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Abstract. Online platforms, such as Airbnb, hotels.com, Amazon, Uber
and Lyft, can control and optimize many aspects of product search
to improve the efficiency of marketplaces. Here we focus on a com-
mon model, called the discriminatory control model, where the platform
chooses to display a subset of sellers who sell products at prices deter-
mined by the market and a buyer is interested in buying a single product
from one of the sellers. Under the commonly-used model for single prod-
uct selection by a buyer, called the multinomial logit model, and the
Bertrand game model for competition among sellers, we show the fol-
lowing result: to maximize social welfare, the optimal strategy for the
platform is to display all products; however, to maximize revenue, the
optimal strategy is to only display a subset of the products whose quali-
ties are above a certain threshold. This threshold depends on the quality
of all products, and can be computed in linear time in the number of
products.

Keywords: Online platform markets · Bertrand competition game ·
Search segmentation

1 Introduction

In recent years, we have witnessed the rise of many successful online platform
markets, which have reshaped the economic landscape of modern world. The
online platforms facilitate the exchange of goods and services between buyers
and sellers. For example, buyers can purchase goods from sellers on Amazon,
eBay and Etsy, arrange accommodation from hosts on Airbnb and Expedia,
order transportation services from drivers on Uber and Lyft, and find qualified
workers on online labor markets, such as Upwork and Taskrabbit. The total
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market value of online platforms has exceeded 4.3 trillion dollars worldwide, and
is growing quickly [10].

Compared with traditional markets, the modern online marketplaces have
greater controls over price determination, search and discovery, information rev-
elation, recommendation, etc. For example, Uber and Lyft adopt the full control
model, in which the ride-sharing platforms use online matching algorithms to
determine matches between drivers and riders as well as the fee for the route.
Amazon and Airbnb use the discriminatory control model, where the platforms
only control the list of products to display for each buyer’s search, and the poten-
tial matches and transaction prices are determined by the preference of buyers
and the competition among sellers. The platform can also use other types of
control, such as commissions/subscriptions fees [7], to influence the outcomes of
markets. The rich control options for online platforms have led to an increasing
discussion about the design of online marketplaces with different optimization
objectives [4,5,14].

In this paper, we investigate social welfare and revenue optimization under
the discriminatory control model for online marketplaces. In the discriminatory
control model, the platform has only control over search segmentation mecha-
nisms - which products to display for each buyer’s search, and the transaction
prices are endogenously determined by the competition among sellers. Unlike
traditional firms, most online platforms do not manufacture goods or provide
services, and thus they also do not dictate the specific transaction prices. Instead,
buyers and sellers jointly determine the prices at which the goods or services will
be traded. For example, sellers set prices for their goods on Amazon, hosts decide
on the price for their properties on Airbnb, and freelancers negotiate employers
with hourly fee on Upwork. These prices depend on the demand and supply for
comparable goods and services in the market, and choosing different products
to display for buyers impacts the transaction prices and then the social welfare
and revenue. Motivated by this, we study the role of search segmentation mech-
anisms in social welfare and revenue optimization in the discriminatory control
model with endogenous prices.

To calculate the social welfare and revenue, we first need to specify demand
and supply in online marketplaces. Much of prior work simply represent the
demand/supply curves with non-increasing/non-decreasing distributions [5,7].
Instead, we consider a demand and supply function derived from a basic market
setting in which each seller has one unit of product to offer, and each buyer
demands at most one unit of product chosen from the products displayed to
her1. Given the quality and prices of products, the demand for each product
is equivalent to the proportion of potential buyers that purchase such a prod-
uct. Thus, the demand function is closely related to the purchase behaviors of
buyers who face multiple substitutable products. We adopt the standard multi-
nomial logit (MNL) model [16] to describe buyers’ choice behaviors, and then
derive the demand as a softmax function. With such a specific demand function,

1 Throughout the article, we use product to refer good/service, and use the terms of
product and seller interchangeably.
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we can model the competition among sellers via a Bertrand price competition
game, which is a useful model for investigating oligopolistic competition in real
markets [23]. For instance, the Bertrand game can model the situation where
the hosts on Airbnb compete for potential guests by setting prices for their
properties. The basic questions for the Bertrand competition game are exis-
tence, uniqueness, closed-form expression and learning algorithm of the equilib-
rium. The results in [2,11] have shown that there exists a unique (pure) Nash
equilibrium in the Bertrand game with a MNL model. Furthermore, the Nash
equilibrium coincides with the solution of a system of first-order-condition equa-
tions. We can then characterize the Nash equilibrium in a “closed” form, and
express the equilibrium social welfare/revenue by employing a variant of Lam-
bert W function [8]. We also derive myopic learning strategies, i.e., best response
dynamics, for sellers to reach the Nash equilibrium in practice.

The online platform can further optimize the equilibrium social wel-
fare/revenue by employing search segmentation mechanisms. Different sets of
sellers involved in the Bertrand competition game lead to different equilibrium
solutions. The goal of the search segmentation mechanisms is to efficiently choose
a set of products to display for buyers (or in other words, choose a set of sellers
to compete in the Bertrand game) that maximizes the equilibrium social welfare
or revenue. This display control optimization problem is combinatorial in nature
and the number of possible product sets can be very large, particularly when
there are many potential products to offer. One of our main contributions is to
identify the efficient and optimal search segmentation mechanism, which turns
out to have a simple structure. We show that the online platform will display all
products to maximize equilibrium social welfare, but just display the top k∗ high-
est quality products to maximize equilibrium revenue. We also refer the optimal
mechanism for revenue maximization as quality-order mechanism. The optimal
threshold k∗ depends on the quality of all products, and can be calculated in
linear time in terms of the number of products. The optimality of such simple
search segmentation mechanisms has crucial theoretical and practical implica-
tions. On the theoretical side, this result allows the platform to find the optimal
set of displayed products in linear time, significantly reducing the computational
complexity. On the practical side, optimality of quality-order mechanism is quite
appealing as it guarantees that a lower quality product will not be chosen for
display over a higher quality product. Moreover, in order to increase the oppor-
tunity of being selected, sellers would improve the quality of their products as
product quality is the selection criteria of the optimal mechanism, which will
benefit all the market participants in the long term.

The optimality of the quality-order mechanism for revenue maximization is
established by making a novel connection between the quasi-convexity of equi-
librium revenue function and the optimal control decision on selecting displayed
products. We show that in the Bertrand game with a given subset of sellers, the
equilibrium revenue can be expressed as a quasi-convex function with respective
to an independent variable, which is a one-to-one transformation of the qual-
ity of a candidate product. The property of quasi-convexity guarantees that the
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maximum revenue can be obtained at one of the two endpoints, which corresponds
to the options of displaying the current set of products or involving a new product
with the highest quality among the remaining products. With this critical observa-
tion, if the platform decides to add a new product, it will always select the available
product with the highest quality. Thus, we can efficiently construct the optimal set
of displayed products from any product set. Specifically, if the current product set
does not contain all the top k∗ products, we can further improve the equilibrium
revenue by repeatedly replacing one currently selected product with an unselected
product with a higher quality.

Our work in this paper is related to work on the design of markets for net-
worked platforms [1,5,6,15,19]. We present a detailed discussion of related work
towards the end of the paper. Here, we briefly discuss the similarities and dif-
ferences between our work and prior work on networked market platforms. In
networked markets, there are buyers and sellers connected by a bipartite graph,
where each link indicates that a specific buyer is allowed to buy from a specific
seller. The goal is to remove links from the complete bipartite graph to maximize
either social welfare or revenue. However, much of the prior work focuses on a
linear price-demand curve which does not explicitly model situations where each
buyer is interested in buying only one product (such as one copy of a book) and
each buyer takes into account the quality of each product (available typically
in the form of reviews) while making a buying decision. For such situations,
economists use the MNL model, which we have adopted in this paper. On the
other hand, compared to prior work on networked markets, we only consider a
much simpler bipartite graph where there is only one representative buyer. Such
a model is appropriate when there are no capacity constraints for products at
a seller, for example, each seller may have many copies of a book and there is
no danger of immediately selling out a particular book title. The model is also
appropriate for hotels.com-type settings in situations when most hotels have
multiple available rooms. In situations where multiple buyers are performing
searches simultaneously and hotels are about to sell out of rooms, capacity con-
straints do matter. Such capacity-constrained situations have not been studied
either in this paper or in prior work, and is a topic for future research.

We now summarize the main contributions of this paper.

• We introduce a stylized model to capture the main features of online platform
markets. We explicitly model the market, where each buyer is interested in
purchasing one product, and takes into account the quality of products when
making choice. Specifically, the demand function for products is derived from
the multinomial logit (MNL) choice model, and the supply response of sellers
is described by the outcome of Bertrand competition game. We show that the
Bertrand game exists a unique (pure) Nash equilibrium, and the best response
dynamics converge to the equilibrium. We also explicitly express the social
welfare and revenue under the equilibrium.

• We design efficient search segmentation mechanisms to optimize equilibrium
social welfare and revenue under the Bertrand model of competition. We first
prove that it is optimal to display all products to maximize social welfare. For

http://www.hotels.com
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revenue maximization, we then show that the optimal mechanism, referred to
as quality-order mechanism, only needs to display the top k∗ highest quality
products, where the optimal number of products k∗ can be found in linear
time.

• We prove the result for social welfare maximization by showing the equilib-
rium social welfare function is decreasing with respective to an independent
variable, which also decreases for involving a new product. We establish the
optimality of the quality-order mechanism for revenue maximization by mak-
ing a novel connection between the quasi-convexity of equilibrium revenue
function and the optimal decision on selecting displayed products.

2 Preliminaries

We consider a two-sided market with n sellers S = {1, 2, · · · , n} and one rep-
resentative buyer, representing a set of homogeneous buyers. Each seller i ∈ S

offers a product with quality θi and price pi. We denote the quality and price
vectors by θ = (θ1, θ2, · · · , θn) and p = (p1, p2, · · · , pn), respectively. The qual-
ity vector θ is fixed, while the price vector p is determined by the competition
among sellers. Without loss of generality, we assume the products’ quality and
prices are non-negative, i.e., θi ≥ 0 and pi ≥ 0, and the sellers are sorted accord-
ing to the product quality in a non-decreasing order, i.e., θ1 ≥ θ2 ≥ · · · ≥ θn.
Given the quality θ and prices p of all products, the buyer purchases one of the
n products, or adopts an outside option, i.e., buys nothing from this market. We
normalize the problem parameters so that outside option’s quality θ0 and price
p0 are zero, i.e., θ0 = p0 = 0.

In the random utility model [17], the buyer derives utility ui from purchasing
the product i ∈ S or selecting the outside option i = 0 as follows

ui � θi + ξi − pi,

where ξi is a random variable representing buyer’s (private) preference about
the ith alternative. Given the n+1 choices (n products and the outside option),
the buyer selects the alternative with the maximum utility. Under the standard
assumption that the random variables {ξi} are independent and identically dis-
tributed (i.i.d.) with Gumbel distribution [3,12], it can be shown [3,16] that the
buyer selects the alternative i ∈ {0} ∪ S with probability

qi(p) � Pr(ui = max
j∈{0}∪S

uj) =
ai

1 +
∑

j∈S
aj

, (1)

where ai = exp(θi − pi) for all i ∈ S. We refer to qi as demand or market share
of the alternative i ∈ {0} ∪ S. We can also interpret qi as the expected sales of
quantity of product i normalized by the total number of potential buyers. This
choice model is known as multinomial logit (MNL) model in economic litera-
ture [3,12,16]. We use q = (q0, q1, · · · , qn) to denote the demands of products.
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Under the above model, we can also obtain an explicit form for the utility ū
of the representative buyer

ū � E[ max
i∈{0}∪S

ui] = log(1 +
∑

i∈S

ai).

From the demand qi(p) in (1), we can express seller i’s expected revenue ri(p)
in terms of prices

ri(p) � pi × qi(p) = pi × ai

1 +
∑

j∈S
aj

. (2)

The social welfare of the two-sided market is measured by the sum of buyer’s
utility and the total revenue of sellers, i.e.,

sw(p) � ū +
∑

i∈S

ri(p) = log(1 +
∑

j∈S

aj) +
∑

i∈S

pi × ai

1 +
∑

j∈S
aj

. (3)

The revenue of the market is the total revenue of all sellers, i.e.,

re(p) �
∑

i∈S

ri(p) =
∑

i∈S

pi × ai

1 +
∑

j∈S
aj

. (4)

We now note the relation between price and demand in the MNL model, which
would be quite useful for optimization and analysis later. Using the price-demand
model in (1), we can express the price pi in terms of demands q:

pi(q) = θi + log(1 −
∑

j∈S

qj) − log(qi). (5)

The social welfare and revenue optimization would become convenient if we work
with the demands q rather than the prices p. For example, the social welfare and
revenue functions are not concave in p, but become jointly concave if we express
the functions in terms of q [9,13,21]. We can leverage this property to derive
the optimal prices for social welfare and revenue maximization in the full control
model, where the platform can control both price and displayed products. We
leave the detailed discussion in Appendix A of technical report [24].

3 Bertrand Competition Game

In discriminatory control model, the online platform can only control the list
of products to display for buyers, and the transaction prices are endogenously
determined by the oligopolistic competition among sellers. In a Bertrand com-
petition game, the seller of each product sets a price. Based on the prices of
the products and the set of available products, the market produces a certain
demand for each product. In our MNL model, the demand is simply the proba-
bility with which a product will be purchased by the buyer. This is the typical
situation in a Airbnb-like model, where the owner of each rental unit sets a price,
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the platform controls the manner in which the rental units are displayed, and
the renter selects a unit to rent.

In this section, we investigate the existence and uniqueness of equilibrium
in the Bertrand competition game, explicitly express the equilibrium social wel-
fare/revenue, and derive the best response dynamics to reach the Nash equilib-
rium. We assume that only a subset S ⊆ S of sellers are involved in the game.
In other words, we assume that the platform has chosen to display the products
of a subset S of the sellers. In the next section, we will show how the choice of S
can be optimized by the platform to maximize either social welfare or revenue.

In the Bertrand competition game, seller i ∈ S selects price pi to maximize
her revenue ri(p) = pi × qi(p), where the demand qi(p) is determined by the
prices p of all products in (1). We can formally represent the Bertrand game as
a triplet Gb = (S, (Pi)i∈S , (ri)i∈S), where S is a set of players, Pi is the strategy
space of player i ∈ S (i.e., Pi � {pi|pi ≥ 0}), and ri(p) is the payoff of player
i ∈ S. We represent the set of strategy profiles by P = P1 × P2 × · · · × Pn.
We also denote the strategy profile p ∈ P as p = (pi,p−i), where p−i is the
strategies (or prices) of all the players except i. For such Bertrand game, we
have the following result from [11].

Theorem 1. There exists a unique (pure) Nash equilibrium in the Bertrand
game Gb = (S, (Pi)i∈S , (ri)i∈S). A vector of prices p̄ = (p̄1, p̄2, · · · , p̄n) ∈ P
satisfies ∂ri(p̄)/∂pi = 0 for all i ∈ S if and only if p̄ is a Nash equilibrium in P.

We next calculate a closed-form expression for the Nash equilibrium prices
p̄. For each seller i ∈ S, by the first-order condition ∂ri(p̄)/∂pi = 0, we have the
following relation for p̄i:

p̄i =
1 +

∑
j∈S āj

1 +
∑

j∈S āj − āi
=

1
1 − q̄i

, (6)

where āi � exp(θi− p̄i) and q̄i is the demand of product i at the equilibrium, i.e.,
q̄i � āi/(1+

∑
j∈S āj). From the price function in (5) and with some calculations

applied to (6), we have the following equations

q̄0 × exp(θi − 1) = q̄i × exp(
q̄i

1 − q̄i
), ∀i ∈ S, (7)

where q̄0 � 1 − ∑
j∈S q̄j is the probability of the buyer that purchases nothing.

We introduce a function V (x) : (0,+∞) → (0, 1), such that for any x ∈ (0,∞),
V (x) is the solution v ∈ (0, 1) satisfying

v × exp(
v

1 − v
) = x. (8)

We can verify that V (x) is a strictly increasing and concave function over
[0,+∞). This function is similar to the Lambert function W (x) [8], which is
the solution w satisfying w × exp(w) = x. With the function V (x) and (7), we
can obtain a closed-form expression for the demand q̄i = V (q̄0 × exp(θi − 1)).
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Combing with the definition of q̄0, we can determine q̄0 by solving the following
single-variable equation

∑

i∈S

V (q̄0 × exp(θi − 1)) = 1 − q̄0. (9)

This equation has a unique solution because V (x) is a strictly increasing func-
tion. We also refer this equation as the equilibrium constraint. The next theo-
rem presents a closed-form expression for the Nash equilibrium solution in the
Bertrand competition game.

Theorem 2. In the Bertrand game Gb = (S, (Pi)i∈S , (ri)i∈S), the Nash equilib-
rium price p̄i and the demand q̄i for each product i ∈ S are given by

p̄i =
1

1 − V (q̄0 × exp(θi − 1))
and q̄i = V (q̄0 × exp(θi − 1)),

where q̄0 is the unique solution to (9).

Substituting the equilibrium solutions into (3), we obtain the equilibrium
social welfare in the Bertrand game with the sellers S ⊆ S

sw(S) = − log (q̄0) +
∑

i∈S

q̄i
1 − q̄i

. (10)

By (4), we can similarly get the equilibrium revenue in the Bertrand game with
the set of sellers S ⊆ S

re(S) =
∑

i∈S

q̄i
1 − q̄i

. (11)

Instead of directly deriving the equilibrium strategies in one single step, in
practice, the sellers may employ some simple, natural and myopic learning algo-
rithms, such as best response, fictitious play or no-regret learning algorithm, to
interact with each other and eventually reach the equilibrium. One straightfor-
ward procedure for sellers in online platform markets to reach the Nash equilib-
rium is best response dynamics. Specifically, suppose that the current vector of
price p is not a Nash equilibrium, and a seller i ∈ S deviates by setting a new
p∗
i , which is the optimal price with respective to the other prices p−i, i.e.,

p∗
i = B(p−i) � arg max

p∈[0,+∞)

ri(p,p−i).

We can verify that the revenue function ri(p,p−i) is strictly quasi-concave in p,
and thus it is not easy to explicitly solve the above optimization problem. One
key observation is that the revenue function is strictly concave in the domain
of the demand, which enables us to obtain closed-form expressions for the best
response strategies, as shown in the following lemma.
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Lemma 1. The best response price p∗
i with respective to a fixed price vector p−i

can be calculated as

p∗
i = θi − log((1 +

∑

j∈S\{i}
aj) × W (

exp(θi − 1)
1 +

∑
j∈S\{i} aj

)),

where W (x) is the Lambert function and aj = exp(θj − pj) for all j ∈ S.

The proof of Lemma 1 is in Appendix B of technical report [24]. We further
have the following result for such best response dynamics in the Bertrand game.

Lemma 2. From an arbitrary price vector p, the best response dynamics con-
verge to the Nash equilibrium of the Bertrand game in a finite number of steps.

The basic idea to derive this result is to show the Bertrand game is an
ordinal potential game [18] with a finite value; the detailed proof of Lemma 2 is
in Appendix C of technical report [24].

4 Optimal Segmenting Mechanisms

In online marketplaces, the platform has control over search segmentation mech-
anisms - which set of products to display for a buyer. The platform can display
any set of products, and the competition among selected sellers then takes place
endogenously through the Bertrand game in Sect. 3. The goal of the platform
is to decide the optimal products S∗ ⊆ S to display, in order to maximize the
equilibrium social welfare/revenue. For n potential products in the market, there
are 2n − 1 possible sets of products, thus an exhaustive search to determine the
optimal set of displayed products is infeasible. We also note that the equilibrium
constraint (9) imposed by the Bertrand competition game is highly nonlinear,
which presents another challenge in deriving the optimal search segmentation
mechanisms. In this section, we exploit the structure of social welfare/revenue
functions to efficiently design the optimal search segmentation mechanisms.

4.1 Social Welfare Maximization

In the following theorem, we show the online platform would display all products
to maximize social welfare.

Theorem 3. For social welfare maximization, the optimal search segmentation
mechanism is to display all products S in the platform.

Proof. We prove this theorem by showing that adding a new product will always
improve the equilibrium social welfare. Suppose the platform has already selected
sellers S ⊂ S, and consider introducing a new product j ∈ S\S. According to
(10), we can express the equilibrium social welfare sw as

sw = − log q̄0 +
∑

i∈S

q̄i
1 − q̄i

+
xj × q̄j

1 − xj × q̄j
. (12)
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Here, q̄i is a function of q0, i.e., q̄i = V (q̄0 × exp(θi − 1)) and xj is an indicator
for product j ∈ S\S, where xj = 1 denotes product j is selected for display;
otherwise xj = 0. It is difficult to directly compare sw with xj = 1 and the one
with xj = 0. From (9), the demands q satisfy the equilibrium constraint:

1 − q̄0 =
∑

i∈S

q̄i + xj × q̄j =
∑

i∈S

V (q̄0 exp(θi − 1)) + xj × V (q̄0 exp(θj − 1)). (13)

Since V (x) is an increasing function, we can observe from the above equation
that q̄0 decreases when xj changes from 0 to 1. Furthermore, with (12) and (13),
we can express the equilibrium social welfare as a function of q̄0:

sw(q̄0) = − log q̄0 +
∑

i∈S

q̄i
1 − q̄i

+
1 − q̄0 − ∑

i∈S q̄i

q̄0 +
∑

i∈S q̄i
. (14)

Thus, we only need to prove sw(q̄0) is a decreasing function. The basic idea is to
explicitly calculate the first derivative of sw(q̄0), and show sw′(q̄0) < 0. We put
the detailed proof of the following lemma in Appendix D of technical report [24].

Lemma 3. The social welfare sw(q̄0) is a decreasing function.

From this lemma and the above discussion, we can always improve the equi-
librium social welfare by adding a new product, which completes the proof. 
�

4.2 Revenue Maximization

The optimal search segmentation mechanism with the objective of revenue max-
imization is different from the optimal mechanism when the platform attempts
to maximize social welfare. To illustrate this difference, we consider two cases:
a low quality case, e.g., θ1 = θ2 = · · · = θn = 0.5, and a high quality case, e.g.,
θ1 = θ2 = · · · = θn = 10. From the result in Theorem 3, the optimal mechanisms
for social welfare maximization in these two cases are to display all products.
However, for revenue maximization, it can be verified that the platform still dis-
plays all products in the low quality case, but only selects the first product in
the high quality case. The intuition behind this difference is that in some sce-
narios, the platform can further improve price and then revenue by reducing the
competition among sellers. We next show the design rationale for the optimal
search segmentation mechanisms for the revenue maximization.

One critical decision the platform has to make is the following: given a set
of products S ⊂ S, whether to just display the currently selected product set S,
or add a new product j from S\S. We refer to such a decision problem as the
“incremental” problem. Similar to the discussion on social welfare maximization,
given a set of selected products S ⊂ S, we can represent the equilibrium revenue
under these two decision options with the following function:

re =
∑

i∈S

q̄i
1 − q̄i

+
xj × q̄j

1 − xj × q̄j
. (15)



Optimal Search Segmentation Mechanisms for Online Platform Markets 311

We recall that xj is an indicator for product j ∈ S\S, where xj = 1 indicates
that product j is selected for display; otherwise xj = 0. The demands q̄i’s need
to satisfy the following equilibrium constraint:

1 − q̄0 =
∑

i∈S

q̄i + xj × q̄j =
∑

i∈S

q̄i + xj × V (q̄0 × exp(θj − 1)). (16)

Since V (x) is an increasing function, we have a critical observation from (16):
given a selected product set S, the quality θj of the potential product j ∈ S\S
has a one-to-one and inverse relation with the demand q̄0, i.e., when xj = 1,
involving the product with a higher quality θj leads to the lower value of q0.
With this observation, we can derive the feasible range of the independent value
q̄0. On the one hand, when the platform selects the available product with the
highest quality, i.e., the product j ∈ S\S with θj ≥ θj′ for all j′ ∈ S\S, the
demand q̄0 achieves its lower bound at q̄min

0 . On the other hand, setting xj to 0
represent the case that the platform does not select any new product, and the
corresponding demand q̄max

0 in this case is the upper bound of q̄0. Thus, we have
q̄0 ∈ [

q̄min
0 , q̄max

0

]
for the decision on selecting different product j ∈ S\S.

Using Eq. (16), we can replace xj × q̄j with 1− q̄0−∑
i∈S q̄i in (15) to express

the equilibrium revenue as a function of q̄0:

re(q̄0) =
∑

i∈S

q̄i
1 − q̄i

+
1

q̄0 +
∑

i∈S q̄i
− 1. (17)

Such revenue function indeed captures the equilibrium revenue of making differ-
ent decisions in the “incremental problem”. Specifically, adding a new product
j ∈ S\S (i.e., xj = 1) or do not add anything (i.e., xj = 0 for all j ∈ S\S)
can obtain different values q̄0 calculated by (16), and then re(q̄0) from (17) is
the corresponding equilibrium revenue. The property of the revenue function in
(17), especially the quasi-convexity, is a key step to derive the optimal search
segmentation mechanisms for revenue maximization.

Fig. 1. re(q̄0) is a quasi-convex revenue function for the possible product set to display
when the product 1 has been selected. re(q̄min

0 ) is the revenue obtained by displaying
S∗ = {1, 2}, re(q̄middle

0 ) is the revenue from showing S∗ = {1, n}, and re(q̄max
0 ) is the

revenue of displaying S∗ = {1}.
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Based on the above discussion, we show that the optimal search segmentation
mechanism is to choose the k∗ products with the best quality, for an appropriate
value of k∗, using the following steps:

• First, we show that one should always display the product with the best
quality to maximize revenue (Lemma 4).

• Then, we consider the decision of adding one product to display. As discussed
previously, we show that re(q0) is quasi-concave in q0 which implies that the
optimal decision is to add the next highest quality product or to not add a
product at all, as illustrated in Fig. 1. The quasi-convexity of re(q0) is shown
in Lemma 5 under a certain condition. Using the quasi-convexity of re(q0),
in Lemma 6, we prove that if the optimal display set consists of k∗ products,
then one should select the top k∗ products in terms of quality.

• The final step is to find the optimal k∗. This can be done by the following
calculation. For each possible value of k∗ ∈ {2, · · · , n}, we select the top k∗

products and calculate the revenue. We choose k∗ to maximize this revenue.
This is clearly a linear-time algorithm in n, since one has to add one term
to the expression for the revenue when we increase k∗ by one. This result is
summarized in Theorem 4.

We first show that revenue maximization implies that the highest quality
product is always selected for display.

Lemma 4. For revenue maximization, it is optimal to always display the prod-
uct with the highest quality.

The intuition behind the proof is to show that for any displayed product set,
the revenue function in (17) increases with the quality of the product with the
highest quality in this set. The proof is in Appendix E of technical report [24].

Lemma 4 implies that when the optimal search segmentation mechanism is
to display one product, i.e., k∗ = 1, the platform will choose the first prod-
uct. To obtain the result for the general case with k∗ ≥ 2, we need to estab-
lish the quasi-convexity of the revenue function in (17). It is non-trivial to
directly verify this property because the first term in the revenue function, i.e.,∑

i∈S
q̄i

1−q̄i
, is increasing and concave with respective to q0, while the remaining

term 1
q̄0+

∑
i∈S q̄i

− 1 is decreasing and convex. We first prove the desired quasi-
convexity by assuming all demands q̄i’s are less than 0.5, i.e., q1 < 0.5, due to
qi ≤ q1 for i ∈ S, meaning that no seller dominates the market. This assumption
simplifies the analysis, but still preserves the major intuition. Our results also
hold without this assumption, as shown in Appendix H of technical report [24].

Lemma 5. For any selected product set S, the revenue function re(q̄0) in (17)
is quasi-convex in the range

[
q̄min
0 , q̄max

0

]
, under the assumption of q1 < 0.5.

The basic idea to prove this result is to check the second-order conditions of
a quasi-convex function, i.e., at any point with zero slope, the second derivative
is non-negative, i.e., re′(q̄0) = 0 ⇒ re′′(q̄0) > 0. The details are in Appendix
F of technical report [24]. Equipped with Lemma 5, we can derive the optimal
search mechanism for the case with k∗ ≥ 2.



Optimal Search Segmentation Mechanisms for Online Platform Markets 313

Lemma 6. For revenue maximization, the optimal search segmentation mech-
anism is to display the top k∗ products if the cardinality of the optimal product
set is k∗ ≥ 2, under the assumption of q1 < 0.5.

The optimality of the top k∗ mechanism in this lemma can be established by
showing that replacing any product with a product of higher quality will increase
the revenue (see Appendix G in technical report [24] for the proof).

While the specific value of k∗ depends on the quality of all products θ, The
platform can find the optimal k∗ in linear time by computing the revenue of each
set with the top k ∈ [1, n] products, and selecting the one with the maximum
revenue. Thus, from Lemmas 4 and 6, we obtain the main result for the case of
revenue maximization.

Theorem 4. For revenue maximization, the optimal search segmentation mech-
anism is to display the top k∗ products, where k∗ is determined by the quality of
all products θ, and can be calculated in linear time.

5 Related Work

Our work is related to the burgeoning literature that studies online platform
marketplaces of using control levels other than pricing to influence the mar-
ket outcomes [4,5,7,14]. Kanoria and Saban designed a framework to facilitate
the search for buyers and sellers on matching platforms, and found that simple
restrictions on what buyers/sellers can access would boost social welfare [14].
Arnosti et al. investigated the welfare loss due to the uncertainty about seller
availability in asynchronous dynamic matching markets, and also found that
limiting the visibility of sellers can improve social welfare [4]. Our result, dis-
playing only a subset of products to buyers can increase the equilibrium revenue,
extends the findings in these two pieces of work to the context of revenue opti-
mization. Banerjee et al. studied how the platform should control which sellers
and buyers are visible to each other, and provided polynomial-time approxima-
tion algorithms to optimize social welfare and throughput [5]. In their model,
supply and demand are associated with public distributions. By contrast, we
adopt the MNL model to derive a specific demand system, and use the Bertrand
game to capture supply response to this demand system, doing so leads to very
different optimization problems.

Revenue management under general demand model has been extensively
studied in economics, marketing and operation management [9,20–22]. The
model considered in this paper is closely related to that in assortment optimiza-
tion, which is an active area in revenue management research. For assortment
optimization, the demand of products are governed by the variants of attraction-
based choice models [3], e.g., MNL model, mixed nested logit model and nested
logit model, and each product is associated with a fixed price. The objective is to
find a set of products, or an assortment to offer that maximizes the expected rev-
enue. In [22], Talluri and van Ryzin studied the assortment optimization problem
under the MNL model, and showed that the optimal assortment includes a cer-
tain number of products with the highest prices. We also derive a similar result,
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but use the criteria of quality rather than price to rank the potential products.
In our setting a key difference from this line of work is that the product prices
are determined endogenously by the outcome of oligopolistic competition games
instead of being given beforehand. Pricing multiple differentiated products in
the context of the MNL model is another fairly active direction [9,13,21]. In
this setting, all products are displayed, and the objective is to choose pries of
products to maximize revenue. In contrast, we focus on search segmentation
mechanisms with endogenous prices, where the platform only controls the set of
displayed products, to optimize the equilibrium social welfare/revenue.

6 Conclusion

In this paper, we have studied the problems of social welfare maximization and
revenue maximization in designing search space for online platform markets. In
the discriminatory control model, the platform can only control the search seg-
mentation mechanisms, i.e., determine the list of products to display for buyers,
and the products’ prices are determined endogenously by the competition among
sellers. Under the standard buyer choice model, namely the multinomial logit
mode, we have developed efficient and optimal search segmentation mechanisms
to maximize the equilibrium social welfare and revenue under Bertrand com-
petition game. For social welfare maximization, it is optimal to display all the
products. For revenue maximization, the optimal search mechanism, referred as
quality-order mechanism, is to display the top k∗ highest quality products, where
k∗ can be computed in at most linear time in the number of products.
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