

0.10 →∞ 1265.04

4

(� + 1)

�−1∑

n=0

⎧
⎨

⎩
2J sin

[
π
2

2n+1
2�+1

]
cos2

[
3π
2

2n+1
2�+1

]

D2 + 4J 2 sin2
[

π
2

2n+1
2�+1

]

⎫
⎬

⎭ − 4

(� + 1)

�−1∑

n=0

⎧
⎨

⎩
2J sin

[
π
2

2n+1
2�+1

]
cos2

[
3π
2

2n+1
2�+1

]

4J 2 + 4J 2 sin2
[

π
2

2n+1
2�+1

]

⎫
⎬

⎭

≈ α

2J
ln(�) − γ

2J

(
�D

2J

)2

, (7.25)

with α ≈ 2.8, γ ≈ 8.7. On inserting (7.25) into the (7.15) for the running coupling
at a given �, one obtains

JΔ(�; D) ≈ J (0)
Δ

1 − α J (0)
Δ

D0
ln(�) + γπ2 J (0)

Δ

2D0

(
D

ΔFS

)2 . (7.26)

In (7.26), the left-over term ∝ ln(�), which accounts for the explicit dependence of
JΔ,c on �, has the expected scaling form, being an explicit function of the ratio D

ΔFS
.

The functional form of the right-hand side of (7.26) leads to the important observa-
tion that, in order for the running coupling to crossover towards the strongly coupled

regime, one needs that 1 − α J (0)
Δ

D0
ln(�) < 0. Thus, a necessary condition for the onset

of the Kondo regime is given by

� > �∗[J (0)
Δ ] ≡ e

2D0

α J (0)
Δ . (7.27)

To double check the result in (7.27)—which depends on an approximate numerical
fit to a not explicitly known functional relation involving the various dimensionful
scales in the problem—in Table 7.1 we plotted some extrapolated values for �∗[J (0)

Δ ]
as a function of J (0)

Δ . As expected, �∗[J (0)
Δ ] → ∞ as soon as J (0)

Δ < JΔ,c taken in
the � → ∞ limit. On increasing J (0)

Δ , �∗[J (0)
Δ ] decreases, till it becomes 0 for J (0)

Δ

greater than the value taken by JΔ,c for � → 0.
As one readily checks, once the appropriate numbers are inserted in (7.27), one

recovers the results for �∗[J (0)
Δ ], showing a good level of consistency between the

numerical and the analytical results obtained from (7.27).
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The emergence of the scale �∗[J (0)
Δ ] can be interpreted by stating that, in order

for the junction to crossover towards the Kondo regime, one necessarely has to have
� > �∗(J (0)

Δ ); i.e., the junction must be “large enough” to make a block of size �∗(J (0)
Δ )

fit into it. This is nothing but a way for defining the Kondo cloud, so that one naturally
identifies �∗[J (0)

Δ ] with the corresponding value of the Kondo screening length (in
units of the lattice step, which we have set to 1 from the very beginning) [8, 38,
39]. Incidentally, we note that the identification of �∗[J (0)

Δ ] with the Kondo screening
length can be also inferred by comparing (7.27) with (7.18) for DK and taking
into account that 2/2.8(=0.714) ≈ π/4(=0.7854) (of course, the mismatch can be
readily attributed to different regularization schemes), which yields �∗[J (0)

Δ ] ∝ D−1
K .

Our analysis suggests that one can directly probe the Kondo screening length at
the Y -junction of quantum Ising chains, provided one has a way to actually rescale
the length of the system �, and a physical quantity M(�) that is sensitive to the onset
of the Kondo regime. Indeed, on increasing � starting from rather small values, one
expects that, as � ∼ �∗[J (0)

Δ ], M(�) crosses over towards the value expected when
the system is within Kondo regime. In the following section, we address these two
specific points.

7.5 Probing the Onset of Kondo Regime

In this section, we first illustrate how introducing an impurity, may lead to an effec-
tive reduction of the chain length. Then, we show how the scaling properties of a
pertinently defined local impurity magnetization at fixed chain length-�- point to the
emergence of the Kondo effect in a Y -junction of QIC’s.

To show how an impurity may effectively vary �, one begins from the Bogoliubov–
de Gennes equations for the lattice wavefunctions in (7.45) and slightly modifies
them from the homogenous chain discussed in the appendix, by assuming a different
exchange amplitude (J ′) between sites j̄ − 1 and j̄ and between sites j̄ and j̄ + 1.
For the sake of generality, we assume that the magnetic field at site j̄ , H ′, is = H .

The Bogoliubov–de Gennes equations for the eigenfunctions corresponding to
the eigenvalue ε at sites j̄ − 1, j̄, j̄ + 1 are given by

εu j̄−1,ε = − J

2
u j̄−2,ε − J ′

2
u j̄,ε + J

2
v j̄−2,ε − J ′

2
v j̄,ε + Hu j̄−1,ε

εv j̄−1,ε = J

2
v j̄−2,ε + J ′

2
v j̄,ε − J

2
u j̄−2,ε + J ′

2
u j̄,ε − Hv j̄−1,ε , (7.28)

by

εu j̄+1,ε = − J

2
u j̄+2,ε − J ′

2
u j̄,ε − J

2
v j̄+2,ε + J ′

2
v j̄,ε + Hu j̄+1,ε

εv j̄+1,ε = J

2
v j̄+2,ε + J ′

2
v j̄,ε + J

2
u j̄+2,ε − J ′

2
u j̄,ε − Hv j̄+1,ε , (7.29)
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and, finally, by

εu j̄,ε = − J ′

2
u j̄+1,ε − J ′

2
u j̄−1,ε − J ′

2
v j̄+1,ε + J ′

2
v j̄−1,ε + H ′u j̄,ε

εv j̄,ε = J ′

2
v j̄+1,ε + J ′

2
v j̄−1,ε + J ′

2
u j̄+1,ε − J ′

2
u j̄−1,ε − H ′v j̄,ε . (7.30)

To simplify the derivation, we use different labels for the wavefunctions at the left-
and at the right-hand side of site j̄ . Specifically, we set

[
u j,ε

v j,ε

]
→

[
u<
j,ε

v<
j,ε

]
( j < j̄) ;

[
u j,ε

v j,ε

]
→

[
u>
j,ε

v>
j,ε

]
( j > j̄) . (7.31)

Assuming for both

[
u<
j,ε

v<
j,ε

]
and

[
u>
j,ε

v>
j,ε

]
the form given in (7.53), (7.28), (7.29) become

Ju<

j̄,ε − J ′u j̄,ε + Jv<

j̄,ε − J ′v j̄,ε = 0

Ju>

j̄,ε
− J ′u j̄,ε − Jv>

j̄,ε
+ J ′v j̄,ε = 0 , (7.32)

while (7.30) imply

u j̄,ε = − J ′

2[ε − H ′]
{
u<

j̄−1,ε
+ u>

j̄+1,ε
− v<

j̄−1,ε
+ v>

j̄+1,ε

}

v j̄,ε = J ′

2[ε + H ′]
{
v<

j̄−1,ε
+ v>

j̄+1,ε
− u<

j̄−1,ε
+ u>

j̄+1,ε

}
. (7.33)

When J ′ → 0, (7.28) imply

εu j̄−1,ε = − J

2
u j̄−2,ε + J

2
v j̄−2,ε + Hu j̄−1,ε

εv j̄−1,ε = J

2
v j̄−2,ε − J

2
u j̄−2,ε − Hv j̄−1,ε , (7.34)

which leads to (see Appendix 7.6)

u j̄,ε + v j̄,ε = 0 . (7.35)

Equation (7.35), together with the first line of (7.46), corresponds to an effective
shortening of the chain to j̄ − 1-sites. Clearly, the same result is obtained by sending
to ∞ the field H ′ in (7.33). Thus, we find two, basically equivalent, ways to effectively
shorten the spin chains by tuning the impurity. Being able to effectively tune the
single-chain length provides us with a tool to probe the Kondo effect arising at a
Y -junction of QIC’s.
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We now show how to probe the crossover towards the Kondo regime by measuring
the local magnetization at the impurity. As stated in [20, 26], a suitable procedure to
detect the onset of Kondo regime at a Y -junction of critical Ising chain consists in
measuring the local magnetization along the z-axis in spin space, right at the junction.
This, for a Y -junction of a QIC’s, is defined as

m = 1

3
〈

3∑

λ=1

Sz1,λ〉 . (7.36)

In the disconnected chain limit (JΔ → 0), one may readily express m at finite
�, m0(�), in terms of the (imaginary-time representation of the) Green’s function
G1,1(τ ) we provided in (7.59). In particular, one obtains

m0(�) =
〈
c†

1,1c1,1 − 1

2

〉
= lim

τ→0+

{
−1

2
+ G1,1(τ )

}

= −1

2
+ 2

� + 1

�−1∑

n=0

cos2

[
3π

2

2n + 1

2� + 1

]
. (7.37)

In Fig. 7.2a, m0(�) is plotted as a function of �. Thus, by acting on �, one has minor
effects on the magnetization of the disconnected junction.

When JΔ(D) → ∞ with �, one has that, at the onset of the Kondo regime, JΔ

takes over, due to the running JΔ(D) with �. The value ofm can be inferred by noting
that, to minimize the boundary energy, the junction sets into a “locally ferromagnetic”
state, involving the three spins Sx

j,λ at j = 1. This is either one of the states labeled
with | ⇒〉 and | ⇐〉 in [20], corresponding to all the spins Sx

1,λ pointing upwards, or
downwards (for a detailed discussions of the effects of the corresponding residual
degeneracy in the system’s groundstate see, for instance, [29, 40]). When averaging
the total spin at j = 1 in the z-direction over either one of these states, one obtains 〈⇒
|∑3

λ=1 S
z
1,λ| ⇒〉 = 〈⇐ |∑3

λ=1 |Sz1,λ ⇐〉 = 0, which eventually leads us to conclude
that m → 0 well within Kondo regime [20, 26].

m0 mδ ^

(a) (b)
 0.5

 0.0

−0.5
 50 1

−0.32

−0.16

 0.0

 50 1

Fig. 7.2 a: Junction magnetization in the disconnected limit, m0(�), as a function of �, for 1 ≤ � ≤
50. In a few lattice sites, m0(�) converges towards the expected asymptotic value m0(� → ∞) = 1

2 ;
b: First nontrivial correction to m, δm̂, (see (7.38)) as a function of �. For large enough �, δm̂
converges to its asymptotic value δm̂(� → ∞) = −0.32
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To see how the Kondo regime is approached, one has to compute the leading (in
JΔ) corrections to m, δm. From [20], one obtains

δm(�) = −2J 2
Δ

�−1∑

n1,n2,n3=0

{
A (n1)A (n2)B(n2)A 2(n3)εn2

(εn1 + εn2)(εn2 + εn3)(εn3 + εn1)

}
≡ 2J 2

Δδm̂(�) ,

(7.38)
with

A (n) =
√

2

� + 1
cos

[
3π

2

2n + 1

2� + 1

]

B(n) =
√

2

� + 1
sin

[
π

2n + 1

2� + 1

]

εn = 2J sin

[
π

2

2n + 1

2� + 1

]
. (7.39)

In Fig. 7.2b, δm̂(�) is plotted as a function of �. One sees that it rapidly grows
till, for large enough �, it converges to the “asymptotic” value δm̂∞ ≈ −0.32 [20].
As expected, turning on JΔ works to effectively reduce m. To improve this result,
nontrivial renormalization effects of the running coupling JΔ(D) have to be included.

From the second-order renormalization group equations leading to poor man’s
scaling running parameter flow, one may safely assume that the only effect of rescal-
ing the cutoff is to induce a renormalization of JΔ, according to (7.22) for the asso-
ciated running coupling JΔ(�; D). As a result, the renormalization group flow of the
local magnetization at a given �, m(�; D), is obtained by setting

m(�; D) = m0(�) + 2J 2
Δ(�; D)δm̂(�) , (7.40)

with m0(�) defined in (7.37) and δm̂(�) in (7.38).
In Fig. 7.3 the curves obtained from the formula in (7.40) are plotted by draw-

ing m(�; D) as a function of D for J (0)
Δ /D0 = 0.3 and for J (0)

Δ /D0 = 0.6. Specif-
ically, referring to Fig. 7.1, the curves corresponding to � = 8 and to � = 30 are
drawn. Indeed, from Fig. 7.1, JΔ,c(� = 8)/D0 > 0.3. Thus, for J (0)

Δ /D0 = 0.3, one
expects that, on lowering the reference scale D, m(� = 8; D) renormalizes to a finite
nonuniversal value for D → 0; this shows how the junction never enters the Kondo
regime (see the red curve of Fig. 7.3a). At variance, JΔ,c(� = 30)/D0 < 0.3 and,
accordingly, one expects that, on sending D → 0, m(� = 30; D → 0) renormalizes
all the way down to 0 as, indeed, it is apparent from the blue curve of Fig. 7.3a.
From Fig. 7.1 one also sees that J (0)

Δ,c (� = 30) < JΔ,c(� = 8)/D0 < 0.6. Thus, one
expects that both m(� = 8; D) and m(� = 30; D) renormalize all the way down to
0, as D → 0. Indeed, this appears from both plots in Fig. 7.3b, which are drawn
assuming J (0)

Δ /D0 = 0.6.
Ideally, one may construct a sequence of plots such as the ones drawn in Fig. 7.3,

by holding J (0)
Δ fixed and by drawing plots of JΔ(�; D) at fixed �, as a function of D.
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D/D0 D/D0

m(  ,D)m(  ,D)

(a) (b)
 0.50

 0.25

 1.0 0.0
 0.00

0.25

0.00
 0.0  1.0

0.50

Fig. 7.3 a m(�; D) as a function of D/D0 for JΔ/D0 = 0.3 and for � = 8 (red curve), and � = 30
(blue curve). For � = 8 m(� = 8; D → 0) renormalizes to a finite value, consistently with the plot
in Fig. 7.1, that shows that JΔ,c(� = 8)/D0 > 0.3. For � = 30, m(� = 30; D → 0) renormalizes
to 0 (note that the points below D = DK have been removed from the plots, due to the expected
unreliability of the perturbative renormalization group equation in this regime), consistently with
the result that JΔ,c(� = 30)/D0 < 0.3; b Same as in (a), but with jΔ/D0 = 6.0. In this case both
m(� = 8; D → 0) and m(� = 30; D → 0) renormalizes to 0, consistently with Fig. 7.1 that shows
that JΔ,c(� = 8)/D0 < 0.6

Beginning with very small values of � (or, which is the same, with very large values
of ΔFS), since the finite-size gap implies a depletion of the low-energy window of
excitation spectrum in the Y -junction, one expects a strong suppression of Kondo
screening and, accordingly, a mild renormalization ofm(�; D) toward values smaller
than m0(�), as D runs towards 0. On increasing �, the renormalization of m(�; D)

becomes more effective, so that, the larger is �, the stronger is the renormalization
towards smaller values ofm(�; D) as D → 0. By construction, assuming that J (0)

Δ >

JΔ,c, there will be a value of �, �∗[ J (0)
Δ ], such that m(�∗[ J (0)

Δ ]; D → 0) → 0.
According to the discussion of Sect. 7.4, one is led to identify �∗[ J (0)

Δ ] with the
Kondo screening length for the Y -junction. As a result, one has, on one hand, iden-
tified how a Kondo screening length emerges at a Y -junction of QIC’s, on the other
hand one has proposed a way to probe it, by looking at how the local magnetization
at the impurity, m(�; D), scales. Indeed, tuning � in each one of the three QIC’s just
means acting on appropriate local parameters in the chains, such as the magnetic
exchange strength between nearest neighboring sites, or the local applied magnetic
field.

These observations complete our proposal for a protocol suitable to estimate the
Kondo screening length at a Y -junction of QIC’s.

7.6 Concluding Remarks

We analyzed the emergence of the screening length λK (= �∗[ J (0)
Δ ]) associated to

the Kondo effect at a Y -junction of quantum Ising chains. In particular, we showed
that effectively varying the length � of the QIC’s allows for directly probing the
Kondo screening length. Specifically, we proposed to look at the scaling behavior of
the local magnetization at the impurity on lowering the reference energy scale D, at
fixed �.
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When � < λK , the full Kondo screening cloud does not fit into the Y -junction.
This suppresses the onset of the Kondo regime and, consequently, prevents the local
magnetization from flowing all the way down to zero. When � > λK , instead, the
Kondo cloud does fit into the Y -junction, the system enters the Kondo regime and,
accordingly, the magnetization flows all the way down to 0.

We proposed to identify the Kondo length λK as the value of � at which the junction
crosses over between the two complementary behaviors. Thus, our method provides
an effective mean to probe λK from the scaling behavior of the local magnetization
at the junction at given �, in analogy with the results provenin the infinite-chain limit
[20, 26].

We performed our derivation by means of an adapted version of the perturbative
RG approach to Kondo problem [4]. While our approach allows us for qualitatively
recovering the main features associated to the onset of Kondo regime at the junction,
it relies on a number of rough estimates of nonuniversal quantities (cutoff scales, etc.),
so that it would be of the utmost importance to perform an indipendent numerical
analysis of the problem.

For a single spin chain, DMRG has already proven to be able to provide the
correct scaling between the two different regimes (weakly- and strongly-coupled
fixed points) [37]. Efficient algorithms to extend DMRG to Y -junctions of spin
chains have been by now well established [41] and, as a further development of
our work, we plan to employ them to numerically derive the scaling properties of
m(�; D) (which, in our derivation, takes the place of the integrated real-space spin-
spin correlations Σ[ x] of [37]), to eventually complement our analytical derivation
with quantitatively rigorous numerical results.

Appendix

The one-dimensional quantum Ising model is exactly solvable via the Jordan–Wigner
fermionization of the spin variables [27]. This method is especially suited for a chain
with open boundary conditions. In particular, it allows for an exact solution of the
model with open boundary conditions. In this appendix we set the parameters of the
chain at their “critical” values. A QIC of finite length � is defined by

H1−Chain = −2J
�−1∑

j=1

Sx
j S

x
j+1 + H

�∑

j=1

Szj , (7.41)

with S j being a quantum spin-1/2 impurity residing at site j , J being the Ising
magnetic exchange strength and H being the (transverse) applied magnetic field. In
particular, as � → ∞, the chain becomes critical for H = J , with a corresponding
gapless excitation spectrum [42].
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The Jordan–Wigner tranformation is based on the realization of the spin-1/2 oper-
ators in terms of spinless complex lattice fermions {c j , c†

j } as

S+
j = c†

j e
iπ

∑ j−1
r=1 c

†
r cr

S−
j = c j e

iπ
∑ j−1

r=1 c
†
r cr

Szj = c†
j c j − 1

2
, (7.42)

with the spin ladder operators given by S±
j = Sx

j ± i Sy
j . On inserting (7.42) into the

lattice spin Hamiltonian in (7.41), one gets

H1−Chain → HF = − J

2

�−1∑

j=1

{c†
j c j+1 + c†

j+1c j } + J

2

�−1∑

j=1

{c j c j+1 + c†
j+1c

†
j } + H

�∑

j=1

c†
j c j + const.

(7.43)
HF in (7.43) is similar to the Kitaev Hamiltonian [17] for a spinless, p-wave one-
dimensional superconductor. It is then diagonalized by defining the energy eigen-
modes Γε via the Bogoliubov–Valatin transformations as

Γε =
�∑

j=1

{u j,εc j + v j,εc
†
j } , (7.44)

and with the wavefunctions (u j,ε, v j,ε) satisfying pertinent Bogoliubov–de Gennes
equations. These are obtained by requiring that [Γε, HF ] = εΓε , and are given by

εu j,ε = − J

2
{u j+1,ε + u j−1,ε} − J

2
{v j+1,ε − v j−1,ε} + Hu j,ε

εv j,ε = J

2
{v j+1,ε + v j−1,ε} + J

2
{u j+1,ε − u j−1,ε} − Hvj,ε , (7.45)

for 1 < j < �.
Over the open chain, (7.45) must be complemented with the appropriate boundary

conditions. On the fermionic wavefunctions, these are given by [20]

u0,ε − v0,ε = 0

u�+1,ε + v�+1,ε = 0 . (7.46)

To solve (7.45), one sets [
u j,ε

v j,ε

]
=
[
uk
vk

]
eik j , (7.47)
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thus obtaining the secular equations for the amplitudes uk, vk given by

[ε − J (1 − cos(k))]uk + i J sin(k)vk = 0

−i J sin(k)uk + [ε + J (1 − cos(k))]vk = 0 . (7.48)

The amplitudes uk, vk satisfy

[ε − H + J cos(k))]uk + i J sin(k)vk = 0

−i J sin(k)uk + [ε + H − J cos(k))]vk = 0 . (7.49)

Solving (7.49), one finds the dispersion relation

ε2 = ε2
k =

√
(J cos(k) − H)2 + J 2 sin2 (k)) , (7.50)

which implies a gap in the excitation spectrum ΔBulk = ||J | − |H ||. Specifically, in
the following one looks at the “critical” limit, defined by setting H = J . In this case,
(7.50) implies

ε = ±εk = ±J sin

(
k

2

)
, (7.51)

with the corresponding solutions given by

[
uk
vk

]
=
[

cos
(

π−k
4

)

i sin
(

π−k
4

)
]

. (7.52)

To recover the boundary conditions in (7.47), one considers the linear combination
between the wavefunction with momentum k and the one with momentum 2π − k,
that is

[
u j,k

v j,k

]
= α

[
cos

(
π−k

4

)

i sin
(

π−k
4

)
]
eik j + β

[
cos

(
π−k

4

)

−i sin
(

π−k
4

)
]
e−ik j . (7.53)

Imposing the boundary conditions, one obtains the secular equation for the allowed
values of k

sin

[
k(� + 1) + π − k

2

]
= 0 , (7.54)

which implies k = π
[

2n+1
2�+1

]
, n = 0, . . . , � − 1. As a result, from (7.51) one sees

that, even at the critical value of the bulk parameters, due to the constraint on the
values of k stemming from the secular equation for the finite-� system in (7.54), at
finite �, the QIC exhibits a finite-size gap ΔFS(�) = J sin

(
π

2�+1

) ∼ Jπ
2�

. As expected,
ΔFS(�) → 0 as � → ∞.
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From the boundary conditions in (7.47), one sees that the wavefunction for the
single Jordan–Wigner fermion excitation must be given by [20]

[
u j,k

v j,k

]
=
√

2

� + 1

[
cos

(
π−k

4

)
sin

[
k j − π−k

4

]

− sin
(

π−k
4

)
cos

[
k j − π−k

4

]
]

. (7.55)

From the results given above, one constructs the Jordan–Wigner fermion operators
in the Heisenberg representation at imaginary time τ as:

c j (τ ) =
∑

k

√
2

� + 1

{
cos

(
π − k

4

)
sin

[
k j − π − k

4

]
Γk e

−εk τ − sin

(
π − k

4

)
cos

[
k j − π − k

4

]
Γ

†
k e

εk τ

}

c†
j (τ ) =

∑

k

√
2

� + 1

{
cos

(
π − k

4

)
sin

[
k j − π − k

4

]
Γ

†
k e

εk τ − sin

(
π − k

4

)
cos

[
k j − π − k

4

]
Γk e

−εk τ

}
,

(7.56)

with the set of allowed values of k determined by k = π
(

2n+1
2�+1

)
, n = 0, . . . , � − 1.

For our purpose we need to compute the imaginary time-ordered Green’s function
G j, j ′(τ ) = −〈Tτ ξ j (τ )ξ j ′(0)〉, with Tτ being the imaginary time-ordering operator
and ξ j (τ ) = c j (τ ) + c†

j (τ ). This is computed as

G j, j ′ (τ ) = −ε(τ )
2

� + 1

∑

k

cos

[
k

(
j + 1

2

)]
cos

[
k

(
j ′ + 1

2

)]
{e−εk |τ | f (−εk ) + eεk |τ | f (εk )},

(7.57)
with f (ε) being Fermi distribution function. In the Fourier-Matsubara space one gets

G j, j ′(iω) = 2

� + 1

∑

k

cos

[
k

(
j + 1

2

)]
cos

[
k

(
j ′ + 1

2

)] {
1

iω + εk
+ 1

iω − εk

}
.

(7.58)
For j = j ′ = 1 (which is the case of relevance for us), one obtains

G1,1(iω) = 2iω

� + 1

�−1∑

n=0

{
cos2

[
3π
2

(
2n+1
2�+1

)]

ω2 + 4J 2 sin2
[

π
2

(
2n+1
2�+1

)]
}

. (7.59)
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Chapter 8
Gauge Theories with Ultracold Atoms

João C. Pinto Barros, Michele Burrello and Andrea Trombettoni

Abstract We discuss and review, in this chapter, the developing field of research of
quantum simulation of gauge theories with ultracold atoms.

8.1 Introduction

During the School on “Strongly Coupled Field Theories for Condensed Matter and
Quantum Information Theory”, held in Natal (Brazil) in the days 2–14 August 2015,
one of the authors gave a course on “Quantum Simulations of Gauge Fields with
Ultracold Atoms”. The course was meant to be informal, at the blackboard, with time
for discussions and to interact with the younger part of the audience. Subsequently, in
2017 J. C. Pinto Barros obtained the Ph.D. in SISSA (Trieste) defending a Thesis on
“Field and Gauge Theories with Ultracold Atoms”, under the supervision of Andrea
Trombettoni and Marcello Dalmonte and with Michele Burrello and Enrique Rico
Ortega acting as external referees. The present chapter is based on the Natal’s course
and on the above mentioned Ph.D. Thesis of Pinto Barros [1]. The latter Thesis is
available at http://www.statphys.sissa.it/wordpress/?page_id=1095.
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The course gave an introductory discussion on lattice gauge theories, and then
moved to explain how to simulate gauge potentials and gauge fields. A prior knowl-
edge of ultracold atomic systems was assumed, even though during the lectures the
corresponding concepts and notions were briefly reminded.

8.2 Gauge Theories

A gauge theory is a model that has a gauge symmetry. Such symmetry can be seen
as a redundancy in the description of the degrees of freedom. In other words, this
means that one can have two mathematically distinct solutions of the equations
describing the system and nonetheless they describe the same physical situation.
The paradigmatic example is classical electrodynamics. It describes the behavior of
the electric field E (t, x) and the magnetic field B (t, x) in the presence of an electric
charge density ρ (t, x) and the current density j (t, x). The system is governed by the
Maxwell equations:

∇ · E (t, x) = ρ (t, x) ; ∇ × B (t, x) − ∂tE (t, x) = j (t, x) ;
∇ · B (t, x) = 0 ; ∇ × E (t, x) + ∂tB (t, x) = 0 .

(8.1)

In the above equations and in the rest of this chapter, natural units shall be adopted.
The homogeneous equations, which are independent of charges and currents, can
be straightforwardly solved by introducing a scalar potential φ (t, x) and a vector
potential A (t, x):

E (t, x) = −∇φ (t, x) − ∂tA (t, x) , B (t, x) = ∇ × A (t, x) . (8.2)

Using these two relations the last two equations in (8.1) are fulfilled and the ones from
the first row can be written in terms of φ (t, x) andA (t, x). After a solution is found,
it can be plugged in (8.2) in order to obtain the electric andmagnetic fields. However,
not all different φ (t, x) and A (t, x) will give different electric and magnetic fields.
In fact if two fields φ (t, x)′ and A (t, x)′ are related to another solution φ (t, x) and
A (t, x) by:

φ (t, x)′ = φ (t, x) + ∂tα (t, x) , A (t, x)′ = A (t, x) − ∇α (t, x) , (8.3)

for some regular function α (t, x), then the electric and magnetic fields, given by
(8.2), remain unchanged. This means that the solutions φ,A and φ′,A′ correspond
to the same physical situation and therefore they are just redundant descriptions of
the same physics. The transformations of (8.3) are called gauge transformations.

The existence of a gauge symmetry does not require the field to be dynamical.
Consider a charged quantum particle in a background of a classical electromagnetic
field. The Schrödinger equation for this system can be written as the equation in
the absence of any field and “correcting” the canonical momentum p → p − eA. In
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the presence of an electromagnetic field the mechanical momentum, associated with
the kinetic energy of the particle and denoted here by π, is no longer the canonical
momentum given by p. The relation between them is π = p − eA which is at the
core of this substitution. The same happens for the time derivative with the scalar
potential i∂t → i∂t − eφ. Therefore, the Schrödinger equation reads, in the absence
of any other interactions:

(i∂t − eφ) ψ (t, x) = (−i∇ − eA)2 ψ (t, x) . (8.4)

Also this equation is invariant under the transformation (8.3) provided that the wave
function is transformed by a position-dependent phase:

ψ (t, x) = e−ieα(t,x)ψ (t, x) . (8.5)

Given the space and time dependence of this transformation, it is denoted as a local
gauge symmetry.

In quantumfield theory an illustrative example is providedbyQED.TheLagrangian
is given by:

L = ψ̄
(
γμ
(
i∂μ − eAμ

)− m
)
ψ − 1

4
FμνF

μν . (8.6)

Implicit sum over repeated indices is assumed. γμ are the gamma matrices sat-
isfying the Clifford algebra {γμ, γν} = 2ημν , ημν is the Minkowski metric η =
Diag (1,−1,−1,−1), ψ the Dirac spinor and ψ̄ = ψ†γ0. The indices μ run from
0 to 3 where 0 corresponds to the time index. Aμ is called gauge field and the last
term of the Lagrangian corresponds to its kinetic term where Fμν = ∂μAν − ∂ν Aμ.
Also in this case there is a local set of transformations that leave this Lagrangian
invariant. Explicitly:

Aμ (x) → Aμ (x) − 1

e
∂μα (x) , ψ (x) → eiα(x)ψ (x) , (8.7)

One can define the covariant derivative Dμ = ∂μ + ieAa
μ such that, under a gauge

transformation, Dμψ → eiα(x)Dμψ. In this way, the local gauge symmetry becomes
apparent.

This is an example of a U (1) gauge theory: a gauge transformation is defined,
at each point, by phases α ∈ [0, 2π[ which combine according to the group U (1).
This construction can be generalized to other gauge groups, like ZN , or even non-
Abelian, like SU (N ), for N an integer number. For example, the Kitaev toric code
is a Z2 (Abelian) gauge theory [2] whereas Quantum Chromodynamics (QCD), the
theory that describes strong interactions in particle physics, is a SU (3) (non-Abelian)
gauge theory [3–5]. In the following a brief description of non-Abelian SU (N ) gauge
invariance in quantum field theory is provided. For more details see, for example, [6].

In order to explore these other symmetries, extra indices must be inserted (in the
paradigmatic example of QCD these are the color indices). To simplify the notation,
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whenever ψ it is used it is meant:

ψ ≡

⎛

⎜⎜
⎜
⎝

ψ1

ψ2
...

ψn

⎞

⎟⎟
⎟
⎠

(8.8)

where each one of the ψi corresponds to a (four-component in 3 + 1 dimensions)
Dirac spinor. Consider then a general symmetry group and a respective set of gener-
ators represented by Hermitian n × n matrices ta . The goal is to build a Lagrangian
which is invariant under the set of local transformations

ψ (x) → eiα
a(x)taψ (x) . (8.9)

This is a unitary transformation that mixes the n components of the vector (8.8)
following a n-dimensional representation of the gauge group element eiα

a(x)ta . The
gauge field becomes, in turn, a matrix which can be parametrized as Aa

μt
a . Under a

gauge transformation the field transforms as

Aa
μt

a → eiα
a(x)ta

(
Aa

μt
a + i

g
∂μ

)
e−iαa(x)ta . (8.10)

Writing the covariant derivative as Dμ = ∂μ − igAa
μt

a one finds Dμψ (x) → eiα
a(x)ta

Dμψ (x). In this way ψ̄
(
γμDμ − m

)
ψ is a gauge invariant operator which includes

the fermionic kinetic term and the matter-gauge coupling. Note that ψ̄ is to be inter-
preted as line vector with components ψ̄i and γμ are diagonal on the color indices, i.e.
act the same for every color by standardmatrixmultiplication γμψi . In order to define
the gauge field dynamics, its gauge invariant kinetic term must be inserted. A pos-
sible way to derive its form is by considering the commutator

[
Dμ, Dν

] = i ta Fa
μν .

Putting it differently, a general form for Fa
μν can be obtained from this formula.

Explicit computation yields Fa
μν = ∂μAa

ν − ∂ν Aa
μ + g f abc Ab

μA
c
ν where the structure

constants f abc are given by
[
ta, tb

] = i t c f abc and depend only on the symmetry
group. From the transformation law for the covariant derivatives, one can see that
Fa

μνF
aμν is gauge invariant. The full Lagrangian can then be written as

L = ψ̄
(
γμDμ − m

)
ψ − 1

4
Fa

μνF
aμν . (8.11)

The perspective of implementing these kind of models in table top experiments
is very appealing. First of all, it could give answers to very fundamental questions
in physics like, for example, the exploration of the phase diagram of QCD. That is
certainly a long term challenge and the path envisioned towards it involves the imple-
mentation of simpler intermediate steps. While QCD has a SU (3) gauge symmetry
and involves 3 + 1 dimensions, this does not need to be the main target. Amuch sim-
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pler case of aU (1) gauge symmetry in 1 + 1 dimensions is already of great interest.
In fact, this was the target of the first experimental implementation of a lattice gauge
theory [7](to be discussed in Sect. 8.4.3). Step by step one may think to be able to
realize more and more complex models. It is clear that if these models are realized
they become interesting on their own both theoretically and experimentally. In partic-
ular, for example, it may also be advantageous to have situations where only certain
degrees of freedom live in higher dimensions keeping others in lower dimensionality
[8–10] which could be used to simulate systems with long-range interactions. This
has been the subject of an intense investigation in the last years [11–20].

8.2.1 Gauge Symmetry on the Lattice

8.2.1.1 Static Fields

Following the discussion in the previous section, a many-body Hamiltonian in the
presence of amagnetic field can be obtained by replacing themomentum components
for each particle by pi → pi − eAi . On the lattice, instead, this can be approximated
by the Peierls substitution where the hopping parameters become complex. This is
valid in a tight-binding regime and for a slow varying magnetic field. Explicitly the
kinetic term is modified according to

K =
∑

r, j

t j â
†
r+ ĵ

âr + h.c. →
∑

r, j

t j â
†
r+ ĵ

eiθ j (r)âr + h.c. (8.12)

In the previous equation the sum of r is taken over the lattice sites and the sum of
j is taken over all d directions corresponding to the dimensionality of the system.
The angles θ j (r) are just phases that can depend, on general grounds, on both the
direction of the hopping and the position. The key difference is that this phase here
is non dynamical, so there is no kinetic term for it. This simply corresponds to allow
the hopping parameter of the particles, on the lattice, to be complex. Similarly to the
models in continuum space, not all complex hoppings represent different physical
scenarios as there is gauge invariance. In Sect. 8.3, several examples of techniques
to engineer complex phases on the hopping parameters are discussed. Reviews can
be found in [21–24].

8.2.1.2 Dynamical Fields

In order to study a dynamical quantum (lattice) gauge theory, the lattice system
under analysis must include also the degrees of freedom for the gauge fields and
the complex hopping parameters are therefore promoted to operators acting on these
degrees of freedom. Such degrees of freedom are usually associated to the lattice
edges and their kinetic term must be supplied.
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A constructive way to define such a system consists on taking the Lagrangian
(8.11), write an Hamiltonian and perform a naive discretization. This offers a recipe
to engineer possible quantum simulations of these systems: a straightforward way
of proceeding is indeed to create a system implementing the specific Hamiltonian
of the lattice gauge theory. As a result it is useful to consider such theories in their
Hamiltonian formulation [25].

To describe the U (1) case one can introduce the following link operators, acting
on the gauge degrees of freedom:

Ur, j = exp

⎛

⎜⎜
⎝ie

a
(
r+ ĵ

)

ˆ

ar

dx A j (x)

⎞

⎟⎟
⎠ , Lr, j = Er, j

e
. (8.13)

U and L are operators corresponding respectively to the connection and electric field
of the theory (see, for example, [26] for more details). Based on these operators, we
can define the Hamiltonian

H = − i

2a

∑

r, j

(
ψ†
rUr, jψr+ ĵ − h.c.

)
+ m

∑

n

ψ†
rψr + ae2

2

∑

n

L2
r, j , (8.14)

which reproduces the correct continuum theory when the naive continuum limit is
taken. In the expressions above a is the lattice spacing, r are the lattice points and
j labels the links connected to it. Er j is the discretized version of the electric field
which is the conjugate momentum of A j in the continuum version. The commutation
relations between the link operators are

[
Lr,i ,Ur′, j

] = δrr′δi jUr,i ,
[
Lr,i ,U

†
r′, j

]
= −δrr′δi jU

†
r,i ,

[
Ur,i ,Ur′, j

] =
[
U†
r,i ,Ur′, j

]
= 0.

(8.15)
We pause here to point out a couple of subtleties. The first concerns the so-called
naive continuum limit, obtained by simply sending a → 0.While this works well for
bosons, fermions suffer from the so-called “fermion doubling problem”. When this
limit is takenwithmore care each fermion flavor on the lattice gives rise to 2d fermion
flavors on the continuum, beingd the number of discretizeddimensions.TheNielsen–
NinomiyaTheorem [27–29] states that this is always the casewhen the fermion action
is real, local and invariant under lattice translations and chiral transformations. There
are alternative approaches to evade the Nielsen–Ninomiya Theoremwhich have their
own advantages and disadvantages. A possible choice, popular among the quantum
simulation community, is provided by staggered fermions [30] (also knownasKogut–
Susskind fermions). The idea consists on distributing the spinor components among
different lattice sites. In this way, instead of a spinor per site, one has only one
fermion. Only for the Hamiltonian formulation of the 1 + 1D theory the fermion
doubling problem can be completely solved in this way. In this case the Hamiltonian
becomes
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H = − i

2a

∑

n

(
c†nUncn+1 − h.c.

)+ m
∑

n

(−1)n c†ncn + ae2

2

∑

n

L2
n. (8.16)

Spinors can be reconstructed from ψn = (c2n, c2n+1)
T /

√
ast .

In higher dimensions the most non-trivial step consists on the existence of pla-
quette terms or, in other words, an energy cost for magnetic fields. These are
gauge-invariant terms which must be present in order to fully represent the gauge
theory. The absence of these terms is related to the strong coupling limit of the
theory. On a 2D square lattice, the plaquette term originating at the point r is
U� = Ur,xUr+x̂,yU

†
r+ŷ,xU

†
r,y consisting on the smallest loops possible to draw on

the lattice. The Hamiltonian for d spatial dimensions takes the form:

H = − i

2a

∑

r,i

(−1)r1+...+ri−1
(
c†rUr,i cr+î − h.c.

)+ m
∑

r

(−1)r1+...+rd c†rcr

+ a2−de2

2

∑

r,i

L2
r,i − ad−4

4e2
∑

�

(
U� +U †

�
)

.

(8.17)

The extra alternating signs on the first term are required to obtain the correct Dirac
Hamiltonian in the continuum limit with staggered fermions [30].

Another fundamental point, associatedwith theHamiltonian formulation, consists
on the restriction of the Hilbert space to physical states. This can be derived from the
Lagrangian formulation by noting that the component A0 is non-dynamical (there
is no term ∂0A0). As a consequence it acts as a Lagrange multiplier enforcing the
Gauss’ law as a constraint. Therefore the physical states are defined by the relation

Gr |Ψ 〉 = 0 (8.18)

for each lattice site r, where

Gr =
∑

i

(
Lr, j − Lr− ĵ, j

)
− Qr , (8.19)

where Qr is the dynamical matter charge. For the 1 + 1D case, for example, Qn =
c†ncn + 1−(−1)n

2 . The alternating term, which may look odd, is related to the staggered
formulation. Considering a state with no electric field. The Gauss law demands that
fermions populate the odd sites while leaving the even empty. This is because the
spinor degrees of freedom are distributed along the lattice. Occupied odd sites have
the interpretation of a filled Dirac sea. When a fermion hops from an odd to an
even site it creates a hole in the Dirac sea while creating a particle above it. This is
interpreted as the creation of particle/anti-particle pair where the hole plays the role
of an anti-particle. In the presence of gauge fields, the hopping described above must
be accompanied by a change on the electric field preserving Gauss’ law, as described
by the connection operator in the first term of the Hamiltonian (8.17).
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TheGr are also generators of the gauge transformation and can be extended for the
U (N ) and SU (N ) gauge theories. To this purpose, one can consider matter fieldsψr

that transform under the gauge symmetries under a suitable representation of dimen-
sion n of the gauge group. The generators of the gauge symmetries must therefore
satisfy the relation

[
Ga

r ,ψr
] = taψr where ta are n-dimensional representations of

the (left) group generators.
In order to preserve the gauge-invariance of the Hamiltonian, the connection

operators must transform like tensors under the gauge transformations and they must
follow the same representation of the matter fields: Ur, j → eiα

a
r t

a
Ur, j e

−iαa
r+ ĵ

t a
. In

particular the connection is multiplied on the left side by the transformation inherited
from the lattice site on its left and on the right side by the inverse of the transformation
inherited from the lattice site on its right.Whenwedealwith a non-Abelian group, it is
thus useful to distinguish left and right generators for the group transformations [25],
labelled by Lr,i and Rr,i respectively (see, for example, [26]). The local generators
of the gauge transformation can therefore be defined as:

Ga
r =

∑

i

(
La
r,i + Ra

r−î,i

)
+ ψ†

r t
aψr. (8.20)

Finally, the lattice Hamiltonian for the non-Abelian theory will be:

H = − i

2a

∑

r,i

(−1)r1+...+ri−1
(
ψ†
rUriψr+î − h.c.

)+ m
∑

r

(−1)r1+...+rd ψ†
rψr

+ a2−dg2

2

∑

r,i,a

((
La
ri

)2 + (Ra
ri

)2)− ad−4

4g2
∑

�
Tr
(
U� +U †

�
)

. (8.21)

Again, the Gauss law should be imposed on physical states Ga
r |Ψ 〉 = 0.

Often times, in the proceeding sections, the matter-gauge correlated hopping will
be written as ψ†

rUriψr+î + h.c. rather than i
(
ψ†
rUriψr+î − h.c.

)
as above. While the

latter reproduces the familiar continuum Hamiltonian in the naive continuum limit,
both are related by a gauge transformation.

8.2.1.3 Challenges, Limitations and Quantum Link Models

Cold atom systems offer the possibility to construct Hubbard-like Hamiltonians with
tunable hopping parameters and on-site interactions. However, gauge potentials and
gauge fields demand more than that.

When the field is static, as described in Sect. 8.2.1.1, the hopping parameters
become complex. This is not readily available in simple optical lattices, but, thanks
to recent experimental developments, it is nowadays possible to engineer static gauge
fields, as we will discuss in Sect. 8.3.
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For dynamical gauge fields, as discussed in Sect. 8.2.1.2, the matter hopping and
link operators must be correlated in such a way to guarantee the existence of the local
gauge symmetry (at each lattice site). Such kind of hopping is not natural in a cold
atomic system and a discussion on how to implement is presented in Sect. 8.4.

There is, yet, a further difficulty for dynamical gauge fields. Take, for example,
the commutation relations in (8.15) pertaining a certain link. The operator Ur acts
as a raising operator of the electric field (or equivalently of Lr). But, for a U (1)
theory, this corresponds to an infinite Hilbert space per link. Constructing such links
is certainly an experimental challenge, even for small lattice sizes. A solution of
this problem is provided by quantum link models which are characterized by a finite
Hilbert space per link, without violating the required gauge symmetry. These models
were introduced by Horn in 1981 [31] and were further studied in [32–36]. Proposed
as an alternative formulation toWilson gaugefield theories on the lattice, they became
an attractive realization of gauge symmetries for quantum simulation purposes.

In quantum linkmodels the link degrees of freedomare replaced byquantumspins,
such that the algebra in (8.15) is replaced by the algebra of angular momentum. In
particular this correspond to consider alternative link operators:

L+r,i = Sx
r,i + i Sy

r,i , Lr,i = Szr,i (8.22)

where the raising and lowering operators L±r,i replace Ur and its conjugate. With
this construction, the first two relations of (8.15) are still satisfied. However, the last
no longer holds because U and U † do not commute any longer. In particular, L±ri

are not unitary whereas Ur was.
Even though the algebra itself is different, the angular momentum operators

can be equally used to construct a gauge theory without compromising the gauge
symmetry. In particular, we can choose the dimension of the Hilbert space in
each of the links to be 2S + 1 with S a positive half integer (corresponding, in
the spin language, to the total spin). It is expected that in the limit of large S
the Wilson formulation should be recovered. Explicitly one can use the following
link variables Uri → L+ri/

√
S (S + 1). The new non-zero commutation relation is[

Uri ,U
†
ri

]
= 2Lri/S (S + 1). In the limit of S → +∞ the right hand side goes to

zero and the initial algebra is recovered.
There is an analogous construction for U (N ) non-Abelian symmetries. One can

see that the symmetry can be realized using an SU (2N ) algebra (note that for N = 1
this gives, correctly, SU (2)). It is possible to construct the new algebra using the
so-called “rishon fermions” [36]. They are written in terms of pairs of fermionic
operators lmr, j and r

m
r+ ĵ, j

for each link between the sites r and r + ĵ . These operators

define additional left and right gauge modes laying on the lattice sites r and r + ĵ ,
with the aim of describing the link degrees of freedom. m labels their color index.
We can write:



226 J. C. Pinto Barros et al.

La
r, j = 1

2
lm†
r, j t

a
mnl

n
r, j , Ra

r, j = 1

2
rm†
r+ ĵ, j

t amnr
n
r+ ĵ, j

, (8.23)

Er, j = 1

2

(
rm†
r+ ĵ, j

rm
r+ ĵ, j

− lm†
r, j l

m
r, j

)
, (8.24)

Umn
r, j = lmr, j r

n†
r+ ĵ, j

. (8.25)

The finiteness of theHilbert space is a feature desirable for future quantum simulation
schemes. Even though not a primary concern at this stage, it is reassuring that the
effective continuum limit can be achieved even if one uses quantum linkmodels [34].

8.3 Simulation of Gauge Potentials

In accordance with the previous discussion, the goal of this section is to show specific
examples on how a complex hopping parameter can be engineered. The two main
strategies described will be two contrasting situations. In one external parameters
are varied adiabatically (Sect. 8.3.1), while in the other fast modes are integrated out
(Sect. 8.3.2).

8.3.1 Adiabatic Change of External Parameters

The idea of this approach has, in its core, the tight relation between the Aharonov–
Bohm phase [37] and the Berry phase which was a concept introduced by Berry in
[38]. The first is the phase acquired by a particle traveling around a closed contour.
At the end of the path, when it is back to the initial position, the wave function
acquires a new phase which is independent of the details of how the path was done
and only depends on the total magnetic flux through the contour. On the other side,
the Berry phase corresponds to the phase acquired when some external parameters
of the system are varied in time, “slowly”, coming back again to their initial value for
a non-degenerate state. In a more precise way, the starting point is an Hamiltonian
H (qa,λi ) where qa are degrees of freedom and λi are a set of external parameters.
If these parameters are varied sufficiently slow returning, in the end, to their initial
value, and if the initial state is an non-degenerate eigenstate, then the system will be
back to its initial state. During the process, however, it will acquire a phase:

|ψ〉 −→
adiabatic change

eiγ |ψ〉 . (8.26)

The phase γ can be derived by computing the time evolution operator and subtract the
“trivial” dynamical phase acquired simply due to the time evolution. Let us consider
the adiabatic evolution of a system such that each energy eigenstates remain non-
degenerate during the whole process. In this case, starting from one of the eigenstates
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of the initial Hamiltonian, the system will continuously evolve remaining in the
corresponding eigenstate, with energy E(t), at each time. Therefore the dynamical
phase is e−i

´
E(t)dt . The additional Berry phase reads instead:

γ =
‰
C
Ãi (λ) dλi , (8.27)

where C is the closed path in the space of the parameters λi and Ãi are given by:

Ãi (λ) = i 〈φ (λ)| ∂

∂λi
|φ (λ)〉 , (8.28)

where |φ (λ)〉 are reference eigenstates taken with an arbitrary choice of their overall
phases. Ã (λ) is the Berry connection. Different choices of the reference eigenstates
with different phases, for example |φ′(λ)〉 = eiα(λ) |φ (λ)〉, would just reproduce a
gauge transformation on Ã:

Ãi → Ã′
i = Ãi − ∂α

∂λi
. (8.29)

This principle can be applied in multi-level atomic systems in order to reproduce
artificial gauge fields in an ultracold atomic setting. As an example, the computation
can be done for a two level atom, where it is shown how this vector potential appears
explicitly at the Hamiltonian level. These two levels correspond to two internal
states of the atom, the ground state |g〉 and an excited state |e〉. The center of mass
Hamiltonian, assumed diagonal on the internal states, is taken to be simply the free
particle Hamiltonian. The total Hamiltonian is H = H0 +U . By a suitable shift of
the energy spectrum we can assume that the ground and excited state energies are
related by Eg = −Ee. Then U can be written as

U = �

2

(
cos θ eiφ sin θ

eiφ sin θ − cos θ

)
(8.30)

where θ andφmaydependon the position. The frequency� characterizes the strength
of the coupling between the two states and it is assumed to be position independent.
The eigenstates of this operator, denoted as “dressed states”, are given by:

|χ1〉 =
(

cos θ
2

eiφ sin θ
2

)
, |χ2〉 =

(−e−iφ sin θ
2

cos θ
2

)
(8.31)

with eigenvalues ±��/2 respectively. We assume that the initial internal state is
|χ1〉 and that the evolution is adiabatic, such that the system remains in the state
|χ1〉 at all times. Hence the state of the system can be described by a wave function
|ψ (t, r)〉 = ϕ (t, r) |χ1 (r)〉whereϕ (t, r)will obey amodifiedSchrödinger equation
due to the dependence of |χ1 (r)〉 on the position. Plugging this into the Schrödinger
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equation and projecting on |χ1 (r)〉, we find the effective Hamiltonian governing ϕ:

Heff =
(
pi − i 〈χ1 (r)| ∂

∂xi
|χ1 (r)〉

)2

2m
+
∣∣
∣〈χ2 (r)| ∂

∂xi
|χ1 (r)〉

∣∣
∣
2

2m
+ �

2
. (8.32)

As expected, a vector potential Ãi (r) corresponding to the Berry connection is
found. Additionally a potential Ṽ (r) is also created and related to virtual transitions
to the other state |χ2 (r)〉. In this two level approximation, these two quantities

are given by Ãi (r) = cos θ−1
2

∂φ
∂xi

and Ṽ (r) = (∇θ)2+sin2 θ(∇φ)2

8m . Discussions about the
practical implementation on optical lattices can be found in [21, 22, 39, 40]. First
experimental evidence of scalar potentials in quantum optics was found in [41] and
the first observation of geometric magnetic fields in cold atomic physics was done
in [42]. By considering a set of degenerate or quasi-degenerate dressed states it is
possible to achieve non-Abelian gauge potentials as well [21, 22].

8.3.2 Effective Hamiltonian in Periodic Driven System

In contrast to the approach of the previous subsection, where the creation of the
magnetic field relied on a slow change in time (i.e. the particle moves slowly enough
such that the position dependent internal state is followed adiabatically), the follow-
ing technique relies on fast oscillations. The basic principle consists on having two
very distinct timescales. A fast oscillating time dependent potential will give rise to
an effective time independent Hamiltonian which will present the desired complex
hopping term. A general technique was proposed in [43] and it is based on a generic
time-dependent periodic Hamiltonian:

H = H0 + V (t) (8.33)

where all the the time dependence is relegated to V (t) = V (t + τ ) where τ is the
time period. V (t) can be decomposed as:

V (t) =
∑

n

(
Vn+einωt + Vn−einωt

)
(8.34)

where Vn± are operators and ω = 2π/τ . The condition Vn+ = V †
n− guarantees the

Hermiticity of the Hamiltonian.
A unitary transformation eiK (t) generates an effective Hamiltonian given by:

Heff = eiK (t)He−i K (t) + i

(
∂

∂t
eiK (t)

)
e−i K (t). (8.35)
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We choose a periodic operator K (t) such that the effective Hamiltonian is time
independent. Under this requirement, the time evolution operator can be represented
as:

U
(
ti → t f

) = eiK(t f )e−i Heff(t f −ti)e−i K (ti ) , (8.36)

and it can be shown that, at lowest order, the effective Hamiltonian can be writ-
ten as [43]:

Heff = H0 + τ
∑

n

1

n

[
Vn+, Vn−

]+ O
(
τ 2
)
. (8.37)

This expansion relies on the small parameter Ṽ τ where Ṽ is the typical energy scale
of V (t). This expansion turns out to be very useful in the effective description of
ultracold atomic systems though care should be taken, in a case by case scenario, in
order to be sure about the convergence of the series.

8.3.2.1 Lattice Shaking

The lattice shaking approach consists on having an external time dependent optical
potential that is changing in time in accordance to the previous description. Then a
change of basis is performed for a co-moving frame that, along with a time aver-
age, will create an effective Hamiltonian with the desired complex hopping. As
an example, a brief prescription is presented along the lines of the realization in a
Rb Bose–Einstein condensate [44]. The Hamiltonian considered is the usual tight-
biding Hamiltonian in 2Dwith the usual hopping and on-site part Hos (by on-site it is
intended one body potential and scattering terms that act in single sites). In addition,
there is an extra time dependent potential:

H = −
∑

r, j

tr j â
†
r+ ĵ

âr + Hos +
∑

r

vr (t) â†r âr. (8.38)

The function vr (t) is periodic on time with period τ : vr (t) = vr (t + τ ). A uni-
tary transformation on the states is performed and plugged in on the Schrödinger
equation, thus defining new states

∣∣ψ′〉 such that |ψ (t)〉 = U (t)
∣∣ψ′ (t)

〉
. The Hamil-

tonian becomes H ′ (t) = U (t)† HU (t) − iU (t)† U̇ (t) (where the dot stands for
time derivative). The transformation is given by

U (t) = e−i
´ t
0 dt

′∑
r vr(t ′)â†r âr . (8.39)

It is straightforward to see that this transformation cancels the part of H (which will
be present also onU †HU ) corresponding to vi (t) â†r âr. On the other side, since this
does not commute with the kinetic term, a time dependence will be inherited by the
hopping terms. For a set of rapidly oscillating function vi (t) the Hamiltonian can be
replaced by an effective one, resulting from time averaging over a period. The new
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hopping parameters will read:

tr j → tr j
〈
eiΔvr j

〉
τ

(8.40)

where 〈〉τ stands for the average over a period: τ−1
´ τ

0 dt and Δvr j = vr (t) −
vr+ ĵ (t) −

〈
vr (t) − vr+ ĵ (t)

〉

τ
.

8.3.2.2 Laser-Assisted Hopping

In this case the effective dynamics is induced by the coupling of the atoms on the
optical lattice with a pair of Raman lasers. A fundamental ingredient consists on
introducing an energy offset Δ on neighboring sites. It is enough to consider such
scenario along a single direction. Considering a 2D lattice:

H = −t
∑

r, j

(
ĉ†
r+ ĵ

ĉr + h.c.
)

+ Δ

2

∑

r

(−1)x c†r ĉr + V (t) (8.41)

where r = (x, y) runs through the lattice sites. The offset term, characterized by
Δ, can be obtained by tilting the lattice, introducing magnetic gradients or through
superlattices. The potential V (t) is the result of the two external lasers that induce an
electric field E1 cos (k1 · r1 − ω1t) + E2 cos (k2 · r2 − ω2t). It is assumed that the
frequencies are fine-tuned such that they match the offset ω1 − ω2 = Δ. Neglecting
fast oscillating terms the potential is written as:

V (t) = 2E1E2

∑

r

ei(kR ·r−Δt)c†rcr + h.c. (8.42)

with kR = k1 − k2. Then one can get the effective Hamiltonian in two steps. First
performing an unitary transformation exp[−i t Δ

2

∑
r (−1)x c†r ĉr] will create oscilla-

tory hopping terms (with exp (±iΔt) in front). Then one may apply the previous
formalism building an effective Hamiltonian using (8.37):

H = − t
∑

x,y

(
ĉ†x,y ĉx,y+1 + h.c.

)

− 2t E1E2
Δ

∑

x even,y

[(
eikR ·r − 1

) (
eikR ·r ĉ†x,y ĉx+1,y + e−ikR ·r ĉ†x−1,y ĉx,y

)
+ h.c.

]
+ O

(
Δ−2

)
.

(8.43)
It is clear that this generates complex hopping and one finds that the lattice has
staggered flux. With a choice kR = (�,�) (as also made in the experiment [45])
one can write upon a gauge transformation:
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H = − t
∑

x,y

(
ĉ†x,y ĉx,y+1 + h.c.

)

− 2t E1E2 sin�/2

Δ

∑

x even,y

[(
ei�y ĉ†x,y ĉx+1,y + e−i�y ĉ†x−1,y ĉx,y

)
+ h.c.

]
+ O

(
Δ−2

)

(8.44)
where it is clear that a sequence of fluxes ±� alternates in the plaquettes along
the x direction. More refined techniques allow for the realization of systems with
uniform fluxes [46]. In such systems the Chern number of the Hofstadter bands was
measured in [47]. It is worth noting that other kind of one-body terms, beyond the
staggered term, can be used as it was done in the first quantum simulations of this
model with ultracold atoms [48, 49]. In that case a linear potential is used. These
kind of approaches can be adapted to more general scenarios including different
geometries and multi-component species. The latter, for example, can be achieved
by introducing spin dependent potentials as done in [48].

8.4 Simulation of Gauge Fields

In the context of Abelian gauge theories, the goal of simulating gauge fields consists
in attributing dynamics to the complex phases on the hopping parameters that were
identified in the previous section. In order to construct such dynamics one should
identify degrees of freedom thatwill play the role of the gauge field. Several proposals
have been put forward which map the gauge degrees of freedom into some other
controllable variables. The platforms used include ultracold atoms, trapped ions and
superconducting qubits. They may be analogue or digital quantum simulators and
include Abelian or non-Abelian symmetries [50–76]. A more detailed description
of two particular approaches in analogue cold atomic simulators will follow: the
gauge invariance will be obtained by either penalizing with a large energy cost the
non-physical states or by exploiting microscopic symmetries.

There are other symmetries which have been explored, namelyZn [54, 65] which,
in particular, can provide an alternative route towardsU (1) symmetry in the large n
limit [54] and can be addressed with similar approaches. Proposal for the realization
of CP (N − 1) [77, 78] models have been put forward in [71, 72]. These models
can serve as toy models for QCD and are also relevant in studying the approach to
the continuum limit, in the context of D-theories, where the continuum limit is taken
via dimensional reduction [35, 36]. Furthermore other formulations are possible for
specific groups [26, 79–82]. Gauge theories with Higgs fields have also been the
target of quantum simulation proposals [83–86].

Another relevant approach is the so-called quantum Zeno dynamics which takes
inspiration on the quantum Zeno effect, stating that a system being continuously
observed does not evolve on time. Furthermore, if the measurement commutes with a
certain part of theHamiltonian, then it can freeze a certain part of theHilbert space but
still enables the dynamics in another subspace [87]. This feature can be used in order
to freeze gauge dependent quantities and let the system evolve in the gauge invariant
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subspace. The Hamiltonian to be implemented has the form Hnoise = H0 + H1 +√
2κ
∑

x,a G
a
x where H0 and H1 are time independent and are, respectively, gauge

invariant and gauge variant parts of the Hamiltonian. The operatorsGa
x are associated

to the constraint one wishes to impose Ga
x |ψ〉 = 0. In the case of gauge theories Ga

x
are the generators of gauge transformations. An advantage of this approach, with
respect to the energy punishment approach of the next section, is that only linear
terms on the generators must be imposed on the Hamiltonian (energy punishment
requires quadratic terms). By other side leakage from the gauge invariant subspace
of the Hilbert space happens as a function of time, which does not happen in the
energy penalty approach. This approach was developed in [63].

Another approach, that was successfully implemented in the first quantum sim-
ulator of a gauge theory using trapped ions [7], is the digital quantum simulator
[88]. The key idea consists on in dividing the full time evolution operator e−i Ht

into smaller pieces of sizes τ = t/N and apply time evolution of smaller parts of
the Hamiltonian at a time. Consider for example an Hamiltonian which is a sum of
M contributions: H =∑M

α Hα. Each part Hα can represent, for example, a nearest
neighbor spin interaction in which case only two spins are coupled on each Hα. For
large enough N one can write:

e−i Ht = (e−i Hτ
)N �

(
M∏

α=1

e−i Hατ

)N

. (8.45)

Each time step can now be interpreted as an individual gate. While in the analogue
simulation the great difficult lies on building the appropriate gauge invariantHamilto-
nian, in digital quantum simulations that is not a problem.The difficulty lies, however,
in building an efficient sequence of gates. Other then the scheme used in the first
experimental realization [89], other proposals towards digital quantum simulations
of lattice gauge theories have been put forward [50, 52, 61, 69, 73, 74].

8.4.1 Gauge Invariance from Energy Punishment

The energy punishment approach is a quite general approach which allows for the
theoretical construction of models that will exhibit a given symmetry in its low
energy sector. It consists on building a Hamiltonian which does not prohibit the
symmetry violation to occur but instead punishes it with a large energy. In a more
concrete way, let suppose one wants to implement a set of symmetries corresponding
to a set of generators {Gx } commuting with each other

[
Gx ,Gy

] = 0. Furthermore
consider a typical Hamiltonian H0 which does not respect these symmetries. Then
one constructs the following Hamiltonian:

H = H0 + �
∑

x

G2
x (8.46)
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where� is a large energy scale, meaning much larger than the energy scales involved
in H0. Since Gx are Hermitian G2

x have non-negative eigenvalues. One can choose
the lowest eigenvalue to be zero by an appropriate definition of Gx . Then, at low
energy (��), the states will respect approximately the condition Gx |ψ〉 � 0. If
not, this would give a state automatically in an energy scale ∼�. It is then possible
to construct an effective Hamiltonian, valid in low energy, which will respect the
symmetries generated by {Gx }. Let G be the projector operator on the subspace of
the total Hilbert space obeying Gx |ψ〉 = 0 and let P = 1 − G. Then the low energy
Hamiltonian can be written as:

Heff = GH0G − 1

�
GH0P

1
∑

x
G2

x

PH0G + O
(
�−2

)
(8.47)

which fulfills the symmetries. Within this framework an effective Abelian gauge
theory can be constructed. In non-Abelian theories the generators of the gauge trans-
formation do not commute and this construction fails. There are, of course, several
possible drawbacks even on the theoretical level. For example theHamiltonian (8.47),
even though gauge invariant, may contain unwanted interactions or miss some par-
ticular terms which are present on the target system.

In order to construct a quantum simulator the first task is naturally to map the
degrees of freedom of the target theory into the laboratory controlled ones, in this
case the atomic variables. The matter fields, which are fermionic, will naturally be
described by fermionic atomic species. Regarding gauge fields, the target will be
the quantum links formulation discussed in Sect. 8.2.1.3. Therefore the goal consists
on building the quantum links satisfying the algebra

[
Lr,i ,Ur′, j

] = δi jδrr′Ur′, j and[
Ur,i ,U

†
r′, j

]
= δi jδrr′2Lr,i/S (S + 1).

This can be achieved using the Schwinger representation. Given two bosonic
species b(σ) with σ = 1, 2 which are associated to each link, one can write

Uri = 1√
S (S + 1)

b(2)
ri

†b(1)
ri , Lri = 1

2

(
b(2)
ri

†b(2)
ri − b(1)

ri
†b(1)

ri

)
. (8.48)

Each link is loaded with a total of 2S bosons where S is an half integer. Then one has
the desired representation for the quantum links in terms of atomic variables. Now
the variables are identified. One then can then build a d dimensional optical lattice
where fermions are allowed to hop among lattice points and in each links there are
a total of 2S bosons. For 1D, the target Hamiltonian is of the form:

H = −t
∑

n

(
c†nUncn+1 + h.c.

)+ m
∑

n

(−1)n c†ncn + g2

2

∑

n

L2
n. (8.49)

When comparing to the general structure of (8.21) there are two differences: the
plaquette term and the position-dependent coefficient of the kinetic term. The pla-
quettes are naturally absent in 1D, whereas the tunneling amplitude can be fixed
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by a gauge transformation cn → (−i)n cn . The Hamilton (8.49) has, therefore, the
required structure and can be targeted with the Schwinger boson approach. It then
becomes

H = − t√
S (S + 1)

∑

n

(
c†nb

(σ̄)
n

†b(σ)
n cn + h.c.

)
+ m

∑

n

(−1)n c†ncn + g2

8

∑

n

(
b(2)
n

†b(2)
n − b(1)

n
†b(1)

n

)2
.

(8.50)
The two last terms can be, in principle, implemented directly using a proper tuning of
the interactions between the bosons and the potential for the fermions. The first term,
instead, is a correlated hopping between bosons and fermions which is obtained less
easily. Furthermore the additional terms that are not gauge invariant, like b(σ̄)

n
†b(σ)

n
and c†ncn+î , must be suppressed. This is solved by the energy punishment approach.
In general the non-gauge invariant Hamiltonian with the ingredients described has
the form:

H0 = −
∑

n,i

[
tF
(
c†ncn+1 + h.c.

)− tB
(
b(2)
n

†b(1)
n + h.c.

)]

+
∑

n

(

vF
n c

†
ncn +

∑

σ

vBσ
n b(σ)

ni
†b(σ)

ni

)

+U
∑

n

(
b(2)
n

†b(2)
n − b(1)

n
†b(1)

n

)2
.

(8.51)
Using the generators for the U (1) gauge symmetry in (8.19) one considers the full
Hamiltonian:

H = H0 + �
∑

n

(
Ln − Ln−1 − c†ncn + 1 − (−1)n

2

)2

. (8.52)

It is crucial that one has access to the interactions that are introduced on the last term
corresponding to the energy punishment. To see that this is the case it useful to be
more specific about the labels σ. One can take, as in [53], the labels σ = 1, 2 mean-
ing respectively left and right part of the link, which can be thought to coincide with
the lattice site. In this way b(2)

n
†b(1)

n are just regular hopping terms. Furthermore it is
recalled that the total number of bosons associated to each link is conserved. There-
fore one can write: Ln = −S + b(2)

n
†b(2)

n = S − b(1)
n

†b(1)
n . This means that terms like

L2
n and and LnLn−1 can be written as a density-density interaction. Regarding the

last case, recall that b(1)
n and b(2)

n−1 are effectively in the same site, see Fig. 8.1. Now
(8.47) can be applied. The number of particles in each site is a good quantum number
to describe the eigenstates of Gx . The number of particles in the site j are denoted
by nF

j = c†j c j , n
1
j = b(1)

j
†b(1)

j and n2j = b(2)
j−1

†b(2)
j−1. The subspace of gauge invariant

states is then characterized by:

nF
j + n1j + n2j = 2S + 1 − (−1) j

2
. (8.53)

At the lowest order only the two last terms of (8.51) survive as any single hopping
destroys the above relation. At the next order there are three possible virtual processes



8 Gauge Theories with Ultracold Atoms 235

Fig. 8.1 Superlattice configurations for the two boson species and the fermionic one. Bosons of
the species 1 at an even site 2 j can only hop to 2 j − 1 while a boson of species 2 has only access to
the site 2 j + 1. The Figure presents an example of a gauge invariant state configuration (on these
three sites) where Gx |ψ〉 = 0

that preserve this condition. Up to some linear terms on the particle density operator,
they are:

i Boson-boson hopping: a boson hops to the neighboring site on the same link and
another boson hops back. It gives rise to a boson density-density interaction.

ii Fermion-Fermion hopping: a fermion hops to a neighboring site and then hops
back. Only possible if neighboring site is unoccupied and gives rise to a nearest
neighbor fermion density-density interaction.

iii Boson–Fermion hopping: a fermion hops to a neighboring site and a boson
belonging to the link that connects the two sites does the opposite path. It gives
rise to a correlated hopping.

The terms coming from (i) should be joined with the last term of (8.51) in order
to form the correct kinetic term for the gauge fields. The terms in (ii) are some-
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how unwanted and correspond to a repulsion between neighbor fermions nF
j n

F
j+1.

Naturally, they do not spoil gauge invariance and their inclusion should not be a prob-
lem [53]. Finally the terms originating from (iii) give rise to the correlated hopping
responsible for the matter-gauge coupling as written on the first term of (8.48). There
is another issue which should be addressed. From the beginning it was assumed that
the the number of bosons in each link is conserved. In particular this means that
bosons are not allowed to pass to a neighboring link. In order to guarantee this con-
dition in an experiment one should introduce an extra bosonic species and this is the
reason that bosons in neighboring links were represented with different colors on
Fig. 8.1. Then one bosonic species is trapped on the even links and the other in the
odd links. This will prevent bosonic hopping between links. A numerical study of
real dynamics of the the model as well as accuracy of the effective gauge invariance
obtained was also done in [53].

Finally, in a possible experimental realization, the first fundamental step is to
guarantee that the system is initialized on a gauge invariant state. This can be done
by loading the atoms in a deep lattice such that they are in Mott phase. Afterwards
the system should evolve according to the fine tuned Hamiltonian described above
(after lowering the lattice barriers). Finally measures of relevant quantities can be
performed.

This principle is valid in higher dimensionality where one has to face the difficulty
of generating plaquette terms. Thiswas done for the pure gauge in [59, 90] by suitably
allowing hopping between links. In the first case each link has an infinite dimensional
Hilbert space that is represented by a Bose–Einstein condensate. In the second the
proposal is simplified by considering a quantum link model.

8.4.2 Gauge Invariance from Many Body Interaction
Symmetries

This approach consists on building a lattice which will have the necessary local
gauge invariance arising frommicroscopic symmetries. Specific proposals may vary
significantly even though the same principle is used. For example in [76] the simu-
lation is built upon the global symmetry conserving the total number of excitations
and is achieved via a state-dependent hopping. In turn, see for example [65, 91], are
built upon conservation of angular momentum. For concreteness the later approach
will be described in more detail below. In the case of [62] SU (N ) symmetries of
the ground state manifold of alkaline-earth-like atoms could be exploited in order to
built non-Abelian gauge theories.

Symmetries only allow for certain type of processes to occur and, by exploiting
these constraints, one can build a gauge symmetry. This can be done, as said before,
considering angular momentum conservation. The Schwinger model is taken as an
illustrative example. Bosons, that will make up the gauge fields, are placed at the
two boundaries of the links. Because the goal consists, partially, in forbidding gauge
dependent terms like simple boson or fermion hopping, the lattice should be spin
dependent. In this way a single hopping is forbidden as it does not conserve angular
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momentum. By other side one should guarantee that correlated spin between bosons
and fermions is allowed. This can be achieved by a judicious choice of respective
hyperfine angular momentum in each lattice site. For concreteness, consider a single
link connecting two sites and a total of two bosonic (b(1),b(2)) and two fermionic
species (c,d). The site at the left of the link can only be populated by cwhile the right
side by d. Analogously the left end of the link can only be populated by b(1) while
the right end can only be populated by b(2). Then the conditions described above for
allowed/forbidden hopping are automatically satisfied if one chooses the hyperfine
angular momentum of each atomic species to satisfy:

mF (d) − mF (c) = mF
(
b(1)
)− mF

(
b(2)
)
. (8.54)

It is intended that the lattice is, indeed, spin dependent so that mF (d) �= mF (c)
and mF

(
b(1)
) �= mF

(
b(2)
)
. In other words, what this means is that the difference

of angular momentum caused by a fermion hop can be exactly compensated by a
bosonic hop in the opposite direction. This leads directly to the correlated hopping
desiredwhich, in fact, comes from the scattering terms between bosons and fermions.
The only other allowed scattering term between fermions and bosons correspond
to density-density interactions like c†c

(
b(2)†b(2) + b(1)†b(1)

)
. These are just linear

terms on the fermionic number operator due to the conservation of the total number
of bosons per link. Summing over all lattice sites will give just a constant shift of the
energy. The scattering terms between bosons give rise to the gauge kinetic term as
before (in 1 + 1 dimensions).

Again, for higher dimensionality, there is a non-trivial extra step consisting on
building plaquette interactions. If plaquettes are ignored and the model described
above is loaded on an higher dimensional lattice the result corresponds to the strong
coupling limit of the gauge theory.

The plaquette terms can be achieved by the so-called loop method. It uses pertur-
bation theory in a similar way that was used in the energy penalty approach. In order
to discuss the essence of the construction of the plaquette terms, one can consider
just the pure gauge theory. The target Hamiltonian is

Htarget = g2

2

∑

r,i

L2
ri − 1

4g2
∑

�

(
U� +U †

�
)

. (8.55)

The description will be specialized for 2 + 1 dimensions but the theoretical construc-
tion for higher dimensions is analogous. The construction of the plaquette term relies
on a perturbative expansion similar to (8.46) but, in this case, H0 is already a gauge
invariant Hamiltonian. For reasons that will be explained below one should have two
fermionic species, say χ and ψ, and build the trivial part of the generalization of the
1 + 1 process:

H0 = −t
∑

r,i

(
ψ†
rUriψr+î + χ†

rUriχr+î + h.c.
)+ g2

2

∑

r,i

L2
ri . (8.56)
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The fermionic species are auxiliary and in the effective model they will be integrated
out. There should be no interacting term between them. Here the energy penalty must
enforce the following conditions at each site r = (r1, r2):

• there is a fermion ψ if both r1 and r2 are even
• there is a fermion χ if both r1 and r2 are odd
• no fermion otherwise

The positions of these fermions is represented on Fig. 8.2a. This kind of constraint
can be obtained, for large �, with a Hamiltonian of the form:

Hpenalty = −�
∑

r

[(
1 + (−1)r1

) (
1 + (−1)r2

)

4
ψ†
rψr +

(
1 − (−1)r1

) (
1 − (−1)r2

)

4
χ†
rχr

]

.

(8.57)
Through perturbation theory, according to (8.47), one gets the plaquette terms at
fourth order. This process is “cleaner” if the Ur in (8.56) are considered unitary. In
particular we may consider a unitary limit, in which the total spin of the quantum
link goes to infinity: S →= +∞. Order by order:

1. Only the pure gauge part of (8.56) contributes, no fermionic term occurs.
2. Trivial constant contribution assuming that Un are unitary. The virtual process

giving rise to this contribution is a single link interaction where a fermionic-
bosonic correlated hopping occurs back and forth restoring the initial state. There
are never fermions on the neighbor lattice site. In the unitary limit there is an
infinite number of bosons such that

[
U,U †

]→ 0. In the case of finite bosonic
number, extra contribution corresponding to a renormalization of the pure gauge
term of (8.56) will appear, together with another term which can be discarded by
application of the Gauss law.

3. Trivial constant contribution assuming that Un are unitary. Virtual contributions
evolving links constitute again back and forth hopping plus a pure gauge term at
any stage of the process. The extra contributions coming from considering a finite
number of boson per link cannot be disregarded trivially as at second order.

4. It gives the desired plaquette term plus renormalization of the pure gauge term
of (8.56) assuming that Un are unitary. The last case corresponds to the virtual
process where a fermion goes around a plaquette and returns to the initial place.
This virtual process is represented on Fig. 8.2b. Naturally, in the non-unitary case,
more terms appear.

Plaquette terms only appear at fourth order. However, in the unitary limit, most
contributions are trivial. One can then see that it is effectively a second order contri-
bution [92].

When one considers a finite number of bosons in the links there are extra contri-
butions appearing which cannot be disregarded. As in the case of the energy penalty,
these contributions, even though unwanted, can be tolerated as they are naturally
gauge invariant. However one should guarantee that these extra contributions are not
more important than the plaquette termwhich is the target term. That can be achieved
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(a) (b)

Fig. 8.2 Loop method for obtaining the plaquette terms. In the panel a it is depicted the positions
of the auxiliary fermions that are used to construct the plaquette term using gauge invariant building
blocks.One of the species, sayψ, is represented in red and placed on siteswith both coordinates even.
In turn χ, in pink, is placed on sites with both coordinates odd. This correspond to the ground-state
of (8.57). In the panel b it is represented a virtual process that gives rise to a plaquette term

if the coupling term, parameterized by g2, is taken to be small in units of t . By taking
g2 ∼ t2/� one makes the unwanted terms at third order effectively of the same order
as the plaquettes and unwanted terms of the fourth order effectively of higher order
than the plaquettes.

On top of these, an extra species of fermions can be introduced to play the role
of matter fields. They will consist, in the initial Hamiltonian, to the usual correlated
hopping with the bosons. Furthermore the staggered mass term (of (8.17)) should
also be introduced. In the unitary case this extra piece commutes with the interacting
part of (8.56) and no further contribution is obtained in perturbation theory. In the
truncated case there is an extra (gauge invariant) correlated hopping coming at third
order. Another different aspect of the introduction of dynamical fermions is that
the Gauss law (

∑
i Lri − Lr−î,i = const) can no longer be used to trivialize terms.

The divergence of the electric field gets a contribution from the charge density of
the dynamical fermions. Nonetheless it can still be employed and the extra charge
density terms can be compensated on the initial Hamiltonian if proper fine tuning is
available experimentally.

In [91] it was proposed a realization of the Schwinger (1 + 1) model using a
mixture of 23Na for the bosons and 6Li for the fermions as well as an extensive study
on the influence of the finiteness of the number of bosons per link in that case.

8.4.3 Encoding in 1+ 1 Fermions

The case of the Schwinger model, 1 + 1 Dirac fermions coupled to a gauge field,
is an interesting experimental and theoretical playground. It shares some non-trivial
features with QCD like confinement, chiral symmetry breaking and a topological
theta vacuum [93]. However, due to its simplicity, it allows for analytical and numer-
ical studies which may become significantly harder in more complicated theories.
Furthermore it was the target of the first experimental implementation of a lattice
gauge theory [7]. In the context of quantum simulations it may not only provide the
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entrance door towards more complicated experimental realizations but also a way of
benchmarking experimental techniques.

One of the reasons why this model bares an intrinsic simplicity, as mentioned
previously, is the fact that the gauge fields are non-dynamical. This is reflected on the
absence of plaquette terms in the Hamiltonian formulation. Furthermore the Gauss
law fixes the gauge field and can be used to integrate out its degrees of freedom.
This results in a long-range interacting model which will be addressed next. In the
following the lattice Hamiltonian formulation is considered for N lattice sites:

H = −i t
N−1∑

n=1

[
c†nUncn+1 − h.c

]+ m
N∑

n=1

(−1)n c†ncn + g2

2

N−1∑

n=1

L2
n. (8.58)

Here an infinite dimensional Hilbert space per link is considered, therefore the oper-
atorsUn are unitary and the non-trivial commutation relations on the links are given
by [Lm,Un] = Unδmn . Equivalently the link can be written as Un = eiθn . The Gauss
law is imposed in accordance with the relations (8.18) and (8.19). This model can be
formulated in terms of Pauli spin operators [94] through the Jordan–Wigner trans-
formation: ⎧

⎨

⎩

cn = ∏

l<n
(iσz (l)) σ− (n)

c†n = ∏

l<n
(−iσz (l))σ+ (n)

(8.59)

where σi (l) represent the Pauli matrices in the site l and σ± (n) = σx (n) ± iσy (n).
In terms of the spins the Gauss law is determined by:

Gn = Ln − Ln−1 − 1

2

(
σz (n) + (−1)n

)
. (8.60)

By restricting ourselves to the physical space, through the Gauss law Gn |ψ〉 = 0,
the link variables can be almost completely eliminated. Using periodic boundary
conditions (L0 = LN ) one finds:

Ln = L0 + 1

2

n∑

l=1

(
σz (l) + (−1)n

)
. (8.61)

The value of L0 is a parameter of the theory and corresponds to a background field.
For simplicity it will be taken to zero at the present discussion. By using the above
relations the Hamiltonian (8.58) can be rewritten as:

H = t
N∑

n=1

[
σ+ (n) eiθnσ− (n + 1) + h.c

]
+ m

2

N∑

n=1

(−1)n σz (n) + g2

8

N∑

n=1

⎡

⎣
n∑

l=1

(
σz (l) + (−1)n

)
⎤

⎦

2

(8.62)
where a trivial constant term was dropped. The remaining gauge field variable θn
can be eliminated by a residual gauge transformation [95]:
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σ± (n) → σ± (n)
∏

j<n

e±iθ j . (8.63)

This is a non-trivial transformation as θ’s are operators. More precisely, the above
relation shouldbe seen as defining anewset of operators σ̄± (n) = σ± (n)

∏
j<n e

±iθ j .
The σ̄ still respect the angularmomentum algebra between each other. Therefore they
are still spin operators on the sites of the lattice, despite acting non-trivially on the
links. Since the links degrees of freedom are being traced out using the Gauss law,
one can arrive at an effective spin model for the sites. Plugging this transformation
and expanding the interaction term, the resulting model is a long-range interacting
spin model:

H = t
N∑

n=1

[
σ+ (n) σ− (n + 1) + h.c

]+
N∑

n=1

(
m

2
(−1)n − g2

8

(
1 − (−1)n

))
σz (n)

+g2

4

N−2∑

n=1

N−1∑

l=1

(N − l) σz (n) σz (l) . (8.64)

This is a useful formulation for quantum simulations since the total of N particles
and N − 1 gauge fields are simulated by just N spins (with exotic long-range interac-
tions), thanks to the gauge invariance. The difficulty was moved towards an efficient
way of implementing the long-range asymmetric interaction between spins. This
Hamiltonian was implemented as a digital quantum simulator in [7] using trapped
ions (40Ca+). The system was composed of four qubits. The Schwinger mechanism
of pair creation of particle-antiparticle was explored, as well as real time evolution
of entanglement in the system. Based on the staggering prescription in Sect. 8.2.1.2,
a particle on an odd site corresponds to the vacuum and a hole as an antiparticle (the
contrary holds for particles in the even sites). Following this picture the number of
particles at the site n is given by νn = (1 − (−1)n

)
/2 + (−1)n c†ncn and therefore

a relevant observable is the particle density ν (t) = (2N )−1∑
n

〈
1 + (−1)n σz (n)

〉
.

Starting from a bare vacuum (ν (0) = 0) it is observed a rapid increase of the particle
density followed by a decrease which is due to particle/anti-particle recombination.
Also the vacuum persistenceG (t) = 〈0| e−i Ht |0〉 and entanglement were evaluated.
The latter is done by reconstructing the density matrix and evaluating the entangle-
ment in one half of the system with the other half through logarithmic negativity.
Entanglement is produced through particle creation that get distributed across the
two halves. More detail on the simulation and experimental results can be found in
[7, 89]. Future challenges include the simulation of larger systems as well higher
dimensionality and non-Abelian symmetries.
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Chapter 9
The Remarkable BEC Dimer

David K. Campbell

Abstract We provide a short review (to appear in the proceedings of ‘Strongly
Coupled Field Theories for Condensed Matter and Quantum Information Theory’,
held in Natal 2015) of several articles by the author and his collaborators on aspects
of the ‘Bose–Hubbard” dimer (also known as the “Bose Josephson junction”) as
realized by a Bose Einstein Condensate (BEC) in a double-well optical trapping
potential. We discuss the semi-classical model for this system (the Gross-Pitaevski
(GP) equation) which is valid for a large number of atoms in the condensate and show
that it is equivalent to an integrable classical dynamical system with multiple fixed
points whose locations depend on the parameters of the system. We then discuss
the full quantum mechanical model (the Bose–Hubbard Hamiltonian) both with
and without dissipation. We demonstrate the surprising result that dissipation can
actually enhance the condensate fraction and the EPR entanglement by driving the
system nearer to the (classical) fixed points. We also show that the full quantum
model predicts a tunneling phenomenon that is absent in the GP equation and that,
in principle, should be observable in near-term experiments.

9.1 Introduction

The experimental realizations of Bose–Einstein Condensates (BECs) and degener-
ate Fermi gases (DFGs) revolutionized the field of atomic, molecular, and optical
(AMO) physics, and when combined with the remarkable precision of magnetic
and optical trapping—in particular, optical lattices—have allowed these ultra cold
atomic systems to serve as highly tunable analogues of solid state systems, enabling
the study of otherwise unobtainable exotic phases [1]. In this short contribution, we
discuss several examples of the interesting physics that can be observed in one of
the simplest BEC systems in an optical lattice: a condensate trapped in a double well
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optical potential, or a “BEC dimer.” The results we discuss are taken primarily from
several recent papers by the author and his collaborators [2, 4, 5], to which the reader
is referred for the full details.

9.2 Modeling Bose Einstein Condensates (BEC)

A Bose Einstein Condensate (BEC) is typically described by a single quantum wave
functionΦ(x, t). In the context of cold atomic vapors trapped in an external potential
(typically combined magnetic confinement and an optical potential) in the mean
field/semi-classical approximation [1], Φ(x, t) obeys the “Gross-Pitaevskii” (GP)
equation

i�
∂Φ(x, t)

∂t
= − �

2

2m
(∇)2Φ + [Vext + g0|Φ|2]Φ. (9.1)

Nonlinear dynamicists will recognize this immediately as a variant of the nonlinear
Schrödinger (NLS) equation, here in three dimensional form and with an external
potential. The interaction term describes s-wave scattering of the atoms [1]. In the
one-dimensional case (which is realizable depending on the external potential) we
expect (continuum) NLS solitons among the excitations.

9.2.1 BECs in Optical Lattices

When a BEC is placed in a one-dimensional optical lattice, the counter-propagating
laser pulses create a standing wave that interacts via the AC stark effect with the
neutral atoms in the condensate so that the BEC experiences a periodic potential of
the form [1]

Vext (r) = UL(x, y) sin
2(2π z/λ) (9.2)

Here UL(x, y) is the transverse confining potential, λ is the laser wavelength (typ-
ically of order 850 nm), and “z” is the direction of motion. Equation 9.2 describes
a 1D periodic potential in which the BEC resides. Just as in a periodic solid state
system, we can describe this system in terms of (localized) Wannier wave functions
centered on the wells of the potential (but allowing tunneling between the wells).
Expanding the GPE equation in (9.1) in terms of Wannier functions and focusing on
(1D) motion in the z-direction leads to the Discrete Nonlinear Schrödinger (DNLS)
equation for the Wannier functions. In the normalization we shall later use, one finds

i
∂ψn

∂t
= Λ|ψn|2ψn − 1

2
[ψn−1 + ψn+1] . (9.3)
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which comes from the Hamiltonian

H =
M∑

n=1

[U |ψn|4 + μn|ψn|2] − J

2

M−1∑

n=1

(ψ∗
nψn+1 + c.c.) (9.4)

where n = 1, . . . , M is the index of the lattice site, |ψn(t)|2 ≡ Nn(t) is the mean
number of bosons at site n (also referred to as the norm Nn(t)),U = 4π�

2g0Veff/m
describes the interaction between two atoms at a single site (Veff is the effective mode
volume of each site, m is the atomic mass, and g0 is the s-wave atomic scattering
length), μn is the on-site chemical potential, and J is the tunneling amplitude. In
(9.3), the “nonlinearity” parameter Λ = 2UN/J .

The above mean-field/semi-classical approach applies in the limit of a large num-
ber of atoms N in the total system. As N is reduced, quantum effects can become
significant. In the case of a sufficiently deep optical lattice so that the lowest band is
widely separated from the first excited band and the Wannier functions decay suffi-
ciently rapidly that only nearest neighbor tunneling is allowed (already assumed in
the above GPE equation), the BEC in the optical lattice is described by the (quantum)
Bose–Hubbard Hamiltonian [1], which for a general lattice takes the form

H = −J
M−1∑

n=1

(â†n ân+1 + â†n+1ân) +U
M∑

n=1

(
â†2n â2n

)
(9.5)

9.2.2 The BEC Dimer or “Bose Josephson Junction”

In the present article, we shall focus on the problem of a single coherent BEC in a
“double well” optical potential. This is analogous to a two-site “dimer” system in a
solid, and can therefore be called a “BEC dimer”. However, it is also analogous to a
Josephson junction with tunneling between two superconducting states (which can
have different phases), and is therefore also knownas a “Bosonic Josephson Junction”
(BJJ) [2]. In this case, the parameters of the system are the total number of particles in
theBEC (N ) and the number in each of the twowells N1 and N2 = N − N1, the phase
difference between the condensate fractions in each of the wells (φ = φ1 − φ2), the
tunneling/resonant coupling between the two wells (J ) and the interaction of the
bosons within the condensate, U (Fig. 9.1).

Our study will focus on the differences between the mean field approximation
(defined by the appropriate two-site DNLS/GP equation) and the fully quantum BH
dimer. We shall focus on two key observables and follow them as functions of time.
The first is the “purity” or condensate fraction, ct (φ, z), which is defined as the
maximum eigenvalue of the reduced single-particle density matrix

ρ = 1

N

[〈a†1a1〉 〈a†1a2〉
〈a†2a1〉 〈a†2a2〉

]
(9.6)
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Fig. 9.1 Schematic of
Bose–Hubbard Dimer
showing the two separate
parts of the condensate
trapped in the two wells

The second is the Einstein–Podolsky–Rosen (EPR) entanglement, which is given by

E = |〈a†1a2〉|2 − 〈a†1a1a†2a2〉. (9.7)

For E > 0, the state is EPR entangled.
Our discussion is a much-reduced version of [2], to which the reader is referred

for critical details and the complete set of references. We begin by studying the
mean-field/ semiclassical GPE in what we term “the global phase space approach”.

9.3 The Global Phase Space Approach

Introducing z = N1 − N2, one can show [2, 3], that the two-site DNLS/GP equation
can be rewritten as an integrable classical Hamiltonian system with the Hamiltonian

Hcl(z, φ) = Λz2

2
−

√
1 − z2 cos(φ) , (9.8)

with z and φ as conjugate variables. Recognizing that z plays the role of momentum,
we see that the Hamiltonian in (9.8) looks like a pendulum equation but with a
momentum-dependent length. The corresponding equations of motion are

ż = −
√
1 − z2 sin φ (9.9)

and

φ̇ = Λz + z cosφ√
1 − z2

(9.10)

These equations have fixed points that depend non-trivially on the nonlinear-
ity parameter Λ. In particular, for Λ < 1, there are two stable fixed points at
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Fig. 9.2 The fixed points for Λ < 1, Λ > 1, and Λ >> 1

Fig. 9.3 The global phase space for (left panel) Λ < 0.5; (center panel) Λ = 1.5; (right panel)
Λ = 5. The figures show the value of ct (φ, z) at a given time after starting the system in a pure
condensate (solid dark red in [2] for all values of (φ, z) at t = 0. (Color available in [2]: The
regions around the classical fixed points are still dark red, indicating high condensate purity; they
are separated by regions of intermediate purity from the low purity regions, shown in blue in [2]

(z, φ = (0, 0) and (0, π)), whereas for Λ > 1 there are three stable fixed points
at (z, φ = (0, 0), (z+, π), and (z−, π)) where z+ =

√
Λ2−1
Λ

and z− = −
√

Λ2−1
Λ

. Note
that asΛ → ∞, z+ → 1 and z− → −1. These fixed points are shown schematically
in Fig. 9.2.

The classical trajectories follow the lines of constant energy Hcl(z, φ) = E and are
determined by the initial position (φ0, z0) in global phase space and the dimensionless
‘nonlinearity’ parameterΛ = 2UN/J . The nature of the trajectories and the “global
phase space” are shown for three distinct values of Λ in Fig. 9.3 above. In this
figure, the classical orbits are shown by thin black lines. The actual figures, with
the colored/distinct regions, reflect the results of a calculation that includes quantum
features beyond the classical approximation, which we will describe below (see also
[2]). First, we note that the semiclassical model provides a remarkably good fit to
experimental data. This is shown in Fig. 9.4, which is taken from [6] and shows
that experiments started with different values of (z0, φ0) “track” the semi-classical
trajectories quite well for fairly long times. For the precise details, the reader is
referred to [6].

Nonetheless, there are important quantum effects beyond the mean-field/semi-
classical GPE model that affect experimental observables such as the condensate
fraction and EPR entanglement. In particular the GPE implicitly assumes a pure
BEC at all times. This would correspond to a single, solid (red) color in Fig. 9.3 at
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Fig. 9.4 Experimental results showing how the data follow very closely the predictions of the GPE
in the global phase space. From left to right for Λ = 0.78, Λ = 1.551, and Λ = 3.1. The symbols
show the experimental results at different times: each symbol is a different experiment. The ability
to prepare an experiment at a given (φ0, z0) is remarkable. Data and figure from Zibold et al., PRL
105 204101 (2010)

time t = 0.What this figure actually represents is the value of the condensate fraction
ct (z, φ) at a subsequent time,where the ct has remained high in certain regions but has
decreased substantially in other regions. In the color versions of Fig. 9.3 (see online
version of [4]), the red areas indicate high condensate fraction regions whereas blue
is low condensate fraction, with green/yellow regions being intermediate condensate
fraction. The reader should observe that the regions of highest condensate fraction,
for all values of Λ shown, are around the classical fixed points, including the self-
trapped fixed points for Λ > 1. The full explanation of this is beyond the scope
of this short summary, but readers can find it in [4]. Here we content ourselves
with a brief explanation of how the images in Fig. 9.3 are created (for full details, the
reader should consult [2]). To capture quantum features beyond GPE approximation,
including quantum mechanical spreading over time, one represents a quantum state
|
〉 by the Husimi function Q(φ, z) = |〈φ, z|φ0, z0〉|2 (which is a (quantum) phase-
space density) instead of a single classical trajectory. Here, |φ, z〉 denotes an atomic
coherent state which is nothing but a pure BEC. As discussed in [2], the dynamics
of the Husimi function follows a classical Liouville equation with the Hamiltonian
(9.8) plus quantum correction terms vanishing as 1/N .

As shown by the color scale on the right side of Fig. 9.3, regions of red indicate
high purity regions whereas blue is low purity, with green/yellow being intermediate.

9.4 Full Quantum Dynamics in the BJJ: The Bose Hubbard
Hamitonian

For the two-well system, (9.5) reduces to the quantumBose–Hubbard dimer equation

H = −J (â†1 â2 + â†2 â1) +U
(
â†21 â21 + â†22 â22

)
. (9.11)
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Fig. 9.5 The nature of quantum “orbits” near a classical fixed point in the self-trapped region of
the BJJ. Left panel: A schematic graph of the original classical orbit in the GPS. Center panel: The
corresponding quantum orbit plotted in GPS showing the “thickening” of the original classical orbit
due to quantum effects described in the text. Right Panel: The EPR entanglement as a function of
time showing clearly the existence of two frequencies. Note the systems is EPR entangled only for
E > 0

For N bosons on the dimer, there are N + 1 states in the Hilbert space (think of
the Fock space representation) rendering the solution to the quantum dynamics a
straightforward matrix diagonalization problem. Importantly, as shown in [4] (to
which readers are referred for full details), this dynamics can still be visualized in
the GPS approach discussed above: namely, one starts with an initial pure BECwave
function of the form

|(z, φ)〉 = 1√
N

(√
(1 + z)/2 â†1 + √

(1 − z)/2 expiφ â†2
)N |(0)〉 (9.12)

and studies its time evolution as a function of the initial starting position in the
GPS, (z0, φ0). The full quantum wave function at any given time is projected back
onto the GPS, revealing the key features of the quantum dynamics. One finds ([4])
that instead of the classical line trajectories, “thick” trajectories, as shown in the
center panel of Fig. 9.5, where the “thickness” results from a “quantum drift” motion
perpendicular to the classical trajectory. In fact, the overall motion exhibits two clear
frequencies: a “high frequency” motion corresponding to the classical trajectory and
a “low frequency” motion, which can, at least in the vicinity of the classical fixed
points, be understood in terms of beating among the three highest eigenstates of the
Hamiltonian [4].

9.4.1 Quantum “Orbits” Near Fixed Points: Dissipationless
Case

The GPS approach of [2] enables us to gain insight into the full quantum dynamics
of entanglement and coherence in the BEC dimer. In [4], we found that the wells are
entangled in the Einstein-Podolski-Rosen (EPR) sense only in the neighborhood of
the classical fixed points and that the time dependence of the entanglement can be
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understood completely in terms of beats among three eigenstates of the BH Hamil-
tonian for the system. In [4] we found these eigenstates numerically (essentially to
exact precision) but our analytical perturbative results in the limit of weak coupling
between the wells were in excellent agreement with the (numerically) exact results.
We found similar results for the dynamics of other observables, such as the well pop-
ulation imbalance and condensate fraction.We summarize these results briefly in this
section. In Fig. 9.5, the left panel shows a schematic of the classical orbit around the
fixed point z+. The center panel shows an actual calculation of the quantum orbit (as
projected onto the GPS), clearly indicating a “thickening” of the classical trajectory.
The right panel demonstrates the existence of two distinct frequencies in this motion,
reflected in the behavior of the EPR entanglement.

As discussed in [4], the higher/faster frequency is expected on the basis of the
mean-field/GPE model. If one linearizes the equations of motion obtained from the
Hamiltonian of (9.5) about the fixed point, one finds

fMF =
√

Λ2 − 1

π

J

�
. (9.13)

As shown in the center panel of Fig. 9.6, this fit works remarkably well over a large
range of Λ. The lower/slow frequency motion, which leads to the “thickening” of
the orbit, cannot be captured within the mean-field/GPE approach, but we showed
in [4] that this fSLOW can effectively be interpreted in terms of a quantum revival
(which in the limit J → 0 would yield fSLOW = U

π�
). The fit for J 
= 0 is shown in

the right panel of Fig. 9.6 and is quantitatively accurate again over a range of Λ such
that the motion is near the classical fixed point.

9.4.2 Quantum “Orbits” Near Fixed Point: The Dissipative
Case

As discussed in detail in [4], atoms can be removed for the double-well optical
potential with single site precision, using a focused electron beam or strong resonant
laser blasts. This removal adds (controlled) dissipation to the problem and drives the
system closer to the classical fixed point. Based on our observation that the purity
is highest near the classical fixed points, we expect that this (temporary) dissipation
will lead to greater entanglement in the system: in short, the counterintuitive result
of “dissipation-induced coherence.” Indeed, this is the result we found in [4] and
summarized in Fig. 9.7. The left panel again illustrates the schematic motion of the
classical trajectory when the system is subjected to a burst of dissipation which is
then removed: the classical orbit moves closer to the fixed point. The central panel
shows the two corresponding “thickened” quantum orbits. Finally, the right panel
shows that the EPR entanglement is driven to values E > 0 by the burst of dissipation
and remains there in the evolution afterwards.
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Fig. 9.6 Comparison of numerical results versus theoretical predictions for the high and low fre-
quency oscillations observed in the quantum motion near a classical fixed point in the BJJ. Left
panel: A schematic illustration showing the high frequency arising from the classical motion and
the low frequency originating from quantum revivals. Center panel: Comparison of the semiclassi-
cal prediction of the high frequency oscillations observed in the EPR entanglement with the exact
numerical results of the full BHH calculation; even down to small Λ, the agreement is remarkably
good; Right panel: The low frequency oscillations near the fixed point as a function of Λ. The
numerically exact results (circles) are well described by a second-order perturbation results (see [4]
for full details) whereas the zeroth-order perturbation theory (dashed line) slightly underestimates
the frequency. Adapted from [4] to which readers are referred for full details

Fig. 9.7 Dissipation induced coherence: Left panel: Schematic depiction showing that a short pulse
of dissipation drives the classical (and quantum) motion closer to the classical fixed points where
the condensate fraction and EPR entanglement are expected to be highest; Center panel: The actual
quantum orbit over the time period of the calculation. The motion remains in the over oval until the
dissipation is turned on, and thenmoves to the inner oval under the dissipation, remaining there after
the dissipation is turned off. Right panel: the EPR entanglement versus time. The shaded vertical
region between times 1.0 and 1.5 s indicates that time interval in which the dissipation is on. Notice
the greatly enhanced EPR entanglement after the dissipation. Adapted from [4] to which the reader
is referred for full details

9.4.3 Quantum Tunneling Between Self-trapped Fixed Points

In this section we explore another quantum phenomenon in the BEC dimer that
goes beyond the GPE model: namely, quantum tunneling between the two “self-
trapped” regions—that is, the regions that contain z+ and z−—that exist within the
mean-field/GPE model, as depicted in the center and right panels of Fig. 9.3. Within
the mean field approach, these regions are divided by a classical separatrix and
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Fig. 9.8 (Color available in online version of [5]). Tunneling between the two fixed points as a
function of time as illustrated by the Husimi function depicted at five times spaced by one quarter
of the tunneling period expected from the two-state model. The relevant parameters are N = 500
atoms, Λ = 1.025, and U = 2π(x)0.063Hz. Adapted from [5]

motions within them are distinct and uncoupled. Does this remain true in the full
quantum description given by the Hamiltonian Equation 9.5? In [5] we investigated
and answered this question and showed that in the full quantum model, for values
of Λ slightly greater than 1 and moderate values of N , it is possible for the BEC
to tunnel back and forth between the two self-trapped regions, just as in elementary
quantum mechanics a particle in a double well potential whose wave function is
initially localized in one well tunnels back and forth between the two wells. While
this seems intuitively clear, the case of the BEC dimer is much more complicated
than this simple quantum analogy suggests, and the semi-classical calculations to
establish this tunneling are quite complicated [5]. For this reason, we refer readers
interested in the details to [5] and to the video showing the dynamics of the tunneling
in the supplemental material to [5]. Here we simply display two figures that illustrate
the key results. The first figure (Fig. 9.8) depicts the Husimi function, Q(φ, z) =
|〈φ, z|φ0, z0〉|2, at several times during the tunneling process for Λ = 1.1 and the
other parameters described by in the figure caption. In Fig. 9.9 the left panel shows
the tunneling frequency as a function of Λ for different numbers of atoms (N ) in the
condensate. As expected, as N is decreased, the quantum effects are increased and
tunneling becomes more prominent. The right panel In Fig. 9.9 shows the expected
tunneling frequency as a function ofΛ for the experimental parameters of [6]. While
this suggests that one should be able to observe the tunneling in current or near-
term experiments, the level of control on the parameter Λ and the length of time
that one can control the condensate pose substantial challenges to the experimental
observations. Nonetheless, given the ingenuity of our experimental colleagues, we
are hopeful that this theoretical prediction will be confirmed in the future.
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Fig. 9.9 Left Panel: The tunneling frequency between the two classical self-trapped regions of a
BJJ as a function ofΛ for different numbers (N ) of atoms in the condensate. Themean field result of
no tunneling is approached as N → ∞ but for any finite N there is a non-zero tunneling frequency
for any Λ and N . In all plots, J = 10Hz. Right Panel: The frequency of tunneling between the
classical BJJ fixed points versus Λ forU = 2π(x)0.063Hz and N = 500, which correspond to the
experimental parameters of [6]. Both figures adapted from [5]

9.5 Conclusions

In conclusion, we believe that this short summary of our results has justified our claim
that the BEC dimer is indeed “remarkable” and worthy of continued theoretical and
experimental scrutiny. Importantly, the quantum effects we have found in the dimer’s
behavior are not only interesting in their own right but also suggest a new approach to
understanding the less numerically tractable behavior of BECs in multi-well optical
lattices. The self-trapping fixed points of the dimer are analogous to discrete breathers
observed in larger systems in theGPE approach (see, e.g., [7, 8]). It is likely that these
entities will serve as regions in the high dimensional phase spacewhere entanglement
and condensate purity are enhanced and that targeted dissipation can further enhance
their coherence. There remain many exciting questions to be studied in the future.
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Chapter 10
Quantized Vortex Lines in BECs with a
Generalized Equation of State

Tommaso Macrì

Abstract Vortices are of fundamental importance for the understanding dynamical
and thermodynamical properties of quantum fluids. In this chapter we focus on the
effects of the corrections to the equation of state of a BEC on a vortex state. We
consider the case of a condensate with short-range interactions in the absence and in
the presence of an external harmonic confinement. We derive the equations obeyed
by a static vortex line in both configurations and solve them both numerically and by
a convenient ansatz for the wavefunction of the vortex state originally introduced by
Fetter. Interesting generalization of this work include the study of the static properties
of vortex lines inmixtures of BECs and condensates with non-local interactions, such
as dipolar atoms.

10.1 Introduction

Quantized vortices have been observed in a variety of superfluid systems, from 4He
to condensates of alkali-metal bosons and ultracold Fermi gases along the BEC-BCS
crossover. Vortices are a direct manifestation of the genuine quantum behavior of
superfluid systems. A well known example is superfluid helium, which has been
extensively studied over the last century. Ultracold quantum gases offer the inter-
esting possibility to investigate vortex properties in a very different regime in terms
of particle numbers, interaction strength, and range [1, 2] with either bosonic [3]
or fermionic [4] atoms. Systems with long-range interactions, such as dipolar con-
densates may also display vortices with unique properties as a consequence of the
long range and angular dependence of the interactions [5–8]. Excitations of vortex
states are also important for the study of the stability of such configurations. As an
example, for a three-dimensional condensate with a vortex line and in the presence
of a periodic potential, the spectrum of transverse modes may display a rotonlike
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minimum [9, 10], which destabilizes the straight vortex leading to a helical or a
snakelike configuration [11, 12].

Modeling of superfluids of ultracold atomic gases at zero temperature are gener-
ally based onmean-field approximationswhich describe experiments [13] accurately.
They span from analytic treatments and variational approaches to full numerical
solutions. Terms in the equation of state beyond such mean-field description have
been measured for strongly interacting Bose gases [14] and for ultracold fermions
along the BCS-BEC crossover [15] and compared with ab initio quantum Monte
Carlo calculations. The observation of self-bound droplets both in dipolar conden-
sates [16–22], and in Bose-Bose mixtures [23, 24] established the importance of the
fundamental role of quantum fluctuations in ultracold atomic systems [25–31].

In this chapter we will focus on the effect of beyond-mean field corrections to the
equation of state for a single vortex line both in the absence and in the presence of
an external harmonic trapping potential. We employ the local density approximation
to analyze the effect of the beyond-mean field term of a single component Bose–
Einstein condensate with contact interactions. After deriving the equation obeyed
by a vortex with unitary circulation, we solve it numerically and by the use of a
variational ansatz first proposed by Fetter [32, 33]. We find that the beyond-mean
field term affects the width of the vortex core even for relatively small interactions. In
the case of a trapped BEC, we will emphasize the regime of the so-called Thomas–
Fermi limit [2, 34], where the contribution from the kinetic energy term becomes
negligible compared to trapping and interaction energy. We derive analytical results
for the energy density as well as for the critical angular velocity for the formation of
a vortex in an axisymmetric trap.

This chapter is organized as follows: in Sect. 10.2 we derive the energy density of
a condensate with contact interactions at zero temperature including beyond mean
field corrections in the equation of state in the presence of a vortex line with unit
circulation. Then, in Sect. 10.3 we make use of the results of Sect. 10.2 to extend
them to the case of a trapped three-dimensional BEC within the so-called Thomas–
Fermi approximation. This result is useful to obtain the critical angular velocity for
the formation of a vortex. Finally, in Sect. 10.4, we draw some conclusions and list
possible extensions of this work.

10.2 Vortex Line in a Three Dimensional BEC

In this section we derive the energy density of a vortex line in a three-dimensional
BEC in a uniform background. We consider a weakly interacting condensate with
average density n. The interactions we consider are short range, and the strength
is parametrized by the scattering length a. We begin by writing the mean-field and
the first beyond mean-field contribution, the well known Lee-Huang-Yang (LHY)
correction [35], to the energy of a homogeneous weakly repulsive Bose gas reads in
the local density approximation
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E =
∫

dr
[

�
2

2m
|∇ψ |2 + V (r)|ψ |2 + g

2
|ψ |4

(
1 + 128

15π1/2
|ψ |a3/2s

)]
. (10.1)

The last term in the energy functional (10.1) is the celebrated Lee-Huang-Yang
correction to the equation of state of a weakly interacting Bose gas [35]. The term
V (r) is an external (trapping) potential.

A generalized time-independent Gross-Pitaevskii equation obeyed byψ(r) can be
obtained by the stationarity condition of the energy functional, under the constraint
of the conservation of the total number of particles

∂(E − μN )

∂ψ∗ = 0, (10.2)

where μ is the chemical potential, resulting in

(
− �

2

2m
∇2 + V (r) + g|ψ |2 + 32

3π1/2
|ψ |3a3/2s

)
ψ = μψ. (10.3)

For a uniform system the chemical potential reads

μ = μ0

(
1 + 32

3π1/2
(n a3s )

1/2

)
, (10.4)

where μ0 = g n, and n = |ψ |2 is the density of the system.
The presence of a vortex line centered at the origin, allows us to write the

wave function in the form of a phase with circulation � and an amplitude f (ρ),
ψ(r) = f (ρ)ei�φ [33, 36], where we employed cylindrical coordinates (ρ, z, φ). In
the following we will focus on vortices with unit circulation � = 1. Substituting the
expression for ψ(r) into (10.3) in cylindrical coordinates we get

(
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)
f = μ f.

(10.5)

For the rest of this section we will assume that the external potential is absent,
V (r) = 0. Harmonic trapping potential will be reintroduced in Sect. 10.3 to discuss
the energy of a vortex state inside a confined BEC. Equation (10.5) can be conve-
niently rewritten in terms of a rescaled units. To do so, we use the healing length ξ

as a unit of length, defined by
�
2

2mξ 2
= g n, (10.6)

and the radial wavefunction f (ρ) is rescaled by the asymptotic value f0, χ = f
f0
.
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In rescaled units GPE reads

− 1

x

d

dx

(
x
dχ

dx

)
+ χ

x2
+ χ3 − χ + α(χ3 − 1) = 0. (10.7)

For clarity of notationwe redefine the prefactor of the beyondmean-field termα =
32

3
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π

(
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)1/2
. Upon inspection of (10.7) it is clear that χ(∞) = 1,

i.e. for large distances one recovers the density of the uniform state.
The energy per unit length on a disc of radius D becomes

ε = π�
2n

m

∫ D

0
dx 2πx

[(
dχ
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+ χ2

x2
+ χ4

2
+ 2α

5
χ5

]
. (10.8)

To compute the energy associated to a vortex state we subtract the energy of a
uniform system with the same particle number ν = n̄πD2, where n̄ is the density of
the uniform system [33]. Writing

ν =
∫ D

0
dρρ f 2 = πD2 f 20 −

∫ D

0
dρρ2π( f 20 − f 2), (10.9)

and substituting this expression into the equation for the energy density of the uniform
system we obtain

ε0 = n̄2 g
2
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1 + 128

15π1/2 (n̄a3)1/2
)
πD2
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4
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]

(10.10)

We notice that the integrals of the difference of the radial densities are proportional
to the square of the healing length ξ

∫ D

0
dρρ2π( f 20 − f 2) ≈ ξ 2 f 20 . (10.11)

Then the integrals of the type

(
1 − 1

πD2 f 20

∫ D
0 dρρ2π( f 20 − f 2)

)β = 1 − β

πD2 f 20

∫ D
0 dρρ2π( f 20 − f 2)

+O((ξ/D)4),

(10.12)

where we neglected the term proportional to (ξ/D)4).



10 Quantized Vortex Lines in BECs with a Generalized Equation of State 263

Equation (10.10) can then be rewritten as
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To compute the energy of the vortex εV we substract ε0 from the bare energy ε in
(10.8)

εV = ε − ε0

= 2π �
2n
2m

∫ D/ξ

0 dxx

[(
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(
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(10.14)

After elementary manipulations one obtains

εV = π�
2n

m

∫ D/ξ

0 dx x
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)2 + χ2

x2 + 1
2 (1 − χ2)2 + α

5 (2χ5 − 5χ2 + 3)

]
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(10.15)
We note that for vanishing α = 0 we recover the well-known energy density by

Ginzburg and Pitaevskii [37]. Numerical solution of the minimum energy density

from equation (10.15) for the case α = 0 predicts εv = π�
2n

m log
(
1.464 D

ξ

)
.

We now provide a variational estimate, using the same wavefunction introduced
by Fetter [32], of the LHY correction to (10.15), and we compare it with the full
numerical solution of the GPE in (10.15). Then

χ(x) = x

(x2 + δ)1/2
. (10.16)

Minimizing (10.15) with respect to δ one obtains

δ = 2

(1 + 2α(31 − 30 log(2))/15)
. (10.17)

Again, for α = 0 one recovers the result δ = 2 [32, 33]. Inserting the wavefunction
into (10.15) with the optimal value above one gets
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Fig. 10.1 Beyond mean-field correction to the density profile of a vortex configuration in uniform
BEC. Density profile for n a3 = 0 (black) and for n a3 = 10−3 (red)
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A much better approximation to the numerical result is obtained by substituting the
δ = 0 prefactor (1.497) with the one obtained by the numerical solution of (10.15)
with δ = 0 (1.464) leaving the beyond mean-field contribution depending explicitly
on α unaltered:

εV = π�
2n

m
log

(
1.464

D
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1 + 2α

15
(31 − 30 log(2))

)1/2
)

. (10.19)

Upon separating the terms of the logarithm, it is interesting to notice that the
beyond mean-field correction does not depend explicitly on the ratio D/ξ .

In Fig. 10.1 we plot the rescaled radial wavefunction for vanishing beyond mean-
field correction, and for diluteness parameter n a3 = 10−3. The size of the vortex
core shrinks because the effective chemical potential increases, see (10.4), then the
healing length diminishes. Numerically, the size of the core is computed at the point
x|χ=0.8 where the wavefunction reaches 80% of its asymptotic value. For the case
shown in the figure the size of the vortex decreases by ≈12% with respect to the
case without the inclusion of quantum fluctuations of a 3D BEC in the presence of
a vortex line.

In Fig. 10.2 we plot the energy density in units of π�
2n/m as a function of the

diluteness parameter n a3. The agreement between the full numerical solution of the
minimization of (10.15) and the mixed numerical-variational result (10.19) is excel-
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Fig. 10.2 Continuous line: Beyond mean-field correction to the energy density (10.19) of
a vortex configuration in uniform BEC computed at fixed D/ξ = 100 as a function of the
diluteness parameter y = (na3). Full dots: numerical minimization of (10.15) for n a3 =
10−5, 10−4, 10−3, 10−2, 10−1, 1

lent. We point out that the beyond mean-field term is crucial for proper calculation of
the energy density, even for very large distances (∼100ξ ). It is then impressive that
the very same variational ansatz captures extremely well the contribution even for
very large values of the diluteness parameter. We notice, however, that the validity
of this result is based on two crucial assumptions, namely that perturbation theory
providing the LHY contribution holds in this regime, and the local density approxi-
mation. Both these assumptions ought to be compared with full ab initio numerical
approaches such as Quantum Monte Carlo calculations.

10.3 Vortex Line in a Trapped Three Dimensional BEC

We now compute the energy of a vortex in a BEC in a trap, when the conditions of
the Thomas–Fermi (TF) approximation are met [33, 34]. To compute the energy of
a vortex in a trapped configuration one can proceed by noting that ξ0/R ≈ �ω⊥/2μ
[33], where R is the characteristic Thomas–Fermi radius of the BEC.When the radial
trapping frequency is much smaller than the chemical potential, the radial extension
of the BEC is much larger than the size of the vortex. One can then proceed by
separately adding vortex contribution in a uniform medium and the hydrodynamic
kinetic energy of the bulk. Following [33], outside the vortex core, up to a distance
ρ1, much smaller than the TF radius R and greater than the healing length ξ , we can
employ (10.19) for the energy of the vortex inside the BEC. At larger distances from
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the vortex, the density is essentially the density of the condensate in the absence of
the vortex, with the difference that the velocity field is that imposed by the vorticity
of the wavefunction. In this region one can use standard hydrodynamics to derive
the energy contribution of the system.

First, we consider the 2D problem in which we neglect the trapping along the
direction of the vortex line. According to the considerations above, the energy per
unit length εT F

V is given by

εT F
V = πn(0)�

2

m log
(
1.464 ρ1
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(
1 + 2α

15 (31 − 30 log(2))
)1/2)+

+ 1
2
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mn(ρ)v2(ρ)2πρ dρ.

(10.20)

To find a closed expression for the energy density we use the fact that the velocity
field is v(ρ) = �/mρ, and the density in the 2D harmonic trap varies as

n(ρ) = n(0)

(
1 − ρ2

ρ2
2

)
, (10.21)

where n(0) is the peak density at the origin. In (10.21) we neglect corrections to the
TF density given by the beyond mean field terms. Substituting (10.21) into (10.20)
and by standard integration, we obtain
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(10.22)

Neglecting terms O((ρ1/ρ2)
2) and recasting the terms in (10.22) we have
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We now extend our derivation to the three-dimensional case with density n(ρ, z).
If the extension of the cloud is 2Z along the direction of the vortex line. Under the
assumption that ξ << Z , we can compute the total energy by summing the energy
of the BEC by integrating (10.23) along the vertical direction. Therefore we obtain

E T F
V = πn(0)
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2
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∫ Z

−Z
dz n(0, z) log

(
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ρ2(z)
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(
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(31 − 30 log(2))

)1/2
)

.

(10.24)
The TF density n(ρ, z) and the radius ρ2(z) are given by
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n(0, z) = n(0, 0)
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) 1
2
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where n(0, 0) is the peak density and R the TF radial dimension. All such quanti-
ties can be computed by making use of the normalization condition on n(ρ, z) =
n(0, 0)

(
1 − 1

2mω2
⊥ρ2 − 1

2mω2
z z

2
)
, where ω⊥,z are the radial and longitudinal trap-

ping frequencies respectively.
Upon substitution into (10.24), and making use of elementary integrations, one

then obtains
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where Z is the linear extension of the BEC along the vortex line, R the radial dimen-
sion. Again, as in the previous section, when α = 0 one recovers the known expres-
sion for the TF energy of aBEC in the presence of a vortex line. Finally, wewould like
to point the attention to the fact that, within the approximation above that does not
include beyond mean field interactions into the density, the total angular momentum
is not affected by the beyondmean-field correction dependent on α. Such observation
is helpful for the calculation of the critical velocity for the formation of a vortex line
in an axisymmetric trap, which can be readily derived and it reads [33]
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mR2
log

(
0.671

R

ξ

(
1 + 2α

15
(31 − 30 log(2))

)1/2
)

. (10.27)

10.4 Conclusions

In this chapter we studied the effects of the beyond mean-field corrections to the
equation of state of a BEC in the presence of a vortex line. We considered the case of
a condensate with short-range interactions in the absence and in the presence of an
external harmonic confinement. We derived the equations obeyed by a static vortex
line in both configurations and solved them both numerically and by a convenient
ansatz for the wavefunction of the vortex state. Before concluding we would like
to mention that the use of the local density approximation for the equation of state
derives from the assumption that the spatial variations of the wavefunction take place
on distances greater than the healing length of the condensate. However, this might
not be the case for the vortex state, especially close to the origin. Therefore, it would
be helpful to have ab initio verifications of the results derived in this work, as e.g.
Quantum Monte Carlo calculations of the energy density of a BEC in the presence
of a vortex line [38, 39]. Interesting generalization of this work include the study
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of the static properties of vortex lines in mixtures of BECs [10, 33, 40, 41] and
condensates with non-local interactions, such as dipolar atoms, or Rydberg-dressed
systems [42–45]. An intriguing question may be especially related to the relevance
of the results obtained here for condensates in self-bound states in three dimensions,
observed recently in 39K mixtures and Dy and Er dipolar condensates [46].
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Chapter 11
Topological View on Entanglement and
Complexity

Dmitry Melnikov

Abstract Topological Quantum Field Theories are examples of quantum field theo-
ries with a discrete and even finite-dimensional Hilbert space. In this respect they are
an intermediate step between quantum mechanics and quantum field theory. Such
a special position allows one to study some non-trivial aspects of quantum field
theories in more accessible and familiar quantum-mechanical terms. In particular,
since the topological theories do not possess local dynamical degrees of freedom,
one can study, in such theories, various interesting non-local correlations. Quantum
entanglement is an example of non-classical, non-local correlation between parts of
a quantum system. Description of entanglement in topological terms is a familiar
idea in quantum information theory. In this note I will review some recent develop-
ments of this idea bearing explicit connections of entanglement with knots and their
topological invariants. The new formulation implies a somewhat updated view on
quantum computation. I will illustrate some new aspects by reviewing the notion of
complexity.

11.1 Introduction

One idea that quantum entanglement can be interpreted in terms of topological rela-
tions between objects representing parts of a quantum system is known in the theory
of quantum information as the Aravind’s conjecture. There are certain links in knot
theory that have a property that removing one component unlinks all the remaining
ones. Such links are generally called Brunnian and the simplest example are the
so-called Borromean rings
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(11.1)

a three-component link with this exact property. Aravind [1] notices that this is
reminiscent to a class of quantum entangled states with more than two subsystems
with a property that projecting on (makingmeasurement in) one subsystemmakes the
other subsystems unentangled. Such states are called Greenberger–Horne–Zeilinger
(GHZ) states and the simplest example thereof is the three qubit state

|GHZ〉 = |000〉 + |111〉√
2

. (11.2)

In case of tripartite systems GHZ states furnish one of the two classes of non-
biseparable states (the other type is called W), which cannot be mixed by local
quantum operations [2]. Hence GHZ and W states characterize specific patterns of
quantum entanglement. Understanding and classifying different entanglement pat-
terns is an interesting question in the theory of quantum information.

The analogy of Aravind is in fact basis dependent. Several more recent works
make this proposal more specific. Kauffman and Lomonaco [3] (see also [4] and
references therein), introduce “quantum knots” to make knots more on par with
quantum mechanics. In the meantime the proposal of Balasubramanian et al. [5]
uses classical knots and associates basis-independent quantum states to links using
the approach of topological quantum field theories (TQFT).

In these notes I will review a connection between knots and entanglement more
in the spirit of the proposal of [5]. The idea naturally follows from a definition of
TQFT given by Witten and Atiyah [6–9], which associates a quantum mechanical
interpretation to topological spaces. This helps to give a topological meaning to the
entanglement of quantum states [10].

One of the standard tools to quantify entanglement is the entanglement entropy.
Computing the entanglement entropy in TQFT is much simpler, than in regular
quantumfield theory [11, 12]. In particular, tools like replica trick express the entropy
in terms of topological invariants of knots [13]. In this sense the relation between
quantum entanglement and knots might be even deeper than originally expected.

Topological interpretation of basic notions reviewed in this text prepares the stage
for extending the technology further, to the subject of quantum computation. The
relation between knots and quantum computers is known for a while [14], but I hope
that some ideas discussed in these notes can enrich this relation. Thus, following the
discussion of entanglement in TQFT, I describe a topological invitation to the notion
of complexity of quantum states.
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11.2 Topological Quantum Field Theory

Let us define a Topological Quantum Field Theory (TQFT). I will start from the most
familiar example of the Chern–Simons theory and then give a formal definition.

11.2.1 Chern–Simons Theory. A Definition

The prime example of a TQFT is the Chern–Simons (CS) theory. It is a three-
spacetime-dimensional gauge theory with action

S = k

4π

∫
M 3

d3x εi jk Tr

(
Ai∂ j Ak + 2

3
Ai A j Ak

)
, (11.3)

where Ai is a three-dimensional gauge field, in general non-Abelian (assume group
SU (N )). Parameter k is the level of the CS theory. It is an analog of the coupling
constant. Gauge invariance requires k to be an integer in the quantum theory.

The integral in (11.3) is taken over a three-dimensional manifold, which will most
of the time be assumed closed, e.g.M3 = S3, orM3 = S2 × S1. This theory is often
referred as SU (N )k CS theory on M3.

We note that the CS action depends onM3, but not on the metric gi j on it. Hence,
one expects that observables in the theory are metric-independent. Such theories are
called topological, because they only depend on the topology, but not geometry of
the spacetime. One consequence is triviality of the TQFT Hamiltonian. Indeed, the
Hamiltonian density is the component T 00 of the stress energy tensor, but

T i j ∝ δS

δgi j
= 0 . (11.4)

Therefore, the theory does not have a non-trivial dynamics. The solutions to equations
of motion

Fi j = ∂i A j − ∂ j Ai + [Ai , A j ] = 0 , (11.5)

are pure gauge fields Ai = g∂i g−1. The only non-trivial degrees of freedom are
possible singularities of Ai . They can be thought as of heavy non-dynamical particles
coupled to the gauge fields. Nothing depends on local perturbations of the particles,
but they possess non-trivial non-local correlations, expressed in topological terms.

The correlations can be seen in the quantum theory. Define a functional integral

Z [M3] =
∫

D A ei S[A;M 3] . (11.6)

In this formula, the dependence of the partition function on the manifoldM is made
explicit, but functionally the result of the integration depends on two parameters: the
level k and the rank of the gauge group N .
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For a probe particle an observable sensitive to the spacetime topology is the
holonomy

W (γ ) = P exp
∮

γ

Ai dx
i , (11.7)

where the exponential should be path ordered if Ai is a non-Abelian field. Holonomy
transforms under the action of the gauge group. To have a gauge-invariant quantity
one takes the trace. The trace can be taken in different representations of the group.
Consequently, interesting observables in the quantumCS theory are correlation func-
tions

Z(M3; γ1, . . . , γn) = 〈TrR1 W (γ1) · · ·TrRn W (γn)〉 , (11.8)

where traces of holonomies are called Wilson loop operators. Implicitly, functional
integral Z depends on the representations Ri associated to closed paths γi , k and N .
Witten [6] and others [15] showed that correlators (11.8) are topological invariants
of knots associated with γi . After an appropriate redefinition of parameters k and N ,
they can be explicitly mapped to invariants known in knot theory (linking number,
Jones polynomials, HOMFLY-PT polynomials etc.)

To actually compute quantum partition functions and explicitly describe the
Hilbert space of the quantum CS theory canonical quantization is more appropri-
ate [6]. In mathematical terms, the problem on M = � × R can be formulated as
finding the space of holomorphic determinant line bundles on �. The correspond-
ing spaces also appear in the study of conformal fields theories (CFTs), in particular
U (N ) level kWess–Zumino–Witten (WZW) theories on�, where this space is called
the space of conformal blocks. Conformal blocks are solutions of certain differential
equations, which provide a basis for the CFT correlation functions. In this sense
they can be understood as a basis of wavefunctions in some Hilbert space. I will not
explain the quantization procedure here, but instead introduce the Hilbert spaces and
states rather formally, associating them to the data defining functional integral (11.6).

11.2.2 Axiomatic Definition

Let us now review a formal axiomatic definition of a TQFT in terms of the category
theory. The reader may skip this definition and go directly to the summary, where
the meaning of this definition is explained.

Following the definition of Atiyah and others [8, 9], TQFT is a functor Z between
the cobordism categoryCob and the category of linear spaces Lin, Z : Cob → Lin.
The Cobd category has as its objects d dimensional oriented topological spaces,
while morphisms are d + 1-dimensional manifolds, whose boundaries are the d-
dimensional spaces (objects). One can think of the morphisms (cobordisms) as of
evolution histories of the d-dimensional spaces. Lin is the standard collection of
linear space with morphisms—linear maps between linear spaces. As usual, the
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functor maps objects and morphisms of one category, to objects and morphisms of
another category. In particular,

• to any d-dimensional manifold � in Cobd functor Z associates a vector space V in Lin,
Z(�) = V ;

• to any d + 1-dimensional manifoldM , such that ∂M = � functor Z associates a vector
v in V , Z(M ) = v;

• to any d + 1-dimensional manifold M , whose boundary is a disjoint union �1 ∪ �2 =
∂M functor Z associates a linear map M between Z(�1) and Z(�2), Z(M ) = M :
Z(�1) → Z(�2).

The TQFT functor satisfies a number of axioms:

1. If Z(�) = V then Z(�̄) = V †, where � denotes space � with a reversed orientation
and V † is a linear space dual to V .

2. For a disjoint union �1 ∪ �2 the functor associates a tensor product of vector spaces,
Z(�1 ∪ �2) = Z(�1) ⊗ Z(�2).

3. ConsiderM1 : �1 → �2 andM2 : �2 → �3 then one can form a new morphismM ,
which is a composition M = M2 ◦ M1 : �1 → �3. Functor Z maps the composition
of the morphisms to the composition of the linear maps, Z(M2 ◦ M1) = Z(M2) ◦
Z(M1).

4. Cobd is also assumed to contain empty manifold � = ∅, which can also be introduced
through a morphism M = ∂�′, such that M : �′ → ∅, or through a morphism M :
∅ → ∅ with no boundaries. Functor Z associates to ∅ complex numbers C, Z(∅) = C.

5. There is a trivial morphism in Cobd which maps any � to itself. Such a map is repre-
sented by a cylinder � × I , where I is a unit interval. This is mapped to the identity
map of the linear spaces, Z(� × I ) = 1.

The general idea of the category theory definition is to introduce a quantum
mechanical, or Hilbert space structure associated with certain spaces�, for example
two-dimensional Riemann manifolds. Quantum mechanical structure means states
(vectors in the Hilbert space) |ψ〉, scalar products 〈ψ |ψ ′〉 and (unitary) operators
U : |ψ〉 → |ψ ′〉. Provided that the map (functor) is constructed we can endow the
following heuristic diagrams with a quantum-mechanical meaning.

A diagram of a manifold M with a boundary � can be viewed as a state:

(11.9)

Scalar product of two states in the same Hilbert space H is “gluing” of two spaces
M and M ′ along the same boundary �:

(11.10)

The result is a manifold without boundaries. Since these are topological theories, the
shape of the manifolds on the diagrams do not matter, but only topology.
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Generalizing the above diagrams one can consider manifolds M with multiple
boundaries �1 ∪ �2 · · · ∪ �n

(11.11)

In the simplest case with two boundaries T can be viewed either as an operator
T : H1 → H2, or as a state in the tensor product of the twoHilbert spaces. Formally,
in the first case T ∈ H †

1 ⊗ H2, since the operator should have a reversed orientation
to be able to “act” onH1.

One can notice that the idea of associating spaces to the vectors and operators in
some Hilbert spaces is similar to the idea of tensor networks. Manifolds M , or T
are analogous to tensors, whose legs (�) belong to the corresponding Hilbert spaces
(see also [16]). So far, the TQFT tensors were “black boxes”. However, once map
(functor) Z is specified, the tensors-manifolds acquire a specific meaning.

11.2.3 Connecting Two Definitions

In some formal way one can propose that the functional integral of the CS theory is
an explicit realization of the TQFT functor Z . The key observation is that given a
“time” slice t = 0, one can define a wave function as a functional integral,

|ψ(t = 0)〉 = 1

N

∫
D A

∣∣
A|�=A�

ei S[A;M ,�] ≡ 1

Z [M ∪ M ]1/2 Z [M , �] ,

(11.12)
where N is the normalization defined through the square of the norm Z [M ∪
M ]. The integral is computed over the gauge field configurations with prescribed
boundary conditions on �.

We will assume that � might have a set {Pi } of points removed, so that we
actually associate the Hilbert space to �\{Pi }. Quantum mechanics on such spaces
should then be equivalent to cobordisms of spaces with punctures in such a way that
punctures should be cobordant to other punctures and no punctures can disappear in
the bulk of the corresponding M .

In CS theory punctures correspond to non-dynamical particles sourcing the gauge
field. Their worldlines correspond to open or closed Wilson lines in CS theory,
which are cobordisms of the punctures. Each worldline is “colored” by an irreducible
representation of the gauge group, as in correlation function (11.8).

Calculation of scalar products in the Hilbert space requires changing the ori-
entation of the boundary �. For consistency, this should imply replacing all the
representations of lines ending on �, and inside a corresponding M , by their con-
jugate. This rule is consistent with assigning orientations to the worldlines, so that
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when � and � are glued together, the glued worldlines have a continuous flow of
the orientation.

11.3 Examples of TQFT

Let us consider some explicit examples of Hilbert spacesH� that can be associated
to two-dimensional Riemann surfaces � and to �\{Pi }, with removed points [6].

11.3.1 Hilbert Spaces of Punctured Spheres

To a two-sphere S2 with no marked points the SU (N )k CS TQFT associates a one-
dimensional Hilbert space. From the WZW CFT point of view there is only one
conformal block for the descendants of the identity operator.

From the analysis of CFT on S2 we know that any one-point function vanishes
unless it is a one-point function of an identity operator. Consequently, the Hilbert
space associated to S2\P is zero-dimensional unless the representation correspond-
ing to P is trivial R = 0, in which case dimH = 1. The latter fact can also be related
to the observation that it is not possible to accommodate a non-trivial “charge” in a
closed space. The total charge must vanish.

For two punctures vanishing of total charge tells that the Hilbert space has dimen-
sion only if the corresponding representations are conjugated R1 = R2, in which
case dimH = 1. There are more possibilities for three “charges”. In general there
can be more than one way for two representations to “fuse” producing a third one.
The corresponding number is called multiplicity of the third representation. As fol-
lows from WZW CFT the dimensions of the Hilbert space are smaller or equal than
multiplicities, because of additional CFT restrictions. The corresponding numbers

are called “fusion” numbers. They are denoted N R3
R1R2

.
Equipped with this basic information one can compute basic examples of topo-

logical invariants on S2 × S1, with periodic Euclidean time. Since the Hamilto-
nian is zero, the partition function is just the trace of the identity operator over the
Hilbert space. For a sphere with one point marked by representation R the result is
Z(S2 × S1) = δR0, which includes the case of no marked points for trivial R.

The following two results are also straightforward:

Z(S2 × S1; R1, R2) = δ
R2
R1

(11.13)

and
Z(S2 × S1; R1, R2, R3) = N R3

R1R2
. (11.14)



278 D. Melnikov

What one computes in these equations are correlations functions (11.8) of two and
three colored oriented Wilson lines winding around the S1 of S2 × S1.

11.3.2 Hilbert Space of T2

It is quite instructive to quantize CS theory on T 2 × S1 (see [17], for example). The

Hilbert spaceHT 2 of the quantum theory is finite and has dimension

(
k + N − 1
N − 1

)

in the case of SU (N )k CS. The states of this theory are cobordisms of T 2, of which
the simplest are the solid tori.

There is a canonical choice of basis on HT 2 . To define the basis vectors we
consider solid tori with Wilson lines inserted along the “longitude” of the torus:

(11.15)

The vectors are labeled by the representations of the inserted Wilson lines. In par-
ticular, an empty solid torus is understood as having a Wilson line in the trivial rep-
resentation. In SU (N )k CS the number of admissible representations is finite, equal
to dimHT 2 (cf. “integrable” representations in the corresponding WZW CFT).

States (11.15) are orthonormal with respect to the scalar product defined in
Sect. 11.2.2. To calculate 〈R1|R2〉 one constructs an M3 by gluing two solid tori
along� with an appropriate orientation. Since a solid torus is D2 × S1, a disk crossed
with a circle, then gluing corresponds to identifying two disks along the boundary
(producing a 2-sphere) and transporting the result along S1. Hence, M3 = S2 × S1

and
〈R1|R2〉 = Z(S2 × S1; R1, R2) = δ

R2
R1

, (11.16)

where we applied (11.13). Indeed, when we glue the solid tori in the most obvious
way, the Wilson lines remain parallel in S2 × S1. In particular, they never braid, and
the partition function is the one of two unlinked circles winding S1 of S2 × S1.

One can now ask about a general state with an arbitrary knot or link placed inside
the solid torus, for example,

(11.17)

Indeed, any such state can be expanded in the basis (11.15) labeled by integrable
representationswith coefficients cQR . This coefficients have a specialmeaning,which
can be understood if one computes the scalar product in TQFT
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cQR = 〈Q|ΨR〉 = Z(S2 × S1;LQR) . (11.18)

The expansion coefficients are the partition functions of a link LQR composed of a
circle and the original knot both wrapping the S1 of S2 × S1.

We note that the basis of eigenvectors (11.15) has an explicit representation in
terms of differential operators acting on the torus, e.g. [18].

11.4 Entanglement in TQFT

With the definition of TQFT in Sect. 11.2.2, which reinterprets quantum mechanics
in terms of topological spaces, it is straightforward to discuss entanglement in topo-
logical theories. Let us first discuss a naive interpretation of entanglement in TQFT.

11.4.1 General Idea

In quantum theory a state consisting of subsystems A and B is entangled if the
wavefunction (density matrix) is not separable, that is it cannot be presented as a
direct product of the wavefunctions (density matrices) of the subsystems, ΨA∪B �=
ΨA ⊗ ΨB .

To discuss the analogous situation in a TQFT we start with a Hilbert spaceH =
HA ⊗ HB where we assume all ΨA∪B belong [10]. By one of the above axioms, this
should be represented by a disjoint union of spaces �A ∪ �B . Then there are two
obvious candidates for a separable and an entangled states inH :

(11.19)
To check this proposal one can compute the von Neumann entropy of subsystems

A or B, given by formula SE(A) = −TrA ρA log ρA in terms of the reduced density
matrix of subsystem A, ρA = TrB ρA∪B . Given the path integral, or formal TQFT
definition it is not obvious whether SE (A) can be computed for states in (11.19).
A useful tool is the replica trick, which produces a clear graphical interpretation in
TQFT [10, 13]. It is useful to keep in mind the analogy with tensors—a contraction
of legs of two tensors corresponds to gluing twoM3 along a common instance of �.
A network of tensors (density matrices) becomes a three-manifold with “handles”.

We start the calculation by introducing the density matrices, which are defined in
general as ρ = |Ψ 〉〈Ψ |. For states in (11.19), we have to consider



280 D. Melnikov

(11.20)
which represent the tensors to be contracted. Note that these matrices are not nor-
malized, so we have to divide them by their traces. Since trace is a contraction of a
pair of chosen indices in a tensor, we have to glue �A with �A and �B with �B in
diagrams of (11.20). The normalization factors will be closed three-manifolds, which
in TQFT correspond to numbers, and we define the normalized density matrices as

(11.21)
We stress that the manifolds on the above diagrams are schematic representations.
To understand what they actually are, one has to specify �A and �B .

It is straightforward to find the reduced density matrices. For subsystem A,

(11.22)
One can already guess, that the second reduced density matrix is that of a mixed
state. One can now apply the replica trick computing

SE = − lim
n→1

d

dn
TrA ρn(A) . (11.23)

To construct powers of ρ(A)with tensors (11.22) one glues�A with�B n − 1 times.
Assuming an analytic continuation in n one computes the derivative. The result is

(11.24)

confirming our expectations that the left state in (11.19) is separable, while the right
one is entangled. Without Wilson lines the object appearing in the second expression
is easy to compute. As in Sect. 11.3.1 it is nothing but the logarithm of the dimension
of the Hilbert space H�A . More examples appear below.
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11.4.2 Back to the Aravind’s Conjecture

An interesting proposal to interpret entangled states in terms of links was made
in [5]. Consider a state in a TQFT, obtained by cutting tubular neighborhoods (cylin-
ders) around a link inside a three-dimensional sphere S3. The complement of an
n-component link is a space M3, whose boundary is a disjoint union of n tori.

A simple example to consider is a thick circle (a solid torus) inside S3. Cutting the torus
out produces a space, which is topologically also a solid torus. However such an inverted
torus is not fully equivalent to the original one: consider a circle drawn on its boundary
common to both the cut and inverted tori. If the circle is contractible in the bulk of one of the
tori it cannot be contracted inside the other one. This shows a subtlety related to defining a
TQFT state: given a T 2 we can consider two cobordisms, which fill the space either inside
or outside, producing two inequivalent states. More precisely, since the orientation of T 2 is
opposite for the two cobordisms, one state is not the dual of the other one.

The relation between different choices of contractible and non-contractible cycles on tori is
well-known. It is realized by the modular group PSL(2, Z) = SL(2, Z)/Z2. The element
of the modular group, exchanging the longitude and latitude of a torus is denoted S. Two
states in a TQFT, with Wilson lines drawn along the longitude and the latitude and colored
by representations Ri and R j respectively, are related by a matrix SRi R j in an appropriate
representation of SL(2, Z). For an SU (N )k CS the representation is defined by k and N .

From the point of view of the TQFT, the complement of a thick link on S3 is a
state in the tensor product of Hilbert spacesHT 2 , |Ψ 〉 ∈ ⊗n

i=1H
(i)
T 2 . Such a state can

be decomposed in the basis of that Hilbert space obtained by tensoring (11.15):

|Ψ 〉 =
∑

cR1···Rn |R1〉 ⊗ · · · ⊗ |Rn〉 . (11.25)

Again, the coefficients have a special meaning. In [5] they are matrix elements

cR1···Rn = 〈R1, . . . , Rn|Ψ 〉 = Z(S3; R1, . . . Rn) , (11.26)

which correspond to an opposite operation of gluing tori to M3, in such a way that
one recovers the original link in S3, now colored by the given set of representations.
The coefficients are then the corresponding topological link invariants on S3.

We consider an example of the Hopf link, the simplest linking of two circles. It
is not hard to see that it corresponds to an entangled state. A direct way is to find
coefficients cRARB , which are matrix elements of the modular group element S

cRARB = 〈RA|S|RB〉 = SRARB
. (11.27)

One does not need to know their explicit form. As a modular group element, S is
subject to constraint S2 = 1, so that the reduced density matrix of state (11.25) is

ρA = SRARB
SR

′
B R

′
A

Tr S2
=

δ
R′
A

RA

dimHT 2
. (11.28)
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In the numerator of the last expression appears the identity matrix of the spaceHT 2 .
Hence, the von Neumann entropy is the logarithm of the dimension of that space,

SE(Hopf link) = log dimHT 2 = log

(
k + N − 1
N − 1

)
. (11.29)

The calculation can also be done following the approach of Sect. 11.4.1.
State (11.25) is heuristically encoded by the right example in (11.19) with �A = T 2

and �B = T 2. Consider such a state obtained by cutting a longitudinal tube inside a
solid torus

(11.30)

Section 11.4.1 applies directly to (11.30) and predicts that the entropy is given
by (11.29).

There is a subtlety in the last argument. State (11.30) only represents state (11.25)
up to the action of S on one of the boundaries. However, from the point of view of
entanglement entropy, this would be a local unitary transformation, which leaves the
entropy invariant. More precisely, state (11.30) has expansion

|Ψ 〉 =
∑

δR1R2 |R1〉 ⊗ |R2〉 . (11.31)

This can be seen evaluating the scalar products of |Ψ 〉 with the basis vectors and
observing that in such away one finds partition functions on S2 × S1, namely (11.13).
Consequently, |Ψ 〉 in (11.30) is a simple analog of a Bell pair.

Authors of [5, 19] considered different links in S3 and computed the associated
entanglement entropy. Some of the conclusions of those studies are

• The link is trivial (all components of it are unlinked) if and only if the associated von
Neumann entropy vanishes. This follows from the property of unlinked components that
their partition functions factorize. Associated states (11.25) are separable.

• The Hopf link is maximally entangled. It can be viewed as an analog of a Bell pair.

• The set of torus links (links that can be drawn on the two-dimensional surface of a torus
without self-intersections) with three or more components, correspond to the GHZ-type
states in quantum information theory.

• Considered hyperbolic links are consistent with the W-type entanglement.

This is similar to the Aravind’s proposal in the sense that entanglement implies
linking. However, the correspondence does not work exactly as expected: nor Bor-
romean rings, nor Brunnian links in general, give a GHZ-type of states in the sense
of [5]. Such multipartite states, are realized by torus links.
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11.4.3 Reinforcing Entanglement with Wilson Lines

As one could notice from Sect. 11.3.1, the case of� = S2 is a bit different. In partic-
ular, to have a non-trivial Hilbert space one should have at least three punctures on the
sphere. Therefore to discuss entanglement, one should always include Wilson lines
piercing the spheres [10]. Otherwise, following (11.24) the entanglement entropy for
the case (11.19) with �A = S2 and �B = S2 is log dimHS2 = log 1 = 0.

With three or four punctures the simplest example to consider is the state

(11.32)

It is in general an entangled state. Its entropy can be calculated following the steps
of Sect. 11.4.1 giving

(11.33)

that is logarithm of the dimension of the Hilbert space of a sphere with four punctures
with fixed representations satisfying the zero “net charge” condition 0 ⊂ R1 ⊗ R2 ⊗
R3 ⊗ R4. Hence (11.32) is maximally entangled.

One can ask what happens, if the parallel Wilson lines in (11.32) are replaced
by a braid. A braid is produced by “local” permutation of punctures on either �A,
or �B . From the steps of the calculation in Sect. 11.4.1 it is clear that any such
braid will be unbraided in the reduced density matrix. Result (11.33) will persist
as a consequence of independence of the von Neumann entropy from local unitary
operations, where “local” means applied to either of subsystems, here A or B. A non-
trivial example would be considering a non-local braiding, which transforms (11.32)
to either “tangles”

(11.34)

One can show that in the first case there is no entanglement, since the corresponding
partition functions will only compute topological invariants of disjoint circles in
S2 × S1. As long as the circles do not wind the S1, which they do not do in the
first example of (11.34), such partition functions factorize giving zero von Neumann
entropy. The second example is less trivial an involve calculation of “chains” in
S2 × S1, as in the following diagram

(11.35)
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but with n sections, analytically continued to real n. Evaluation of such invariants is
a subject of current research [20].

In case of two-spheres chosen as� it is not enough to consider simple cobordisms
as in the right example of (11.19) to guarantee entanglement. The cobordisms should
be endowed with Wilson lines in order to support the correlations between the sub-
systems. For maximal entanglement the Wilson lines should have a braid structure,
as in state (11.32) rather than tangle structure, as in (11.34).

11.5 Complexity

Classical and quantum computing operates with a notion of complexity of a given
computational task. Complexity is supposed to tell how hard is the task in terms of
time and resource cost. Different quantifications of complexity were being discussed
in computer science and related matters, but more recently complexity was proposed
to have interesting (geometrical) meaning in studies of quantum gravity and quantum
field theory (see [21] and references therein). While it is rather straightforward to
import the notion of complexity to quantum mechanics and quantum computing,
it is not easy to generalize these ideas to quantum field theory, where locality and
causality are important. It is proposed here to approach this problem in terms of
TQFT, which are intermediate theories between quantum mechanics and quantum
field theory. I will discuss how a standard notion of complexity can be applied to
TQFT, further details will appear in [22].

11.5.1 Complexity in Quantum Mechanics

In quantum mechanics, one can ask how difficult it is to prepare a “target” state |ΨT 〉
given a “reference” state |ΨR〉. Such a task is fulfilled by a unitary operator,

|ΨT 〉 = U |ΨR〉 . (11.36)

Hence,U is a quantum algorithm or “circuit”, solving the problem. Assume that we
have available a number of discrete operations Ua , whose composition can approx-
imate U with a given accuracy. In principle, there can be more than one way to
approximate U with a composition of Ua . The number of Ua in a given circuit is
called the “depth” of the circuit d({Ua}), while the complexity is the minimum depth
of the circuit necessary to solve the problem

C (ΨR, ΨT ; {Ua}) = min
{Ua}| ∏i Uai�U

d({Ua}) . (11.37)



11 Topological View on Entanglement and Complexity 285

Circuit U can always be viewed as an evolution operator with a time dependent
Hamiltonian. Since the values of the Hamiltonian at different times a priori do not
commute, the evolution is a path-ordered exponential of a such Hamiltonian

U (t) = P exp

(
i
∫ t

0
H(t)

)
. (11.38)

Note that practically, the path integral is a sequence of discrete time evolutions.
An interesting possibility is H(t) taking values in some Lie algebra, such thatUa

are exponentials of a minimal set of generators, H(t) = Ha(t)T a . The path ordered
exponential in (11.38) can be cast in terms of paths on the group space, that is the
space of available unitary operators. Complexity C in such a case can be defined
as the minimum length, or the geodesic distance, of the path in the group space
connecting the identity element and the operator U (t) [23].

Integral in (11.38) can be written in terms of a “Berry connection”, H(t) =
Ai (x)ẋ i , endowing U (t) with a Wilson line interpretation. When the connection
is flat, the integral does not depend on the particular path taken, but rather on the
topology of the space of operators. This makes the determination of complexity a
discrete problem, as in the following example [22].

11.5.2 Complexity of Torus Knot States

Complexity is also an intuitive notion in knot theory. The standard classification
of knots is by the minimum number of crossings in the diagram of a given knot.
While the knot is defined as an embedding of a circle in the three-dimensional
space up to an isotopy, the diagram of the knot is a projection of the embedding
onto an arbitrary two-dimensional plane. Smooth deformation of the embedding do
not change the isotopy class and one can find a projection with a minimal number
of self-intersections (crossings). Thus, crossings provide a natural definition of the
complexity of the knot.

The initial idea about knot complexity may be found a bit naive, because studies
of the topological invariants of knots show that some knots, or links, are “simpler”
than others, even if their number of crossings is larger. Torus knots give an example
of a simple family. Such knots can be drawn on the surface of a torus without self-
intersections—all of them are classified by a pair of coprime integers (m, n). Torus
knots are simpler for few reasons. One of them is that an explicit formula for most
general topological invariants is known for any pair (m, n) [24]. The results are
generalized to the case of torus links: a �-component torus link can be characterized
by a pair (�m, �n), where m and n are coprime.

I would like to review some basic ideas about the definition of complexity for
torus knots. Further details will appear in the future work [22]. The ideas are based
on the following construction of a torus knot.
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Given the Hilbert space HT 2 described in Sect. 11.3.2 one can discuss particular
states in this Hilbert space corresponding to a solid torus with a torus knot (m, n)

inside. In general, such a state can be expanded in basis (11.15), as in (11.17). On
the other hand, torus knot state can be obtained by the action of SL(2, Z) modular
transformations on the boundary torus with a circle along the longitude (unknot).
We already know the action of the element S, which takes the knot parallel to the
longitude to the knot parallel to the latitude of the torus. SL(2, Z) can be generated
by two elements: S and T with relations S2 = 1 and (ST )3 = 1. In particular, for
the circle around the longitude, generator T adds a loop around the latitude, which
in general is contractible in the bulk.

One can understand the two generators as the followingmatrices modulo sign (the
actual modular group is PSL(2, Z), which identifies g and −g for g ∈ SL(2, Z))

S =
(

0 1
−1 0

)
, T =

(
1 0
1 1

)
. (11.39)

An SL(2, Z) element of the form

Wm,n =
(
m a
n b

)
, bm − an = 1 . (11.40)

will take the circle along the longitude to the torus knot (m, n).
Let us call reference state the vector |R〉(1,0), which is a solid toruswith a longitude

circle colored with R. We would like to define complexity of the target state |R〉(m,n),
in which the Wilson line is the (m, n) knot. From what we said above,

|R〉(m,n) = Wm,n|R〉(1,0) . (11.41)

The element Wm,n of SL(2, Z) can be presented as a word of generators S and T :
ST a1 ST a2 S · · · ST ar . Due to the relations for S and T , there are many words of such
form that give the same elementWm,n . Hence, we would like to consider the shortest
word of the generators and call complexity the total number of generators in the
shortest word.

The shortest word representing Wm,n ∈ SL(2, Z) is known to be related to the
following continued fraction presentation of m/n (assuming m > n):

m

n
= a1 − 1

a2 − 1
... − 1

ar

, (11.42)

where all |ai | > 1. The complexity of torus knot (m, n) can be defined as sum

C =
r∑

i=1

|ai | + r . (11.43)



11 Topological View on Entanglement and Complexity 287

In [22] further details and interpretations of this definition of complexity are
considered. One of the conclusions of that work in progress is that quantity (11.43)
grows slower than the number of crossings. Moreover, since SL(2, Z) also realizes
unitary representations of the three-element braid group B3, the above discussion
can be extended to the class of two-bridge knots and links.

11.6 Conclusions

In these notes I reviewed different interpretations of quantum entanglement in terms
of topological quantum field theories and knots. It was explained how intuitive ideas
of quantum entanglement as a physical “linking” of subsystems can be explicitly
realized in topological theories. In particular, it was explained, how the fundamental
examples of entangled states, such as Bell pair andGHZ states can be constructed and
how the entanglement entropy can be expressed in terms of the topological invariants
of knots and links. An interesting further direction outlined in my joint work [25]
is to understand the role of knots in quantum computation and quantum algorithms.
The material of these notes contain a step in that direction. One example considered
in the notes is the notion of complexity of algorithms, which can be connected to the
natural notion of complexity of knots. Some interesting related material have been
left behind. The reader is referred to [4, 16, 26, 27] for a subjective choice of relevant
works.
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Chapter 12
Finite Size Effects in Topological
Quantum Phase Transitions

Mucio A. Continentino, Sabrina Rufo and Griffith M. Rufo

Abstract The interest in the topological properties of materials brings into question
the problem of topological phase transitions. As a control parameter is varied, one
may drive a system through phases with different topological properties. What is the
nature of these transitions and how can we characterize them? The usual Landau
approach, with the concept of an order parameter that is finite in a symmetry broken
phase is not useful in this context. Topological transitions do not imply a change of
symmetry and there is no obvious order parameter. A crucial observation is that they
are associated with a diverging length that allows a scaling approach and to introduce
critical exponents which define their universality classes. At zero temperature the
critical exponents obey a quantum hyperscaling relation. We study finite size effects
at topological transitions and show they exhibit universal behavior due to scaling.
We discuss the possibility that they become discontinuous as a consequence of these
effects and point out the relevance of our study for real systems.

12.1 Topological Phase Transitions

Topology studies the stability of forms, shapes under different operations. Thesemay
occur in abstract spaces as inmomentum space reciprocal to crystalline structures [1–
3]. If certain symmetries are present, they give rise to invariants that are robust under
different operations. In many cases, in condensed matter systems, these topological
invariants are directly related to physical observables [1–3]. The existence of non-
trivial topological phases derives from their symmetry properties, but may occur only
for restricted regions of the parameter space characterizing the system. As a conse-
quence, if these parameters are changed, the system may transit from one non-trivial
topological phase to another or even to a trivial topological phase. Here we will be
interested in topological transitions that occur at zero temperature (T = 0) [4], as a
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physical parameter like the chemical potential is varied. The critical fluctuations in
this case are purely quantum mechanical and the topological transition is a quantum
phase transition [5]. These phase transitions that are of great interest nowadays dif-
fer [6], but also share many features with conventional ones. A significant difference
is the lack of an order parameter since in general there is no symmetry breaking at
a topological transition. The use of a topological invariant as an order parameter is
not a valid option as it changes abruptly. This may wrongly suggest that the phase
transition is discontinuous and does not fully develops. The main consequence of
the absence of an order parameter is that a Landau expansion [7] of the ground state
energy in terms of a small quantity near the transition is not possible.

The most important feature that characterizes a topological transition as a
genuine critical phenomenon is the existence of a characteristic length ξ that
diverges at this transition. If g is a control parameter, such that, the transition
occurs at g = 0, we can write

ξ = ξ0|g|−ν, (12.1)

where we will refer to ν as the correlation length exponent and ξ0 is a natural
length of the system, as the lattice spacing.

The identification of this characteristic length is guided by a unique attribute of
non-trivial topological phases, namely, the existence of surface states that decay
as they penetrate the bulk of the material [8]. This penetration length diverges at
the topological transition and can be identified as the characteristic length scale
associated with this critical phenomenon [4, 9–13].

The existence of this diverging length allows to develop a scaling theory for
topological transitions [5]. The singular part of the temperature dependent free
energy as a function of the distance g to the transition can be written as [5],

fs ∝ |g|ν(d+z)F

[
T

|g|νz
]

. (12.2)

If hyperscaling holds, the quantum hyperscaling relation implies

2 − α = ν(d + z), (12.3)

where we introduced two new quantum critical exponents, α and z. Since
the scaling function F[0] = constant, the former characterizes the singular
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behavior of the ground state energy density [14]. The latter is the dynamic
critical exponent and d is the dimension of the system.

The dynamic critical exponent z plays a fundamental role in quantum critical
phenomena [5]. Here, it is defined by the form of the dispersion relation of the
excitations at the QCP, g = 0, i.e., ω(g = 0) ∝ kz . In general for isotropic systems
close to the topological transition, the spectrum of excitations can be written as,
ω = √|g|2νz + k2z [15]. Thewavevector k is that for which the gapΔ = |g|νz closes
at the transition. In the cases of interest here the dynamic exponent z takes the Lorentz
invariant value z = 1, as a consequence of the Dirac-like nature of the dispersion
relation at the transition [15].

It is important to mention that the quantum hyperscaling relation, (12.3), that
relates the quantum critical exponents to the dimension of the system can be violated
in several ways [5]. For example, when the critical exponent α determined by this
relation becomes negative. For the systems studied here with z = 1 and ν = 1, as
obtained below, this occurs for d > 1. In this case theremay be analytic contributions
to the free energy, like f ∝ |g|2 that for α < 0 will vanish more slowly close to the
QCP than the scaling contribution [16]. This implies that the exponent α remains
fixed at α = 0 for all d ≥ 1. For d = 1, the marginal dimension, there may be also
logarithmic corrections for the ground state energy (see below). Hyperscaling may
also breakdown if the dispersion relation of the system is highly anisotropic, such
that, the correlation length exponent is not uniquely defined but depends on a given
direction [17].

Notice that in conventional quantum phase transitions the algebraic decay of
correlations of the order parameter at theQCP requires introducing a critical exponent
η [5]. This is related to the exponent β of the order parameter through another
hyperscaling relation 2β = ν(d + z − 2 + η) [5]. The exponents η and β play no
role in the characterization of topological quantum phase transitions as discussed
here.

In the next sections, we study two models exhibiting topological transitions and
determine their universality classes, essentially the critical exponents ν, z and α.
We start with the one-dimensional (1d) Su–Schrieffer–Heeger (SSH) [3] model for
a dimerized tight-binding chain, which is one of the simplest model to exhibit a
quantum topological phase transition. We also consider the two-dimensional (2d)
Bernevig–Hugues–Zhang model [3] and obtain the correlation length exponents ν

for both models. Finally, we discuss a 3d model of a topological insulator and the
possible occurrence of a discontinuous transition in this system.

12.2 The Su–Schrieffer–Heeger Model

TheSu–Schrieffer–Heeger (SSH)model [3] has been proposed to study the electronic
properties of the polymer composed of repeating units of polyacetylene organic
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molecules (C2H2)n . The Hamiltonian in real space can be written as

H =
∑
n

ψ†
n Aψn + ψ†

n Bψn−1 + ψ†
n B

†ψn+1, (12.4)

whereψn = (ψa
n , ψb

n )T is thewave function vector of a unit cell nwithwave function
components ψa and ψb from a and b sublattices, respectively. The intra and inter
cell hoppings are given by 2 × 2 matrices (A)i, j = t∗1 δi, j−1 + t1δi−1, j and (B)i, j =
t∗2 δi, j−1, respectively, where t1 and t2 are real numbers that represent the intra and
inter cell hopping terms. After a Fourier transformation of the Hamiltonian, (12.4),
we get

H =
∑
k

ψ
†
k H(k)ψk, (12.5)

such that, ψk = (ψa
k , ψb

k )T and (H(k))i, j = t (k)δi, j−1 + t∗(k)δi−1, j with t (k) =
t1 + t2eika . A diagonalization process allows to obtain the energies of the electronic
states of the model as

E(k) = ±|t (k)| = ±
√
t21 + t22 + 2t1t2 cos k, (12.6)

where the lattice spacing was taken equal to unity. Notice that, for |t1| �= |t2|, this
energy dispersion presents a gap around zero energy. Therefore, if the Fermi level μ
is taken at zero energy, the ground state describes an insulating phase. On the other
hand, this model undergoes a topological phase transition at the quantum critical
point, g = t1 − t2 = 0, with a gap closing at k = π .

The insulating phase that arises when |t1| > |t2| is a trivial topological phase,
since the topological invariant winding number W is equal to zero. For |t1| < |t2|,
the insulating phase is topologically non-trivial with winding number equal to
one. In the topological non-trivial phase, there are edge states with zero energy,
(ψa

n (E = 0), ψb
n (E = 0)), that are protected by the topology of the Bloch bulk elec-

tronic states.
Solving recursively for the zero-energy eigenstates of the Hamiltonian (12.4), we

find for the ratio of the wave functions at sites n and 1 at the edge of the a sub-lattice,

δψa
n = ψa

n (E = 0)

ψa
1 (E = 0)

=
(

− t1
t2

)n−1

. (12.7)

These edge states are mostly located at the edges of the chain, more precisely in the
unit cells 1 and N of the SSH model. Their existence is guaranteed by the condition
E = 0 in (12.6) that leads to t (k̃0) = 0 or eik̃0 = −(t1/t2). Notice that in the case of
edges states with zero energy, k̃0 is a complex number. Substituting, (t1/t2) = −eik̃0

in (12.7), the ratio of wave functions for the a sub-lattice can be written as
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g

Fig. 12.1 The square of the wave function (Edge states) as a function of the sites. Solid lines are
solutions for the a sublattice. The penetration depth ξ is shown for g = 0.02 (black curve). At ξ the
wave function satisfies the condition Ψn(ξ) = Ψ1/e. The inset shows the penetration depth versus
g. Different colors represent different values of g as depicted in the inset. The angular coefficient
of the straight line is formally the critical exponent, ν = 1

δψa
n = eik̃0(n−1). (12.8)

The value of k̃0 as a function of the distance from the critical point can be obtained
from the following equation

E(k) ∼
√
g2 + t1t2k2, (12.9)

which is a series expansion of (12.6) near the QCP. We have introduced g = t1 − t2
to represent the distance from this QCP. For an edge state E(k̃0) = 0 and therefore
(12.9) yields k̃0 = i(g/

√
t1t2).

Finally, substituting k̃0 in (12.8), we obtain for the wave functions ratio

δψa
n = e−(n−1)/ξ , (12.10)

where ξ = √
t1t2|g|−1. The normalized wave function decays exponentially with n

within the bulk with a penetration depth ξ that diverges with critical exponent ν = 1.
Notice that this result can also be obtained directly from (12.7).

Figure12.1 shows the square of the wave functions (|ψa
n (E = 0)|2) of the edge

states obtained numerically from (12.4). The solid lines in the figure are the solutions
for a sub-lattice as a function of the sites. There are similar solutions for the b sub-
lattice (not shown) that in this case are localized near the last site.

We have defined the penetration depth ξ as the distance, relative from the initial
site, for which Ψn(x0 + ξ) = Ψ1(x0)/e. Now, by considering several values of g,
varying from g = 0.01 to 0.05, we obtain ξ(g) and determine the critical exponent
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ν, as shown in the inset of Fig. 12.1. We get, ν = 1 in perfect agreement with the
analytic result of (12.10), showing that the numerical method is very reliable. In the
next section, we use the numerical approach to obtain the critical exponent ν of the
2d BHZ model.

12.3 The Bernevig–Hugues–Zhang (BHZ) Model

The first experimental observation of a 2d topological quantum phase transition was
in a CdTe/HgTe/CdTe heterostructure. This consisted of a layer of HgTe sandwiched
between CdTe yielding a semiconductor quantum well [18]. At some critical thick-
ness value of these quantum wells, the topological quantum phase transition takes
place, from a conventional insulating phase to a quantum Hall effect phase with
helical edge states protected by the non-trivial topology of the bulk. This topological
quantum phase transition can be described by the BHZ model [19] associated with
the following Hamiltonian

H(kx , ky) = σ · h(k), (12.11)

where h(k) takes values on the two-dimensional Brillouin zone (kx , ky) and σ =
{σx , σy, σz} are the Pauli matrices. Specifically, hx = tsp sin kx , hy = tsp sin ky and
hz = 2t1(cos kx + cos ky) + t2 − 4t1. In this Hamiltonian, the sub-lattice space rep-
resents the orbitals s and p for each atom. In order to describe the quantum wells in
HgTe/CdTe layers, the simplified spinless BHZ model introduces the hopping terms
tsp and t1, as well as, a mass term t2. The antisymmetric hybridization between the
orbitals of different parities, s and p has an amplitude given by tsp, and the hopping
between the same orbitals s or p of nearest neighbors atoms has an amplitude t1.

A topological phase can be identified by some proper topological invariant. For the
2d BHZ model, we can consider the Chern number invariant C [20, 21] obtained at
the high-symmetry points [kx , ky] = {[0, 0], [0, π ], [π, 0], [π, π ]}. It predicts a non-
trivial topological phase for the intervals 0 < t2 < 4t1 withC = 1 and 4t1 < t2 < 8t1
with C = −1. A trivial phase with C = 0 occurs for t2 > 8t1. The Chern number
signs C = ±1 are related to edge states with propagation in opposite directions.

Here we are interested in determining numerically the correlation length critical
exponent for the two-dimensional BHZ model. For this purpose, we study the pen-
etration of the edge states, which requires one of the dimensions of the lattice to be
finite. Since these edge states are indeed connected to the real terminations of the
system, for a square lattice to keep one of the dimensions finite means to deform
the lattice into a cylinder. The finite axis takes the direction of the main axis of the
cylinder and the other dimension with periodic boundary conditions is represented
by the body of the cylinder.

The correlation length critical exponent as before characterizes the decay of the
edge states into the bulk close to the topological transition. Let us consider the edge
states of the BHZ model in one dimension. One way to get one of the dimensions
finite is to perform a Fourier transformation as
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HI,J (ky) = 1

Nx

∑
kx

eikx (m−m ′)HI,J (kx , ky), (12.12)

where Nx is the number of sites along the finite x-axis and {I, J } indexes run over
the matrix elements of (12.11). The positions of the atoms along the finite x-axis
are denoted by m and vary from 0 to Nx . For example, considering the element
H1,1(kx , ky) = hz we have

H1,1(ky) = 1

Nx

∑
kx

eikx (m−m ′)H1,1(kx , ky)

= 1

Nx

∑
kx

eikx (m−m ′) [2t1 cos kx + C]

= 1

Nx

∑
kx

eikx (m−m ′) [
t1(e

ikx + e−ikx ) + C
]

= 1

Nx

∑
kx

[
t1

(
eikx (m−m ′+1) + eikx (m−m ′−1)

)
+ Ceikx (m−m ′)

]

= t1[δm,m ′+1 + δm,m ′−1] + Cδm,m ′ , (12.13)

where C = 2t1 cos ky + (t2 − 4t1) is independent of kx and the same procedure
should be applied to all the other matrix elements.

The sum over kx allows to work in real space along the x-axis. Notice that we
chose the kx to be in the finite direction, but since we consider a square lattice the
choice between kx or ky is irrelevant due the symmetry of the lattice. For the diagonal
directions of the square lattice [22], or formore complex lattices this is not necessarily
true. For instance, for the honeycomb lattice, the choice of the finite axis along one
or other direction means different edge arrangements [23].

Accordingly, after Fourier transforming (12.12), from momentum to real space
along the x-axis, we have

H(ky) =
(
H11 H12

H21 H22

)
. (12.14)

Following the procedure of (12.13) yields H11 = [2t1 cos ky + (t2 − 4t1)]δm,m ′ +
t1[δm,m ′+1 + δm,m ′−1] that stands for sub-lattice a and H22 = −H11 for sub-lattice
b. Here, the sub-lattices indexes a and b represent the subspace of the orbitals s
and p, respectively. The matrix elements responsible for the mixing of the different
orbitals or sub-lattices are given by H12 = −i tsp sin kyδm,m ′ − i tsp

2 [δm,m ′−1 − δm,m ′+1]
and H21 = H †

12. The m index counts the unit cells or atoms along the finite x-axis
and in the same way m ′ can be interpreted as a neighbor site in the real space
Hamiltonian, (12.14). Besides, the order of each matrix element HI,J is increased to
Nx × Nx , which means that the order of the final matrix becomes 2Nx × 2Nx .

For the purpose of obtaining the energy dispersion in real space, a numerical study
of the 2d BHZmodel was developed to diagonalize the Hamiltonian, (12.14). We fix
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Fig. 12.2 (Color online)
Energy dispersion of the
BHZ model as a function of
t2, for a fixed t1 = 1. The red
lines are obtained for ky = 0
and for Nx = 50 sites.
Topological quantum phase
transition takes place for
t2 = 0 and t2 = 4. Along the
line E = 0, we highlighted
the presence of the two edge
states with thick lines

the energy scale as t1 = 1 and take Nx = 50 sites. In Figs. 12.2 and 12.3, respectively,
we present the energy E as a function of the topological transition control parameter
(mass) t2 at the high symmetry points, ky = 0 and ky = π . In the first case, ky = 0,
topological quantum phase transitions take place for t2 = 0 and t2 = 4. The thick
lines in the figures show the presence of the edge states with zero energy. The same
is observed for ky = π , but the transition points are now given by t2 = 4 and t2 = 8.

For the study of the penetration of the edge states, we identify the eigenvectors
responsible for the zero energy dispersions in Figs. 12.2 and 12.3. For Nx = 500, we
show in Fig. 12.4 the square of the wave function of the edge states in the vicinity of
the critical points. Actually, just one half of the lattice is presented, since the behavior
is the same on both sides. In addition, the results for sub-lattice a and b coincide. The
edge states are obtained for distances to the critical point ranging from g = 0.01 to
g = 0.05. As g increases, the edge states become more localized at the edges of the
lattice. The inset presents the characteristic length ξ as a function of g and the points
are obtained from the numerical study of the model. From the linear fitting of these
points, we can conclude with accuracy that the correlation length critical exponent
for the 2d BHZ model is ν = 1. As mentioned before, in real space the lattice is a
cylinder and Fig. 12.4 presents a pictorial view of the penetration of the edge states
from the perspective of this cylinder. The top cylinder represents the case where the
edge states penetration decays very fast. The color gradient follows the penetration
intensity of the edge state. In the same way, the bottom cylinder shows a case where
the edge state extends almost along the entire lattice. The color gradient here holds
inside the cylinder body. These results reflect strictly the behavior obtained for all
critical points t2 = 0, t2 = 4 and t2 = 8.
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Fig. 12.3 (Color online)
The same of Fig. 12.2, but
the blue lines are obtained
for ky = π . In this case, the
topological quantum phase
transition takes place for
t2 = 4 and t2 = 8. Again, we
highlighted the presence of
the two edge states with
thick lines along E = 0

In the process of varying the distance to the quantum critical point, we notice that
as the system moves away from the QCP, the behavior of the penetration length for
the orbitals s and p (sub-lattices a and b) becomes distinct at the different edges.
Figure12.5 shows that for g ≥ 0.068, the wave function of the left edge state is
nearly localized and has mostly s-character, while that of the right edge has mostly
p-character. We also observe that the amplitude of the wave functions at the edges
and consequently their localization at these sites becomes larger as g increases. The
cylinders here indicate the correspondence between the edge states of the subspaces
and the termination of the lattice for each case. Finally, close to the QCP the wave
functions of the edge states have a mixed character, as shown in Fig. 12.4, due to
their strong hybridization.

In summary our numerical study of the 2d BHZ model shows that the critical
exponent for the penetration depth takes the value ν = 1, the same we have obtained
for the 1d SSH and for a 1d sp-chain [5]. We have also pointed out a qualitative
change in the nature of the edge states for the 2d BHZ model as the distance to the
QCP of the topological transition changes.

12.4 Finite Size Effects at Topological Transitions

Quantum topological transitions as conventional phase transitions also exhibit finite
size scaling properties [15]. For a finite system close to quantum criticality, the
characteristic length ξ and the finite size L are the relevant length scales. The singular
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Fig. 12.4 The square of the wave function (edge states) as a function of sites (Nx = 500) sites close
to the quantum critical point, t2 = 0.We show just half of the lattice (Nx = 250) for one sub-lattice,
since the behavior is the same on both sides for the two sub-lattices a and b. The color scheme and
the penetration depth follows that of Fig. 12.1. The inset shows the penetration depth versus g and
yields with high accuracy the value ν = 1 for the critical exponent of the penetration depth. For
all the QCPs as g increases and the system moves away from these QCPs, the edge states become
more localized at the ends. The cylinders represent the finite BHZ lattice along the x-axis direction
(main axis of the cylinder) with periodic boundary conditions in y-axis (body of the cylinder). The
top cylinder shows the penetration of the wave-function of the edge states for g = 0.04 according
to the color gradient (green). Similarly, the bottom cylinder shows the same (red), but for g = 0.01.
In this case the wave function of the edge state penetrates almost the entire lattice

part of its free energy δFC(g, L) is expected to have a finite size contribution that
can be written as [15],

δF
sing
C (g, L) = ΔC L

−(d+z−1) f (L/ξ). (12.15)

This follows from dimensional analysis and a finite size scaling assumption. It is
a natural generalization of the classical result for the quantum case [24] and for topo-
logical transitions [15]. In (12.15), the dimension d of the classical system is replaced
by the effective dimension d + z as in the quantum hyperscaling relation [25]. At
the QCP of the bulk system, the characteristic length is infinite, and the scaling
function f (L/ξ = 0) = 1. For d + z = 1 + 1, conformal invariance implies that the
amplitudes ΔC are universal quantities [26].
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sp

s
p

sp

Fig. 12.5 (Color online) The same of Fig. 12.4, but exploring the effect of the proximity to criticality
on the nature of the edge states. In the close vicinity of the topological quantum phase transition
the edge states of the subspace of the orbitals s and p, in purple color, coincide and exhibit the
same amplitudes in both sides of the lattice. This is represented by the bottom cylinder filled with
the same purple color in each edge. However, far away from the critical point (g ≥ 0.068) the edge
states on different sides begin to present mostly s (left) or p (right) character. For instance, the wave
function of the edge state nearly localized at the left end has a very strong s character. The opposite
for the right end with a wave function with mostly p-character. This is indicated by the top cylinder
where the blue and red colors represent the s and p orbitals, respectively

The scaling form, (12.15), of the finite size contribution to the free energy has
been successfully verified for several systems exhibiting topological quantum phase
transitions [15], as the 1d p-wave superconductor model of Kitaev, the 3d SSH
model and a 3d model for topological insulators [15]. In all these cases, the dynamic
exponent is given by z = 1 and the correlation length exponent turns out to be ν = 1.

For the purpose of calculating the finite size properties of a system, it is useful to
consider it as confined within two parallel planes of area S separated by a distance
L. The free energy per unit area of this slab can be written as [24, 25, 27]

lim
S→∞

F (g, L)

J S
= LFbulk(g) + Fsurface(g) + δFC(g, L), (12.16)

where Fbulk(g) is the dimensionless bulk free energy per unit volume of the uncon-
fined system, Fsurface is the sum of the free energies of the surfaces, per unit surface
area, due to the confining planes and J is a natural energy scale of the bulk mate-
rial. If one uses periodic boundary conditions, the surface terms do not arise in the
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expression above [15]. The last term represents the finite size contribution to the
free energy per unit area from the slab of width L . It can be imagined as mediating
interface-interface interactions at a distance L . Close to criticality its singular part
has the scaling form given by (12.15) above. In the next sections, we use (12.16) to
obtain this term and explore the physics it contains.

12.4.1 Multi-band Topological Insulator

In this section we focus on a 3d multi-band topological insulator. Recently [28], a
theory has been formulated that points out the existence of a time-reversal invariant in
these systems with Θ2 = −1. This occurs whenever a band of conduction electrons
hybridizes with the mJ = ±1/2 doublet arising from the f -multiplet of a rare-earth
system in a crystalline environment for which this doublet is the ground state. The
theory considers an effective four-band model of dispersive quasi-particles, with
different effective masses. The parity of the orbitals forming these bands is such that
the k-dependent hybridization between them is antisymmetric [28]. The Hamiltonian
belongs to class AI I , and is characterized by aZ2 invariant. The dispersion relations
of the hybridized bands [28] of the model are given by,

ω1/2 = 1

2

[
(εak + εbk ) ±

√
(εak − εbk )

2 + 4|V (k)|2
]

, (12.17)

where
εak = −εa0 + 2t (cos kxa + cos kya + cos kza),

εbk = εb0 + 2α̃t (cos kxa + cos kya + cos kza)

are the dispersions of the originals non-hybridized bands.
The quantity α̃ multiplying the hopping term above accounts for the different

effective masses of the quasi-particles and ε
a,b
0 are the centers of the bands. The k

dependent hybridization is given by

|V (k)|2 = V 2
0 (sin2 kxa + sin2 kya + sin2 kza),

where V0 measures the intensity of the (antisymmetric) effective hybridization.
We consider here the simplest case of α̃ = 1 and inverted bands, i.e, εbk = −εak =

−εk , such that, εa0 = εb0 = ε0. This preserves the topological properties of the original
model. In this case we get,

ω1/2 = ±
√

ε2k + |V (k)|2. (12.18)

In the continuum limit and for k → 0, we obtain
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εk = −ε0 + 6t − t (ak)2 = g − t (ak)2

and
|V (k)|2 = V 2

0 (ak)2,

with k2 = k2x + k2y + k2z and g = 6t − ε0. This model has a topological transition at
g = 0 from a non-trivial topological insulator for g < 0 to a trivial one for g > 0 [28].
The dispersion relations close to the transition can be cast in the general form [29],

ω1/2/V0 = ±
√
M2 + (1 − 2MB)(ak)2 + B2(ak)4, (12.19)

where M = g/V0 and B = t/V0. Notice that at the QCP, M = 0 and for k → 0,
ω ∝ kz with the dynamic exponent z = 1. Alternatively, at k = 0 there is a gap in
the spectrum, ω ∝ |g| that vanishes at the QCP with the gap exponent νz = 1. The
dispersion relations, (12.19), describe a large variety of topological insulators [29].
The ground state energy density associated with these dispersions is given by

fs = EGS

V0V
= 1

(2π)3

∫
d3k

√
M2 + (1 − 2MB)(ak)2 + B2(ak)4, (12.20)

where V is the volume of the system. Close to the topological transition, we introduce
a characteristic length ξ ∝ M−1 ∝ g−1, such that, the ground state energy density
can be written in the scaling form,

fs ∝ ξ−4
∫ Λξ

0
4πd(kξ)(kξ)2

√
1 + (kξ)2, (12.21)

where Λ is a cut-off and we considered only the most singular terms close to the
QCP. This equation can be cast in the scaling form,

fs ∝ |g|ν(d+z)F[Λξ ], (12.22)

where ν = 1, z = 1, as identified previously and d = 3.

Performing the integration of (12.21) and taking the limit Λξ → ∞, one
obtains different contributions for the free energy,

• a cut-off independent term that corresponds to the scaling contribution, fS ∝
|g|ν(d+z) = |g|4.

• a cut-off independent term, fs ∝ |g|4 log |g| that violates hyperscaling [29].
Cut-off dependent contributions including,
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• a constant term, i.e., independent of g, that represents to the most singular
cut-off dependent term.

• a term of order |g|2 with a cut-off dependent coefficient. This appears for
all d ≥ 1.

For the one, two and three dimensional systems studied here, the correlation length
exponents take the value ν = 1, the dynamical exponents z = 1 and consequently
the gap exponents νz = 1. When these are substituted in the quantum hyperscaling
relation, (12.3), we obtain that α < 0 for d > 1. In this case the non-universal, cut-off
dependent |g|2 term in the free energy, present for all d ≥ 1, dominates its behavior as
g → 0. Since this is the leading term for d > 1, then d = 1 plays the role of an upper
critical dimension for these topological transitions. According to this interpretation,
we expect the critical exponents to be fixed at their 1d values for all d > 1. The
presence of a logarithmic correction to the ground state energy in d = 1 is consistent
with its role as a marginal dimension.

If one considers an expansion of the more general expression for the free energy,
(12.20), in powers of B (B = (t/V0) < 1), we find that the contribution proportional
to |g|4 log |g| remains and acquires a B dependent coefficient [29]. Subtracting the
diverging, cut-off dependent terms in this expansion, this simple type of renormaliza-
tion leads to a free energy fs(M, B) that exhibits a discontinuous transition between
the trivial, M < 0 and topological insulator, M > 0 as a function of B [29]. This
possibility of a first order topological transition associated with a gap that never
closes [30] is very interesting and we wish to examine it using a type of renormal-
ization different from that of [29].

12.4.2 Casimir Effects in Topological Insulators

The first order topological transition found in [29] at B = Bc relies on the renormal-
ization procedure to dealwith the cut-off in (12.20).We explore here the possibility of
a discontinuous topological transition using a new scenario and a different renormal-
ization procedure. For this purpose we consider, as in Sect. 12.4, that the system with
the spectrum of excitations corresponding to (12.17) is confined within two parallel
plates of area S separated by a distance L . The free energy per unit area of this system
is given by (12.16). Here we present calculations of the quantity δF

sing
C (g, L) for a

slab of a multi-band topological insulator using a method similar to that for obtaining
the Casimir force between parallel plates in the theory of electromagnetism [31, 32].
Since Casimir’s calculation is also a renormalization procedure, we investigate the
possibility of a discontinuous topological transition in the multi-band topological
insulator using this approach. The boundary conditions in the slab are that the wave
functions assume the same constant value in both planes, at z = 0 and z = L . The
energy of the insulating slab can be written as,
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ES

V0
= 4π2Sa

L3

∫ ∞

0
dyy

∞∑
n=−∞

√
M2

L + (1−2MLBL)(y2 + n2) + B2
L(y

2 + n2)2.

(12.23)
where y = k⊥L/2π , with k2⊥ = k2x + k2y ,ML = M(L/2πa) and BL = B(2πa/L) =
L0/L where we introduced a new length scale L0 = 2πaB = 2πat/V0 associated
with the hybridization (a is the lattice spacing). The energy of the insulator occupying
the whole space is given by,

EB

V0
= 4π2Sa

L3

∫ ∞

0
dyy

∫ ∞

−∞
dt

√
M2

L + (1−2MLBL)(y2 + t2) + B2
L(y

2 + t2)2,

(12.24)
with t = kz L/2π .

The calculation of the energy difference, ΔE = ES − EB yields the scaling con-
tribution according to (12.16). It is carried out in [15] using the techniques to obtain
the Casimir force in critical slabs. We obtain for this energy difference at M = 0, or
ξ = ∞, i.e., at the topological transition

ΔE

SV0
= −π2a

15
L−3, (12.25)

which obeys the finite size scaling form

ΔE

SV0
= ΔC L

−(d+z−1), (12.26)

with d = 3, z = 1 and theCasimir amplitudeΔC = −π2a/15.Away from criticality,
since ML = L/ξ , we can write

ΔE

SV0
= −16π2aL−3 f (L/ξ). (12.27)

For L/ξ � 1, the scaling function f (L/ξ) ∝ exp(−2πL/ξ) and the finite size con-
tribution vanishes exponentially for L � ξ .

The full expression for the energy difference is given by [15],

ΔE

SV0
= −32π3B

L4

(∫ x1

x2

dt
f1(t)

e2π t − 1
+

∫ ∞

x1

dt
f2(t)

e2π t − 1

)
, (12.28)

which is a function of M, B and L . The quantities x1,2 are given by

x21,2 = 1

2B2
L

[
(1 − 2MB) ± √

1 − 4MB
]
. (12.29)

The functions in the integrand are
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Fig. 12.6 (Color online)
The ground state energy
E(M, B, L) as a function of
M for L = 3 fixed and
different values of B. Dotted
line (red) B = 0.41, Full line
(black) B = Bc = 0.39,
Dot-dashed line (purple)
B = 0.37 and dashed line
(blue) B = 0.35. For
B = Bc ≈ 0.39, the
minimum at small, negative
M exchanges stability with
the one at positive M

Fig. 12.7 The ground state
energy E(M, B, L) as a
function of M for different
values of L and
B = Bc = 0.39 fixed. From
bottom to top (at M = 0):
dotted line (grey) L = 2.8,
full line (black) L = 3,
dashed line (blue) L = 3.5,
dot-dashed line (brown)
L = 5 full line (red) L = 9.
For L ≈ 3 there is a first
order topological transition
(full line) (see text)

f1(t) = 1

16
x41

[
π

2
(1 − α2)2 − 2

√
(η2 − α2)(1 − η2)(1 − 2η2 + α2) − (12.30)

(1 − α2)2 tan−1 1 − 2η2 + α2

2
√

(η2 − α2)(1 − η2)

]
,

for x2 < t < x1, where η = t/x1, α2 = (x22/x
2
1 ) and

f2(t) = π

16
x41(1 − α2)2, (12.31)

that is independent of t (t > x1).
Finally, the expression for the free energy difference E(M, B, L) = ΔE/SV0,

(12.28), canbe integrated numerically and the results are shown inFigs. 12.6 and12.7.
In Fig. 12.6, E(M, B, L) is plotted as a function of M for a fixed separation L = 3
between the plates and different values of the parameter B. One notices the presence
of two minima, one at small negative values of M and another for positive M . These
minima exchange stability at a critical value of B = Bc ≈ 0.39. The quantity M
plays the role of an order parameter being negative in the trivial phase and positive in
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the topologically non-trivial phase [29]. For B > Bc the stable minimum occurs for
positive M and the system is in the topological phase. For B < Bc the minimum at
small negative M is the more stable and the system is in the trivial insulating phase.
They exchange stability at B = Bc where a first order transition occurs.

In Fig. 12.7, E(M, B, L) is plotted as a function of M , now for a fixed value
of B = Bc and increasing separations L between the plates. For L ≈ 3 there is a
first order topological phase transition (full black line), such that, for systems with
L > 3, the stable phase is the topologically trivial with M < 0. As L increases the
minimum at negativeM moves to zero and the curve E(M, Bc, L → ∞) has a single
minimum at this value of M . The amplitude of the minimum at M = 0 decreases
according to thefinite size scaling law, (12.25) and the curve for E(M, B, L)becomes
progressively flat and small as a function of M .

A phenomenon similar to the one we have obtained, i.e., a first order transition in
finite slabs that eventually evolves to a continuous one for large separations between
plates has also been shown to occur in a strongly interacting system [33] exhibiting
a fermionic condensate. In both cases the discontinuous character of the transition is
due to finite size effects. Ultrathin films of topological insulators can provide ideal
platforms to investigate these finite size effects [34].

12.5 Conclusions

In this work we discussed how to describe and characterize topological quantum
phase transitions. We identified a characteristic length in this problem, namely the
penetration length of the surface modes in the non-trivial topological phase of the
system. It diverges as ξ ∝ |g|ν where ν is the correlation length exponent and g the
distance to the transition. For simplicity, we neglected interactions, to put in evidence
the purely topological aspects of the phenomenon and avoid the interference of any
competing long range ordering. The role of interactions in topological systems is an
active area of investigation [35] and these may give rise to new universality classes.

We have obtained numerically the critical exponent ν = 1 for two well known
systems exhibiting topological transitions, the SSH model in one dimension and
the two dimensional BHZ model. Besides ν, two other critical exponents, z and
α determine the universality class of the topological transition. The former is the
dynamic critical exponent that for the systems studied here assumes the value z = 1
implying their Lorentz invariance. This value of z is also connected with the Dirac-
like spectrum of excitations at the QCP. The exponent α determines the singular
behavior of the free energy at zero temperature. These exponents are not independent
but related through the quantum hyperscaling relation [5]. We have however pointed
out that hyperscaling can break down and indicated how this may occur for non-
interacting systems. We discussed the existence of an upper critical dimension dC
for the Lorentz invariant systems treated here and argued that it takes the value
dC = 1. We expect that for all d > dC , the critical exponents remain fixed at their
values for d = dC .
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Finally, we have studied the possibility of discontinuous topological transitions
where the gap in the spectrum never closes. Our approach is inspired on that used
to study the Casimir effect, It turns out to be an efficient method of renormalization
that allows to get rid of infinities. We have shown that for a 3d slab with one finite
dimension, finite size effects can give rise to an exchange of stability between the
trivial and topological phases in a discontinuous transition. However, as the distance
between the plates of the slab increases, these effects disappear.
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Chapter 13
From Quantum Spin Chains to Chiral
Spin Liquids

Rodrigo G. Pereira

Abstract Chiral spin liquids are highly entangled phases ofmatter inwhich interact-
ing spins break time reversal and reflection symmetries, but do not develop magnetic
order even at zero temperature. The conventional analytical approach to describe
quantum spin liquids employs parton representations for the spin operator, but the
resulting gauge theories are hard to handle beyond mean-field approximations. In
this chapter, we review an alternative approach that starts from the conformal field
theory for weakly coupled Heisenberg spin chains.We provide two examples of such
coupled-chain constructions. The first one is the Kalmeyer–Laughlin chiral spin liq-
uid, a gapped topological phase that can be obtained by coupling parallel spin chains
with three-spin interactions that favor uniform spin chirality. The second example is
a gapless chiral spin liquid on a geometry of crossed chains with a staggered chirality
pattern. Using a renormalize group analysis, we identify the conditions necessary to
stabilize these nontrivial phases and discuss how to calculate their properties explic-
itly at the low-energy fixed points.

13.1 Introduction

The spin-1/2 Heisenberg chain was the first quantum many-body Hamiltonian to be
solved exactly by H. Bethe in 1931 [6]. This pioneer work led to the development
of the Bethe ansatz for integrable one-dimensional models, of which the spin-1/2
Heisenbergmodel and its anisotropic extension, theXXZchain, are notable examples
[20]. In addition to the Bethe ansatz solution, analytical field theory methods [1] and
sophisticated numerical techniques [38] have been successfully applied over several
decades to reveal some remarkable properties of the antiferromagnetic Heisenberg
chain. For instance, it is known that the exact ground state for a chain with an even
number of spins is a singlet, i.e. a nondegenerate state invariant under global SU(2)
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spin rotations. While this behavior is familiar from the ground state of the two-
spin problem with antiferromagnetic exchange interaction, it contrasts starkly with
the classical picture of Néel order later proposed to describe the ground state of
antiferromagnets in two- or three-dimensional bipartite lattices [26]. Moreover, the
excitation spectrum on top of this ground state is organized in terms of elementary
excitations that carry spin-1/2, as opposed to the spin 1 of a magnon in ordered
magnets [10]. Selection rules then imply that these excitations, nowadays called
spinons, must be created in pairs. Such fractionalization of the spin quantum number
in spin chain materials has been confirmed experimentally through the observation
of a two-spinon continuum in the spectrum probed by inelastic neutron scattering
[24].

Inspired by the physics of the antiferromagnetic spin-1/2 chain and by Pauling’s
idea of valence bonds as a theory for unconventional metals, in 1973 P. Anderson
proposed the concept of a quantum spin liquid [3]. While a precise definition is still
lacking [31], the term has been used to refer to phases of interacting spin systems
which evade long-range magnetic order even at zero temperature, due to the strong
quantum fluctuations in the ground state. Hallmarks of quantum spin liquids are a
high degree of many-body entanglement and an excitation spectrum characterized
by deconfined fractional excitations analogous to the spinons in the Heisenberg spin
chain. In contrast with the exact methods available in one dimension, to describe
fractionalization in two and three dimensions one usually resorts to approximate
solutions of effective theories where the elementary excitations are slave fermions
or bosons (generically called partons) coupled to emergent gauge fields. Essentially,
a spin liquid phase arises when the fluctuations of the gauge field are harmless
enough to allow for parton deconfinement. In this case, mean-field approximations
manage to capture the essential features of Anderson’s resonating valence bond state
[36]. Beyond the mean-field level, there are a few examples of spin models, such as
Kitaev’s honeycomb model [19], which are exactly solved by parton representations
involving Majorana fermions and static Z2 gauge fields.

Kalmeyer and Laughlin put forward one of the earliest proposals of wave func-
tions that can describe a quantum spin liquid ground state [16]. Starting from a
Holstein-Primakoff representation for spin operators, they argued that the antiferro-
magnetic Heisenberg model on the triangular lattice was equivalent to a model of
strongly interacting bosons in the presence of a fictitious magnetic field at filling
factor ν = 1/2. This observation motivated the proposal of a gapped ground state
corresponding to a fractional quantum Hall effect of bosonic spin excitations. As
a result, the Kalmeyer–Laughlin state shares some properties with the electronic
fractional quantum Hall effect, such as topological order, anyonic quasiparticles and
gapless chiral edge states. A crucial difference is that the quasiparticles can carry
spin and energy, but no electric charge. Furthermore, rather than an external mag-
netic field, the mechanism for breaking time reversal and mirror symmetries in the
Kalmeyer–Laughlin state is a nonzero expectation value of the scalar spin chirality
operator χ̂i jk = Si · (S j × Sk), where i, j, k are any three sites that form a triangular
plaquette on the lattice [4, 37]. In fact, a finite value of 〈χ̂i jk〉 in the absence of
long-range magnetic order is the defining property of a chiral spin liquid. A direct
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Fig. 13.1 Schematic representation of a coupled-wire construction of the integer quantum hall
effect. a Dispersion relation for tunnel-coupled wires, showing the avoided level crossings at the
Fermi level EF . b In real space, the gapped bulk states correspond to pairs of right and left movers
living in different adjacent wires, while the edge harbors gapless chiral states

way to drive the system into a chiral spin liquid phase is to add to the Hamiltonian
the three-spin interaction Jχ χ̂i jk , which favors either sign of the chirality for each
triangle depending on the sign of the coupling constant Jχ . Such term breaks time
reversal symmetry explicitly while preserving the spin SU(2) symmetry. This route
was used to stabilize the Kalmeyer–Laughlin state on the kagome lattice with uni-
form three-spin interactions [5]. Other examples of gapped chiral spin liquids include
non-Abelian phases in spin-1 systems [13] and in the Kitaev model in a magnetic
field [19]. On the experimental side, perhaps the best evidence for a chiral spin liquid
state comes from a recent measurement of quantized thermal Hall conductance asso-
ciated with aMajorana edge state in a Mott insulating material with strong spin-orbit
coupling [18].

As examples of strongly correlated topological phases, chiral spin liquids present a
challenge for analytical approaches which do not rely onmean-field approximations.
The question then is: canwegoback to the beginning anduse our knowledge about the
Heisenberg spin chain to construct and analyze chiral spin liquid states? In principle,
all we need to do is to couple spin chains in such a way that the spinons living in each
chain are set free to propagate in two dimensions. This is more easily said than done,
because interchain exchange interactions usually give rise to magnetically ordered or
dimerized phases [33]. On the other hand, a precedent for how to obtain microscopic
Hamiltonians for topological phases starting from one-dimensional critical systems
is the so-called coupled-wire approach [17, 32, 35]. Figure13.1 illustrates the idea
for the simple example of an integer quantum Hall phase [32]. Consider an array
of noninteracting quantum wires contained in the xy plane which is threaded by
an external magnetic field B = Bẑ. If we work in the Landau gauge A = −Byx̂,
where x̂ is the direction parallel to the wires, the dispersion relations associated with
different wires are shifted in momentum space as shown in Fig. 13.1a. Turning on a
finite tunnelling amplitude between neighboring wires gaps out the crossing points in
the spectrum. If the Fermi level lies exactly at the energy of the crossing points, in the
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low-energy limit we are left with a single pair of gapless chiral fermionic modes: a
left-moving mode associated with the upper wire and a right-moving one associated
with the lower wire; see Fig. 13.1b. This describes an incompressible phase with
chiral edge states which is adiabatically connected with the integer quantum Hall
effect (in this example, ν = 1) in a spatially isotropic two-dimensional system. The
advantage of the coupled-wire approach is that we can adapt it to include electron-
electron interactions nonperturbatively in the wires by treating them as Luttinger
liquids. The result is a coupled-wire construction of fractional quantum Hall states
[17].More generally, the idea is to start with a set of critical one-dimensional systems
described by the appropriate conformal field theory, and gap out pairs of modes with
right and left movers that live in different wires, until the total central charge is
reduced to that of a particular chiral edge state [35].

The purpose of this chapter is to review the coupled-chain construction of chiral
spin liquids that use Heisenberg chains as building blocks [12, 23, 29]. The key step
is to couple the chains with suitable time-reversal-symmetry-breaking perturbations
that involve three-spin interactions on triangular geometries. We start in Sect. 13.2
by discussing the low-energy effective field theory for a single Heisenberg chain.
In Sect. 13.3, we explain the coupled-chain construction of the Kalmeyer–Laughlin
chiral spin liquid using arrays of parallel spin chains. Section13.4 deals with the
construction of a gapless chiral spin liquid on a lattice constructed from weakly-
coupled crossing chains. Finally, in Sect. 13.5 we present some concluding remarks
and discuss some open questions.

13.2 Effective Field Theory for the Spin-1/2 Heisenberg
Chain

The Heisenberg chain is described by the Hamiltonian

H1D = J
N∑

j=1

S j · S j+1, (13.1)

where S j are spin-1/2 operators acting the local Hilbert space at site j , J > 0 is
the antiferromagnetic exchange coupling, and N is the number of sites with periodic
boundary conditions. The low-energy physics of the spin-1/2 chain is described by
the SU(2)1 Wess-Zumino-Novikov-Witten model, which is a conformal field theory
with central charge c = 1 [2]. To derive bosonization formulas for the local operators
in the theory, one can start from the one-dimensional Hubbard model at half-filling
and gap out the charge degrees of freedom in the Mott insulating phase. The spin
operator is represented in the continuum limit by

S j �→ S(x) ∼ JL(x) + JR(x) + (−1) jn(x), (13.2)
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where Jν , with ν = R, L = ±, are chiral SU(2) currents associated with right- or
left-moving modes, respectively, and n is the staggered magnetization field. The
components of the chiral currents can be written in terms of chiral bosons in the
form

J z
ν (x) = ν√

4π
∂xϕν(x), J±

ν (x) = 1

2π
e±i

√
4πϕν(x). (13.3)

where the bosonic fields obey the algebra [ϕν(x), ∂x ′ϕν ′(x ′)] = iνδνν ′δ(x − x ′). The
components of the staggered magnetization are

n±(x) = A e±i
√

π(ϕL+ϕR), nz(x) = A sin
[√

π (ϕL − ϕR)
]
, (13.4)

where A is a non-universal constant of order 1. Another local operator in the the-
ory is the dimerization operator ε(x), which appears in the expansion of the scalar
S j · S j+1 ∼ (−1) jε(x) in the continuum limit. Its bosonized form reads

ε(x) = A ′ cos
[√

π (ϕL − ϕR)
]
, (13.5)

where A ′ is another non-universal constant.
The symmetry properties of the local operators are important to analyze the per-

turbations of the conformal field theory. Under translation by one site, x �→ x + 1,
the fields transform in the form

L : Jν �→ Jν, n �→ −n, ε �→ −ε. (13.6)

Time reversal T involves complex conjugation and acts on the fields as follows:

T : JR ↔ −JL , n �→ −n, εl �→ εl . (13.7)

Site parity, defined as the reflection Ps about an axis passing through a given site,
takes x → −x and

Ps : JR ↔ JL , n �→ n, ε �→ −ε. (13.8)

Site parity, defined as the reflectionPl about an axis passing through the middle of
link between two sites, takes x → −x and

Pl : JR ↔ JL , n �→ −n, ε �→ ε. (13.9)

The low-energy effective Hamiltonian for a single Heisenberg chain is written in
terms of the chiral currents as

H1D ∼
∫

dx

[
2πv

3

(
J2R + J2L

) + 2πvgbsJL · JR
]

. (13.10)
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Fig. 13.2 Two parallel
Heisenberg chains coupled
by exchange and three-spin
interactions in a zigzag
geometry

J

J
chain 1

chain 2

Here v ∝ J is the spin velocity and gbs < 0 is the dimensionless coupling constant
for the marginally irrelevant backscattering operator [1]. As the effective gbs van-
ishes (logarithmically) in the low-energy limit, the theory becomes equivalent to free
bosons and the asymptotic decay of correlation functions can be calculated exactly.

13.3 Coupling Parallel Chains: The Kalmeyer–Laughlin
State

Let us nowcouple spin-1/2 chains to build towards the two-dimensional limit.We start
with two parallel chains with a zigzag geometry as illustrated in Fig. 13.2 [12]. We
consider the interchain exchange coupling J ′ together with a three-spin interaction
Jχ ,

H =
∑

j

[
J

∑

l=1,2

S j,l · S j+1,l + J ′S j,1 · (S j,2 + S j+1,2)

]
+ Jχ

∑

i jk∈�
χ̂i jk, (13.11)

in the regime |J ′|, |Jχ |  J . The ordering of the spins i, j, k in the triple product
χ̂i jk is set to correspond to a configuration with uniform chirality, as indicated by
all the arrows in Fig. 13.2 pointing either clockwise or counterclockwise. Note that
the operator χ̂i jk is odd under time reversal, which takes Si �→ −Si , and under a
reflection that exchanges two of the three sites, χ̂i jk = −χ̂ j ik = −χ̂ik j .

The unperturbed effective Hamiltonian for J ′ = Jχ = 0 is given by two copies of
the chain Hamiltonian in (13.10), with operators in each chain labeled by the index
l = 1, 2. For small J ′ and Jχ , the leading interchain couplings in the effective field
theory are all marginal operators. There is a twist operator [27] that depends on the
staggered magnetization fields,

δHtw = 2πvgtw

∫
dx n1 · ∂xn2, (13.12)

and two operators that couple the chiral currents in different chains

δHRL = 2πv
∫

dx (g+J1,R · J2,L + g−J1,L · J2,R), (13.13)
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where g± = g ± gχ with g ∝ J ′ and gχ ∝ Jχ to first order. For J ′ > 0 and Jχ = 0,
this problem reduces to the familiar zigzag chain, whose ground state in the regime
J/J ′ � 0.241 is fully gapped and breaks translational invariance due to dimerization
〈ε(x)〉 �= 0 (as in theMajumdar–Ghoshmodel [22]).Within the effective field theory,
the dimerized phase is understood as the regime where both g+ and g− flow to strong
coupling under the renormalization group, eventually pinning the bosonic fields to
the minima of a sine-Gordon potential [14]. The new interesting possibility that
appears when we add the time-reversal-symmetry-breaking interaction Jχ is that g+
and g− can have opposite signs if Jχ is large enough, in the regime |gχ | > |g|. In
this case, one of them flows to strong coupling while the other flows to zero. As
a result, we obtain a gapless quasi-one-dimensional phase with one pair of gapless
chiral modes, either J1,R and J2,L for Jχ > 0, or J1,L and J2,R for Jχ < 0. Such
phase of the two-leg system can actually be verified exactly for a special value of Jχ

where the model is integrable [12].
The next step is to generalize this approach to an array of Nc spin chains with

the same coupling between neighboring chains, forming an anisotropic triangular
lattice. From the effective field theory perspective, we have to write down all the
possible local interchain interactions allowed by symmetry. Here it is important to
analyze how the local operators of the SU(2)1 Wess-Zumino-Novikov-Witten model
transform under the various symmetry operations. Particularly important are the roles
of time reversal T and the reflectionP that acts as site parity for chains labeled by
odd values of l and as link parity for chains with even values of l. While both P
and T are broken by the three-spin interaction, the Hamiltonian and the chiral spin
liquid ground state we are looking for preserve the productPT . The symmetries of
the lattice model are enough to rule out relevant operators in the effective field theory
for two chains, but not for Nc > 2. In fact, if we allow for coupling between next-
nearest-neighbor chains, the effective Hamiltonian for the two-dimensional array
contains two relevant operators which involve the staggered magnetization and the
dimerization fields:

δHrel = vΛ
∑

l

∫
dx (gnnl · nl+2 + gεεlεl+2) , (13.14)

where Λ is an ultraviolet cutoff with units of momentum and gn and gε are dimen-
sionless coupling constants. The gn interaction favors a transition to a collinear anti-
ferromagnetic phase in which the nl(x) fields are pinned, while gε favors a dimerized
or valence bond crystal phase where εl(x) acquires a nonzero expectation value [33].
Note, however, that these interactions couple next-nearest-neighbor chains. Ifwe start
from a lattice model that contains only weak couplings J ′ and Jχ between nearest-
neighbor chains, the couplings gn and gε can only be generated at second order in J ′
or Jχ , or even be pushed to higher order if we consider other lattices than the trian-
gular one [12]. As a result, even if the marginal current-current interactions (13.13)
are less relevant than the interactions in (13.14), either g+ or g− can reach strong
coupling before the other perturbations depending on the initial conditions of the
renormalization group flow. When this happens, the low-energy physics is governed
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by the interaction that gaps out pairs of chiral modes in different chains, leaving gap-
less modes on the edge of the two-dimensional array. There is no magnetic order at
such fixed point since the spin operators have zero expectation value. The picture is
analogous to Fig. 13.1b if we replace the wires by Heisenberg chains and, instead of a
chiral fermion, the edge state correspond to a chiral SU(2)1 Wess-Zumino-Novikov-
Witten model. This is precisely the edge state of the Kalmeyer–Laughlin chiral spin
liquid [16].

We can use the coupled-chain construction to verify other properties of the
Kalmeyer–Laughlin chiral spin liquid. For instance, the fractional spin of the bulk
quasiparticles follow from a semiclassical analysis of the dominant sine-Gordon
potential in the strong coupling limit. Bosonizing the transverse part of the current-
current interaction (13.13) generalized for N chains, we find

δHRL ∼ g+
∑

l

∫
dx cos[√4π(ϕl,L − ϕl+1,R)]. (13.15)

In the gapped phase, the bosonic fields are pinned to the minima of the potential,
given by

√
4π(ϕl,L − ϕl+1,R) = 2πn + π, n ∈ N. A quasiparticle localized in the

bulk corresponds to an excitation in which the value of the fields jumps by±2π over
some finite region in space. The change in the total spin associated with this kink is

ΔSz =
∑

l

∫
dx (J z

l,L + J z
l,R)

= 1√
4π

∑

l

∫
dx ∂x (ϕl,L − ϕl+1,R)

= ±1

2
, (13.16)

as expected for spinons. Similarly, we can demonstrate the spinon’s anyonic statistics
by constructing operators that transport quasiparticles around one another. We can
also consider the operators that transport quasiparticles around the entire system
in the noncontractible directions of a torus (on a system with periodic boundary
conditions), given by [12]

Ux = ei
√

π
∫
dx∂xϕl0 ,L (x), Uy =

∏

l

ei
√

π[ϕl,L (x0)−ϕl,R(x0)], (13.17)

where l0 labels an arbitrary fixed chain and x0 is an arbitrary point along the chains.
It is easy to verify that these operators obey the algebra UxUy = ei2θUyUx with
θ = π/2, which can be identified with the statistical phase of semions [30].

The coupled-chain construction has been generalized to obtain non-Abelian chiral
spin liquids [21, 23] and even a time-reversal-invariant Z2 spin liquid [28].
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Fig. 13.3 Crossed spin
chains that serve as the
starting point for the
construction of a gapless
chiral spin liquid. There are
three sets of parallel chains
labeled by q = 1, 2, 3
(colored in blue, green, and
red, respectively). Pairs of
chains are coupled at their
crossing by three-spin
interactions at the triangles
where two sites belong to
one chain and the third site
to the other chain

13.4 Coupling Crossed Chains with Staggered Chirality:
Gapless Chiral Spin Liquid

The coupled-chain construction described in the previous section leads to gapped
chiral spin liquids, where gapless chiral modes are confined to the edges of an array
with open boundary conditions. We will now discuss an alternative construction of
a gapless chiral spin liquid [8], which can be viewed as sliding Luttinger liquid
phase [25] with gapless chiral modes in the bulk. This construction is inspired by the
proposal of a gapless chiral spin in kapellasite, a material described by an extended
Heisenberg model on the kagome lattice [8].

As our starting point, we consider three sets of decoupled parallel chains as shown
in Fig. 13.3. Each set is labeled by an index q = 1, 2, 3, such that a chain in set q ± 1
forms an angle of ±2π/3 measured from a chain in set q. It is convenient to use a
coordinate system where, for fixed q, the different parallel chains are distinguished
by an index l ∈ Z that increases in the direction set by q + 1 chains [11]. The spin
operator at site j of the lth chain along the q direction is denoted by Sq( j, l). In the
low-energy limit, the effective Hamiltonian for decoupled chains is given by the sum
of (13.10) for each chain, with chiral currents denoted as Jqν(x, l).

We can then couple pairs of spin chains with local interactions at their cross-
ings. Most natural is a Heisenberg exchange coupling between spins on sites clos-
est to the crossing point. In the geometry of Fig. 13.3, this corresponds to nearest-
neighbor exchange J1 on the underlying kagome lattice. For comparison, the dom-
inant exchange coupling J along the chain directions lies on the diagonals of the
hexagons of this kagome lattice [8]. In order to stabilize a chiral spin liquid phase,
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we also add to the model the three-spin interaction given by

δHχ = Jχ

∑

q, j,l

[Sq(− j − 1, l) × Sq(− j, l)] · [Sq+1( j + l, j) + Sq+1( j + l − 1, j)

+Sq+2(−l − 1,− j − l) + Sq+2(−l,− j − l)] . (13.18)

This interaction is defined on triangles where two spins belong to the same chain,
labeled by q, l, whereas the third spin belongs to another chain that crosses the link
between the first two sites; see Fig. 13.3. The sign the coupling for each triangle is
chosen so as to preserve a C3 rotational symmetry as well as a reflection symmetry
with respect to chain directions. This reflection symmetry is such that the chirality
is staggered between two triangles that share two sites on the same chain. This
symmetry, absent in the Kalmeyer–Laughlin state, plays an important role in the
projective symmetry group classification of chiral spin liquids on the triangular and
kagome lattices [7].

When taking the continuum limit in the interchain couplings, it becomes important
to pay special attention to the transverse coordinate l in the spin operators Sq( j, l).
First, chains with even or odd values of l transform differently, either as site parity
or link parity, under reflections by the planes perpendicular to the chain directions
(which is not a symmetry of the model with finite Jχ , but can be combined with
time reversal to yield an actual symmetry). Thus, we must include in the mode
expansion of the low-energy fields both a uniform and a staggered component for
the dependence on the transverse coordinate l. Second, we must take into account
that, over a finite length Δx much larger than the lattice spacing, each spin chain
crosses a number of chains proportional to Δx . For this reason, the continuum limit
in the longitudinal direction also entails a coarse-graining of the chain index in the
transverse direction. The one-dimensionality of the system in the weak coupling
regime is preserved by imposing the usual power-law decay of correlation functions
along the chain direction, but short-range correlations in the transverse direction with
a length scale set by the ultraviolet cutoff of the theory.

Within this field theory approach, we can analyze the effects of the perturbations
allowed by symmetry. The leading perturbations to the decoupled-chain fixed point
are relevant operators that involve the staggered magnetization and the dimerization
fields:

δHrel = vΛ
∑

q

∫
dxdy

[
κnnqo(−x, y) · nq+1,e(x + y, x)

+κεεqo(−x, y) εq+1,e(x + y, x)
]
, (13.19)

where κn and κε are dimensionless coupling constants. The lower indices e, o refer to
the uniform and staggered parts of the fields with respect to the transverse coordinate,
respectively, which are even or odd under translation by one chain spacing in the
transverse direction. As in the coupled-chain construction of the Kalmeyer–Laughlin
state, the coupling constants of the relevant operators are generated at second order
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in the bare couplings of the original lattice model. When κn reaches strong coupling
before all other perturbations, the two-dimensional system orders magnetically in
one of the so-called cuboc phases [11]. When κε prevails, it gives rise to a valence
bond crystal. These are the two phases expected in the model of crossed chains
weakly coupled by time-reversal-invariant exchange interactions [11]. However,the
three-spin interaction in (13.18) generates in the continuum limit various marginal
current-current couplings, such as

δHRR = 2πvλ
∑

q

∫
dxdy JqRe(−x, y) · Jq+1,Re(x + y, x). (13.20)

There is a similar term that couples left-moving currents, but similarly to the case
of g+ and g− in (13.13), the asymmetry between the corresponding couplings is
of first order in Jχ . As a result, an interesting regime becomes possible where the
chiral interaction favors strong coupling between right-moving spin currents in all
chains, while the left-moving currents remain essentially free. A renormalization
group analysis [29] shows that such a regime can be reached for sufficiently large
bare values of Jχ , such that λ in (13.20) reaches strong coupling before the relevant
operators (13.19).

The simple picture for the ground state in this regime is a chiral spin liquid where
each chain harbors only one chiral mode, moving either to the “right” or to the “left”,
where the directions of “right” and “left” depend on the orientation of the chain and
varies with q as illustrated in Fig. 13.3. Note that, due to the C3 rotational symmetry,
which imposes the angles of ±2π/3 between chains with different q values, there is
no preferred direction for the propagation of excitations in the bulk. Despite being
gapless, the corresponding Hamiltonian for this chiral spin liquid is a stable fixed
point of the renormalization group. In fact, gapping out one chiral sector of the theory
(say, the right-moving bosons ϕqR(x, y)) implies that all excitations involving the
staggered magnetization or the dimerization are gapped, since these fields couple to
both chiral sectors; cf. (13.4) and (13.5). Thus, the relevant perturbations (13.19) are
ruled out from the low-energy theory and a sliding Luttinger liquid phase becomes
stable.

We can calculate physical properties of the gapless chiral spin liquid using the
operators in the coupled-chain construction [29]. For instance, the large-distance
decay of the spin-spin correlation is dominated by the gapless chiral modes propa-
gating along the chain directions:

〈Sq( j, l) · Sq ′( j ′, l ′)〉 ∼ 〈JqL(x, y) · Jq ′L(x
′, y′)〉 ∼ −Δ(y − y′, α∗)

(x − x ′)2
δqq ′ ,

(13.21)
where Δ(y, α∗) is a non-universal function that describes short-range correlations
in the transverse direction with characteristic length scale α∗. The latter is set by
the scale where the marginally relevant operator (13.20) reaches strong coupling
and is related to the gap in the right-moving chiral sector. Note that the correlation
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does not oscillate as a function of the distance in the chain direction and decays
with a universal exponent governed by the scaling dimension of the chiral currents
in the one-dimensional theory. By contrast, correlation functions for the staggered
magnetization and dimerization operators must decay exponentially.

While the gapless chiral spin liquid is not topologically ordered in the same
sense of the Kalmeyer–Laughlin state (namely, nontrivial ground state degeneracy
on the torus), it can be described as a highly entangled phase of matter. Consider a
finite subsystem Awith characteristic length L containedwithin the two-dimensional
system. The von Neumann entanglement entropy S of A with the rest of the system
can be estimated by

S ∼ Nchains × Schain ∼ cL
6
L ln L , (13.22)

where Nchains is the number of chains that cross the boundary of A and Schain ∼ cL
6 ln L

is the entanglement entropy associated with each chiral mode with chiral central
charge cL . Therefore, the gapless chiral spin liquid is highly entangled in the sense
that it exhibits a logarithmic violation to the area law, a behavior also observed for
free fermions with a Fermi surface and strongly correlated systems whose spectrum
can be mapped to a large number of one-dimensional modes [34].

It is also interesting to note that this gapless chiral spin liquid is stable againstweak
disorder [29]. Intuitively, due to the energy gap in one chiral sector, backscattering
is suppressed and only forward scattering processes (where “forward” may mean
scattering a right mover in a q chain to a right mover in a different q ± 1 direction)
are allowed at low energies (Fig. 13.4).

Fig. 13.4 Bipartition of the
two-dimensional spin
system. The entanglement
entropy between the finite
subsystem A with
characteristic length L with
the rest of the system B is
calculated by counting the
number of chiral
one-dimensional modes that
cross the boundary of A

B
A

L
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13.5 Conclusion

Coupled-wire constructions have proven a useful tool to study topological phases
of matter. The work discussed in this chapter shows that chiral spin liquids can also
be approached this way. For instance, we have constructed the Kalmeyer–Laughlin
chiral spin liquid using an array of parallel spin chains coupled by three-spin interac-
tions that explicitly break time reversal and reflection symmetries. This is a gapped
topological phase equivalent to a fractional quantum Hall effect of bosons at filling
factor ν = 1/2, and its topological properties can be verifiedwithin the coupled-chain
construction without resorting to Chern–Simons gauge fields.

We have also discussed a construction of a gapless chiral spin liquid that starts
fromweakly coupled crossed chains. In this case, the low-energy picture that emerges
corresponds to gapping out one chiral sector of each chain while the other sector
remains gapless. This gapless chiral spin liquid also exhibits some exotic physical
properties, such as spatially anisotropic power-law-decaying correlation functions
and a logarithmic violation of the entanglement area law.

Some interesting open questions pertain to explicitly deriving a relation between
the operators in the coupled-chain construction, which stem from the conformal field
theory describing the one-dimensional modes, and the matter and gauge field opera-
tors in the usual parton construction of quantum spin liquids. Particularly in the case
of the gapless chiral spin liquid, a possible duality between the chiral one-dimensional
modes and a spinon Fermi surface state with a line Fermi surface protected by the
reflection symmetry has been suggested in [29]. Another interesting route to pursue
is an alternative construction of chiral spin liquids based on networks of Y junctions
of spin chains tuned to a chiral boundary fixed point [9].
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Chapter 14
Majorana Zero-Energy Modes in a
Magnetic Field-Free QuantumWire

Mariana Malard

Abstract We report on a proposal for engineering a one-dimensional topological
superconductor hosting Majorana zero-energy modes pinned at the edges of a spin-
orbit coupled and electron-electron interacting quantum wire subject to a spatially
modulated electric field and in proximity to an s-wave superconductor. The combina-
tion of the various interactions in the wire produces an effective spin-flip backscatter-
ing which opens a gap at two of the four spin-split Fermi points of the system, leaving
a helical Luttinger liquid state at the remaining gapless points. This state enters the
target topological phase for a certain regime of the proximity-induced pairing. This
all-electric setup does not rely on a magnetic field.

14.1 Introduction

A Majorana zero-energy mode (MZM) is an emergent quasi-particle that follows a
non-abelian statistics and has the distinguishing property of being its own antiparticle
[1]. It is the solid state counterpart of the fermion hypothesized by Ettore Majorana
back in 1937 [2] and whose confirmation as a free fundamental particle remains a
long-standing puzzle. In contrast, MZMs are expected to be found pinned to defects
or edges of materials and setups such as fractional quantum Hall systems [3], cold
atoms [4, 5] and hybrid structures realizing topological superconductivity [6–8], to
cite some well-known examples. In these systems, the MZMs appear as in-gap states
of zero energy [9]. Besides their relevance from a fundamental standpoint, MZMs
hold promise of high impact technological applications, notably in the making of a
fault tolerant topological quantum computer [10].

The realization that p-wave pairing (that makes a superconductor topological,
but is rare in nature) can be emulated in a two-dimensional topological insulator
combined with an ordinary s-wave superconductor [11] has led to an intense search
for topological superconductivity in different solid state architectures [9]. As known
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already from the primal toy model of a topological superconductor—the celebrated
Kitaev chain of spinless fermions [6]—the spinless character of the pairing is key
and, hence, “getting rid of spin” in real systems is a common feature encompassing
most proposals. Restricting to one dimensional (1D) realizations, among the most
promising are (i) a spin-orbit coupled quantum wire in a magnetic field and coupled
to an s-wave superconductor [12, 13] and (ii) a chain of magnetic impurities laid on
top of an s-wave superconductor [14]. In both (i) and (ii), amagnetic field opens a gap
in the energy spectrum of the system, pushing one of the spin-split bands away from
the Fermi level so that the later crosses a single, effectively spinless, quasiparticle
band. The states around the Fermi level form the so-called helical liquid in which
spin and momentum degrees of freedom are locked to each other. In a regime of the
pairing, these effectively spinless states enter a topological superconducting phase.

Like the two proposals highlighted above, most schemes for realizing 1D topo-
logical superconductors rely on a magnetic field which, although crucial for the very
emergence of a spinless state in those systems, ends up damaging the proximity
superconducting pairing by canting the spins in the wire [15]. Even more impacting
for applications, especially in quantum computing, a magnetic field would reduce
robustness against disorder [16, 17] of auxiliary nontopological states that would
have to be integrated with the quantum gates [18, 19]. And a strong enough mag-
netic field would be hard to apply locally [20] in order to avoid it affecting the entire
dispositive. From a more fundamental point of view, one could ask whether MZMs
could be obtained in one spatial dimension without breaking time reversal symmetry
explicitly as is the case with magnetic field-based setups.

In the search for non-magnetic options, quasi 1D schemes have been explored
using dx2−y2 [21] or s±-wave pairing [22], channel-dependent spin-orbit interactions
in double-channel wires [23], noncentrosymmetric superconductivity [24], among
others [25–33]. All these systems support paired MZMs [34]. Unpaired MZMs in
the absence of magnetic field have been predicted in a Floquet topological supercon-
ductor, with a time-dependent spin-orbit interaction [35]. Here, we instead make use
of a spatially periodic spin-orbit interaction to build a truly 1D magnetic field-free
topological superconductor supporting unpaired MZMs.

We consider a 1D electron system with Rashba and Dresselhaus types of spin-
orbit coupling, as well as electron-electron (e − e) interactions. An applied electric
field which is periodically modulated in space induces the same modulation on the
Rashba component. When the Fermi level is tuned so that the two outermost of
the four spin-split Fermi momenta sit at the boarders of the Brillouin zone (BZ), a
gap opens at those points, resulting in a helical Luttinger liquid (HLL) [36, 37] at
the two remaining gapless Fermi points inside the BZ. Kramers theorem—which
prevents a spectral gap from opening at the center or at the boundaries of the BZ in a
time reversal symmetric system—is here avoided by a spontaneous breaking of time
reversal symmetry (TRS) at the outer Fermi points. TheHLLat the inner Fermi points,
however, preserve TRS. A proximity-pairing may turn this HLL into an effectively
spinless topological superconductor falling in class BDI of the Altland–Zirnbauer
classification [38], thus hosting one unpaired MZM at each end. The emergence of
this phase, however, does not follow straightforwardly from topping the HLL with
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Fig. 14.1 (Color online) A spin-orbit coupled quantum wire immersed in an uniform magnetic
field B (left) is replaced by a spin-orbit coupled quantum wire in a spatially modulated electric field
E(x) (right). In both setups, a nearby s-wave superconductor induces superconducting pairing in
the wire

a superconducting pairing because the later competes with the spin-orbit-induced
backscattering yielding the HLL in the first place. Using a renormalization group
(RG) approach, we establish that both processes can, in fact, coexist.

In Sect. 14.2 we present a microscopic model capturing the necessary interactions
and show schematically how they play out to produce the topological superconductor.
As the scheme calls for e − e interactions, a low-energy bosonized version of the
model is provided in Sect. 14.3, along with the corresponding RG flow equations
yielding the various RG regimes of themodel. Combining these regimeswe delineate
the phase diagram of the model, as presented in Sect. 14.4. Our concluding remarks
are given in Sect. 14.5.

14.2 General Picture

Our proposal is to produce a topological superconductor out of the same ingredi-
ents used in the setup composed of a spin-orbit coupled quantum wire, an s-wave
superconductor and a uniform magnetic field [12, 13], but replacing the later by a
spatially modulated electric field, as illustrated in Fig. 14.1. More recently, a similar
scheme for realizing topological superconductivity employing a superlattice has been
investigated, but in that case the applied periodic field comes from superconducting
islands deposited on the sample [39].

In our system, the electrons in the wire experience Rashba and Dresselhaus spin-
orbit interactions which are present in crystals lacking inversion symmetry [40].
The Rashba component can originate also from asymmetries in the setup or mate-
rial architecture (such as, for example, the inversion asymmetry along the growth
direction in semiconductor heterostructures which produces an electric field in that
same direction) and from an applied electric field [40]. The latter allows for external
control of the Rashba coupling (more than doubling the base value in usual semicon-
ductor quantum wells [41]). For the setup shown in Fig. 14.1, the responsiveness to
an electric field means that the Rashba interaction will pick up the same modulation
of the applied field. Incidently, also the chemical potential gets locally modulated
by the electric field. The electrons in the wire acquire a superconducting pairing due
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to proximity with an s-wave superconductor. Finally, we take e − e interactions into
account for they are crucial, as we shall see, to drive the transition to the topological
phase.

The tight-binding microscopic Hamiltonian that captures the various interactions
introduced above is given by H = H0 + Hmod + Hsc + He−e + h.c., where

H0 =
N∑

n=1

∑

α,α′
[−tσ0

αα′ − iγDσx
αα′ − iγRσ

y
αα′ ] c†n,αcn+1,α′ +

+
N∑

n=1

∑

α

μ

2
c†n,αcn,α, (14.1)

Hmod =
N∑

n=1

∑

α,α′
[−iγ′

R cos(2πqn)σ
y
αα′ ] c†n,αcn+1,α′ +

+
N∑

n=1

∑

α

μ′

2
cos(2πqn) c†n,αcn,α, (14.2)

Hsc =
N∑

n=1

� cn,↑cn,↓, (14.3)

He−e =
N∑

n,n′=1

∑

α,α′
V (n − n′) c†n,αc

†
n′,α′cn′,α′cn,α. (14.4)

In the above, cn,α(c†n,α) creates (annihilates) an electron at site n = 1, . . . , N with
spin projection α =↑,↓ along an arbitrary quantization axis, σ(0) is the 2 × 2 iden-
tity matrix and σx(y) is the x(y) Pauli matrix. As for the model parameters, t is a
kinetic hopping amplitude, γD (γR) is the hopping amplitude arising from the uni-
form Dresselhaus (Rashba) interaction, μ is the uniform chemical potential; γ′

R and
μ′ are, respectively, the amplitudes of the modulated Rashba hopping and modu-
lated chemical potential, with 2πq/a the wave number of the modulation (a being
the lattice spacing); � gives the superconducting pairing energy and V (n − n′) the
intensity of e − e interactions. The model defined above has time reversal symmetry,
i.e. [H, T ] = 0 with T = UK the time reversal operator composed of an unitary
transformationU that flips the electron spin and K the complex conjugation respon-
sible for reversing the momentum.

Defining new operators

dn,+ ≡ 1√
2

(−ie−iθcn,↑ + eiθcn,↓
)

dn,− ≡ 1√
2

(
e−iθcn,↑ − ieiθcn,↓

)
(14.5)
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Fig. 14.2 In the presence of a spatial modulation with wave number 2πq (setting the lattice spacing
a = 1) with q = 1/3, each one of the two spin-split bands in the BZ of a spin-orbit coupled wire
a splits up in 3 sub-bands folded in a reduced BZ of size 2π/3. Setting the Fermi level so that the
outer Fermi points K R+

F and K L−
F match the boundaries of the reduced BZ, an effective spin-flip

backscattering lifts the degeneracies of the two lowest sub-bands at the zone boundaries c. An HLL
emerges in the vicinity of the inner gapless Fermi points K R−

F and K L+
F

where tan(2θ) = γD/γR , and τ = ± labels the spin projections along the rotated
quantization axis, (14.1)–(14.2) become almost diagonal in spin space:

H0 =
N∑

n=1

∑

τ

[−t + iτγeff] d†n,τdn+1,τ + μ

2
d†n,τdn,τ , (14.6)

Hmod =
N∑

n=1

∑

τ

cos(2πqn)

[
−μ′

2
d†n,τdn,τ +

+ iτγRR d
†
n,τdn+1,τ + iγRD d†n,τdn+1,−τ

]
, (14.7)

where γeff =
√

γ2
R + γ2

D , γRR = γ′
R cos(2θ) = γ′

RγR/γeff, γRD = γ′
R sin(2θ) =

γ′
RγD/γeff. All processes in (14.6)–(14.7) conserve spin, except the last one which

promotes a spin-flip and results from the interplay (encoded in γRD) between the
modulated Rashba (γ′

R) and the uniform Dresselhaus interaction (γD).
Diagonalizing H0 in (14.6) by a Fourier transform results in the well-known

spin-split spectrum ε(0)
τ (k) = −2t̃ cos(ka − τq0a) + μ, with t̃ =

√
t2 + γ2

eff and
q0a = arctan(γeff/t). These two bands are depicted inside the Brillouin zone (BZ)
in Fig. 14.2a with a = 1. Adding the modulated spin-conserving hoppings of Hmod

in (14.7), the BZ gets reduced to the wave number 2πq (setting a = 1) of the modu-
lation and each band of H0 splits up in r = 1/q sub-bands gapped at the boundaries
of the new reduced BZ. This is illustrated in Fig. 14.2b for q = 1/3.

The modulated spin-flip hopping in (14.7) would like to lift the degenera-
cies at the center and at the boundaries of the reduced BZ through hybridiza-
tion of the degenerate spin up and spin down states. However, this is forbid-
den by Kramers’ theorem which dictates that the band crossings at the time
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reversal invariant momenta (TRIM)—k = 0,±π/r in our reduced BZ—cannot be
removed [42]. Mathematically, the inability of the spin-flip term—call it Hs f—
to open a gap at the TRIM can be seen from the vanishing of its matrix ele-
ment between time reversal-symmetric single-particle states. Indeed, let |α〉 and
|Tα〉 be, respectively, a single-particle state and its time reversal symmetric coun-
terpart (reversed momentum and spin). Using that [Hs f , T ] = 0 and the proper-
ties of the time reversal operator T † = T , T 2|α〉 = −|α〉, 〈Tα|Tβ〉 = 〈α|β〉 for
any |α〉 and |β〉, it follows that: 〈Tα|Hs f |α〉 = 〈α|T †Hs f |α〉 = 〈α|Hs f |Tα〉 =
〈Tα|Hs f |T 2α〉 = −〈Tα|Hs f |α〉, and thus 〈Tα|Hs f |α〉 = 0. The vanishing of this
matrix element implies that a hypothetic single-particle spin-flip backscattering
between TRIM states (which would open a gap at those points) does not happen.

Now, if |α〉 would be a two-electron state, then T 2|α〉 = |α〉, meaning that a
two-particle spin-flip backscattering is actually allowed. However, the probability
of a simultaneous backscattering of two electrons in response to Hs f is negligible;
unless the electrons interact. In fact, e − e interactions can open a channel for a
correlated backscattering with spin-flip if the many-body state is “commensurate”
with the lattice modulation. More specifically, for a generic many-body state, there
will be four Fermi points kxτF = ±kF + τq0, with x = R(L) if the sign in front of
kF is positive (negative), τ = ± as before, and kF = πNe/2Na, where Ne(N ) is the
number of electrons (lattice sites). As we shall see in the next section, when the Fermi
level is adjusted so that the outer Fermi points kR+

F and kL−
F fall close to the boundaries

of the BZ, Coulomb interaction (14.4) and Hs f produce an effective sine-Gordon-
like backscattering which is quadratic (linear) in the spin-orbit (e − e) parameter.
This process becomes strongly relevant if the participating couplings fall in a certain
regime, breaking time reversal symmetry spontaneously at the outer Fermi points
via the formation of a spin-density wave (SDW). This enables the detachment of the
bands at the boundaries of the BZ, as illustrated in Fig. 14.2c. This “selective” gap
opening—that is, occurring only around the Fermi points that are separated exactly
by the wave number of the modulation—leading to a partially gapped band structure
differs from the usual situation in which an interaction opens a gap throughout the
Fermi level.

The inner Fermi points kR−
F and kL+

F , which are not apart by 2πq, are insensitive
to the effective backscattering brought about by the modulation and remain gapless,
thus supporting a HLL of interacting electrons with spin-momentum locking. Such
a HLL is quite particular in that it is neither “holographic”, thus differing from the
well-known edge states of a quantum spinHall insulator [42]; nor is it “quasi-helical”
[43], i.e. it is also different from helical states achieved in one dimension when a
magnetic field breaks time reversal symmetry explicitly.

Finally, the effective “spinless” states at the inner Fermi points may be turned into
a p-wave superconductor by adding superconducting pairing, Hsc in (14.3). If the
chain is finite with open boundaries, degenerate MZMs appear at the left and right
ends [6, 44] for, by construction, the Fermi energy is already tuned to theMajoranas’
degeneracy level.
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Having conceptually outlined our scheme, we next present the low-energy
bosonized (effective) theory describing the chain and the RG approach used to obtain
the parameter regimes of the theory.

14.3 Low-Energy Bosonized Theory and Renormalization
Group Treatment

To properly address e − e interactions, we recast the hamiltonian H = H0 + Hmod +
Hsc + He−e + h.c. discussed in the previous section in a low-energy bosonized
form. This is done by first linearizing the spectrum around the system’s four Fermi
points and rewriting the lattice operators in terms of fermionic right- and left-
moving fields in the continuum. A bosonization procedure transforms the fermionic
fields into canonically conjugated bosonic fields. The effective theory thus becomes
H = ∫

dx (Houter + Hinner + Hmix) with

Houter = u[(∂xθ1)
2+(∂xφ1)

2] − �

πa
sin

(√
4π

K
θ1

)

+ λ√
πKa

cos(
√
4πKφ1)∂xθ1, (14.8)

Hinner = u[(∂xθ2)
2+(∂xφ2)

2]− �

πa
sin

(√
4π

K
θ2

)
, (14.9)

Hmix = gK

π
∂xφ1∂xφ2, (14.10)

where K = (1 + g/(πvF ))−1/2 is the Luttinger parameter determined by the bare
Fermi velocity vF = 2at̃ sin(kFa) and the Coulomb forward scattering of strength
g (Here we do not include Coulomb backscattering which is known to be irrelevant
in a Luttinger liquid [45] and also in the presence of spin-orbit interactions and
superconducting pairing [46]); and u = vF/2K is the Fermi velocity dressed by
e − e interactions. The superconducting pairing � appears as the amplitude of a
sine-Gordon potential and λ = aγ′

RγD/γeff is the amplitude of a sine-Gordon-like
potential encoding an effective spin-flip backscattering induced by the combination
of spin-orbit interactions. The�− andλ−potentials are both renormalized by K . The
fields φi (x) and θi (x), i = 1, 2, are dual bosonic fields satisfying vF∂xθi = ∓∂tφi ,
with i = 1(2) referring to excitations around the outer (inner) Fermi points. The
bosonized theory is thus composed of two branches given byHouter andHinner acting
at the corresponding pair of Fermi points and coupled byHmix. In the non-interacting
limit of g = 0 → K = 1, Hmix = 0 and the theory is described by decoupled and
non-renormalized branches Houter and Hinner.
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Disregarding, for the moment, the coupling between the two branches, the RG
solution of the sine-Gordon model in (14.9) yields a strongly relevant supercon-
ducting pairing if K > 1/2 (weak e − e repulsion), while if K ≤ 1/2 (strong e − e
repulsion) the perturbation ismarginally relevant provided its strength� is enough to
survive the e − e repulsion, satisfying a�/vF > (1/K − 2). In both cases, a super-
conducting gap opens up in the inner branch. If, on the other hand, K ≤ 1/2 with
a�/vF ≤ (1/K − 2), the superconducting pairing gets suppressed by strong e − e
repulsion, becoming irrelevant.

Coming to (14.8), we see that it describes a competition between the spin-flip
backscattering (∝ λ) and the superconducting pairing (∝ �) around the outer Fermi
points. The fate of the topological phase is primarily determined by the outcome
of this competition. To solve it, initially disregarding the coupling between the two
branches, we pass to a Lagrangian formalism in which (14.8) is transformed into the
effective action:

Souter =
∫

dxdτ
[2u
2

(
(∂xφ1)

2 + 1

(2u)2
(∂τφ1)

2
)

− vFgso

πa2
cos(

√
16πKφ1) − vFgsc

πa2
cos

(√
4π

K
θ1

) ]
, (14.11)

where τ = i t is the imaginary time and where gsc = a�/vF and gso = λ2/(4v2F ) are
dimensionless coupling constants. Equation (14.11) describes a generalized sine-
Gordon theory containing the usual cosine of the φ1-field, as well as the cosine of the
dual θ1-field [47–49]. When gso = gsc, (14.11) is invariant under the duality trans-
formation φ1 ↔ θ1 and 2K ↔ 1/(2K ), i.e. is a self-dual sine-Gordon model [50].

Note that although the bare masses gso and gsc of the two cosines originate
from completely independent processes (spin-orbit interactions and superconduct-
ing pairing, respectively), their respective scaling dimensionalities �so = 4K and
�sc = 1/K are controlled by the same parameter K (i.e. by e − e interaction) in a
way that prevents the two potentials from being simultaneously minimized.

The RG solution of the model given by (14.11) can be obtained in a one-loop
expansion around the Gaussian fixed point K = 1/2 as in [50]. Defining K = 1/2 −
gee + O(g2ee), the RG flow equations for gee, gso and gsc are:

dgee
dl

= g2so − g2sc , (14.12)

dgso
dl

= 4gsogee , (14.13)

dgsc
dl

= −4gscgee , (14.14)

where l = ln s, with s a scale factor.
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Fig. 14.3 RG flow diagram of the outer branch obtained by numerical solution of the flow equa-
tions (14.12)–(14.14). The critical plane equation is: gso − gsc + 2gee = 0. a Initial (l = 0) gee > 0,
b Initial (l = 0) gee < 0

Figure14.3 displays the flows obtained from numerical solution of (14.12)–
(14.14) for different choices of gee, gso and gsc initial (l = 0) values. For ease of
visualization, the flows are separated in two panels—Figs. 14.3a, b—according to
the sign of the initial gee. There are two regimes separated by the critical plane
gso − gsc + 2gee = 0 (locus of the theory’s fixed points). Below the critical plane,
the spin-orbit term is irrelevant whereas the superconducting pairing is marginally
relevant if gee ≥ 0 (Fig. 14.3a) and strongly relevant if gee < 0 (Fig. 14.3b). It follows
that a gap (∝ gsc) opens below the plane, leading to a superconducting phase in the
outer branch. Above the critical plane, superconducting pairing goes irrelevant and
spin-orbit becomes strongly relevant if gee > 0 (Fig. 14.3a) and marginally relevant
if gee ≤ 0 (Fig. 14.3b). As a result, a gap (∝ gso) opens up above the plane, sustaining
an insulating phase in the outer branch.

14.4 Phase Diagram

To obtain the phase diagram of the full theory the coupling between the outer and
inner branches must be addressed. Since the branch-mixing hamiltonian, Hmix in
(14.10), contains the gradient of the φ1-field, the effectiveness of the branch cou-
pling depends on the fate of φ1 in the outer branch. For a strongly relevant gso-
perturbation, φ1 gets pinned at one of the minima of the corresponding cosine in
(14.11). This pinning occurs at a length scale which is shorter than the length at
which the marginal (scaling dimension equal to 2)Hmix would start to affect the RG
flow in the outer branch. As a consequence of the short-length pinning of φ1, Hmix
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Fig. 14.4 A fixed-gso cut through the 3D phase diagram of the system. The region labeled by a
question mark cannot be assessed with the present RG approach

is strongly suppressed and the branches effectively decouple in the regime above the
critical plane in Fig. 14.3a (for there gee > 0means a strong e − e interaction backing
a strongly relevant gso-perturbation). But above the critical plane in Fig. 14.3b (where
gee < 0 implies a weaker e − e interaction yielding an only marginally relevant gso-
perturbation), the pinning of φ1 may be interrupted byHmix, with the result that the
branches may remain coupled throughout the RG scaling. Or Hmix is too weak to
stop the pinning of φ1 above the critical plane even when gee < 0, in which case the
branches would decouple also in this regime. These are, however, speculative sce-
narios; to determine the actual effect of Hmix in the regime above the critical plane
in Fig. 14.3b is beyond the present perturbative RG approach. Differently, below the
critical plane the branches definitely remain coupled regardless of the value of gee. As
shown in Figs. 14.3a, b, below the critical plane the gsc-perturbation is the strongly
or marginally relevant one, with a pinning effect on θ1 and, therefore, no suppression
upon Hmix.

Figure14.4 shows a fixed-gso cut through the 3D phase diagramwhich is obtained
by combining the parameter regimes found in Sect. 14.3 for both the outer branch and
the inner branch (the later rewritten in terms of gee and gsc) and taking into account
the above scaling analysis of the branch-mixing.

In the “decoupled p-wave superconductor” a strongly relevant spin-orbit perturba-
tion opens a gap at the outer branch and causes the branches to decouple; meanwhile,
a marginally relevant superconducting pairing in the inner branch drives the HLL to
the desired topological phase. In the “decoupled HLL” the outer branch is the same
as in the “decoupled p-wave superconductor”, but an irrelevant superconducting
pairing is washed out from the inner branch, which thus remains in the HLL state.
The “coupled s-wave superconductor” has an irrelevant spin-orbit term in the outer
branch so that the theory reduces to two identical branches supporting a strongly
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or marginally relevant superconducting pairing, and coupled by the branch-mixing
term. The result is a conventional superconductor with pairing amplitude renormal-
ized by the e − e forward scattering. At last, the phase signaled with an interrogation
mark is the one for which the outer branch cannot be resolved within the present
formalism. This parameter regime could, conceivably, be analyzed with a density
matrix renormalization group (DMRG).

The “decoupled p-wave superconductor” stretching between the two critical lines
in Fig. 14.4 shows that the onset of this phase depends on a compromise between
the parameters: for a given gso and gee > 0, gsc must fit within a certain range so
that it is neither too strong (that it opens an s-wave superconducting gap throughout
the Fermi level), nor too weak (that it cannot change the primitive HLL state). To
demonstrate that this regime indeed corresponds to a topological superconducting
chain hosting MZMs at its ends, we consider the Hamiltonian which describes a 1D
spinless p-wave superconductor:

Hpw =
∫
dx

[
ψ

(
− ∂2

x

2m
−μ

)
ψ−�pψ

(
i∂x

kF

)
ψ

]
+H.c. , (14.15)

whereψ is a spinless fermion field,m is an effectivemass,μ is the chemical potential,
and �p is the p-wave pairing. By linearizing the spectrum of (14.15) for μ > 0 and
writingψ(x) = eikF x R+(x) + e−ikF x L−(x), Hpw in (14.15) gets mapped (after drop-
ping rapidly fluctuating terms that average to zero upon integration) onto

∫
dx HF

inner,
withHF

inner given by the fermionic (pre-bosonization) version of (14.9) without e − e
interactions (K = 1), and with � ≈ 2�p.

The Hamiltonian Hpw, and thereforeHF
inner, falls in the BDI symmetry class of the

Altland–Zirbauer classification, with winding numberW = 1 for μ > 0 and�p ∈ R

[51], implying a single unpaired MZM at each end of the chain. It follows from the
above mapping that the same result is valid for the interacting (0 < K < 1) model in
(14.9), provided e − e interactions do not disrupt the superconducting gap enclosing
the MZMs [15, 52–57]. It is then established that the proposed scheme produces a
one-dimensional topological superconductor with an unpaired MZM at each end of
the wire.

14.5 Summary

We propose a scheme for realizing a magnetic-field-free one-dimensional topologi-
cal superconductor hosting unpaired MZMs. The system consists of a quantum wire
with modulated Rashba and uniform Dresselhaus spin-orbit interactions, as well as
e − e interactions, and proximity-coupled to an s-wave superconductor. The micro-
scopic Hamiltonian describing this systems is converted to a low-energy bosonized
theory amenable to a RG treatment. The phase diagram is obtained by combining
the resulting RG regimes, with the target topological phase emerging from a com-
promise between the various interactions. The realization of an all-electric device
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hosting robustMZMswould be fascinating, with relevant implications in topological
quantum computing.
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Chapter 15
From Graphene to Quantum
Computation: An Expedition
to the Dirac Sea

Eduardo C. Marino

Abstract Dirac fermions were originally proposed by Dirac as the solutions of his
relativistic wave-function equation. From then on they played a crucial role in the
relativistic description of quarks and leptons. In the recent years it has been realized
that several condensed matter systems contain electrons that, due to the presence of
the lattice, behave precisely like Dirac electrons. We explore here the consequences
of this fact in materials such as Graphene, Transition Metal Dichalcogenides and in
Topological Quantum Computation.

15.1 Introduction

The concept of a Dirac Sea was proposed by Dirac, in order to circumvent the
problem of negative energy solutions which appeared out of his relativistic wave-
function equation. It was soon realized that the Dirac sea did not exist as such,
but, nevertheless, its conceptual framework could be used for the prediction of the
existence of antimatter, which was soon experimentally observed.

The Dirac sea, however, has made an spectacular reappearance in the realm of
condensed matter systems, most noticeably in polyacetylene in 1+1D, graphene and
transition metal dichalcogenides, in 2+1D and Weyl semimetals in 3+1D.

In the case of polyacetylene, we have one carbon atom per site of a linear lattice
with lattice parameter a, in an sp2 hybridization state, which contains one active
electron per site in the pz-orbital. The tight-binding energy band

E0(k) = −2t cos ka (15.1)

therefore, is half-filled,with the Fermi level at EF = 0. Expanding this energy around
the pointswhere E0(k) = EF = 0, namely, k = ±π/2a one readily obtains the linear
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dispersion relation, which befits aDirac fermion [1]. Hencewe conclude that the low-
energy excitations about the Fermi level have kinematics described by the Dirac,
rather than by the Schrödinger equation, being, therefore Dirac fermion excitations.
That is how Dirac fermions appear in condensed matter systems.

15.2 Dirac Fermions in Two-Dimensional Systems

15.2.1 Massless Dirac Fermions in Graphene

Graphene is a pure carbon structure formed by sp2-hybridized carbon atoms sitting
on the vertices of two interpenetrating triangular lattices, labeled A and B. As in the
case of polyacetylene there is a pz orbital per site, occupied by one electron.

We will apply now the tight-binding approach to graphene, which describes the
hopping of these electrons between nearest neighbors, which always belong to the
opposite sublattice.

Given a point in a sublattice, it will have three nearest neighbors in the opposite
sublattice, located at the points corresponding to the three vectors,

d1 = a√
3
ŷ d2 = − a√

3

(√
3

2
x̂ + 1

2
ŷ

)
d3 = a√

3

(√
3

2
x̂ − 1

2
ŷ

)
(15.2)

The corresponding tight-binding hamiltonian will be

HT B = −t
∑

R,i=1,2,3,σ=↑,↓

[
ψ†

B(R + di ,σ)ψA(R,σ) + H.C.
]

(15.3)

where ψ†
A,B(r,σ)is the creation operator of an electron, with spin σ, in the orbital pz

of the carbon atom located at the position r in sublattice: A, B.
Introducing

ψA,B(r,σ) = 1√
N

∑
k

eik·rψA,B(k,σ), (15.4)

we may re-write the hamiltonian as

HT B =
∑
k,σ

ψ†
A(k,σ)ψB(k,σ)

[
−t

∑
i=1,2,3

eik·di
]

+ H.C. (15.5)

Introducing �†(k,σ) = (ψ†
A(k,σ)ψ†

B(k,σ)), we may express this as
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HT B =
∑
k,σ

�†(k,σ)

(
0 φ
φ∗ 0

)
�(k,σ) (15.6)

where

φ(k) = −t
∑

i=1,2,3

eik·di (15.7)

It follows, immediately, that the energy eigenvalues are

E(k) = ±|φ(k)| = ±t
√ ∑

i, j=1,2,3

eik·(di−d j). (15.8)

This expression, first obtained by Wallace in 1947 [2], describes the two bands of
graphene. These touch at the pointsK, where φ(K) = 0. It is not difficult to see that
for

K = 4π

3a
x̂ ; K′ = −4π

3a
x̂ (15.9)

we have

φ(K) = φ(K′) = 1 + ei
2π
3 + e−i 2π3 = 0 (15.10)

The points K and K′ are vertices of the hexagonal First Brillouin Zone of graphene
and are called “valleys”.

Later on, Di Vincenzo and Mele and Semenoff [3], independently, demonstrated
that the low-energy excitations of graphene, which occur precisely around the valleys
K and K′, possess a dispersion relation, which corresponds to a relativistic particle
and, hence, are governed by the Dirac equation.

Indeed, expanding now the above hamiltonian around each of the valleys K and
K′, we get

hK = − ta√
3

[
−

∑
i

p · di sin(K · di )σx +
∑
i

p · di cos(K · di )σy

]

(15.11)

and

hK ′ = − ta√
3

[
−

∑
i

p · di sin(K′ · di )σx +
∑
i

p · di cos(K′ · di )σy

]
.

(15.12)
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or, equivalently

hK =
√
3ta

2

[
pxσx + pyσy

]

hK ′ =
√
3ta

2

[−pxσx + pyσy
]

(15.13)

We now identify hK as the Dirac hamiltonian of a massless particle with velocity
vF =

√
3ta
2 , instead of c. Actually vF � 106 m/s � c/300 and t � 3 eV.

As for hK ′ , we can put it on the standard Dirac form by performing a canonical
transformation

�K ′(k,σ) −→ exp
{
i
π

2
σz

}
σx�K ′(k,σ)

�
†
K ′(k,σ) −→ �

†
K ′(k,σ)σx exp

{
− i

π

2
σz

}
, (15.14)

whereupon

HK =
∑
k,σ

�
†
K (k,σ)hK�K (k,σ)

HK ′ =
∑
k,σ

�
†
K ′(k,σ)hK ′�K ′(k,σ). (15.15)

Here

hK = hK ′ = vF
[
pxσx + pyσy

]
(15.16)

The vector Dirac matrices are, then, αi = σi , i = x, y and β = σz , hence the
covariant Dirac matrices are given by

γ0 = σz ; γ1 = iσy ; γ2 = −iσx (15.17)

The energy eigenvalues can now be easily found:

E(p) = ±vF |p| ; vF =
√
3ta

2
(15.18)

We see that the energy eigenvalues are such that two opposite cones are formed at
each point K , K ′, where the valence and conduction bands touch. Each set of two
opposite Dirac cones corresponds to a “valley”. Notice the fact that E(p) is equal for
the two valleys, thus expressing the invariance of the system under the time-reversal
symmetry, which connects the two valleys.
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15.2.2 Massive Dirac Fermions in Transition Metal
Dichalcogenides

Transitionmetal dichalcogenides (TMD), such asWSe2,WS2,MoSe2 andMoS2 are
a class of extremely interesting materials, which present a crystal structure similar to
graphene, however, with the sites belonging to sublattices A and B being occupied,
respectively, by transition metal and chalcogen atoms. The net effect is, again a
breakdown of the symmetry between the A and B sublattices of the honeycomb
structure, which existed in graphene. This generates a staggered local energy that,
ultimately, produces a gap in the energy spectrum. TMD’s present peculiar physical
properties such as strong electron-hole interaction, leading to exciton states with a
binding energy much larger than that of conventional semiconductors.

Transition metal dichalcogenides, form a class of materials that can be described
by the massive Dirac equation.

We can model TMD’s, by adding to (15.6) a staggered sublattice dependent M
term, as follows

HT B =
∑
k,σ

�†(k,σ)

(
M φ
φ∗ −M

)
�(k,σ) (15.19)

where φ(k) is given by (15.7). Notice that the M-term, being proportional to a σz

matrix in the (A, B) space, describes the staggered energy, provenient from the local
atomic asymmetry between the two sublattices in TMD’s.

Diagonalizing the hamiltonian, we readily find the energy eigenvalues are now

E(k) = ±
√

|φ(k)|2 + M2 = ±
√
t2

∑
i, j=1,2,3

eik·(di−d j) + M2, (15.20)

which clearly show the presence of a gap 2M .
We may re-write the hamiltonian as

HT B,M =
∑
k,σ

�†(k,σ)hT B,M�(k,σ)

hT B,M = −t

[∑
i

cos(k · di )σx +
∑
i

sin(k · di )σy

]
+ Mσz (15.21)

where the σ’s are Pauli matrices with entries in the (A,B) space.
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Now, expanding around the points K and K ′, we obtain, respectively

hK ,M =
√
3ta

2

[
pxσx + pyσy + Mσz

]

hK ′,M =
√
3ta

2

[−pxσx + pyσy + Mσz
]

(15.22)

Then, performing the same canonical transformation (15.14), in �K ′,σ(k), we see
that the mass term transforms as

M�
†
K ′,σσz�K ′,σ −→

M�
†
K ′,σσx exp

{
− i

π

2
σz

}
σz exp

{
i
π

2
σz

}
σx�K ′,σ = −M�

†
K ′,σσz�K ′,σ

(15.23)

The terms linear in the momentum transform as before, hence we obtain, in the
massive case [1]

HK =
∑
k,σ

�
†
K (k,σ)hK�K (k,σ)

HK ′ =
∑
k,σ

�
†
K ′(k,σ)hK ′�K ′(k,σ), (15.24)

where

hK = vF
[
pxσx + pyσy + Mσz

]
(15.25)

and

hK ′ = vF
[
pxσx + pyσy − Mσz

]
(15.26)

Notice that the mass at valley K ′ has an opposite sign to that at valley K .
A primary mechanism for the existence of a mass term in the systems being

examined here, is any asymmetry between the two sublattices A and B. In the case
of TMD’s, the fact that different atoms occupy each of the two sublattices, naturally
generates a σz term in the hamiltonian, which expresses such asymmetry. Supposing
the local difference in chemical potential between the atoms in the two sublattices is
2�, then M = �.
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15.2.3 Electromagnetic Interaction of Two-Dimensional
Dirac Fermions: DC Conductivity in Graphene

The electromagnetic interaction of charged particles constrained to move on a plane,
as in the case of electrons in graphene and TMD’s can be described by minimally
coupling the Dirac field to the vector gauge field Aμ of Pseudo Quantum Electrody-
namics [4].

DC-conductivity is given by Kubo’s formula,

σi j = lim
ω→0

i

ω
〈 j i j j 〉(ω,p = 0) (15.27)

The current correlator is given by the vacuum polarization tensor, namely

〈 j i j j 〉(ω,p) = �i j (ω,p). (15.28)

Evaluation of such tensor up to two-loops, gives [1]

σi j = 1

16

e2

�

[
1 + 92 − 9π2

18π
α0

]
δi j ± 1

2π

(
n + 1

2

)
e2

�
εi j , (15.29)

where the two signs correspond to the valleys K and K ′, respectively, and we use
physical units of e2

�
.

Summing the contributions of the four flavors in the set: K ↑, K ↓, K ′ ↑, K ′ ↓,
we get the total conductivity [5]

σ
i j
T = 4 × π

8

e2

h

[
1 + 92 − 9π2

18π
α0

]
δi j

σ
i j
T = π

2
[1 + 0.056 α0]

e2

h
δi j � 1.76

e2

h
δi j (15.30)

Observe that the electrons of each valley give opposite contributions to the transverse
conductivity and, consequently, this vanishes. We have, in summary,

σxx
T = π

2
[1 + 0.056 α0]

e2

h
� 1.76

e2

h
σ
xy
T = 0 (15.31)

Even though this is still not so close to the experimental result [6]

σ
i j
T,exp � 2.16

e2

h
δi j ,
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yet, it represents an improvement with respect to the non-interacting minimal con-
ductivity

σ
i j
0,T = π

2

e2

h
δi j � 1.57

e2

h
δi j

and is the closest to the experimental value [7].

15.2.4 The Quantum Valley Hall Effect in Graphene

We have just seen that graphene exhibits a longitudinal conductivity, which receives
corrections from the electromagnetic interactions. No transverse conductivity, how-
ever was obtained in the absence of an external magnetic field.

We now introduce the concept of a “Valley Conductivity”, which is naturally
defined in terms of the difference between the conductivities of each valley, namely

σ
i j
V =

∑
σ=↑,↓

[
σ
i j
K ,σ − σ

i j
K ′,σ

]
(15.32)

The valley conductivity, therefore, relates an applied electric field to the relative
current between the two valleys.

From (15.29), we conclude that

σ
i j
V = 4

(
n + 1

2

)
e2

h
εi j , (15.33)

or

σxx
V = 0

σ
xy
V = 4

(
n + 1

2

)
e2

h
(15.34)

The longitudinal valley conductivity vanishes whereas the transverse one is
nonzero. Notice that it is identical to the one obtained for the Quantum Hall effect in
graphene in the presence of an applied external magnetic field. This is an exact result,
by virtue of the Coleman-Hill theorem that rules out the correction of the transverse
part of the vacuum polarization tensor by higher order terms.

The fact that these two conductivities are identical can be understood from the
fact that both conductivities can be expressed in terms of topological invariants.
The emergence of the QVHE in graphene is the consequence of the electromagnetic
interactions among the p-electrons of carbon, described by PQED [5]. For this,
however, we need to use the full dynamical interaction instead of just the static
Coulomb interaction.
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15.3 Dirac Fermions in One-Dimensional Systems:
Non-Abelian Statistics

15.3.1 Interacting Massless Dirac Fermions

Consider a system of Dirac quasi-particles in one spatial dimension, described by
the massless lagrangian density [8]

L = iψ �∂ψ − V(ψ, ψ̄) (15.35)

where ψ =
(

ψ1

ψ2

)
, is a two-component Dirac spinor and V is an arbitrary potential.

Our convention for the γ-matrices is γ0 = σx , γ
1 = iσy, γ

5 = γ0γ1 = −σz .
We also assume invariance under global U(1) and chiral U(1) symmetries, namely

ψ → eiθψ

ψ → eiθγ
5
ψ (15.36)

that leads to the conservation of charge and chirality.
A Lorentz boost will act on the space-time coordinates xμ under the vector rep-

resentation of the Lorentz group, namely, xμ → �μ
νxν , where

�μ
ν =

(
coshω − sinhω

− sinhω coshω

)
, (15.37)

in such a way that tanhω = v, where v is the relative velocity between the two
reference frames connected by the boost.

The Dirac field, conversely, will transform under the spinor representation of such
group, namely

ψ →
(
e−sωγ5

)
ψ =

(
esω 0
0 e−sω

)
ψ (15.38)

where s is a real parameter, known as the Lorentz spin of the Dirac field. In what
follows, we demonstrate that the parameter s determines how a many-particle state-
vector behaves under the interexchange of identical particles. It, consequently char-
acterizes the particle statistics, which may be either bosonic (2s = even), fermionic
(2s = odd) or anyonic (2s �= integer).

From (15.37), it follows that the light-cone coordinates u = x0 + x1 and v =
x0 − x1 transform as

u → e−ωu v → eωv (15.39)
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We want to determine the two-point correlation function of the Dirac field. On
the basis of the symmetries of the system, one can write

〈0|ψi (x)ψ
†
j (0)|0〉 =

(
f (x) 0
0 g(x)

)
. (15.40)

Using (15.38), we may infer that under a Lorentz boost this shall transform as

〈0|ψ(x)ψ†(0)|0〉 →
(
esω 0
0 e−sω

) (
f (x) 0
0 g(x)

) (
esω 0
0 e−sω

)

〈0|ψ(x)ψ†(0)|0〉 →
(
e2sω f 0
0 e−2sωg

)
(15.41)

Consequently, the Dirac field correlator may be written in the form

〈0|ψ(x)ψ†(0)|0〉 =(
F̃(−x2)v2s 0

0 G̃(−x2)u2s

)
≡

(
F(−x2) v2s

(−x2)s 0

0 G(−x2) u2s

(−x2)s

)

(15.42)

where the functions F , G depend on the specific form of the interaction potential V .
We now take the Euclidean limit of the Dirac field correlation functions. Start-

ing from (15.42), we make the analytic continuation x0 → −i x E
2 . Introducing the

complex variable z = x1 + i x E
2 , we have −x2 → x2E ≡ |z|2 and we can see that

the Wightman correlators (15.42) are mapped into the (Euclidean) functions of the
complex variable z,

〈ψ1(x)ψ
†
1(0)〉S = F(x2E )

(−z)2s

|z|2s

〈ψ2(x)ψ
†
2(0)〉S = G(x2E )

(z∗)2s

|z|2s
〈ψ1(x)ψ

†
2(0)〉S = 0 ; 〈ψ2(x)ψ

†
1(0)〉S = 0 (15.43)

Introducing the polar representation z = |z|eiArg(z), we can re-write those func-
tions as

〈ψ1(x)ψ
†
1(0)〉S = F(|z|2)ei2sArg(−z) ; 〈ψ2(x)ψ

†
2(0)〉S = G(|z|2)e−i2sArg(z)

(15.44)

where we chose the cuts of the Arg functions as −π ≤ Arg(z) < π and 0 ≤
Arg(–z) < 2π, in such a way that we may write Arg(–z) = Arg(z) + π.
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The Euclidean functions, corresponding to field correlators containing the same
Dirac fields as above but in a reversed order can be obtained in similar way and are
given by [9, 10]

〈ψ†
1(0)ψ1(x)〉S = F(|z|2)ei2sArg(z) ; 〈ψ†

2(0)ψ2(x)〉S = G(|z|2)e−i2sArg(−z).

(15.45)

It follows that

〈ψ†
i (0)ψi (x)〉S = e−i2πs〈ψi (x)ψ

†
i (0)〉S. (15.46)

The “braiding” or particle exchange operation in this one-dimensional system is
a well-defined operation in the framework of the Euclidean functions: functions of
opposite arguments will correspond to different ordering of field operators [1].

15.3.2 Majorana Spinors with Non-Abelian Statistics

We now introduce the Majorana and anti-Majorana spinor fields

ϕ± =
(

ϕ1±
ϕ2±

)
,

where

ϕi+ = 1

2

(
ψi + ψ†

i

)
; ϕi− = 1

2

(
ψi − ψ†

i

)
(15.47)

ψi = ϕi+ + ϕi− ; ψ†
i = ϕi+ − ϕi− (15.48)

Let us analize now the two-point functions of the Majorana and anti-Majorana
fields built out of the Dirac field.

〈0|ϕi+(x)ϕi+(y)|0〉W = −〈0|ϕi−(x)ϕi−(y)|0〉W =
1

4

(
〈0|ψi (x)ψ

†
i (y)|0〉W + 〈0|ψ†

i (x)ψi (y)|0〉W
)

(15.49)

and

〈0|ϕi−(x)ϕi+(y)|0〉W = −〈0|ϕi+(x)ϕi−(y)|0〉W =
1

4

(
〈0|ψi (x)ψ

†
i (y)|0〉W − 〈0|ψ†

i (x)ψi (y)|0〉W
)

, (15.50)

where i = 1, 2, represent the two chiralities, namely rightmovers and leftmovers.
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Notice that for i �= j , 〈0|ϕi±(x)ϕ j±(y)|0〉W has a trivial analytic structure in
terms of the complex variables, implying that nontrivial braiding will only occur
involving states for which i = j , that is states with the same chirality.

Using (15.44), we obtain

〈ϕ1+(x)ϕ1+(y)〉S = −〈ϕ1−(x)ϕ1−(y)〉S =
1

4
F(|x − y|2) [

ei2sArg(y−x) + ei2sArg(x−y)
]

(15.51)

and

〈ϕ1−(x)ϕ1+(y)〉S = −〈0|ϕ1+(x)ϕ1−(y)|0〉S =
1

4
F(|x − y|2) [

ei2sArg(y−x) − ei2sArg(x−y)
]

(15.52)

with similar expressions for the 2-components.
We now investigate the braiding properties of the above functions. For this purpose

we use the relation Arg(y − x) = Arg(x − y) + π and obtain

[
ei2sArg(x−y) ± ei2sArg(y−x)

] −→
x ↔ y[

ei2sArg(y−x)e−i2πs ± ei2sArg(x−y)ei2πs
]

(15.53)

with analogous relations for the corresponding expressions in the ϕ2 functions.
When the Dirac field, ψ is either bosonic or fermionic, the two complex phases

generated above by the braiding operation are equal, namely ei2πs = e−i2πs = ±1
and we conclude that

〈ϕ±(y)ϕ±(x)〉S = ei2πs〈ϕ±(x)ϕ±(y)〉S (15.54)

implying that ϕ± will also be bosonic or fermionic.
Conversely, when the Dirac field is an anyon, ei2πs �= e−i2πs and we obtain

〈ϕ1+(y)ϕ1+(x)〉S = cos δ〈ϕ1+(x)ϕ1+(y)〉S − i sin δ〈ϕ1+(x)ϕ1−(y)〉S
(15.55)

〈ϕ1−(y)ϕ1+(x)〉S = −i sin δ〈ϕ1+(x)ϕ1+(y)〉S + cos δ〈ϕ1+(x)ϕ1−(y)〉S
(15.56)

where in the above expressions δ = 2πs.
We conclude that when the Dirac field is an anyon, the ϕ± fields will have non-

abelian braiding given by
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( 〈ϕ1+(y)ϕ1+(x)〉S
〈ϕ1−(y)ϕ1+(x)〉S

)
=

(
cos δ −i sin δ

−i sin δ cos δ

) ( 〈ϕ1+(x)ϕ1+(y)〉S
〈ϕ1+(x)ϕ1−(y)〉S

)
(15.57)

with similar expressions for the ϕ2 functions.

15.3.3 Majorana Qubits

Wehave seen that the interchange of identical particles exhibiting non-Abelian statis-
tics, in 2-particle states, producesmatrices of dimension 2, known as themonodromy,
or braiding, matrices. These act on the set of degenerate 2-particle states with non-
Abelian statistics, which form the qubits, where the information is stored in a process
of quantum computation.

The particles with non-Abelian statistics are, therefore the basic building blocks
of the qubits. They are, by their turn, obtained from abelian anyons in the form of
self-adjoint or anti-self-adjoint combinations, which characterizes them asMajorana
and Anti-Majorana quantum states.

The monodromy matrices process the Majorana (Anti-Majorana) qubits, produc-
ing a certain output state for a given input state. Now, for the system considered here,
whenever the spin/statistics of the basic abelian particles used to build theMajoranas
is s = 1/4, themonodromymatrices become one of the basic logic gates employed in
a quantum computation algorithm, namely, the NOT gate, as we can see in (15.57):

M = −i X, in which X =
(
0 1
1 0

)
(15.58)

The fact that qubits are made out of quantum states of Majorana quasi-particles
has profound implications, because of the peculiar features of such states.

Degeneracy at zero energy is a first property. Suppose

ϕ(t, x) =
∫

dp ϕ(E(p),p)e−i E(p)t eip·x,

Imposing the Majorana condition in coordinate space

ϕ†(t, x) = ϕ(t, x) =⇒ ϕ†(E,p) = ϕ(−E,−p). (15.59)

Imposing now the Majorana condition on the energy-momentum space, namely

ϕ†(E,p) = ϕ(E,p), (15.60)

and using it in (15.59), we get
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ϕ(E,p) = ϕ(−E,−p).

Assuming that the Majorana field operator creates an energy eigenstate with eigen-
value E(p), it follows that

H |ϕ(E,p)〉 = E |ϕ(E,p)〉
= H |ϕ(−E,−p)〉 = −E |ϕ(−E,−p)〉 = −E |ϕ(E,p)〉,
H |ϕ(E,p)〉 = −E |ϕ(E,p)〉, (15.61)

The first and last lines together imply that, if a Majorana state |ϕ(E,p)〉 is an energy
eigenstate, then the energy eigenvalue must vanish: E = 0. It follows that all the
Majorana states are degenerate. The Majorana modes, are also gapless.

15.3.4 Superselecting Sectors and Coherence Protection

Wehave seen thatMajorana andAnti-Majorana states can bewritten as linear combi-
nations of states carrying opposite charges. Surprisingly, such states cannot be phys-
ical [11]. The reason is charged states belong to superselecting sectors of the Hilbert
space, which never mix in a physical state. Charge is an observable that, despite its
quantum-mechanical nature, does not obey the uncertainty principle. Consequently,
a coherent combination of an electron field and its hermitean adjoint, each of which
creates states with opposite charge, just cannot be physical [11]. This seldom men-
tioned fact, is indeed remarkable. It is precisely the reason underlying the coherence
robustness of theMajorana qubits.What happens is that the above property precludes
the occurrence of isolated Majorana states in the bulk, and therefore they hide in the
edges of the system. Nevertheless, pairs of Majorana modes can manifest in the bulk
as charged states. It follows that by expressing a Dirac state as a combination of
Majoranas, we can use the fact that these cannot be in the bulk to place each one of
them far away from the other on the edges of the sample. This construction would
naturally make the Majorana pair, or the qubit, immune to the local environmental
perturbations, which are responsible for decoherence.
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Chapter 16
Quantum Dynamics from a Domain Wall
Initial State, in Real and Imaginary Time

Jacopo Viti

Abstract I review some recent results regarding the time evolution of 1 + 1 inhomo-
geneous quantum systems. The main focus is on the so-called Domain Wall initial
state, a state such that average particle density or spin magnetization can have a
maximal discontinuity.

16.1 The Domain Wall Initial State: Free Fermions

The Domain Wall (DW) initial state [1] is perhaps at the root of one the simplest
quantum non-equilibrium protocol in 1 + 1 dimensions. Consider fermions hopping
on a one-dimensional chain with a free Hamiltonian

Hfree = −1

2

∑

x∈Z
[c†xcx+1 + c†x+1cx ]. (16.1)

In momentum space the Hamiltonian is diagonal and reads

Hfree =
π∫

−π

dk ε(k)c†(k)c(k), {c†(k), c(k ′)} = δ(k, k ′) (16.2)

where c(k) = 1√
2π

∑
x∈Z eikxcx and ε(k) = − cos(k). Suppose moreover that at time

t = 0 all the particles are on the left half of the chain, i.e. the initial quantum state is
a DW initial state

|DW 〉 =
∏

x<0

c†x |0〉, (16.3)
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being |0〉 the Fock vacuum. Intuitively, after time passes, particles will flow from left
to right, building a non-trivial density profile along the chain

ρx (t) ≡ 〈DW (t)|c†xcx |DW (t)〉, (16.4)

together with a position dependent particle current jx (t). It is indeed clear that at
fixed t for x sufficiently large and negative (positive), ρx (t) will be one (zero) and
the current vanishing. The density profile in (16.4) and the current can be determined
exactly for large space-time separations x, t � 1 by stationary phase analysis [2].
We will use the shorthand notation limhd (standing for hydrodynamical) for the
combined limits limt→∞ limx→∞ with x/t = ξ ∈ R. In a field theory context, the
limit is actually called a continuum limit. It is instructive to comment the outcome of
the stationary phase analysis more in detail. We can introduce the function n(k, x/t)
representing the average occupancy of fermionic modes of momentum k, or fillings,
along a space-time ray ξ. For large space-time separations along a given ray, the
density and current are obtained as in thermodynamical equilibrium through the
following integrals

lim
hd

ρx (t) =
π∫

−π

dk

2π
n(k, ξ), lim

hd
jx (t) =

π∫

−π

dk

2π
v(k) n(k, ξ), (16.5)

v(k) = dε(k)
dk being the group velocity of the fermions. The stationary phase analysis

shows that the ray dependent fillings satisfy the continuity equation ∂t n(k, ξ) +
v(k)∂xn(k, ξ) = 0 which can be recast into

(ξ − v(k))∂ξn(k, ξ) = 0. (16.6)

Provided the boundary conditions nleft(k) ≡ n(k,−∞) and nright(k) ≡ n(k,∞), the
solution of (16.6) is a step function

n(k, ξ) = nleft(k)�(v(k) − ξ) + nright(k)�(ξ − v(k)), (16.7)

with a discontinuity at k = v−1(ξ). Actually (16.7) can be used [3] to study the time
evolution of any free fermionic system that was initially prepared in state of the form
|�〉 = |� left〉 ⊗ |�right〉. The fillings nleft(k) (reps. nright(k)) specify the distribution
ofmomenta in the initial state |� left〉 (resp. |�right〉). For theDWinitial state: nleft = 1,
nright = 0 and v(k) = sin(k), giving the exact result [1]

lim
hd

ρx (t) = 1

π
arccos(x/t) (16.8)

lim
hd

jx (t) = 1

π
√
1 − (x/t)2

, (16.9)
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y
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Fig. 16.1 Left. DensityPlot (with Mathematica) of limhd ρx (t) given in (16.8). At time
t = 0, the quantum system is the initial state |DW 〉 with spacial density 1 (corresponding to the
colour yellow)on the left and0on the right (corresponding to the colour blue). Time-evolving such an
initial state with the Hamiltonian in (16.1) results for large space-time separations in the elementary
function in (16.8), whose density plot is depicted above. The quantum system is inhomogeneous
inside the dashed red lines corresponding to ξ± = ±maxkv(k); this is the so-called light-cone.
Along a given ray ξ (black line), the quantum state is described as in equilibrium with fillings in
(16.7). Right. DensityPlot (with Mathematica) of limhd ρ(x, y; R) given in (16.16). Now
the inhomogeneous region is contained inside a red dashed circle that is dubbed an arctic curve
in the jargon of statistical mechanics. Taking y = i t and sending R → 0, the statistical mechanics
arctic curve is transformed into the quantum mechanical light-cone

depicted in Fig. 16.1 on the left. It is evident that an inhomogeneous region is built
inside a triangular shape, that is the so-called light-cone. Outside the light-cone, the
quantum system appears to be frozen in its initial configuration, where correlation
functions are trivial. Inside the light-cone correlation functions show short-distance
power-law singularities which are position independent. This a an example of two-
quantum phases (a trivial outside the light-one and a critical inhomogeneous inside)
separated sharply in space-time.

16.2 A Quick Look at Generalized Hydrodynamics

The results of the previous section can be reformulated in a spin-chain framework.
The model of interest is now the so-called XXZ spin chain in the gapless regime,
with Hamiltonian (L even)

HXXZ (�) = −
L
2 −1∑

x=− L
2

[
sxxs

x
x+1 + syxs

y
x+1 + �

(
szxs

z
x+1 − 1

4

)]
; (16.10)
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sαx are spin 1/2 matrices and� = cos(γ). For� = 0, the Hamiltonian in (16.10) can
be transformed into (16.1) through a Jordan-Wigner transformation, i.e. HXXZ (0) =
Hfree. The DW initial state in (16.3) has then a simple interpretation in the spin
language: it corresponds to the following step initial condition for the z-component
of the spin magnetization

|DW 〉 = | ↑↑ . . . ↑↓ . . . ↓↓〉. (16.11)

Mutatis mudandis, the result for the fermion density in (16.8) can be recast in an
exact result for the z-magnetization profile at � = 0 in the XXZ spin chain after
time-evolving from the initial state in (16.11).

At� �= 0, time-evolution from the DW initial state was studied numerically in [4]
but an exact solution has been possible only recently, exploiting a remarkable gen-
eralization of (16.7) to Bethe Ansatz solvable models. In a Thermodynamic Bethe
Ansatz formalism [5], the fermionic fillings n(k) ∈ [0, 1] characterizing the many-
body quantum state at equilibrium are replaced by the filling fractions ϑ j (λ) ∈ [0, 1]
of any species j = 1, . . . , nB of bound-states present in the spectrum. The variable
λ ∈ R is called the rapidity and parametrizes both the bare momenta kbarej (λ) and
energy εbarej (λ) of the excitations. The use of the word bare will be clarified soon. If
a model is solvable by Bethe Ansatz, the bare energy and momenta of a bound state
are, in particular, exactly known. It is then also possible to define a bare bound-state
group velocity as

vbarej (λ) = ∂λε
bare
j

∂λkbarej

. (16.12)

The fillings ϑ j (λ) at equilibrium have been worked out in same relevant examples,
and in particular for generalized Gibbs Ensembles in the XXZ spin chain [5]. The
crucial difference between a free fermionic model and an interacting Bethe Ansatz
solvable one, is that the group velocity of the quasi-particles is different from the bare
one [6], since it actually depends on all the filling fractions ϑ j (λ), j = 1, . . . , nB .
The effective velocity of propagation of the excitations is termed the dressed veloc-
ity vdressedj [ϑ(λ)], where the notation is chosen to emphasize its dependence on the
whole thermodynamical state of the system. Given vbarej (λ) and all the fillings ϑ j (λ)

( j = 1, . . . , nB) there is, for the XXZ spin chain [6] and other models, a well defined
procedure to determine vdressedj [ϑ(λ)]. In presence of Bethe Ansatz solvable interac-
tions, (16.7) has been then conjectured to generalize to [7]

ϑ j (λ, ξ) = ϑleft
j (λ)�(vdressedj [ϑ(λ)] − ξ) + ϑ

right
j (λ)�(ξ − vdressedj [ϑ(λ)]), j = 1, . . . , nB ;

(16.13)
This set of equations together with the dressing transformation of the bare velocity
form the content of the so-called Generalized Hydrodynamics. In practice, ϑleft

j (λ)

and ϑ
right
j (λ) are known a priori. At a given ray ξ, one first assumes vdressedj (λ) =

vbarej (λ) and then uses (16.13) to determine the new fillings, after the velocity is
dressed and the procedure iterated until convergence is reached. Few iterations for
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•ρ(x, y;R)

Fig. 16.2 Slab of width 2R for time evolution in imaginary time y form a DW initial state |DW 〉,
given in (16.3). Outside the inhomogeneous gray region the quantum state is frozen in its initial
configuration. The fermion density is ρ(x, y; R) = 1 (resp. ρ(x, y; R) = 0) for x sufficiently large
and negative (resp. positive)

a numerical solution suffice. For the DW initial state in the XXZ spin chain, the
Generalized Hydrodynamics equations can be solved exactly. Parametrizing γ =
πQ/P and Q/P ∈ Q with P, Q coprimes, it is possible to derive the following
result for the magnetization profile [8]

lim
hd

〈DW (t)|szx |DW (t)〉 = − 1

2π/P
arcsin

(
ξ

ξ0

)
, (16.14)

being ξ0 = sin(γ)/ sin(P). The remarkable feature of the magnetization profile in
presence of interactions is its the dependence on the denominator of the fraction
γ/π. This indicates a no-where continuous behaviour of (16.14) as a function of the
anisotropy parameter �. It can be verified however that the continuation of (16.14)
to irrational γ is well defined.

16.3 Imaginary Time Evolution

Finally we mention a remarkable connection between the quantum mechanical evo-
lution from a DW initial state and a peculiar phenomena of phase separation in
statistical mechanics known as arctic curves.

Consider the time evolution from the DW initial state in imaginary time with the
Hamiltonian in (16.1) on a slab of width 2R. Now, see Fig. 16.2, the fermion density
on the slab is given by

ρ(x, y; R) ≡ 〈DW |e−Hfree(R−y)c†xcxe
−Hfree(R+y)|DW 〉

〈DW |e−2RHfree |DW 〉 . (16.15)
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Again we expect that for x sufficiently large and negative (positive) ρ(x, y; R) =
1 (resp. ρ(x, y; R) = 0); i.e. that away from a central inhomogeneous region the
quantum statewill be frozen in its initial configuration. The calculation of the fermion
density in imaginary time is harder than in real time, cf. (16.4), due to the presence
of the denominator in (16.15). It can nevertheless be performed [9] in the limit
x � 1, y � 1, R � 1, with their ratio fixed, through a similar stationary phase
analysis. We will denote the sequence of limits above the hydrodynamical limit
limhd, in analogy with Sect. 16.1. In such a limit the fermion density inside the strip
is

lim
hd

ρ(x, y; R) = 1

π
arccos

(
x√

R2 − y2

)
, (16.16)

which is plotted in Fig. 16.1 on the right. In the imaginary time problem the inho-
mogeneous region, within which the the fermion density differs from the initial one
(i.e. is neither zero or one), is confined into a circle. Such a circle is an example of
an arctic curve. In two-dimensional statistical mechanics, arctic curves separate in
the thermodynamic limit two phases of a lattice model, one of which is frozen and
the other disordered and inhomogeneous. In the frozen phase, in particular, lattice
variables cannot fluctuate. A celebrate example of this phenomena is the so-called
arctic circle discovered in dimer coverings of theAztec diamond [10], or equivalently
in the six-vertex-model with DW boundary conditions [11]. As discussed in [9], the
quantummechanical curve represented in Fig. 16.1 is obtained from the Hamiltonian
limit of the statistical mechanics arctic circle.
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Chapter 17
Quantum Thermodynamics at Impurity
Quantum Phase Transitions

Abolfazl Bayat, Gabriele De Chiara, Tony J. G. Apollaro, Simone Paganelli,
Henrik Johannesson, Pasquale Sodano and Sougato Bose

Abstract The study of quantum thermodynamics, i.e. equilibrium and non-
equilibrium thermodynamics of quantum systems, has been applied to various many-
body problems, including quantum phase transitions. An important question is
whether out-of-equilibrium quantities from this emerging field, such as fluctuations
of work, exhibit scaling after a sudden quench. In particular, it is very interesting
to explore this problem in impurity models where the lack of an obvious symmetry
breaking at criticality makes it very challenging to characterize. Here, by considering
a spin emulation of the two impurity Kondo model and performing density matrix
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renormalization group computations,we establish that the irreversiblework produced
in a quench exhibits finite-size scaling at quantum criticality. Our approach predicts
the equilibrium critical exponents for the crossover length and the order parameter of
the model, and, moreover, implies a new exponent for the rescaled irreversible work.

17.1 Introduction

Impurities in the bulk of a material are the heart of solid state technologies which
is exemplified by the computing revolution driven by the invention of transistors.
In fact, even the addition of a single impurity can change the properties of matter.
The theory of quantum impurities underpins much of the current understanding of
correlated electrons. A case in point is the two-impurity Kondo model (TIKM) [1],
with bearing on heavy fermion physics [2], correlation effects in nanostructures [3],
spin-based quantum computing [4, 5], and more. The model describes two localized
spin-1/2 impurities in an electron gas, coupled by the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction via their spin exchange with the electrons. In addition to
the RKKY coupling, the model exhibits a second energy scale, the Kondo temper-
ature TK , below which the electrons may screen the impurity spins. For the sake of
simplicity, in numerical computations, a spin chain emulation of the TIKM has been
introduced which faithfully reproduces its physics [6]. Universal quantum quenches
[7] and entanglement properties [8] of the TIKM model have been investigated.

Out-of-equilibrium thermodynamics of closed many-body systems subject to a
variation of a Hamiltonian parameter has received considerable attention in the past
few years, both experimentally and theoretically [9]. The increasing level of control
over few-particle quantum systems has allowed to demonstrate experimentally the
information-to-energy conversion and the Jarzynski equality [10–14]. On the one
hand, the increasing level of control of simple systems consisting of a few quantum
particles has led to the experimental possibility both of building the first quantum
engines [15–17] and of investigating nonequilibrium theoretical predictions [11]. On
the other hand, studies of the interplay between quantum thermodynamics, many-
body physics, and quantum information, have shed light on fundamental aspects
of thermalisation of closed quantum systems [19], fluctuation theorems [20], and
prospects for quantum coherent thermal machines [21, 22].

A central issue is how the presence of a quantum phase transition (QPT) man-
ifests itself in the out-of-equilibrium thermodynamics after a sudden quench of a
Hamiltonian parameter [9, 19, 23–32]. In the sudden quench approach, the thermo-
dynamic properties of a quantum system, initially at thermal equilibrium and experi-
encing a sudden variation of some global hamiltonian parameter, are investigated. It
is nowwell established [24] that a second-order QPT is signaled by a discontinuity in
the derivative of the irreversible entropy production (with the derivative taken with
respect to the QPT driving parameter which is being quenched), as well as of the
variance of the work [20]. This is to be contrasted with a first-order QPT, where the
derivative of the average work (i.e. the first moment of the probability distribution
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function of the work) exhibits a discontinuity at the transition [28] (with a peak in the
irreversible entropy productionwhen theQPT is induced by a local quench [32]). The
obvious parallels to the diverging behavior of response functions at a second-order
equilibrium QPT prompts the question whether out-of-equilibrium quantities, like
the irreversible work [20] (which is a measure of the nonadiabaticity of a quantum
quench), may also exhibit scaling at criticality. Here, via a novel inroad—studying
the quantum thermodynamics for a sudden quench across an impurity quantum crit-
ical point—we are able to provide an affirmative answer. Recent studies have also
demonstrated a similar conclusion for first order transitions [33].

While for an ordinary bulk QPT the behavior of thermodynamic quantities after
a sudden quench reflects the discontinuity of a corresponding equilibrium average
value of a global observable [25], the same is not so obvious in an impurity quan-
tum phase transition (iQPT) [34]. Local quenches in many-body quantum systems
displaying iQPTs have not been investigated adequately. The lack of such works can
be related both to the fact that iQPTs are a relatively new concept compared to the
more well-established theory of QPTs classified according to the Ehrenfest-Landau
scheme, and, most importantly but related, the identification of an order parame-
ter exhibiting scaling properties according to some critical exponents for the iQPT
has been only recently tackled [35, 36]. In ordinary QPTs the fact that the out-of-
equilibrium thermodynamics of a global sudden quantum quench highlights the QPT
point in the moments of the work probability distribution function (PDF) is due, in
the final analysis, to the discontinuity of a corresponding equilibrium average value
of a global observable, the latter being the order parameter. This holds, for instance,
in spinmodels where themagnetization and the susceptibility show, respectively, dis-
continuities for 1st- and 2nd-order QPTs, thus reflecting in nonequilibrium quantum
thermodynamics variables, which, as a consequence, inherit also the correspond-
ing universality class scaling behaviour [37]. Moreover, as the irreversible entropy
production can be related to the relative entropy of pre- and post-quenched thermal
states, the abrupt change induced by the QPT of the latter (at low temperatures)
is responsible for the its divergence at the critical point [25]. Based on these, one
may ask whether, after a local quench of the impurity coupling, the behaviour of
nonequilibrium quantum thermodynamic variables can reveal the iQPT?

In this paper, we elaborate on our results in [38] for the two-impurity Kondo
model (TIKM) [39], one of the best studied models supporting an iQPT [2, 40–48].
Here, two spin-1/2 quantum impurities are coupled to each other by a Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction, and, in the simplest variant of the the-
ory [45], to separate bulk reservoirs of conduction electrons by Kondo interactions.
When the RKKY interaction dominates, the two impurities form a local spin-singlet
state (RKKY phase), while in the opposite limit each of the impurities form a spa-
tially extended singlet state with the electrons in the reservoir to which it is coupled
(Kondo-screened phase). We shall show that the iQPT between these two phases is
signaled both by the irreversible work production and the variance of work following
a sudden quench. Remarkably, the irreversible work shows clear scaling with well-
defined critical exponents, related to known equilibrium critical exponents by scaling
laws. Moreover, by means of a small quench approximation for the irreversible work
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production, we are able to link the latter to the two-impurity spin correlation func-
tion, which is amenable to experimental determination. While our findings have
broad ramifications, they are particularly timely considering recent breakthroughs
in designing and performing measurements on tunable nanoscale realizations of the
TIKM [3, 49, 50].

17.2 Two Impurity Kondo Model

For the purpose of exploring quantum critical properties of the TIKM, it is sufficient
to focus on the spin sector of themodel by considering its spin chain emulation which
is sufficient to reproduce the underlying physics [6]. This can be emulated by the
Kondo spin-chain Hamiltonian H(K ) = ∑

m=L ,R Hm + HI [6], where

Hm = J ′ (J1σm
1 ·σm

2 + J2σ
m
1 ·σm

3

) +

+ J1

Nm−1∑

i=2

σm
i ·σm

i+1 + J2

Nm−2∑

i=2

σm
i ·σm

i+2,

HI = J1Kσ L
1 ·σ R

1 . (17.1)

Here m = L , R labels the left and right chains with σm
i the vector of Pauli matrices

at site i in chain m, and with J1 (J2) nearest- (next-nearest-) neighbor couplings
(see Fig. 17.1). In the following we set J1 = 1 as our energy unit. The parameter
J ′ > 0 plays the role of antiferromagnetic Kondo coupling and K represents the
dimensionless RKKY coupling between the impurity spins σ L

1 and σ R
1 . The total

size of the system is thus N = NL + NR . By fine tuning J2/J1 to the critical point
(J2/J1)c = 0.2412 of the spin chain dimerization transition [51, 52] all logarithmic
scaling corrections vanish, allowing for an unambiguous fit of numerical data using
the Density Matrix Renormalization Group (DMRG) [53–55]. Indeed, a DMRG
study reveals that the Hamiltonian (17.1) faithfully reproduces the features of the
iQPT in the TIKM [6].

K J’J’

J1     J1 
J1     J1 J1 J1 

Fig. 17.1 Schematic of the two impurity Kondo mode. The two-impurity Kondo spin chain
model consists of two spin-1/2 impurities, each interacting with an array of spin-1/2 particles via
a Kondo coupling J ′. The two impurity interacts with each other via an inter-impurity RKKY
coupling K which serves as the control parameter. By varying K system exhibits a second order
quantum phase transition at a critical value K = Kc which depends on the impurity coupling J ′
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17.3 Thermodynamic Properties: Work Distribution

We assume that the impurity coupling is initially K . The system is at zero tempera-
ture in its ground state |E0(K )〉 with energy E0(K ). The impurity coupling is then
quenched infinitesimally from K to K + ΔK , with the Hamiltonian H(K ) suddenly
changed to H(K + ΔK ). The work performed on the system becomes a stochastic
variable W described by the probability distribution function (PDF) [20]

p(W ) =
∑

m

∣
∣
〈
E ′
m

∣
∣ E0(K )〉∣∣2 δ

[
W − (E ′

m − E0(K ))
]
, (17.2)

where {E ′
m} and {∣∣E ′

m

〉} are the eigenenergies and eigenvectors of H(K + ΔK ),
respectively. Notice that the work PDF is an experimentally accessible quantity [56,
57] and that from its knowledge all the statistical moments can be derived as

〈
Wn

〉 =
∫

Wn p(W )dW. (17.3)

Due to the nature of the sudden quench in theHamiltonian, the system is driven out
of equilibrium and, by means of the Jarzynski fluctuation relation [10], it is possible
to define the so-called irreversible work:

Wirr = 〈W 〉 − ΔF ≥ 0 , (17.4)

where ΔF is the difference between the free energies after and before the quench.
Since we assume zero temperature, ΔF is simply the difference of the post- and pre-
quench ground state energies. The irreversiblework has a simple physical explanation
as the amount of energy which has to be taken out from the quenched system in
order to bring it to its new equilibrium state which, for our case, is the ground state
of H(K + ΔK ) [27]. For the instantaneous quantum quench we have

Wirr= 〈E0(K )| H(K + ΔK ) |E0(K )〉 − E ′
0(K + ΔK ) , (17.5)

i.e., the irreversible work is given by the difference between the expectation value of
the post-quenched Hamiltonian evaluated on the pre-quenched ground state and the
post-quench ground state energy. It is worth emphasizing that the (17.2) and (17.5)
are truly out-of-equilibrium quantum thermodynamic quantities, although evaluated
at equilibrium due to the sudden quench approximation. In fact, for quasi-static
processes, the work PDF would be a delta function peaked at the energy difference
between the pre- and post-quenched ground states, whereas the irreversible work
would result identically null. Instead, in the sudden quench case, which approximates
the case where the quench is performed at a rate much faster than the typical time
evolution scale of the pre-quenched ground state, both quantities give a measure of
the irreversibility by performing the quench [10, 27].
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17.4 Scaling of the Irreversible Work

In order to capture the iQPT between the Kondo regime and the RKKY phase, we
introduce the rescaled quantity

W̃irr = Wirr

ΔK 2
, (17.6)

and study the variation of W̃irr when the coupling K is varied. In this paper we
only consider infinitesimal quantum quenches, ΔK � 1. In Fig. 17.2a, b we plot the
irreversiblework W̃irr for two impurity couplings J ′ = 0.4 and J ′ = 0.5 respectively.
It is clear from the plots that W̃irr shows a sharp peak which becomes even more
pronounced by increasing the system size N (apart from slightly shifting towards
lower values of K ’s). This signifies that W̃irr exhibits non-analytic behaviour at the
critical point in the thermodynamic limit. In finite-size systems, such as the ones
considered here, the position of the peak determines the critical point Kc which
slowly moves towards the left by increasing N .

By considering the specific value of theRKKYcoupling K atwhich W̃irr diverges,
one can determine numerically the critical point Kc, which then shows a particular
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Fig. 17.2 The rescaled irreversible work near criticality. The irreversible work W̃irr in terms
of K in a chain with a J ′ = 0.4; b J ′ = 0.5. c The critical coupling Kc (blue circles) versus 1/J ′
in a semi-logarithmic scale and its exponential fit (blue line). d The maximum of the irreversible
work Wm

irr versus N 0.4 and the linear fits. From top to bottom: J ′ = 0.4; J ′ = 0.5; J ′ = 0.6 and
J ′ = 0.7. From [38]
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dependence on 1/J ′, just as the Kondo temperature TK (which sets the energy scale
for the weak-to-strong of the renormalized Kondo coupling [39]). This can be seen
in Fig. 17.2c in which the critical coupling Kc is plotted as a function of 1/J ′. The
manifest linear trend in a semi-logarithmic scale confirms that

Kc ∼ e−a/J ′ ∼ TK (17.7)

for some constant a, in agreement with other studies of the two-impurity Kondo spin
chain [6, 35].

In the finite-size systems studied here, the divergence of W̃irr at K = Kc appears
as a finite peak becoming more prominent for increasing system size, as shown in
Fig. 17.2a, b. We define the maximum of the irreversible work as W̃m

irr = W̃irr (K =
Kc). Since W̃m

irr increases by increasing the system size N one can try to fit it by an
algebraic map of the form

W̃m
irr ∼ N λ, (17.8)

where λ is a positive exponent. In fact, a perfect match is found for various impurity
couplings J ′ by choosing λ = 0.4 as depicted in Fig. 17.2d. Note that the exponent
λ governs the scaling of a purely non-equilibrium quantity with system size. Note
that, whereas for a global quench the irreversible work is expected to have a func-
tional dependence on the system size because in (17.4) both the work and the free
energy become extensive quantities, it is far from trivial that the same holds for a
local quench. Nevertheless, in the TIKM here considered, this behavior of W̃m

irr is
determined by the distinctive nature of the iQPT, where a local change in the RKKY
coupling induces a global rearrangement of the ground state of the total system at
criticality.

The above analysis for W̃irr suggests the Ansatz:

W̃irr = A

|K − Kc|κ + BN−λ
, (17.9)

where A and B are two constants that may vary with J ′. This Ansatz is based on
the fact that W̃irr diverges in the thermodynamic limit as W̃irr ∼ |K − Kc|−κ , while
for finite-size systems at K = Kc it increases algebraically with the system size as
in (17.8). In order to deal with the divergence more conveniently at the critical point
we define a normalized function as

Wnor = (W̃m
irr − W̃irr )/W̃

m
irr . (17.10)

Using the Ansatz of (17.9) one can show that

Wnor = g(N λ/κ |K − Kc|), (17.11)

where g(x) is a scaling function which can be determined numerically. In order to
evaluate the exponent κ we search for the value of κ such that the values of Wnor as
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Fig. 17.3 Finite-size
scaling. The finite-size
scaling of Wnor according to
the Ansatz of (17.11) for: a
J ′ = 0.4; b J ′ = 0.5. From
[38]

−5 0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

N0.5(K−Kc)

Wnor

(a)

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

N0.5 (K−Kc)

Wnor

(b)

N=400
N=600
N=800

a function of N λ/κ |K − Kc|, for various system sizes N , collapse on each other, as
shown in Fig. 17.3a, b for two different impurity couplings J ′ = 0.4 and J ′ = 0.5
respectively.As is evident from thefigure, using the predetermined exponentλ = 0.4,
one finds that κ = 0.8.

The irreversible work has been measured in quantum mechanical setups using
various methods [13, 14]. Here we follow a different route, showing that, for the
present system and for small quenches, one can rely on measuring only the two-
impurity correlation function

〈
σ L
1 ·σ R

1

〉
with respect to the ground state. The SU(2)

symmetry of the Hamiltonian (17.1) implies that the reduced density matrix of the
two impurities is always a Werner state

ρ1L ,1R = 3 + 〈
σ L
1 ·σ R

1

〉

12
I4 −

〈
σ L
1 ·σ R

1

〉

3

∣
∣ψ−〉 〈

ψ−∣
∣ , (17.12)

where
∣
∣ψ−〉

is the singlet state, I4 represents the 4 × 4 identity matrix and
〈
σ L
1 ·σ R

1

〉

is the two-point correlation function of the impurity spins with respect to the ground
state. It is immediate to see that the two-point correlation functions determine all
the properties of the two impurities [58], including their entanglement (measured by
concurrence [59]) which becomes

C = max

{

−1 + 〈
σ L
1 ·σ R

1

〉

2
, 0

}

. (17.13)

By expanding (17.5) for small ΔK we obtain

W̃irr=−1

2

∂
〈
σ L
1 ·σ R

1

〉

∂K
. (17.14)

The divergence of W̃irr at the critical point and (17.14) suggest that the two-point
impurity correlator 〈σ L

1 ·σ R
1 〉mimics the behavior of an order parameter, capturing the

quantum criticality and showing scaling behavior near the transition. In Fig. 17.4a, b
we plot the spin correlator 〈σ L

1 ·σ R
1 〉 versus the coupling K for two impurity couplings
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Fig. 17.4 Two-point impurity correlation function. Correlation function 〈σ L
1 ·σ R

1 〉 of the two
impurities versus RKKY coupling K in a chain with a J ′ = 0.4; b J ′ = 0.5. The finite-size scaling
for 〈σ L

1 ·σ R
1 〉 with c J ′ = 0.4; d J ′ = 0.5 [38]

J ′ = 0.4 and J ′ = 0.5 respectively. The correlator varies from 0 (for K = 0) in the
Kondo regime to 〈σ L

1 ·σ R
1 〉 = −3 (for very large K ) deep in the RKKY phase. To

extract its scaling properties, we make the finite-size-scaling Ansatz

〈σ L
1 ·σ R

1 〉 = N−β/ν f (N 1/ν |K − Kc|), (17.15)

where, in the limit N → ∞, β characterizes scaling of the correlator near criticality,
〈σ L

1 ·σ R
1 〉 ∼ |K − Kc|β , ν is the exponent governing the divergence of the crossover

scale ξ ∼ |K − Kc|−ν [42, 46], and f (x) is a scaling function. In order to determine
these critical exponents we identify the values of β and ν such that the plots of
〈σ L

1 ·σ R
1 〉Nβ/ν as a function of N 1/ν |K − Kc| collapse to a single curve for arbitrary

system sizes, as shown in Fig. 17.4c, d. The best data collapse is achieved by choosing
β = 0.2 and ν = 2, which are in excellent agreement with the ones found from the
analysis of the Schmidt gap [35].

Furthermore, as an alternative way of computing the scaling of the irreversible
work W̃irr , one may directly differentiate both sides of (17.15) with respect to the
RKKY coupling K to get
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W̃irr ∼ ∂K 〈σ L
1 ·σ R

1 〉 ∼ N (1−β)/ν f ′(N 1/ν |K − Kc|), (17.16)

where f ′(x) = d f/dx . The finite-size scaling of (17.16) implies that W̃irr ∼ |K −
Kc|β−1, which then leads to

κ = 1 − β. (17.17)

Moreover, comparing (17.16) and (17.11), we obtain another constraint between the
exponents as

κ = λν. (17.18)

Equation (17.17) and (17.18) are indeed satisfied for the values found in our numerical
analysis as λ = 0.4, ν = 2, β = 0.2 and κ = 0.8, confirming our scaling Ansätze.

It is worth emphasizing that in our local quench problem the energy change, for
every finite quench, is always finite and, for an infinitesimal quench ΔK , the irre-
versible work can be approximated by Wirr 
 −ΔKΔ

〈
σ L
1 ·σ R

1

〉
/2. Since

〈
σ L
1 ·σ R

1

〉

varies between 0 and 3, then Wirr ≤ −3ΔK/2, which vanishes for ΔK → 0.
As a consequence, the un-rescaled irreversible work Wirr shows no divergences
even as N → ∞.

17.5 Variance Analysis of Work

The variance of work is another important non-equilibrium quantity which is
defined as

ΔW 2 = 〈
W 2

〉 − 〈W 〉2 . (17.19)

For convenience, we also rescale the variance as ΔW̃ 2=ΔW 2/ΔK 2. For a sudden
quench one can show that

ΔW̃ 2=3−2
〈
σ L
1 ·σ R

1

〉 − 〈
σ L
1 ·σ R

1

〉2
. (17.20)

The derivative of the rescaled variance with respect to K becomes

∂K (ΔW̃ 2) = 4
(
1 + 〈

σ L
1 ·σ R

1

〉)
W̃irr . (17.21)

Since the correlation function
〈
σ L
1 ·σ R

1

〉
is always finite, both W̃irr and ∂K (ΔW̃ 2)

diverge at the critical point in the thermodynamic limit. Moreover, ΔW̃ 2 takes its
maximum for values of K slightly smaller than Kc where

〈
σ L
1 ·σ R

1

〉 = −1, i.e. the
minimum value of K at which the two impurities are entangled [6].
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17.6 Out-of-Equilibrium Features

We should emphasise the fact that both the irreversible work and the variance of work
are truly out-of-equilibrium quantum thermodynamic quantities, although evaluated
at equilibrium due to the sudden small-quench approximation. In fact, for quasi-static
processes, the irreversible work would result identically null as the work equals the
free energy difference, and the work PDF would be a delta function peaked at the
energy difference between the pre- and post-quenched ground states, resulting in zero
variance. In the sudden quench case, however, both quantities give certain measures
of irreversibility [10, 27].Moreover, as another feature of non-equilibrium,we should
point out that whereas a temperature can be associated to the initial state (which is
T = 0 in our analysis), the same does not hold after the quench has been performed.

17.7 Summary

In this paper, we have numerically shown that both irreversible work and work
variance, as non-equilibrium quantities, signal the impurity quantum phase transition
between the Kondo and RKKY regimes in the TIKM. Both quantities exhibit scaling
at the quantum critical point, and allow for known equilibrium critical exponents to
be extracted. In addition, a new critical exponent κ , governing the behavior of the
rescaled irreversible work at the phase transition, is brought to light. Importantly, all
out-of-equilibrium quantities considered are amenable to experimental observation
in solid-state nanostructures or ultra cold atoms, since ultimately it is sufficient to
measure a two-point spin correlation function.

References

1. C. Jayprakash, H.R. Krishna-murthy, J.W. Wilkins, Two-impurity kondo problem. Phys. Rev.
Lett. 47, 737 (1981)

2. B.A. Jones, C.M.Varma, J.W.Wilkins, Low- temperature properties of the two-impurityKondo
Hamiltonian. Phys. Rev. Lett. 61, 125 (1988)

3. J. Bork, Y.-H. Zhang, L. Diekhöner, Lázló Borda, P. Simon, J. Kroha, P. Wahl, K. Kern, A
tunable two-impurity Kondo system in an atomic point contact. Nat. Phys. 7, 901 (2011)

4. J. Mravlje, A. Ramsak, T. Rejec, Conductance of a molecule with a center of mass motion.
Phys. Rev. B 74, 205320 (2006)

5. S.Y. Cho, R.H. McKenzie, Quantum entanglement in the two-impurity Kondo model. Phys.
Rev. A 73, 012109 (2006)

6. A. Bayat, S. Bose, P. Sodano, H. Johannesson, Entanglement probe of two-impurity Kondo
physics in a spin chain. Phys. Rev. Lett. 109, 066403 (2012)

7. A. Bayat, S. Bose, H. Johannesson, P. Sodano, Universal single-frequency oscillations in a
quantum impurity system after a local quench. Phys. Rev. B 92, 155141 (2015)

8. A. Bayat, Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions. Phys.
Rev. Lett. 118, 036102 (2017)

9. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: Nonequilibrium dynam-
ics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011)



372 A. Bayat et al.

10. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690
(1997)

11. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental Demonstrations of
Information-to-Energy Conversion and Validation of the Generalized Jarzynski Equality. Nat.
Phys. 6, 988 (2010)

12. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine
with a single electron. Proc. Natl. Acad. Sci. U.S.A. 111, 13786 (2014)

13. T.S. Batalhao, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G.
De Chiara, M. Paternostro, R.M. Serra, Experimental reconstruction of work distribution and
study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)

14. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z. Yin, H.T. Quan, K. Kim, Experimental
test of quantum Jarzynski equality with a trapped ion system. Nat. Phys. 11, 193 (2015)

15. O. Fialko, D.W. Hallwood, Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)
16. O. Abah, J. Rossnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-ion

heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)
17. J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A

single-atom heat engine. Science 352, 325 (2016)
18. G. Maslennikov, S. Ding, R. Habltzel, J. Gan, A. Roulet, S. Nimmrichter, D. Matsukevich,

Quantum absorption refrigerator with trapped ions. Nat. Commun. 10, 202 (2019)
19. J. Eisert,M. Friesdorf, C. Gogolin, Quantummany-body systems out of equilibrium. Nat. Phys.

11, 124 (2015)
20. M. Campisi, P. Hänggi, P. Talkner, Colloquium: quantum fluctuation relations: foundations and

applications. Rev. Mod. Phys. 83, 771 (2011)
21. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, The role of quantum information in

thermodynamics—a topical review, J. Phys. A: Math. Theor. 49, 143001 (2016)
22. M.T. Mitchison, Quantum thermal absorption machines: refrigerators, engines and clocks,

arxiv:1902.02672
23. P. Talkner, E. Lutz, P. Hänggi, Fluctuation theorems: work is not an observable. Phys. Rev. E

75, 050102(R) (2007)
24. A. Silva, Statistics of the work done on a quantum critical system by quenching a control

parameter. Phys. Rev. Lett. 101, 120603 (2008)
25. R. Dorner, J. Goold, C. Cormick, M. Paternostro, V. Vedral, Emergent thermodynamics in a

quenched quantum many-body system. Phys. Rev. Lett. 109, 160601 (2012)
26. L. Fusco, S. Pigeon, T.J.G. Apollaro, A. Xuereb, L.Mazzola,M. Campisi, A. Ferraro,M. Pater-

nostro, G. De Chiara, Assessing the nonequilibrium thermodynamics in a quenched quantum
many-body system via single projective measurements. Phys. Rev. X 4, 031029 (2014)

27. F. Plastina, A. Alecce, T. J. G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R.
Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys.
Rev. Lett. 113, 260601 (2014)

28. E. Mascarenhas, H. Bragança, R. Dorner, M. França, Santos, V. Vedral, K. Modi, J. Goold,
Work and quantum phase transitions: quantum latency. Phys. Rev. E 89, 250602 (2014)

29. A. Sindona, J. Goold, N. Lo Gullo, F. Plastina, Statistics of the work distribution for a quenched
fermi gas. New J. Phys. 16, 045013 (2014)

30. S. Paganelli, T.J.G. Apollaro, Irreversible work versus fidelity susceptibility for infinitesimal
quenches. Int. J. Mod. Phys. B 31, 1750065 (2017)

31. F. Cosco, M. Borrelli, P. Silvi, S. Maniscalco, G. De Chiara, Non-equilibrium quantum ther-
modynamics in Coulomb crystals. Phys. Rev. A 95, 063615 (2017)

32. T.J.G. Apollaro, G. Francica, M. Paternostro, M. Campisi, Work Statistics, Irreversible Heat
and Correlations Build-up in Joining Two Spin Chains (2014), arXiv:1406.0648

33. D. Nigro, D. Rossini, E. Vicari, Scaling properties of work fluctuations after quenches at
quantum transitions, arxiv:1810.04614

34. M. Vojta, Impurity quantum phase transitions. Philos. Mag. 86, 1807 (2006)
35. A. Bayat, H. Johannesson, S. Bose, P. Sodano, An order parameter for impurity systems at

quantum criticality. Nat. Commun. 5, 3784 (2014)

http://arxiv.org/abs/1902.02672
http://arxiv.org/abs/1406.0648
http://arxiv.org/abs/1810.04614


17 Quantum Thermodynamics at Impurity Quantum Phase Transitions 373

36. L. Wang, H. Shinaoka, M. Troyer, Fate of the Kondo Effect and Impurity Quantum Phase
Transitions Through the Lens of Fidelity Susceptibility (2015), arXiv:1507.06991

37. S. Lorenzo, J. Marino, F. Plastina, G. M. Palma, T.J.G. Apollaro, Quantum critical scaling
under periodic driving. Sci. Rep. 7, 5672 (2017)

38. A. Bayat, T.J.G. Apollaro, S. Paganelli, G. De Chiara, H. Johannesson, S. Bose, P. Sodano,
Nonequilibrium critical scaling in quantum thermodynamics. Phys. Rev. B 93, 201106(R)
(2016)

39. C. Jayaprakash, H.-R. Krishnamurthy, J. Wilkins, Two-impurity Kondo problem. Phys. Rev.
Lett. 47, 737 (1981)

40. B.A. Jones, C.M. Varma, Critical point in the solution of the two magnetic impurity problem.
Phys. Rev. B 40, 324 (1989)

41. I. Affleck, A.W.W. Ludwig, Exact critical theory of the two-impurity Kondo model. Phys. Rev.
Lett. 68, 1046 (1992)

42. I. Affleck, A.W.W. Ludwig, B.A. Jones, Conformal-field-theory approach to the two-impurity
Kondo problem: comparison with numerical renormalization group results. Phys. Rev. B 52,
9528 (1995)

43. C. Sire, C.M. Varma, H.R. Krishnamurthy, Theory of the non-Fermi-liquid transition point in
the two-impurity Kondo model. Phys. Rev. B 48, 13833 (1993)

44. J. Gan, Mapping the critical point of the two-impurity Kondo model to a two-channel problem.
Phys. Rev. Lett. 74, 2583 (1995)

45. G. Zaránd, C.-H. Chung, P. Simon, M. Vojta, Quantum criticality in a double quantum-dot
system, Phys. Rev. Lett. 97, 166802 (2006)

46. E. Sela, A.K. Mitchell, L. Fritz, Exact crossover Green function in the two-channel and two-
impurity Kondo models. Phys. Rev. Lett. 106, 147202 (2011)

47. A.K. Mitchell, E. Sela, D.E. Logan, Two-channel Kondo physics in two-impurity Kondo mod-
els. Phys. Rev. Lett. 108, 086405 (2012)

48. R.-Q. He, J. Dai, Z.-Y. Lu, Natural orbitals renormalization group approach to the two-impurity
Kondo critical point. Phys. Rev. B 91, 155140 (2015)

49. S.J. Chorley, M.R. Galpin, F.W. Jayatilaka, C.G. Smith, D.E. Logan, M.R. Buitelaar, Tunable
Kondo physics in a carbon nanotube double quantum dot. Phys. Rev. Lett. 109, 156804 (2012)

50. A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, A. F. Otte, Full experimental
realisation of the two-impurity Kondo problem, arXiv:1411.4415v2

51. K. Okamoto, K. Nomura, Fluid-dimer critical point in S = 1/2 antiferromagnetic Heisenberg
chain with next nearest neighbor interactions. Phys. Lett. A 169, 433 (1992)

52. S. Eggert, Numerical evidence for multiplicative logarithmic corrections from marginal oper-
ators. Phys. Rev. B 54, 9612 (1996)

53. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett.
69, 2863 (1992)

54. U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)
55. G. De Chiara, M. Rizzi, D. Rossini, S. Montangero, Density matrix renormalization group for

dummies. J. Comput. Theor. Nanosci. 5, 1277 (2008)
56. R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, V. Vedral, Extracting quantum work

statistics and fluctuation theorems by single-qubit interferometry. Phys. Rev. Lett. 110, 230601
(2013); L. Mazzola, G. De Chiara, M. Paternostro, Measuring the characteristic function of the
work distribution. Phys. Rev. Lett. 110, 230602 (2013)

57. A.J. Roncaglia, F. Cerisola, J.P. Paz, Work measurement as a generalized quantum measure-
ment. Phys. Rev. Lett. 113, 250601 (2014); G. De Chiara, A.J. Roncaglia, J.P. Paz, Measuring
work and heat in ultracold quantum gases. New J. Phys. 17, 035004 (2015)

58. S.Y. Cho, R.H. McKenzie, Quantum Entanglement in the two impurity kondo model. Phys.
Rev. A 73, 012109 (2006)

59. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett.
80, 2245 (1998)

http://arxiv.org/abs/1507.06991
http://arxiv.org/abs/1411.4415v2


Chapter 18
Information Delocalization in Many
Body Systems: From MBL Phases
to Black Holes

Javier Martinez Magan and Simone Paganelli

Abstract This is a short review of several articles of the authors on the issue of
information delocalization in many-body physics, to appear in the proceedings of
‘Strongly Coupled Field Theories for Condensed Matter and Quantum Information
Theory’, held in Natal 2015. Motivated by problems in black hole physics, expander
graphs, and MBL phases, we developed an approach to information delocalization
based on Mutual Information (MI). Intuitively, given a subsystem A, we looks at
the support of the minimal subsystem B which is maximally entangled with A. This
support can be computed analytically for random states, setting the intuition for non-
equilibrium scenarios. We describe its behavior in a wide range of models, such as
chaotic spin chains, Many-Body-Localized (MBL) phases, and systems displaying
large-N factorization. For the last class ofmodels, and as expected from theAdS/CFT
correspondence,wefind similar resultswhen studying entropy evolution in black hole
collapse scenarios.

18.1 Introduction

The problem of quantum thermalization has a been a subject of intense debate over
more than two decades. The generic paradigm was laid down by Deutsch and Sred-
nicki [11, 42] in the early ’90s, and since then it has been analyzed in great detail
in many different contexts (see the reviews [8, 13]). The problem of thermalization
can be briefly stated as the following question: given microscopic unitarity, how do
Gibbs (or generalized) ensembles emerge? Indeed, given an initial pure state |ψ0〉,
unitary evolution would lead to
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U (t) |ψ0〉〈ψ0|U †(t) �= ρGibbs . (18.1)

Although exact thermality is out of reach, approximate thermality for certain observ-
ables O might appear at sufficiently long times,

〈ψ(t)|O |ψ(t)〉 = Tr(ρGibbs O) ± error , (18.2)

where the error should vanish in the thermodynamic limit. An interesting well known
interpretation from an information theory perspective is: if (18.2) holds for all oper-
ators in certain subalgebra A of the full operator algebra of the theory A ⊗ Ā, then
the associated reduced density matrix ρA = Tr Ā|ψt 〉〈ψt | has to be very close to the
reduced density matrix of the thermal ensemble ρ

β

A = Tr Āρβ . In terms of Von Neu-
mann entropies, defined by S(ρ) = Trρ log ρ, at sufficiently long times we expect

SA(t) = Sβ

A ± error , (18.3)

where the error should again vanish in the thermodynamic limit. On these time scales,
entanglement entropy scales linearly with the number of degrees of freedom NA, and
becomes an extensive property of the system: SA ∝ NA. The reason to expect (18.2)
and (18.3) was nicely explained in two seminal papers by Lloyd and Page [23, 35],
where the properties of typical states in theHilbert spacewere studied.One concludes
that, if the unitary evolution of the system is sufficiently chaotic so as to drive us
from the realm of simple states to the realm of random (or almost random) states,
then we expect both relations to be valid at long times.

This extensivity of entanglement entropy has become a proxy for thermal behavior
in out-of-equilibrium scenarios, and it has been studied in a wide variety of systems,
ranging from spin chains to CFT’s and black holes. In the context of black holes,
Sekino and Susskind, inspired by [18], used such entanglement extensivity to provide
the first proposed definition of what is known as the scrambling time [40]. Below, we
will call such entanglement extensivity notion as “Page-scrambling”, to distinguish it
from themodern approach/definition of information scrambling based on out-of-time
order correlation functions [32].

As it turned out, entanglement extensivity can be misleading for the following
simple reason. We might have certain classes of non-typical and far from thermal
states also showing extensive scaling. A transparent and flagrant example appears
when considering local systems on expander graphs, as described in [4]. Expanders
graphs are those graphs for which the number of boundary vertices in a certain
region scales as the total number of vertices in such region (see [24] for a complete
review). Intuitively, these are graphs for which Area ∝ Volume. Since vacuum states
of local quantum systems typically show area law entanglement, [4] concluded that
for quantum systems defined on expander graphs, vacuum states show an entangle-
ment entropy scaling extensively with the system size. Less shocking examples, but
still significant for us, are non-local systems, such as the ones described in [14] or
the more modern Sachdev-Ye-Kitaev models [20], as studied in [25–27].
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Entanglement extensivity as a proxy of thermal behavior also brings certain short-
comings when considering MBL phases. In MBL phases, vacuum states certainly do
not show extensive scaling, but quite unexpectedly, in out-of-equilibrium scenarios,
such an extensive regime is reached. This regime is expected to be associated with a
much different correlation pattern than that of random states, see [30], and this has
been a question of much debate.

Therefore, in certain situations, wemight need finer grained notions of thermaliza-
tion inmany-body quantum systems than just entanglement extensivity.Motivated by
these observations, and inspired by the approach to the information paradoxdescribed
by Hayden and Preskill in [18], in [29] we proposed a deeper approach based on
Mutual Information [29], whichwe then applied to several models [25, 27, 30], rang-
ing from MBL phases to chaotic spin chains and black holes, as we review below.

18.2 Information Delocalization Through Mutual
Information

In this section, we illustrate how both thermalization and localization processes can
be characterized by the behavior of quantum information quantities and, specifically,
the Mutual Information (MI) between two parties of the whole system under study.
Here we summarize the main ideas and give some examples, more details can be
found in [29, 30].

Consider a many-body system with a Hilbert space having a tensor-product struc-
ture of n single-particle Hilbert spaces

H = ⊗iHi i = 1, . . . , n , (18.4)

and divide it into three mutually non-overlapping subsystems A, B and C , as shown
in Fig. 18.1. To each of thesewemay associate anHermitian operator algebra (respec-
tively A ,B, C ).

Treating subsystemC as an “environment”, the amount of information shared by A
and B in a global pure state can be quantified through a distance to state factorization,
||ρAB − ρA ⊗ ρB ||. To this aim, a suitable quantity is the quantum relative entropy
S(ρA‖ρB) = Trρ(log ρA − log ρB), because it bounds other common definitions [1,
45]. Since in our case A and B are disjoint, the relative entropy coincides with the
Mutual Information between A and B, defined from the von Neuman entropy of the
reduced density matrices

I (A, B) = S(ρAB‖ρA ⊗ ρB) = SE (ρA) + SE (ρB) − SE (ρAB). (18.5)

Fig. 18.1 Pictorial scheme
of the systems considered.
Here Ā = B ∪ C
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TheMI gives the total amount of quantum correlations between two subsystems [15]
and it is a measure of how much we can learn of A by studying B and viceversa.

Once the subsystem A is fixed, for every B the subadditivity of MI leads to
an upper bound for (18.5) I (A, B) ≤ I (A, BC) = I (A, Ā) = Imax meaning that,
strictly speaking, to gain full information about A, one has to consider the whole
complementary subsystem Ā. Nevertheless, introducing a tolerance parameter ε, one
can ask which is the smallest subsystem Bc s.t. Imax − I (A, Bc) < ε. The number of
spins of this minimum Bc

Ωε
A = log2 dimHBc (18.6)

defines what we called Codification Volume (CV) of the system A [29]. It quantifies
how many spins of the system most part of information of A spreads on. Just as an
example, CV is obviously zero if the system A is disentangled from the rest of the
universe. For systems with short-range connections, where area law behavior of the
entanglement entropy is observed, the CV is expected to be of the order of the number
of nearest neighbors. More in general, the way this quantity scales with the size of
the system A provides a benchmark for processes as localization or thermalization,
as we show hereafter.

18.2.1 Random States

As a case study, we consider a system where a scrambling mechanism produces a
state which is random with respect to the Haar measure. Here the CV is given by the
average ofΩε

A over all the possible pure states ofH equally weighted. For a random
state of n qubits (with dimH = 2n) the entanglement entropy of a subsystem A of
a qubits is [35, 41]

Sa,n =
k=2n∑

i=2n−a+1

1

i
− 2a − 1

2n−a+1
, (18.7)

From this result, one can compute the average MI between A and another subsystem
B of b qubits I (A, B) obtaining

I (A, B) 


⎧
⎪⎨

⎪⎩

2a+b−2a−b

2n−a−b+1 for b < n
2 , and a + b < n

2

(2(a + b) − n) log 2 − 23b+a−22n−a−b

2n+a+b+1 for b < n
2 , and a + b > n

2

2a log 2 + 22n−a−b−22n+a−b

2n+a+b+1 for b > n
2 .

(18.8)
This structure is summarized in Fig. 18.2.

To find the CV, we fix a to be independent of n and compute the differ-
ence I (A, Ā) − I (A,B) 
 g(a)(2−2b+n − 2−n+a), where g(a) = 2a−2−a

2a+1 ∼ O(1).
Setting this quantity equal to a finite ε, independent of n, we obtain
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Fig. 18.2 The Mutual
Information of a random
state between different
subsets of the Hilbert space
is exponentially suppressed
until b + 2a = n

2 . Then it
grows linearly until
saturating to its maximum
value given by
I (A, B) = 2a. a1/n = 1/9
(continuous line)
a2/n = 2/9 (dotted line) 0

1
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[Ωε
A]average n→∞−−−→ log( g(a)

ε
)

2 log 2
+ n

2

 n

2
. (18.9)

So, for large n, in order to get a full information about a one needs to address half
of the system. This is what one also expect to find in a thermalization process.

18.2.2 Single Particle States

Another simple scenario is the single-particle limit, characteristic of the low energy
regime of certainmany-body systems (e.g. fermionic quasiparticles of Landau-Fermi
liquid, bosonic collective modes, spin-waves, etc). In this limit, it is instructive to
study analytically two possible states produced by the introduction of some type of
disorder: localized states and delocalized random states.

To such end, notice that a generic single-particle can be written as

|ψ〉 =
n∑

r=1

ψr |r〉., (18.10)

where |r〉 denotes local excitation basis | ↓〉1 · · · | ↓〉r−1| ↑〉r | ↓〉r+1 · · · | ↓〉n = |r〉.
Simple algebra shows that the entanglement entropy of any desired set of spins A is
given by

S(ρA) = −pA log pA − (1 − pA) log(1 − pA) , (18.11)

where pA = ∑
r∈A

|ψr |2.
Let’s start by analyzing 1-D localized wavefunctions which are typically char-

acterized by a peak located at a random site j0 and a localization length ξ . Seting
j0 = 0 without loss of generality we have
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ψr ∝ e−| j |/ξ . (18.12)

To calculate the CV, we consider the peak-to-volume MI between the central
site j0 = 0 (which plays the role of system A) and the set B of sites with | j | ≤ b.
Setting a suitable threshold ε, Bc can be calculated from (18.11) (see also [30]). In
the thermodynamic limit one gets

I (A, Ā) − I (A, B) = I (1,C) = ε 
 2Bc

ξ
e−Bc/ξ . (18.13)

In other words, for a localized single-particle state the CV of the peak-site is of the
order of magnitude of ξ ∼ O(1). More importantly, as a byproduct, notice that the
scaling behavior of I (1,C) provides another definition of the correlation length.
These considerations are expected to remain valid in the many particle scenario.

Now, at the opposite end of the localized/delocalized phase transition, we can
study the physical properties of typical states in the single particle subsector. Opera-
tionally, up to subleading corrections, this is achieved by assuming that the complex
amplitudes in (18.10) are gaussian random variables

[ψiψ
∗
j ] = 1

n
δi j , (18.14)

where [.] denotes the average of the random variable.
Following [26], we can compute again theMI between the first site and subsystem

B, composed by m sites. For m � 1

I (1, B) 
 m

N

m

1 − m
N

(18.15)

while, for m ∼ O(1), MI vanishes in the thermodynamic limit faster than entangle-
ment entropy itself, a hallmarck of the delocalized phase. For any desired tolerance
ε, the size of the minimum Bc containing the required information about A scales as
N in the thermodynamic limit.

18.2.3 Irreversible Growth of the CV in Chaotic Models

In a chaotic system, we expect that an initial state |ψin〉 evolves towards the sea of
random states [23]. We thus expect and irreversible growth of the CV. In order to
study such amechanism, we choose A to be the single spin on the edge site 1 of a 1-D
chaotic spin chain, the subsystem Bm to be the set of sites 2, . . . ,m, and compute
the evolution of I (A, Bm) (t).

The specific form ofΩε
1 (|ψ(t)〉) depends on the interaction structure of the theory.

In particular, Lieb-Robinson’s causality bounds [22] limit the allowed growth.
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These bounds force information to propagate inside an effective light cone, up to
exponentially suppressed corrections. For a sufficiently short amount of time, the
information associated with the first spin is expected to have reached only the second
spin and we expect:

I (A, B2)(t) 
 I (A, B3)(t) 
 · · · 
 I (A, Ā)(t) = 2SA(t). (18.16)

Then, at some t1,2 the information passes to the third spin. This moment t1,2 is
signaled by the sudden decrease of I (A, B2)(t). By now the information should be
found inside I (A, B3)(t), and adding more spins should not increase the MI, again
due to Lieb-Robinson bounds. This process should continue until saturation. The set
of characteristic time scales t1,m (when I (A, Bm)(t) begins to decrease) is clearly
related to the ability of the evolution to hide the information associated to A in bigger
and bigger subsystems.

As an example, consider the following Hamiltonian:

H = −J
n−1∑

i=1

σ z
i σ

z
i+1 + J

2

n∑

i=1

(
3σ x

i − σ z
i

)
. (18.17)

The Hamiltonian couplings are chosen so as to be far from integrability regions
[2]. We review the case of an anti-ferromagnetic initial state (for other initial
states see [29]):

|ψaf〉 = | ↑〉1 ⊗ | ↓〉2 ⊗ | ↑〉 ⊗ · · ·| ↓〉n , (18.18)

and set n = 10. The evolution of the MIs between the first site and different blocks
of spins is shown in Fig. 18.3, where the expectations previously described appear
in a transparent way.

The growth of Ωε
1 as a function of time is depicted in Fig. 18.4, for a precision

ε = 0.0001. The linear growth suggests ballistic propagation of information in the

Fig. 18.3 Temporal
evolution of the Mutual
Information between the site
1 and other possible
subsystems of the spin chain
described by (18.17) and
starting from the initial state
|ψaf〉
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Fig. 18.4 Temporal
evolution of Ωε

1 (ρ), for
ε = 0.0001 and initial state
|ψaf〉(top panel), and |ψY+〉
(bottom panel)
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system, with an associated emergent velocity. This emergent velocity is difficult to
compute in general, but can be computed systems admitting a gravity dual [33], by
means of the Ryu-Takayanagi formula [38].

Finally, it can be checked, see [29], that the process tends to the random state
structure described earlier. In particular, theMutual Information at stationarity shows
the same pattern as in (18.2).

18.2.4 Many-Body-Localized Phases

The onset of localization thwarts strong volume-like entanglement, characteristic
of systems satisfying the Eigenstate Thermalization Hypothesis. Such chaotic/MBL
phase transitions in the eigenstate structure can be studiedwith entanglement entropy
alone, see [5], where area type law was found for the entanglement entropy in the
MBL phase. Nevertheless, product states generically evolve into volume-entangled
linear combinations of weakly entangled eigenstates, and in these scenarios, our
approach might help to unravel the precise structure of information (de)localization.

To this end consider the Hamiltonian studied in [34, 46]:

H =
n−1∑

i=1

J⊥(σ x
i σ x

i+1 + σ
y
i σ

y
i+1) + Jzσ

z
i σ

z
i+1 +

n∑

i=1

hiσ
z
i , (18.19)

where Jz/J⊥ = 0.2 and hi is a random variable with uniform probability distribution
in the range [−η, η]. In the numerical simulations we diagonalize the Hamiltonian
exactly, with n = 8 spins, and average over 1.000 repetitions. When studying the
deep MBL phase we will set η = 6 [34].

The structure of the MI I (1, B) for eigenstates is depicted in Fig. 18.5 (green
line). Typically, the information shared by spin 1 is mostly contained in spin 2. QI is
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Fig. 18.5 The structure of
Mutual Information between
the first spin and different
size adjacent blocks of spins
associated to: the average
over the eigenstates of the
MBL Hamiltonian (18.19)
(green); a random state in the
Hilbert space (blue); the
average over the eigenstates
of a non-integrable
Hamiltonian (red)
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stored locally within nearest neighbors. This was expected from the area law found
in [5].

More interesting is to analyze the time evolution of certain product states realizable
experimentally [34]. Defining:

|ψ〉θ = cos

(
θ

2

)
| ↓〉 + i sin

(
θ

2

)
| ↑〉 , (18.20)

we study the following family of initial states parametrized by θ (Fig. 18.6):

|Ψθ 〉 = |ψ〉θ ⊗ |ψ〉π−θ ⊗ |ψ〉θ ⊗ |ψ〉π−θ⊗
|ψ〉θ ⊗ |ψ〉π−θ ⊗ |ψ〉θ ⊗ |ψ〉π−θ , (18.21)

with 0 ≤ θ ≤ π
2 . The interesting aspect of this family is that it smoothly interpolates

between the “antiferromagnetic” state, for θ = 0, and a product of all spins pointing
in the positive y direction for θ = π

2 . The evolution of the multipartite entangle-
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Fig. 18.7 Codification
Volume, for ε = 0.3, as a
function of θ at stationarity
for a many-body-localized
Hamiltonian
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ment structure of these two states was studied in [29] for the case of a quantum
chaotic Hamiltonian, and in both cases information fully delocalizes at long times.
On the other hand, for the MBL phase, the MI at stationarity for each initial state
|Ψθ 〉 shows an interesting pattern (18.6). The antiferromagnetic θ = 0 case is the
horizontal lower line. As we increase θ the structure of MI keeps approaching the
structure of the random state [29], which appears also in the figure as the higher
line. In a chaotic/delocalized phase, all initial states would collapse to the random
expectation. Finally, the delocalization properties can be also studied by establishing
certain tolerance ε and finding the codification volume Bc. For ε = 0.3 the result is
given in Fig. 18.7.

From (18.6) and (18.7), it is transparent that the amount of delocalization of
quantum information in the MBL phase is directly controlled by θ and thus strongly
depends on the initial state. This is an interesting peculiar phenomenon of MBL
phases which could be studied experimentally as well.

18.3 Large-N Models and Black Holes

One of the main motivations to develop the previous approach to quantum thermal-
ization was to discuss finer grained aspects of information dynamics in black hole
physics. In most contexts, black holes are described by distinct classes of large-N
theories, such as matrix models [3], gauge theories [12, 16, 31] or the recent SYK
[20, 39]. As emphasized in [40], such models share a common aspect: their Hamil-
tonians couple every degree of freedom with every other. We expect this observation
to have generic consequences for their associated information dynamics.

Studying Mutual Information and entanglement dynamics in such systems seems
quite challenging at first sight. It would be of great help to have a simple example in
which computations can be done explicitly, but that still contains the generic features
governing the physics in all othermodels. In [26, 27] one of us proposed that a system
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of N fermions with gaussian random interactions would suffice for these purposes.
It was later shown in [28] that such expectations turn out to be true in more realistic
and strongly interacting models, such as SYK. Finally, some of these aspects of
information dynamics were studied in the context of black holes in general relativity
in [19], by using the Bekenstein-Hawking formula, where a quite striking match was
found. This section describes these advances from a unified perspective.

18.3.1 Random Free Fermions

A system of random free fermions is described by the following (dimensionless)
Hamiltonian:

H =
N∑

i=1

c†i ci + η

N∑

i, j=1

c†i Vi j c j , (18.22)

where c†i and ci create/annihilate spinless fermions and η controls the relative size of
interactions. ThematrixV is a randommatrix taken from theGOEensemblewith zero
mean and unit variance (see [17, 43, 44] for different accounts on randommatrices).
This model can be solved by exact diagonalization of V . If ψa are the eigenvectors

of V with eigenvalues εa , and we define da ≡
N∑
i=1

ψa
i ci , then the Hamiltonian can be

written as:

H =
N∑

a=1

(1 + η εa) d
†
a da =

N∑

a=1

Ea d
†
a da . (18.23)

Therefore, any given set A with cardinality Np of particles produces an eigenstate:

|Ψ Np 〉 =
∏

a∈A
d†
a |0〉 , (18.24)

and all eigenstates arise in this way.
It is known from the theory of random matrices [43, 44] that the eigenvectors are

distributed according to the Haar measure on the orthogonal group O(N ). For our
purposes, this just mean that eigenvectors are normalized random vectors. Mathe-
matically:

[ψa
i ] = 0 [ψa

i ψb
j ] = 1

N
δab δi j , (18.25)

where [p] denotes the average of the random variable p over the random matrix
ensemble associated to V . The average two point function in an eigenstate with Np

particles is therefore:
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[CΨ
i j ] = [〈Ψ Np |c†i c j |Ψ Np 〉] =

⎡

⎣
N∑

a,b= 1

ψa
i ψb

j 〈Ψ Np |d†a db|Ψ Np 〉
⎤

⎦ =
∑

a∈A
[ψa

i ψa
j ] = Np

N
δi j ,

(18.26)
where the last sum runs over the subset A of particles chosen for |Ψ Np 〉. Since
the system is gaussian, the EE and MI can be directly obtained from the two point
function [36]. Given a subsystem A with m degrees of freedom, and the covariance
matrix CΨ

i j = 〈Ψ |c†i c j |Ψ 〉, where i, j ∈ A, the entanglement entropy is given by:

SA = −
m∑

i=1

(λi log λi + (1 − λi ) log(1 − λi )) , (18.27)

where the λ’s are the eigenvalues of CΨ . Such spectrum is not always possible to
find analytically. We can compute it two standard limiting cases: the thermal regime
Np � 1, and the single particle sector Np = 1, which was described above. For
the explicit computations we refer to [26]. For Np � 1, and m � Np, which is the
interesting regime in relation to black holes, it can be shown that:

[SΨ Np

m ] = m S
Np

1 − m2

2(N − Np)
, (18.28)

where:

S
Np

1 = −Np

N
log

Np

N
−

(
1 − Np

N

)
log

(
1 − Np

N

)
, (18.29)

This last expression can just be seen as a thermal entropy per degree of freedom,
since Np (the total energy) can be related to an effective emergent temperature [26].
The second term in (18.28) can be seen as a small deviation from thermal behavior.
This behavior was already discussed in section (18.2), when considering full-fledge
random states in the Hilbert space. Only the size of the deviations from thermality
changed, and the MI behaves qualitatively as in (18.8).

We now discuss out-of-equilibrium processes. Beginning with an initial state with
N̄ excited oscillators:

|Ψin〉 = c†1 c
†
2 . . . c†

N̄
|0〉 , (18.30)

and writing the unitary evolution in the decoupled oscillator basis d†
a :

|Ψ (t)〉 =
∑

j,k,...,l

ψ
j
1ψk

2 · · ·ψ l
N̄
ei t (E j+Ek+···+El )d†

j d
†
k · · · d†

l |0〉 . (18.31)

allows to write the covariance matrix as:
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Ci j (t) = 〈Ψ (t)| c†i c j |Ψ (t)〉
=

∑

j,l;k,m;n,p

ψ
j
1 · · · ψ l

N̄
ψk

1 · · · ψm
N̄
ψn
i ψ

p
j e

−i t (E j+···+El−Ek−···−Em ) ×

× 〈0| d j . . . dl d
†
n dp d

†
k . . . d†

m |0〉 . (18.32)

But since eigenvectors of random matrices are almost random vectors, it is simple
to conclude that on average:

i �= j −→ [Ci j (t) ] = 0 . (18.33)

The only surviving entries are the diagonal ones, the expectation values of all number
operators. The effective permutation symmetry of the Hamiltonian (18.22) implies
that the relaxationof initially excited particles is the same for all of them [〈c†↑c↑〉](t) =
n↑(t), and the same holds for the initially non-excited ones [〈c†↓c↓〉(t)] = n↓(t). Up
to small deviations, entanglement entropy simply evolves as:

[SA] = −
M∑

i=1

[ni (t) log ni (t) + (1 − ni (t)) log(1 − ni (t))] . (18.34)

Entanglement entropy is extensive all times, and so the MI and codification volume
behave in the same way as for random state.

Given formulas (18.26), (18.28), (18.33), (18.34), we can now summarize the
features we expect to remain valid in realistic models, like SYK or large-N gauge
theories:

• Entanglement entropy is extensive at all times and its functional form is that of
(18.34), in terms of occupation numbers.

• Information is delocalized instantaneously at all times, as defined by MI in
section (18.2).

• The reason is that the mean field approximation becomes exact in the thermody-
namic limit.

In the next section, we review a more abstract (but generic) method that was used in
[28] to prove these aspects in realistic, strongly interacting black hole models.

18.3.2 K-Body Ensembles, SYK and de Finetti Theorems

The easiest generalization of the random free fermion models is to the so-called
random k-body ensembles [6, 21], defined by the following Hamiltonian:

H =
∑

1≤i1<···<ik≤N
1≤ j1<···< jk≤N

Ji1···ik ; j1··· jk c
†
i1

· · · c†ik c j1 · · · c jk . (18.35)
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Each term of the Hamiltonian contains k annihilation/creation operators, and
Ji1···ik ; j1··· jk are random numbers with the only constraint of ensuring a hermitian
Hamiltonian. A cousin model is the SYK model [20, 39]:

H = i k/2
∑

1≤i1<···<ik≤N

Ji1···ikχi1 · · · χik , (18.36)

containing N Majorana fermions interacting through random k-body interactions.
Strikingly, this is arguably the best toy model of black hole physics, given that it
saturates the bound on chaos [20, 32].

The crucial observation for our concerns is that both models show an emergent
O(N ) symmetry on average, which contains the permutation group as a subgroup.
Such feature turns out to severely constrain the state structure, as dictated by the so-
called de-Finetti theorems [10]. The application of this theorem to large-N theories
and gravity was described by one of us in [28]. We briefly review the theorem and
main results here.

The classic version of the theorem is very old [10]. It considers probabil-
ity distributions pN (x1, x2, . . . , xN ) invariant under permutations. Such distribu-
tions are “M-exchangeable” if there is another permutation symmetric distribution
pM(x1, x2, . . . , xM) of M > N variables satisfying pN (x1, x2, . . . , xN ) = trM−N

pM(x1, x2, . . . , xM). If there exists such extended distribution for any M , we say
pN to be infinitely exchangeable. The theorem asserts that infinitely exchangeable
distributions are convex combinations of identically distributed uncorrelated ones:

pN (x1, x2, . . . , xN ) =
∫

dμ[p(x)] p(x1)p(x2) · · · p(xN ) . (18.37)

In the previous formulaμ[p(x)] is ameasure on the space of probability distributions
of one variable. If pN is only M-exchangeable, such convex combination is just
an approximation with an error depending on the ratio N/M . Theorem 18.37 is a
paradigmatic result, showing howglobal symmetries can constrain the state structure.

We apply this theorem to SYK type models here, but as described in [28] other
large-N models can be considered as well. Consider again the state (18.30) in which
the first N fermions has been excited. Unitarily evolving with (18.36) or (18.35) and
averaging, it can be shown that [25]:

[ρ(t)] = [U (t)|ψin〉〈ψin|U †(t)] =
∑

a1a2···aN
pa1a2···aN (t)|a1a2 · · · aN 〉〈a1a2 · · · aN | ,

(18.38)
On average, only the diagonal entries pa1a2···aN (t) ≡ [|〈a1a2 · · · aN |U (t)|ψin〉|2] sur-
vive. Decoherence work at all times at a microscopic level. Therefore, the reduced
density matrix of the initially excited fermions reads:

[ρ A(t)] =
∑

a1a2···aN
pa1a2···aN (t)|a1a2 · · · aN 〉〈a1a2 · · · aN | , (18.39)
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Since ρ A
in = |11 · · · 1N 〉〈11 · · · 1N | and the evolution display permutation symmetry,

the diagonal probability distribution pa1a2···aN (t) is permutation invariant, and the
theorem (18.37) applies:

[ρ A] 

∑

a1a2···aN

∫
dμ[p, t] p(a1)p(a2) · · · p(aN )|a1a2 · · · aN 〉〈a1a2 · · · aN | ,

(18.40)
withμ[p, t] is a time dependent measure on the space of binary distributions. Binary
distributions are just specified by a real number p ∈ [0, 1]. Setting ρ(p) = p|0〉〈0| +
(1 − p)|1〉〈1| we find:

[ρ A(t)] 

∫

dμ[p, t]ρ(p)⊗m . (18.41)

The first conclusion is that SYK states are close to separable (classical mixtures) at
all times. There is very little quantum entanglement in the large-N limit. In regards
to entropy evolution we find:

m
∫

dμ[p, t]S(ρ(p)) ≤ S(ρ A(t)) ≤ m
∫

dμ[p, t]S(ρ(p)) + S(μ[p, t]) .

(18.42)
Since S(μ[p, t]) does not increase with m, entropy evolution is extensive at large
m.1 We conclude that large and small subsystems share the same characteristic time
scales, those of μ[p, t]. In particular, two point functions are controlled by μ[p, t],
and therefore they decay time scale controls the relaxation time scale of the global
system as well. This is intimately connected with the fact that information spreads
instantaneously over all degrees of freedom. In the next section wewill see how these
aspects show in real black hole models.

18.3.3 Black Holes

Themain conclusion of the previous approach to information dynamicswhen applied
to a black hole like system (large-N theories), is that information delocalizes instan-
taneously, entanglement entropy evolves extensively and the process relaxes in a time
scale controlled by that of a single degree of freedom. In collaboration with Aron
Jansen, in [19] we checked these aspects in exact black hole collapse scenarios in
general relativity. We accomplished this by numerically computing the Bekenstein-
Hawking entropy formula, which in units of the Planck length is just:

SBH = A

4
, (18.43)

1Such relation can be used to bound the quantum distance to the maximally mixed state, see [28].
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More concretelyweconsideredGRcoupled to a scalar field, and choose an initial state
containing a black hole with entropy Si = Ai/4 and a scalar field profile containing
enough energy to backreact on the geometry.As time evolves the scalar field collapses
towards the black hole, increasing its entropy to Sf = Af/4. Here we will quote the
main results.

First, it is remarkable that extensivity in the entropy evolution follows directly
from (18.43), since given any two disconnected horizon patches A and B:

SA ∪B (t) = SA (t) + SB (t) . (18.44)

Mutual information between different horizon patches thus vanishes at all times, and
the structure of information delocalization is akin to that found for SYK typemodels,
including the statement that the characteristic time scale for global relaxation does not
depend on the size of the chosen patch. To find such characteristic time scale we need
the specific law governing the evolution of geometric quantities near equilibrium. In
this regime the scalar field is described by so-called quasinormal modes, see [7] for
a review, which behave as damped harmonic oscillators,

φ(r, t) = Ae−ωIt (cos(ωRt+δ)φI (r)+sin(ωRt + δ)φR(r)) . (18.45)

Although there is a whole spectrum of quasinormal frequencies, at late times only
the lowest mode ω = ωR + i ωI survives. For different reasons, it turns out that the
correct ansatz for the black hole entropy near equilibrium is:

δS(t) ≡ Sf − S(t) = A e−2ωIt (cos(2ωRt + δ) + B ) , (18.46)

whereω is the lowest quasinormalmode, and A and δ parametrise the initial amplitude
and phase. The damping shift B, on the contrary, does not depend on the initial
conditions and its physics is still to be understood. Quite strikingly, for apparent
horizons it is such that oscillations saturate hawking area theorems [19], and it might
be a good smoking gun for microscopic models of black holes. Luckily, on a first
approach, it is not needed for connection the information/entropy dynamics of black
holes and microscopic models.

The previous ansatz was numerically confirmed in different space-time dimen-
sions and for different scalar field masses in [19]. It matches the one expected from
the results of the previous section. Formulas (18.34) and (18.28) relate the evolution
of the entropy to the evolution of the number operator. This happens for gauge the-
ories as well [27]. Since number operators arise by squaring fields, they decay with
twice the lowest quasinormal frequency, as in (18.46).
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18.4 Summary and Discussion

In this article, we have reviewed an approach to quantum thermalization developed in
[29], and its subsequent application to different examples, such as local spin systems,
MBL phases, large-N theories and black holes [26–28, 30].

The approach is based on Mutual Information. Intuitively, given a subsystem
A, it asks for the support of minimal size subsystem B maximally entangled with
A. There were various motivations to study this object. First, the approach to the
information paradox developed by Hayden and Preskill in [18], based on the struc-
ture of entanglement and quantum information in random subsystems (or systems
undergoing random Hamiltonian evolution) naturally leads to these considerations.
Second, it complements the study of entanglement entropy, which has been exten-
sively explored in the context of quantum thermalization. In such a context, and at
least for sufficiently chaotic systems, such entropy is expected to saturate to the ther-
mal one, and therefore become extensive in the subsystem size. On the other hand,
this extensivity does not grant the system to be “thermalized”, and more proxies are
needed. The pattern of Mutual Information contributes to a deeper understanding of
the state structure, at least for certain systems.

This approach can be analytically considered for random states (18.2) and sets
the intuition for more realistic ones. The conclusion, as expected, is that the support
is of the order of the entropy of the system. Such observation sets the expectations
for chaotic systems at late times, which has been confirmed above (18.2.3). From
a different perspective, such pattern of Mutual Information can be used to define
notions of correlation lengths in local systems and it is useful for the chaotic/MBL
phase transition, as discussed above.

Finally,wewent out and study these quantities, including entanglement entropy, in
microscopic models of black holes, such as SYK and gauge theories.We also studied
them in black holes themselves, by using the Bekenstein-Hawking formula. The key
was to find a simple system, that of random free fermions, in which computations
are transparent enough, but that still contains the generic aspects to be extracted.
Unluckily, the results, in this case, do not really allow to distinguish the approach
based on entanglement entropy to that based on Mutual Information. This is because
Mutual information vanishes at all times, implying that information instantaneously
delocalizes over the system. To unravel further patterns of information dynamics
in black hole physics one needs even finer quantities, such as out-of-time ordered
correlation functions [32]. These quantities do not really tell us about how quantum
information delocalizes over the different degrees of freedom in the system, but how
it gets hidden in increasingly growing operators, as described in [37].

Acknowledgements Javier Magan work is supported by an It From Qubit grant by the Simons
foundation.
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Chapter 19
Breaking the Area Law: The Rainbow
State

Giovanni Ramírez, Javier Rodríguez-Laguna and Germán Sierra

Abstract An exponential deformation of a 1D critical Hamiltonian, with couplings
falling on a length scale h−1, gives rise to ground states whose entanglement entropy
follows a volume law, i.e. the area law is violated maximally. The ground state is
now in the so-called rainbow phase, where valence bonds connect sites on the left
half with their symmetric counterparts on the right. Here we discuss some of the
most relevant features of this rainbow phase, focusing on the XX and Heisenberg
models. Moreover, we show that the rainbow state can be understood either as a
thermo-field double of a conformal field theory with a temperature proportional to h
or as amassless Dirac fermion in a curved spacetimewith constant negative curvature
proportional to h. Finally, we introduce a study of the time-evolution of the rainbow
state after a quench to a homogeneous Hamiltonian.

19.1 Introduction

Quantum many-body systems are models which allow us to illustrate important
notions about macroscopic physics, e.g. magnetic behaviour, in terms of micro-
scopic elementary interactions between the constituents of that system. In addition
to their physical interest, the development of new methods for their study has given
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an impulse to other fields such as quantum integrability [1], quantum groups [2],
quantum computation and information [3] or quantum simulators [4].

Early studies of many-body quantummechanics used to make the assumption that
each particle moves under the effective field created by all the others, i.e. Hartree-
Fock or mean-field typemethods [5]. These techniques are very successful to explain
many properties of electrons in solids, through the use of the Fermi liquid approx-
imation or Density Functional Theory [6, 7]. Nonetheless, they are unable to take
completely into account the effect of strong correlations, which are a key in many
magnetic properties of materials, superconductivity [8, 9], quantum Hall effect [10]
or topological insulators [11].

Furthermore, the advent of new technologies such as cold atoms in optical lattices
or trapped ions [12, 13], allows to engineer quantum systems in which strong corre-
lations are not avoided, but looked for. The reasons can be to mimic other quantum
systems or to harness the specific effects of quantum correlations to profit from them,
building better computation and communication technologies.

Quantum entanglement is defined as the property of those pure states which do
not allow a description as product states, i.e. non-factorizable states. For a composite
system divided in two parts A and B with Hilbert spaceH = HA ⊗ HB , a factoriz-
able state can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉, where states |ψA〉 and |ψB〉 describe
A and B respectively. Factorizability of states can be determined using the Schmidt
decomposition [14], all states inH can be expressed as

|ψ〉 =
χ∑

i=1

λi |ai 〉 ⊗ |bi 〉 ,

where |ai 〉 and |bi 〉 are orthonormal states of HA and HB respectively, and the
Schmidt coefficients λi ∈ R+ and

∑
i λi = 1. The Schmidt number (or Schmidt

rank) χ is bounded by the dimension of Hilbert spaces of A and B, i.e. χ ≤
min{dim{HA}, dim{HB}}. A state is factorizable if χ = 1, and if χ > 1 the state is
entangled.

Factorizability defines absence of entanglement. In order to quantify entanglement
it is convenient to consider an observer which is only allowed to access subsystem
A. Even when the global state is pure, |ψ〉, the subsystem accessible to A can be
mixed. Thus, its quantum-mechanical description is performed via a reduced density
matrix ρA = Tr Ā |ψ〉〈ψ |, where Ā is the complementary of subsystem A. We define
the von Neumann’s entropy of this reduced density matrix

SA = −tr {ρA log (ρA)} .

Let us remark that for a pure state, SA = SB . The von Neumann’s entropy satisfies
SA ≥ 0, with SA = 0 only for factorizable states. Von Neumann’s entropy is also
called the entanglement entropy (EE).

Why is SA called an entropy? There is a deep relation with the concept of entropy
in statistical mechanics and information theory. Indeed, von Neumann’s entropy is a
quantum analogue of Gibbs entropy. But in contrast, it is not related to thermal fluctu-
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ations. The EE can be argued to measure quantum correlations between subsystems.
In classical information theory, the action of sending a message is also viewed as the
action of correlating the sender and the receiver. The average amount of information
contained in that message is measured with Shannon’s entropy [15]. Von Neumann’s
entropy is just Shannon’s entropy of the eigenvalues of the reduced density matrix,
which can be regarded as a probability distribution. Quantum information theory
builds upon this deep relation between entanglement and information.

The goal of this paper is to present some details of the rainbow model and then to
summarise some results previously obtained. This work is organised as follows. First
we present the rainbowmodel and some details of the concentric valence bond states.
After that, we present a summary of the results previously obtained, we include the
references where more details were discussed.

19.2 Concentric Valence Bond States

Consider a spinless fermion chain of L sites, whose dynamics is described by the
Hamiltonian

H = −
L∑

i=1

ti c
†
i ci+1 + h.c. (19.1)

where ti represents the hopping amplitudes between sites i and i + 1, c†i and ci are,
respectively, the fermionic creation and annihilation operators on site i , which satisfy
anticommutation relations: {c j , c†k} = δ jk , {c j , ck} = {c†j , c†k} = 0.

Hamiltonian (19.1), which is quadratic in fermionic operators, is also called free
fermion Hamiltonian. Moreover, free fermion Hamiltonians are solvable in terms
of single-body states that are occupied by particles which move independently of
each other. Diagonalising the hopping matrix, Ti j = ti (δ j,i+1 + δ j,i−1), T vk = εkvk ,
allows to obtain the single-body energy levels, εk , and the single-body modes, vk,i ,
which determine a canonical transformation

b†k =
∑

i

vk,i c
†
i , (19.2)

where vk,i is an unitary matrix, thus the new operators b†k also follow fermionic
commutation relations, i.e. bk are also fermionic operators.

All eigenstates of the Hamiltonian (19.1) have the form

|ψ〉 =
∏

k∈Ω

b†k |0〉 , (19.3)

where Ω is a subset of {1, · · · , L} denoting the occupied modes and |0〉 is the Fock
vacuum, which is annihilated by the operators ci . The energy for the state (19.3) is
E = ∑

Ω εk . Therefore, the ground state (GS) is given by filling up all modes with
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lowest energy, i.e. Ω = {k | εk < 0}. In absence of diagonal terms in the hopping
matrix T , particle-hole symmetry forces εk = −εL+1−k , so the number of particles
of the ground states is |Ω| = nF = L/2, i.e. we will operate at half-filling.

The correlation matrix,C , has elements defined byCi j ≡ 〈GS| c†i c j |GS〉, which,
in terms of the single-body modes is

Ci j =
nF∑

k=1

v̄k,i vk, j . (19.4)

Let us now describe the family of local Hamiltonians whose GS approaches
asymptotically the rainbow state . For bookkeeping convenience, let us number the
sites as half-integers from −(L − 1)/2 to (L − 1)/2, and the corresponding links as
integers, see Fig. 19.1. The rainbow Hamiltonian then reads

H ≡ − J

2
c†1

2
c− 1

2
− J

2

L− 3
2∑

i= 1
2

e−hi
[
c†i ci+1 + c†−i c−(i+1)

]
+ h.c. (19.5)

where h ∈ R+ is the inhomogeneity parameter, and we may also define α ≡
exp(−h/2), as it is done in Fig. 19.1. Via the Jordan-Wigner transformation, this
Hamiltonian is equivalent to the XX model for a spin-1/2 chain. For h = 0 we
recover the standard uniform 1D Hamiltonian of a spinless fermion model with open
boundary conditions (OBC). Its low energy properties are captured by a conformal
field theory (CFT) with central charge c = 1: the massless Dirac fermion theory, or
equivalently (upon bosonization) a Luttinger liquid with Luttinger parameter K = 1.

For h 	 1 we obtain the Hamiltonian used to illustrate a violation of the area
law for local Hamiltonians [16]. On the other hand, for h < 0 and truncating the
chain to the sites i > 0, one obtains a Hamiltonian which has the scale-free structure
of Wilson’s approach to the Kondo impurity problem [17]. Models where ti is a
hyperbolic function of the site index i were considered in order to enhance the
energy gap [18].

− 11
2 − 9

2 − 7
2 − 5

2 − 3
2 − 1

2 + 1
2 + 3

2 + 5
2 + 7

2 + 9
2 + 11

2
α9 α7 α5 α3 α1 α0 α1 α3 α5 α7 α9

Fig. 19.1 Rainbow state representation, showing the (−k,+k) valence bonds above the central
link. Each bond contributes as log(2) to the entanglement entropy, thus the entanglement entropy
of the left (or right) half of the chain is L log 2. The hopping amplitudes are given in terms of
α = exp(−h/2)
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It is worth to notice the striking similarity between our system and the Kondo
chain [19]. Indeed, let us divide our inhomogeneous chain into three parts: central
link, left sites and right sites. The left and right sites correspond, in our analogy,
to the spin up and down chains used in Wilson’s chain representation of the Kondo
problem. In both cases, they form a system of free fermions, with exponentially
decaying couplings. In the Kondo chain, notwithstanding, the central link becomes
a magnetic impurity, which renders the full system non-gaussian.

19.3 Results

In a first paper [20] we analysed the deformation of the critical local 1D Hamiltonian
to explore a smooth crossover between a log law and a volume law for the EE. We
presented the details of the Heisenberg XX model. The value h = 0 corresponds to
the uniform model, which is described by the CFT, and whose entanglement entropy
could also be obtained bymeans of the Fisher-Hartwig conjecture [21]. In the h → ∞
limit the GS becomes the rainbow state.

We used a graphical representation for the correlation matrix which operates as
follows. For any matrix element, Ci j , we draw a line inside the unit circle with a
colour which marks the strength of the correlation between those points. A finitely-
correlated state will be characterised by a correlation matrix whose representation is
given by short lines which do not go deep inside the unit circle. A conformal state,
with infinite correlation length, is characterised by a certain self-similar structure in
the geodesic pattern. Realisations of the rainbow state correlations are also very easy
to spot. Figure 19.2 shows the structure of the correlation matrix for a 1D system
with periodic boundary conditions (PBC) for a different systems. The intensity of
each line connecting two sites is related to

∣∣Ci j

∣∣.
We studied numerically the EE of blocks containing 
 sites starting from the left

extreme of the chain within the GS of Hamiltonian (19.5). For large values of h we
observe a characteristic tent shape in the EE, i.e. an approximately linear growth up
to 
 = L followed by a symmetric linear decrease, giving the volumetric behaviour.
Figure 19.3 shows the EE for different values of h for a system of N = 32 sites. As
the value of h decreases, the slope decreases and ripples start to appear and for h = 0
they recover the parity oscillations characteristics of the von Neumann entropy with
OBC. For positive h, the slope was empirically shown to be given by h/6.

The analysis of the entanglement spectrum showed very interesting connections
between conformal growth S ∼ log(L) and volumetric growth S ∼ L . Indeed, the
spectrum is approximately equally spaced, with an entanglement spacing ΔL that
decays with the system size as 1/ log(L) at the conformal point and as 1/L for
rainbow system.We have also found that the EE is approximately proportional to the
inverse of the entanglement spacing, in wide regions of the parameter space, which
generalises previous known results for critical and massive systems.
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Fig. 19.2 Structure of the correlation matrix defined by the elements Ci j for a system of N = 32
with periodic boundary conditions. Left: for a homogeneous system. Right: for a rainbow system
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Fig. 19.3 Block entropy S
, for a system of size L = 16 (32 sites). Notice the tent shape appear
for small inhomogeneities in the system, denoting volumetric growth of the entanglement entropy

In a second paper we have extended the analysis using field-theory methods [22].
We showed that the system can be described as a conformal deformation of the
homogeneous case h = 0, given by the following transformation

x̃ = sign(x)
eh|x | − 1

h
, (19.6)

which maps the interval x ∈ [−L , L] to x̃ ∈ [−L̃, L̃], where L̃ = (ehL − 1)/h.
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If we expand the local operators cn into slow modes, ψR(x) and ψL(x) around
the Fermi points ±kF

cn√
a

� eikF xψL(x) + e−ikF xψR(x) , (19.7)

located at the position x = an ∈ (−L ,L ), where a is the lattice spacing andL =
aL and, at half-filling kF = π/(2a) is the Fermi momentum. With this expansion
we were able to obtain the Hamiltonian

H � i
∫ L̃

−L̃
dx̃

[
ψ̃

†
R∂x̃ ψ̃R − ψ̃

†
L∂x̃ ψ̃L

]
, (19.8)

which represents the free fermion Hamiltonian for a chain of length 2L̃ under trans-
formation (19.6) with the the fermion fields given by

ψ̃R,L(x̃) =
(
dx̃

dx

)−1/2

ψR,L(x) . (19.9)

Thus, using conformal invariance and substituting L by L̃ , we were able to transform
the EE for a block of one-half of the critical system [23]

SCFT
L = c log(L)/6 + c′ , (19.10)

into the EE of the rainbow system

SL = c

6
log

(
ehL − 1

h

)
+ c′ , (19.11)

which is shown in Fig. 19.4 as a function of the half-chain size to check the theoretical
prediction for different values of h.

We also showed that the corresponding conformal transformations suggests the
definition of a temperature T = 1/β = h/(2π). Based on the entanglement spec-
trum, which is given the eigenvalues of the entanglement Hamiltonian

HE =
∑

p

εpb
†
pbp + f0 , (19.12)

where bp and b†p are fermion operators and the entanglement energies are given
approximately by

εp � ΔL p, for p =
{± 1

2 ,± 3
2 , . . . ,± L−1

2 , L : even ,

0,±1,±2, . . . ,±(L − 2), L : odd ,
(19.13)
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Fig. 19.4 Comparing numerical results of the half-chain entropy of the rainbow system for different
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where the level spacingΔL is related to the half-chain entropy. Moreover, the single-
body entanglement energies fulfil

εp � βεCFT
p =

(
2π

h

) (π

L
p
)

= 2π2

z
p . (19.14)

Thus, the appearance of a volume law entropy is linked to the existence of an effective
temperature for theGS of the rainbowmodel that was finally identifiedwith a thermo-
field state

|ψ〉 =
∑

n

e−βEn/2 |n〉L |n〉R , (19.15)

where |n〉R and |n〉L correspond to the homogeneous GS for the right and left parts of
the chain with h = 0. This striking result points towards an unexpected connection
with the theory of black holes and the emergence of space-time from entanglement.
These intriguing connections were further explored within the framework of CFT
[24]. Furthermore, we also showed how the deformation on the system accounts for
the change in the dispersion relation, the single-particle wave functions in the vicinity
of the Fermi point and the half-chain von Neumann and Rényi entropies. Finally, we
show how to extend the rainbow Hamiltonian to more dimensions in a natural way
and we to checked that the EE of the 2D analogue grows as the area of the block.

In a third paper [25] we applied methods of 2D quantum field theory in curved
space-time to determine the entanglement structure of the rainbow phase.We showed
that the rainbow system can be described by a massless Dirac fermion on a Rieman-
nian manifold with constant negative curvature everywhere except at the centre,
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equivalent to a Poincaré metric with a strip removed. We used this identification to
apply CFT for inhomogeneous 1D quantum systems [26] to provide accurate predic-
tions for the smooth part of the n-order Rényi EE for blocks of different types such
as the block at the chain’s edge given by the bipartition A = [−L , x], B = [x, L]

SCFT
n (x) = n + 1

12n
ln Y (x) , (19.16)

where

Y (x) = 8e−h|x | e
hL − 1

πL
cos

(
π

2

eh|x | − 1

ehL − 1

)
, (19.17)

or for a block at an arbitrary position given by the bipartition A = [x1, x2], B =
[−L , x1] ∪ [x2, L]

SCFT
n (x1, x2) = n + 1

12n
ln 4Y (x1, x2) + En , (19.18)

where En is a non-universal constant, and with eσ = e−h|x | we have

Y (x1, x2) = eσ(x1)+σ(x2) 16L̃2

π2 cos
(

π(x̃1+x̃2)
4L̃

) sin

(
π(x̃1 − x̃2)

4L̃

)2

cos

(
π x̃1

2L̃

)
cos

(
π x̃2

2L̃

)
.

(19.19)
Furthermore, we also showed that for a physical temperature T = J (x0), i.e.

a temperature in the range of the energies spanned by the values of the hopping
amplitude for a point x0 ∈ [−L , L], the system splits into three regions: x < −x0,
x ∈ [−x0, x0] and x > x0 (cf. Fig. 19.5). The central region still behaves as if it were
at T = 0 while the two extremes as if they were at T → ∞. Thus, the entropy of a
block is obtained by adding the contributions on each region

S(x) ∼
⎧
⎨

⎩

(L − |x |) ln 2, x ∈ (−L ,−x0) ,

(L − x0) ln 2 + (x0 − |x |)h/6, x ∈ (−x0, x0) ,

(L − 2x0 + x) ln 2, x ∈ (x0, L) .

(19.20)

−L +L−x0 +x0
J � T J � T J � T

Thermal

Rainbow

Thermal

Fig. 19.5 Illustration for the finite temperature behaviour of the rainbow chain. Let us find x0 such
that T ≈ J (x0) = J (−x0). Then, for |x | > |x0|, J (x) � T and the system behaves as if it were at
infinite temperature. On the other hand, for |x | < |x0| the system behaves as if at zero temperature
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Fig. 19.6 Time evolution of the entanglement entropy. Left: for blocks of size 
 starting from the
leftmost site. Notice the time periodicity and the strict order: the entropy of a larger block is always
strictly larger than the entropy of a smaller one. Right: for the tent shape (cf. Fig. 19.3) of the
entropy

In a fourth paper [27], we study the time-evolution of the rainbow state and the
dimer state, after a quench to a homogeneous Hamiltonian in 1D. The subsequent
evolution of the EE presents very intriguing features. First, the EE of the half-chain
of the rainbow decreases linearly with time and, after it reaches a minimal value,
it increases again, eventually reaching (approximately) the initial state. Blocks of
smaller sizes only decrease after a certain transient time, which can not be explained
directly via a Lieb-Robinson bound [28], since the quench is global (cf. Fig. 19.6).
There has been experimental proposals resulting in maximal entanglement with dif-
ferent technologies [29] and simulated quench with integrated photonic chips [30].

The dimer state, on the other hand presents an opposite behaviour: the EE grows
linearly for all blocks, reaching a maximally entangled state which resembles the
rainbow state. Afterwards, the EE decreases again, cyclically. We also focus on the
correlation between pairs of sites which suggests the motion of quasiparticles.- Thus,
we will attempt a theoretical explanation in terms of an extension of the quasiparticle
picture by Calabrese and Cardy [31].
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