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Abstract. Generalized Feistel Schemes (GFSs) are important compo-
nents of symmetric ciphers, which have been extensively studied in the
classical setting. However, detailed security evaluations of GFS in the
quantum setting still remain to be explored.

In this paper, we give improved polynomial-time quantum distinguish-
ers on Type-1 GFS in quantum chosen-plaintext attack (qCPA) setting
and quantum chosen-ciphertext attack (qCCA) setting. In qCPA setting,
we give a new quantum polynomial-time distinguisher on (3d− 3)-round
Type-1 GFS with branches d ≥ 3, which gains (d− 2) more rounds than
the previous distinguishers. This leads us to obtain a better key-recovery

attack with reduced time complexities by a factor of 2
(d−2)n

2 , where n
is the bit length of the branch. We also show a quantum distinguishing
attack against (d2 −d+1)-round version in qCCA setting, and this gives
a key-recovery attack with much lower time complexity.

In addition, based on a 14-round quantum distinguisher, we give quan-
tum key-recovery attacks on round-reduced CAST-256 block cipher. For
the 256-bit key version, we could attack up to 20-round CAST-256 in
time 2111, which is faster than the quantum brute-force attack by a fac-
tor of 217. For the 128-bit key version, we could attack 17 rounds in time
255.5, while the best previous classical or quantum attacks are no more
than 16 rounds.

Keywords: Generalized Feistel scheme · Quantum attack · Simon’s
algorithm · CAST-256

1 Introduction

Feistel block ciphers are featured by the efficient Feistel network, whose encryp-
tion and decryption processes are based on similar operations. This design
c© Springer Nature Switzerland AG 2019
F. Hao et al. (Eds.): INDOCRYPT 2019, LNCS 11898, pp. 433–455, 2019.
https://doi.org/10.1007/978-3-030-35423-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35423-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-35423-7_22


434 B. Ni et al.

has been extensively studied [8,15,20,27] and adopted in many standard block
ciphers, including DES, Triple-DES, Camellia [3], and GOST [12]. Feistel net-
work was also generalized to form Generalized Feistel Networks (GFNs) or Gen-
eralized Feistel Schemes (GFSs). GFSs adopt more than two branches and dif-
ferent operations between the branches. At CRYPTO 1989, Zheng et al. [46]
summarized several types of GFSs, called Type-1, Type-2, and Type-3 GFSs.
In addition, some other GFSs were invented by Anderson and Biham [2], Lucks
[32] and Schneier and Kelsey [38]. Many important primitives employ GFSs,
such as block ciphers CAST-256 [1] (Type-1), CLEFIA [39] (Type-2), Simpira
[14] (Type-2), as well as hash functions MD5 and SHA-1 (Type-1). GFSs inherit
the advantages of Feistel network. Besides, it allows a small round function to
construct a cipher with a larger block size, which is beneficial to lightweight
implementations.

Classically, Luby and Rackoff [31] proved that the 3-round Feistel scheme
is a secure pseudo-random permutation. At CRYPTO 1989, Zheng et al. [46]
showed that the (2d − 1)-round Type-1 GFS is secure against chosen-plaintext
attacks. Moriai and Vaudenay pointed out that (d2 − d)-round Type-1 GFS is
not secure against chosen-ciphertext attacks [33]. See also the analysis by Hoang
and Rogaway [17]. Generic attacks on these constructions are also widely studied,
such as birthday attack [23], meet-in-the-middle attack [16], differential attacks
[34,41], and Patarin et al.’s attacks [35,36,42].

It was a common belief that quantum attacks on symmetric primitives are of
minor concern, as they mainly consist of employing Grover’s algorithm [13] to
generically speed up search (sub-)problems. However, Kuwakado and Morii [28]
found the first polynomial-time quantum distinguisher on 3-round Feistel block
ciphers by using Simon’s algorithm [40]. This result proves that there is a
case that quantum attacks can exponentially improve classical attacks. Later,
various quantum attacks against symmetric primitives were invented, such as
key-recovery attacks against Even-Mansour constructions [29], forgery or key-
recovery attacks against block cipher based MACs [5,24], key-recovery attacks
against the FX construction [30], and so on.

At FOCS 2012, Zhandry et al. [45] classified the quantum cryptanalysis into
two models, i.e., the standard security (Q1 model) and quantum security (Q2
model). In Q1 model, adversaries could only collect data classically and pro-
cess them with local quantum computers. In contrast to this, in Q2 model, the
adversaries could query the oracle with quantum superpositions of inputs, and
obtain the corresponding superposition of outputs. Adversaries from Q2 model
are more powerful, while Q2 model is not realistic for the foreseeable future.
However, Q2 model is still theoretically interesting. Moreover, as stated by Ito
et al. [22], “the threat of this attack model becomes significant if an adversary has
access to its white-box implementation. Because arbitrary classical circuit can be
converted into quantum one, the adversary can construct a quantum circuit from
the classical source code given by the white-box implementation”. In this paper,
we assume that the adversaries are in the Q2 model.

There have already been papers investigating Feistel schemes or GFSs against
Q2 adversaries. Besides Kuwakado and Morii [28]’s work, Ito et al. [22] extended
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the quantum distinguisher to 4-round Feistel scheme under quantum chosen-
ciphertext attack setting. Based on the Grover-meets-Simon algorithm by Lean-
der and May [30], Hosoyamada et al. [19] and Dong et al. [11] introduced some
quantum key-recovery attacks on Feistel schemes. Dong et al. [10] gave some
quantum distinguishers and key-recovery attacks on some GFSs. Dong et al. [9]
and Bonnetain et al. [6] studied 2K-/4K-Feistel schemes against quantum slide
attacks. Notably, Hosoyamada and Iwata [18] proved a quantum security bound
of the 4-Round Luby-Rackoff construction recently.

Our Contributions. We continue the work of Dong, Li, and Wang [10] to evaluate
the security of Type-1 GFSs against quantum attacks. We focus on Type-1 GFSs,
as the structure is employed in the above mentioned practical designs1. We give
some improved attacks on Type-1 GFSs in Q2 model with both quantum chosen-
plaintext attack (qCPA) setting and quantum chosen-ciphertext attack (qCCA)
setting. Then, some applications to CAST-256 block ciphers are given. We have
three contributions:

– First, in qCPA setting, we give new quantum polynomial-time distinguishers
on (3d − 3)-round Type-1 GFS with branches d ≥ 3, which gain (d − 2) more
rounds than the previous distinguishers. The improvement is obtained by
shifting the position of αb, which is a constant used to define a period, so that
the period is preserved for longer rounds. It turns out that the observation
is simple, but effective to improve the number of rounds that we can attack.
Based on Leander and May’s algorithm [30], we could get better key-recovery
attacks, whose time complexities gain a factor of 2

(d−2)n
2 , where n is the bit

length of the branch.
– Second, assuming that we are in the qCCA setting, we show a distinguishing

attack against the (d2 − d + 1)-round version. The number of rounds is sig-
nificantly larger than the above, and this follows the intuition in the classical
setting where the diffusion of Type-1 GFS in the decryption direction is slow,
which is pointed out in [33]. The distinguishers in both qCPA and qCCA
settings and the key-recovery attacks are summarized in Tables 1 and 2.

– Third, we also evaluate CAST-256 block cipher against quantum attacks. We
find 14-round polynomial-time quantum distinguishers in qCPA setting. Note
that the best previous one is 7 rounds [10]. Based on this, we could derive
quantum key-recovery attack on 20-round CAST-256. Compared to this, the
best previous quantum key-recovery attack is on 16 rounds. The results are
summarized in Table 3. We also compare our quantum attacks with classical
attacks in Table 4. When the key size of CAST-256 is 128, our result also
reaches 17 rounds, which gains one more round than before.

1 Dong, Li, and Wang also analyzed Type-2 GFSs [10], and we do not know if quantum
attacks on Type-2 GFSs can be improved.
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Table 1. Rounds of quantum distinguishers on Type-1 GFS

Source Setting Distinguisher d = 3 d = 4 d = 5 d = 6 d = 7 ...

[10] qCPA 2d − 1 5 7 9 11 13 ...

Sect. 4 qCPA 3d − 3 6 9 12 15 18 ...

Sect. 5 qCCA d2 − d + 1 7 13 21 31 43 ...

Table 2. Key-recovery attacks on Type-1 GFS (d ≥ 3) in quantum settings

Setting Distinguisher Key-recovery rounds Complexity (log)

qCPA 2d − 1 [10] r ≥ d2 − d + 2 ( 1
2
d2 − 3

2
d + 2) · k

2
+ (r−d2+d−2)k

2

qCPA 3d − 3 [Ours] r ≥ d2 ( 1
2
d2 − 3

2
d + 2) · k

2
+ (r−d2)k

2

qCCA d2 − d + 1 [Ours] r ≥ d2 − d + 1 (r−(d2−d+1))k
2

Table 3. Quantum attacks on CAST-256†

Source Setting Distinguisher Attacked rounds

r = 15 r = 16 r = 17 r = 18 r = 19 r = 20

[10] qCPA 7 292.5 2111 – – – –

Sect. 7 qCPA 14 218.5 237 255.5 274 292.5 2111

†: Note that for CAST-256 with 256-bit key, the trivial bound is 2128

by Grover’s algorithm.

Table 4. Comparison between classical and quantum attacks on CAST-256

Source Key Attack Rounds Data Time

[43] 128 boomerang 16 249.3 –

[10] 128 qCPA 12 – 255.5

Sect. 7 128 qCPA 17 – 255.5

[44] 192 linear 24 2124.1 2156.52

Sect. 7 192 qCPA 18 – 274

[4] 256 multidim.ZC 28 298.8 2246.9

[10] 256 qCPA 16 – 2111

Sect. 7 256 qCPA 20 – 2111



Quantum Attacks Against Type-1 Generalized Feistel Ciphers 437

Ri

xi−1
0 xi−1

1 xi−1
2 xi−1

d−2 xi−1
d−1

Ri(xi−1
0 ) ⊕ xi−1

1 xi−1
d−2xi−1

2 xi−1
d−1 xi−1

0

Fig. 1. The i-th round of Type-1 GFS

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n be the set of all strings of n bits. Let Perm(n)
be the set of all permutations on {0, 1}n, and let Func(n) be the set of all
functions from {0, 1}n to {0, 1}n. For vectors a and b of the same dimension, we
denote their inner product by a · b. In this paper, e denotes Napier’s number.

2.2 Type-1 Generalized Feistel Schemes

In this section, we describe Type-1 generalized Feistel schemes (GFSs) [46]. In
Type-1 GFS, we divide the dn-bit state into d branches, where d ≥ 3 and
each branch constitutes an n-bit sub-block. Let Φr denote the encryption algo-
rithm of the r-round Type-1 GFS, and Φ−1

r denote its decryption algorithm. Let
R1, R2, . . . , Rr ∈ Func(n) be the keyed round functions of Φr. We assume that
the function Ri takes a k-bit key ki as input (thus the total key length of Φr is rk
bits). Φr takes a plaintext (x0

0, x
0
1, . . . , x

0
d−1) ∈ ({0, 1}n)d as input, and outputs

a ciphertext (xr
0, x

r
1, . . . , x

r
d−1) ∈ ({0, 1}n)d, where the i-th round is defined as

(xi
0, x

i
1, . . . , x

i
d−1) = (Ri(xi−1

0 ) ⊕ xi−1
1 , xi−1

2 , xi−1
3 , . . . , xi−1

d−1, x
i−1
0 ) .

The decryption is naturally defined by reversing the direction of the shift of the
branches. Figure 1 shows the i-th round of Type-1 GFS.

2.3 Simon’s Algorithm

Here we review Simon’s algorithm [40] that is the basis of our distinguishers.
Simon’s algorithm solves the following problem efficiently.

Problem 1. Given a function f : {0, 1}n → {0, 1}n that has a non-zero period
s ∈ {0, 1}n such that

f(x) = f(x′) ⇔ x′ = x ⊕ s

for any distinct x, x′ ∈ {0, 1}n, the goal is to find the period s.
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In the classical setting, O(2n/2) queries are needed to find s, while Simon’s
algorithm finds s with O(n) quantum queries.

In what follows, we recall how Simon’s algorithm works. Assume that we have
access to the quantum oracle Uf , which is defined as Uf |x〉 |z〉 = |x〉 |z ⊕ f(x)〉.
For an n-qubit state |x〉, Hadamard transformation H⊗n is defined as H⊗n |x〉 =
1√
2n

∑
y∈{0,1}n(−1)x·y |y〉. Simon proposed a circuit Sf that computes a vector

that is orthogonal to s for a periodic function f , which is defined as Sf =
(H⊗n ⊗ In) · Uf · (H⊗n ⊗ In) and works as follows.

Sf |0n〉 |0n〉 = (H⊗n ⊗ In) · Uf · (H⊗n ⊗ In) |0n〉 |0n〉

= (H⊗n ⊗ In) · Uf

1√
2n

∑

x

|x〉 |0n〉

= (H⊗n ⊗ In)
1√
2n

∑

x

|x〉 |f(x)〉

=
1
2n

∑

x,y

(−1)x·y |y〉 |f(x)〉 (1)

If f satisfies f(x) = f(x′) ⇔ x′ = x ⊕ s, then Eq. (1) can be rearranged as

1
2n

∑

x∈V,y

((−1)x·y + (−1)(x⊕s)·y) |y〉 |f(x)〉 ,

where V is a linear subspace of {0, 1}n of dimension (n − 1) that partitions
{0, 1}n into cosets V and V +s. The vector y such that y ·s ≡ 1 (mod 2) satisfies
(−1)x·y + (−1)(x⊕s)·y = 0. Therefore, the vector y that we obtain by measuring
the first n qubits of Sf |0n〉 |0n〉 satisfies y · s ≡ 0 (mod 2). By repeating this
measurement for O(n) times, we obtain (n−1) linearly independent vectors that
are all orthogonal to s with a high probability. Then we can recover s by solving
the system of linear equations with O(n3) classical steps.

2.4 Quantum Distinguisher Based on Simon’s Algorithm

Next, we introduce a quantum distinguisher based on Simon’s algorithm. We
follow the approach of Kaplan et al. [24] and Santoli and Schaffner [37], and
the formalization by Ito et al. [22]. To recover s with Simon’s algorithm, the
function f has to satisfy f(x) = f(x′) ⇔ x′ = x⊕ s. However, for distinguishers,
the condition can be relaxed.

In more detail, suppose that we are given an oracle O : {0, 1}n → {0, 1}n,
which is either an encryption algorithm EK ∈ Perm(n) or a random permutation
Π ∈ Perm(n), and our goal is to distinguish the two cases. We assume that the
quantum oracles UO and UO−1 are given. The distinguisher in [22] can be applied
to a function fO : {0, 1}� → {0, 1}m, where there exists a non-zero period s when
O = EK , i.e., fO such that fEK (x) = fEK (x ⊕ s) holds for all x. We expect
that, with a high probability, fΠ does not have any period. The distinguisher
works as follows:
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1. Prepare an empty set Y.
2. Measure the first � qubits of SfO |0�+m〉 and add the obtained vector y to Y

for η times.
3. Calculate the dimension d of the vector space spanned by Y.
4. If d = �, then output O = Π, otherwise output O = EK .

If fO has the period s, the obtained vector y is orthogonal to s. Therefore the
dimension d of the vector space spanned by Y is at most � − 1. On the other
hand, if fO has no period, the dimension can reach �. Thus we can distinguish
the two cases by checking the dimension.

This distinguisher fails only if O = Π and the dimension of the vector space
spanned by Y is less than �. To analyze the success probability of the distin-
guisher, define a parameter επ

f as

επ
f = max

t∈{0,1}�\{0�}
Pr
x

[fπ(x) = fπ(x ⊕ t)] ,

where π ∈ Perm(n) is a fixed permutation. This parameter shows how the dimen-
sion of y is biased when Π = π. If this parameter is large (i.e., there exists t that
is close to a period), then with a high probability, the vector space spanned by
Y is orthogonal to t. Thus, we take a small constant 0 ≤ δ < 1 arbitrarily, and
we say that a permutation π is irregular if επ

f > 1− δ. In addition, define the set
of the irregular permutations irrδf as

irrδf = {π ∈ perm(n) | επ
f > 1 − δ} .

The following theorem was proved in [22].

Theorem 1 ([22]). Let � and m be positive integers that are O(n). Assume
that we have a quantum circuit with O(poly(�,m)) qubits which computes fO :
{0, 1}� → {0, 1}m by making O(1) queries to O, and runs in time T (�,m). The
distinguisher makes O(η) quantum queries, and distinguishes EK from Π with
probability at least

1 − 2�

eδη/2
− Pr

Π
[Π ∈ irrδf ] .

This shows that the distinguisher succeeds if PrΠ [Π ∈ irrδf ] is a small value.

2.5 Hosoyamada and Sasaki’s Method to Truncate Outputs
of Quantum Oracles

At ISIT 2010, Kuwakado and Morii [28] introduced a quantum distinguishing
attack on 3-round Feistel scheme by using Simon’s algorithm. As shown in Fig. 2,
let α0 and α1 be arbitrary constants, and define f as:

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x) �→ αb ⊕ x3
1 ,

where (x3
0, x

3
1) = E(αb, x) .
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Fig. 2. 3-round Feistel cipher

E is the 3-round Feistel scheme and f can be written as f(b, x) = R2(R1(αb) ⊕
x)). It is easy to see that f is a periodic function that satisfies f(b, x) = f(b ⊕
1, x ⊕ R1(α0) ⊕ R1(α1)) for any (b, x). Then by using Simon’s algorithm, one
obtains the period s = 1‖R1(α0) ⊕ R1(α1) in polynomial time.

In the above distinguisher, one has to truncate the 2n-bit output of E to
obtain the right half n bits, namely x3

1. However, Kaplan et al. [24] and Hosoya-
mada et al. [19] pointed out that in quantum setting, it is non-trivial to truncate
the entangled 2n qubits to n qubits, since the usual truncation destroys entan-
glements.

At SCN 2018, Hosoyamada and Sasaki [19] introduced a method to sim-
ulate truncation of outputs of quantum oracles without destroying quantum
entanglements. Here, we review their method. Let O : |x〉|y〉|z〉|w〉 �→ |x〉|y〉|z ⊕
OL(x, y)〉|w ⊕ OR(x, y)〉 be the encryption oracle EK , where OL, OR denote
the left and right n bits of the complete encryption, respectively. The goal is
to simulate the oracle OR : |x〉|y〉|w〉 �→ |x〉|y〉|w ⊕ OR(x, y)〉. Hosoyamada
and Sasaki first try to simulate a tweaked OR, i.e., O′

R : |x〉|y〉|w〉|0n〉 �→
|x〉|y〉|w ⊕ OR(x, y)〉|0n〉 with ancilla qubits. Let |+〉 := H⊗n|0n〉 = 1√

2n

∑
z |z〉,

where H⊗n is an n-qubit Hadamard gate. Thus,

O|x〉|y〉|+〉|w〉 = O(|x〉|y〉[ 1√
2n

∑

z

|z〉]|w〉)

= |x〉|y〉[ 1√
2n

∑

z

|z ⊕ OL(x, y)〉]|w ⊕ OR(x, y)〉 . (2)

Let z′ = z ⊕ OL(x, y). Then Eq. (2) becomes

|x〉|y〉[ 1√
2n

∑

z

|z′〉]|w ⊕ OR(x, y)〉 = |x〉|y〉[ 1√
2n

∑

z′
|z′〉]|w ⊕ OR(x, y)〉

= |x〉|y〉|+〉|w ⊕ OR(x, y)〉 .
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So O|x〉|y〉|+〉|w〉 = |x〉|y〉|+〉|w ⊕ OR(x, y)〉. Hosoyamada and Sasaki define
O′

R := (I ⊗ H⊗n) ◦ Swap ◦ O ◦ Swap ◦ (I ⊗ H⊗n), where Swap is an operator that
swaps the last 2n bits: |x〉|y〉|z〉|w〉 �→ |x〉|y〉|w〉|z〉. So we have

O′
R|x〉|y〉|w〉|0n〉 = (I ⊗ H⊗n) ◦ Swap ◦ O ◦ Swap ◦ (I ⊗ H⊗n)|x〉|y〉|w〉|0n〉

= (I ⊗ H⊗n) ◦ Swap ◦ O|x〉|y〉|+〉|w〉
= (I ⊗ H⊗n) ◦ Swap|x〉|y〉|+〉|w ⊕ OR(x, y)〉
= (I ⊗ H⊗n)|x〉|y〉|w ⊕ OR(x, y)〉|+〉
= |x〉|y〉|w ⊕ OR(x, y)〉|0n〉 .

Hence, OR could be simulated given the complete encryption oracle O using
ancilla qubits. Intuitively, Hosoyamada and Sasaki first randomize the left part
by using the Hadamard transformation, and then force it to become |0n〉 by
applying the Hadamard transformation again.

2.6 Combining Grover Search and Distinguishers

Leander and May combined Grover search and Simon’s algorithm to show a key
recovery attack against the FX construction [30]. Hosoyamada and Sasaki [19],
and Dong and Wang [11] showed key recovery attacks against Feistel schemes
by using this combining technique.

Grover Search. Grover search provides a quadratic speed up on unsorted-
database search [13]. Let N be the number of elements in the database, and
assume that there exists only one target element. In the classical setting, we can
find the target element in time O(N). However, in the quantum setting, Grover’s
algorithm can find it in time O(

√
N).

This algorithm was generalized later as quantum amplitude amplification by
Brassard et al. [7] as in the following theorem.

Theorem 2 ([7]). Let A be any quantum algorithm on q qubits that uses no
measurement. Let B : {0, 1}q → {0, 1} be a function that classifies outcomes of
A as good or bad. Let p > 0 be the initial success probability that a measurement
of A |0〉 is good. Set m = �π/4θp�, where θp is defined so that sin2(θp) = p
and 0 < θp ≤ π/2. Moreover, define the unitary operator Q = −AS0A−1SB,
where the operator SB conditionally changes the sign of the amplitudes of the
good states,

|x〉 �→
{

− |x〉 if B(x) = 1 ,

|x〉 if B(x) = 0 ,
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Ek0

k1 k2

Fig. 3. The FX construction

while the operate S0 changes the sign of the amplitude if and only if the state
is the zero state |0〉. Then, after the computation of QmA |0〉, a measurement is
good with probability at least max{1 − p, p}.

Key Recovery Attack Against the FX Construction. The FX construction by
Killian and Rogaway is a way to extend the key length of a block cipher [25,26].
Let E be an n-bit block cipher that takes an m-bit key k0 as input. The FX
construction under two additional n-bit keys k1, k2 is described as

Enc(x) = Ek0(x ⊕ k1) ⊕ k2 .

Figure 3 shows the FX construction.
Leander and May constructed a function f(k, x) that is defined as

f(k, x) = Enc(x) ⊕ Ek(x) = Ek0(x ⊕ k1) ⊕ k2 ⊕ Ek(x) .

If k = k0, f(k, x) satisfies f(k, x) = f(k, x ⊕ k1) for all x ∈ {0, 1}n. That is, the
function f(k0, ·) has a period k1. However, if k �= k0, with a high probability, the
function f(k, ·) does not have any period. Then they apply Grover search over
k ∈ {0, 1}m. They construct the classifier B that identifies the states as good
if k = k0 by using Simon’s algorithm to f(k, ·). The time complexity of Grover
search is O(2m/2) and Simon’s algorithm runs in time O(n) in the classifier B.
Thus this attack runs in time O(2m/2). For more details, see [30].

3 Previous Attacks

In this section, we review the quantum attacks against Type-1 GFSs by Dong
et al. [10]. They showed a (2d−1)-round distinguishing attack and a (d2−d+2)-
round key recovery attack.

We first review the distinguishing attack. Let α0, α1 ∈ {0, 1}n be two arbi-
trary distinct n-bit constants, and x0

1, x
0
2, . . . , x

0
d−2 ∈ {0, 1}n be arbitrary n-bit

constants. Given the oracle O, they define a function fO as

fO : {0, 1} × {0, 1}n → {0, 1}n

(b, x) �→ αb ⊕ y1 ,

where (y0, y1, . . . , yd−1) = O(αb, x
0
1, x

0
2, . . . , x

0
d−2, x) . (3)
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Fig. 4. (2d − 1)-round distinguishing attack

Let the intermediate state value after the first i rounds be (xi
0, x

i
1, . . . , x

i
d−1).

If O is Φ2d−1, then the function fO is described as

f(b, x) = αb ⊕ x2d−1
1

= αb ⊕ xd
0

= αb ⊕ Rd(xd−1
0 ) ⊕ αb

= Rd(Rd−1(Rd−2(· · · R2(R1(αb) ⊕ x0
1) ⊕ x0

2 · · · ) ⊕ x0
d−2) ⊕ x) , (4)

where in the second equality, we use the fact that xi
0 = xi+1

d−1 = xi+2
d−2 = · · · =

xi+d−1
1 (See Fig. 4). Let h(·) = Rd−1(Rd−2(· · · R2(R1(·) ⊕ x0

1) ⊕ x0
2 · · · ) ⊕ x0

d−2).
We see that h(·) is a function that is independent of the input (b, x), since
x0
1, x

0
2, . . . , x

0
d−2 are constants. By using h(·), we can describe Eq. (4) as fO =

Rd(h(αb) ⊕ x), and fO satisfies

f(b, x) = Rd(h(αb) ⊕ x)
= Rd(h(αb⊕1) ⊕ h(α0) ⊕ h(α1) ⊕ x)
= f(b ⊕ 1, x ⊕ h(α0) ⊕ h(α1)) .

This implies that the function fO has the period (1, h(α0) ⊕ h(α1)).
If O is Π, then with a high probability, fO does not have any period. There-

fore, PrΠ [Π ∈ irrδf ] is a small value and we can distinguish the two cases.
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Fig. 5. (d2 − d + 2)-round key recovery attack for d = 4

We next review the key recovery attack. We recover the key of the (d2 −
d + 2)-round Type-1 GFS by appending (d2 − 3d + 3) rounds after the (2d −
1)-round distinguisher (See Fig. 5). For each xi

1, where d ≥ 3, we have xi
1 =

Ri+1(xi+1
d , ki+1) ⊕ xi+1

0 . This implies that when we need the value of xi
1, we

have to recover ki+1. From the property of Feistel cipher, we have xi
j = xi+1

j−1 =
· · · = xi+j−1

1 for 3 ≤ j ≤ d, and xi
0 = xi+d−1

1 . For d branches, it holds that
x2d−1
1 = R2d(x2d

d−1, k2d) ⊕ x2d
0 , and thus we need to recover one sub-key k2d, and

since x2d
0 = x3d−1

1 and x2d
d−1 = x3d−2

1 hold, we need two sub-keys k3d−1 and k3d.
By parity of this reasoning, the subkey length that we need to recover becomes
[1+2+3+ · · ·+(d−2)]k+k = (d2

2 − 3d
2 +2)k bits. Thus, the time complexity of

the exhaustive search for (d2−d+2) rounds by Grover search is O(2(
d2
2 − 3d

2 +2)· k
2 ).

The distinguisher runs in time O(n) and the time complexity of this attack is
O(2(

d2
2 − 3d

2 +2)· k
2 ).
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Fig. 6. (3d − 3)-round distinguishing attack

This attack is better than the direct application of Grover search to the entire
(d2 − d + 2)k-bit subkey. If we recover the subkey of r rounds for r > d2 − d + 2,

the time complexity is O(2(
d2
2 − 3d

2 +2)· k
2+

(r−d2+d−2)k
2 ), since the subkey length that

we need to recover becomes (d2

2 − 3d
2 + 2)k + (r − d2 + d − 2)k bits in total.

4 (3d− 3)-Round Distinguishing Attack in qCPA Setting

In this section, we present our distinguishing attacks against (3d − 3)-round
Type-1 GFSs. We improve the number of rounds that we can distinguish from
(2d−1) rounds to (3d−3) rounds by shifting the position of αb in the plaintext.
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As before, we first fix two arbitrary distinct constants α0, α1 ∈ {0, 1}n and
fix arbitrary constants x0

0, x
0
1, . . . , x

0
d−3 ∈ {0, 1}n. Given the oracle O, we define

a function fO as

fO : {0, 1} × {0, 1}n → {0, 1}n

(b, x) �→ αb ⊕ y1 ,

where (y0, y1, . . . , yd−1) = O(x0
0, x

0
1, . . . , x

0
d−3, αb, x) .

Observe that the difference from Eq. (3) is the position of αb.
If O is Φ3d−3, let (xi

0, x
i
1, . . . , x

i
d−1) be the intermediate state value after the

first i rounds. Now fO is described as:

fO(b, x) = αb ⊕ y1

= αb ⊕ x3d−3
1

= αb ⊕ x2d−2
0 , (5)

since xi
0 = xi+1

d−1 = xi+2
d−2 = · · · = xi+d−1

1 (See Fig. 6).
Our main observation is the following lemma.

Lemma 1. If O is Φ3d−3, then for any b ∈ {0, 1} and x ∈ {0, 1}n, the function
fO satisfies

fO(b, x) = fO(b ⊕ 1, x ⊕ Rd−1(C ⊕ α0) ⊕ Rd−1(C ⊕ α1)) ,

where C = Rd−2(Rd−3(· · · R1(x0
0) ⊕ x0

1 · · · ) ⊕ x0
d−3). That is, fO has the period

s = (1, Rd−1(C ⊕ α0) ⊕ Rd−1(C ⊕ α1)).

Proof. We first consider the intermediate state value after the first (d−2) rounds
in which αb reaches the leftmost position (See Fig. 6). The value is described as

(xd−2
0 , xd−2

1 , . . . , xd−2
d−1) = Φd−2(x0

0, x
0
1, . . . , x

0
d−3, αb, x)

= (Rd−2(xd−3
0 ) ⊕ αb, x, x0

0, x
1
0, . . . , x

d−3
0 ) .

For 1 ≤ i ≤ d − 3, xi
0 is described as

xi
0 = Ri(Ri−1(· · · R1(x0

0) ⊕ x0
1 · · · ) ⊕ x0

i−1) ⊕ x0
i .

We see that xi
0 is a constant that is independent of the input (b, x), since

x0
0, x

0
1, . . . , x

0
d−3 are constants. Let C = Rd−2(xd−3

0 ), which is independent of
(b, x) and hence can be treated as a constant. The output after one more round,
which is the output after the first (d − 1) rounds, is described as

(xd−1
0 , xd−1

1 , . . . , xd−1
d−1) = (Rd−1(C ⊕ αb) ⊕ x, x0

0, x
1
0, . . . , x

d−3
0 , C ⊕ αb) .

Now we consider the value of x2d−2
0 . This is the intermediate state value after

the first (2d − 2) rounds in which αb ⊕ C reaches the leftmost position again,
and is described as

x2d−2
0 = R′(Rd−1(C ⊕ αb) ⊕ x) ⊕ αb ⊕ C , (6)
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where R′(·) = R2d−2(R2d−3(· · · Rd+1(Rd(·) ⊕ x0
0) ⊕ x1

0 · · · ) ⊕ xd−3
0 ) (See Fig. 6).

R′(·) is a function that is independent of the input (b, x), since x0
0, x

1
0, . . . , x

d−3
0

are constants. From Eqs. (5) and (6), the function fO is described as

fO(b, x) = αb ⊕ R′(Rd−1(C ⊕ αb) ⊕ x) ⊕ αb ⊕ C

= R′(Rd−1(C ⊕ αb) ⊕ x) ⊕ C .

The function fO has the claimed period since it satisfies

fO(b ⊕ 1, x ⊕ Rd−1(C ⊕ α0) ⊕ Rd−1(C ⊕ α1))
= R′(Rd−1(C ⊕ αb⊕1) ⊕ Rd−1(C ⊕ α0) ⊕ Rd−1(C ⊕ α1) ⊕ x) ⊕ C

= R′(Rd−1(C ⊕ αb) ⊕ x) ⊕ C

= fO(b, x) ,

and hence the lemma follows. ��
Therefore, we can distinguish the (3d − 3)-round Type-1 GFS by using the

function fO. The success probability of the distinguishing attack with measuring
(4n + 4) times is at least 1 − (2/e)n+1 − Pr[Π ∈ irr

1/2
f ], where we use δ = 1/2

and η = 4n + 4. Note that Pr[Π ∈ irr
1/2
f ] is a small value, since with a high

probability, the function fO does not have any period when O is Π, since Π is
a random permutation.2

5 (d2 − d + 1)-Round Distinguishing Attack in qCCA
Setting

If we can use the decryption oracle in the quantum setting, we can construct
a distinguishing attack against the (d2 − d + 1)-round Type-1 GFS. We write
the i-th round function in decryption as Ri. Note that this is different from the
notation in Sect. 4.

We fix two distinct constants α0, α1 and (d − 2) constants x0
1, x

0
2, . . . , x

0
d−2,

which are all n bits. Given the decryption oracle O−1, we define fO−1
as

fO−1
: {0, 1} × {0, 1}n → {0, 1}n

(b, x) �→ αb ⊕ y0 ,

where (y0, y1, . . . , yd−1) = O−1(x, x0
1, x

0
2, . . . , x

0
d−2, αb) .

2 This is intuitively obvious. However, precise computation of the probability is not
known. See [21, Appendix C] (full version of [22]) for experimental computation of
a related setting of Feistel cipher for small values of n.
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Rd

Fig. 7. (d2 − d + 1)-round distinguishing attack

Consider the case O−1 = Φ−1
d2−d+1, and let the intermediate state value after

the first i rounds be (xi
0, x

i
1, . . . , x

i
d−1). fO−1

is described as:

fO−1
(b, x) = αb ⊕ y0

= αb ⊕ xd2−d+1
0

= αb ⊕ xd2−2d+2
1 , (7)

since xi
1 = xi+1

2 = xi+2
3 = · · · = xi+d−1

0 (See Fig. 7).
The following lemma holds.

Lemma 2. If O−1 is Φ−1
d2−d+1, then for any b ∈ {0, 1} and x ∈ {0, 1}n, the

function fO−1
satisfies

fO−1
(b, x) = fO−1

(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)) .

That is, fO−1
has the period s = (1, R1(α0) ⊕ R1(α1)).
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Proof. In the first round, R1(αb) is xored into x. In the d-th round, the value
R1(αb) ⊕ x is used as the input of Rd, and the output of Rd is xored into x0

1.
This implies that xd

1 is

xd
1 = Rd(R1(αb) ⊕ x) ⊕ x0

1 . (8)

See Fig. 7. The function R(·) = Rd(·) ⊕ x0
1 is independent of the input (b, x),

since x0
1 is a constant. Therefore, Eq. (8) can be described as

xd
1 = R(R1(αb) ⊕ x)

with some function R ∈ Func(n). After additional (d − 1) rounds, this value is
used as the input of R2d−1, and the output of R2d−1 is xored into the sub-block
which was x0

2 at the input. The sub-block which was x0
2 at the input is a constant

because it is not xored by the value that includes b nor x (Specifically, it depends
only on x0

1). Therefore, for some function R′ ∈ Func(n), the value of x2d−1
1 is

described as
x2d−1
1 = R′(R1(αb) ⊕ x) .

After that, for each (d − 1) rounds, this value is used as the input to the round
function and the output is xored into the sub-block which was x0

i at the input,
for i = 3, 4, . . . , d − 2. We see that the sub-block itself depends on x0

1, . . . , x
0
i−1,

but it is a constant that is independent of the input (b, x) since a value related to
(b, x) is not xored into the sub-block. Therefore, the value of x

2d−1+(d−1)×(d−4)
1 =

xd2−3d+3
1 is described as

xd2−3d+3
1 = R′′(R1(αb) ⊕ x)

for some function R′′ ∈ Func(n).
In the (d2−2d+2)-th round, Rd2−2d+2(R′′(R1(αb)⊕x)) is xored into the sub-

block which was αb at the input. Since only the value that does not include b nor
x is xored into the sub-block which was αb, with some function R′′′ ∈ Func(n),
the value of xd2−2d+2

1 is described as

xd2−2d+2
1 = R′′′(R1(αb) ⊕ x) ⊕ αb . (9)

From Eqs. (7) and (9), the function fO−1
can be written as

fO−1
(b, x) = αb ⊕ R′′′(R1(αb) ⊕ x) ⊕ αb

= R′′′(R1(αb) ⊕ x) .

The function fO satisfies

fO−1
(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)) = R′′′(R1(αb⊕1) ⊕ x ⊕ R1(α0) ⊕ R1(α1))

= R′′′(R1(αb) ⊕ x)

= fO−1
(b, x) ,

and hence we have the lemma. ��
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The success probability of the distinguishing attack using the function fO−1

with measuring (4n + 4) times is at least 1 − (2/e)n+1 − Pr[Π ∈ irr
1/2
f ], where

we use δ = 1/2 and η = 4n + 4. We see that Pr[Π ∈ irr
1/2
f ] is a small value, and

hence the attack succeeds with a high probability.

6 Key Recovery Attacks on Type-1 GFSs

Similarly to the previous key recovery attacks by Dong et al. [10] that com-
bine Grover search and the distinguisher, we can construct key recovery attacks
against Type-1 GFSs based on our distinguishers.

With the (3d − 3)-round distinguisher in qCPA setting, we can recover the
key of the d2-round Type-1 generalized Feistel cipher in time O(2(

d2
2 − 3d

2 +2)· k
2 )

by replacing the (2d − 1)-round distinguisher in Dong et al.’s attack with our
(3d − 3)-round distinguisher. In general, the key recovery attack against the

r-round version, where r ≥ d2, runs in time O(2(
d2
2 − 3d

2 +2)· k
2+

(r−d2)k
2 ).

With the (d2 − d + 1)-round distinguisher in qCCA setting, by using the
decryption oracle, we can recover the key of the r-round Type-1 GFS for r >

d2 − d + 1 in time O(2
(r−(d2−d+1))k

2 ), because the subkey length that we need to
recover is (r − d2 + d − 1)k bits.

If d = 3, the time complexity of these two key recovery attacks is the same
because (d2

2 − 3d
2 + 2) · k

2 + (r−d2)k
2 − (r−(d2−d+1))k

2 = k(d−2)(d−3)
4 . If d > 3, the

key recovery attack with the (d2 − d + 1)-round distinguisher is better than the
one with the (3d − 3)-round distinguisher.

7 Quantum Attacks on Round-Reduced CAST-256 Block
Cipher in qCPA Setting

CAST-256 block cipher [1] is a first-round AES candidate. It has 48 rounds,
including 24 rounds Type-1 GFS and 24 rounds inverse Type-1 GFS. The block
size is 128 bits, which are divided into four 32-bit branches and the key size can
be 128, 192 or 256 bits. Each round function absorbs 37-bit subkey. Our attack
is quite general and does not need any other details of the cipher.

In this section, we introduce a new 14-round quantum distinguisher in qCPA
on CAST-256 shown in Fig. 8. The distinguisher, started from the 24th round,
is composed of 1-round Type-1 GFS and 13-round inverse Type-1 GFS. It is
derived based on the result presented in Sect. 5. When d = 4, (d2 − d + 1) = 13
round distinguisher is obtained (from round R25 to R37 of CAST-256). Thanks
to the special structure of CAST-256, we could add one more round R24 to the
13-round distinguisher for free. Hence, the 14-round distinguisher is derived.
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Fig. 8. 14-round distinguishing attack on CAST-256

We also fix two distinct constants α0, α1 and 2 constants x23
2 , x23

3 , which are
all n bits. Given the 14-round CAST-256 encryption oracle O, we define fO as

fO : {0, 1} × {0, 1}n → {0, 1}n

(b, x) �→ αb ⊕ y0 ,

where (y0, y1, y2, y3) = O(αb, x, x23
2 , x23

3 ) .
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According to Lemma 2, fO has the period s = (1, R24(α0) ⊕ R25(α0) ⊕
R24(α1) ⊕ R25(α1)). As is shown in Sect. 6, we could add or append several
rounds to attack r > 14 rounds CAST-256 in time O(2

37(r−14)
2 ), because the

subkey length that we need to recover is 37(r − 14) bits. Thus we could attack
20-round CAST-256 with 256-bit key in time 2111, which is faster than Grover’s
algorithm by a factor of 2128−111 = 217.

8 Conclusions

In this paper, we give some improved polynomial-time quantum distinguishers
on Type-1 GFS in qCPA and qCCA settings. First, we give new qCPA quantum
distinguishers on (3d − 3)-round Type-1 GFS with branches d ≥ 3, which gain
(d−2) more rounds than the previous distinguishers. Hence, we could get better
key-recovery attacks, whose time complexities gain a factor of 2

(d−2)n
2 . We also

obtain (d2 − d + 1)-round qCCA quantum distinguishers on Type-1 GFS, which
gain many more rounds than the previous distinguishers. In addition, we also
discuss the quantum attack on CAST-256 block cipher.

As an open question, the tight bound of the number of rounds that we can
distinguish is not known. There is a possibility that we can distinguish more than
(3d− 3) rounds in qCPA setting, and we may distinguish more than (d2 −d+1)
rounds in qCCA setting. Moreover, we may distinguish more than 14 rounds
of CAST-256 when considering its special structure, which applies both Type-
1 GFS and its inverse as the round functions. We anticipate the analysis with
respect to the provable security approach in [18] can settle the problem, while
this is beyond the scope of this paper. We also note that we do not know the
impact of combining qCPA and qCCA as applied against 4-round Feistel block
ciphers in [22].

Another open question is that, we could apply (d2−d+1)-round qCCA quan-
tum distinguishers to other block ciphers. Note that when the branch number is
large, the distinguisher becomes very long.
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