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Abstract. In this paper, we present new preimage attacks on
KECCAK-384 and KECCAK-512 for 2, 3 and 4 rounds. The attacks
are based on non-linear structures (structures that contain quadratic
terms). These structures were studied by Guo et al. [13] and Li et al.
[18,19] to give preimage attacks on round reduced KECCAK. We care-
fully construct non-linear structures such that the quadratic terms are
not spread across the whole state. This allows us to create more lin-
ear equations between the variables and hash values, leading to better
preimage attacks. As a result, we present the best theoretical preimage
attack on KECCAK-384 and KECCAK-512 for 2 and 3-rounds and also
KECCAK-384 for 4-rounds.
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1 Introduction

Cryptographic hash functions are widely used in modern cryptography such as in
digital signatures, message integrity and authentication. The U.S. National Insti-
tute of Standards and Technology (NIST) announced the “NIST hash function
competition” for the Secure Hash Algorithm-3 (SHA-3) in 2006. They received 64
proposals from around the world. Among these, KECCAK designed by Bertoni,
Daemen, Peeters, and Van Assche [4] became one of the candidates for SHA-3.
It won the competition in October 2012 and was standardized as a “Secure Hash
Algorithm 3” [12].

The KECCAK hash family is based on the sponge construction [5]. Its design
was made public in 2008 and since then, it has received intense security analysis.
In 2016, Guo et al. [13] formalised the idea of linear structures and gave prac-
tical preimage attacks for 2 rounds KECCAK-224/256. They also gave better
preimage attacks for KECCAK-384/512, all variants of 3-rounds KECCAK as
well as preimage attacks for 4-rounds KECCAK-224/256. Li et al. [19] improved
the complexity of preimage attack for 3-rounds KECCAK-256 by using a new
type of structure called cross-linear structure. The best-known attacks for 3 and
4 rounds KECCAK-224/256 are given by Li et al. [18] using a new technique
called allocating approach, which consists of two phases - Precomputation phase
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and Online phase. They gave the first practical preimage attack for 3-rounds
KECCAK-224. Theoretical preimage attacks for higher rounds on KECCAK are
considered in [2,7,20]. Apart from the attacks mentioned above, there are sev-
eral other attacks against KECCAK such as preimage attacks in [16,17,21,22],
collision attacks in [8–10,15,23] and distinguishers in [1,6,11,13,14].

Table 1. Summary of preimage attacks

Rounds Instances Complexity References

1 224 Practical [17]

256

384

512

2 224 Practical [13]

256 Practical

384 2129

512 2384

2 384 Time 289 [16]

Space 287

2 384 2113 Subsection 3.2

512 2321 Subsection 3.1

3 224 238 [18]

256 281

3 384 2322 [13]

512 2482

3 384 2321 Subsection 3.4

512 2475 Subsection 3.5

4 224 2207 [18]

256 2239

4 384 2378 [20]

512 2506

4 384 2371 Subsection 3.6

Our Contributions: In this paper, we give the best theoretical preimage
attacks for KECCAK-384 for 2, 3, 4 rounds and KECCAK-512 for 2, 3 rounds.
This is achieved by carefully constructing non-linear structures such that the
quadratic terms are not spread throughout the whole state and the number of
free variables in the system of equations is more. Table 1 summaries the best
theoretical preimage attacks up to four rounds and our contributions. The space
complexity is most of the attacks is constant unless it is explicitly mentioned.
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Organization: The rest of the paper contains the following sections. In Sect. 2,
we will give a brief description about KECCAK, some preliminaries and nota-
tions that are used throughout the paper and useful observations about KEC-
CAK. Section 3 contains detailed description of all our preimage attacks. Finally,
we conclude in Sect. 4.

2 Structure of KECCAK

KECCAK hash function is based on sponge construction [5] which uses a padding
function pad, a bitrate parameter r and a permutation function f as shown in
Fig. 1.

Fig. 1. Sponge function [5]

2.1 Sponge Construction

As shown in Fig. 1, the sponge construction consists of two phases - absorbing
and squeezing. It first applies the padding function pad on the input string M
which produces M ′ whose length is a multiple of r. In the absorbing phase, M ′

is split into blocks of r bits namely m1,m2, ...mk. The initial state (IV) is a b bit
string containing all 0. Here b = r + c where c is called the capacity. The first r
bits of IV is XORed with first block m1 and is given as input to f . The output
is XORed with the next message block m2 and then is given as input to f again.
This process is continued till all the message blocks have been absorbed.

The squeezing phase extracts the required output, which can be of any length.
Let � be the required output length. If � ≤ r, then the first � bits of the output
of absorbing phase is the output of the sponge construction. Whereas, if � > r,
then more blocks of r bits are extracted by repeatedly applying f on the output
of the absorbing phase. This process is repeated enough number of times until
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we have extracted at least � bits. The final output of the sponge construction is
the first � bits that have been extracted.

In the KECCAK hash family, the permutation function f is a KECCAK-f [b]
permutation, and the pad function appends 10∗1 to input M . KECCAK-f is a
specialization of KECCAK-p permutation.

KECCAK-f [b] = KECCAK-p[b, 12 + 2γ]

where γ = log2(b/25).
The official version of KECCAK have r = 1600 − c and c = 2� where

� ∈ {224, 256, 384, 512} called KECCAK-224, KECCAK-256, KECCAK-384 and
KECCAK-512.

2.2 KECCAK-p Permutation

KECCAK-p permutation is denoted by KECCAK-p[b, nr], where b ∈
{25, 50, 100, 200, 400, 800, 1600} is the length of the input string and nr is the
number of rounds of the internal transformation. The parameter b is also called
the width of the permutation. The b bit input string can be represented as a
5×5×w 3-dimensional array known as state as shown in Fig. 2. A lane in a state
S is denoted by S[x, y] which is the substring S[x, y, 0]|S[x, y, 1]| . . . |S[x, y, w−1]
where w is equal to b/25 and “|” is the concatenation function.

Fig. 2. KECCAK state [3]

In each round, the state S goes through 5 step mappings θ, ρ, π, χ and ι,
i.e. Round(S, ir) = ι(χ(π(ρ(θ(S)))), ir) where ir is the round index. Except for
χ, rest of the step mappings are linear. In the following, S′ is the state after
applying the corresponding step mapping to S, “⊕” denotes bitwise XOR and
“·” denotes bitwise AND.

1. θ: The θ step XOR’s S[x, y, z] with parities of its neighbouring columns in
the following manner.

S′[x, y, z] = S[x, y, z] ⊕ P [(x + 1) mod 5][(z − 1) mod 64]
⊕ P [(x − 1) mod 5][z]
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where P [x][z] is the parity of a column, i.e.,

P [x][z] =
4⊕

i=0

S[x, i, z]

2. ρ: The ρ step simply rotates each lane by a predefined value given in the table
below, i.e.

S′[x, y] = S[x, y] << r[x][y]

where << means bitwise rotation towards MSB of the 64-bit word.

4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y\x 0 1 2 3 4

3. π: The π step interchanges the lanes of the state S.

S′[y, 2x + 3y] = S[x, y]

4. χ: The χ step is the only non-linear operation among the 5 step mappings
due to the quadratic term.

S′[x, y, z] = S[x, y, z] ⊕ ((S[(x + 1) mod 5, y, z] ⊕ 1)·
S[(x + 2) mod 5, y, z])

5. ι: The ι step is the only step that depends on the round number.

S′[0, 0] = S[0, 0] ⊕ RCi

where RCi is a constant which depends on i where i is the round number.

2.3 Preliminaries and Notations

In this paper, we will be using the following observations made by Guo et al. [13].
The χ step mapping is a row dependent operation. Let a0, a1, a2, a3, a4 be the 5
input bits to the χ operation and b0, b1, b2, b3, b4 be the 5 output bits.

Observation 1. Let d0, d1, d2, d3, d4 be the elements of a column. Then, the
parity of column can be fixed to a constant c by choosing for any i ∈ {0, 1, 2, 3, 4}

di = c ⊕
⎛

⎝
j=4⊕

j=1

di+j

⎞

⎠
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Observation 2. If the output of χ for an entire row is known, i.e.
χ([a0, a1, a2, a3, a4]) = [b0, b1, b2, b3, b4], then we have

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4)

Observation 3. If we are given two consecutive bits bi, bi+1 of the output of χ,
we can set up the following linear equation on the input bits.

bi = ai ⊕ (bi+1 ⊕ 1) · ai+2

In the rest of the paper, all the message variables and hash values are rep-
resented in the form of lanes (array) of length 64, and we will use + symbol in
place of ⊕. For a state A, A[x, y] denotes a lane where 0 ≤ x, y ≤ 4. In all the
equations, the value inside the brackets ‘()’ indicates the offset by which the lane
is shifted. For example, A[x, y](k) denotes lane A[x, y] rotated by an offset of k.
Every operation between two lanes is bitwise.

3 Our Preimage Attacks

In this section, we present the preimage attacks for round reduced KECCAK. In
[13], the authors try to set up linear equations between message bits (variables)
and hash bits by controlling the diffusion due to θ and χ from producing any non-
linear terms. Observation 1 is used to manage the diffusion due to θ. Lanes are
fixed to constant to prevent χ from creating any non-linear terms. Furthermore,
for KECCAK-384/512, the first row of the hash digest can be inverted due to
Observation 2.

In most cases, the number of linear equations between the variables and hash
values is strictly less than the hash length. Therefore, they repeat the whole
procedure enough number of times by appropriately changing the constants in
the system of linear equations. This gives a successful preimage attack. In [18,19],
similar techniques are used to restrict χ from producing many non-linear terms.
Here, we allow χ to produce non-linear terms, but at the same time, we control
the number of non-linear terms in the state.

3.1 Preimage Attack on 2 Rounds KECCAK-512

In this subsection, we describe our preimage attack for 2-rounds KECCAK-512.
The best-known attack for this variant of KECCAK is by Guo et al. [13] with
a complexity of 2384. Their preimage attack is based on a linear structure by
keeping four lanes as variables. We give two preimage attacks using six lanes as
variables. In the first preimage attack, we keep the lanes in column 1, 3, 4 as
variables and get an attack of complexity 2337 which can be improved to 2321.
However, the second preimage attack chooses a different set of lanes as variables
and also has complexity of 2321.
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Preimage Attack with Complexity 2337: In Fig. 3, we set the lanes in column
1, 3 and 4 as variables, and the rest of the lanes are set to some constant.
Therefore, we have 6 × 64 = 384 variables. To avoid the propagation by θ in the
first round, we use Observation 1, i.e.,

⊕4
j=0 A[i, j] = αi,∀i ∈ [0, 2, 3] where αi is

some constant and hence include 3 × 64 = 192 linear constraints to the system.
Also, since the hash length is 512, we can invert the first row of the hash value
due to Observation 2.

Observe that after the application of the χ operation in the first round, state
(4) contains a lane with quadratic terms. Due to the θ of the second round, these
will get propagated only to the neighbouring columns. Hence, majority of the
lanes in the state (5) contains only linear terms. But, while equating state (6)
and state (7), we are only able to obtain 2 × 64 = 128 linear equations between
the hash values and the variables. Observe that we have set up only 320 linear
equations but have 384 variables.

Applying the techniques used in [13], we can linearize the quadratic term and
use them to create more linear equations between hash value and the variables.
Notice that in state (5), there is atmost one quadratic term in each polynomial.
This is because the state before the application of θ in the second round has only
one lane containing polynomials with only one quadratic term. More precisely,
A[4, 4] of state (4) contains a polynomial of the form p1 + p2.p3 where pi’s are
linear polynomials. This non-linear polynomial can be linearlized by adding one
more linear equation to the system, say p3 = β where β is a constant. Therefore,
if we linearize one quadratic term in state (4), we will be able to linearize 11
quadratic terms in state (5). But, only 3 out of the 11 linearized terms can
be equated to the values in state (7). Therefore, we can set up an additional
64 linear equations of which 3�64/4� = 48 equations are between message bits
and hash values. But, we need to include one more linear equation for the last
message bit to be 1 to satisfy the padding condition of KECCAK. Therefore, we
have a system of linear equation in 384 variables and 384 equations. Since, we
have 128 + 48 − 1 = 175 linear equations between hash values and variables, we
get a valid preimage with probability 1/2337.

To get a successful preimage attack, we must repeat the above procedure for
at least 2337 times where the system of linear equations are different each time.
Observe that there is enough degrees of freedom to perform this, i.e. 192 bits
from A[1, 0], A[1, 1] and A[4, 0] and 192 bits from αi for i ∈ [0, 2, 3] which sums
up to 384 bits. Therefore, we have a preimage attack for 2-rounds KECCAK-512
with complexity of 2337.

Improved Analysis: In the previous analysis, by equating state (6) and (7), we
were able to obtain 128 linear equations between the hash values and variables.
Let us now focus on the second χ operation on the second row of state (6).
Observe that the second and fourth lanes of second row in state (6) are linear
whereas we know the values of the first three consecutive lanes of the output
of the second χ operation. Using Observation 3, we can set up an additional 64
linear equations which sums up to 128 + 64 − 1 linear equations between the
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(1)

θ−→

(2)

π◦ρ−−→

(3)

ι ◦ χ

(6)

π◦ρ←−−

(5)

θ←−

(4)

=

(7)

χ−1◦ι−1

←−−−−−−

(8)

= 0

= 1

= constant

= linear

= quadratic

Fig. 3. Preimage attack on 2-round KECCAK-512

hash value and variables. Therefore, we have a preimage attack for 2-rounds
KECCAK-512 with complexity of 2321.

By choosing a different set of lanes as variables, we have another preimage
attack with complexity 2321. In Fig. 4, columns 1, 2 and 4 are set as variables and
the rest are set to constant. We also set

⊕4
j=0 A[i, j] = αi,∀i ∈ [0, 1, 3] where αi

is some constant, thus adding 192 linear equations to the system. Observe that
in this case, we can set up 3 × 64 − 1 linear equations between the hash values
and the variables. We must also include one more linear constraint for the last
bit of message to be 1 to satisfy the padding condition for KECCAK. Therefore,
we have a system of linear equation in 384 variables and 384 equations.
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(1)

θ−→

(2)

π◦ρ−−→

(3)

ι ◦ χ

(6)

π◦ρ←−−

(5)

θ←−

(4)

=

(7)

χ−1◦ι−1

←−−−−−−

(8)

= 0

= 1

= constant

= linear

= quadratic

Fig. 4. Better preimage attack on 2-round KECCAK-512

Since we are able to set up only 191 linear equations between the hash values
and the variables, we get a valid preimage with probability 1/2321. Observe that
there is enough degrees of freedom to repeat this procedure for 2321 due 192 bits
from A[2, 0], A[2, 1] and A[4, 0] and 192 bits from αi for i ∈ [0, 1, 3] which sums
up to 384 bits. Therefore, we have a preimage attack for 2-rounds KECCAK-512
with complexity of 2321.

3.2 Preimage Attack on 2 Rounds KECCAK-384

The preimage attack given by Guo et al. [13] for 2 rounds KECCAK-384 has a
complexity of 2129 by constructing a linear structure with 6×64 variables. In our
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attack, we use 8 × 64 variables as shown in Fig. 5. In-order to avoid propagation
by θ in first round, we add the following 3×64 linear constraints into the system,⊕4

j=0 A[i, j] = αi,∀i ∈ [0, 2, 3] where αi is some constant.
By equating state (5) and state (6), we get 2 × 64 = 128 linear equations

between variables and hash values. Observe that we have only set up 320 linear
equations but have 8 × 64 = 512 variables. Applying the linearization technique
used in Subsect. 3.1, we can set up an additional 3 × 64 linear equations of
which 3�(3×64)/4)� = 144 equations are between message bits and hash values.
After satisfying the padding rule, we have a complexity gain over brute force of
2128+144−1 = 2271 and hence a preimage attack of complexity 2384−271 = 2113.
Observe that we have enough degrees of freedom to repeat this procedure for

(1)

θ−→

(2)

π◦ρ−−→

(3)

ι ◦ χ

(6)

=

(5)

θ←−

(4)

ρ−1 ◦ π−1

(7)

χ−1◦ι−1

←−−−−−−

(8)

= 0

= 1

= constant

= linear

= quadratic

Fig. 5. Preimage attack on 2-round KECCAK-384
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2113 times. Note that this result cannot be compared with the preimage attack
given by Kumar et al. [16] because their attack has a space complexity of 287.

3.3 Preimage Attack for Higher Rounds

In the previous subsections, we were able to get better preimage attack due to
the fact the states are not filled with quadratic terms. If we were to find a similar
attack for 3-rounds, we need to keep the following guidelines in mind.

1. The state after the application of second θ must be sparse of lanes with linear
terms and comprised mostly of lanes with constant terms. This is because it
would lead to a state with lesser quadratic terms after the application of χ of
the second round.

2. Even if the propagation due to the θ in the third round cannot be restricted,
the state before the application of the third θ must contain all its quadratic
terms either in a single column or in two columns adjacent to each other.
This would lead to a state with at least one column containing linear terms
only after the application of θ.

3.4 Preimage Attack on 3 Rounds KECCAK-384

The following is our attack on KECCAK-384 for 3-rounds which uses two mes-
sage blocks as shown in Fig. 6. The first message block is chosen in such a way
that after the application of 3 round KECCAK on this block, we get a state
such that A[1, 3] = A[3, 3] = 0 and A[1, 4] = A[4, 4] = 1 where A is state (2)
as shown in Fig. 6. The first message block can be found by randomly choosing
24×64 message block and expecting one of them to give the required output.
This works because the output of a hash function is random and therefore the
complexity for brute force preimage attack is 1/2l where l is the number of bits
in the hash digest. The same technique has been used in [18] subsection 4.3.

The second message block contains 6 × 64 = 384 variables. We want to keep
the columns 2, 4 and 5 unchanged after the application of first θ. For this, we
first set

⊕4
j=0 A[i, j] = αi, for i ∈ [0, 2] and then set up equation between column

1 and column 3 so that column 2 does not get affected after the application of
first θ. This means that the αi’s are dependent. Similarly, c2 and c3 can be set
according to αi’s such that column 4 and 5 do not get affected after the first
θ. Therefore, we have 2 × 64 linear equations in our system. c1 can be fixed to
some randomly chosen value.

To avoid propagation after second θ, we set up 3×64 linear equations to make
the column parties equal to some constant βi. Observe that after the application
of the second χ, there are two lanes with quadratic terms in state (8). But after
the application of the third θ, the fourth column will contain only linear terms.
By equating state (9) and state (10), we can set up 63 linear equations between
message bits and hash values. Also, we have one more equation to keep the
last message bit equal to 1. Therefore, we have a preimage attack with a time
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of complexity 2384−63 = 2321 because computing the first message block has a
complexity of 2256.

Note that there are enough degrees of freedom due to the 256 bits from αi’s
and the βi’s, 64 bits from c1 and enough bits from the first message block.

3.5 Preimage Attack on 3 Rounds KEECAK-512

We use two message blocks and 4×64 = 256 variables for this attack as shown in
Fig. 7. The first message block is used so that we get enough degree of freedom
to launch a preimage attack. Observe that after the application of θ in first
round, we require certain lanes to be 1/0 in state (4). To achieve this, we first
set A[1, 0] ⊕ A[1, 1] = α1 where α1 is some constant. Then, we set up 64 linear
equations of the form

⊕4
i=0 (A[1, i] ⊕ A[3, i](1) = e2 + 1). Observe that due to

this constraint, after the application of first θ, we will get A[2, 0] = A[2, 4] = 1
and A[2, 1] = 0 where A is state (4). Similarly, by fixing x6 and x2 appropriately,
we can get the required state (4).

To avoid propagation due to the θ in second round, we add only 64 linear
equations to the system to make the parity of the first columns in state (6) as a
constant. Observe that after the application of θ of the third round, the lanes in
the first two columns will contain only one quadratic term. So, if we linearize one
quadratic term in A[2, 4] of state (9), then we have linearized five polynomials
in column 2 of state (10). Similarly, if we linearize one quadratic term in A[4, 2]
of state (9), then we have linearized five polynomial in column 1 of state (10).

But, out of these 6 linearized polynomials, only one can be used to create a
linear equation between message bits and hash value by equating state (10) and
state (11). Therefore, we have �64/2� = 32 linear equations between message bits
and hash value and hence obtained a preimage of complexity 2512−32+1 = 2481.
Due to the first message block, we have enough degree of freedom.

Improved Analysis. Observe that if we carefully linearize one quadratic term
from A[2, 4] and one from A[4, 2] of state (9), we also linearize one more polyno-
mial in column 4 of state (10), i.e. we have also linearized a polynomial in the

lane A[3, 3]. Therefore, now we have 3�64
5

� + 2 = 3 × 12 + 2 = 38. Therefore, we

have an improved preimage attack of complexity 2512−38+1 = 2475.

3.6 Preimage Attack on 4 Rounds KECCAK-384

This attack requires two message blocks and 6 × 64 = 384 variables as shown
in Fig. 8. As done in Subsect. 3.4, the first message block is found by trying
randomly many message blocks so that after the application of 4-rounds and
XORing the second message block, we get state (2). Observe that in state (2),
there are two lanes with entries c and c. We also require state (2) to satisfy one
more equation.

d(−1) + b(−2) + (g(−1) + (c + a + b)(−2))(−2) + (a + b)(1) = k (1)
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0 0

1 1

(2)

3R←−−

(1)

= 0

= 1

= constant

= linear

= quadratic

XOR 2nd mes-

sage block

1 c2 1

0 0 c3

c1

0 0

1 1

(3)

π◦ρ◦θ−−−−→

0 0 1

c2 c3 0

1

1 c1

0 1

(4)

χ−→

(5)

θ ◦ ι

(8)

ι◦χ←−−

(7)

π◦ρ←−−

(6)

θ

(9)

=

(10)

χ−1◦ι−1

←−−−−−−
ρ−1◦π−1

(11)

Fig. 6. Preimage attack on 3-round KECCAK-384

Therefore, we would require a complexity of 2128 to find the appropriate first
message block. We will use the following strategy to obtain state (3). We include
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A[0, 0] = A[0, 2] to the system of linear equations, fix x1 = 0 and randomly
assign value to x7 whereas we fix x2 = c, x3 = d, x5 = g. Since we require state
(3) after the application of θ, we have the following equations.

(a + b) + (A[2, 0] + A[2, 2] + e)(1) = c (2)

(A[2, 0] + A[2, 2] + e) + (x6 + x7 + i + j + k)(1) = g (3)

(x6 + x7 + i + j + k) + (A[1, 0] + A[1, 2] + c)(1) = b (4)

(A[1, 0] + A[1, 2] + c) + (x4 + f + h)(1) = d (5)

(x4 + f + h) + (a + b)(1) = k (6)

Therefore, we add Eqs. (7) and (9) to the system of equations and fix x6 and
x4 according to Eqs. (8) and (10). Observe that due to the following equations,
all equations from (2)–(6) are satisfied, particularly, Eq. (6) is satisfied due to
Eq. (1).

A[2, 0] + A[2, 2] = (c + a + b)(−1) + e (7)

x6 = g(−1) + (c + a + b)(−2) + x7 + i + j + k (8)

A[1, 0] + A[1, 2] = b(−1) + (g(−1) + (c + a + b)(−2))(−1) + c (9)

x4 = d(−1) + f + h + (b + x6 + x7 + i + j + k)(−2)

= d(−1) + f + h + b(−2) + (g(−1) + (c + a + b)(−2))(−2)
(10)

Also, we include 2 × 64 linear equations for restricting the propagation due
to θ in the second round. Observe that each polynomial in the state (9) has
11 quadratic terms. In [13] subsection 6.3, Guo et al. gave a technique that
carefully linearizes the quadratic terms such that if the number of free variables
is t, we can construct 2�(t − 5)/8� linear equations between hash values and the
variables. Let A denotes state (8), B denotes the state after χ of third round
and C denotes the state after θ of fourth round. From the definition of χ and θ
and neglecting ι step for the sake of simplicity,

B[x, y, z] = A[x, y, z] ⊕ (A[x + 1, y, z] ⊕ 1) · A[x + 2, y, z]

C[x, y, z] = B[x, y, z] ⊕
4⊕

y′=0

B[x − 1, y′, z] ⊕
4⊕

y′=0

B[x + 1, y′, z − 1]

We can linearize B[x−1, y, z] and B[x, y, z] by guessing the value of A[x+1, y, z]
for 0 ≤ y ≤ 4. Similarly, we can linearize B[x+1, y, z−1] and B[x+2, y, z−1] by
guessing the value of A[x + 3, y, z − 1] for 0 ≤ y ≤ 4. This helps us in linearizing
C[x, y, z], but observe that

C[x + 1, y + 1, z] = B[x + 1, y + 1, z] ⊕
4⊕

y′=0

B[x, y′, z] ⊕
4⊕

y′=0

B[x + 2, y′, z − 1]

which contain a quadratic part in B[x+1, y+1, z]. By linearizing this term, we set
up 13 linear equations of which two equations are between message bits and hash
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e1 e2 x6

x2 e2 e3

e1 e2

(3)

XOR with←−−−−−−−
2nd block

e3

e1 e2

(2)

3R←−−

(1)

θ

1 1

0 0

1 1

(4)

π◦ρ−−→

1

0 1

0 1

1

(5)

χ−→

(6)

θ ◦ ι

(9)

ι◦χ←−−

(8)

π◦ρ←−−

(7)

θ

(10)

=

(11)

χ−1◦ι−1

←−−−−−−
ρ−1◦π−1

(12)

Fig. 7. Preimage attack on 3-round KECCAK-512

values. Similarly, by carefully observing C[x+2, y+2, z−1] and C[x+3, y+3, z−1]
and linearizing them, we can set up another 8 linear equations of which two
equations are between message bits and hash values. For more details, refer [13].
In our case, the number of free variable t = 64 and therefore, we can set up 14
linear equations between message bits and hash values. Observe that we have
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x4 x6

x1 x2 x3 x5 x7

f i

a c d g j

b c e h k

(2)

4R←−−
XOR

(1)

= 0

= 1

= constant

= linear

= quadratic

θ

0 0 0

0 0 0

1 1 1

(3)

π◦ρ−−→

0 0 1

0

0 1

0

0 1

(4)

θ◦ι◦χ−−−−→

(5)

π ◦ ρ

(8)

π◦ρ◦θ←−−−−

(7)

ι◦χ←−−

(6)

θ ◦ ι ◦ χ

(9)

π◦ρ−−→

(10)

χ−1◦ι−1

←−−−−−−

(11)

Fig. 8. Preimage attack on 4-round KECCAK-384
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enough degree of freedom due to x7, the parity of the two columns of the second
θ and rest from the first message block. Therefore, the complexity of our attack
is 2371.

4 Conclusion

In this paper, we give the best theoretical preimage attacks on 2, 3 rounds
KECCAK-512 and 2, 3, 4 rounds KECCAK 384 by studying non-linear structures
carefully. It would be interesting to see whether non-linear structures along with
other techniques can be used to find better preimage attacks for higher rounds.

Acknowledgement. We would like to thank Rajendra Kumar for valuable discussions
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