
15th International Conference, WINE 2019
New York, NY, USA, December 10–12, 2019
Proceedings

Web and 
Internet EconomicsLN

CS
 1

19
20

AR
Co

SS
Ioannis Caragiannis
Vahab Mirrokni
Evdokia Nikolova (Eds.)



Lecture Notes in Computer Science 11920

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Ioannis Caragiannis • Vahab Mirrokni •

Evdokia Nikolova (Eds.)

Web and
Internet Economics
15th International Conference, WINE 2019
New York, NY, USA, December 10–12, 2019
Proceedings

123



Editors
Ioannis Caragiannis
University of Patras
Rio, Greece

Vahab Mirrokni
Google Research New York
New York, NY, USA

Evdokia Nikolova
The University of Texas System
Austin, TX, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35388-9 ISBN 978-3-030-35389-6 (eBook)
https://doi.org/10.1007/978-3-030-35389-6

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4918-7131
https://doi.org/10.1007/978-3-030-35389-6


Preface

This volume contains the regular papers and abstracts presented at the 15th Conference
on Web and Internet Economics (WINE 2019) held during December 10–12, 2019, in
New York (USA) at Columbia University.

Over almost 20 years, researchers in theoretical computer science, artificial intelli-
gence, and economics have joined forces to tackle problems involving incentives and
computation. These problems are of particular importance in application areas like the
Web and the Internet that involve large and diverse populations.

WINE is an interdisciplinary forum for the exchange of ideas and scientific progress
on incentives and computation arising from these various fields. WINE 2019 built on
the success of the WINE series (named Workshop on Internet and Network Economics
until 2013), which was held annually from 2005 to 2018.

The Program Committee, comprised of 42 top researchers from the field, reviewed
111 submissions and decided to accept 36 papers. Each paper had three reviews, with
additional reviews solicited as needed. We are very grateful to the Program Committee
for their insightful reviews and discussions. The review process was conducted entirely
electronically via EasyChair – we gratefully acknowledge this support. We also thank
Springer for providing the proceedings and offering support for the Best Paper Award.

The program included three invited talks by leading researchers in the field: Suchi
Chawla (University of Wisconsin-Madison, USA), Michael I. Jordan (University of
California, Berkeley, USA), and Tuomas Sandholm (Carnegie Mellon University,
USA).

Our special thanks to the general chair Paul Goldberg, the local organizers Xi Chen
and Omri Weinstein, and the poster chairs Santiago Balseiro and Jon Schneider.

October 2019 Ioannis Caragiannis
Vahab Mirrokni

Evdokia Nikolova
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Awareness of Voter Passion Greatly
Improves the Distortion of Metric Social

Choice

Ben Abramowitz(B), Elliot Anshelevich(B), and Wennan Zhu(B)

Rensselaer Polytechnic Institute, Troy, NY, USA
{abramb,anshee,zhuw5}@rpi.edu

Abstract. We develop new voting mechanisms for the case where voters
and candidates are located in an arbitrary unknown metric space, and
the goal is to choose a candidate minimizing social cost: the total dis-
tance of the voters to this candidate. Previous work has often assumed
that only the ordinal preferences of the voters are known (instead of
their true costs), and focused on minimizing distortion: the quality of
the chosen candidate as compared to the best possible candidate. In this
paper, we instead assume that a (very small) amount of information is
known about the voter preference strengths, not just about their ordinal
preferences. We provide mechanisms with much better distortion when
this extra information is known as compared to mechanisms which use
only ordinal information. We quantify tradeoffs between the amount of
information known about preference strengths and the achievable distor-
tion. We further provide advice about which type of information about
preference strengths seems to be the most useful. Finally, we conclude
by quantifying the ideal candidate distortion, which compares the quality
of the chosen outcome with the best possible candidate that could ever
exist, instead of only the best candidate that is actually in the running.

1 Introduction

One often hears about ‘where candidates stand’ on issues, calling to mind a
spatial model of preferences in social choice [5,25,27,28,32,35]. In proximity-
based spatial models, voters’ preferences over candidates are derived from their
distances to each of the candidates in some issue space. In particular, we consider
voters and candidates which lie in an arbitrary unknown metric space. Our work
follows a recent line of research in social choice which considers this setting [2–4,
10,15–17,19,22,24,26,33,36]. The distance between each voter and the winning
candidate is interpreted as the cost to that voter. Naturally, one of the main
goals is to select the candidate which minimizes the total Social Cost, i.e., the
sum of costs of the voters.

The crucial observation in the work cited above is that the actual costs of the
voters for the selection of each candidate (i.e., the distances in the metric space)

This work was partially supported by NSF award CCF-1527497.

c© Springer Nature Switzerland AG 2019
I. Caragiannis et al. (Eds.): WINE 2019, LNCS 11920, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-35389-6_1
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4 B. Abramowitz et al.

are often unknown or difficult to obtain [11]. Instead, it is more reasonable to
assume that voters only report ordinal preferences: orderings over the candidates
which are induced by, and consistent with, latent individual costs. Because of
this, past research has often focused on optimizing distortion: the worst-case
ratio between the winning candidate selected by a voting rule aware of only
ordinal preferences, and the best available candidate which minimizes the overall
social cost. Many insights were obtained for this setting, including that there are
deterministic voting rules which obtain a distortion of at most a small constant
(5 in [2], and more recently 4.236 in [31]), and that no deterministic rule can
obtain a distortion of better than 3 given access to only ordinal information.1

The fundamental assumption and motivation in the above work is that the
strength or intensity of voter preferences is not possible to obtain, and thus we
must do the best we can with only ordinal preferences. And indeed, knowing the
exact strength of voter preferences is usually impossible. In many settings, how-
ever, some cardinal information about the ardor of voter preferences is readily
available or obtainable, and is often used to affect outcomes and make better
collective decisions. For example, a decision in a meeting may be decided in favor
of a minority position if those in the minority are significantly more adamant or
passionate about the issue than the apathetic majority, as revealed during dis-
cussion or debate. In political campaigns, the amounts of monetary donations,
activists attending rallies, and other measures of “grass-root support” can cause
a candidate to become a de-facto front-runner even before an official election or
primary is ever held. Because of this, in this paper we ask the question: “How
much can the quality of selected candidates be improved if we know some small
amount of information about the strength of voter preferences?”

There are many different approaches for modeling, measuring, eliciting, and
aggregating the strength or intensity of voter preferences [12,18]. Such measures
can be done through survey techniques, measuring the total amount of monetary
contributions, amounts of excitement and time people spend volunteering or
advocating for particular issues, etc (see Sect. 2). All such measures are by their
very nature imprecise. And yet while it is unreasonable to assume that exact
strength of preference is known for every voter, it is certainly possible to obtain
insights such as “there are many more voters who are passionate about candidate
A as compared to candidate B”, or quantify the approximate amount of extreme
preference strengths as opposed to the voters who are mostly indifferent. As we
show in this paper, even such a small amount of information about aggregate
preference strengths or the amount of passionate voters can greatly improve
distortion, and allow mechanisms which provably result in outcomes that are
close to optimal. In fact, knowing only a single additional bit of information for
each voter (i.e., do they prefer A to B strongly, or not strongly?) is enough to
greatly improve distortion.

1 We focus on deterministic mechanisms in this paper; see Sect. 2 for a discussion of
why.
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Model and Notation. As in previous work on metric distortion, we have
a set of voters V = {1, 2, . . . , n} and a set of candidates (or alternatives) C.
These voters and candidates correspond to points in an arbitrary (unknown)
metric space d. The voter preferences over the candidates are induced by the
underlying metric, i.e., voters prefer candidates who are closer to them. Voter
i prefers candidate P over candidate Q (i.e., P �i Q) only if d(i, P ) ≤ d(i, Q).
Moreover, we assume that the strengths of voter preferences are induced by
these latent distances. If i prefers P over Q, then the strength of this preference
is αPQ

i = d(i,Q)
d(i,P ) . The cost to voter i if candidate P is elected is d(i, P ), and the

goal is to select the candidate minimizing the Social Cost: SC(P ) =
∑

i∈V
d(i, P ).

Given a set of preference strength thresholds {1 ≤ τ1 < τ2 < . . . < τm},
voters report the largest threshold which their preference strength exceeds for
each pair of candidates. We let APQ

� = {i ∈ V : d(i, P ) ≤ d(i, Q) and τ� ≤
αPQ

i < τ�+1} and BPQ
� = {j ∈ V : d(j,Q) ≤ d(j, P ) and τ� ≤ αQP

j < τ�+1}.
When τ1 = 1 we know the preferred candidate of every voter, i.e., for voter i
and each pair of candidates P and Q, we know whether i prefer P or Q. When
τ1 > 1 we let C denote the set of voters with preference strength strictly less than
τ1 whose preferred candidate is unknown. When m → ∞, we know the exact
preference strength of every voter for every pair of candidates. For convenience in
expressing some of our bounds, we also sometimes say τm+1 = ∞ and τ0 = 1/τ1.

In previous work on metric distortion only the ordinal preferences were
known, i.e., whether (P �i Q) or (Q �i P ). In this paper, however, we
assume that we are also given some information about the preference strengths
αPQ

i = d(i,Q)
d(i,P ) as well. Note that knowing these values still does not tell us how

d(i, P ) compares with d(j, P ) for i �= j, only how strongly each voter feels when
comparing different candidates.

For a given voting rule R and instance I = {V, C, d}, let PI be the winning
candidate selected by R and let ZI be the best available candidate (the one
minimizing the Social Cost). Then, the distortion of winning candidate PI is
defined as

δI =
SC(PI)
SC(ZI)

The distortion of a voting rule R is defined by its behavior on a worst-case
instance:

δ = max
I

δI = max
I

SC(PI)
SC(ZI)

Lower Bounds on Distortion with Preference Strengths. Before present-
ing our main results, we first provide lower bounds on the minimum distortion
any deterministic mechanism can achieve given only preference strength infor-
mation. First, note that even if all exact preference strengths were known to us,
we still would not be able to choose the optimal candidate: knowing the relative
strength of preference for every voter is not the same thing as knowing their
exact distances to every candidate (i.e., we would only know αi = d(i,P )

d(i,Q) and not
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d(i, P ) and d(i, Q) themselves). Proofs for all our results can be found in the full
version of this paper at https://arxiv.org/abs/1906.10562.

Theorem 1. No deterministic mechanism with only preference strength infor-
mation can achieve a worst-case distortion less than

√
2.

Theorem 2. When given knowledge of m fixed thresholds, no deterministic
mechanism can always achieve a distortion less than max

0≤�≤m
{ τ�τ�+1+2τ�+1−1

τ�τ�+1+1 }.

Our Contributions. In this work, we study the possible distortion with dif-
ferent levels of voter preference strength information. A summary of our results
is shown in Table 1. We begin with the setting in which we are given the voters’
ordinal preferences, as well as a threshold τ ≥ 1 of voter preference strength. In
other words, for any two candidates P and Q, we know the number of voters who
prefer P to Q, as well as how many of them prefer P to Q by at least a factor
of τ (i.e., d(i, P ) < 1

τ d(i, Q)). For the case that there are only two candidates,
we provide a mechanism which achieves provably the best possible distortion of
max{ τ+2

τ , 3τ−1
τ+1 }, as shown in Fig. 1. For the setting with more than two candi-

dates, we get a distortion of min{max{ 3τ−1
τ+1 , τ+2

τ }+2,max{(3τ−1
τ+1 )2, ( τ+2

τ )2}} as
shown in Fig. 2. Note that when τ = 1, we get a distortion of 5. A recent paper
[31] shows a deterministic algorithm that gives a distortion of 4.236.

Table 1. Distortion in different settings.

Distortion Two candidates More than two candidates

Preferences and a threshold τ max{ τ+2
τ

, 3τ−1
τ+1

} min{max{ 3τ−1
τ+1

, τ+2
τ

} + 2,

max{( 3τ−1
τ+1

)2, ( τ+2
τ

)2}}
m thresholds τ1, . . . , τm max

1≤l≤m
{ τ�τ�+1+2τ�+1−1

τ�τ�+1+1
} max

1≤l≤m
{(

τ�τ�+1+2τ�+1−1

τ�τ�+1+1
)2}

Exact preference strengths
√

2 2

From Figs. 1 and 2, we can see that the distortion is minimized when τ =
1 +

√
2 in both settings. With only voter preferences being known, the best

known deterministic distortion bounds are 3 for two candidates [2], and 4.236
for multiple candidates [31]. Interestingly, if we are also allowed to choose a
threshold τ , our results indicate that the optimal thing to do is to differentiate
between candidates with a lot of supporters who prefer them at least 1 +

√
2

times to other candidates, and candidates which have few such supporters. By
obtaining this information, we can improve the quality of the chosen candidate
from a 3-approximation to only a 1.83 approximation (for 2 candidates), and
from a 4.236-approximation to a 3.35-approximation (for ≥ 3 candidates). This
is a huge improvement obtained with relatively little extra cost in information
gathering.

https://arxiv.org/abs/1906.10562
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Fig. 1. Distortion for two candidates with
preferences and a threshold τ .

Fig. 2. Distortion for more than two
candidates with preferences and a
threshold τ .

2 Related Work and Discussion

The concept of distortion was introduced by [34] as a measure of efficiency for
ordinal social choice functions (see also [2,11] for discussion). Since then, two
main approaches have emerged for analyzing the distortion of various voting
mechanisms. One is assuming that the underlying unknown utilities or costs
are normalized in some way, e.g., [6–9,11,13,14,20,29]. Especially, Amanatidis
et al. [1] study distortion with queries of voters’ preference strength, which is
similar to our model, but with unit-sum or unrestricted utility functions. The
second approach, which we take here, assumes all voters and candidates are
points in a metric space [2–4,10,15–17,19,22–24,26,33,36]. In particular, when
the latent numerical costs that induce voter preferences over a set of candidates
obey the triangle inequality, it is known that simple deterministic voting rules
yield distortion which is always at most a small constant (5 for the well-known
Copeland mechanism [2], and recently 4.236 for a more sophisticated, yet elegant,
mechanism [31]). While [2] showed that no deterministic mechanism can always
produce distortion better than 3, closing this gap remains an open question.

Randomized vs Deterministic Mechanisms. In this paper we restrict our
attention to deterministic social choice rules, instead of randomized ones as in
e.g., [3,13,19,26], for several reasons. First, consider looking at our mechanisms
from a social choice perspective, i.e., as voting rules that need to be adopted
by organizations and used in practice. People are far more resistant to adopt-
ing randomized voting protocols. This is because an election with a non-trivial
probability of producing a terrible outcome is usually considered undesirable,
even if the expected outcomes are good. There are many exceptions to this, of
course, but nevertheless deterministic mechanisms are easier to convince people
to adopt. Second, consider looking at our mechanisms from the point of view
of approximation algorithms, i.e., as algorithms which attempt to produce an
approximately-optimal solution given a limited amount of information. For tra-
ditional randomized approximation algorithms with guarantees on the quality
of the expected outcome it is possible to run the algorithm several times, take
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the best of the results, and be relatively sure that you have achieved an outcome
close to the expectation. In this setting of limited information, however, we can-
not know the “true” cost of a candidate even after a randomized mechanism
chooses it, and thus cannot take the best outcome after several runs. Therefore,
unless stronger approximation guarantees are given than simply bounds on the
expectation, it is quite likely that the outcome of a randomized algorithm in our
setting would be far from the expected value. While randomized algorithms are
certainly worthy of study even in our setting, and many interesting questions
about them exist, we choose to focus only on deterministic algorithms in this
paper.

Attempts to exploit preference strength information have led to various
approaches for modeling, eliciting, measuring, and aggregating people’s pref-
erence intensities in a variety of fields, including Likert scales, semantic differen-
tial scales, sliders, constant sum paired comparisons, graded pair comparisons,
response times, willingness to pay, vote buying, and many others (see [12,18,21]
for summaries). In our work we specifically consider only a small amount of
coarse information about preference strengths, since obtaining detailed infor-
mation is extremely difficult. Intuitively, any rule used to aggregate preference
strengths must ask under what circumstances an ‘apathetic majority’ should win
over a more passionate minority [37], and we provide a partial answer to this
question when the objective is to minimize distortion.

Perhaps most related to our work is that of [3] which introduced the concept
of decisiveness. Using our notation, [3] proves bounds on distortion under the
assumption that every voter has a preference strength at least α between their
top and second-favorite candidates. We, on the other hand, do not require that
voters have any specific preference strength between any of their alternatives,
and provide general mechanisms and distortion bounds based on knowing a bit
more about voters (arbitrary) preference strengths. In other words, while [3]
limits the possible space of voter preferences and locations in the metric space,
we instead allow those to be completely arbitrary, but assume that we are given
slightly more information about them.

In our model, when voter preference strength is less than the smallest
threshold (τ1 > 1), they effectively abstain because their preferred candidate
is unknown, and so any reasonable weighted majority rule must assign them a
weight of 0. Therefore, our work also bears resemblance to literature on voter
abstentions in spatial voting (see [22] and references therein). While there are
major technical differences in our model and that of [22], at a high level the
model of [22] is similar to a special case of ours with only two candidates and a
single threshold on preference strengths (and no knowledge of voter preferences
otherwise), which we analyze in Sect. 4.

Finally, in this paper we assume that the preference strengths given to our
algorithms are truthful, i.e., that the voters do not lie. While it would certainly be
interesting and important to consider the case where voters may not be truthful
(as in e.g., [9,19]), for many settings with preference strengths it is actually more
reasonable to expect voters to be truthful than for settings with only ordinal
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votes. This is because preference strengths are often signaled passively (e.g.,
average response times to surveys) or expressing this intensity comes at a cost
(e.g., time commitments, activism, or monetary contributions and payments).
Even in debates and committees where a member signals their strong preference
for A over B, this member is putting their reputation on the line in doing so,
and so may not want to do this unless their preference is actually that strong,
in order to not look foolish or inconsistent in the future.

3 Adding the Knowledge of a Single Threshold τ
to Ordinal Preferences

3.1 Distortion with Two Candidates

In this section we begin by analyzing the case with only two possible candidates.
In the section that follows, we use these results to form mechanisms with small
distortion for multiple candidates. Suppose there are two candidates P and Q.
We are given the voters’ ordinal preferences, and a strength threshold τ , i.e.,
for every voter we only know two bits of information: whether they prefer P or
Q, and whether their preference is strong (> τ) or weak (≤ τ). Note that our
results still hold if we only have this knowledge in aggregate, i.e., if for both P
and Q we know approximately how many people prefer P to Q strongly versus
weakly, and vice versa.

Notice that preference strengths tell us little about the true underlying dis-
tances for voters with weak preference strengths, because the preference strength
of a voter almost directly between P and Q who is very close to both can have
the same preference strength as a voter who is very distant from both candidates.
However, if a voter’s preference strength is large, we know they must be fairly
close to one of the candidates - and it is these passionate voters who contribute
most to distortion.

Weighted Majority Rule 1. Given voters’ preferences and a threshold τ for
two candidates, if τ ≥ √

2+1, assign weight τ+1
τ−1 to all the voters with preference

strengths > τ and weight 1 to all the voters with preference strengths ≤ τ . If
τ <

√
2 + 1, assign weight τ to all the voters with preference strengths > τ and

weight 1 to all the voters with preference strengths ≤ τ . Choose the candidate by
a weighted majority vote.

The following theorem shows that the above voting rule produces much better
distortion than anything possible from knowing only the ordinal preferences.
Moreover, due to the lower bounds in the previous section, this is the best
distortion possible (apply Theorem 2 with τ1 = 1 and τ2 = τ).

Theorem 3. With 2 candidates in a metric space, if we know voters’ preferences
and a strength threshold τ , Weighted Majority Rule 1 has a distortion of at most
δ = max{ τ+2

τ , 3τ−1
τ+1 }.
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Proof Sketch. Let P be the winning candidate, and Q the losing candidate. For
all voters, consider their individual ratio of d(i,P )

d(i,Q) , regardless of which candidate
they prefer. For voters who prefer P this is their preference strength, and for
voters who prefer Q this is the reciprocal of their preference strength. If for all
voters this is less than δ, then clearly we have a distortion of at most δ by just
summing them up. However, for some voters this ratio is higher and for others it
is lower. If we think of charging SC(P ) to SC(Q), we should charge the voters
for whom this ratio is lower to the voters for whom this ratio is higher. Clearly,
for any voters who prefer P this ratio is less than 1 and so it is less than δ.
For voters who prefer Q, some voters with weak preferences will allow us to
save charge while others with stronger preferences will use up the extra charge.
However, charging the voters to other voters is quite difficult in this setting. The
main new technique in our proof is to use d(P,Q) as a sort of numeraire or store
of value. We first perform the charging for all voters for whom this ratio is small,
and we use d(P,Q) to quantify how much extra charge is saved. We then show
that this quantity of charge stored in terms of d(P,Q) is sufficient to expend the
charge from the remaining voters, yielding a distortion at most δ. 
�

Note that Weighted Majority Rule 1 is not the only rule that gives the optimal
distortion for two candidates. Consider the following simpler rule:

Weighted Majority Rule 2. Given voters’ preferences and a threshold τ for
two candidates, assign weight τ+1

τ−1 to all the voters with preference strengths > τ
and weight 1 to all the voters with preference strengths ≤ τ .

This rule gives the same distortion as Weighted Majority Rule 1 for two
candidates, as we prove in the full version. When extending these rules to more
than 2 candidates, however, Weighted Majority Rule 1 allows us to form better
mechanisms, thus sacrificing a small amount of simplicity for an improvement
in distortion. We discuss this in the next section.

Theorem 4. Weighted Majority Rule 2 has a distortion of max{ 3τ−1
τ+1 , τ+2

τ }.

3.2 Multiple Candidates (Given Preferences and a Threshold τ )

In this section, we discuss mechanisms with small distortion for multiple (≥ 3)
candidates. We assume that we are given the ordinal preference ordering of
each voter for all candidates, as well as an indication whether, for every pair
of candidates, the voter has a strong preference (> τ), or a weak preference
(≤ τ). While this certainly requires more than a single bit of information for
every voter, we believe that such data is reasonably possible to collect: it is
usually easy for voter to express whether they prefer option A to option B
strongly or weakly, as opposed to trying to quantify exactly how strong their
preference is. In reality we would need to compare only the obviously front-
runner candidates in this way, and would not actually need this thresholded
knowledge for every pair of candidates. As discussed in Sect. 1, this information
could also be reasonably estimated from other sources, such as the amount of
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monetary donations, attendance to political rallies, the amount of “buzz” on
social media, etc.

The mechanisms we consider are as follows. First, we create a weighted major-
ity graph by choosing pairwise winners using Majority Rule 1. Then we study
the distortion of the winner(s) in the uncovered set [30] in this majority graph.
Recall that if a candidate P is in the uncovered set, it means that for any candi-
date Z, either P beats Z directly, or there exists another candidate Q such that
P beats Q, and Q beats Z. The uncovered set is always known to be non-empty,
and for example the Copeland mechanism always chooses a candidate in the
uncovered set.

We begin with the following useful lemma due to Goel et al. [24].

Lemma 1 (Goel et al. 2017). If a majority of voters prefer P to Q, then
SC(P ) ≤ 2 · SC(Z) + SC(Q) for any other possible candidate Z.

We first show that while this lemma certainly does not hold for all pairwise
majority rules, this lemma can be generalized specifically for Majority Rule 1.
We then use this to prove bounds on the distortion of the above “uncovered set”
mechanisms. This lemma is precisely why we use Majority Rule 1 instead of, for
example, simpler rules such as Majority Rule 2, since while their distortion for
two candidates remains the same, the theorem below fails to hold.

Theorem 5. If Weighted Majority Rule 1 selects P over Q, then SC(P ) ≤
2 · SC(Z) + SC(Q) where Z can be any point in the metric space.

All the complexity lies in the proof of the above theorem. Once it is proven,
it is very easy to establish distortion bounds based on our weighted majority
rule.

Theorem 6. Suppose a weighted majority graph is formed by using Majority
Rule 1 to choose pairwise winners. The distortion of the uncovered set of this
graph is at most min{max{ 3τ−1

τ+1 , τ+2
τ }+2,max{( 3τ−1

τ+1 )2, ( τ+2
τ )2}} in the multiple

candidates setting when given voters’ ordinal preferences and a threshold τ .

4 Undecided Voters: Working Without Knowing Voter
Preferences

Suppose there are two candidates P and Q and for all voters with preference
strength greater than threshold τ , we know their preferred candidate. For all
other voters we know nothing about their preferences. This is a strict general-
ization of the case where we just know voter preferences, since that is the case
where τ = 1. As with the case where we only know preferences, the only reason-
able voting rule is to select the candidate preferred by more voters (in the case
that there are only two candidates), out of those for whom we know preferences.
This represents the case where voters abstain if their preference strength is not
sufficiently high for them to be motivated enough to vote. In this section we
consider mechanisms to deal with such undecided or unmotivated voters.
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Weighted Majority Rule 3. Given candidates P and Q and any single
threshold τ ≥ 1, give all voters with preference strength at least τ a weight of
1 and all other voters a weight of 0. Select the candidate by weighted majority
rule.

Theorem 7. With two candidates and only the preferences of voters with pref-
erence strength greater than τ , Weighted Majority Rule 3 achieves a worst-case
distortion of max{ τ+2

τ , τ}, and no deterministic mechanism can do better.

If we can only select a single threshold for voter preference strengths, which
should we choose? Intuitively, this is analogous to determining how difficult it
should be to vote. If it takes a little bit of effort to vote, then you know that
the voters who actually do participate have a significant interest in the out-
come. However, if the barriers to voting are too high, then the outcome can
be decided by a small fraction of the voters and fails to capture their collec-
tive preferences as a whole. In our setting the optimal choice of threshold is
arg min

τ
{max{ τ+2

τ , τ}} = 2, yielding a distortion of 2 (instead of 3 for the case

when τ = 1).
When there are more than two candidates, we again consider the distortion

of the uncovered set.

Theorem 8. With mutiple candidates and only the preferences of voters with
preference strength greater than τ , if Weighted Majority Rule 3 is used to choose
pairwise winners, then the distortion of the uncovered set of this graph is at most
max{( τ+2

τ )2, τ2}.

5 Distortion with General Thresholds

In this section we generalize some of our results in the previous sections to deal
with general preference strength thresholds. We are given thresholds {1 ≤ τ1 <
τ2 < . . . < τm}, and for every voter i and pair of candidates P and Q we
know the pair of thresholds between which the preference strength of i falls into.
In other words, the more thresholds we have, the less coarse our knowledge of
voters preferences. We believe it is realistic to assume that we have one or two,
perhaps three, such thresholds, and for most candidate pairs we can create a
profile describing how devoted and fanatical their supporters are with respect to
these thresholds. However, in this section we consider general sets of thresholds
in order to provide bounds on distortion which are as general as possible. For
convenience, we let τm+1 = ∞ and τ0 = 1

τ1
.

We begin as before, by analyzing the case with only 2 candidates P and Q,
and then extending our results to multiple candidates.

Weighted Majority Rule 4
For all � < k, assign to all voters in A� and B� a weight of (δ+1)(τ�τ�+1−1)

(τ�+1)(τ�+1+1) . For

all � ≥ k, assign voters in A� and B� a weight of
(
( τ�+1−δ

τ�+1−1 ) + ( δτ�−1
τ�+1 )

)
. Lastly,

assign all voters in C a weight of 0. Choose the candidate by a weighted majority
vote.
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Theorem 9. Weighted Majority Rule 4 achieves the optimal distortion for two
candidates with preference strength information.

How much effort, time, and money, should someone charged with developing
a voting protocol, or with choosing an alternative minimizing social cost, spend
in order to understand the preference strengths of voters in more detail? With
only ordinal preferences (m = 1, τ = 1), the best distortion achievable is by
simple majority vote, yielding a distortion of 3. However, if we are permitted any
single threshold of our choice (m = 1, 1 < τ), we can bring the distortion down
significantly to 2. With any two thresholds of our choice (m = 1, 1 ≤ τ1 < τ2), we
can bring distortion down further to 5/3 ≈ 1.67, and as the number of thresholds
permitted increases we see distortion converge to

√
2 ≈ 1.4. (See Fig. 3.) This is

because in the limit when we know the exact preference strengths of all voters,
distortion can be bounded by

√
2, as we show in the next section. Thus, there

is not much incentive to spend a huge amount of money to understand exact
preference strengths, as one or two carefully chosen thresholds already provide
very good distortion.

For the general case with arbitrary thresholds and no extra assumptions, we
can demonstrate a bound of δ2 on the distortion for three or more candidates
(Fig. 4). This is obtained simply by forming a pairwise majority graph based
on the above weighted majority rule, and then taking any alternative in the
uncovered set of the resulting graph. It remains an open question whether there
exist weighted majority rules that can improve the bound on distortion in the
general case using this method, as we can when we have a single threshold and
preferences, or preferences alone. More generally, it is unknown how to get a
tight bound on the distortion with multiple candidates using any rule, even in
the simpler case with only ordinal preferences [31].

Fig. 3. Best achievable distortion for two
candidates if allowed the best choice of
m thresholds. Converges to

√
2 with the

number of thresholds.

Fig. 4. Best known distortion for mul-
tiple candidates if allowed the best
choice of m thresholds. Converges to 2
with the number of thresholds.

Exact Preference Strengths of All Voters. For completeness of analysis, we
include the case when we know the exact preference strengths of all voters with
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respect to every pair of candidates. Suppose there are two candidates P and Q,
and we are given the preference strengths of every voter. Denote A as the set of
voters that prefer P to Q, and B as the set of voters that prefer Q to P . The
preference strength of any i ∈ A is denoted as αi, and the preference strength
of any j ∈ B is denoted as βj .

Weighted Majority Rule 5. Assign weight
√
2αi−1
αi+1 to each voter i ∈ A such

that αi >
√

2, and weight αi − 1 to each voter i ∈ A such that αi ≤ √
2. Assign

weight
√
2βj−1
βj+1 to each voter j ∈ B such that βj >

√
2 and weight βj − 1 to each

voter j ∈ B such that βj ≤ √
2.

Theorem 10. Using Weighted Majority Rule 5, the distortion is always at most√
2 for two candidates, and this is the best bound possible for any deterministic

mechanism. Moreover, choosing a candidate from the uncovered set of a weighted
majority graph obtained by using pairwise Rule 5 results in distortion of at most
2 for any number of candidates.

6 Ideal Candidate Distortion

In addition to forming mechanisms with small distortion, we also have a secondary
goal in this paper. Rather than only comparing the winning candidate to the best
available candidate, we can also measure them against the ideal conceivable can-
didate Z∗

I who may not be an available option to vote upon. Z∗
I is the point in the

metric space which minimizes social cost; it is the absolute best consensus of the
voters, and it would be wonderful if that point corresponded to a candidate, but
that may not be the case (i.e., Z∗

I may not be in C). We introduce the notion of
ideal candidate distortion as follows, where I = {V, C, d} is any instance and PI

is the winner that our mechanism selects for an instance I:

Δ =
SC(PI)
SC(Z∗

I )

As we show, while the ideal candidate distortion Δ is unbounded in general,
for many simple voting rules it can be bounded as a function of the distortion
of the winning candidate (δI). Intuitively, the distortion δI can only be high
when the best available candidate (best in C) is close to being the ideal possible
candidate (best in the entire metric space).

A summary of our results on this topic is shown in Table 2. These results
imply that if we are only given ordinal preferences, as in most previous work,
and use certain mechanisms like the Copeland voting mechanism, then either
the selected candidate is much closer to the best candidate in the running than
the worst-case distortion bound indicates (say within a factor of δI = 3 instead
of the worst-case of 5 for the Copeland mechanism), or the selected candidate
is not far from the ideal candidate, i.e., the best candidate that could ever exist
(say within a factor of 6 if δI = 3). So in the case when distortion is high, we at
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least can comfort ourselves with the fact that the selected candidate is not too
far away from the best possible candidate that could ever exist, not just from
the best candidate in the running.

Table 2. Ideal candidate distortion (Δ) bounds

Ideal candidates distortion Two candidates Multiple candidates

Only preferences 2δI
δI−1

4δI
δI−1

Preferences and a threshold τ 2δI
δI−1

4δI
δI−1

Exact preference strengths (
√
2+1)δI
δI−1

2(
√
2+1)δI

δI−1
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Abstract. Autobidding is becoming increasingly important in the
domain of online advertising, and has become a critical tool used by
many advertisers for optimizing their ad campaigns. We formulate fun-
damental questions around the problem of bidding for performance under
very general affine cost constraints. We design optimal single-agent bid-
ding strategies for the general bidding problem, in multi-slot truthful
auctions. The novel contribution is to show a strong connection between
bidding and auction design, in that the bidding formula is optimal if and
only if the underlying auction is truthful.

Next, we move from the single-agent view to a full-system view: What
happens when all advertisers adopt optimal autobidding? We prove that
in general settings, there exists an equilibrium between the bidding
agents for all the advertisers. As our main result, we prove a Price of
Anarchy bound: For any number of general affine constraints, the total
value (conversions) obtained by the advertisers in the bidding-agent equi-
librium is no less than 1/2 of what we could generate via a centralized
ad allocation scheme, one which does not consider any auction incentives
or provide any per-advertiser guarantee.

Keywords: Automated bidder · Price of anarchy · Constrained
optimization

1 Introduction

Autobidding is taking on an increasingly important role in online advertising [5]
and has already become a critical tool used by many advertisers for optimiz-
ing their ad campaigns. Given its importance in the ad ecosystem, autobidding
deserves fundamental investigation into algorithms and properties. In this paper,
we formulate the questions of designing optimal bidding algorithms, study the
interaction of bidding with the underlying auction, and study system equilibrium
properties when all advertisers adopt autobidding.

The motivation behind autobidding is performance and product simplicity.
The main idea is that instead of asking advertisers for fine-grained bids (e.g., a
bid per keyword), the ad platform asks for higher level goals and higher level
constraints. An Autobidding agent then converts these goals and constraints into
per-query bids at serving time, based on predictions of performance of each
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potential ad impression. Besides increased performance, these products also pro-
vide for a much simpler interaction with the ad system. For example, in some
settings like Google’s Universal App Campaigns (UAC) product [6], advertis-
ers do not target at all, but only provide targets for cost-per-install and other
goals. In other cases advertisers continue targeting via keywords to identify what
queries are of interest, but let the system adjust bids based on predicted perfor-
mance. In either case, the bidding agent will automatically adjust bids so as to
give maximum performance for the campaign, even in a dynamically changing
environment, as query volume and features change over time.

There are several autobidding products in the market. The simplest and
oldest is that of budget optimization, in which the advertiser provides target-
ing and a (daily) budget, and the system bids on its behalf. This is a well-
studied topic with significant related work. We now have increasingly sophisti-
cated products which allow for performance-based optimization of campaigns,
based on goals that advertisers may care more about, by leveraging predicted
conversions (sales). For example, Target Cost-per-acquisition (tCPA), Enhanced-
CPC (ECPC), and products aiming for deeper optimizations, such as Return on
Ad Spend (ROAS), and post-install-value optimization (see, e.g., [5] for more
detailed description of these products).

In this paper we formulate and answer several fundamental questions in auto-
bidding. Specifically, (1) find an optimal bidding formula for very general con-
straints and connect it to the truthfulness of the underlying auction, and (2)
quantify the price of anarchy in equilibrium when all advertisers adopt the opti-
mal autobidding.

Remark: These are critical questions from an ad platform’s point of view, but
they are also interesting and novel from a purely theoretical view as several of
the important autobidding products go beyond the classic profit-maximization
setting and instead, follow the framework of maximizing value (e.g., number of
conversions) under constraints on the average cost (of clicks or conversions) and
a budget on total spend. One can consider such objectives and constraints as
generalizations of the well-studied budget constraint – the difference now is that
the cap on spend is not a fixed number (i.e., budget), but is a function of the
specific items allocated (see Sect. 2 for details).

1.1 Overview, Results, and Techniques

In Sect. 2 we formulate the single agent bidding problem, for the general setting
of value maximization under general affine constraints (in a multi-slot truth-
ful auction). Specifically, given an advertiser’s goals and constraints, and given
predictions at query time, how should the bidding agent bid on behalf of the
advertiser? This formulation generalizes all the autobidding products we men-
tioned above. Our two main results are:

– In Sect. 3 we show how to derive an optimal bidding formula assuming we
have access to the cost-value landscape. In particular, we show that there is
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a simple bidding formula which takes in the value for an item (including the
predictions for probability of click or conversions), and converts it into a bid
into the auction. While the technique of using LP duality to find an optimal
allocation is not entirely new, our novel contribution here is to connect it
to bidding, and more specifically, back to the truthfulness of the auction and
show that the bidding formula is optimal if and only if the auction is truthful.

– In Sect. 5, we prove a “price-of-anarchy” result which is the most technically
challenging and novel portion of the paper: For an autobidding setting with
any number of general affine constraints, if all advertisers adopt autobidding,
then the total value generated for all advertisers in equilibrium is at least a
factor 1/2 of the total value we could generate via a centralized ad allocation
scheme – one which does not need to consider any pricing or auction incentives
constraint, or have any per-advertiser optimization guarantee.

For this result, we extend the definition of liquid welfare [3,11] from the
budgeted setting to the general affine constraints setting. Then, we use a
charging argument, in which we use the structure of equilibrium bids, the
truthfulness property of the underlying auction, as well as the nature of the
affine constraints to bound the liquid welfare of global allocation in terms of
the liquid welfare at equilibrium.

For the sake of completeness, we also provide two additional results, which
may be considered as using somewhat standard techniques from the literature:
Firstly, in Sect. 4, we show how a Multiplicative Weights Update based method
of control feedback can help find the optimal parameters of the bidding formula
assuming full access to the cost-value distribution. While the algorithm is a
simple instantiation of MWU for solving LPs, which is standard, we do this
by interpreting the hyperplanes generated by MWU with dual weights as the
realization of a truthful auction, thus connecting truthfulness to the bidding
formula.

Secondly, we show in Sect. 6 that, for multi-slot, general constraints setting,
there exists a pure strategy bidding equilibrium, under certain technical smooth-
ness assumptions. This result follows by defining a map from the space of dual
variables to itself, using the optimal bidding formula, so that the fixed point of
the map are the optimal parameters of the formula.

1.2 Related Work

Bidding algorithms have been studied previously in various forms and we
describe some related work below. We have specifically two new contributions:
the connection of bidding in auction with the truthfulness of the underlying
auction, and analyzing the setting of multiple advertisers bidding optimally in
a truthful auction and bounding the price of anarchy.

As mentioned above, perhaps the simplest autobidding product is budget
optimization. This has been a well-studied topic, in particular [13] provided a
formulation for this problem, and gave simple practical uniform bid strategies
which achieve a constant factor of the optimal bidding under any auction –
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however, they do not consider multiple bidders or equilibrium properties. Also
somewhat related is work on back-end system optimization for budget man-
agement (not as a bidding agent); this includes work on ad allocation, budget
throttling, and bid lowering, e.g., [4,8,12,15–17].

Besides budget optimization bidding, previous literature includes several
results on the so-called real-time bidding (RTB) in the context of display ads.
A related paper is [9], which considers the problem of bidding algorithms for
performance advertising. Similar to the work here, they use a Primal Dual for-
mulation to find a bidding formula. However, there are some salient differences
compared to our work: Firstly, their objective is global value maximization (sum
over all bidders values) under volume constraints. Secondly, the pricing is simply
first price, and it is not immediately clear how to extend this to second price
auction (or a truthful auction for multiple slots). Bidding into an auction is a
more difficult question, as bidders set prices for each other and thus have to be in
equilibrium. Indeed, we show that no bidding formula can work in a non-truthful
multi-slot auction, and even in a second price auction, the global value generated
in an equilibrium solution can be bounded away from the global optimum by a
factor of as much as 2.

There are several other interesting papers on RTB, e.g., [14,19,20]. The latter
paper focuses on learning the underlying traffic distributions and using them to
find a bid. The bidding question considered there is simple if the distribution is
known (due to the simple nature of the constraints), but the innovation lies in
learning the distributions from possibly partial feedback, which is not the focus
of our work.

In another related work [7], the authors consider a different but related equi-
librium question, in the setting of backend budget throttling (aka pacing, in
which a budget constrained advertiser is throttled out of some subset of unprof-
itable auctions). The authors consider the question of whether there is a regret-
free stable solution if we use optimal budget throttling for all budget constrained
bidders in a single slot auction. However, they do not further analyze the price
of anarchy in such a stable solution.

Finally, a very relevant line of work is that of solving online stochastic linear
programs [10] and online stochastic convex programs [1]. The specific problems
we study are actually instantiations of the more general problem they study, and
they also use duality theory to find optimal allocations (in more general settings
with stochastic input). We note two novel contributions in our work: Firstly, the
connection to truthfulness, i.e., the dual based allocation gives rise to a bidding
formula which is optimal if and only if the auction is truthful. And secondly, we
study the equilibrium properties if every bidder uses this algorithm in a truthful
auction, and prove a bound on the price of anarchy.

2 Preliminaries

There is a set of advertisers A bidding into an ad auction. There is a large set of
queries I, each with potentially multiple slots (aka positions) S. For each query
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i, there is an auction which takes in bids and determines which advertisers show
in which slots, and determines a cost-per-click (cpca

is) for each advertiser a ∈ A
and slot s ∈ S.

We define indices into different sets as follows. Let i ∈ I be an query, s ∈ S
be a slot and c ∈ C be a constraint. Let the click through rate (CTR), the
probability that a user clicks on an ad of advertiser a on slot s of query i be
ctra

is. Let the cost per click for winning slot s of query i be cpca
is. Let the value to

a of a click on impression i be va
i – this is the estimate of the total downstream

value accrued by a after the click, which we assume is independent of the slot
s that the ad was in. Let xa

is be indicator variable if slot s of impression i was
allocated to a. Note that we will also abuse notation and refer to query i as an
impression (which makes sense for the case when |S| = 1).

We study the problem of finding an optimal bidding strategy for each adver-
tiser a ∈ A, assuming that the bids of all other advertisers are fixed. For this
problem, even though all the parameters in the problem definitions are indexed
by a, for simplicity we drop the index a when we study the optimal bidding
strategy for a (here, and in Sects. 3 and 4). In Sects. 5 and 6 we will reintroduce
the index a as we study what happens when all advertisers bid according to the
proposed bidding formula.

The goal of an advertiser is to maximize its total value i.e.
∑

i,s xisctrisvi.
Additionally we have several affine constraints on the spend of the advertiser.
This can be formalized by integer program in Fig. 1, in which the index c stands
for the constraints, and the vic are non-negative constants (one per query and
constraint).

max
∑

i,s

xisctrisvi

∀c,
∑

i,s

xisctriscpcis ≤ Bc +
∑

i,s

xisctrisvic

∀i,
∑

s

xis ≤ 1

∀i, s, xis ∈ {0, 1}

Fig. 1. The Integer Program for value maximization for an advertiser under general
affine constraints.

Next we show how many products in the industry can be modeled with the above
set of constraints.

Budget Optimization: In this case there is a single constraint c with vic = 0 ∀i,
and Bc is the budget B. So the constraint is simply

∑
i,s xisctriscpcis ≤ B. Here,

vi is sometimes taken to be 1 for all i, which means the goal would be to maximize
clicks.
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Target CPA: In the TCPA product the goal is to maximize the number of
conversions subject to the constraint that average cost per conversion does not
exceed an advertiser given target value T . Here once again we have a single con-
straint c. Here vi represents the predicted number of conversions (aka acquisi-
tions, or sale events) that the advertiser gets after a click on impression i (usually
called pcvri, and also assumed to be independent of the slot s). We take Bc = 0
and vic = T · vi, ∀i. Note that we can rewrite the constraint which becomes∑

i,s xisctriscpcis
∑

i,s xisctrisvi
≤ T . This means that the ratio of the total expected spend to

the total expected number of conversions should be at most T , as required.

Target on CPA and CPC: In some bidding products the goal is to maximize
number of conversions, but we have two constraints. One is to ensure that average
cost per conversion does not exceed T (the same as in TCPA) and the other is
to ensure that average cost per click is at most M (both T and M are given by
the advertiser). For the second constraint we set Bc = 0 and vic = M .

Note that the last two settings above can also be accompanied by a separate
budget constraint.

We will also make an assumption throughout that the parameters of this
problem are in general position.

3 Bidding Formula

In this section we show that there is an optimal bidding formula of the form
b(i) = vi+

∑
c αcvic∑
c αc

, and this holds if and only if the auction is truthful. If an
advertiser bids according to this bidding formula then they violate their con-
straints by at most |C| impressions (where |C| is the number of constraints) and
get a value which is at least the value of an optimal bidding strategy minus the
value of at most |C| impressions.

To prove the result we consider Integer Program 1 and relax it to a Linear
Program and also consider the corresponding dual LP.

Primal Linear Program

max
∑

i,s

xisctrisvi

∀c,
∑

i,s

xisctriscpcis ≤ Bc +
∑

i,s

xisctrisvic

∀i,
∑

s

xis ≤ 1

∀i, s, xis ≥ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dual Linear Program

min
∑

i

δi +
∑

c

αcBc

∀i, s

∣
∣
∣
∣

δi+∑
c αcctris(cpcis − vic)

}

≥ctrisvi

∀i, δi ≥ 0
∀c, αc ≥ 0

Let {αc} be the optimal dual solution. Define

Δis = ctrisvi −
∑

c

αcctris(cpcis − vic)

Then the dual constraints can be written as δi ≥ Δis ∀i, s.
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Now define the bidding formula as

b(i) :=
vi +

∑
c αcvic∑

c αc

This is the bid that the bidder puts into the auction for query i. The auction
determines the slot and price for the bidder. We will assume that ties are broken
arbitrarily. Note that the dual constraints can also be written as

δi∑
c αc

≥ ctris(bi − cpcis), ∀ i, s (2)

We first note some properties of the optimal solution to the primal and dual
programs.

Lemma 1. Let {xis} and {αc} be optimal solutions to primal and dual linear
program. Then they satisfy the following properties.

1. δi = max(0,maxs(Δis))
2. If δi > 0 and there is a unique s such that δi = Δis then xis = 1
3. If δi = 0 with b(i) < cpcis,∀s then xis = 0.
4. There can be at most |C| impressions i such that ∃s �= s′ with δi = Δis = Δis′ .
5. There can be at most |C| impressions i such that δi = 0 and ∃s, b(i) = cpcis.

Proof. The proof follows from linear programming complementary slackness and
will be included in the full version of the paper.

Theorem 1. Bidding strategy b(i) gives a solution which has value at least OPT
minus value of 2|C| impressions and violates each constraint by at most 2|C|
impressions if and only the auction is truthful.

Proof. Fix a query i, for which the bidder’s bid is bi. A truthful auction will
allocate the bidder to the slot which maximizes its profit given the bid, i.e., the
slot s which maximizes ctris(bi−cpcis) (of course the cpcs are derived during the
auction itself from other bidders). A non-truthful auction will, for some value
of the bid bi (and some values of other bidder bids) allocate the bidder to some
other slot s′ �= s.

Now consider the LP. By Lemma 1 point 2 xis = 1, precisely for the tight
dual constraint. But, by Eq. (2), this is precisely the one which maximizes the
profit. Therefore the LP allocation solution matches the solution that a truthful
auction would choose with the same bids, and would not match the allocation
of a non-truthful auction, for at least some values of bids.
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Next we prove the bound on the value achieved by the bidding strategy to
compare it to the optimal achievable value.

Value of bidding strategy

≥
∑

δ>0,unique s with δi=Δis

ctrisvi

=
∑

δ>0,unique s with δi=Δis

xisctrisvi

=
∑

i,s

xisctrisvi −
∑

i,s,δ=0 or Δis=Δis′

xisctrisvi

≥
∑

i,s

xisctrisvi − |C| · maxisctrisvi

= OPT − 2|C| · maxisctrisvi

Here Eq. 1 is because bidder wins at least these impressions, Eq. 2 is from
Lemma 1 point 2 and Eq. 4 is from Lemma 1 points 3, 4, 5. Next we show
that the constraints are violated by at most 2|C| impressions. This is simple
because by Lemma 1, Points 3, 4, 5 there are at most 2|C| impressions for which
xis = 1 and bidder doesn’t win it or xis < 1 and bidder wins it.

We will include an intuitive example illustrating the bidding formula in full
version of the paper.

4 Bidding Algorithm

In this section we will give a bidding algorithm which computes the bidding
formula and bids accordingly. The algorithm is an application of multiplicative
weight update (MWU) method. While it is well known how to use MWU to solve
a linear program we note that we specifically need a bidding formula which does
not depend on other bidders bids. We show how feasibility oracle used in MWU
to solve linear program translates to bidding formula and hence the bidding
formula can be used to answer the separation oracle.

We use the MWU algorithm to solve Ax ≥ b subject x ∈ P when a feasibility
oracle for any c, d,∃?x ∈ P : cT x ≥ d is given. We borrow this from Sect. 3.2 of [2]
(Included in full version of the paper). MWU in each step maintains a weight
vector w of same number of rows as A and in each step multiplicatively updates
w based on how much each constraint is violated from solution in previous step.
Then in each step it asks oracle question of the form wT Ax ≥ wT b.

Let V be upper bound on what the OPT and let Vc be an upper bound on
|Bc +

∑
i,s xisctris(vic − cpciks)|.

Theorem 2. In T ≥ O( 1
δ3 ) steps Algorithm 1 converges to a solution which

satisfies the following.

1. Value≥ OPT − δ · V.
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2. For each constraint we have
∑

i,s xisctris(cpcis − vic) ≤ Bc + δVc

Algorithm 1. Bidder
1: for i = 1, . . . , O( 1

δ
) do

2: VOPT = i · δ · V (Guess for the value of OPT )
3:

A =

⎛
⎜⎜⎝

· · · · · · · · · ctrisvi/V · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · ctris(vic − cpcis)/Vc · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

VOPT /V
· · ·

−Bc/Vc

· · ·

⎞
⎟⎟⎠

Where each row (except first one) of A corresponds to constraint c and column
for impression/slot i, s.

4: P be a convex constraints on xis denoting 0 ≤ xis and
∑

s xis ≤ 1.
5: Run algorithm MWU to check feasibility of Ax ≥ b such that x ∈ P .
6: for t = 1, . . . T (Each step of MWU) do
7: Let wt = (wt

1, w
t
2, . . .) be the weight vector maintained by MWU.

8: Let αc = (wt
c+1/Vc)/(wt

1/V)
9: Define oracle O for F = ∃?x ∈ P : wT Ax ≥ wT b.

- Run bidder with bidding strategy
vi+

∑
c αcvic∑
c αc

- Let xis = 1 if bidder won the impression at slot s, otherwise xis = 0.
- Check if this solution {xis} satisfies wT Ax ≥ wT b

10: end for
11: If algorithm MWU returns infeasibility then break
12: end for

Proof. Consider the value of i such that OPT ≥ i · δ · V ≥ OPT − δ · V. We will
fix this iteration for the remaining part of the proof. We know that for such i we
have feasible solution for Ax ≥ b, x ∈ P . By proof of MWU we know that as long
as oracle O is implemented such that feasibility of F = ∃?x ∈ P : wT Ax ≥ wT b
correctly then MWU returns a feasible solution. We show this by showing that
this is equivalent to the bidding strategy in step 9.

First note that bidder in step 9 which produces solution xi = 1 if and only
if vi+

∑
c αcvic∑
c αc

≥ cpcis. We will show that checking wT Ax ≥ wT b for the output
of bidder is equivalent to solving F .

w
T

Ax − w
T

b =

⎛

⎝
∑

i,s

wt
1xisctrisvi

V +
∑

i,s,c

wt
c+1xisctris(vic − cpcis)

Vc

⎞

⎠ − wt
1VOPT

V +
∑

c

wt
c+1Bc

Vc

=
wt

1

V
∑

c

αc

∑

i,s

xisctris

(
vi +

∑
c αcvic

∑
c αc

− cpcis

)

− wt
1VOPT

V +
∑

c

wt
c+1Bc

Vc

It is easy to see that the right hand side is maximized when xis = 1 when
vi+

∑
c αcvic∑
c αc

≥ cpcis which is the exact set of impressions/slots won by the bidder.
Hence it is enough to check for this vector if wT Ax ≥ wT b which completes the
proof.
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5 Price of Anarchy

In this section we show a factor 1/2 price of anarchy of any bidder which opti-
mizes for each bidder separately as opposed to optimizing globally for everyone.
We consider the special case when each impression has a single slot and hence
we will drop the subscript s from remaining part of this section.

5.1 Price of Anarchy Objective

We consider Liquid Welfare as defined in [3] as our objective function. This is
defined as sum over all advertisers of the maximum revenue that can be got from
an advertiser. This turns out to be the following.

∑

a

(

min
c

Bc
a +

∑

i

xa
i ctra

i va
ic

)

Let OPT be the welfare objective achieved by OPT and let ALG be the
welfare objective achieved at equilibrium. Also for any subset S of bidders, define
OPT (S) to be the contribution of bidders in S to OPT’s welfare objective. Define
ALG(S) analogously.

5.2 Price of Anarchy Is Bounded by 2

Let c′(a) be one of the indices that decides the contribution of bidder a of OPT’s
welfare objective function. Let C(a) be the set of constraints that are tight for
bidder a (let C(a) be empty if no constraints are tight). Let A1 be the set
of bidders who are completely unconstrained at equilibrium and let A2 be the
remaining bidders.

Bidders in A1 are bidding infinity at equilibrium and are winning everything
they are interested in. So for a ∈ A1, a’s contribution to ALG is

∑
i va

i which
is the maximum possible contribution that bidder a can make to the welfare
objective.

ALG(A1) >= OPT (A1)

Next we split OPT (A2) into two parts and bound each separately. For this,
define O(a) to be the set of impressions allocated to bidder a in OPT, and let
A(a) be the set of impressions allocated to bidder a at equilibrium.

The proof is by a charging argument to bound the liquid welfare of the global
allocation in terms of global welfare at equilibrium. For this, we consider two
types of impressions – impressions where the global optimal allocation overlaps
with the allocation at equilibrium (i.e. O(a) ∩ A(a)), and the impressions where
the two allocations differ (i.e. O(a) − A(a)). At first glance, it would appear
that the efficiency contribution of the overlapping impressions is trivially equal,
and that we need to only worry about the non-overlapping impressions. But
interestingly, because the efficiency contribution of each bidder is the minimum
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over several “types” of value, the efficiency contribution of the same subset
of impressions with identical winning bidders may not be equal, and may in
fact be incomparable, for the two allocations. To overcome this difficulty, we
identify a subset C(a) of constraints, which can be used to characterize both
the contribution to liquid welfare as well as the query-level equilibrium bids for
bidder a. In particular, this subset has the following three properties:

– For a given bidder a, its bid at equilibrium is no less than a particular convex
linear combination of the RHS of bidder a’s constraints indexed by C(a).

ba(i) =
va

i +
∑

c αa
cva

ic∑
c αa

c

=
va

i +
∑

c∈C(a) αa
cva

ic
∑

c∈C(a) αa
c

≥
∑

c∈C(a) αa
cva

ic
∑

c∈C(a) αa
c

Using this bound on bids for each impression we can bound the “portion” of
OPT from O(a) − A(a).

ALG ≥ Total ALG Spend

≥
∑

a∈A2

∑

i∈O(a)∩A(a)

ALG Spend(i)

≥
∑

a∈A2

∑

i∈O(a)−A(a)

ctra
i ba(i)

≥
∑

a∈A2

∑

i∈O(a)−A(a)

ctra
i

∑
c∈C(a) αa

cva
ic

∑
c∈C(a) αa

c

=
∑

a∈A2

∑
c∈C(a) αa

c

∑
i∈O(a)−A(a) ctra

i va
ic

∑
c∈C(a) αa

c

(3)

– A bidder a’s contribution to the welfare at equilibrium is equal to the sum of
its “c-type” values for the impressions it gets at equilibrium for any c ∈ C(a).
This in turn implies that its contribution is also equal to the sum (over its
equilibrium allocation) of any convex linear combination of its c-type values
for c ∈ C(a).

ALG(A2) =
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

≥
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a)∩A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

(4)

– For a given bidder a, its contribution to global optimal allocation’s welfare is
no more than the sum over its global optimal allocation of any convex linear
combination of its c-type values (over any subset of C including C(a)).

OPT (A2) =
∑

a∈A2

(Ba
c′(a) +

∑

i

xa
i ctra

i va
ic) =

∑

a∈A2

(Ba
c′(a) +

∑

i∈O(a)

ctra
i va

ic)

≤
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a) ctra

i va
ic)

∑
c∈C(a) αa

c

(5)
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We now split the right hand side into two parts and then use all the other
inequalities to get the final bound.

OPT (A2) ≤
∑

a∈A2

∑
c∈C(a) αa

c (Ba
c +

∑
i∈O(a)∩A(a) ctra

i va
ic)

∑
c∈C(a) αa

c

+
∑

a∈A2

∑
c∈C(a) αa

c

∑
i∈O(a)−A(a) ctra

i va
ic

∑
c∈C(a) αa

c

≤ALG(A2) + ALG

Where the first inequality is due to 5 and second is due to 3 and 4. Summing
ALG(A2)+ALG+ALG(A1) >= OPT (A1)+OPT (A2) giving 2ALG >= OPT .

5.3 Tight Example for Factor 2

Here we give an example showing that factor 2 is tight. We have two advertisers
A = {a1, a2} and two impressions I = {i1, i2}. ctr is 1 for all ad impression pairs.
Value for advertiser a1 are va1

1 = ε + ε2, va1
2 = 1 − ε and for second advertiser

are va1
2 = 1, va2

2 = 0. We have one constraint (special case of TCPA constraint)
with Ba1

c = Ba2
c = 0 and va

ic = va
i for i ∈ I, a ∈ A.

One can show that α1
c = ε, α2

c = 2
ε2 is a locally optimal bidding strategy. This

gives allocation of both i1 and i2 to a1 giving it liquid welfare of ε+ ε2 +1− ε =
1 + ε2. But globally optimal solution allocates c1 to a2 and c2 to a1 giving it
liquid welfare of 1 − ε + 1 = 2 − ε.

6 Equilibrium

In this section we consider special case when the space of impressions/slots is a
measure space. We further assume that there is no point mass distribution except
a special impression,slot i, s for each advertiser a which has small ε positive value,
0 cost, va

ic = ε and always allocated to advertiser a. Then we show that there is
an equilibrium bidding given by our bidding formula and no advertiser wants to
deviate. We use the special impression to upper bound the dual variables. We
use the no point mass distribution to make sure that slack in each constraint is
a continuous function of the dual variables. Based on these two we can invoke
Brower’s fixed point theorem to show the existence of an equilibrium.

Lemma 2. In any optimal solution to the dual linear program the dual variables
αa

c are bounded by
∫

i,s
ctra

isv
a
i d(i, s)/ε. Further the slack in primal constraint i.e

slacka
c = Ba

c +
∫

i,s
xa

isctr
a
is(v

a
ic − cpca

is)d(i, s) is a continuous function of the

bidding formula va
i +

∑
c αa

cva
ic∑

c αa
c

.
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Proof. We first note that slack in primal constraint being a continuous function
of bidding formula is just a manifestation of assumption that we don’t have
any point mass distribution. Next to prove a upper bound on αa

c we first prove
an upper bound on each δa

i . Note that dual LP objective is lower bounded by
δa
i and primal objective is upper bounded by

∫
i,s

ctra
isv

a
ikd(i, s). Hence we get

δa
i ≤ ∫

i,s
ctra

isv
a
i d(i, s).

Now consider the dual constraint corresponding to the special impression, slot
i, s for advertiser a. Then we know that cpca

is = 0 and va
ic = ε. Then consider the

corresponding dual constraint. δa
i +

∑
c αa

c (cpca
is − va

ic) ≥ va
i . Substituting the

values and rewriting we get
∑

c αa
c ε ≤ δa

i which implies αa
c ≤ δa

i /ε. Now using
the upper bound on δa

i we get the upper bound on αa
c .

We next define a map from αa
c to itself. Define it as follows.

φ(αa
c ) = min

(∫
i,s

ctra
isv

a
is

ε
, αa

c (1 + η)−slacka
c

)

Here 0 < η < 1 is any positive number. Since this map is continuous and
bounded, by Brower’s fixed point theorem we have a fixed point. At fixed point
αa

c > 0 if and only if the constraint is tight. Hence by primal dual complementary
slackness we have that the solution is also locally optimal for each advertiser.
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Abstract. Companies like Google and Microsoft run billions of auctions
every day to sell advertising opportunities. Any change to the rules of
these auctions can have a tremendous effect on the revenue of the com-
pany and the welfare of the advertisers and the users. Therefore, any
change requires careful evaluation of its potential impacts. Currently,
such impacts are often evaluated by running simulations or small con-
trolled experiments. This, however, misses the important factor that the
advertisers respond to changes. Our goal is to build a theoretical frame-
work for predicting the actions of an agent (the advertiser) that is opti-
mizing her actions in an uncertain environment. We model this problem
using a variant of the multi-armed bandit setting where playing an arm
is costly. The cost of each arm changes over time and is publicly observ-
able. The value of playing an arm is drawn stochastically from a static
distribution and is observed by the agent and not by us. We, however,
observe the actions of the agent. Our main result is that assuming the
agent is playing a strategy with a regret of at most f(T ) within the first
T rounds, we can learn to play the multi-armed bandits game (with-
out observing the rewards) in such a way that the regret of our selected
actions is at most O(k4(f(T )+1) log(T )), where k is the number of arms.

Keywords: Ad auctions · Advertiser response prediction ·
Multi-armed bandit · Low regret

1 Introduction

Over the last two decades, the online advertising market has emerged as one of
the most important application areas of auctions. Companies like Google and
Microsoft run billions of auctions every day to sell advertising opportunities
worth hundreds of millions of dollars. Rules of these auctions have undergone
frequent change, often prompted by the release of new features (such as ads
with additional site links or ads taking advantage of re-targeting lists) or by
optimizations in the auction system (such as a new reserve price algorithm or
a new algorithm for estimating click probabilities). Any such change can have
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tremendous impact on the revenue of the company and the welfare of the adver-
tisers and the users. Therefore, any proposed change to the auction system goes
through a rigorous vetting process to evaluate its potential impacts and decide,
based on the results of the evaluation and current business priorities, whether
the proposal merits a launch.

Currently, the main tools used for evaluating a proposed launch is running
simulations [16] or small controlled experiments [19]. These approaches, however,
miss the important factor that the advertisers respond to changes. This is evident
in the case of simulations, where the bids advertisers have submitted for the
existing auction are used to simulate the new proposed auction. In the case
of controlled experiments, the trouble is that the treatment often has to be
applied to all or none of advertisers in an auction. This, together with the fact
that advertisers overlap imperfectly on the set of auctions they participate in,
makes it practically impossible to select random treatment and control groups of
advertisers, treat all of the auctions the treatment set of advertisers participate in
while leaving all auctions that the control group participate in untreated (See [3]
for a discussion of a very similar problem in the context of social networks)1.
In practice, experiments are run with a random set of auctions (typically 1% or
less of all auctions) as the treatment group. This means that for each advertiser
only a very small percentage of their auctions is treated, leading to a treatment
effect that is well smaller than the noise in the system, and is hence practically
unobservable by the advertiser.2

In this paper, our goal is to build a theoretical framework for predicting
advertiser response based on observations about their past actions. Our model
is driven by a few important considerations. First, the advertisers face an uncer-
tain environment, and optimize their objective in presence of uncertainty. As
in [17], we capture this by modeling the advertiser as an agent solving a regret
minimization problem in a multi-armed bandit setting. In our motivating appli-
cation, each arm can correspond to an ad slot the agent can purchase or to a
discretized value of the bid the agent submits. We make no assumption on the
type of algorithm the agent is using except that it has bounded regret. Second,
we are concerned with an environment that is changing, and therefore requires
the agent to respond to this change. We model this by assuming each arm has
a cost, and in each round, the agent is informed about the cost before he has to
choose which arm to play. This is the main point of difference between our model
and the model in [17], and is an important element of our model, since without

1 See [15] for an attempt to solve this problem by restricting the experiment to small
micro-markets. Note that this has the obvious disadvantage of biasing the experiment
toward a non-representative set of advertisers and auctions.

2 See [9] for an interesting theoretical treatment of this setting. It turns out that
assuming that the advertisers are fully rational and react even to a small change in
the auction, even treating a small percentage of each advertiser’s auctions is enough
to extrapolate their response to a full treatment. In practice, however, there is too
much noise and fluctuation in the system for advertisers to be able to observe and
respond to a change that, for example, increases their cost per click by 10% in 1%
of their auctions.
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this, to predict which arm an agent is going to play, it is enough to look at their
past history and select the arm that is played most often. The assumption that
the cost of each arm is observed before the agent picks which arm to play is
not entirely accurate in our motivating application, since advertisers only learn
about the cost of their ad after it is placed. However, given that in practice costs
change continuously over time, the advertisers can use the cost of each arm in
the recent past as a proxy for its current cost. Therefore, we feel this assumption
is a justified approximation of the real scenario.

Finally, we model the objective of our prediction problem. In our model, once
the agent decides which arm to play, they receive a reward from that arm that
is drawn stochastically from a static distribution.3 This reward is observed by
the agent but not by us. All we observe is the cost of the arms and the arm that
the agent plays. Over time, we would like to be able to “predict” which arm the
agent plays. We need to be careful about the way we capture this in our model.
For example, if two of the arms always have the same cost and the same reward,
the agent’s choice between them is arbitrary and can never be predicted. Also,
if an arm has never been played (e.g., since its cost has been infinity so far), we
cannot be expected to predict the first time it is played. For these reasons, we
evaluate our prediction algorithm by the regret of its actions. Our main result
is an algorithm that by observing the actions of the agent learns to play the
multi-armed bandit problem with a regret that is close to that of the agent.
Furthermore, we show if the optimal arm, i.e., the arm with highest reward and
lowest cost, is unique at every step, the number of predictions of our algorithm
that is not exactly the same as the agent actions is upper bounded. Our upper
bound depends on the distance between the optimal arm and the second optimal
arm at every step.

Since we evaluate our algorithm by the regret of its actions, it can be seen as
a regret minimization algorithm which is a very well studied subject. The dis-
tinguishing point of between our work and previous work in regret minimization
is that in our setting the algorithm does not observe the payoffs (not even the
payoff of the arm it selects) which is the essential input for regret minimization
algorithms in the literature [6].

2 Related Work

The closest previous work to this paper is [17], where the authors study a model
for learning an agent’s valuations based on the agent’s responses. Similar to this
paper, [17] does not assume that the agent always chooses a myopically optimal
action, but assumes that the agent chooses its actions using a no-regret learning

3 In our motivating application, the reward can be the profit the advertiser makes if
the user clicks on their ad and makes a purchase, or zero otherwise. In this case, the
assumption that the reward distribution is static means that the profit per conversion
and the conversion probability are fixed over time. This is not entirely accurate, but
is a reasonable approximation of the reality, since while these parameters change
over time, they tend to change at a slow pace.
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algorithm. There are two main differences between the model in [17] and in our
paper. The first difference is that [17] studies a single parameter setting where
each agent reports a single bid, whereas we study a multi-parameter setting
where the agent can pick one of many actions and the utility of each action
might not be related to the others. Hence as a model one can reduce [17] to our
model by disretization. Another key difference between the two papers is the
metric. The goal of [17] is to study sample complexity of computing a set whose
Hausdoff distance from the “rationalizable set” of valuations is not large. In the
current paper the metric is regret of the algorithm with respect to the agent’s
valuation. Another related work is [10], where the authors study the problem of
mimicking an opponent in a 2 player gaming setting when we cannot observe
the payoff and the only thing that is observable is the action of the opponent.

As we discussed in the introduction, our results can be used for bid prediction
if the arms correspond to discretized values for the bids the agents submits. There
are a number of papers [5,8,18,21] on this subject that model different objectives
and behaviors of the agents. However, most of them rely on an estimation of the
agent’s private values so they can be used for bid prediction. Also, most of these
papers ignore the fact that the agents often faces an uncertain environment that
they learn over time, and the optimizations happen in presence of uncertainty.

Another line of related work is on designing mechanisms for agents that follow
no-regret strategies. For example [4] studies an auction design problem in such
a model.

Outside of computer science there is also a rich literature in Economics study-
ing inference in auctions under equilibrium assumptions. A survey of this liter-
ature can be found in [2]. This approach has been used to study a wide variety
of settings such as arbitrary normal form games [14], static first-price auctions
[11], extension to risk-verse bidders [7,12], sequential auctions [13] and sponsored
search auctions [1,20].

3 Model

In this section we describe our theoretical framework for predicting advertiser
response based on observations about their past actions. In our model, an agent
(representing an advertiser in our motivating application) plays a multi-armed
bandit game with k arms. In each of the time steps t = 1, 2, . . ., each arm i has a
cost ct

i. These costs can be different in each time step, but they are observed by
the agent and by us at the beginning of each time step. The reward (also called
the value) of playing arm i in any time step is drawn from a distribution Di with
expected value 0 ≤ vi ≤ 1. The agent does not know Di or vi, but after playing
an arm, privately observes its reward. In our motivating application, each arm
can correspond to a bid value the advertiser can submit. The reward of an arm
is the value the advertiser receives (e.g., by selling a product through the click-
through on their ad), and the cost corresponds to the amount they have to pay
for their ad. In this context, the assumptions that the costs are observed by the
advertiser as well as the auctioneer, that the distribution Di is unknown, and
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that the reward is observed by the advertiser but not by the auctioneer all make
sense.

As the costs are different at each time step, the optimal action ot =
argmaxi∈[k]{vi − ct

i} for the agent can also be different. Since the agent does
not know vi’s, she might play an arm that is not necessarily optimal. Let at

be the arm that the agent picks at step t. As a result of this choice, the agent
accrues a regret of art = (vot

− ct
ot

) − (vat
− ct

at
) at time step t. We assume

that the agent uses an arbitrary bounded-regret strategy, i.e., her total regret∑T
t=1 art up to time T is bounded by a function f(T ) for each time step T .
The goal is to design an algorithm that in each time step t, given the history

of the agent actions up to this time step (i.e., the costs c1, . . . , ct−1 and the
actions a1, . . . , at−1 of the agent, but not the rewards the agent has received)
and the costs ct of the arms in this time step, picks an arm pt. Because of this
choice, the algorithm accrues a regret of prt = (vot

− ct
ot

) − (vpt
− ct

pt
) at step

t. Our metric for the algorithm’s performance is measured by the total regret it
achieves as compared to the regret of the agent.

Our main result is that there exists an algorithm with a regret bound of
O(k4(f(T ) + 1) log(T )).

4 Prediction Algorithm

In this section, we describe our prediction algorithm. A key step in designing
the algorithm is our assumption that the agent’s regret is bounded by f(t) for
each time step t. This allows us to define a set of values for the agent that are
consistent with their actions so far and their regret bound. A value vector v is
consistent with the actions up to time t if there exists a regret vector r such
that:

va�
− c�

a�
≥ vi − c�

i − r� ∀� ∈ [t − 1],∀i ∈ [k]∑
j≤� rj ≤ f(�) ∀� ∈ [t − 1] (1)

We denote the set of consistent values at time t with CV (t). Note that for every
v ∈ CV (t), the optimal arm is argmaxi{vi − ct

i}. The main idea of the algorithm
is to pick an arm which is the optimal arm for the largest portion of CV (t).
Formally, for each arm i define wi as the probability that i is the optimal arm
for a vector v ∈ CV (t) chosen uniformly at random. At every time step t, our
algorithm picks the arm i with the highest wi.

The time complexity of our algorithm at each time step is equivalent to the
time complexity of computing the volume of polynomially many k dimensional
polytopes.

4.1 Regret Analysis

In this section we analyze the regret bound of Algorithm 1. In the main theo-
rem of this section, Theorem 1, we show Algorithm 1’s predictions for the first
T rounds has a regret bound of O(k4(f(T ) + 1) ln(T )). Note that after each
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ALGORITHM 1: Prediction Algorithm
CV (0) = {v | 0 ≤ vi ≤ 1, ∀i};
for each time step t do

ct ← costs of playing arms at time step t;
CV (t) ← the set of consistent values at time step t ;
wi := Prv∼Unif(CV (t))[vi − cti ≥ vj − ctj , ∀j];
pt ← arg maxi wi;

end

action by the agent, the set of consistent values should satisfy the following new
constraints.

∀j �= at, vat
− vj + rt ≥ cat

− cj

Lemma 1 will be used later in the proof of Theorem 1 to show that each time the
prediction of the algorithm is wrong (meaning at �= pt) the set CV (t) shrinks.
Before stating the lemma, we need to define the following notations:

Uij(t) = maxv∈CV (t){vi − vj}

Lij(t) = minv∈CV (t){vi − vj}

Lemma 1. If the predicted arm pt is not the arm at that is played by the agent,
then

ct
at

− ct
pt

≥ Latpt
(t) +

1
8k

(Uatpt
(t) − Latpt

(t)).

Proof. Let us simplify the notations by omitting some of the indices: a = at,
p = pt, L = Latpt

, U = Uatpt
, and c = cat

− cpt
. Suppose

c < L +
1
8k

(U − L) (2)

for the sake of contradiction. Using Inequality (2), we show an arm i exists
such that its weight wi is higher than the weight of the arm p. Therefore, we
have a contradiction because the algorithm chooses an arm p such that wp =
maxi∈[k] wi. Lemma 1 follows from this contradiction.

Let us define G(z) = Prv∼Unif(CV (t))[va −vp < z] and g(z) = dG(z)
dz . We first

show g(z) is concave and non-negative in [Lap, Uap].

Claim 1. g(z) is concave and non-negative in [Lap, Uap].

Proof. For simplicity and without loss of generality we suppose CV (t) is full
dimensional. Following the definition, G(z) is the probability that a randomly
drawn point from CV (t) is in the half space va − vp < z. In other words, G(z) is
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ratio of the volume of intersection of CV (t) and the half space va − vp < z over
the volume of CV (t), i.e.,

G(z) =
Vol(CV (t) ∩ {v : va − vp < z})

Vol(CV (t))
.

Now it is easy to see that the derivative of G(z), g(z), is the surface area of
the intersection of the hyperplane va − vp = z and CV (t). Therefore, the claim
follows due to convexity of CV (t).

Considering Inequality (2), the following claim proves an upper bound on
the weight wp of arm p and the next claim (Claim 3) shows a lower bound on
the sum of weights of all arms except arm p, i.e,

∑
i�=p wi. These claims will lead

to the contradiction we need.

Claim 2. wp ≤ 2g(c)(c − L).

Proof. Note that
wp ≤ G(c) (3)

because we have wp = Prv∼Unif(CV (t))[∀j, vp − cp ≥ vj − cj ] and so

wp ≤ Prv∼Unif(CV (t))[vp − cp ≥ va − ca] = G(c).

It suffices for the proof to show g(x) ≤ 2g(c), ∀x ∈ [L, c] because G(c) =∫ c

L
g(x)dx. By Claim 1 we know that g is a non-negative and concave function

in [L,U ]. Therefore, we have

∀x ∈ [L, c], g(x) ≤ g(c) − γ(c − x)

where γ is the derivative of g at point c. By concavity of g, we have γ ≥ g(U)−g(c)
U−c .

Therefore, for every x ∈ [L, c], we have

g(x) ≤ g(c) − g(U) − g(c)
U − c

(c − x)

≤ g(c) + g(c) · c − x

U − c
≤ 2g(c)

where the second inequality follows from the non-negativity of g(U), and the
last inequality holds because by Inequality (2), c − L ≤ U − c, and therefore for
every x ∈ [L, c], c−x

U−c ≤ 1.

Claim 3.
∑

i:i�=p wi ≥ g(c)
2 (U − c).

Proof. Note that
∑

i wi = 1. Therefore, by Inequality (3), we have
∑

i:i�=p

wi = 1 − wp ≥ 1 − G(c) = G(U) − G(c). (4)
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Since g is a non-negative concave function on [L,U ], we have

∀x ∈ [c, U ], g(x) ≥ g(c) +
g(U) − g(c)

U − c
(x − c)

Therefore,

G(U) − G(c) =
∫ U

c

g(x)dx

≥
∫ U

c

(

g(c) +
g(U) − g(c)

U − c

)

(x − c)dx

=
g(c) + g(U)

2
(U − c)

≥ g(c)
2

(U − c).

This, together with Inequality (4) complete the proof of Claim 3.

Now we show a contradiction using Claims 2, 3 and Eq. (2). Note that g(c) >
0 and U − c > U−L

2 by Claim 2 and Inequality (2), respectively. Therefore,

wp ≤ 2g(c)(c − L) ≤ g(c)
4k

(U − L) <
g(c)
2k

(U − c),

where the first and the second inequalities follow from Claim 2 and Inequality
(2), respectively. On the other hand, using Claim 3 we know there exists an arm
i such that

wi ≥ g(c)
2k

(U − c).

Therefore, we have wi ≥ g(c)
2k (U −c) > wp which contradicts the way p is selected

by Algorithm 1.

Theorem 1. Total regret of Algorithm 1 for the first T rounds is bounded by
O(k4(f(T ) + 1) ln(T )).

Proof. To prove the theorem, we show that
∑

t≤T

prt ≤ f(T ) + k2λH(T )(f(T ) + 1) (5)

for λ > 2 + 1
1−δ(1−ln(δ)) and δ = 1 − 1

8k . Here H(T ) denotes the harmonic series.
Let v∗ denote the actual value vector of the arms. By the definition of regret we
have

prt = (v∗
ot

− ct
ot

) − (v∗
pt

− ct
pt

)

= ((v∗
ot

− ct
ot

) − (v∗
at

− ct
at

)) + ((v∗
at

− ct
at

) − (v∗
pt

− ct
pt

))

= art + ((v∗
at

− ct
at

) − (v∗
pt

− ct
pt

))
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Let us define ert = max(0, (v∗
at

− ct
at

) − (v∗
pt

− ct
pt

)). Therefore,
∑

t≤T

prt ≤
∑

t≤T

art +
∑

t≤T

ert ≤ f(T ) +
∑

t≤T

ert.

Therefore, to prove Inequality (5), it is enough to show
∑

t≤T ert ≤
k2λH(T )(f(T ) + 1). We define Bαβ(T ) = {t : t ≤ T and (at, pt) = (α, β)}.
Note that we have

∑

t≤T

ert =
∑

α,β

∑

t∈Bαβ(T )

ert

≤ k2 · max
α,β

{
∑

t∈Bαβ(T )

ert}. (6)

Therefore, to prove Inequality (5), it is enough to show that for every α, β,
∑

t∈Bαβ(T )

ert ≤ λH(T )(f(T ) + 1).

Let us fix α and β. Suppose l = |Bαβ(T )| and Bαβ(T ) = {t1, . . . , tl} where
t1 < · · · < tl. We only consider cases where α �= β because ∀α,

∑
t∈Bαα

ert = 0.
Therefore, using Lemma 1 we know L(ti) ≤ cti

α − cti

β . That gives

erti
= max(0, (v∗

α − v∗
β) − (cti

α − cti

β ))
≤ max(0, (v∗

α − v∗
β) − L(ti))

In following claim we show (v∗
α − v∗

β) − L(ti) is bounded by λ(f(ti)+1)
i .

Claim 4. For every ti ∈ Bαβ(T ), we have

(v∗
α − v∗

β) − L(ti) ≤ λ(f(ti) + 1)
i

.

Proof. The proof is by contradiction. Suppose there is a ti such that

(v∗
α − v∗

β) − L(ti) >
λ(f(ti) + 1)

i
. (7)

Let ti be the smallest such ti. Therefore,

∀j < i, (v∗
α − v∗

β) − L(tj) ≤ λ(f(tj) + 1)
j

. (8)

Let v̂ ∈ CV (ti) be a point that minimizes vα−vβ , i.e., v̂α− v̂β = L(ti). Note that
we have i > 1 because the values are bounded by 1. Let us recall the definition
of CV (ti) here. A vector v is in CV (ti) if ∃r ∈ R

T such that:

∀t ∈ [ti − 1]∀j : vat
− ct

at
≥ vj − ct

j − rt

∀t ∈ [ti − 1] :
∑

h≤t rh ≤ f(t)
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This can be written as:

∀t ∈ [ti − 1]∀j : (vj − ct
j) − (vat

− ct
at

) ≤ rt

∀t ∈ [ti − 1] :
∑

h≤t rh ≤ f(t)

Since v̂ ∈ CV (ti), we have
∑

t<ti

max(0, (v̂pt
− ct

pt
) − (v̂at

− ct
at

)) ≤
∑

t<ti

rt ≤ f(ti − 1)

Note that Bαβ(ti − 1) ⊂ [ti − 1]. Therefore, we get
∑

tj∈Bαβ(ti−1)

max(0, (v̂β − c
tj

β ) − (v̂α − ctj
α )) ≤ f(ti − 1).

Note that we can write (v̂β − c
tj

β ) − (v̂α − c
tj
α ) as

((v∗
α − v∗

β) − L(ti)) − ((v∗
α − v∗

β) − (ctj
α − c

tj

β ))

because v̂α − v̂β = L(ti). If we combine the above equations we get

f(ti − 1) ≥
∑

j<i

max(0, ((v∗
α − v∗

β) − L(ti)) − ((v∗
α − v∗

β) − (ctj
α − c

tj

β )))

≥
∑

j<i

max(0,
λ(f(ti) + 1)

i
− ((v∗

α − v∗
β) − (ctj

α − c
tj

β ))) (9)

where the second inequality follows from Inequality (7). On the other hand, we
have

(v∗
α − v∗

β) − (ctj
α − c

tj

β ) ≤ (v∗
α − v∗

β) −
(

(1 − 1
8k

)L(tj) +
1
8k

U(tj)
)

≤ (1 − 1
8k

)((v∗
α − v∗

β) − L(t)), (10)

where the first inequality follows from Lemma 1 and the second inequality follows
from the fact that U(tj) ≥ v∗

α − v∗
β . Inequalities (9) and (10) imply:

f(ti − 1) ≥
∑

j<i

max(0,
λ(f(ti) + 1)

i
− ((1 − 1

8k
)((v∗

α − v∗
β) − L(tj))) (11)

Recall δ = 1 − 1
8k . If we apply Eq. (8) into Eq. (11) we get:
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f(ti − 1) ≥
∑

j<i

max
(

0,
λ(f(ti) + 1)

i
− δλ

f(tj) + 1
j

)

≥
∑

�δi	≤j<i

max
(

0,
λ(f(ti) + 1)

i
− δλ

f(tj) + 1
j

)

≥
∑

�δi	≤j<i

λ(f(ti) + 1)
i

− δλ
(f(tj) + 1)

j

≥
∑

�δi	≤j<i

λ(f(ti) + 1)(
1
i

− δ
1
j
),

where the last inequality follows from the fact that f is monotone and increasing.
With some straightforward calculations on the above we get:

1 ≥ λ(1 − δ(1 +
∑

�δi	≤j<i

1
j
))

It is easy to see
∑

�δi	≤j<i
1
j ≤ ln(1δ ) since 7

8 ≤ δ < 1. Therefore,

1 ≥ λ((1 − δ) − δ ln(
1
δ
))

which is a contradiction because λ > 1
(1−δ)−δ ln( 1

δ )
and (1− δ)− δ ln(1δ ) > 0. The

claim follows from this contradiction.

By Claim 4,

∑

ti∈Bαβ(T )

erti
≤

∑

ti∈Bαβ(T )

λ(f(ti) + 1)
i

≤ λ(f(T ) + 1)
∑

i≤|l|

1
i

≤ λ(f(T ) + 1)H(l) ≤ λ(f(T ) + 1)H(T ),

which completes the proof of Theorem 1.

4.2 Bounding the Number of Wrong Predictions

Note that predicting the exact arm an advertiser would choose is not always
feasible. If there is more than one optimal arm, finding which one the advertiser
would choose is not possible. Therefore, we need an assumption that the optimal
arm is unique in every time step.

The following theorem is a corollary of Theorem 1. It bounds the number
of wrong predictions of Algorithm 1. In this theorem, the utility of an arm is
defined as the value of the arm minus the cost of playing it.
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Theorem 2. If the utility of the optimal arm is higher than the utility of other
arms by δ for every time step, then the number of mistakes is bounded by
k4(f(T )+1) log(T )+f(T )

δ .

Proof. Let mo(t) be the number of wrong predictions in which the algorithm
chooses the optimal arm, i.e., pt = ot. Note that in such time steps the agent has
a regret of at least δ. Therefore, the overall regret of the agent is lower bounded
by mo(t)δ, and so mo(t) ≤ f(t)

δ .
Let ma(t) be the number of wrong predictions in which the algorithm does

not choose the optimal arm. In such time steps the algorithm has a regret of at
least δ. Therefore, the overall regret of the algorithm is at least ma(t)δ. Using
Theorem 1, we get

ma(t) ≤ k4(f(T ) + 1) log(T )
δ

.

The total number of wrong predictions up to time step t is mo(t) + ma(t) ≤
f(t)

δ + k4(f(T )+1) log(T )
δ .

5 Lower Bound

In this section, we show a lower bound on the prediction regret that holds even
when the regret of the agent is zero, that is, f(T ) = 0. We prove that there is no
algorithm that can predict the agent’s actions with a regret bound lower than
k
4 , even when f(T ) = 0.

Theorem 3. Given any algorithm A, there exists a sequence of costs in which
we have

∑
t≤k/2 prt ≥ k

4 .

Proof. For simplicity suppose k is even. Consider the following sequence of cost
vectors.

c1 = (0, 0,H,H, . . . ,H,H)
c2 = (H,H, 0, 0,H, . . . ,H)
...
ck/2 = (H,H, . . . ,H,H, 0, 0)

where H is any constant bigger than 1. Formally, ct = (ct
1, . . . , c

t
k) where

ct
i =

{
0 i ∈ {2t, 2t − 1}
H otherwise

(12)

Note that at each time step t, the algorithm has no information about arms 2t
and 2t − 1. Therefore, the algorithm cannot do better than choosing at random.
If we set the rewards for arms as follows

v∗
i =

{
1 i is even
0 i is odd

(13)

then the algorithm has a regret of 1
2 at every step. Therefore, the total regret

will be at least k
4 .
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6 Conclusion

In this paper, we studied a multi-armed bandits setting where in each step, a cost
for playing each arm is announced to the agent. We proved that if we observe an
agent that achieves a regret of at most f(T ), then even without observing any
rewards, we can learn to play with a regret of at most O(k4(f(T ) + 1) log(T )),
where k is the number of arms.

We used this model to capture applications like ad auctions, where the goal
is to understand and predict the behavior of an advertiser with unknown utility
and unobserved rewards.

There are several problems that are left open. The most natural open ques-
tion is to find the best regret bound achievable in our setting. The only lower
bound we know is O(k) in the case that f(T ) = 0. Also, the broader question of
predicting an selfish agent’s actions in a dynamic environment without observing
her rewards is open in more complicated settings.
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Abstract. We study the computation of equilibria in prediction markets
in perhaps the most fundamental special case with two players and three
trading opportunities. To do so, we show equivalence of prediction mar-
ket equilibria with those of a simpler signaling game with commitment
introduced by Kong and Schoenebeck [18]. We then extend their results
by giving computationally efficient algorithms for additional parameter
regimes. Our approach leverages a new connection between prediction
markets and Bayesian persuasion, which also reveals interesting concep-
tual insights.

1 Introduction

Prediction markets allow participants to buy and sell financial contracts whose
payoff is contingent on the outcome of a future event. The market aggregates
these decisions, which reveal beliefs about the event, into a collective predic-
tion. Researchers study their game-theoretic properties to understand how these
markets function in practice as well as how to better design them to encourage
information elicitation and aggregation.

The widely-studied scoring-rule based markets (SRM) [13] utilize proper scor-
ing rules R(p, e), which assign a score to each prediction p on any given outcome
e of the event. Each participant t = 1, . . . , T arrives and updates the market
prediction from pt−1 to pt, and receives a payoff of her improvement in score,
R(pt, e) − R(pt−1, e), after the event outcome e is revealed.

Despite the apparent simplicity of this game, its equilibria have been chal-
lenging to describe. We have two primary motivations for doing so. First, predic-
tion markets are popular in practice, and understanding the properties of their
equilibria may be helpful in determining how to design such markets. Second,
the SRM is a very simple but apparently deep extensive-form signaling game.
Understanding it may lead to general insights regarding value of information and
connections to other signaling settings. Therefore, this paper seeks algorithms
and characterizations that further our understanding of these games.

c© Springer Nature Switzerland AG 2019
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The Alice-Bob-Alice (ABA) Game and Prior Work. Historically, equilib-
ria of markets have proven difficult to describe even in the special but perhaps
the most fundamental “Alice-Bob-Alice” (ABA) case. Here there are only two
players and three trading opportunities. Alice observes a private signal from a
set A while Bob receives a private signal from a set B. They can be correlated
with each other and with the (random) event being predicted, which has out-
comes drawn from a set E . Alice, participating at t = 1, can choose to predict
truthfully, withhold information, or even bluff and make a knowingly false pre-
diction. This might mislead Bob into a poor prediction at t = 2, leaving Alice
the opportunity to improve the market score significantly at t = 3.

A sequence of works [5,6,9,11] focused on the popular log scoring rule and
found conditions under which Alice fully reveals all information in stage 1 as well
as cases where she reveals no information. Chen and Waggoner [7] generalized
these results to a characterization of pairs (players’ signals, scoring rule) under
which the first player is always truthful (termed informational substitutes) or
withholds all information (informational complements). All of the results men-
tioned so far extend to general prediction markets with any number of players,
yet solving the Alice-Bob-Alice case was often the key step.

However, one major open problem left in [7] is the computational tractability
of determining whether players’ signals satisfy the substitutes condition, com-
plements condition, or neither. The aforementioned papers also leave open what
happens in the “neither” case, i.e. when Alice uses some nontrivial strategy
in the first stage. To our knowledge, Kong and Schoenebeck [18] are the first
to address these questions. It introduced a signaling game, the Alice-Bob-Alice
game with commitment, that simplifies some aspects of prediction markets from
an analysis perspective. Payoffs are defined as in the Alice-Bob-Alice SRM above.
But instead of directly making a prediction in round 1, Alice reports according
to some signaling scheme conditioned on her private information. Bob observes
Alice’s signal and Alice is assigned p1 = the posterior event distribution condi-
tioned on this signal. Crucially, Alice must commit to this signaling scheme and
it is known to Bob in advance, so she cannot bluff or mislead him by deviating
to another signal or prediction. For this game, [18] gave a fully polynomial-time
approximation scheme (FPTAS) for computing an optimal signaling scheme of
Alice when the number of possible realizations of Alice’s private information,
|A|, is constant, and the scoring rule satisfies a rather strong separability and
smoothness condition.

Our Results. Our first result establishes a formal connection between ABA
game with and without commitment. We prove that Alice’s optimal commit-
ment in the ABA game is also (up to negligible ε) part of an equilibrium in the
corresponding prediction market (without commitment). This shows, perhaps
surprisingly, that any equilibrium that can be achieved when Alice is forced to
commit to a signaling scheme can also be achieved in a market without com-
mitment or explicit signaling. In other words, finding equilibria in prediction
markets reduces to a pure signaling problem.
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Given this result, we focus our attention on designing algorithms for the ABA
game with commitment. Here, we extend the results of [18] to several other cases,
although we do not solve the Alice-Bob-Alice game in full generality. Our results
are built upon an interesting connection between Alice’s signaling problem and
Bayesian persuasion [16,17]—in some sense, Alice’s signaling scheme in round
1 is “persuading” Bob to make certain reports. We formalize this connection
by proving that Alice’s signaling problem reduces to Bayesian persuasion of a
privately informed receiver, but with a persuasion objective that is specific to
prediction markets. As a direct application of this connection, we exhibit an
efficient and exact algorithm for Alice’s optimal signaling in the case |B| =
O(1) but under the assumption that the expected scoring function is piece-wise
linear with polynomially many pieces. Though this restriction appears restrictive,
we hope this result may serve as a stepping stone to future work. Next, we
leverage techniques from algorithmic persuasion to design an FPTAS for the case
|A| = O(1) under a natural smoothness assumption on the scoring function. This
results strictly generalizes—and interestingly, also much simplifies—the main
result of Kong and and Schoenebeck [18]. Finally, to show the generality of our
technique, we use a similar idea to design an FPTAS for the case that both
|B|, |E| = O(1).

2 Preliminaries

2.1 Signals and Probabilities

A signal is a random variable, denoted by a capital letter, taking values in an
outcome space written in calligraphics. In particular, there are four signals of
interest in this paper: E, A, B, and S. The signal E is a future event we would
like to predict having a finite set of outcomes E . The goal of a prediction market
is to elicit forecasts about E in the form of probability distributions in Δ(E), the
probability simplex over E . For an outcome e ∈ E , we write Pr[e] as shorthand
for Pr[E = e], and so on for the other signals.

In this paper, there will always be two players, Alice and Bob. Alice observes
a signal A with finite outcome space A, while Bob observes B in the finite space
B. There is a prior distribution μ(e, a, b) on the joint realizations of e ∈ E , a ∈ A,
and b ∈ B. The prior distribution is common knowledge to Alice and Bob. Alice
will be choosing to send a signal S in space S. A signaling scheme is represented
as a function π : S × A → [0, 1] where π(s, a) = Pr[S = s,A = a] such that π
satisfies

∑
s∈S π(s, a) =

∑
e,b μ(e, a, b) for all a ∈ A.

2.2 Prediction Market Model

Proper Scoring Rules. A scoring rule is a function R : Δ(E) × E → R ∪ {−∞}
that assigns a score R(w, e) to the prediction w when the event E of our interest
is realized to e. We write R(w′;w) = EE∼w R(w′, E) for the expected score of
prediction w′ when E is drawn from w. It is strictly proper if for all w �= w′,
R(w′;w) < R(w;w). That is, for any belief w, one uniquely maximizes expected
score by reporting w. We rely on the following characterization.
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Proposition 1 ([12,21,23]). For every strictly proper scoring rule R, there
exists a strictly convex function G : Δ(E) → R such that R(w;w) = G(w).
Conversely, from every strictly convex G, one can construct a strictly proper
scoring rule R such that G(w) = R(w;w).

Example 1. The log scoring rule is defined as R(w, e) = log we, i.e. the loga-
rithm of the probability assigned to e. Its “expected score function” is G(w) =∑

e we log we = −H(w), the negative of Shannon entropy. The quadratic scoring
rule is R(w, e) = 2we −‖w‖22. Its expected score function is G(w) = ‖w‖22. Both
are strictly proper.

Automated Prediction Market. In this paper we focus on the popular automated
scoring-rule market (SRM) framework of [13]. The market is parameterized by
a finite set of event outcomes E , a strictly proper scoring rule R, and an initial
prediction p0 ∈ Δ(E). The participants arrive in a fixed, predefined order. Each
round t = 1, . . . , T , the arriving participant observes the previous prediction
pt−1 and replaces it with a prediction pt. At the end, the event outcome E = e
is observed and the arriving participant at time t is paid

R(pt, e) − R(pt−1, e). (1)

One of the key properties this payoff rule inherits from R is “one-step” truthful-
ness:

Fact 1. If every player arrives only once, then it is a strictly dominant strategy
to set pt to the player’s true posterior belief conditioned on all information they
have observed.

This follows immediately because R is a proper scoring rule and the second term
in (1) is not under the player’s control.

However, if players participate multiple times, it might be beneficial to with-
hold information (or possibly even bluff). This motivates study of the Alice-Bob-
Alice (ABA) market, a prediction market with two players and three rounds
where Alice participates in rounds 1 and 3 while Bob participates in round 2.
Despite its apparent simplicity, this special case captures many of the challenges
of general markets and has been studied in e.g. [5,11,18].

Equilibrium in Markets. In the prediction market game, a strategy for Alice
consists of a pair of possibly-randomized functions σ1, σ3 defining her predictions
at rounds 1 and 3. We have σ1 : A → Δ(E), i.e. Alice plays p1 = σ1(A). Next,
σ3 : A×Δ(E)×Δ(E) → Δ(E), where Alice at round 3 plays p3 = σ3(A,p1,p2).
Similarly, a strategy for Bob is a possibly-randomized function σ2 : B × Δ(E) →
Δ(E) where he plays p2 = σ2(B,p1).

For t ∈ {1, 2, 3}, define the expected net score for the prediction at round t
to be

ut((σ1, σ3), σ2) = E
A,B,E,σ1,σ2,σ3

[
R(pt, E) − R(pt−1, E)

]
.
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Alice’s total expected utility is uA((σ1, σ3), σ2) := u1 + u3. Similarly, Bob’s
expected utility is uB((σ1, σ3), σ2) := u2.

A set of strategies ((σ1, σ3), σ2) are a Bayes-Nash equilibrium (BNE) if
each is a best response to the other, i.e. for all (σ′

1, σ
′
3), uA((σ′

1, σ
′
3), σ2) ≤

uA((σ1, σ3), σ2), and similarly for all σ′
2, uB((σ1, σ3), σ′

2) ≤ uB((σ1, σ3), σ2).
In extensive-form games such as prediction markets, BNE can include “non-

credible” threats. For example perhaps in BNE, Bob may threaten to reveal no
information in the second round if Alice deviates from the equilibrium strat-
egy. This is not credible because, if Alice were to actually deviate, Bob’s best
response would still be to predict truthfully according to his beliefs. Therefore, in
this paper we focus on perfect Bayesian equilibrium (PBE). Informally, a BNE
((σ1, σ3), σ2) is a PBE if, off the equilibrium path, these strategies still best-
respond according to some beliefs that are consistent with Bayesian updating
on the player’s own signal and some information about their opponent’s signal.
See the full version for a formal definition.

2.3 ABA Game with Commitment

Although prediction market equilibria generally capture relative value of infor-
mation, there are several technical complications. First, in principle it could be
that a prediction of Alice’s does not reveal her signal for the coincidental reason
that two signals give the same posterior belief. For example, in the case where
both players receive a uniformly random bit and E = A ⊕ B (the XOR), Alice’s
posterior on E is uniformly random regardless of which signal she receives. Sec-
ond is the question of commitment. It might be that equilibria of prediction
markets do not completely reflect the relative value of information and idealized
signaling schemes because Alice is unable to commit to such a scheme.

This motivates us to study the more mathematically clean ABA game with
commitment. Introduced in [18], this “game” can be phrased as a single-player
decision problem, fully specified by {G,μ} where: convex function G : Δ(E) →
R ∪ {−∞} is chosen by the designer; μ is the prior on (A,B,E). Alice makes
the only decision in the game by selecting a signaling scheme π : S × A →
[0, 1]. This signaling scheme is announced to Bob. Nature draws (A,B,E) ∼ μ
and draws S ∼ π(· | A). Bob observes the signal S, updates to a posterior
pS,B, and receives utility R(pS,B, E) − R(pS , E). Then Alice receives utility
R(pS , E) − R(p, E) + R(pA,B , E) − R(pS,B, E) in total. Crucially, this payoff
structure makes the game constant-sum since for each A = a,B = b, E = e, the
sum of Alice’s and Bob’s utilities equals R(pa,b, e) − R(p, e), which is fixed.1

The interpretation of these payoffs is that Alice comes to the prediction
market, announces signal S, and predicts the posterior conditioned on S. Then,
Bob arrives, sees S, announces B, and predicts the posterior conditioned on
both S and B (via Bayesian update). Finally, Alice arrives, announces A, and

1 This is a slight departure from the formalization of the game in [18]. There, Alice
did not automatically observe Bob’s signal, causing complications in the case where
Bob’s report pS,B could be the same for two different outcomes b, b′ ∈ B.
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predicts the posterior given both A and B. In other words, as phrased by [7,14],
Alice receives the marginal value of signal S over the prior; then Bob receives
the marginal value of B over S; and finally, Alice receives the marginal value of
A over S,B.

2.4 Bayesian Persuasion

The ABA game turns out to be relevant to the Bayesian persuasion model. A
persuasion game is played between a sender and a receiver. The receiver is faced
with selecting an action i from [k] = {1, · · · , k}. Both the sender and receiver
utility depend on the receiver’s action as well as a state of nature e supported on
E . Formally, the sender and receiver payoff function are v(i, e) and u(i, e) where
i ∈ [k] and e ∈ E .

Particularly relevant to this work is the model of Bayesian persuasion with a
privately informed receiver, first studied by Kolotilin et al. [17]. Here, the sender
and receiver each observe a private signal regarding the state of nature E, which
may be correlated with each other. Let A ∈ A and B ∈ B denote the (random)
signal observed by the sender and receiver, respectively. The joint distribution of
A,B,E is public knowledge and denoted as μ(e, a, b). The Bayesian persuasion
model studies how the sender can maximize her expected utility by committing
to a signaling scheme π : S × A → [0, 1] to strategically influence the receiver’s
belief about e and consequently his optimal action.2 Here, again, S is the set
of signal outcomes. In Sect. 4, we will formalize the connection to prediction
markets, which involves Alice “persuading” Bob to make certain reports but
with a particular form of sender objectives specific to prediction markets.

3 Equivalence with and Without Commitment

In this section, we show that Alice’s optimal signaling scheme in the ABA game
with commitment yields an approximate PBE in the Alice-Bob-Alice prediction
market (without commitment). Thus, we can next focus on solving the ABA game
with commitment. In this section, to simplify technicalities, we assume that the
proper scoring rule R has a differentiable convex expected score function G.

First, we formalize the sense in which Alice uses a signaling scheme even in
a prediction market. This perspective has appeared in prior works on equilibria
of markets, though a precise result may not have been stated. Informally, it
says that in any equilibrium, Alice’s equilibrium strategy can be written as
reporting the posterior conditioned on a signal she draws from a private scheme.
Recall from Fact 1 that, because Bob only participates once and the market
uses a strictly proper scoring rule, his unique best response is always to report
truthfully according to his information and beliefs.

2 Such a signaling scheme is also called an experiment by Kolotilin et al. [17]. We
remark that their model is a special case of the general model we described here,
with independent A, B and binary receiver actions.
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Lemma 1. In perfect Bayesian equilibrium of the Alice-Bob-Alice prediction
market, without loss of generality, Alice’s strategy is to predict pS for some
signaling scheme π and associated random signal S.

Therefore, from here on we will describe Alice’s strategy in prediction markets
as a signaling scheme π, keeping in mind that she does not publicly announce
her signal and does not have to commit to the scheme.

Before we proceed, we will give some necessary definitions.

Definitions. First, let us define V = EA,B,E R(pA,B , E)−R(p, E) where p is the
prior. This is the difference in expected score between the prior and the posterior
conditioned on both players’ signals (it can also be written EA,B G(pA,B) −
G(p)). Next, let us define the notation uB(π′;π) as follows. In the prediction
market game, suppose Alice draws from π while Bob believes she is drawing from
π′. If p1 is in the support of π′ given Bob’s signal B, then he does a Bayesian
update to an incorrect (in general) posterior belief p2 and reports it. If p1 is
not in the support of Alice’s π′ strategy (“off the equilibrium path”), then Bob
forms some belief over Alice’s signal and uses this to again form an incorrect
posterior belief p2. We define uB(π′;π) to be Bob’s expected utility in this case,
for some off-path beliefs of Bob.

The core idea occurs in the following lemma, which shows that, under some
conditions, Alice prefers to deviate to the optimal signaling scheme.
Lemma 2. Suppose that, in the ABA game with commitment, π∗ brings Alice
higher utility than π. Then in the Alice-Bob-Alice prediction market, if Alice
plays π and always learns Bob’s signal after his report, then Alice improves
utility by deviating to π∗.

To prove our main result, we also need the following continuity claim.
Lemma 3. In the prediction market with differentiable G, fixing Bob’s strategy,
Alice’s expected utility is continuous in π; and similarly, fixing Alice’s strategy,
Bob’s expected utility is continuous with respect to each of his reports at the
second stage (i.e. outcomes of p2) as well as each of the probabilities he places
on each report.

These results allow us to prove the main result of this section.
Theorem 1. Let π∗ be the optimal signaling scheme for the ABA game with
commitment, i.e. the minimizer of uB(π;π). Then for any ε, there is an ε-PBE
of the Alice-Bob-Alice prediction market in which Alice plays within ε of π∗.

4 ABA Game with Commitment Is Bayesian Persuasion

In this section, we formally establish the connection between the ABA game with
commitment (denoted as ABA-Commit) and the Bayesian Persuasion (BP) game
with a privately informed receiver (denoted as BP-Private). Besides revealing
interesting conceptual insights, this connection also enables us to directly employ
ideas from Bayesian persuasion to design an efficient algorithm for the ABA game
when the size of Bob’s signal space is a constant and the expected score function
G is k-piecewise linear.
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4.1 Reducing ABA-Commit to BP-Private

We start by simplifying the equilibrium analysis of the ABA game with commit-
ment. Since Bob has only one chance to participate in the ABA game, his optimal
strategy is simply to reveal his original signal at t = 2 (assuming tie breaking
in favor of more information) and Alice will also reveal all her information at
t = 3. Therefore, the only non-trivial stage is Alice’s optimal commitment at
the first stage. Since the game is constant-sum, so maximizing Alice’s utility is
equivalent to minimizing Bob’s utility. As a result, solving the ABA game with
commitment boils down to compute Alice’s optimal commitment (to a signaling
scheme) at the first stage to minimize Bob’s utility.

For convenience and clarity, we state the result for piecewise linear convex
function G, however this connection holds for arbitrary convex G function (see
remarks at the end of the theorem proof).

Theorem 2. For any ABA-commit instance {G,μ} where G is k-piecewise linear
and μ is the prior over (A,B,E), there is a BP-private instance such that
Alice’s optimal commitment is the same as the sender’s optimal commitment in
the BP-private instance, which is described as follows: (1) the instance has the
same joint prior μ over the sender signal A, receiver signal B and event E; (2)
The receiver utility function UG(i, e) is uniquely determined by G with action set
[k] = {1, 2, · · · , k}; (3) The sender utility as a function of any signaling scheme
π : S × A → [0, 1] is given by

Sender Obj = E
s

max
i∈[k]

∑

e∈E

[UG(i, e)·Pr(e|s)]− E
s,b

max
i∈[k]

∑

e∈E

[UG(i, e)·Pr(e|s, b)]. (2)

4.2 A Direct Application of the Reduction

As a direction application of the reduction in Sect. 4.1, we now show how to use
this connection to compute Alice’s optimal commitment when |B| is constant and
the expected score function G is k-piecewise linear. Our algorithm is polynomial
in k but exponential in the constant |B|, as described in the following theorem.

Theorem 3. When G is k-piecewise linear, there exists a poly(k|B|, |A|, |E|)-
time algorithm that computes Alice’s optimal signaling scheme to commit to.

In the introduction, we discussed the connection between ABA-commit with
informational substitutes and complements. Two signals are strong substitutes if
the optimal signaling scheme is to always reveal all information, and two signals
are strong complements if the optimal signaling scheme is to always reveal no
information. We can use the algorithm in this section to compute the signaling
scheme exactly. Therefore, the following corollary is immediate.

Corollary 1. If G is k-piecewise linear, then there exists a poly(k|B|, |A|, |E|)-
time algorithm that tests whether two signals A and B are strong substitutes,
complements, or neither.
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5 FPTAS for Different Parameter Regimes

In this section, we develop Fully Polynomial Time Approximation Schemes
(FPTAS) for the ABA game with commitment for different parameter regimes.
These results cover a wider range of settings, and in particular, strictly gener-
alize the main result of Kong and Schoenebeck [18]. Moreover, our algorithm is
much simpler than that in [18] and is inspired by ideas that have also been used
in the previous literature of algorithmic Bayesian persuasion.

While we do not use the explicit correspondence with the Bayesian persua-
sion instance developed in Sect. 4 here, we use key analytical techniques from the
persuasion literature. Namely, the signaling scheme can be equivalently viewed
as a distribution of posteriors and the only constraint on that distribution is the
Bayes-plausibility constraint: the expectation of the posteriors equal the prior.
We then show that under a Lipschitz-like constraint on G, a small perturbation
of the posterior leads to a small perturbation of Alice’s payoff. We can there-
fore discretize the space of posteriors within ε precision and show that there
exists an approximately optimal signaling mechanism whose induced posteriors
lie only on those grid points. When the total number of grid points are polyno-
mially bounded, we obtain efficient algorithms. This idea has been employed in
algorithmic persuasion (e.g., [4,8]).

We start by defining the continuity condition we need on the expected score
function G.

Definition 1 (Local Hölder Continuity). A function G : Rn → R is (α, β)-
locally Hölder continuous if there exists α > 0, β ∈ (0, 1] and some c ∈ (0, 1)
such that |G(x) − G(y)| ≤ α|x − y|β for any x,y such that |x − y| ≤ c.

Note that local Hölder continuity is a natural and weak continuity assump-
tion, which holds for almost any reasonable scoring rule. In particular, it is
weaker than the standard Hölder continuity, which requires the above condition
to hold for any x,y, not only those with |x − y| ≤ c. Hölder continuity is then
weaker than the Lipschitz continuity which corresponds to the case of β = 1.
Moreover, we will see later that α does not have to be an absolute constant; only
that α is polynomial-sized is enough for an FPTAS.

To obtain an FPTAS for the case with constant |A|, Kong and Schoenebeck
[18] defined another notion of continuity of G, which they call niceness condition
formally described as follows. It turns out that niceness condition is a stronger
requirement than the local Hölder continuity. So any function satisfying their
condition also satisfies ours, including quadratic and log scoring rules.

Definition 2 (Niceness Condition [18]). A function G : Δn → R is λ-nice
if there exists a function g : [0, 1] → R such that G(x) =

∑
i g(xi) for every

x ∈ Δn, g(0) = g(1) = 0, g is convex, and there exists a constant λ ∈ (0, 1) such
that for sufficiently small ε, max(|g(ε), g(1 − ε)| ≤ ελ.
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Proposition 2. Any function that is λ-nice for some λ ≤ 1 is (n1−λ, λ)-locally
Hölder continuous.3

The niceness condition is a relatively strong requirement, especially as
requires the expected score function G to be separable in all arguments G(x) =∑

i g(xi). It happens to hold for log and quadratic scoring rules, but it is cer-
tainly not a property we generally expect to hold; the spherical scoring rule has
G(x) = (

∑
i x2

i )
1/2 which is not separable.

5.1 Constant Number of Alice’s Signal Outcomes

We now consider the setting of [18] with constant size of Alice’s signal space, i.e.,
d ≡ |A| is a constant. Kong and Schoenebeck [18] prove that when G satisfies
the niceness condition, there is an FPTAS for this case. Here we exhibit another
FPTAS for this setting based on the aforementioned idea from persuasion but
under the (weaker) assumption of local Hölder continuity. This thus strictly
generalizes the result in [18].

Let Δd ≡ Δ(A) denote the set of all possible distributions over signal real-
izations of A. Let p ∈ Δd denote a generic posterior distribution over Alice’s
signal space. Throughout we always use |z| =

∑
i |zi| to denote the l1 norm of a

vector z. For a function f , denote by {f(e)}e∈E a vector of dimension |E| whose
entries are f(e) for e ∈ E . We prove the following theorem.

Theorem 4. Assume that |A| is a constant, and the G function is (α, β)-locally
Hölder continuous for some α, β > 0 and bounded within [−L,L] for some L.
Then there exists a poly(|B|, |E|, 1/δ, L)-time algorithm that computes Alice’s
δ-optimal signaling scheme.

5.2 Constant Number of Event Outcomes and Bob’s Signal
Outcomes

Next we exhibit an FPTAS for another parameter regime: both nE ≡ |E| and
nB ≡ |B| are constant. The proof uses the same technique as in the previous
section. The key idea is that Alice’s signaling scheme can be viewed equivalently
as a distribution over posterior distributions v ∈ Δ(E × B) jointly over the
event and the Bob’s private signal, and that this distribution captures all of
the information needed. Compared to Theorem 3, this result does not require k-
piecewise linearity of G but requires that |E| is a constant. Moreover, this result
is an FPTAS whereas Theorem 3 gives an exact algorithm.

Theorem 5. Assume that |E| and |B| are constants, and the G function is
(α, β)-locally Hölder continuous for some α, β > 0 and bounded within [−L,L]
for some L. Then there exists a poly(|A|, 1/δ, L)-time algorithm that computes
Alice’s δ-optimal signaling scheme.
3 Note that if λ > 1 in the λ-nice condition, or if β > 1 in the (α, β)-local Hölder

continuity condition, then G is identically zero so we are not interested in those
trivial cases.
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6 Conclusion and Directions

In this work, we took steps toward better understanding of equilibria of predic-
tion markets, identifying informational substitutes and complements, and con-
nections between these problems and other signaling games including Bayesian
persuasion.

While these results extend the work of [18] in several ways – connecting
Alice’s optimal commitment to the original prediction market game, generalizing
results for the case of fixed |A|, and new algorithms for other cases – much open
work still remains. A first direction is to give efficient algorithms with fewer
assumptions, e.g. if |B| is bounded but we have fewer restrictions on G. A second
direction is to prove intractability results, which do not yet exist for this game,
although the problem appears quite challenging. It would also be interesting to
understand whether the problem of testing whether signals are informational
substitutes is tractable or not, and whether computing Alice’s optimal signaling
scheme is algorithmically easier than testing substitutes. Finally, one can ask
how these results extend to larger prediction market games.
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Abstract. The classic cake-cutting problem provides a model for
addressing fair and efficient allocation of a divisible, heterogeneous
resource (metaphorically, the cake) among agents with distinct pref-
erences. Focusing on a standard formulation of cake cutting, in which
each agent must receive a contiguous piece of the cake, this work estab-
lishes algorithmic and hardness results for multiple fairness/efficiency
measures.

First, we consider the well-studied notion of envy-freeness and develop
an efficient algorithm that finds a cake division (with connected pieces)
wherein the envy is multiplicatively within a factor of 3 + o(1). The
same algorithm in fact achieves an approximation ratio of 3 + o(1) for
the problem of finding cake divisions with as large a Nash social wel-
fare (NSW) as possible. NSW is another standard measure of fairness
and this work also establishes a connection between envy-freeness and
NSW: approximately envy-free cake divisions (with connected pieces)
always have near-optimal Nash social welfare. Furthermore, we develop
an approximation algorithm for maximizing the ρ-mean welfare–this uni-
fying objective, with different values of ρ, interpolates between notions
of fairness (NSW) and efficiency (average social welfare). Finally, we
complement these algorithmic results by proving that maximizing NSW
(and, in general, the ρ-mean welfare) is APX-hard in the cake-division
context.

Keywords: Fair division · Envy-freeness · Nash social welfare

1 Introduction

Cake cutting is a fundamental problem in the fair-division literature. It mod-
els the task of allocating a divisible, heterogeneous resource among agents with
distinct preferences, but equal entitlements. Indeed, the classic work of Stein-
haus, Banach, and Knaster [27]—which lays the mathematical foundations of
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fair division—addresses cake cutting. Over the years, this problem has not only
inspired the development of many interesting mathematical connections and
algorithms (see, e.g., [25]), but has also been found relevant in real-world set-
tings, such as border negotiations and divorce settlements [11]. Implementations
of cake-division methods on platforms (such as Adjusted Winner [1]) further
substantiate the practical relevance of this framework.

Here, the cake is represented by the segment [0, 1] and the cardinal preferences
of the agents are specified via valuation functions over (the intervals of) the cake.
We will throughout focus on the setting wherein the cake needs to be partitioned
into exactly n connected pieces (intervals) and each of the n agents receives
one of these intervals. This is a well-studied formulation of cake cutting and is
motivated by applications wherein connectivity (across each allocated part of
the resource) is a crucial requirement [11]; consider, e.g., land division, spectrum
allocation, and non-preemptive interval scheduling.1

Achieving fairness and efficiency are two pivotal goals in this resource-
allocation context [11,25]. The current work contributes to these objectives,
with a focus on computational aspects of cake cutting. The fairness and effi-
ciency objectives addressed in this work are detailed next.

A quintessential notion of fairness is envy-freeness: a division is said to
be envy-free iff, under it, every agent prefers its own piece over that of any
other agent [18]. The well-known result of Su [30] (see also [28] and [26]) shows
that, under mild assumptions on agents’ valuations, envy-free cake divisions
with connected pieces always exist. However, this existential result stands with-
out an algorithmic counterpart; Stromquist [29] has shown that such an envy-
free solution cannot be computed in bounded time, if the valuations are spec-
ified by an adaptive adversary.2 This negative result leads one to study relax-
ations/approximation guarantees, such as the ones considered in this work.

It is relevant to note that, while envy-freeness provides fairness guarantees
on an individual level, in and of itself, this notion is not concerned with overall
efficiency. By contrast, the concept of social welfare quantifies efficiency achieved
by the agents as a whole. Social (utilitarian) welfare is defined as the sum of the
values that the agents have for their own pieces. For this welfare objective, we
establish (multiplicative) approximation guarantees in the cake-cutting setup.3

A balance between the utilitarian (Benthamite) objective and the egalitarian
(Rawlsian/max-min) welfare is achieved through Nash social welfare (NSW),
which is defined as the geometric mean of the agents’ values [20,23]. This wel-
fare function has traditionally been studied for homogeneous (divisible) goods,
where it is known to possess strong fairness (envy-freeness) and (Pareto) effi-

1 The other variant of the problem, wherein agents can receive disconnected pieces,
has also been studied in prior work; see, e.g., [24] and references therein. Related
results on this variant are discussed at the end of this section.

2 Notably, for the complementary problem of finding envy-free solutions with noncon-
tiguous pieces, the work of Aziz and Mckinzie [7] provides a hyper-exponential time
algorithm.

3 Here, without loss of generality and to connect social welfare with the other objec-
tives studied in this work, we equate social welfare with the average (arithmetic
mean) of the values obtained by the agents.
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ciency properties [31]. The appeal of Nash social welfare continues to hold in
the case of indivisible goods: Caragiannis et al. [13] have shown that (under
additive valuations) Nash-optimal allocations of discrete goods satisfy a natural
relaxation of envy-freeness and are Pareto efficient. The relevance of Nash social
welfare, as a measure of fairness, motivates its study in the cake-cutting setup
as well. Towards this end, this work develops algorithmic and hardness results
for the problem of finding cake divisions that maximize Nash social welfare.

Generalized (Hölder) means provide a unified framework to address fairness
and efficiency objectives. Specifically, with exponent parameter ρ, the ρ-mean
welfare, Mρ(·), is defined as

(
1
n

∑
i vρ

i

)1/ρ; here vis denote the valuations obtained
by the agents in an allocation. We address ρ-mean welfare for ρ ∈ (0, 1]. In
particular, this parameter range captures both Nash social welfare and social
welfare: ρ = 1 gives us the arithmetic mean (average social welfare) and, as ρ
tends to zero, the limit of Mρ is equal to the geometric mean (the Nash social
welfare).4

This paper addresses all of the above-mentioned notions of fairness and effi-
ciency. In particular, we develop approximation algorithms for finding cake divi-
sions, with connected pieces, under the following objectives: (i) multiplicatively
bounding envy, (ii) maximizing Nash social welfare, and (iii) maximizing ρ-mean
welfare, for ρ ∈ (0, 1]. We complement these approximation guarantees by estab-
lishing hardness results for Nash social welfare and ρ-mean welfare maximization.
Our contributions are summarized in the following list.

– Envy-Freeness: We develop an efficient algorithm that finds a cake division
(i.e., a partition of the cake into n connected pieces along with a one-to-one
assignment of these pieces among the n agents) such that for every agent a
the value of its piece is at least 1/(3 + o(1)) times a’s value for any other
agent’s piece (Theorem 1). Our algorithm for finding an approximately envy-
free allocation is rather direct (see Sect. 3 for a description). The explain-
ability/simplicity of this algorithm is a notable feature, since it makes the
developed method amenable for realistic implementations, such as the ones
found on websites like Spliddit [19].

– Nash Social Welfare: Our algorithm for finding approximately envy-free
divisions also provides a polynomial-time (3 + o(1))-approximation algorithm
for the Nash social welfare maximization problem (Theorem 2).

We further show that approximately envy-free cake divisions (with con-
nected pieces) always have near-optimal Nash social welfare: if in a cake
division the envy is (multiplicatively) bounded within a factor of α, then the
Nash social welfare of the division is at least 1

2α times the optimal.5

4 Note that, for each ρ, the ρ-mean welfare is ordinally equivalent to CES (constant

elasticity of substitution) welfare functions that have the form
(∑

i vρ
i

)1/ρ
.

5 In comparison to this generic connection between envy-freeness and Nash social
welfare, the cake divisions computed specifically by our algorithm admit a stronger
guarantee–they essentially achieve an approximation bound of three for both envy
and Nash social welfare.



60 E. R. Arunachaleswaran et al.

Connections between envy-freeness and Nash social welfare have been
established in other fair-division settings: addressing fair allocation of homo-
geneous,6 divisible goods under additive valuations, the work of Varian [31]
shows that there always exists an allocation which is both envy-free and Nash
optimal.7 Also, Caragiannis et al. [13] have established that, when dividing
indivisible goods, allocations that maximize Nash social welfare satisfy relax-
ations of envy-freeness. Our results show that analogous connections hold in
the cake-division framework as well.

We complement the algorithmic result for Nash social welfare by showing
that it is APX-hard to find a Nash optimal cake division with connected pieces
(Theorem 4). This hardness result implies, in particular, that the problem of
maximizing Nash social welfare does not admit a polynomial-time approxi-
mation scheme (PTAS), unless P= NP.

– Generalized-Mean Welfare: As mentioned previously, generalized
means—Mρ(·) with exponent parameter ρ ∈ (0, 1]—is a family of functions
which captures both Nash social welfare and (average) social welfare. For this
unified objective, we develop a (2 + o(1))1/ρ-approximation algorithm that
runs in time nO(1/ρ); here n is the number of agents (Theorem 3). Hence,
for average social welfare (i.e., the ρ = 1 case) we obtain a polynomial-time
(2 + o(1))-approximation algorithm. We note that this instantiation improves
upon the 8-approximation guarantee obtained specifically for social welfare
in the work of Aumann et al. [6].

Our algorithm, for maximizing ρ-mean welfare, relies on “discretizing”
the given cake-division instance to obtain an interval-scheduling problem,
called the Job Interval Selection Problem (JISP). Then, we invoke the 2-
approximation algorithm of Bar-Noy et al. [9] for JISP to obtain the stated
approximation guarantee (Theorem3).

We also establish that, for any fixed ρ ∈ (0, 1], finding cake divisions that
maximize ρ-mean welfare is APX-hard. This general result, though, holds
for cake-division instances wherein the valuations are not necessarily nor-
malized.8 For the social welfare case (i.e., the ρ = 1 setting), our techniques
can be adopted to establish APX-hardness even under normalized valuations.
Hence, we can rule out a PTAS for the social welfare maximization problem.
This strengthens the inapproximability result of Aumann et al. [6], which
showed that efficient (in the social-welfare sense) cake cutting does not admit
a fully polynomial-time approximation scheme (FPTAS).

Prior work has also studied the impact of envy-freeness on social welfare
in the cake-cutting context. Specifically, Caragiannis et al. [12] along with
Aumann and Dombb [5] establish bounds for price of envy-freeness, which is

6 Hence, such goods do not correspond to a heterogenous cake.
7 In fact, in the homogenous-goods case, such an allocation can be efficiently computed

by solving the convex program of Eisenberg and Gale [16]. By contrast, finding a
Nash optimal allocation is the cake-division setting is computationally hard.

8 Agents’ valuations are said to be normalized iff, for every agent, the value of the
entire cake is equal to one.
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defined as the ratio between the social welfare of an optimal allocation and
the social welfare of the best envy-free allocation. We extend this framework
to ρ-mean welfare and show that any (approximately) envy-free allocation
provides an O(2

1
ρ n

ρ
ρ+1 )-approximate solution to maximizing ρ-mean welfare,

for ρ ∈ (0, 1]. We note that our upper bound on the price of envy-freeness for
the ρ = 1 instantiation (i.e., for social welfare) is essentially tight. This follows
from considering the result of Aumann and Dombb [5], which establishes a
Θ(

√
n) bound on the price of envy-freeness, in the social-welfare context.

Due to space constraints, technical details and proofs of some of the above-
mentioned results are deferred to the full version of this work [4].

Additional Related Work. Another standard notion of fairness is propor-
tionality. This criterion requires that every agent a receives a piece of value
at least 1/n times a’s value for the entire cake; here n is the total number of
agents participating in the cake-cutting exercise. In contrast to envy-freeness,
proportionality is an algorithmically tractable solution concept; see [24] and ref-
erences therein. Though, given that an (approximately) envy-free allocation is
also (approximately) proportional,9 approximation guarantees for envy-freeness
(such as the ones developed in this work) give us matching bounds for propor-
tionality as well.

With respect to maximizing social welfare, the result closest to ours is that
of Aumann et al. [6]. We reiterate that the current work improves upon the
algorithmic and hardness bounds obtained in [6]. Bei et al. [10] develop approxi-
mation results for maximizing social welfare with proportionality as a constraint.
By contrast, we focus on social welfare by itself.

Deng et al. [15] present an algorithm that finds an additive approximation to
an envy-free cake division with connected pieces. This algorithm, however, runs
in exponential (in the number of agents) time.

If disconnected pieces can be assigned to each agent, then an additive
approximation to envy-free divisions can be computed efficiently, see, e.g., [22]
and the reentrant version of the last diminisher protocol in [11]. Also, for the
disconnected-pieces variant and under specific valuations types, Aziz and Ye [8]
present an efficient algorithm for maximizing Nash social welfare. The results
of Kurokawa et al. [21] and Cohler et al. [14] address the noncontiguous-pieces
setup as well. In particular, for a class of valuations, Cohler et al. [14] develop an
algorithm for maximizing social welfare subject to the envy-freeness constraint.
Our results are incomparable with all of these prior works, since we solely focus
on allocation of connected pieces.

2 Notation and Preliminaries

We consider the problem of dividing a cake (which metaphorically represents a
divisible, heterogenous good) among n agents. In this setup, the cake is modeled
9 We conform to the standard assumption that the valuations of the agents over the

cake are sigma additive.
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as the segment [0, 1] and the (possibly) distinct cardinal preferences of the agents
are expressed as valuation functions, {va}a∈[n], over the intervals contained in
[0, 1] (i.e., over the pieces of the cake). Specifically, for each agent a ∈ [n] and
interval I = [x, y] ⊂ [0, 1], with 0 ≤ x ≤ y ≤ 1, the function va maps I to agent
a’s value for it, va(I) ∈ R+.

Conforming to standard assumptions, this work addresses valuations
{va}a∈[n] that are (i) nonnegative, (ii) normalized: the value of the entire cake
is equal to one, va([0, 1]) = 1, (iii) divisible: for every interval I = [x, y]
and parameter λ ∈ [0, 1], there exists a z ∈ [x, y] with the property that
va([x, z]) = λva([x, y]), and (iv) sigma additive: va(I ∪ J) = va(I) + va(J),
for all disjoint intervals I, J ⊂ [0, 1].

This divisibility property ensures that the valuations are non-atomic, i.e.,
va([x, x]) = 0 for all a ∈ [n] and x ∈ [0, 1]. Furthermore, this property allows
us, as a convention, to regard two intervals to be disjoint even if they intersect
exactly at an endpoint.

Our results hold as long as the valuations satisfy the above-mentioned prop-
erties and only require oracle access to the valuations. That is, our algorithms
can be efficiently executed in the Robertson-Webb model [25], which supports
oracle access to the valuations in the form of evaluation queries (which, given an
agent a and an interval I, return va(I)) and cut queries (which, given an agent
a, an initial point x ∈ [0, 1], and value τ , return the leftmost point y ∈ [x, 1]
such that va([x, y]) = τ).

However, for ease of presentation, instead of the Robertson-Webb model, we
will restrict attention to a well-studied setting in which the valuations of the
agents can be explicitly given as input. In particular, we will consider valuations
that are induced by density functions: given a piecewise-constant density func-
tion νa : [0, 1] �→ R+ for an agent a ∈ [n], the valuation of any interval I is set
to be va(I) :=

∫
I
νa(x) dx. Valuations obtained by integrating piecewise-constant

densities are said to be piecewise-constant. Indeed, such valuations can be given
as input, say, in terms of the underlying density functions.

Problem Instances: A cake-division instance, with piecewise-constant valua-
tions, is a tuple 〈[n], {va}a∈[n]〉 where [n] = {1, 2, . . . , n} denotes the set of n
agents and vas specify the piecewise-constant valuations of the agents over the
cake [0, 1].

Allocations: As mentioned above, the goal here is to partition the cake into
disjoint intervals and allocate them among the n agents. We will focus solely
on assigning to each agent a single interval, i.e., we will require that the piece
assigned to each agent is connected.

For a cake-division instance with n agents, an allocation is defined to be
a collection of n pairwise-disjoint intervals, I = {I1, I2, . . . , In}, where inter-
val Ia is assigned to agent a ∈ [n] and ∪a∈[n] Ia = [0, 1].10 We will use

10 Note that the intervals are not indexed based on how their endpoints are ordered,
rather the subscript of each interval in an allocation identifies the unique agent that
owns this interval.
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the term partial allocation to refer to collection of pairwise-disjoint intervals,
J = {J1, J2, . . . , Jn}, that do not necessarily cover the entire cake, ∪aJa � [0, 1].

The overarching objective of the current work is to find fair and efficient
allocations. Relevant notions of fairness and efficiency are defined next.

Envy-Freeness: For a cake-division instance 〈[n], {va}a∈[n]〉, an (partial) allo-
cation I = {I1, . . . , In} is said to be envy free (EF) iff each agent prefers its own
interval over that of any other agent, va(Ia) ≥ va(Ib) for all agents a, b ∈ [n].

We will address a natural relaxation of envy-freeness; specifically, we study
allocations in which the envy between the agents is multiplicatively bounded.
Given α ≥ 1, an allocation I = {I1, . . . , In} is said to be α-approximately envy
free (α-EF) iff va(Ia) ≥ 1

α va(Ib), for every pair of agents a, b ∈ [n].
A 1-EF allocation is envy free and, the smaller the value of α, the stronger

is the envy-freeness guarantee.11

Nash Social Welfare: For an allocation I = {I1, . . . , In}, the Nash social
welfare is defined to be the geometric mean of the agents’ valuations, NSW(I) :=
(
∏n

a=1 va(Ia))1/n. In a cake-division instance, an allocation I∗ is said to be a
Nash optimal allocation iff I∗ ∈ arg maxI∈I

NSW(I); here I denotes the set of
all allocations.

Social Welfare and Generalized Mean: Social welfare is a standard mea-
sure of efficiency in the context of resource allocation. For an allocation I =
{I1, . . . , In}, we define social welfare to be the arithmetic mean12 of the valua-
tions, SW(I) := 1

n

∑n
a=1 va(Ia).

Generalized (Hölder) means, Mρ, provide a family of functions which inter-
polate between fairness and efficiency objectives. The ρ-mean welfare of an allo-
cation I = {I1, . . . , In} is defined as

Mρ(I) :=

(
1
n

n∑

a=1

[va(Ia)]ρ
)1/ρ

We will develop algorithmic and hardness results for maximizing the ρ-mean
welfare, with exponent ρ ∈ (0, 1]. This parameter range, in particular, captures
both NSW and SW: ρ = 1 gives us the arithmetic mean (social welfare) and, as
ρ tends to zero, the limit of Mρ is equal to the geometric mean (the Nash social
welfare).

Overall, this paper is concerned with finding allocations (i.e., finding cake
divisions with connected pieces) under the following objectives (i) bounding
envy, (ii) maximizing Nash social welfare, and (iii) maximizing ρ-mean welfare,
for ρ ∈ (0, 1].

11 Also, note that α cannot be strictly less than one–the definition of an α-EF allocation
requires va(Ia) ≥ 1

α
va(Ib), even for b = a.

12 Since the work develops multiplicative approximation guarantees, we can consider
the average valuation, instead of the sum of valuations, as a utilitarian objective.
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3 Finding Envy-Free and Nash Optimal Allocations

In this section, first we will develop an efficient algorithm for finding (3 + o(1))-
EF allocations and, in tandem, obtain a polynomial-time (3 + o(1))-
approximation algorithm for the Nash social welfare maximization problem.
Subsequently, we will establish a generic connection between envy-freeness and
Nash social welfare in the cake-cutting context: any α-approximately envy-free
allocation provides a 2α-approximation to Nash social welfare.

Our algorithm, Alg, for finding approximately envy-free allocations starts
by assigning an empty interval to each agent–it starts with the partial allocation
consisting of empty sets. Then, the algorithm proceeds to assign successively
higher valued pieces to the agents, i.e., it iteratively moves from one partial
allocation to the next. Note that the initial partial allocation (consisting of empty
intervals) is envy free. In fact, all the partial allocations, P = {P1, . . . , Pn},
computed during Alg’s execution, satisfy the following additive relaxation of
envy-freeness, for a fixed constant ε ∈ (0, 1/3]:

va(Pa) ≥ va(Pb) − ε

n2
for all a, b ∈ [n] (1)

Alg updates a partial allocation P = {P1, . . . , Pn} by considering the unas-
signed pieces of the cake. Specifically, given a partial allocation P, write UP =
{U1, U2, . . . , Um} to denote the minimum-cardinality collection of disjoint inter-
vals that satisfy ∪iUi = [0, 1]\∪a Pa. In other words, UP consists of the intervals
that remain after the assigned intervals in P (i.e., Pas) are removed from [0, 1].
Since there are n intervals in P, there can be at most n + 1 intervals in UP .

Alg keeps iterating as long as there exists an unassigned interval Û ∈ UP of
high enough value for any agent. Then, part of Û is assigned to a judiciously-
chosen agent â who relinquishes the previous interval assigned to it, but now
accrues a higher valuation. The criterion for selecting â ensures that the above-
mentioned invariant is maintained; this selection can be viewed as a moving-knife
procedure applied within Û (see Fig. 1).

�̂ r̂râ ra rb

Pâ

Û = [�̂, r̂]

Fig. 1. An illustration of Step 4 in Alg

At the end, when the values of the unassigned intervals are not much larger
than the value of the assigned ones, Alg merges each unassigned interval in
UP with an adjacent interval in the (final) partial allocation P to obtain an
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Algorithm 1. Alg

Input: A cake-division instance 〈[n], {va}a〉 with piecewise-constant valuations and a
fixed constant ε ∈ (0, 1/3].
Output: A

(
3 + 9ε

n

)
-approximately envy-free allocation.

1: Initialize partial allocation P = {P1, . . . , Pn} with empty intervals, i.e., Pa = ∅ for
all a ∈ [n]. {Recall that UP denotes the set of unassigned intervals induced by any
partial allocation P.}

2: while there exists an agent a ∈ [n] and an unassigned interval Û = [�̂, r̂] ∈ UP such

that va(Pa) < va(Û) − ε
n2 do

3: Let C :=
{

b ∈ [n] : vb(Pb) < vb(Û) − ε
n2

}
and, for every agent b ∈ C, set rb ∈

[�̂, r̂] to be the leftmost point such that vb([�̂, rb]) = vb(Pb) + ε
n2 .

4: Select agent â ∈ arg minb∈C rb.

5: Update the partial allocation P by assigning Pâ ← [�̂, râ] and keeping the interval
assignment of all other agents unchanged.

6: Update UP to be the set of unassigned intervals induced by the current partial
allocation P.

7: end while
8: Associate each unassigned interval U ∈ UP with an assigned interval Pa ∈ P which

is adjacent (either on the left or on the right) to U .
{Note that any Pa ∈ P gets associated with at most two unassigned intervals, say
U and U ′, and U ∪ Pa ∪ U ′ is itself an interval}

9: For all a ∈ [n], let interval Ia be the union of Pa and the unassigned intervals (if
any) associated with it.

10: return allocation I = {I1, . . . , In}

Fig. 2. An illustration of Steps 8 and 9 in Alg

approximately envy-free allocation (see Fig. 2). The algorithm is detailed below
and we prove in Theorem 1 that it efficiently finds a (3 + o(1))-EF allocation.

The following lemma shows that the final partial allocation considered by
Alg (in Step 8) satisfies the additive relaxation of envy-freeness considered
in the Eq. (1), not only between the assigned intervals, but also against the
unassigned ones. The proof of this lemma is deferred to the full version of the
current paper [4].

Lemma 1. For a given a cake-division instance
〈
[n], {va}a∈[n]

〉
, with piecewise-

constant valuations, and given parameter ε ∈ (0, 1], let P = {P1, . . . , Pn} be the
final partial allocation considered by Alg (i.e., P is the partial allocation with
which the while-loop terminates) and let UP be the set of unassigned intervals
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induced by P. Then, for each agent a ∈ [n] we have

va(Pa) ≥ va(Q) − ε

n2
for all Q ∈ P ∪ UP (2)

Using this lemma, we will now show that the allocation computed by Alg is
(3 + o(1))-EF.

Theorem 1. Given a cake-division instance
〈
[n], {va}a∈[n]

〉
with piecewise-

constant valuations, and constant ε ∈ (0, 1/3], Alg computes a (3 + 9ε
n )-

approximately envy-free allocation in polynomial time.

Proof. To bound the algorithm’s time complexity note that in every iteration the
selected agent’s valuation (for the interval assigned to it) additively goes up by
ε

n2 : in Steps 3 and 4, for the selected agent â, we have vâ([	̂, râ]) = vâ(Pâ) + ε
n2 .

Since the total value of the cake for every agent is equal to one, Alg will iterate
at most ε−1 n3 times. Note that every step of the algorithm can be implemented
efficiently and ε is set to be a constant. Hence, Alg runs in polynomial time.

Note that the collection of intervals, P = {P1, . . . , Pn}, considered by Alg in
Step 8 is indeed a partial allocation, i.e., the intervals Pas with which the while-
loop terminates are pairwise disjoint. Let UP be the set of unassigned intervals
induced by the final partial allocation P. Also, write I = {I1, . . . , In} to denote
the allocation returned by Alg; note that Pa ⊆ Ia for all agents a ∈ [n]. Also,
since P contains n intervals, |UP | ≤ n + 1.

Summing inequality (2) (see Lemma 1) across all intervals Q ∈ P∪UP gives us

(2n + 1) va(Pa) ≥
∑

Q∈P∪ UP

va(Q) − 2n
ε

n2
= 1 − 2ε

n
(3)

The last equality holds since
⋃

Q∈P∪ UP Q = [0, 1].
This inequality provides the following lower bound on the value attained by

any agent a ∈ [n] in the returned allocation I = {I1, . . . , In}: va(Ia) ≥ va(Pa) ≥
1

2n+1 − 2ε
n(2n+1) . Therefore, with n ≥ 3 and ε ≤ 1/3,13 we have the following

bound:

3ε

n
va(Ia) ≥ ε

n2
(4)

By construction, for each agent b ∈ [n], the returned interval Ib is composed of
Pb and at most two other unassigned intervals from UP . Therefore, instantiating
inequality (2) with Pb ∈ P ∪ UP and the (at most two) unassigned intervals
associated with it, we get 3va(Pa) ≥ va(Ib)− 3ε

n2 . That is, 3va(Ia) ≥ va(Ib)− 3ε
n2 .

Using this inequality and the bound (4), we obtain the desired approximate
envy-freeness guarantee

(
3 + 9ε

n

)
va(Ia) ≥ va(Ib) for all a, b ∈ [n].

13 For the n = 2 case one can efficiently find an envy-free allocation (i.e., a 1-EF
allocation) by the cut-and-choose protocol [24].
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Next, we will show that the allocations computed by Alg are not only
(3 + o(1))-EF, but they also provide a (3 + o(1))-approximation to Nash social
welfare.

The following theorem shows that an approximation ratio close to 3 can be
obtained for the Nash social welfare maximization problem when the number of
agents, n, is appropriately large. Such an approximation guarantee can also be
achieved for constant values of n. This follows from the observation that, for the
Nash social welfare maximization problem, one can compute an α-approximate

solution (with α > 1) in time
(

n
log α

)O(n)

; see the full version of this work for
details [4]. Therefore, for any number of agents, maximizing Nash social welfare
admits a polynomial-time (3 + o(1))-approximation algorithm. The proof of the
this theorem appears in the full version of our work [4].

Theorem 2. In cake-division instances with piecewise-constant valuations, the
problem of maximizing Nash social welfare (with connected pieces) admits a
polynomial-time

(
3 + 5

n

)
-approximation algorithm; here n is the number of

agents participating in the cake-cutting exercise.

We conclude this section by formally stating that the approximately envy-
free allocations always have near-optimal Nash social welfare. Note that, directly
invoking this result for the (3 + o(1))-EF allocations computed by Alg, one
would essentially obtain an approximation ratio of six for the Nash social welfare
maximization problem. The proof of the following result is deferred to the full
version [4].

In a cake-division instance, let Ĩ be an α-approximately envy-free allocation
and I∗ be a Nash optimal allocation. Then,

(i) Ĩ provides a 2α-approximation to Nash social welfare, i.e., NSW(Ĩ) ≥
1
2αNSW(I∗).

(ii) I∗ is 4-approximately envy-free.

4 Approximation Algorithm for ρ-Mean Welfare
Maximization

This section addresses cake-division with the objective of maximizing the ρ-
mean welfare. We obtain an approximation algorithm for this problem via a
simple reduction to the weighted job interval selection problem (JISP) [9,17].

The main result of this section is stated in the following theorem, the proof
of which appears in the full version [4].

Theorem 3. For ρ ∈ (0, 1], ε ∈ (0, 1) and cake-division instances C =〈
[n], {va}a∈[n]

〉
with piecewise-constant valuations, there exists an algorithm

that—in time
(

n
ε

)O(ρ)—finds a
(
2 + 4εe

n

) 1
ρ -approximation to the ρ-mean welfare

maximization problem.
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Note that for any constant ρ ∈ (0, 1], Theorem 3 provides a constant-factor
approximation algorithm that runs in polynomial time. In particular, for the ρ =
1 case (i.e., for average social welfare), we obtain a polynomial-time (2 + o(1))-
approximation algorithm. As mentioned previously, this instantiation improves
upon the 8-approximation guarantee obtained specifically for social welfare in
the work of Aumann et al. [6].

5 Hardness of Maximizing Nash Social Welfare

This section asserts the APX-hardness of finding cake divisions (with connected
pieces) that maximize Nash social welfare. That is, we have that, for a fixed
constant c ∈ (0, 1), it is NP-hard to find an allocation (i.e., a cake division with
connected pieces) whose Nash social welfare is within c times the optimal. This
hardness result is obtained by developing a gap-preserving reduction from the
Gap 3-SAT-5 problem [2,3]. The details of the reduction and the accompanying
proof are deferred to the full version of this work [4]. The full version [4] also
contains an analogous hardness result for the ρ-mean welfare objective.

Theorem 4. Given a cake-division instance with piecewise-constant valuations,
the problem of computing an allocation that maximizes Nash social welfare is
APX-hard.

6 Conclusions and Future Work

The current work studies cake-cutting from an algorithmic perspective and
obtains approximation guarantees for multiple, well-studied notions of fairness
and efficiency. In particular, we develop an efficient algorithm that computes
(3 + o(1))-approximately envy-free allocations and, simultaneously, provides a
(3 + o(1))-approximation to Nash social welfare. We complement this algorith-
mic result for Nash social welfare by proving that, in the cake-cutting context,
maximizing this objective is APX-hard. Developing hardness results for (approx-
imate) envy-freeness remains an interesting open problem.14 Notably, the result
of Deng et al. [15] shows that envy-free cake division (with connected pieces) is
PPAD-hard, but this negative result holds under ordinal valuations–in this setup
the preferences of each agent is specified via an explicit circuit which, given an
allocation, identifies the agent’s most preferred piece. Therefore, in and of itself,
the result of Deng et al. [15] does not imply that envy-free cake division under
cardinal valuations is PPAD-hard; complementarily, this result does not rule out
an FPTAS for the contiguous-pieces version of envy-free cake-cutting under, say,
piecewise-constant valuations.

Our approximation guarantee for ρ-mean welfare degrades as ρ tends to zero.
Indeed, it does not match the approximation ratio achieved specifically for Nash

14 Since an envy-free cake division always exists, the hardness results here will be in
terms of complexity classes contained in TFNP.
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social welfare. Tightening this gap is another interesting direction for future
work. Computational results for maximizing ρ-mean welfare, with ρ < 0, will also
be interesting. The ρ → −∞ case is particularly relevant, since it corresponds
to egalitarian welfare, i.e., to the max-min (Santa Claus) objective. The work
of Aumann et al. [6] proves that, in the cake-division framework, it is NP-hard
to approximate egalitarian welfare within a factor of two. However, it remains
open whether this problem admits a nontrivial approximation algorithm.
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Abstract. We consider transferable-utility profit-sharing games that
arise from settings in which agents need to jointly choose one of several
alternatives, and may use transfers to redistribute the welfare generated
by the chosen alternative. One such setting is the Shared–Rental prob-
lem, in which students jointly rent an apartment and need to decide
which bedroom to allocate to each student, depending on the student’s
preferences. Many solution concepts have been proposed for such set-
tings, ranging from mechanisms without transfers, such as Random Pri-
ority and the Eating mechanism, to mechanisms with transfers, such as
envy free solutions, the Shapley value, and the Kalai-Smorodinsky bar-
gaining solution. We seek a solution concept that satisfies three natural
properties, concerning efficiency, fairness and decomposition. We observe
that every solution concept known (to us) fails to satisfy at least one of
the three properties. We present a new solution concept, designed so
as to satisfy the three properties. A certain submodularity condition
(which holds in interesting special cases such as the Shared-Rental set-
ting) implies both existence and uniqueness of our solution concept.

Keywords: Fairness · Envy-free · Shared-Rental · Anticore

1 Introduction

1.1 Background

We introduce a new solution concept for situations in which agents with cardinal
preferences need to jointly choose one alternative from a set of alternatives,
possibly compensating each other using transfers. This is a well studied setting
in cooperative game theory, and we follow a normative approach that specifies
properties that we wish our solution concept to have, and then design a solution
concept that meets these specifications. To motivate our new solution concept
and contrast it with well established previous solution concepts, we start with
an example.

The reader is referred to the full version of the paper [1] for proofs, discussions and
references that are omitted due to space limitations from the current version.
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Suppose that three students jointly rent a three bedroom apartment for a
total rent of r units of money. The students need to do two things. One is to
jointly pay the rent, and the other is to solve the allocation problem, namely,
decide which student gets which room, possibly compensating each other with
money. We assume that the students are equals, in the sense that each student
bears equal responsibility in paying the rent, and equal eligibility in receiving a
room. Being equals, each student first pays r/3 towards the rent. It remains to
solve the allocation problem, where this solution may possibly involve transfer
of money among the students.

Remark 1. In cases in which no student receives a transfer larger than r/3,
transfers may be implemented indirectly by having students pay unequal parts of
the rent. However, in this paper we do not constrain transfers to be smaller than
r/3, and the question of whether transfers are implemented as direct transfers
among the students or as modification to rent payments is not a concern of the
current paper.

A common approach for allocating rooms (and other goods) is using the Ran-
dom Priority mechanism (a.k.a. random serial dictatorship), that we abbreviate
as RP. A total order among the students is chosen uniformly at random, and
each student in her turn chooses a room among those that are still available.
RP has obvious advantages, being easy to implement in practice, agents (stu-
dents in our case) have dominant strategies (given an agent’s turn to choose, she
should simply choose the available alternative that she most prefers), and being
perceived as “fair” (all agents are treated equally from the mechanism’s point of
view). A significant drawback of RP is that it does not maximize welfare – the
resulting allocation may produce less welfare (sum of utilities) than alternative
allocations. Hence some economic efficiency is lost.

Let us consider a concrete example. Suppose that the students can express
their valuation for rooms in units of money, and that they are risk neutral (they
wish to maximize the expected received value). Suppose further that for some
small 0 < δ < 1

4 , the value that each student derives by being given each of the
rooms is as in the following table:

Example 1 Room 1 Room 2 Room 3

Student 1 1 − δ δ 0

Student 2 1 − 2δ 2δ 0

Student 3 0 1
2
− δ 1

2
+ δ

The maximum welfare allocation assigns room i to student i for every i,
giving welfare of 3

2 + 2δ. However, RP will result with probability half with an
assignment in which student 2 gets room 1, giving welfare 3

2 , and hence the
expected welfare of RP is δ lower than optimal.
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The RP mechanism does not involve transfer of money among agents. In our
language, we refer to it as an ANT, which is an abbreviation for Allocation mech-
anism with No Transfers. To overcome its weaknesses (shared by other ANTs as
well), one often considers allocation mechanisms with transfers (abbreviated as
AWT – Allocations With Transfers). AWTs allow for the following paradigm:
first choose a maximum welfare allocation (thus creating the largest pie to divide:
the maximum possible welfare to distribute among the agents), and then employ
monetary transfers among the agents so as to distribute the high welfare to all
agents, so as to satisfy some fairness criteria. In the example above, this would
mean assigning room i to student i for every i, and then figuring out what the
transfers should be so that the combination of allocation with transfers would
be “fair”.

To reason about transfers, we make the assumption that students have quasi-
linear utilities: the utility of a student is simply the sum of her value for the
room that she receives plus the transfer that she receives (the transfer may be
negative if the student gives money rather than receives money). Moreover, we
assume that the mechanism that computes the allocation and the transfers has
access to the true valuations of the students. (This full information assumption is
standard in cooperative game theory, and there are impossibility results showing
that it cannot be avoided in our setting. See more details in [1].) Within such
a setting, there is a well studied class of AWTs that is referred to as envy free
solutions [4,5,10]). The basic principle is that one associates a transfer with each
room (where the sum of transfers equals 0 – this is a budget balance condition)
such that given the transfers, each student (weakly) prefers a different room.
Then each student gets the room and associated transfers that she prefers, and no
one prefers to switch with another agent. In the example above we can associate
the following transfers with the rooms:

Room 1 Room 2 Room 3

− 2
3

+ 2δ 1
3
− δ 1

3
− δ

These transfers are indeed budget balanced and envy free, that is, each stu-
dent i prefers her assigned room i (along with the associated payment) over
any other room, leading to an allocation that maximizes welfare and in which
supposedly every student is happy (as she got her most preferred one out of the
three available options).

Let us consider a natural question. Suppose that the students initially intend
to use the RP mechanism. Will the students be better off by using the envy free
mechanism (that we abbreviate EF) instead of using RP? In some respects, the
answer is no: RP is simpler to implement than EF, as it does not require students
to disclose their valuation functions and to implement transfers. In other respects
the answer is yes: EF generates higher welfare. But let us consider this last aspect
more carefully. The social justification to maximize welfare is (in our opinion)
the belief that the extra welfare will eventually get distributed to all members
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of the society that contributed to the increase in welfare. Is it the case that the
increase in welfare (generated by moving from RP to EF) is distributed over the
three students in a reasonable way? The answer is negative in our opinion.

– In RP, the sum of expected values derived by students 1 and 2 is 1. In EF,
the sum of values increases to 1 + δ, but the sum of what they lose due to
transfers is 1

3 − δ. If δ < 1
6 , each of the two students gets higher expected

utility from RP than from EF. It is not true that the increase in welfare is
distributed over all students in a way that every student (at least weakly)
benefits.

– Student 3 contributes nothing to the increase in welfare when changing from
RP to EF (in both cases her allocation is exactly the same – room 3). Never-
theless, under EF, student 3 not only gets her most preferred room, but also
gets paid. Moreover, this payment is even larger than the total increase in
welfare that EF offers compared to (the expected welfare of) RP.

Another aspect that we find troublesome with the EF solution is the fol-
lowing. In every Pareto efficient allocation, student 3 gets room 3 and the only
question is which of the rooms 1 and 2 is allocated to which of the students 1
and 2. Hence the instance naturally decomposes into two subinstances, I3 involv-
ing room 3 and student 3, and I1,2 involving the other two students and two
rooms. If one does this decomposition and then employs an EF mechanism on
each component separately, student 3 does not receive any payments from the
other students, and hence the resulting payments are different from those with-
out the decomposition. Likewise, suppose that we had started with two separate
instances, I1,2 and I3 as above, where every student prefers the rooms in her
own instance over those in the other instance (it may even be that each instance
concerns a different apartment). If we use EF mechanisms, then combining the
two instances into one results in different payments compared to solving each
of the instances separately. This sensitivity of the payments in EF mechanisms
to composition and decomposition of instances (importantly, we are consider-
ing here cases in which composition and decomposition have no effect on the
allocation itself) may lead to disagreements among the agents regarding what
constitutes a single instance.

An allocation instance may have several different envy free solutions, but the
above shortcomings are shared by all envy free solutions in the above example,
provided that δ is sufficiently small.

Summarizing, ANT mechanisms such as RP need not maximize welfare. AWT
mechanisms can address this weakness. A common AWT approach, that of envy
free (EF) mechanisms has elegant conceptual properties when considered in isola-
tion. However, when comparing its outcomes to those of RP, we identified several
troubling aspects with its transfers. These include the fact that despite increase
in welfare (compared to RP), some individual agents suffer loss in (expected)
utility, the fact that agents who contribute nothing to the increase in welfare
might receive payments (even beyond the total increase in welfare), and the fact
that natural composition and decomposition properties are not respected by EF
mechanisms.
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Many other AWT approaches that have been proposed in the literature can
be applied in the room allocation setting. They include (among others) the Shap-
ley value, the Nucleolus, the Nash bargaining solution and the Kalai-Smorodinsky
(KS) bargaining solution. Every AWT approach that we could find in the lit-
erature suffers from at least one of the troubling aspects listed above, see [1]
for more details. Hence despite the many solution concepts that already exist,
we find it appropriate to introduce a new AWT mechanism that does not suffer
from any of the troubling aspects listed above.

1.2 The Model

We consider transferable-utility profit-sharing games, a setting that has been
studied in previous work (e.g., by Moulin [7]). The room allocation problem of
the previous section is a special case of this more general setting.

There is a set N of n agents (also referred to as players) and a set A of
alternatives. Every agent i ∈ N has a valuation function vi : A → R. All
valuation functions are expressed in the same units (of money). We let v =
(v1, . . . , vn) denote the tuple of all the valuation functions. An NT (no transfers)
social choice function f receives as input the pair (A, v) that includes the set
of alternatives and the valuation functions, and outputs one of the alternatives
from A. A randomized NT social choice function may use randomization when
choosing its output. Consequently, its output is a probability distribution over
alternatives.

Given the tuple v of valuation functions, a set S ⊆ N of agents and an
alternative A ∈ A, the welfare wS,v(A) that alternative A offers to S is defined
as wS,v(A) =

∑
i∈S vi(A). An NT social choice function f maximizes welfare

(with respect to N ) if the alternative A∗ ∈ A that f selects satisfies wN ,v(A∗) ≥
wN ,v(A) for all A ∈ A.

We allow transfer of money among agents. Such transfers are represented as
a vector p = (p1, . . . , pn), where pi is the payment to agent i, measured in units
of money. We refer to the case of pi > 0 as an in-payment (the amount of money
of agent i increases), and to the case of pi < 0 as an out-payment (the amount of
money of agent i decreases). A transfer vector p is budget balanced if

∑n
i=1 pi = 0.

A transfer function g receives as input the triple (A, v, A∗) that includes the set
of alternatives, the valuation functions, and an alternative chosen by an NT
social choice function, and outputs a budget balanced transfer vector.

We assume that the utility functions of the agents are quasi-linear. Namely,
for agent i ∈ N with valuation function vi, her utility ui from the pair of alterna-
tive A and transfer vector p is ui(A, p) = vi(A)+pi. We further assume a setting
of “full information upon request”: the social planner may request information
about valuation functions of agents (this information might be limited to the
ordinal preferences of an agent over a set of alternatives, or might be as general
as the full valuation function of an agent), and the agents reply truthfully to
such requests.

Let us illustrate how the above model captures the example presented in
Sect. 1.1, of three students renting a three bedroom apartment. N corresponds
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to the set of three students, and A corresponds to the set of six possible permu-
tations over rooms, matching one room to one student. The valuation functions
vi are as in the example. An example of a randomized NT social choice func-
tion is the output of the Random Priority (RP) mechanism: once v is given (in
fact, knowledge of ordinal preferences suffices here) RP induces a well defined
probability distribution over alternatives. The envy-free allocation and transfers
provided in the example are a solution (implicitly) involving an NT social choice
function f and a transfer function g.

1.3 Our Contribution

For the setting described above, we wish to design a solution concept that has
two components: an NT social choice function, and an associated transfer func-
tion. We have three goals. One is economic efficiency. This goal is easily attain-
able in our full information framework – we simply select a welfare maximizing
alternative, which we denote by A∗. (If there are several welfare maximizing
alternatives, A∗ denotes one of them, selected arbitrarily.) Another goal is to
achieve fairness, in the sense that the welfare will be shared “fairly” among all
agents. Achieving this goal is made possible by the use of transfers. Those agents
for which alternative A∗ is undesirable can be compensated by in-payments, and
the budget balance requirement can be met by extracting an equal amount of
out-payments from those agents who do desire alternative A∗. The assumption
that agents have quasilinear utility functions simplifies the accounting of the
extent to which utility derived from payments can replace utility derived from
the selected alternative. The third goal is that of decomposability, which basically
means that if a large game involving multiple agents can be naturally decom-
posed into many smaller games over disjoint sets of agents, then the solution of
the large game should also decompose into solutions of the smaller games. Equiv-
alently, one should be able to solve each smaller game separately, and obtain a
solution to the large game as the concatenation of the solutions to the smaller
games.

Our contributions in this work are in setting the above three goals, propos-
ing definitions for the fairness properties and decomposition properties that they
refer to, proposing a solution concept that attains the above three goals, and pro-
viding sufficient conditions for its existence and uniqueness. Here is an informal
statement of our main result when specialized to the Shared–Rental problem.

Theorem 1 (informal). The lex-max-WS solution (introduced in our work)
for the Shared–Rental problem maximizes welfare and satisfies the fairness and
the decomposition properties alluded to above (and formally defined later in this
paper). Moreover, in a well defined sense, it is the unique solution that satisfies
these properties.

Here are more details regarding our contributions, some of which are pre-
sented and/or discussed only in the full version of this paper [1]:
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1. We propose a new notion of fair solutions, the welfare-sharing core (abbrevi-
ated WS-core). See Definition 1. It combines three principles that are briefly
sketched below.
(a) One principle is domination with respect to the utility agents can receive

from a disagreement point, or reference point. This is mathematically sim-
ilar to the familiar concept of individual rationality (IR), though concep-
tually there is a distinction between these two notions.

(b) Another principle is that fairness entails not only lower bounds on the util-
ities that agents derive from the solution, but also natural upper bounds.
We introduce a set-function Wmax, where for a set S of agents, Wmax(S)
is the welfare that S could derive from the alternative that is best for
S. The same notion appears in [8], where is is referred to as stand alone
utility. We require that the utility that a solution (with transfers) offers
to a set S of agents does not exceed Wmax(S). This leads to the notion
that we (and [8]) refer to as the anticore.

(c) Another principle is that of decomposability, as discussed above (see
Sect. 3 for more details). A key property of the anticore is that it decom-
poses: the anticore of a decomposable game is the concatenation of the
anticores of each of the component games.

2. We show that in our setting, if Wmax is submodular, then the WS-core is
non-empty. See Theorem 1.

3. We propose to use egalitarian considerations (specifically, the
lexicographically-maximal welfare-sharing rule, denoted lex-max-WS ) for
selecting a single solution from the WS-core, see Sect. 4. When Wmax is sub-
modular, we show (see Theorem 2, which relates to a previous result of Dutta
and Ray [3]) that different egalitarian considerations (e.g., also the min-square
rule, defined in Sect. 4) all lead to the same unique solution.

4. When Wmax is submodular, we show that computing the lex-max-WS solu-
tion can be done in polynomial time. Moreover, it is a continuous function
(with a small Lipschitz constant) of the valuation functions at points where
the disagreement utility is a continuous function of the valuations.

5. We explain the similarities and differences between our new solution concept
and several related notions. These include coalitional games and imputations;
cost-sharing games; notions related to our notion of decomposability, such
as separability and consistency for reduced games; previous notions referred
to as the anticore; egalitarian solution concepts and Lorenz ordering; the
Shapley value; the Nucleolus; envy free solutions; Nash bargaining and Kalai-
Smorodinsky (KS) bargaining; population monotonicity and resource mono-
tonicity.

6. We show that for the Shared–Rental problem Wmax is submodular, and hence
the lex-max-WS solution enjoys those properties shown above to be implied
by submodularity.
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2 The Welfare-Sharing Core

Our starting point is the (not necessarily new) premise that statements such
as “this solution is fair” have no rigorous meaning on their own. Rather, the
fairness of a solution needs to be judged in relation to a reference context. In
our definition of fairness, the reference context will be the set A of alternatives
together with a probability distribution π over A (which we will refer to as a
reference point, or disagreement point). We now present the definition of the
WS-core, and then follow it up with a discussion and comparison with related
work.

A solution (A∗, p) is composed of a welfare maximizing alternative A∗ and a
budget balanced transfer vector p = (p1, . . . , pn). The utility that agent i derives
from solution (A∗, p) is ui(A∗, p) = vi(A∗) + pi. In our context, two solutions
(A∗, p) and (A′∗, p′) are equivalent if ui(A∗, p) = ui(A′∗, p′) for every agent i.
Consequently, we sometimes refer to the utility vector (u1(A∗, p), . . . , un(A∗, p))
as the solution.

A solution will need to satisfy certain constraints, where these constraints
are expressed as a function of the utilities that agents derive from the solution.
We shall use wS,v(A) =

∑
i∈S vi(A) to denote the welfare derived by a set S

of agents from an alternative A, and uS(A∗, p) =
∑

i∈S ui(A∗, p) to denote the
utility derived by S from solution (A∗, p).

We associate two classes of constraints with solutions (A∗, p):

1. Domination: We assume that a probability distribution π over A is given,
where π(A) denotes the probability associated with alternative A. This dis-
tribution represents the alternative that would be chosen in the absence
of agreement to use a mechanism with transfers. As such, the distribution
π may depend on the valuations v, and we shall sometimes use the nota-
tion πv to make this explicit. The value that agent i derives from πv is∑

A∈A πv(A)vi(A), and we refer to it as the agent’s disagreement utility. The
domination constraints require that ui(A∗, p) ≥ ∑

A∈A πv(A)vi(A) holds for
every agent i.

2. The anticore: We introduce a welfare function over sets of agents, which we
denote by Wmax. For every S ⊆ N let Wmax(S) = maxA∈A[

∑
i∈S vi(A)] indi-

cate the maximum welfare achievable by S. The anticore constraints require
that uS(A∗, p) ≤ Wmax(S) for every set S ⊆ N .

Definition 1 (WS-core). Suppose one is given a tuple v of valuation func-
tions, a set A of alternatives, and a probability distribution πv over A. A solution
(A∗, p) (composed of an alternative A∗ ∈ A that maximizes welfare and a budget
balanced vector p of transfers) is said to belong to the welfare-sharing core (WS-
core) if the solution (A∗, p) satisfies the above two sets of constraints (domination
and anticore) with respect to the given v and πv.

There are cases in which the WS-core is empty. However, in important special
cases, the WS-core is nonempty. We first recall some standard terminology. A
set function f is monotone if f(S) ≥ f(T ) for all T ⊂ S. A set function f is
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submodular if for every two sets S and T it holds that f(S)+f(T ) ≥ f(S ∩T )+
f(S ∪T ). Equivalently, f is submodular if it has the decreasing marginal returns
property: for every item i and two sets S ⊂ T it holds that f(S ∪ {i}) − f(S) ≥
f(T ∪ {i}) − f(T ). A submodular function need not be monotone.

Our main existence result is the following:

Theorem 1. Given a tuple v of valuation functions, a set A of alternatives,
and a probability distribution π over A, either one of the following conditions
suffices in order for the WS-core to be nonempty.

1. Wmax is submodular (though not necessarily monotone).
2. Wmax−Wπ is monotone (though not necessarily submodular), where Wπ(S) =∑

i∈S

∑
A∈A πv(A)vi(A) is the expected value derived by set S from the dis-

agreement distribution π. Note: if the disagreement utilities are 0, then a
sufficient condition (though not necessary) for Wmax −Wπ to be monotone is
that the valuation functions are nonnegative.

The proof of Theorem 1 appears in [1]. It is based on the following app-
roach. Similar to proofs of the well known Bondareva-Shapley theorem [2,9],
non-emptiness of the WS-core can be cast as a feasibility question for a certain
linear program, which then translates to showing that the dual of the linear pro-
gram is bounded. Each of the submodularity and monotonicity conditions listed
above is shown to imply that the dual is bounded, thus proving the theorem.

3 Decomposability

In this section we introduce formal definitions for the notion of an instance being
decomposable, and for two notions of decomposability for mechanisms: weak and
strong.

Let A be a set of alternatives, N be a set of agents, and let v = (v1, . . . , vn) be
a tuple specifying the valuation functions of the agents. We say that alternative
A ∈ A is Pareto optimal with respect to a set S ⊂ N of agents if for every
alternative B ∈ A, either there is some agent i ∈ S such that vi(A) > vi(B), or
for all agents i ∈ S it holds that vi(A) = vi(B).

Definition 2 (independent component, decomposable instance). A set
of players S ⊂ N is referred to as an independent component (or just com-
ponent, for brevity) if for every alternative A ∈ A that is Pareto optimal with
respect to S (given v) and for every alternative B ∈ A that is Pareto optimal
with respect to S̄ = N\S, there is an alternative C ∈ A (possibly C = A or
C = B) such that for every agent i ∈ S it holds that vi(C) = vi(A), and for
every agent j ∈ N\S it holds that vj(C) = vj(B). We say that an instance is
decomposable if it has a component that is nontrivial (the component is neither
empty, nor the whole instance).

It is implicit in the above definition that if a decomposable instance has more
than one Pareto optimal alternative, then there are agents that are indifferent
among some choices of alternatives.
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Observe that if S ⊂ N is a component then so is N\S. Definition 2 implies
that if each of the two components S and N\S selects a most preferred alterna-
tive on its own (such an alternative will be Pareto optimal with respect to the
component), then there will be no conflicts between the two choices – we will be
able to select a single alternative that is just as good, from the point of view of
every player in every component.

As an example to the decomposition concept introduced above, consider the
Shared–Rental problem example from Sect. 1.1, with valuation functions as in
the table titled Example 1, and with δ < 1

4 . In that example, there are two com-
ponents, one containing Students 1 and 2, and the other containing Student 3.
Every alternative A that is Pareto optimal for the first component assigns the
first two rooms to the first two students, and every alternative B that is Pareto
optimal for the second component assigns the third room to the third student.
The two alternatives A and B can be replaced by one alternative C (in fact,
in this simple example it will hold that C = A as there is only one room in
the second component), and every agent values C as being equally good as the
alternative chosen by his own component.

A solution involves two aspects: a choice of alternative, and transfers. It is
not hard to show that any alternative that maximizes welfare also maximizes
welfare for each component separately. For a solution to qualify as “decompos-
able”, it makes sense to in addition require that there are no transfers between
components.

Definition 3 (weak decomposability). Let N be the set of agents, let A be
the set of alternatives, and let v be the tuple of valuation functions of the agents.
A solution (A, p) is weakly decomposable if for every component S ⊂ N it holds
that

∑
i∈S pi = 0. Namely, the net transfer into the component is 0.

As a trivial example, every solution that involves no transfers is weakly
decomposable.

We also introduce a notion of strong decomposability that postulates that
utilities of individual agents within a component are not influenced by decisions
in other components. Unlike the notion of weak decomposability which is the
property of a single solution, the notion of strong decomposability is a property
of a mechanism and not just of a single solution. In the context of our work in
which we assume “full information upon request”, a mechanism M is a map-
ping from instances to solutions. The input to M is an instance I of arbitrary
size, composed of a set N of agents, a set A of alternatives, and a tuple v of
valuation functions of the agents. The output M(I) is the proposed solution
for the instance I, where the solution is composed of a winning alternative (in
general, it is not required to be an alternative that maximizes welfare) and a
vector of transfers. A mechanism can be randomized, in which case, given an
input instance, the mechanism generates a distribution over solutions, and the
proposed solution is a random sample from this distribution.

Definition 4 (strong decomposability). We say that a mechanism M is
strongly decomposable if for every decomposable instance I, the output of the
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mechanism is consistent with the outputs of the mechanism on each of the com-
ponents separately, in the sense that for every agent i ∈ S, her utility in both
cases is the same. (For randomized mechanisms, equality needs to hold for the
expected utility.)

It is not hard to show that for strong decomposable mechanism M that
maximizes welfare and for every decomposable instance, the solution produced
by M is also weakly decomposable.

The Anticore and Decomposition: A major benefit of the anticore is that
it ensures decomposability properties. We remark that even though our notion
of the anticore is the same as that of [8], the notion of decomposability was
not defined in that or other previous work, and hence the connection between
anticore and decomposability is a new contribution of the current paper. For
weak decomposability (Definition 3) we have:

Proposition 1. Every solution in the anticore is weakly decomposable.

Proof. Let N be the set of agents, let A be the set of alternatives, let v be
the tuple of valuation functions of the agents, and let S ⊂ N be a component.
Consider an arbitrary solution (A∗, p) in the anticore, composed of a welfare
maximizing alternative A∗ ∈ A and a vector p of transfers. A∗ also maximizes
the welfare of each of the components S and S̄ separately. By the anticore
constraints, the net transfer into S is at most 0, and so is the net transfer
into S̄. Consequently, the net transfer into S is exactly 0. Hence the solution is
weakly decomposable.

It is premature at this stage to address strong decomposability (Definition 4).
This will be done later, in Proposition 3.

4 Selection from Within the Welfare-Sharing Core

The set of constraints corresponding to domination over a disagreement point
are meant to achieve the property of having each agent (weakly) prefer (in terms
of utility) every solution in the WS-core over the disagreement point. Our guide-
line for selecting a unique solution from within the WS-core (when the WS-core
is nonempty) is that we wish this property to hold not only in a qualitative man-
ner, but also in a quantitative manner, to the largest extent possible. Ideally,
we would like it to be that for every agent, switching to our mechanism offers
a worthwhile increase in utility compared to the disagreement point. This calls
for an egalitarian distribution of the welfare gain among all agents, where the
welfare gain is the difference in welfare between the maximum welfare alterna-
tive (Wmax(N )) and the expected welfare generated by the disagreement point
(Wπ(N )). However, equal sharing of the welfare gain might not be in the WS-
core, because it might violate the constraints of the anticore. Hence we aim to
equalize the shares of the gain as much as possible, subject to satisfying the
anticore constraints.



82 M. Babaioff and U. Feige

4.1 Selection Concepts

Before proceeding, let us establish some conventions and notation. We assume
for convenience that the valuation function of each agent is such that at the
disagreement point her expected value is 0. This can be enforced by applying
an additive shift of uπ(i) to each valuation function vi. Given a solution (A∗, p),
we let ui denote the utility ui(A∗, p) = vi(A∗) + pi derived by agent i from the
solution (where the valuation function vi is such that the expected value offered
by the disagreement point is 0). We shall sometimes refer to the vector u =
(u1, . . . , un) (rather than to (A∗, p)) as our solution, as this vector summarizes
what the agents care about in a solution. An egalitarian solution will give every
agent utility ui = Wmax(N )

n , but might not be in the WS-core. We present several
approaches for how to relax the egalitarian requirement so as to select a solution
within the WS-core (when it is nonempty).

– The min-square solution. Here we seek the unique solution within the WS-core
minimizing

∑
i∈N (ui)2. This solution minimizes the variance in the distribu-

tion of the welfare, subject to being in the WS-core.
– The lexicographically-maximal (lex-max-WS ) solution. Given a vector x ∈ Rn,

let x̂ be the same vector with coordinates rearranged such that in the new
order x̂1 ≤ x̂2 ≤ . . . ≤ x̂n. For two vectors x ∈ Rn and y ∈ Rn of equal sum
of their entries, x ≥Lex y denotes that for the rearranged vectors x̂ and ŷ and
for some 1 ≤ k < n it holds that x̂k > ŷk, with x̂i = ŷi for every 1 ≤ i < k. A
solution u in the WS-core is lexicographically maximal if u ≥Lex u′ for every
other solution u′ in the WS-core.

– A Lorenz-maximal solution. Given a vector x ∈ Rn, let x̂ be the same vector
with coordinates rearranged such that in the new order x̂1 ≤ x̂2 ≤ . . . ≤ x̂n.
For two vectors x ∈ Rn and y ∈ Rn of equal sum, we say that x Lorenz
dominates y (denoted by x ≥Lor y) if for the rearranged vectors x̂ and ŷ it
holds that

∑k
i=1 x̂i ≥ ∑k

i=1 ŷi, for every 1 ≤ k ≤ n. A Lorenz maximal solu-
tion is a solution in the WS-core that Lorenz-dominates every other solution
in the WS-core. By definition, it also minimizes the so called Gini index of
inequality [6].

The min-square solution exists whenever the WS-core is nonempty, and is
unique (in terms of the utility that each agent receives). The same applies to the
lexicographically-maximal solution, though the two solutions need not coincide.
A Lorenz dominating solution need not exist. Out of the two solutions that do
exist, we suggest picking the lexicographically-maximal-Welfare-Sharing solution,
which we denote by lex-max-WS . (This choice is not of major significance to our
work. Proposition 2 (with a different algorithm) and Proposition 3 also hold with
respect to the min-square solution, and Corollary 1 shows that the two solutions
coincide in many cases of interest.)

4.2 The Water Filling Algorithm

When Wmax is submodular, the utilities in the lex-max-WS solution can be
computed using an algorithm that we refer to as water filling (this is a generic
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name, used also elsewhere, for algorithms that increment variables at a uniform
rate, subject to constraints). It proceeds in iterations. Initially (at iteration 0),
all agents are free and every agent i starts with her disagreement utility uπ(i).
If any of the constraints of the anticore are tight (satisfied with equality) by
this initial solution, then the set S1 of agents involved in the tight constraints
become locked. Thereafter, in every iteration j ≥ 1 we do the following. If there
are no free agents, the algorithm ends and outputs the utilities of the agents.
If there are free agents, then the utility of every free agent is incremented by
the same value xj , where xj > 0 is the smallest value that leads to some new
anticore constraint becoming tight (equivalently, xj is the largest increase that
does not violate any of the anticore constraints). At this point, the set Sj of
agents involved in a newly tight constraint become locked (some of these agents
may have been locked already earlier), and iteration j ends. The proof of the
following proposition appears in [1].

Proposition 2. When Wmax is submodular, the water filling algorithm com-
putes the lex-max-WS solution. When Wmax is not submodular, the water filling
algorithm might fail to find the lex-max-WS solution, even when the WS-core is
nonempty.

4.3 Decomposability of lex-max-WS

The lex-max-WS solution lies in the anticore, and hence by Proposition 1 it
is weakly decomposable. We now consider strong decomposability (see Defini-
tion 4). This property involves comparing the solutions generated for different
instances. As the lex-max-WS solution for an instance depends on the disagree-
ment point for the instance, we need to also relate between the disagreement
points of different instances. For this purpose, we assume that there is a mech-
anism that given an instance outputs the disagreement point for that instance.
For example, RP served as such a mechanism in Sect. 1.1.

Proposition 3. When Wmax is submodular, every mechanism M that satisfies
both following properties is strongly decomposable.

1. For every instance M selects the respective lex-max-WS solution.
2. The disagreement utilities (that define the domination constraints for the WS-

core) are the output of a disagreement mechanism that is strongly decompos-
able.

The above proposition is proved by showing that the outcome of the water
filling algorithm on the whole instance is identical to the concatenation of its
outcomes on each component separately. See [1].

4.4 A Lorenz Dominating Solution

We next show that in the important case that Wmax is submodular (e.g., in
the Shared–Rental problem), a Lorenz dominating solution necessarily exists.



84 M. Babaioff and U. Feige

Theorem 2 below is an adaptation of a theorem of Dutta and Ray [3], which
considers Lorenz minimal solutions and supermodular characteristic functions
(we consider Lorenz maximal solutions and submodular characteristic functions).
We provide a detailed proof of Theorem2 rather than attempt to use the results
of [3] as a blackbox, because in our setting we need to ensure that the solution
dominates a given disagreement point, and this issue does not seem to have an
analog in the setting of [3]. The proof of the following theorem appears in [1].

Theorem 2. If Wmax is submodular, then the lex-max-WS solution (which is
in the WS-core) Lorenz-dominates all other solutions in the WS-core.

Corollary 1. If the function Wmax is submodular then the WS-core is non-
empty, a Lorenz dominating solution exists, it is unique, and it coincides with
both the min-square solution and the lexicographically-maximal solution.

Summarizing, when selecting a solution from the WS-core, we employ the
egalitarian paradigm. In several natural settings (such as the Shared–Rental
problem) Wmax is submodular. In these cases, Theorem 2 offers a natural choice
of a unique solution within the WS-core, because (essentially) all natural relax-
ations of the notion of being egalitarian (min-square, lexicographically-maximal,
Lorenz-maximal) coincide. Moreover, in these cases the solution is computable
in polynomial time, and also is continuous with a Lipshitz constant of 1 (see [1]
for exact statements.
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Abstract. Replicator dynamics, the continuous-time analogue of Mul-
tiplicative Weights Updates, is the main dynamic in evolutionary game
theory. In simple evolutionary zero-sum games, such as Rock-Paper-
Scissors, replicator dynamic is periodic [39], however, its behavior in
higher dimensions is not well understood. We provide a complete charac-
terization of its behavior in zero-sum evolutionary games. We prove that,
if and only if, the system has an interior Nash equilibrium, the dynamics
exhibit Poincaré recurrence, i.e., almost all orbits come arbitrary close
to their initial conditions infinitely often. If no interior equilibria exist,
then all interior initial conditions converge to the boundary. Specifically,
the strategies that are not in the support of any equilibrium vanish in
the limit of all orbits. All recurrence results furthermore extend to a
class of games that generalize both graphical polymatrix games as well
as evolutionary games, establishing a unifying link between evolutionary

Fig. 1. One agent Rock-Paper-Scissor, see Sect. 3.4. Animation here (https://www.
dropbox.com/s/c37cgiztlcryje6/foo.avi?dl=0)
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and algorithmic game theory. We show that two degrees of freedom, as
in Rock-Paper-Scissors, is sufficient to prove periodicity.

1 Introduction

Replicator dynamics is a basic model of evolution that is amongst the most well
studied game theoretical models of adaptive behavior. It is the standard dynamic
in evolutionary game theory [14,38] and enjoys formal connections to other clas-
sic evolutionary models such as the Price equation, the Lotka-Volterra equation
of ecology and the quasispecies equation of molecular evolution [8,27]. Repli-
cator also has strong, inherent connections to computer science and optimiza-
tion theory. It is the continuous time-analogue of Multiplicative Weights Update
[19], arguably the most widely studied online learning and optimization algo-
rithm and a meta-algorithmic technique in itself with numerous applications [2].
Furthermore, it has diverse microcanonical foundations [35], i.e., it can emerge
from numerous, simple (memoryless, best-response like) population dynamics,
which enhance its plausibility as a model of emergent behavior. Finally, it has
an interpretation as an inference dynamic [13,17]. Specifically, for systems gov-
erned by the replicator equations the maximum entropy principle (MaxEnt)
can be derived rather than postulated as, e.g., in thermodynamics or statistical
mechanics [16]. Given this impressive web of connections, it would not be unrea-
sonable to think of replicator as a near-universal model of adaptive behavior,
a proto-intelligence mechanism, emerging from simple physical processes and
giving rise to self-organizing, ever-more complex and efficient systems. As such
understanding its behavior in different contexts can simultaneously shed light to
many of its related adaptive processes (Fig. 1).

Evolution as it turns out is a very efficient force of systemic optimization.
Replicator dynamics is a regret minimizing dynamic in arbitrary games. Its
regret converges to zero at a rate of O(1/T ) [20,22]. Specifically, its total regret
remains bounded for all time. In cases of games where agents’ interests are
strongly aligned, such as potential, i.e., congestion games, replicator dynamics is
known to perform admirably well. Not only does it converge to Nash equilibria
[36] but typically to pure Nash [19]. Furthermore, it has been shown that pure
Nash equilibria of higher social welfare have larger regions of attraction and
hence an average case analysis of replicator dynamics where the initial condition
is drawn uniformly at random can lead to an expected social welfare that can
be much higher than those predicted by Price of Anarchy analysis [28]. Finally,
even in games where the dynamics are non-equilibrating replicator dynamics
may converge to limit cycles with optimal social welfare that dominate the per-
formance of even the best Nash equilibrium by an arbitrary amount [12,18].
That is, replicator dynamic can significantly outperform even Price of Stability
type of guarantees.
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When we move to zero-sum games (and variants thereof) Price of Anarchy
and more generally social welfare optimization type of results are no longer appli-
cable. One would hope that in such games the Nash equilibria would be accu-
rate predictors of the system behavior. If so equilibration would have not only
a strong economic and algorithmic justification due to the celebrated maxmin
theorem by von Neumann [24] and its connection to linear programming but also
an evolutionary one. Unfortunately, this is not the case. [37] established experi-
mentally that even small zero-sum games may have complex, non-equilibrating,
chaotic type of behavior. More recently, [33] established that despite their chaotic
behavior, these dynamics have also exploitable structure. Specifically, replica-
tor dynamics in two-player zero-sum games with interior Nash equilibria are
Poincaré recurrent. This means that almost all initial conditions return infinitely
often arbitrarily close to their initial conditions. This result holds even for net-
works of zero-sum games, however, this class of games fails to capture the stan-
dard class of evolutionary zero-sum games. The immediate distinction between
evolutionary games and standard multi-agent games is that evolutionary games
only admit a single distribution over a simplex of strategies. These are games
where a large population of animals compete against each other and where the
frequencies of the different genotypes/strategies evolve according to the repli-
cator dynamics. From the perspective of standard two-agent zero-sum games,
the question reduces to analyzing symmetric zero-sum games (e.g. Rock-Paper-
Scissors) under symmetric initial conditions. Due to the symmetric nature of the
game, the symmetry of the initial condition is preserved by the dynamic. Thus,
the dynamic evolves on a lower-dimensional manifold, which is a zero-measure
set, hence the Poincaré recurrence result of [33] does not suffice to understand the
behavior for such non-generic initial conditions. Our goal here is to completely
understand the behavior of replicator dynamics in such settings and furthermore
develop an expansive unifying framework for understanding dynamics both in
evolutionary games as well as two-agent and multi-agent settings.

Our Results. We provide a complete characterization of the behavior of replica-
tor dynamic in zero-sum evolutionary games. We prove that the dynamics exhibit
Poincaré recurrence, if and only if, the system has an interior Nash equilibrium.
If no interior equilibria exist, then all interior initial conditions converge to the
boundary (Theorem6). Specifically, the strategies that are not in the support of
any equilibrium vanish in the limit of all orbits. All recurrence results further-
more extend to a class of games that generalize both graphical polymatrix games
as well as evolutionary games (Theorem 5). Specifically, we allow for polymatrix
edges with self-edges, where all polymatrix games are constant-sum, and all
self-edges are antisymmetric games. To prove these results, we provide the most
general to date set of game theoretic conditions under which replicator dynamics
can be shown to be volume preserving (under a diffeomorphism, i.e. a differen-
tiable transformation with invertible inverse) (Theorem4). The other stepping
stone in the direction of proving recurrence/convergence to the boundary is
showing that the KL-divergence between the Nash equilibrium and the state
of the system is invariant/strictly decreasing if the zero-sum games has/(does
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not have) an interior Nash. This argument mirrors arguments for the case of
multiple agent replicator dynamics [22,33] Finally, we show that in this class of
games, two degrees of freedom, as in Rock-Paper-Scissors, is sufficient to prove
periodicity (Theorem 9). Furthermore, as we argue this does not follow from an
immediate combination of Poincaré recurrence and the Poincaré-Bendixson the-
orem but requires more specialized arguments. The full version of this paper can
be found here [9].

2 Related Work

Non-equilibration, Recurrence and Volume Preservation. In evolution-
ary game theory, numerous non-convergence results are known but they are usu-
ally restricted to small games [35]. [1] was the first paper to study both discrete
and continuous-time evolutionary dynamics in zero-sum games and establish
invariant for the dynamics, however, no formal recurrence or periodicity was
shown. Constants of the motion exist for different classes of games (e.g. coor-
dination/partnership games, null stable games) and dynamics [15,28,35] even
for games with convergent dynamics. An orthogonal property of game dynam-
ics is the preservation of volume of initial conditions (up to state space/speed
transformation, see [15,22,35]). [33] and [31] showed that replicator dynamics in
(network) zero-sum games (and affine variants thereof) exhibit a specific type
of repetitive behavior, known as Poincaré recurrence by combining these two
type of arguments. Recently, [22] proved that Poincaré recurrence also shows
up in a more general class of continuous-time dynamics known as Follow-the-
Regularized-Leader (FTRL). [21] established that the recurrence results for repli-
cator dynamics extend to some biologically-inspired dynamically evolving zero-
sum games. Perfectly periodic (i.e., cyclic) behavior for replicator may arise in
team competition [32] as well as in network competition [23]. Our techniques
build and extend upon these results by producing necessary, as well as sufficient
conditions, for volume preservation, recurrence as well as periodicity.

Game Dynamics as Physics. Recently, [6] established a connection between
game theory, online optimization in continuous-time (FTRL dynamics) and a
ubiquitous class of systems in physics known as Hamiltonian dynamics, which
exhibit conservation laws (“conservation of energy”). In the case of discrete-
time dynamics such as MWU or gradient descent the system trajectories are
first order approximations of the continuous-time dynamics. Energy conserva-
tion and recurrence no longer hold. Instead energy increases and the dynamics
divergence to the boundary [4]. The dynamics exhibit volume expansion and
Lyapunov chaos [10]. Despite this divergent, chaotic behavior, gradient descent
with fixed step size, has vanishing regret in small zero-sum games [5]. More
elaborate discretization techniques, based on leap-frogging (Verlet) symplectic
integration technique for Hamiltonian dynamics, result in discrete-time algo-
rithms of bounded regret in general games and Poincaré recurrence in zero-sum
games respectively [3]. So far, it is not clear to what extent the connections with
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Hamiltonian dynamics can be generalized; however, [26] have considered a class
of piecewise affine Hamiltonian vector fields whose orbits are piecewise straight
lines and developed the connections with best-reply dynamics.

Game Dynamics as Dynamical Systems. Finally, [29,30] initiated a pro-
gram for linking game theory to topology, specifically to Conley’s fundamental
theorem of dynamical systems [11]. This approach shifts attention from Nash
equilibria to a more general notion of recurrence, called chain recurrence, that
generalizes both periodicity and Poincaré recurrence. [25] embeds this approach
within an algorithmically tractable framework and uses it to develop new train-
ing algorithms for multi-agent AI settings.

3 Preliminaries and Definitions

3.1 Zero-Sum Games and Zero-Sum Polymatrix Games

A graphical polymatrix game is defined using a directed graph G = (V,E) where
V corresponds to the set of agents (or players) and where every edge corresponds
to a bimatrix game between its two endpoints/agents. Each agent i ∈ V has a
set of actions Ai = {1 . . . ni} that he is allowed to select randomly under a
distribution xi called a mixed stragegy. The set of mixed strategies of player i is
written Xi = ΔIRni = {xα ∈ IRni

≥0 :
∑

α xα = 1}; the state of the game is then
defined by the concatenation of strategies of all players. We call strategy space
the set of all possible strategies profiles, and write it X ≡ ∏

i∈V Xi.
The bimatrix game on edge (i, j) is described using a pair of matrices Ai,j ∈

IR|Ai|×|Aj | and Aj,i ∈ IR|Aj |×|Ai|. The coefficient (α, β) ∈ Ai × Aj of the matrix
Ai,j represents the reward player i gets when he plays α against player j playing
β. As players can choose mixed strategies, their payoffs are random variables,
yet we call payoffs again their expected payoffs. For instance, the payoff of player
i against player j is xi · Ai,jxj . We call payoff of agent i ∈ V under strategy
profile x the sum of the payoffs agent i receives from every bimatrix game he
participates in, and write it ui(x) or ui(xi;x−i). More precisely,

ui(x) =
∑

j : (i,j)∈E

xi · Ai,jxj (1)

Sometimes, one can be interested in the payoff of agent i when deviating to
action α ∈ Ai under profile x. This quantity is usually denoted ui,α(x) and
corresponds to

∑N
j=1(A

i,jxj)α. Finally, we will compactify the definition of a N -
player graphical polymatrix game by a tuple Γ = (G,A) with G the underlying
graph and A the block matrix built from Ai,j ’s.

We say that a N -player graphical polymatrix game is zero-sum if the matrix
A is antisymmetric. In the case N = 2 players i, j = 1, 2, it specifically means
that A1,2 = −(A2,1)T ; in the case N = 1 player, that A1,1 = A is antisymmetric.
In our case, we allow the graph G to contain self-loops, and we call diagonal games
the subgames induced by self-loops. Self-loop (1-agent) games make sense both
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in the content of evolutionary game theory as well as in classic (multi-agent)
game theory. From the perspective of evolutionary game theory, 1-agent games
are the norm where we study the frequencies of different competing genotypes
within a single population. For example, Rock-Paper-Scissors could be different
traits that exhibit a cyclic pattern of dominance. In the context of classic game
theory a single agent self-loop added e.g. on top of a standard normal form game
can capture effects like friction in dynamics (e.g. a matrix with zero diagonal
and minus one in all other entries captures the effects of having cost for changing
strategy). Specifically, if an agent changes her strategy from yesterday, then in
the self-loop game, she experiences an additional cost of one. More generally,
it allows to differentiate the performance of a strategy for an agent depending
on his strategy in the previous time period in game dynamics such as replicator
dynamics (Fig. 2).

P0

P1

P2

P1

P2

P3

Fig. 2. From left to right, graphical representations of the evolutionary game setting,
algorithmic game theory, and the merger of the two.

A very common notion in game theory is the one of Nash equilibrium (NE),
defined in our case as a mixed strategy profile x∗ ∈ X such that

ui(x∗) ≥ ui,αi
(x∗) (2)

for every strategy αi ∈ Ai of every player i ∈ N . We write supp(x∗
i ) ≡ {αi ∈

Ai : xi,αi
> 0} the support of x∗

i ∈ Xi. A Nash equilibrium is said interior or
fully mixed if supp(x∗

i ) for every agent i is Ai.

3.2 Replicator Dynamics

The replicator equation is one of the most well studied evolutionary processes.
Its most usual formulation is:

ẋi,α =
dxi,α

dt
= xi,α (ui,α(x) − ui(x)) (3)

for every player i and action α ∈ Ai. We will often translate (3) into cumulative
costs space via the diffeomorphism from the interior of X to C ≡ ∏

IRni−1, used
also in [33], that, for each player i, maps xi = (xi,1 . . . xi,ni

) to (ln xi,2
xi,1

. . . ln xi,ni

xi,1
).
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We will write this diffeomorphism f and its inverse f−1. C is called this way
since one can show that it corresponds to the space of coordinates

∫ t

0
ui,α(x(τ))dτ

up to a re-centralization term (specifically,
∫ t

0
ui,α(x(τ))dτ − ∫ t

0
ui,1(x(τ))dτ for

α > 1).

3.3 Topology of Dynamical Systems

Flows. Since the strategy space is compact and the replicator dynamics
Lipschitz-continuous, there exists a continuous function φ : X × IR → X called
flow of replicator dynamics ( 3) such that for any point x ∈ X , φ(x,−) defines a
function of time corresponding to the trajectory of x. Conversely, fixing a time
t provides a map φt ≡ φ(−, t) : X → X , and the family {φt : t ∈ IR} is interest-
ingly a subgroup of (C(X ,X ), ◦). Moreover, if φt : A → A and ψt : B → B are
flows such that there exists a diffeomorphism g satisfying g(φt(x)) = ψt(g(x))
for all x ∈ A, then φt and ψt are said to be diffeomorphic to each other.

Limit Sets. When x ∈ X is not a rest point of (3), we wish to grasp how
the orbit of x will asymptotically behave. In general, its trajectory will not
converge to a single point, but to a closed set called the ω-limit (set) of x, written
ω(x). This set is formally defined as the set of points y ∈ X such that there
exists a sequence (tn) diverging to +∞ such that φ(x, tn) → y. One alternative
definition is ω(x) =

⋂
t≥0

⋃
τ≥t φ(x, τ). The compactness of ω(x) is an immediate

consequence of the compactness of X , and limt→+∞ dist(φ(x, t), ω(x)) = 0.

Poincaré Recurrence. This paper is focused on a recurrent (periodic-like) behav-
ior introduced by Poincaré in his studies of the three body problem. Thanks to
Liouville’s formula [38], divergent-free systems are volume preserving. Poincaré
proved [34] that in volume-preserving dynamical systems with bounded orbits
almost all trajectories return arbitrarily close to their initial position and do so
infinitely often.

Theorem 1 (Poincaré recurrence). [7] If a flow preserves volume and has
only bounded orbits then for each open set, almost every point of the set returns
back to it. In fact, almost every point returns infinitely often back to the set.

3.4 Volume Conservation and Periodicity in Rock-Paper-Scissors

The front page figure shows the evolution of a set of initial conditions (black
square) under replicator dynamics (3) in the (projected) cumulative payoff space;
the game is the classic one agent Rock-Paper-Scissors with payoff matrix

⎛

⎝
0 1 −1

−1 0 1
1 −1 0

⎞

⎠
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In the first row of the figure from left to right, we plot the evolution of a set
at times t = 0, t = 112 and t = 225. The colormap represents the Kullback-
Leibler divergence to the unique Nash equilibrium x = (13 , 1

3 , 1
3 ) (null vector in

cumulative payoffs space). Observe that every point stays at the same color at
which it started, i.e., its Kullback-Leibler divergence from the Nash equilibrium
does not change. On the second row are the corresponding plots of the Kullback-
Leibler divergence of points (y-axis) according to their first coordinate (y1 in C).
The red curve is the minimum possible value for each y1 values, that is, an
analogue of potential energy. Intuitively, any initial condition will slide along an
horizontal level set (of constant KL-divergence) and cannot escape outside the
red curve. The third row shows an estimation of the volume of the cloud of points
over time. This volume is estimated using a pruned Delaunay triangulation, more
precisely, triangles with a diameter larger than some threshold value are deleted,
and the volume is computed as the sum of the volume of each remaining triangle.
Even though the shape of the initial condition is not preserved, the overall volume
is constant over time. This spiralling snake shape results from periodic orbits of
different periods.

4 Volume Conservation: Necessary and Sufficient
Conditions

4.1 Games with Zero-Sum Self-loops Are Volume Conservative

Replicator dynamics in multi-games (with no loops) are volume conservative
(even beyond replicator dynamics [22]). The reason becomes clear when we exam-
ine the differential equation satisfied by cumulative payoffs yi,α’s.

dyi,α

dt
(t) = ui,α+1

(
f−1(y)

) − ui,1

(
f−1(y)

)
(4)

Recall that f−1 acts like a set-wise product function, working locally at each
player. Hence, as long as ui,β does not depend on xi, ui,β is independent of yi,α for
any pair of actions α, β. The partial derivative ∂ẏi,α

∂yi,α
(y) is null. One can understand

this as follows: if the performance of an action only depends on the behavior of the
rest of the agents then volume is preserved. In single agent games, antisymmetry
implies volume preservation [35]. We show that these results can be combined and
that there is no need to have null diagonal games to get volume preservation in
multi-agent games. The zero-sum property is enough to guarantee it.

Theorem 2. Let φ be the flow of replicator dynamics (3) with N agents. Let
ψ(y,−) = f(φ(f−1(y),−)) be the diffeomorphic flow onto cumulative payoffs
space. If all diagonal games are zero-sum, then ψ is volume conservative.

We know that if there are no games on the diagonal then volume is preserved.
The intuition is that if each diagonal game preserves volume individually, there
will be volume preservation; this is the main point. We rely on Liouville’s formula
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to compute the divergence in the general case, and check that it is null if all
diagonal games are zero-sum. This proves that in N -player polymatrix games
with loops, as long as loops are antisymmetric games, the quantity of information
is preserved in cumulative payoffs space. It also means that it will be hard to
converge; for instance, no interior rest point cannot be locally attractive. Indeed,
if that was the case, it would mean that locally, the volume would shrink around
the rest point.

4.2 Volume Conservative Games Have Zero-Sum Self-loops

Interestingly, the inverse statement is also true. The preservation of informa-
tion/volume in cumulative payoff space is specific to zero-sum diagonal games.
We do not mean that a non-zero-sum game cannot preserve volume at some
points, but rather that preserving volume at many points implies the zero-sum
property. The precise number of points can be controlled by combinatorial Null-
stellensatz arguments, and more precisely, the relation between a multivariate
polynomial and the geometry of its vanishing set.

The argument is that the divergence of the vector field (in cumulative space)
is a multivariate polynomial of variables x1 . . . xn, and in particular, this polyno-
mial vanishes exactly at points were the volume is preserved. So if the volume is
conserved on an open ball, this polynomial is null and its coefficients are zeros.
This imposes structure on the game, more precisely, that the game is equivalent
(in a precise sense) to a zero-sum game.

Theorem 3. Consider a 1-player game Γ . Let φ be the flow of replicator dynam-
ics and ψ its diffeomorphic conjugate onto the cumulative payoffs space. If there
exists an open set U of IR|A|−1 such that ψ is volume conservative at any point
of U , then Γ is equivalent to a 1-player zero-sum game (summation of an anti-
symmetric matrix and a matrix of the form

(
1 · · · 1

)T (
c1 · · · cn

)
).

This result is easily generalizable to much more general games, for e.g. poly-
matrix games. The proof is very similar and we get the more stronger result.

Theorem 4. A N -player (polymatrix)1 game is volume conservative in cumu-
lative payoffs space if, and only if its diagonal games are equivalent to zero-
sum games (summation of an antisymmetric matrix and a matrix of the form
(
1 · · · 1

)T (
c1 · · · cn

)
).

This formally shows that volume preservation strongly correlates with zero-
sum games. Furthermore, a polymatrix game that conserves volume on an open
set has to conserve volume everywhere. Observe that we could have been less
restrictive on the assumption relating the geometry of the vanishing set, so there
is room to improve this result. The take home idea is that if diagonal games are
not zero-sum, the volume cannot be preserved at too many points.
1 The theorem straightforwardly extends to any game that can be rewritten as the

sum of a N -player game in normal form and self-edges games (even without the
polymatrix condition).
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5 Limit Behavior: Poincaré Recurrence, Cycles
and Convergence to Boundary

5.1 Zero-Sum Games with Interior Nash Are Poincaré Recurrent

We generalize a previous result from [33]. It is already known that zero-sum
polymatrix games with no loops are volume conservative, and that they exhibit
Poincaré recurrence behavior when there exists an interior Nash equilibrium.
In fact, this is also true for polymatrix games allowing self-loops. The proof is
the same in its structure, but the existence of self-loops necessitates the use
of different arguments. The volume preservation is already given by Theorem2
from the previous section. The idea is to prove that, under the assumption of the
existence of an interior Nash, the Kullback-Leibler divergence is a constant of
motion, and that this implies that every orbit is bounded in cumulative payoffs
space. Then, the Poincaré recurrence theorem applies.

Theorem 5. Consider a N -player zero-sum polymatrix game with self-loops.
Assume there exists an interior Nash equilibrium, then replicator dynamics is
Poincaré recurrent.

The key idea is to show, generalizing [33], that for any interior equilibrium x∗,
KL(x∗‖−) is a constant of motion. It follows that interior orbits remain bounded
in cumulative payoffs space. Then the theorem follows directly from Poincaré
recurrence theorem: the volume is preserved in cumulative payoffs space, while
every orbit stays bounded. Hence, the system is Poincaré recurrent in cumulative
payoffs space; and this property is transported to the strategy space via the
diffeomorphism f−1.

The fact that KL(x∗‖−) is a constant of motion is not the important point;
what is critical is that orbits remain bounded. The conservation of KL is no more
than a tool to show boundedness.

5.2 Poincaré Recurrence and Evolutionary Game Theory

Given any (polymatrix) game, either there exists an interior Nash equilibrium,
or no interior point is an equilibrium. The first case has been dealt with. As
far as the second case is concerned, previous work [22] have shown that in the
2-players case, the absence of interior Nash equilibria enforces orbits to collapse
to boundary. We show that this is also true for 1-player zero-sum games (i.e.,
for evolutionary game theory). Although not using the language of information
theory, the results about the existence of strict Lyapunov functions and collapse
to the boundary were first developed in [1]. In the full version [9], we provide
alternative arguments to reduce this case to the more well studied two agent
zero-sum games. In combination with our Poincaré recurrence results, this will
result in a complete picture of all possible limit behaviors of the system.

Theorem 6 [1]. Let be a 1-player zero-sum game with matrix A and with no
interior Nash equilibrium, on which we write φ the flow of (3). Let x∗ be a Nash
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equilibrium of maximal support. Then for any interior point x ∈ X , the orbit
γ = {φ(x, t) : t ≥ 0} collapses to boundary. More precisely, for all y ∈ ω(x),
supp y ⊆ supp x∗.

This theorem shows that in the absence of any interior equilibrium, every
interior orbits collapses to the face spanned by supp(x∗) with a x∗ of maximal
support. It tells nothing about the behavior of orbits when coming close to this
face. Do we have convergence, or do we get (Poincaré) recurrence/cycles on the
boundary? In general, both are possible, depending on the initial condition.

Consider Rock-Paper-Scissor to which we add a dummy action, say Fork,
which scores -10 against any other action (excepted Fork itself). That is, consider
the 1-player zero-sum game with matrix (Fig. 3)

A =

⎛

⎜
⎜
⎝

0 −1 1 10
1 0 −1 10

−1 1 0 10
−10 −10 −10 0

⎞

⎟
⎟
⎠

Fig. 3. Converging and non-converging orbits in the same game.

The Nash equilibrium is unique and (13 , 1
3 , 1

3 , 0). If one starts at (14 , 1
4 , 1

4 ,
1
4 ), one converges to it. If one starts at ( 3

16 , 5
16 , 1

4 , 1
4 ), one collapses to a periodic

orbit on the boundary.
Combining the results we have so far, we can prove a fairly complete theorem

relating volume conservation, Poincaré recurrence and evolutionary game theory.

Theorem 7. Let be a 1-player matrix game A under the flow of replicator
dynamics. The volume is preserved in cumulative payoffs space if, and only if
the game is equivalent to a zero-sum game; more precisely, if, and only if A
can be written as A = B + (1 · · · 1)T (A1,1 · · · An,n) with B an antisymmetric
matrix.

If that is the case, interior orbits exhibits Poincaré recurrent behavior if,
and only if there exists an interior Nash equilibrium. If there is no interior
equilibrium, every interior orbit collapses to the face spanned by the support of
a Nash equilibrium of maximal support.
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Proof. Let A be a single-agent matrix game under replicator dynamics. Assume
the volume is conserved in cumulative payoff space. Then, by Theorem 3, A is
equivalent to a zero-sum game (A = B + (1 · · · 1)T (A1,1 · · · An,n) where B is
an antisymmetric matrix.). Conversely, if A is equivalent in the above sense to
a zero-sum game, one can assume without loss of generality that A is antisym-
metric. Then, by Theorem 2, the volume is preserved at any point. This proves
the first part of the theorem.

Now, assume A is antisymmetric. If there exists an interior Nash, by The-
orem 5, the system is Poincaré recurrent. Conversely, if the system is Poincaré
recurrent, there has to exist an interior Nash. Assume on the contrary that there
is no such equilibrium. Let x∗ be a Nash equilibrium. Consider the open ball
U = B( 1

n (1 . . . 1), ε) with ε > 0 small. We know that there exists an orbit γ
intersecting U infinitely often. If ε is small enough, by taking x any point of γ,
that means that

lim sup[dist(φ(x, t),bd(X ))] > 0 (5)

But by Theorem 6, γ should collapses to the boundary. This contradicts (5). 
�

6 Cycles in Dimension 3

In this section, we show that the flow φ of replicator dynamics is periodic for
every interior initial condition of 1-player zero-sum games of dimension 3 with
interior Nash equilibrium. The proof uses the Poincaré-Bendixson Theorem that
we recall here.

Theorem 8 (Poincaré-Bendixson). A limit set ω(x) of a C1 dynamical sys-
tem over the plane, if non-empty and compact, that does not contain a rest point
is a periodic orbit.

In the following, we make the assumption that the game is a 1-player zero-
sum game of dimension 3 that has an interior Nash equilibrium x∗.

Theorem 9. Let be a 1-player zero-sum game of dimension 3 with matrix A.
Assume there exists an interior Nash. Then, any interior point x belongs to a
periodic orbit.

Remark 1. Our proof relies on the Kullback-Leibler divergence. That is, in a
Poincaré recurrent system, we used an argument specific to game theory to show
that all interior orbits are periodic. Thinking of what Poincaré recurrent means,
one may hope to get rid of the game theoretic proof and give a topological proof.
The motivation is clear; for any open set, almost every orbit goes back arbitrarily
close to its initial condition, and in addition, infinitely often. Therefore, we get
what looks like a dense set of periodic orbits.

That is, if a point is not a rest point, because we are in dimension two,
its orbit is infinitely-closely trapped between periodic orbits. As the counter-
example below shows such arguments do not suffice to argue that all (interior)
points are periodic. There, we claim that there is no hope to conclude that all
orbits must be periodic based solely on topological arguments (Fig. 4).
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Fig. 4. On the complex plane, consider the ODE ż = i z. The corresponding flow is
φ(z, t) = z · eit. Hence, every orbits are circles, excepted the single rest point at the
origin. Add the velocity regularizer δ : z �→ min{1, dist(z, iIN)}. The ODE becomes
ż = i δ(z)z. Then, almost all orbits are still circles, so there is a dense set of periodic
orbits and the system is Poincaré recurrent. Yet, if a point z has integer module, it is
arbitrarily close to a periodic orbit, and its limit set is the rest point i|z|.
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complex limit sets via Poincaré recurrence. In: Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 861–873. SIAM
(2014)
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Abstract. We study whether Pareto-optimal stable matchings can be
reached via pairwise swaps in one-to-one matching markets with initial
assignments. We consider housing markets, marriage markets, and room-
mate markets as well as three different notions of swap rationality. Our
main results are as follows. While it can be efficiently determined whether
a Pareto-optimal stable matching can be reached when defining swaps via
blocking pairs, checking whether this is the case for all such sequences is
computationally intractable. When defining swaps such that all involved
agents need to be better off, even deciding whether a Pareto-optimal
stable matching can be reached via some sequence is intractable. This
confirms and extends a conjecture made by Damamme et al. (2015), who
have furthermore shown that convergence to a Pareto-optimal match-
ing is guaranteed in housing markets with single-peaked preferences. We
show that in marriage and roommate markets, single-peakedness is not
sufficient for this to hold, but the stronger restriction of one-dimensional
Euclidean preferences is.

1 Introduction

One-to-one matchings, where individuals are matched with resources or other
individuals, are omnipresent in everyday life. Examples include the job market,
assigning offices to workers, pairing students in working groups, and online dat-
ing. The formal study of matching procedures is fascinating because it leads to
challenging mathematical and algorithmic problems while being of immediate
practical interest [see, e.g., 22,24].

One typically distinguishes between three different types of abstract one-to-
one matching settings. In housing markets [28], each agent is matched with an
object (usually referred to as a house). In marriage markets [16], agents are
partitioned into two groups—say, males and females—and each member of one
group is matched with an agent from the other group. Finally, in roommate
markets [16], all agents belong to the same group and each agent is matched
with another agent. In many applications, it is reasonable to assume that there
is an initial assignment because agents already live in a house, are engaged in
a relationship, and are employed by a company [see, e.g., 1,25]. Under these
assumptions, an important question is whether sequences of individual agree-
ments between small groups of agents can lead to socially optimal outcomes. In
c© Springer Nature Switzerland AG 2019
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this paper, we focus on atomic agreements which require the least coordination:
pairwise swaps.

In general, we consider three different types of individual rationality for pair-
wise swaps. In housing markets, there is only one meaningful notion of swap
rationality: two agents will only exchange objects if both of them are better off.
By contrast, when matching agents with each other, one could require that all
four agents involved in a swap or only two of them are better off. The latter
requirement allows for two kinds of swap rationality: two agents who exchange
their match are better off (e.g., a company and its subsidiary exchange employ-
ees without asking their consent) or two agents who decide to form a new pair
are better off (e.g., two lovers leave their current partners to be together).

Social optimality in settings with ordinal preferences like that of matching
markets is measured in terms of Pareto-optimality. We therefore study whether
there exists a sequence of pairwise swaps that results in a Pareto-optimal match-
ing that does not allow for further swaps (and hence is called stable). Whenever
all sequences of pairwise swaps are of this kind, we say that the given type of
swap dynamics converges.

It turns out that in all three types of matching markets and all three notions
of swap rationality, it may not be possible to reach a Pareto-optimal stable
matching from the initial assignment. We prove that deciding whether this is
the case is NP-hard for two types of swap rationality while it can be solved in
polynomial time for swaps based on blocking pairs. However, in the latter case,
checking convergence is co-NP-hard. On the other hand, we show that when pref-
erences are one-dimensional Euclidean—a natural but demanding restriction—
swap dynamics for two types of swap rationality will always converge.

2 Related Work

Damamme et al. [14] investigated the dynamics of individually rational pair-
wise swaps in housing markets, where two agents are better off by exchanging
their objects. Recently, variants of this problem that further restrict the agents’
interactions using underlying graph structures have been examined [17,20,27].

In marriage and roommate markets, most of the literature focuses on devia-
tions based on blocking pairs, where two agents decide to leave their old partners
in order to be matched with each other. Blocking pairs are best known for their
role in the definition of stability [16], but some papers also studied the dynam-
ics of blocking pair swaps [2,26]. The notion of exchange stability, where two
agents agree to exchange their partners has been investigated in both roommate
markets [5,11] and marriage markets [12]. We consider both types of swaps,
i.e., blocking pair swaps and exchange rational swaps, but focus on the study of
dynamics that reach Pareto-optimal matchings.

In contrast to our definition of Pareto-optimality, some papers on swap
dynamics have investigated matchings that are Pareto-optimal among all reach-
able matchings [7,17]. Other types of dynamics that have been considered
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in matching markets include pairwise swaps without local rationality con-
straints [7], Pareto improvements [8,25], local dynamics based on underlying
graphs [18,19], and exchanges among more than two agents [7,9].

Perhaps closest to our work is a result by Damamme et al. [14] who proved
that swap dynamics always converge to a Pareto-optimal matching in housing
markets when the preferences of the agents are single-peaked. However, they
left open the computational problem of deciding whether a Pareto-optimal sta-
ble matching can be reached for unrestricted preferences and conjectured this
problem to be intractable. We solve this problem and extend it to marriage
and roommate markets. Moreover, we prove that their convergence result for
housing markets under single-peaked preferences does not extend to marriage
and roommate markets, but can be restored when restricting preferences even
further.

3 The Model

We are given a set N of agents {1, . . . , n} and a set O of objects {a, b, . . . } such
that |N | = |O| = n. Each agent i ∈ N has strict ordinal preferences, represented
by a linear order �i, over a set Ai of alternatives to be matched with. In the
matching markets we consider, Ai is either a subset of the set of agents N or the
set of all objects O. A tuple of preference relations �= (�1, . . . ,�n) is called a
preference profile.

We consider two restricted preference domains in this article: single-peaked
preferences [10] and its subdomain of one-dimensional Euclidean preferences [13].
A preference profile � is single-peaked if there exists a linear order > over the
alternatives in A :=

⋃
i∈N Ai such that for each agent i in N and each triple of

alternatives x, y, z ∈ Ai with x > y > z or z > y > x, x �i y implies y �i z. A
preference profile � is one-dimensional Euclidean (1-Euclidean) if there exists
an embedding E : N ∪ O → R on the real line such that for every agent i ∈ N
and any two alternatives x, y ∈ Ai, x �i y iff |E(i) − E(x)| < |E(i) − E(y)|.

One-dimensional Euclidean preferences form a subdomain of single-peaked
preferences because every 1-Euclidean preference profile is singled-peaked for
the linear order > given by x > y iff E(x) > E(y). However, a single-peaked
preference profile may not be 1-Euclidean, as illustrated in the example below.

Example 1. Consider an instance with four agents. Each agent i ∈ N has pref-
erences over the same set of alternatives Ai = O = {a, b, c, d}.

1 : a � b � c � d
2 : d � c � b � a
3 : b � c � d � a
4 : c � b � a � d

Observe that this preference profile is single-peaked only w.r.t. the linear
order a < b < c < d (or its reverse order) because of the preferences of Agents
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1 and 2. Suppose that this preference profile is 1-Euclidean w.r.t. an embedding
E on the real line. Then, without loss of generality, we can assume that E(a) <
E(b) < E(c) < E(d). Since Agent 3 prefers b to c and Agent 4 prefers c to
b, it must hold that E(3) < E(4). However, d �3 a, therefore E(d) − E(3) <
E(3) − E(a). It follows that E(d) − E(4) < E(4) − E(a), implying that Agent 4
prefers d to a, a contradiction.

While assuming that all agents have 1-Euclidean preferences certainly rep-
resents a strong restriction, there are nevertheless some applications where this
assumption is not unreasonable. For example, in job markets, preferences could
be 1-Euclidean because employees prefer one workplace to another if it is closer
to their home, or when pairing workers in offices with a joint thermostat, work-
ers could prefer co-workers whose most preferred room temperature is closer to
their own.

3.1 Matching Markets

In this article, we are considering three different settings where the goal is to
match the agents either with objects—like in housing markets—or with other
agents—like in marriage or roommate markets. In all cases, we assume that there
is an initial matching. More formally,

– a housing market consists of a preference profile where Ai = O for all i ∈ N ,
and an initial endowment given as a bijection μ : N → O,

– a marriage market consists of a preference profile where N = W ∪ M with
W ∩ M = ∅, Ai = M for all i ∈ W and Ai = W for all i ∈ M , and an initial
matching given as a bijection μ : W → M , and

– a roommate market consists of a preference profile with even n and Ai =
N\{i} for all i ∈ N , and an initial matching given as an involution μ : N → N
such that μ(i) �= i for all i ∈ N .

In marriage markets, we will sometimes denote the inverse function μ−1 of
matching μ by μ for the sake of simplicity.

When allowing for indifferences as well as unacceptabilities in the preferences,
the three settings form a hierarchy: housing markets are marriage markets where
the “objects” are indifferent between all agents, and marriage markets are room-
mate markets where all agents of the same type are considered unacceptable. In
this paper, however, we do not make either assumption and therefore these inclu-
sion relationships do not hold.

The key question studied in this paper is whether Pareto-optimal matchings
can be reached from the initial matching via local modifications. A matching is
Pareto-optimal if there is no other matching μ′ such that for every agent i ∈ N ,
μ′(i) 	i μ(i) and for at least one agent j ∈ N , μ′(j) �j μ(j).

3.2 Rational Swaps

We study sequences of matchings in which two pairs of the current matching
are permuted. More formally, we assume that a swap w.r.t. two agents (i, j)
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transforms a matching μ into a matching μ′ where agents i and j have exchanged
their matches, i.e., μ′(i) = μ(j) and μ′(j) = μ(i), while the rest of the matching
remains unchanged, i.e., μ′(k) = μ(k) for every k /∈ {i, j, μ(i), μ(j)} (see Fig. 1).

i

j

µ(i)

µ(j)

matching µ

matching µ′ after the swap w.r.t. pair (i, j)

Fig. 1. Two matchings µ and µ′ that differ in one swap.

We furthermore require these swaps to be rational in the sense that they
result from an agreement among agents, and thus make the agents involved in
the agreement better off.

The most natural notion of rationality in our definition of a swap is exchange-
rationality, which requires that the two agents who exchange their matches are
better off [5]. A swap w.r.t. agents (i, j) from matching μ is exchange rational
(ER) if the agents who exchange their matches are better off, i.e.,

μ(j) �i μ(i) and μ(i) �j μ(j). (ER-swap)

Exchange-rationality is the only meaningful notion of swap rationality in housing
markets because only one side of the market has preferences. However, several
notions of rationality emerge in marriage and roommate markets, where agents
are matched with each other. One could demand that only two of the agents
who agree to form a new pair need to be better off. This notion of rational
swaps is based on the classic idea of blocking pairs, which forms the basis of the
standard notion of stability [16]. A swap w.r.t. agents (i, j) from matching μ
between agents is blocking pair (BP) rational if one of the new pairs in μ′ forms
a blocking pair, where both agents are better off, i.e.,

[
µ(j) �i µ(i) and i �µ(j) j

]
or

[
µ(i) �j µ(j) and j �µ(i) i

]
. (BP-swap)

We usually refer to a BP -swap by mentioning the associated blocking pair
((i, μ(j)) or (j, μ(i))). The old partners of the blocking pair are also assumed to
be matched together.1

Finally, in marriage and roommate markets, a stronger notion of rationality
is that of a fully rational swap, which makes all four involved agents better off. A
swap w.r.t. agents (i, j) from matching μ is fully rational (FR) if all four agents
involved in the swap are better off, i.e.,

µ(j) �i µ(i), µ(i) �j µ(j), j �µ(i) i, and i �µ(j) j. (FR-swap)

1 Once the old partners are alone, they have an incentive to form a new pair. Roth and
Vande Vate [26] therefore decompose BP-swaps into two steps. We do not explicitly
consider these steps in order to always maintain a perfect matching [cf. 23].
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Note that for marriage and roommate markets, an FR-swap w.r.t. pair of
agents (i, j) from a matching μ is an ER-swap w.r.t. pair (i, j) or (μ(i), μ(j))
and also a BP -swap w.r.t blocking pair (i, μ(j)) or (j, μ(i)). We thus obtain the
following implications:

BP -swap ⇐ FR-swap ⇒ ER-swap

The different types of swap rationality are illustrated in the following example.

Example 2. Consider a roommate market with six agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : 4 � 3 � 6 � 5 � 2
2 : 3 � 1 � 4 � 6 � 5
3 : 6 � 2 � 1 � 5 � 4
4 : 5 � 1 � 3 � 2 � 6
5 : 2 � 6 � 4 � 1 � 3
6 : 4 � 3 � 1 � 2 � 5

The swap w.r.t. pair (1, 2), which matches Agent 1 with Agent 4 and Agent
2 with Agent 3, is an FR-swap because every involved agent is better off. Hence,
this is also an ER-swap for pair (1, 2) or (3, 4) because they both prefer to
exchange their partner. It is also a BP -swap for blocking pair (2, 3) or (1, 4)
because they both prefer to be together than with their current partner.

The swap w.r.t. pair (1, 6) is a BP -swap for blocking pair (3, 6) because Agent
3, the old partner of Agent 1, prefers to be with Agent 6, as well as Agent 6
who prefers 3 to her old partner 5. This is not an ER-swap (and hence not an
FR-swap) because neither the agents in pair (1, 6) nor in pair (3, 5) want to
exchange their partners.

The swap w.r.t. pair (4, 6) is an ER-swap for (4, 6) because Agent 4 prefers
the current partner of 6, i.e., Agent 5, to her current partner and 6 prefers the
current partner of 4, i.e., Agent 2, to her current partner. This is not a BP -swap
(and hence not an FR-swap) because it matches Agent 4 with Agent 5, who
prefers to stay with her current partner, and Agent 6 with Agent 2, who prefers
to stay with her current partner.

Stability can now be defined according to the different notions of rational
swaps. A matching μ is σ-stable, for σ ∈ {FR,ER,BP}, if no σ-swap can be
performed from matching μ. A sequence of σ-swaps, for σ ∈ {FR,ER,BP}, cor-
responds to a sequence of matchings (μ0, μ1, . . . , μr) such that a σ-swap trans-
forms each matching μt into matching μt+1 for every 0 ≤ t < r. Then, matching
μ is σ-reachable from initial matching μ0 if there exists a sequence of σ-swaps
(μ0, μ1, . . . , μr) such that μr = μ. When the context is clear, we omit σ and the
initial matching μ0.

A σ-dynamics is defined according to initial matching μ0 and a type σ of
rational swaps. The σ-dynamics is finite if all associated sequences of σ-swaps
terminate in a σ-stable matching, and it is said to converge if it is finite for every
initial matching μ0.
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In this article, we consider the following two decision problems related to the
convergence of dynamics to a Pareto-optimal matching.

∃-σ-ParetoSequence / ∀-σ-ParetoSequence
Input: Matching market, type σ of rational swaps
Question: Does there exist a sequence of σ-swaps terminating in a Pareto-

optimal σ-stable matching? /
Do all sequences of σ-swaps terminate in a Pareto-optimal σ-stable
matching?

In order to tackle these questions, we also study the stability and convergence
properties of the considered dynamics in the three types of matching markets.

4 Exchange Rational Swaps

In housing markets, every ER-swap represents a Pareto improvement. Hence,
since the number of agents and objects is finite, ER-dynamics always converges
and the existence of ER-stable matchings is guaranteed (simply because every
Pareto-optimal matching happens to be ER-stable). However, it may be impossi-
ble to reach a Pareto-optimal matching from a given matching by only applying
ER-swaps.

Proposition 1. ER-dynamics may not converge to a Pareto-optimal matching
in housing markets.

Proof. Consider a housing market with three agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : a � b � c
2 : b � c � a
3 : c � a � b

Observe that no ER-swap is possible in this instance, therefore the initial
matching (framed objects) is the unique ER-reachable matching. However, there
exists a unique Pareto-optimal matching (circled objects), and this matching is
different from the initial one. ��
Nevertheless, Damamme et al. [14] have shown that ER-dynamics always con-
verges to a Pareto-optimal matching in housing markets when the agents’ pref-
erences are single-peaked.

In marriage and roommate markets, an ER-stable matching may not exist,
even for single-peaked preferences (Cechlárova [11] and Alcalde [5] provide coun-
terexamples). However, it turns out that, when restricting preferences even fur-
ther to 1-Euclidean preferences, an ER-stable matching always exists, and, more-
over, the convergence to such a matching is guaranteed.

Proposition 2. ER-dynamics always converges in marriage and roommate
markets for 1-Euclidean preferences.
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Proof. Denote by E : N → R the embedding of the agents on the real line
such that their preferences are 1-Euclidean w.r.t. this embedding. Define as a
potential function f : μ → R the function which assigns to each matching
the sum of the distances on the real line between all the assigned pairs in the
matching, i.e., f(μ) =

∑
(i,j)s.t.µ(i)=j |E(i) − E(j)|. Now consider a sequence of

ER-swaps given by the sequence of matchings (μ0, μ1, . . . , μr). Between each μt

and μt+1, with 0 ≤ t < r, an ER-swap is performed, say w.r.t. pair (i, j) of
agents. By definition of an ER-swap, agents i and j prefer to exchange their
partners in μt, and thus, μt(j) �i μt(i) and μt(i) �j μt(j). This implies that
|E(i) − E(μt(j))| < |E(i) − E(μt(i))| and |E(j) − E(μt(i))| < |E(j) − E(μt(j))|.
But i and μt(j) are matched in μt+1, as well as j and μt(i). Since the rest of
the pairs remains unchanged between μt and μt+1, we get that f(μt+1) < f(μt).
Because the number of different matchings is finite, we can conclude that ER-
dynamics always converges. ��

In general, an ER-stable matching may not be Pareto-optimal, and thus the
convergence to a Pareto-optimal matching is not guaranteed even when an ER-
stable matching exists (note that determining whether there exists an ER-stable
matching is NP-hard in both marriage and roommate markets [11,12]).

Proposition 3. ER-dynamics may not converge to a Pareto-optimal matching,
in marriage and roommate markets, even when an ER-stable matching exists.

Proof. Consider a marriage market with three women and three men. The pref-
erences are given below and the initial assignment is marked with frames.

w1 : m1 � m2 � m3

w2 : m2 � m3 � m1

w3 : m3 � m1 � m2

m1 : w1 � w3 � w2

m2 : w2 � w1 � w3

m3 : w3 � w2 � w1

No ER-swap is possible from the initial matching (framed agents), therefore the
initial matching is the unique ER-reachable matching. However, there is another
matching (circled agents) which is the unique Pareto-optimal matching.

Now, consider a roommate market with six agents. Preferences of the agents
are given below, where the initial partner of each agent is marked with frames
and “[. . . ]” denotes an arbitrary order over the rest of the agents.

1 : 3 � 2 � [. . . ] 4 : 6 � 3 � [. . . ]
2 : 5 � 1 � [. . . ] 5 : 2 � 6 � [. . . ]
3 : 1 � 4 � [. . . ] 6 : 4 � 5 � [. . . ]

No ER-swap is possible from the initial matching (framed agents), thus the
initial matching is the unique ER-reachable matching. However, there is another
matching (circled agents) which is the unique Pareto-optimal matching. ��

Note that the above preference profiles are not 1-Euclidean. In fact, they
are not even single-peaked. Again, more positive results can be obtained by
restricting the domain of admissible preferences.

Proposition 4. Every ER-stable matching is Pareto-optimal when preferences
are single-peaked in marriage and roommate markets.
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Proof. Let μ be an ER-stable matching. For any two agents i and j (in N for
roommate markets, or both in either W or M for marriage markets) it holds
that μ(i) �i μ(j) or μ(j) �j μ(i). Suppose there is another matching μ′ such
that μ′(i) 	i μ(i) for every i ∈ N and there exists j ∈ N such that μ′(j) �j μ(j).
Then, there exists a Pareto improving cycle from μ to μ′ along agents (n1, . . . , nk)
such that each agent ni, 1 ≤ i ≤ k, is matched in μ′ with agent μ(n(i mod k)+1).
For marriage markets, the agents in (n1, . . . , nk) are restricted by definition to
only one side of the market, but it impacts both sides since the agents exchange
agents of the other side. But there is no problem of preferences of the matched
agents because no agent is worse off in μ′ compared to μ. The same holds for
roommate markets. Since μ is ER-stable, it holds that k > 2. However, for single-
peaked preferences, one can prove, by following the same proof by induction as
Damamme et al. [14], that a Pareto improving cycle of any length cannot occur,
contradicting the fact that μ is Pareto dominated. ��

Propositions 2 and 4 allow us to conclude that sequences of ER-swaps will
always terminate in Pareto-optimal matchings when preferences are 1-Euclidean.

Corollary 1. ER-dynamics always converges to a Pareto-optimal matching in
marriage and roommate markets for 1-Euclidean preferences.

An interesting computational question is whether, given a preference pro-
file and an initial assignment, a Pareto-optimal matching can be reached via
ER-swaps. In the context of housing markets, the complexity of this question
was mentioned as an open problem by Damamme et al. [14]. It turns out that
this problem is computationally intractable for all kinds of matching markets
considered in this paper.

Theorem 1. ∃-ER-ParetoSequence is NP-hard in housing, marriage, and
roommate markets.

The proof is omitted due to space restrictions.

5 Blocking Pair Swaps

BP -swaps cannot occur in housing markets because objects can never be better
off. We therefore focus on matching markets that match agents with each other
in this section.

By definition of a blocking pair, any BP -stable matching is Pareto-optimal.
Moreover, a BP -stable matching always exists in marriage markets by the
Deferred Acceptance algorithm [16]. However, the convergence to such a state
is not guaranteed, even for single-peaked preferences [23]. Nevertheless, there
always exists a sequence of BP -swaps leading to a stable matching [26].2 In
roommate markets, even the existence of a BP -stable matching is not guar-
anteed [16], and actually this is the case even for single-peaked preferences.

2 Assuming that the old partners also form a new pair does not alter this result.
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Nevertheless, checking the existence of a stable matching in a roommate mar-
ket can be done in polynomial time [21], and there always exists a sequence of
BP -swaps leading to a stable matching when there exists one [15]. Therefore,
by combining these facts with the observation that every BP -stable matching is
Pareto-optimal, we get the following corollary.

Corollary 2. ∃-BP-ParetoSequence is solvable in polynomial time in mar-
riage and roommate markets.

However, in general, determining whether all sequences of BP -swaps termi-
nate in a Pareto-optimal matching, i.e., checking convergence of BP -dynamics
to a Pareto-optimal matching, is hard. This is due to the hardness of checking
the existence of a cycle in BP -dynamics.

Theorem 2. Determining whether BP-dynamics can cycle in marriage and
roommate markets is NP-hard.

The proof is omitted due to space restrictions.

Corollary 3. ∀-BP-ParetoSequence is co-NP-hard in marriage and room-
mate markets.

Nevertheless, when preferences are 1-Euclidean, we can always reach a stable
matching thanks to BP -dynamics in both settings.

Indeed, a marriage market under 1-Euclidean preferences is a particular case
of a correlated two-sided market [4] where all the possible pairs are globally
ranked [see, also 3]. In such a correlated market, the preferences of the agents
are induced from the global order by taking into account the order over the pairs
to which they belong. It has been proved that BP -dynamics always converges in
correlated marriage markets [4]. Moreover, it is easy to see that from 1-Euclidean
preferences, a global ranking over all possible pairs can be extracted by sorting
all pairs according to the distance on the real line between the two partners.3

Therefore, we obtain the following corollary.

Corollary 4. BP-dynamics always converges in marriage markets for 1-
Euclidean preferences.

In roommate markets, there always exists a unique BP -stable matching under
1-Euclidean preferences [6]. We further prove that convergence to this matching
is guaranteed using a potential function argument.

Proposition 5. BP-dynamics always converges in roommate markets for 1-
Euclidean preferences.

3 The presence of a global ranking over all possible pairs does not imply that pref-
erences are 1-Euclidean. Consider for instance, in roommate markets, the following
preference profile: 1 : 2 � 3 � 4, 2 : 1 � 4 � 3, 3 : 4 � 1 � 2, 4 : 3 � 2 � 1.
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Proof. Denote by E : N → R the embedding of the agents on the real line
such that their preferences are 1-Euclidean w.r.t. this embedding. Let d(μ) be
the n/2-vector of distances in E of all the different pairs in μ, i.e., d(μ) =
(|E(i) − E(j)|)i,j s.t. µ(i)=j . Now consider a sequence of BP -swaps given by the
following sequence of matchings (μ0, μ1, . . . , μr). Then, between each pair of
matchings μt and μt+1 with 0 ≤ t < r, a BP -swap is performed, say w.r.t.
blocking pair (i, j) of agents. By definition of a BP -swap, agents i and j prefer
to be together than being with their partner in μt, so j = μt+1(i) �i μt(i)
and i = μt+1(j) �j μt(j), which implies that |E(i) − E(j)| < |E(i) − E(μt(i))|
and |E(i) − E(j)| < |E(j) − E(μt(j))|. Therefore, (|E(i) − E(j)|, |E(μt(i)) −
E(μt(j))|) is lexicographically smaller than (|E(i)−E(μt(i))|, |E(j)−E(μt(j))|).
Since the rest of the pairs remains unchanged between μt and μt+1, d(μt+1) is
lexicographically strictly smaller than d(μt). Because the number of different
matchings is finite, we conclude that BP -dynamics always converges. ��

Since every BP -stable matching is Pareto-optimal, Corollary 4 and Proposi-
tion 5 imply the following corollary.

Corollary 5. BP-dynamics always converges to a Pareto-optimal matching in
marriage and roommate markets for 1-Euclidean preferences.

6 Fully Rational Swaps

Just as in the case of ER-swaps and housing markets, FR-swaps always represent
Pareto improvements because all involved agents are strictly better off after the
swap. Hence, FR-stable matchings are guaranteed to exist because every Pareto-
optimal matching is FR-stable and FR-dynamics always converges because the
number of agents is finite.

In Sect. 4, we have shown that ER-dynamics always converges to a Pareto-
optimal matching when the preferences of the agents are 1-Euclidean. It turns
out that this does not hold for FR-dynamics.

Proposition 6. A sequence of FR-swaps may not converge to a Pareto-optimal
matching in marriage and roommate markets, even for 1-Euclidean preferences.

Proof. Consider a marriage market with three women and three men. The pref-
erences are given below, where the initial assignment is marked with frames.

w1 : m1 � m3 � m2

w2 : m3 � m1 � m2

w3 : m2 � m1 � m3

m1 : w1 � w3 � w2

m2 : w3 � w1 � w2

m3 : w2 � w1 � w3

The initial matching is the only reachable matching, because no FR-swap is
possible in this matching. However, there is another matching (circled agents)
which is not reachable but which Pareto dominates this only reachable matching.
The preferences are 1-Euclidean w.r.t. the following embedding on the real line.
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m2 w3 w1 m1 m3 w2

Now, consider a roommate market with six agents. The preferences of the
agents are given below, where the initial assignment is marked with frames.

1 : 2 � 3 � 4 � 5 � 6
2 : 1 � 3 � 4 � 5 � 6
3 : 4 � 2 � 1 � 5 � 6

4 : 3 � 2 � 5 � 1 � 6
5 : 6 � 4 � 3 � 2 � 1
6 : 5 � 4 � 3 � 2 � 1

The initial matching is the only reachable matching, because there is no FR-
swap from this matching. However, there is another matching (circled agents)
which is not reachable but which Pareto dominates this only reachable matching.
The preferences are 1-Euclidean w.r.t. the following embedding on the real line.

1 2 3 4 5 6

��
The proof of Theorem 1 only dealt with instances in which FR-swaps

are identical to ER-swaps. We thus immediately obtain hardness of ∃-FR-
ParetoSequence.

Theorem 3. ∃-FR-ParetoSequence is NP-hard in marriage and roommate
markets.

Table 1. Summary of the results on the existence of a stable matching (Stable), the
guarantee of convergence (Conv) and the guarantee of convergence to a Pareto-optimal
matching (Pareto) for the three different matching markets under study, according
to different types of rational swaps and under different preference domains (General,
single-peaked (SP), and 1-Euclidean (1-D)). The only meaningful type of rational swaps
in housing markets are exchange-rational swaps; hence, the empty spaces.

Market Prefs Exchange rational swaps Blocking pair swaps Fully rational swaps

Stable Conv Pareto Stable Conv Pareto Stable Conv Pareto

Housing General ✓ ✓ – (Prop. 1)

SP ✓ ✓ ✓ [14]

1-D ✓ ✓ ✓

Marriage General – – – ✓ [16] – – ✓ ✓ –

SP – [11] – – ✓ – – ✓ ✓ –

1-D ✓ ✓ ✓ (Prop. 2) ✓ ✓ ✓ (Cor. 4) ✓ ✓ – (Prop. 6)

Roommate General – – – – [16] – – ✓ ✓ –

SP – [5] – – – – – ✓ ✓ –

1-D ✓ ✓ ✓ (Prop. 2) ✓ ✓ ✓ (Prop. 5) ✓ ✓ – (Prop. 6)
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7 Conclusion

We have studied the properties of different dynamics of rational swaps in match-
ing markets with initial assignments and, in particular, the question of conver-
gence to a Pareto-optimal matching. For all considered settings, the dynamics
may not terminate in a Pareto-optimal matching because (i) there is no stable
matching, (ii) the dynamics does not converge, or (iii) the stable matching that
is eventually reached is not Pareto-optimal. An overview of our results is given
in Table 1.

Computationally, determining whether there exists a sequence of rational
swaps terminating in a Pareto-optimal matching is NP-hard for fully rational
swaps and exchange rational swaps in all matching markets (Theorems 1 and 3).
For swaps based on blocking pairs, this problem can be solved efficiently (Corol-
lary 2). However, the convergence to a Pareto-optimal matching is co-NP-hard to
decide (Corollary 3). Since determining the existence of a sequence of fully rational
or exchange rational swaps terminating in a Pareto-optimal matching is already
hard, we did not investigate the complexity of convergence to a Pareto-optimal
matching (which means that all sequences terminate) for these swaps. We leave it
as an open problem that we conjecture to be hard.

The convergence to a Pareto-optimal matching in housing markets for
exchange rational dynamics and single-peaked preferences [14] does not hold
for more general settings where the “objects” are agents who have preferences.
However, this convergence is guaranteed under 1-Euclidean preferences in mar-
riage and roommate markets. Hence, the generalization of this convergence result
to more general settings requires more structure in the preferences.

A natural extension of this work would be to study meaningful dynamics for
hedonic games, where agents form groups consisting of more than two agents.
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Abstract. The classical Hotelling game is played on a line segment
whose points represent uniformly distributed clients. The n players of
the game are servers who need to place themselves on the line segment,
and once this is done, each client gets served by the player closest to it.
The goal of each player is to choose its location so as to maximize the
number of clients it attracts.

In this paper we study a variant of the Hotelling game where each
client v has a tolerance interval, randomly distributed according to some
density function f , and v gets served by the nearest among the play-
ers eligible for it, namely, those that fall within its interval. (If no such
player exists, then v abstains.) It turns out that this modification sig-
nificantly changes the behavior of the game and its states of equilibria.
In particular, it may serve to explain why players sometimes prefer to
“spread out,” rather than to cluster together as dictated by the classical
Hotelling game.

We consider two variants of the game: symmetric games, where clients
have the same tolerance range to their left and right, and asymmetric
games, where the left and right ranges of each client are determined
independently of each other. We characterize the Nash equilibria of the
2-player game. For n ≥ 3 players, we characterize a specific class of strat-
egy profiles, referred to as canonical profiles, and show that these profiles
are the only ones that may yield Nash equilibria in our game. Moreover,
the canonical profile, if exists, is uniquely defined for every n and f . In
the symmetric setting, we give simple conditions for the canonical profile
to be a Nash equilibrium, and demonstrate their application for several
distributions. In the asymmetric setting, the conditions for equilibria are
more complex; still, we derive a full characterization for the Nash equi-
libria of the exponential distribution. Finally, we show that for some
distributions the simple conditions given for the symmetric setting are
sufficient also for the asymmetric setting.

Keywords: Hotelling games · Pure nash equilibria · Uniqueness of
equilibrium

1 Introduction

Background and Motivation. The Hotelling game, introduced in the sem-
inal [14], is a widely studied model of spatial competition in a variety of con-
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texts, ranging from the placement of commercial facilities, to the differentiation
between similar products of competing brands, to the positioning of candidates
in political elections. The well known toy example is as follows: two ice cream
vendors choose a location on a beach strip. Beach goers are uniformly distributed
on the beach, and each buys ice cream from the closest vendor. The goal of each
vendor is to maximize the number of customers he receives. The well known
result is that the only Nash equilibrium is for both vendors to locate at the
median. This explains why sellers bunch together, but also why political can-
didates tend to have very similar platforms, converging on the opinion of the
median voter.

However, there are many cases to which this observation does not apply.
In the commercial setting, introducing price competition has been shown to
cause competitors to differentiate in location [5,16]. Additional factors with
a dispersing affect include transportation costs [16], congestion [1,12,17], and
queues [15,18]. Nevertheless, those considerations do not apply to the political
setting, and explaining how a polarized political space may emerge [13] remains
a limitation of Hotelling’s model. Our motivating question in this paper con-
cerns identifying and understanding some of the factors of the Hotelling game
that drive competitors to disperse rather then cluster together. Our results pro-
vide a possible explanation of why in some settings it would pay off for political
candidates or firms to diverge from their competition.

The model we study is motivated by the following insightful observation,
pointed out by several other authors [2,11,19]. One of the key assumptions at
the basis of the Hotelling model is that clients will always go to the closest
vendor, no matter how far he is. This assumption might be problematic in some
settings. In the political context, for instance, the assumption means that voters
may be willing to compromise their beliefs to an unlimited extent. In reality, this
is not necessarily valid; it is possible that if no candidate presents sufficiently
close opinions, the voter may simply abstain from voting. To address this issue,
we adopt a modified variant of the Hotelling game, introduced and studied in [2,
11,19], in which clients (voters, in the political context) have a limited tolerance
interval, and a client will choose only players (candidates, in the political context)
that fall within her tolerance interval. In our model the interval boundaries are
chosen randomly, as each client has a different tolerance threshold (reflecting
different degrees of openness to other political views).

It is important to note that our model deviates from the previous models
in two central ways. First, in our game, the player that the client chooses from
among the eligible players (falling within her tolerance interval) is not arbitrary
but rather the closest one (breaking ties uniformly at random). This expresses
the intuition that while a voter may be open minded and willing to vote to a
candidate with a vastly divergent standpoint, she would still rather vote to a can-
didate that closely agrees with her own opinions provided one exists. Similarly,
the proverbial sunbather would prefer to visit a closer vendor, even if she is will-
ing to travel a longer distance when necessary. In this sense, our model maintains
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Hotelling’s original intuition while capturing the realization that clients would
not choose players that are too distant.

The second difference between our model and previous ones has to do with
symmetry. Recently, a growing concern for the political discourse in western
democracies is the phenomenon of echo chambers [13], namely, social media
settings such as discussion groups and forums, in which one is exposed exclusively
to opinions that agree with, and enhance, her own1. This phenomenon tends to
“shorten” the tolerance intervals of individual voters. But more importantly, we
note that the echo chamber effect is very likely to act in a one-sided manner,
making a voter more receptive to views on one side of the political spectrum
than the other. Hence in certain settings, it is unreasonable to assume that a
client has the same tolerance bounds on both sides.

To take such settings into account, we consider two variants of the game:
symmetric games, where clients have the same range of tolerance to their left
and right, which expresses the willingness of a client to go a certain distance,
with no preference of direction, and asymmetric games, where the left and right
ranges of each client are determined independently of each other, which captures
settings where the scope of views each client is exposed to may be biased due to
media bias, one-sided echo chambers, or tendencies in her local environment.

It may be natural to expect our results to depend heavily on the distribution
according to which client tolerances are chosen. Surprisingly, it turns out that
most of our general findings apply to a wide class of distributions.

Contributions. In our model, the left and right tolerance ranges of each client
are randomly distributed according to a given density f . Hence a game G(n, f)
is determined by the number of players n and the distribution function f . We
consider two variants: symmetric games, where the left and right ranges of each
client are equal, and asymmetric games, where the left and right ranges of each
client are independent and identically distributed random variables.

We first characterize the Nash equilibria of the 2-player game (Theorem 2).
For n ≥ 3, we identify a specific class of strategy profiles, referred to as canonical
profiles, where the distance between every pair of neighboring players is constant,
and the distance from the leftmost player to 0 (a.k.a. the left hinterland) is the
same as the distance from the rightmost player to 1 (the right hinterland).

We then show that canonical profiles are the only ones that may yield Nash
equilibria in our game, namely, if there is an equilibrium then it must be canon-
ical (Theorem 3). Moreover, the canonical profile, when it exists, is uniquely
defined for every n and f . Hence, given a specific game G(n, f), our problem is
reduced to considering whether the canonical profile is a Nash equilibrium for
given values of n and f .

1 There are several reasons this phenomenon is increasingly prevalent online. First,
exposure to content is curated by algorithms according to each user’s personal pref-
erences. Second, on social media, users are more likely to share with their network
content that agrees with their own opinion. Third, it has become increasingly easier
to join private discussion groups that consist of like-minded individuals.
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In the symmetric setting we give simple conditions for the canonical profile
to be a Nash equilibrium, and demonstrate their application for several distribu-
tions. In the asymmetric setting, the conditions for equilibria are more complex,
but we show that for some distributions, existence of a Nash equilibrium in the
symmetric setting implies its existence in the asymmetric setting (Theorem 4).
Finally, we show that even though Theorem 4 does not apply for the exponen-
tial distribution, it is still possible to derive a full characterization of its Nash
equilibria. Specifically, for the exponential distribution of parameter λ in the
asymmetric setting, we show that a Nash equilibrium exists for the n-player
game if and only if λ ≥ λmin(n), for some threshold function λmin(n) (Theo-
rem 5). Additionally, we show a way to efficiently approximate the values of
λmin(n) to any precision.

Related Work. Hotelling’s model and its many variants have been studied
extensively. Downs [7] extended the Hotelling model to ideological positioning
in a bipartisan democracy. It is remarkable to note that even in Downs’ original
work it was stipulated that extremists would rather abstain than vote to cen-
ter parties, but no mathematical framework was provided for this property of
the model. Our work formalizes Downs’ original intuition. Eaton and Lipsey [8]
extended Hotelling’s analysis to any number of players and different location
spaces. Our model is a direct extension of their n-player game on the line seg-
ment. d’Aspremont et al. [5] criticized Hotelling’s findings and showed that when
players compete on price as well as location, they tend to create distance from
one another, otherwise price competition would drop their profit to zero. Our
results show a differentiation in location in the n-player Hotelling game without
introducing price competition. A large portion of the Hotelling game literature
is dedicated to models with price competition. We, however, exclusively con-
sider pure location competition models since they apply more directly to certain
settings, such as the political one. Eiselt, Laporte and Thisse [10] provide an
extensive comparison of the different models classified by the following charac-
teristics: the number of players, the location space (e.g., circle, plane, network),
the pricing policy, the behavior of players, and the behavior of clients. (For more
recent surveys see Eiselt et al. [9] and Brenner [3].)

Randomness in client behavior was introduced by De Palma et al. [6]. Their
model assumes client behavior has an unpredictable component due to unquan-
tifiable factors of personal taste, and thus clients have a small probability of
“skipping” the closest player and buying from another. In their model, all play-
ers would locate at the center in equilibrium, reasserting Hotelling’s conclusion.
In our model, clients exhibit randomness in their choice of players as well, but
in equilibrium players create a fixed distance from their neighbors.

Feldman et al. [11] introduced the Hotelling model with limited attraction,
where, similarly to our model, clients are unwilling to travel beyond a certain
distance. They considered a simplified variant of the model where each player
has an attraction interval of width w for some fixed w. Their model admits an
equilibrium for any number of players. Moreover, for most values of w, there
exist infinitely many equilibria. (In contrast, our model admits at most a single
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Nash equilibrium with a distinct structure.) Shen and Wang [19] extend the
model of [11] to general distributions of clients. Ben-Porat and Tennenholz [2]
consider random ranges of tolerance, and show that their game behaves like a
cooperative game, since player payoffs are equal to their Shapley values in a
coalition game. Their analysis relies on the fact that their game is a potential
game, which does not hold for our model. As explained above, our model diverges
from these studies in other ways. In particular, in our model, clients are not
allowed to “skip” over players, and must choose the closest player within their
tolerance interval, whereas the previous studies assume clients are indifferent
between players within their range of tolerance. Also, our model introduces the
notion of asymmetric ranges of tolerance, which has not been considered before.

2 Model

Consider a setting in which clients are uniformly distributed along the inter-
val [0, 1]. A client is represented as a point v ∈ [0, 1], denoting her preference
along the interval [0, 1]. Clients are non-strategic. The strategic interaction in
our model occurs between a finite set N = {1, . . . , n} of players. The set of
strategies for a player is to choose a point in the interval [0, 1]. Let si ∈ [0, 1]
denote the strategy of player i, 1 ≤ i ≤ n. A strategy profile is given by a vector
of player locations s = (s1, . . . , sn). Let s−i denote the profile of actions of all
the players different from i. Slightly abusing notation, we denote by (s′

i, s−i) the
profile obtained from a profile s by replacing its ith coordinate si with s′

i. We
assume without loss of generality that 0 ≤ s1 ≤ · · · ≤ sn ≤ 1. For the sake of
notational convenience, we denote s0 = 0 and sn+1 = 1.

Each client v has left and right ranges of tolerance denoted BR
v and BL

v

respectively. The tolerance interval of client v is defined as Iv = [v − BL
v , v +

BR
v ]. The client v supports the closest player within its tolerance interval. If

there exists more than one closest player, then v chooses one of the closest
players uniformly at random. Formally, X(s) = {si | 1 ≤ i ≤ n} is the set of
locations occupied by a player under s. For every client v the set of occupied
locations inside v’s tolerance interval is denoted Tv(s) = X(s) ∩ Iv. Let Av(s) =
arg minx∈Tv(s) |x− v| be the location v is attracted to. This set contains at most
two locations, one to each side of v, but it is convenient to break ties by selecting
the location on the left2, i.e., if Av(s) = {si, sj} such that si < sj , we modify
Av(s) to be {si}. For every player i and location x, the attraction of v to location
x ∈ X(s) is given by

ωv,x(s) = Pr [v is attracted to a player in location x] = Pr [{x} = Av(s)] .

We consider BR
v , BL

v to be non-negative random variables drawn from the
same distribution D independently for all clients v. We consider two variants of

2 There are at most n− 2 points which are at equal distances from the nearest player
on the right and on the left, and given that there is a continuum of clients in total,
modifying Av(s) in those points does not affect player utilities.
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the game: symmetric and asymmetric. In the symmetric variant, BR
v = BL

v , for
every client v. In the asymmetric variant, BR

v and BL
v are independent identi-

cally distributed random variables, for every client v. Throughout the paper,
we denote by f : [0, 1] → [0, 1] the probability density function of D, and
the cumulative distribution function is denoted as F : [0, 1] → [0, 1]. That is,
F (t) = Pr[BR

v ≤ t] = Pr[BR
t ≤ t]. Additionally, for the analysis it is convenient

to define F̄ (t) = 1 − F (t) = Pr[BR
t ≥ t].

Given a strategy profile s = (s1, . . . , sn), two players i, j ∈ N are said to
be colocated if si = sj . For i ∈ N , the set of i’s colocated players is defined as
Γi = {j ∈ N | sj = si}, and the size of this set is γi = |Γi|. A player that is not
colocated with other players is called isolated. Two players are called neighbors if
no player is located strictly between them. A left (resp., right) peripheral player
is a player that has no players to its left (resp., right). The players divide the
line into regions of two types: internal regions, which are regions between two
neighbors, and two hinterlands, which include the region between 0 and the left
peripheral player, and the region between the right peripheral player and 1. (See
Fig. 1, where the two hinterlands are marked by a.)

For i ∈ N , player i’s left and right neighbors are L(si) = maxx∈X(s){x < si}
and R(sj) = minx∈X(s){x > si}, respectively. Namely, these are the closest
occupied player locations on either side of player i. We define L(si) = 0 when
i does not have a left neighbor and R(si) = 1 when i does not have a right
neighbor. Define the total utility at the location of player i as

Ui(s) = UL
i (s) + UR

i (s) =
∫ R(si)

L(si)

ωv,si
(s)dv ,

where UL
i (s) and UR

i (s) are the left and right total utilities at player i’s location,

UL
i (s) =

∫ si

L(si)

ωv,si
(s)dv and UR

i (s) =
∫ R(si)

si

ωv,si
(s)dv .

The total utility of player i represents the total amount of clients attracted to
location si (either to player i itself or to some colocated player j ∈ Γi). The
utility, left utility and right utility of player i are defined to be

ui(s) = uL
i (s)+uR

i (s) =
Ui(s)

γi
, uL

i (s) =
UL

i (s)
γi

and uR
i (s) =

UR
i (s)
γi

.

To summarize, our game is fully defined by the number of players n, the prob-
ability density function of client tolerances f , and whether the setting symmetric
or asymmetric. Let GS = GS(n, f) be the game under the symmetric setting,
and let GA = GA(n, f) be the game under the asymmetric setting. When mak-
ing a claim that applies to both the symmetric and asymmetric setting we will
use the notation G = G(n, f).

Given a profile s, s′
i ∈ [0, 1] is an improving move for player i if ui(s′

i, s−i) >
ui(s). s∗

i ∈ [0, 1] is a best response for player i if ui(s∗
i , s−i) ≥ ui(s′

i, s−i) for every
s′

i ∈ [0, 1]. A profile s∗ is a Nash equilibrium if no player has an improving move,
i.e., for every i ∈ N and every si ∈ [0, 1], ui(s∗) ≥ ui(si, s∗

−i).
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3 Canonical Profiles as the only Possible Equilibria

In this section we characterize a specific class of strategy profiles, referred to as
canonical profiles, and show that these profiles are the only ones that may yield
Nash equilibria in our game (namely, if there is an equilibrium then it must be
canonical). We then show that each game G(n, f) admits a unique canonical
profile, sn,f , if one exists. This significantly simplifies later analysis and explains
why the game presents similar behavior for every number of players n ≥ 3. We
conclude this section with a set of necessary and sufficient conditions for a given
canonical profile to be a Nash equilibrium. Consequently, for every subclass of the
game considered in the following sections, it suffices to consider these conditions
to either find the entire set of Nash equilibria of a game G(n, f) provided one
exists, or prove that the game admits no Nash equilibrium.

Calculating Utilities. Note that the utilities in our game are locally defined,
i.e., the utility of player i is independent of the location of players outside the
interval [L(si), R(si)]. This is due to fact that a player i may only attract clients
from within i’s adjacent regions. Moreover, the attraction ωv,si

of a client v ∈
[L(si), R(si)] to the location of player i depends only on the distance |v − si|,
the length of the region v is inside, and whether it is a hinterland or an internal
region. It follows that the game G(n, f) is uniquely determined by the following
two functions:

H(x) =
∫ x

0

Pr
[
BR

t ≥ t
]
dt (1)

M(x) =
∫ x

2

0

Pr
[
BL

t ≥ t
]
dt +

∫ x

x
2

Pr
[
BL

t ≥ t ∧ BR
t < x − t

]
dt (2)

Intuitively, H(x) (respectively, M(x)) denotes the expected amount of sup-
port an isolated player gains from a hinterland (resp., an internal region) of
length x. Note that in the symmetric setting, we have that BL

v = BR
v for every

client v ∈ [0, 1] and therefore, for every t ∈ [x/2, x], Pr[BL
t ≥ t ∧ BR

t < x−t] = 0 .
However, in the asymmetric setting, BL

v and BR
v are independent random vari-

ables and thus Pr[BL
t ≥ t ∧ BR

t < x−t] = Pr[BL
t ≥ t] ·Pr[BR

t < x−t] . Recalling
that F (t) = Pr[BR

t ≤ t] the next observation follows.

Observation 1. For a symmetric game GS(n, f), the functions H and M are

H(x) =
∫ x

0

(1 − F (t))dt , M(x) =
∫ x

2

0

(1 − F (t))dt .

For an asymmetric game GS(n, f), the functions H and M are

H(x) =
∫ x

0

(1−F (t))dt , M(x) =
∫ x

2

0

(1−F (t))dt+
∫ x

x
2

(1−F (t))F (x− t)dt
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As BL
v and BR

v are drawn from the same distribution for all v ∈ [0, 1], we get

Lemma 1. For any game G = G(n, f), profile s and i ∈ N ,

UL
i (s) =

{H(si), i is left peripheral;
M(si − L(si)), otherwise.

UR
i (s) =

{H(1 − si), i is right peripheral;
M(R(si) − si), otherwise.

As an illustrative example, consider the profile s = (0.2, 0.5, 0.6) in a three
player game G(3, f). Then u1(s) = H(0.2) + M(0.3), u2(s) = M(0.3) + M(0.1)
and u3(s) = M(0.1) + H(0.4).

It is possible to define any game G(n, f) by simply determining H(x) and
M(x). In fact, these functions may be used to define many other variants of the
Hotelling model not considered within the scope of this paper. Throughout this
section, we will not use the explicit formulas for H(x) and M(x) and our results
do not depend on these formulas. Instead, we derive our results based solely on
the assumption that for the game under consideration, H(x) and M(x) satisfy
the following properties:

(HM1) H and M are twice differentiable, concave and monotonically increasing,
i.e., for x ∈ [0, 1), H′(x) > 0, M′(x) > 0, H′′(x) < 0 and M′′(x) < 0.

(HM2) For x ∈ [0, 1], H(x) ≥ M(x).
(HM3) H(0) = M(0) = 0 .

Therefore, our results in this section are general and apply to any game G(n, f)
where (HM1), (HM2) and (HM3) are satisfied.

Optimizing Utilities Locally. We next extablish the optimal (maximum-
utility) location of each player i when fixing the locations of the other players
and assuming i can only move between its neighbors, but not “jump” over a
neighbor. Consider a peripheral player, and suppose its neighbor is at distance
0 ≤ x ≤ 1 from the endpoint. For 0 ≤ t ≤ x, denote by θx(t) the utility of a
peripheral player when its hinterland is of length t, and by μx(t) the utility of
an internal player i with si − L(si) = t and R(si) − L(si) = x. By Lemma 1,

θx(t) = H(t) + M(x − t) and μx(t) = M(t) + M(x − t).

Remark. To keep θ and μ continuous in the interval [0, t], we disregard the fact
that for x = t and x = 0 the player is colocated with one of its neighbors, and
assume all its payoff comes from the same interval of length t. By Lemma 5, this
assumption does not affect the analysis of the Nash equilibria of the game.

Hereafter, proofs are deferred to the full paper.

Lemma 2. Let G be game satisfying (HM1), (HM2), (HM3). For x ∈ [0, 1],

(a) θx and μx are strictly concave functions of t.
(b) t = x/2 is the unique maximum of μx in [0, x].
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(c) If H′(x) > M′(0), then θx is strictly increasing in [0, x].
(d) If H′(x) ≤ M′(0), then t∗ is the unique maximum of θx in [0, x], where t∗

is the unique solution of the equation H′(t∗) = M′(x − t∗) .

Let ρ(x) denote the unique maximum of θx in the interval [0, x]. By Lemma 2,
the function ρ : [0, 1] → [0, 1] is well defined, and is given by

ρ(x) =
{

x, if H′(x) > M′(0);
t∗, if H′(x) ≤ M′(0),

where t∗ is the unique solution of H′(t∗) = M′(x − t∗). We next show several
properties of ρ(x) that will be used in the proofs of our main results.

Lemma 3. Let x < y, for x, y ∈ [0, 1]. Then

(a) If H′(x) ≤ M′(0), then H′(ρ(x)) ≤ M′(0).
(b) ρ(x) ≤ ρ(y).
(c) θx(ρ(x)) ≤ θy(ρ(y)).

Nash Equilibria. Let us now characterize the stable profiles that lead to a
Nash equilibrium for a given game G(n, f). The pair 〈a, b〉, a, b ∈ [0, 1], is called
a canonical pair if a and b satisfy the following equations:

H′(a) = M′(b) (3)
2a + (n − 1)b = 1 (4)

A canonical pair induces a profile sn,f for the game G(n, f), such that

sn,f
i = a + (i − 1)b

for every i ∈ N (see Fig. 1). We refer to this profile as a canonical profile.

Fig. 1. A canonical profile.

Lemma 4. A game G satisfying (HM1), (HM2), (HM3) has a canonical pair if
and only if H′(1/2) ≤ M′(0). Moreover, if such a pair exists then it is unique.

Theorem 2. Let G be a game satisfying (HM1), (HM2) and (HM3), and let
n = 2. The game G has a unique Nash equilibrium, which is given by

s∗ =
{

sn,f , if H′(1/2) ≤ M′(0);(
1
2 , 1

2

)
, otherwise.
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For n ≥ 3 players, we show that the only possible Nash equilibrium is the
canonical profile. We make use of the following claim.

Lemma 5. Let G be a game satisfying (HM1), (HM2) and (HM3), and let n ≥
3. If s is a Nash equilibrium then no two players are colocated in s.

Theorem 3. Let G be a game satisfying (HM1), (HM2) and (HM3), and let
n ≥ 3. If the game G admits a Nash equilibrium, then it is unique and equal to
the canonical profile sn,f .

Lemma 6. Let G be a game satisfying (HM1), (HM2) and (HM3), and let n ≥
3. Let sn,f be the canonical profile of G, with a corresponding canonical pair
〈a, b〉. Then sn,f is a Nash equilibrium if and only if

H(a) + M(b) ≥ 2M
(

b

2

)
,

H(ρ(a)) + M(a − ρ(a)) ≤ 2M(b) .

4 Symmetric Range Distributions

In this section we consider the symmetric game GS(n, f), where the range of each
client v satisfies BL

v = BR
v . We first show that the game satisfies assumptions

(HM1), (HM2) and (HM3), which allows us to use all the results of Sect. 3.

Lemma 7. Let GS(n, f) be a game such that f is continuously differentiable
and has full support (i.e., f(x) > 0 for all x ∈ [0, 1]), then GS(n, f) satisfies
assumptions (HM1), (HM2) and (HM3).

Due to Lemma 7, we may apply Theorems 2 and 3 to the game GS(n, f) and
we thus obtain the following two corollaries.

Corollary 1. Let n = 2, and let f be continuously differentiable and have full
support (i.e., f(x) > 0 for all x ∈ [0, 1]). Then the game GS(2, f) has a unique
Nash equilibrium, which is given by

s∗ =
{

sn,f , if F̄ (1/2) ≤ 1/2;(
1
2 , 1

2

)
, otherwise,

where sn,f is the canonical profile, with a corresponding canonical pair 〈a, b〉,
where a and b are given implicitly by the equation F̄ (a) = F̄ (b/2)/2 .

Corollary 2. Let n ≥ 3. For every game GS(n, f) where f is continuously
differentiable and has full support (i.e., f(x) > 0 for all x ∈ [0, 1]), if GS admits
a Nash equilibrium then it is unique (up to renaming the players) and equal to
the canonical profile sn,f , with a corresponding canonical pair 〈a, b〉, where a and
b are given implicitly by the equation F̄ (a) = F̄ (b/2)/2 .
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Lemma 8. Under the symmetric game GS(n, f), the function ρ : [0, 1] → [0, 1]
satisfies that ρ(x) > x/3, for all x ∈ [0, 1].

Lemma 9. The game GS(n, f) as in Lemma 7, for n ≥ 3, admits a Nash
equilibrium if and only if H(ρ(a))+M(a−ρ(a)) ≤ 2M(b), where ρ(a) is defined
implicitly by the equation F̄ (ρ(a)) = F̄ ((a − ρ(a))/2)/2.

We conclude the discussion of symmetric games with a number of example
distributions and their equilibria states.

Uniform Distribution. This distribution, in which the range boundary param-
eter BL

v (= BR
v ) is drawn uniformly at random from [0, 1], was considered by

Ben-Porat and Tennenholtz [2] in a setting where clients are allowed to skip
over players. Here we show that, if “skipping” is not allowed, as in our model,
there is no Nash equilibrium for n ≥ 3. For n = 2, the only Nash equilibrium
is (1/2, 1/2), where both players are colocated at the center. The probability
density function and corresponding cumulative density function are defined as

f(x) =
{

1, x ∈ [0, 1];
0, otherwise, F (x) =

⎧⎨
⎩

x, x ∈ [0, 1];
1, x ≥ 1;
0, otherwise.

Proposition 1. For the game GS(n, f), where f is the uniform distribution,
there exists a Nash equilibrium if and only if n = 2, and it is equal to the
strategy profile (1/2, 1/2).

Linear Distribution. Here we consider any distribution whose density is linear
and whose mass is entirely contained in [0, 1]. Specifically, assume

∫ 1

0
(rx+q)dx =

1, or rather q = 1 − r/2. For f(x) to be non-negative in [0, 1] we also need
−2 ≤ r ≤ 2. Then take

f(x) =
{

rx + q, x ∈ [0, 1];
0, otherwise, F (x) =

⎧⎨
⎩

r
2x2 + qx, x ∈ [0, 1];
1, x ≥ 1;
0, otherwise.

To make the analysis cleaner let us pick the two extreme examples of the param-
eters (r, q), namely, (−2, 2) and (2, 0).

Proposition 2. The game GS(n, f), where f is the linear distribution with coef-
ficients either (r1, q1) = (−2, 2) or (r2, q2) = (2, 0), has a Nash equilibrium if
and only if n = 2. For r1, q1, the only Nash equilibrium is (1/2, 1/2). For r2, q2,
the only (canonical) Nash equilibrium is given by the canonical pair

a =
2
√

2 + 1
2
√

2 + 2
and b =

√
2 − 1

1 + 1/
√

2
.

Remark. Intuitively, in the uniform distribution the players are forced to con-
verge towards the center. In comparison, in the linear distribution corresponding
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to (r2, q2) it is likelier for clients to have a large range, which means more clients
inside the hinterland will be covered by the peripheral player, so it will be ben-
eficial for it to move closer to its neighbor and have fewer clients contested by
another player, despite having a greater average distance to potential clients.

Pareto Distribution. The distribution Pareto(α, ξ) for parameters α > 0 and
ξ > 0 has density function and cumulative distribution function

f(x) =
{

0, x < ξ ;
αξα

xα+1 , x ≥ ξ ,
F (x) =

{
0, x < ξ ;
1 − (ξ/x)α

, x ≥ ξ .

Proposition 3. For the game GS(n, f), where f is the density of Pareto(α, ξ),
the canonical pair is given by

a =
21/α−1

n − 1 + 21/α
and b =

1
n − 1 + 21/α

, (5)

and it is a Nash equilibrium if and only if α ≥ z, where z is the unique solution
of the equation 21/z(2 + 21/z)z = 8 such that 0 < z < 1.

Exponential Distribution. The exponential distribution with parameter λ >
0 has density function and cumulative density function

f(x) =
{

0, x < 0 ;
λe−λx, x ≥ 0 ,

F (x) =
{

0, x < 0 ;
1 − e−λx, x ≥ 0 .

Proposition 4. For the game GS(n, f), where f is the density of the exponen-
tial distribution with parameter λ > 0, the canonical pair is given by

a =
1
n

(
1
2

+
(n − 1) ln 2

λ

)
and b =

1
n

(
1 − 2 ln 2

λ

)

and it is a Nash equilibrium if and only if λ ≥ ln 4 − n ln(4τ6
1 ), where τ1 =

6√2+
√

64+ 3√2
8·25/6 ≈ 0.65.

5 Asymmetric Range Distributions

In this section we consider the asymmetric game GA(n, f), where the range
boundaries of each client v, BL

v and BR
v , are drawn independently at random. As

in the previous section, we begin by showing that the game satisfies assumptions
(HM1), (HM2) and (HM3), allowing us to use the results of Sect. 3.

Lemma 10. Let GA(n, f) be a game such that f is continuously differentiable
and has full support (i.e., f(x) > 0 for all x ∈ [0, 1]), then GA(n, f) satisfies
assumptions (HM1), (HM2) and (HM3).

Due to Lemma 10, we may apply Theorems 2 and 3 to the game GA(n, f)
and we thus obtain the following two corollaries.
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Corollary 3. Let n = 2, and let f be continuously differentiable and have full
support (i.e., f(x) > 0 for all x ∈ [0, 1]). Then the game GA(2, f) has a unique
Nash equilibrium, which is given by

s∗ =
{

sn,f , if F̄ (1/2) ≥ 1/2;(
1
2 , 1

2

)
, otherwise,

where sn,f is the canonical profile, with a corresponding canonical pair 〈a, b〉,
where a and b are given implicitly by the equation

F̄ (a) =
1
2

(
F̄

(
b

2

))2

+
∫ b

b
2

F̄ (t)f(b − t)dt

Corollary 4. Let n ≥ 3. For every game GA(n, f) where f has full support
(i.e., f(x) > 0 for all x ∈ [0, 1]), if GA admits a Nash equilibrium it is unique
(up to renaming the players) and equal to the canonical profile 〈a, b〉 where a and
b are given implicitly by the equation

F̄ (a) =
1
2

(
F̄

(
b

2

))2

+
∫ b

b
2

F̄ (t)f(b − t)dt

Lemma 11. Under the asymmetric game GA(n, f), the function ρ : [0, 1] →
[0, 1] satisfies that ρ(x) > x/3, for all x ∈ [0, 1].

Lemma 12. The game GA(n, f) admits a Nash equilibrium if and only if
H(ρ(a))+M(a−ρ(a)) ≤ 2M(b), where ρ(x) is defined implicitly by the equation
F̄ (ρ(x)) = 1

2

(
F̄ ((a − ρ(x))/2)

)2 +
∫ a−ρ(x)

a−ρ(x)
2

F̄ (t)f(a − ρ(x) − t)dt.

Theorem 4. If GS(n, f) admits a Nash equilibrium and

∂

∂x

(∫ x

x
2

F̄ (t)F (b − t)dt

)
≥ 0,

then GA(n, f) admits a Nash equilibrium.

Again we conclude with a couple of example distributions and their equilibria.

Uniform Distribution. This is the same as the uniform distribution for sym-
metric games, except that both range boundary parameters BL

v and BL
v need to

be drawn uniformly at random. We have the following.

Proposition 5. For the game GA(n, f), where f is the uniform distribution,
there exists a Nash equilibrium if and only if n = 2, and it is equal to the
strategy profile (1/2, 1/2).

Exponential Distribution. Finally, we consider the game GA(n, f) where f is
the density function of the exponential distribution with parameter λ > 0. That
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is, the range of each client v is asymmetric and exponentially distributed, i.e.,
BL

v , BR
v ∈ Exp(λ). Slightly abusing notation, we refer to this game as GA(n, λ).

We dedicate special attention to this distribution for three main reasons. First,
the exponential distribution is commonly considered in geometric models, and
has been shown to apply to many real life situations. Second, the game GA(n, λ)
is mathematically equivalent to a fault-prone Hotelling game, studied in our
related paper [4]. In this game, faults occur at random along the line, and clients
cannot visit players separated from them by a random fault. Hence, our results
on the exponential distribution can be applied directly to fully characterize the
equilibria of another interesting variant of the Hotelling model. Finally, this
example demonstrates that even though the condition of Theorem 4 does not
always apply, and the condition given for the existence of Nash equilibria in
Lemma 12 is somewhat hard to work with, it is nevertheless possible to fully
analyze certain useful classes of client range distributions.

By Corollary 3, if n = 2 then the game always admits a Nash equilibrium,
which is the canonical profile if it exists, and (1/2, 1/2) otherwise. For n ≥ 3, the
following theorem characterizes a threshold function λmin(n) such that the game
GA(n, λ) admits a Nash equilibrium if and only if λ ≥ λmin(n). The analysis is
deferred to the full paper.

Theorem 5. GA(n, λ) for n ≥ 3 admits a Nash equilibrium if and only if
λ ≥ λmin(n) = (n + 1)α0 − 2 ln((1 + α0)/2), where α0 ∈ (0, 1) is the unique
constant given implicitly as the solution to the equations e−α(1+α) = e−2β(1+β)
and e−α (1 + α/2) = e−β (3/4 + β/2). Moreover, α0 ≈ 0.58813, implying that a
Nash equilibrium exists if and only if λ ≥ λmin(n) ≈ 0.58813n + 1.04931.
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Abstract. Rideshare platforms such as Uber and Lyft dynamically dis-
patch drivers to match riders’ requests. We model the dispatching process
in rideshare as a Markov chain that takes into account the geographic
mobility of both drivers and riders over time. Prior work explores dis-
patch policies in the limit of such Markov chains; we characterize when
this limit assumption is valid, under a variety of natural dispatch policies.
We give explicit bounds on convergence in general, and exact (includ-
ing constants) convergence rates for special cases. Then, on simulated
and real transit data, we show that our bounds characterize convergence
rates—even when the necessary theoretical assumptions are relaxed.
Additionally these policies compare well against a standard reinforce-
ment learning algorithm which optimizes for profit without any conver-
gence properties.

1 Introduction

Rideshare firms such as Uber, Lyft, and Didi Chuxing dynamically match riders
to drivers via an online, digital platform. Riders request a driver through an
online portal or mobile app; a driver is matched by the platform to a rider
based on geographic proximity, driver preferences, pricing, and other factors.
The rideshare driver then picks up the rider at her request location, transfers
her to her destination, and reenters the platform to be matched again—albeit at
a new geographic location. Part of the larger sharing economy, rideshare firms
are increasingly competitive against traditional taxi services due to their ease of
use, lower pricing, and immediacy of service [12].

Matching riders to rideshare drivers is nontrivial. While the core process is
a form of the well-studied online matching problem [21], current models devel-
oped in the EconCS, AI, and Operations Research communities [5,10,25] do not
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-35389-6_10
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completely capture the mobile aspects of both the drivers and riders. Drivers
and riders are agents who move about a constrained space (e.g., city streets),
becoming (in)active periodically due to the matching process. When a platform
receives a request, it must make a near-real-time dispatch decision amongst
nearby drivers who are available at the current time. The platform’s goal is to
maximize an objective (e.g., revenue or throughput) by servicing requests in an
online fashion, subject to various real-world constraints and challenges like set-
ting prices, predicting supply and demand, fairness considerations, competing
with other firms, and so on [3,7,15].

In this paper, we study the dynamics of the nascent rideshare market under
different dispatch strategies. Recent work uses Markov chains to model complex
ride-sharing dynamics in a closed-world system—that is, a system with a fixed
total supply of cars [3,5,25]. These assume the Markov chains reach their station-
ary distributions quickly, and thus all prior work optimizes for dispatch strategies
in the limit. As a complement, the present paper characterizes—theoretically
and empirically—when that limit assumption is valid under a variety of natural
strategies.

Our Contributions. The main contribution in this paper is to show both the-
oretically and empirically the convergence rate of many natural policies to the
stationary distribution. First, we model the dispatching problem in rideshare
platforms as a Markov chain. The number of states in this Markov chain is expo-
nential in the natural size of the problem; thus, unless the chain is rapidly mixing,
the time taken to reach the stationary distribution is prohibitively large. Next,
we consider two large natural classes of strategies and study the evolution of the
driver distribution theoretically. We show that the Markov chains are rapidly
mixing and give explicit bounds on the convergence rates. Then, we consider a
special case of uniform arrival rates and compute the convergence rates exactly,
including the constants. Finally, we conduct experiments on both simulated as
well as a real-world large-scale dataset to corroborate our findings. In particu-
lar, even when the assumptions needed by the theory do not necessarily hold,
simulations show that the convergence behavior does not change drastically, and
experiments on real data show that the theory gives direct insight on the con-
vergence properties in practice. Additionally, compared against a standard RL
algorithm, these policies perform similarly. Hence, our policies are simpler and
efficient to run with theoretical convergence guarantees while performing almost
as good as more complicated algorithms without such properties.

2 Preliminaries

In this section, we define the formal model used throughout the paper. We begin
with a brief primer on Markov chains, and then show how Markov chains can
be used to model rideshare markets.

Definition 1 (Markov chain). A Markov chain M is defined by a state space
Ω and a transition matrix P . P (x,y) represents the probability of reaching state
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y ∈ Ω, in one step, from state x ∈ Ω. P (x,y) does not depend on states which
the process was in prior to x ( i.e., it obeys the Markov property).

A central concept in Markov chain analysis is the notion of a limiting dis-
tribution and a stationary distribution. For two distributions μ and ν on the
state space Ω, the total variation distance between μ and ν is defined as
||μ − ν||TV = 1

2

∑
x∈Ω |μ(x) − ν(x)|. A distribution π∗ is said to be a stationary

distribution if π∗ = π∗P . A distribution π∗ is said to be a limiting distribution
if for every initial state x, we have that limt→∞ ||P t(x, ·) − π∗||TV = 0, where
P t(x, ·) denotes that distribution of states after t steps, starting at x.

To use Markov chains as an algorithmic tool, we need to understand the rate
of convergence to the stationary distribution, commonly called its mixing time.

Mixing Time τ(ε). Consider an irreducible and aperiodic Markov Chain M
with stationary distribution π∗. For a given t, let d(t) = maxx∈Ω ||P t(x, ·) −
π∗||TV . The mixing time of M is defined as τ(ε) = min{t : d(t′) ≤ ε,∀t′ ≥ t}.
We say M is rapidly mixing if τ(ε) = O

(
poly

(
log |Ω|

ε

))
.

In this paper, we consider a class of strategies (as motivated by, e.g., [10]) for
the rideshare problem and cast it as a natural Markov chain. We then consider
an objective function which depends on the limiting distribution of this chain
and study convergence properties of that objective function, using the mixing
properties of the Markov chain. We use Markov chains and relevant tools as the
central concepts in this paper. Levin and Peres [16] details classical results in
this space. The first algorithmic usage of Markov chain Monte Carlo (MCMC)
methods can be traced back to the classical works of Hastings [13], Metropolis et
al. [22], Metropolis and Ulam [23], commonly known as the Metropolis-Hastings
algorithm. MCMC methods are a powerful tool in machine learning and we refer
the reader to the survey [2].

A Markov Chain Model of Rideshare. We now define our Markov-chain-
based model of rideshare. Consider a two-dimensional grid U consisting of n
points (e.g., geographic locations). A request type r = (u, u′), represented by an
ordered pair of points, is a set of requests that start and end at locations u ∈ U
and u′ ∈ U , respectively. Let R = {r = (u, u′)|u ∈ U , u′ ∈ U} be the set of all
request types. Note that we allow request types r = (u, u)—that is, a request
that both starts and ends at the same point u ∈ U . This is just for notational
convenience.

Given a time horizon T , at each time (or round) t ∈ [T ] .= {1, 2, . . . , T}, a
request of type r is sampled from R with probability pr.1 Our goal is to design
a matching (or dispatching) scheme—assigning a driver (or car) to a request—
that maximizes an overall objective after T rounds. In this paper, we assume
that the sampling distribution {pr} in every round is identical and independently
distributed (IID) but unknown to the algorithms. For notational simplicity, we
also use r to denote a specific online request of type r when the context is clear.

1 We have
∑

r∈R pr ≤ 1. Thus, with probability 1 − ∑
r∈R pr, there is no request in

any given time.
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Dispatching Policy. Suppose the system has m identical drivers. We charac-
terize the state of the system by a vector x ∈ Z

n
+, where xu denotes the number

of drivers in location u. Then, we can construct a Markov chain with state space
Ω = {x : xu ∈ {0, 1, . . . , c},

∑
u xu = m}. In this paper, we assume that m � c·n

for some constant capacity c. A dispatching policy (or strategy) σ is a mapping
from Ω × R to U ∪ {∅} such that at time t and a state X(t), when a request r
comes, σ assigns that request r to a potential driver at location uσ = σ(X(t), r).2

Here uσ = ∅ denotes that the policy σ rejects request r. We say σ successfully
addresses the request r = (u, v) at t if X

(t)
uσ ≥ 1 and X

(t)
v < c. If σ successfully

addresses a request r, it receives a profit wr.

Neighborhood of u. For each point u ∈ U , let N (u) be the set of neighbors of u
with Manhattan distance3 exactly 1 to u, i.e., N (u) = {u′ ∈ U : |u − u′|M = 1},
where |u − u′|M denotes the Manhattan distance between u and u′. We can
assign each request with origin u only to a driver in the set {u} ∪ N (u).

Objective Functions. For a given policy σ, let W (σ, t) be the expected profit
obtained by the policy σ at time t. Denote IX := I(X(t)

uσ ≥ 1,X
(t)
v < c) which is

the indicator for the event X
(t)
uσ ≥ 1 and X

(t)
v < c. Thus the expected performance

of σ at time t and the expected average performance of σ over T rounds is,

W (σ, t) = E

[ ∑
r=(u,v)∈R pr · wr · IX

]
, (1)

Ŵ (σ, T ) = 1
T

∑T
t=1 W (σ, t). (2)

respectively. The randomness in the state X(t) depends on two sources: the
random arrival of requests from distribution {pr} and any internal randomness
used in the execution of a randomized policy σ.

In this paper, our objective is to study a class of dispatching strategies that
are both effective and stable. Specifically, suppose x0 is the initial state, p =
{pr|r ∈ R} is the arrival distribution of the request types in each round, and
w = {wr|r ∈ R} is the profit vector for the request types. We then wish to
answer the following questions.

1. Effectiveness. For a given instance I = (x0,p,w, T ), which non-adaptive
strategy σ maximizes W (σ, t) and Ŵ (σ, T )?

2. Stability. For a given non-adaptive strategy σ, do the limits limt→∞ W (σ, t)
and limT→∞ Ŵ (σ, T ) exist? If so, how fast do they converge to the respective
limiting values?

3 Assumptions and Related Work

Rideshare is a recent and popular innovation; thus, the body of literature sur-
rounding this paradigm is young and quickly growing. With that in mind, we
2 The choice of uσ can be random since σ can be a randomized policy.
3 It is not critical for our purposes, but the experiments use New York city and road-

distance is measured in Manhattan distance.
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now explicitly motivate and list the assumptions we make in our paper, and then
place our model in the greater body of related work.

Model Assumptions. First, we assume that the number of drivers in the sys-
tem remains constant in the T rounds with no new driver either joining or
leaving the system. This assumption is justified because (1) T rounds in the
online phase is typically restricted to a few hours and (2) almost all trips are
local (as described later in our experimental section on real data). Second, at
time t when a request r = (u, u′) comes and is assigned to a driver at location
v, we assume that (1) the system obtains a profit wr > 0, which is proportional
to the distance between u and u′; (2) at time t + 1, the number of drivers at
v reduces by 1 and the number at u′ increases by 1 (i.e., the request is com-
pleted instantaneously). From the real dataset, we observe that most trips in
the Manhattan area are local and are completed within 15 mins (i.e., a short
time period). Hence things do not change drastically by making this simplifying
assumption. Third, we assume that all locations have the same capacity c ∈ Z+,
an upper bound on the total number of drivers that can be present in each loca-
tion at any time. Here c captures the maximum number of drivers allowed at
any single location. Fourth, we make the following global hot-spot assumption
about the requests. There exists a location u∗ ∈ U such that p(u∗,u) > 0 and
p(u,u∗) > 0 for all u ∈ U , u 	= u∗. We call this location u∗ the “hot-spot”. This
assumption naturally holds in many real scenarios, since most big cities have
busy central locations. Finally, we assume IID arrivals of online requests. This is
necessary for convergence–even for very simple dispatching policies. Consider the
following example with two locations u and v in the system and a single driver.
Define request types ra = (u, v) and rb = (v, u). Suppose the two online requests
ra and rb arrive alternatively during odd and even rounds, and our dispatching
policy is the simple greedy one: match a request r if there is one driver at the
starting location of r, otherwise, reject it. Then the Markov chain will admit no
stationary distribution, since it has a period of 2.

It is worth noting that the first, second and fifth assumptions are used in
related work [3,5]. The third assumption is a generalization of prior works which
all considered c = m.

Related Work. Research in rideshare platforms and similar allocation problems
is an active area of research within multiple fields, including computer science,
operations research and transportation engineering. State-independent policies
were studied previously using theory from control and queuing systems [3,6,25].
Apart from using Markov-chain methods, many allocation and scheduling prob-
lems have been studied in the rideshare context using methods from combina-
torial optimization and machine learning (e.g., [8,10,14]). A large-scale mathe-
matical and empirical study on the number of cars and the optimality of waiting
times was recently analyzed by Alonso-Mora et al. [1]. In our work, we do not
consider the waiting times; indeed, we assume that the match and the trips hap-
pen instantaneously. The role of pricing in the dynamics of drivers in rideshare
platforms is also an active area of research in computational economics and
AI/ML (e.g., [4,20,27]). Although rideshare platforms face challenges that are
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unique and different from bike-sharing ecosystems, there are some similarities
between the two. Both of these deal with a matching market where the agents
are constantly moving around and hence it is important to characterize the flow
patterns of these agents. A number of works study the prediction aspects as well
as the dynamics of flow patterns in both bike-sharing (e.g., [11,24]) as well as
in ridesharing (e.g., [15,26,30–32]) platforms.

Our problem is a form of online matching in dynamic environments, which
is an active area of research within the AI/ML community. In particular, [9,19,
28,29] have studied algorithms for matching in various dynamic markets such
as kidney exchange, spatial crowdsourcing, labor markets, and so on. Online
matching in static environments has been extensively studied in the literature;
see Mehta et al. [21] for a detailed survey. We use a reinforcement learning
algorithm as a baseline in our experiments. Apart from a recent work by Lin
et al. [18], which explores the fleet management problem in ride-share, this tool
has not been explored much in this domain. However, reinforcement learning
(RL) has found success in other applications and we refer the reader to a recent
survey [17].

Comparison with Related Concurrent Work. In a recent work, Banerjee et
al. [5] proposed an approximation framework for pricing in rideshare platforms.
Our model shares many characteristics with theirs (i.e., the first, second and fifth
assumptions). The main difference is the focus of the paper. In particular, they
are interested in finding the optimal (online) dispatching policy that has a good
approximation ratio with respect to expected revenue at the stationary distribu-
tion. Thus they consider the known IID arrival assumption for online requests
while we consider the stronger unknown IID arrival assumption. Moreover they
assume that the number of cars tends to infinity, and seek approximation ratios
in this limit. The main focus of this paper is instead to characterize the rate of
convergence to the stationary distribution. We seek to understand when using
the expected reward in the stationary distribution is a good measure, especially
if the rate of convergence is slow and/or non-existent.

4 Dispatching Polices

In this section, we present our dispatching policies for matching riders to
rideshare drivers. Specifically, we present two policies namely Samp(α) and
Rand-Perm(φ). The main ideas of these are as follows.

When a request r = (u, u′) arrives, Samp(α) checks the availability of drivers
in locations u and each of its neighbors in N (u) with respective probabilities α
and 1−α

4 , where 0 < α < 1 is a parameter. (Technically, nodes u on the boundary
of the grid have less than 4 neighbors; we just assume that we do nothing if the
realization is an invalid neighbor.)

When a request r = (u, u′) arrives, Rand-Perm(φ) will first check the avail-
ability of drivers at u and if there aren’t any, then checks the neighbors in N (u)
following a given order φ. Below, we present the theoretical results on their
convergence rates.



Mix and Match: Markov Chains and Mixing Times for Matching 135

Theorem 1 (Main Convergence Theorem). For any policy Samp(α) with
α > 0 and Rand-Perm(φ) starting with any given initial state, the objective
functions defined in (1) and (2) both converge to the same value with rates
Θ(βt) and Θ(T−1), respectively, for some β ∈ (0, 1) independent of T (possibly
dependent on the other input parameters such as m and n).

Theorem 1 refers to the absolute error bound of the objectives in (1) and (2)
from its limit value. In particular, Theorem 1 states that as the number of
rounds increases, the expected revenue in every timestep converges to a stable
value exponentially quickly.

Markov Chains M (Samp(α)) and M (Rand-Perm(φ)). We make the simpli-
fying assumption that for every u ∈ U , the number of neighbors |N (u)| = 4.
Recall that Ω = {x : xu ∈ {0, 1, . . . , c},

∑
u xu = m}. Define a Markov chain

M (Samp(α)) for Samp(α) over Ω as follows. For any ordered pair (x,y) where
x,y ∈ Ω, we say (x,y) is a (u, u′)-neighbor if yu = xu − 1, yu′ = xu′ + 1,
and xv = yv for every v /∈ {u, u′}. The policy Samp(α) induces the following
transition probability between all possible (u, u′)-neighbors.

q(u, u′) .= αp(u,u′) + 1−α
4

∑
v∈N (u) p(v,u′).

Thus the transition matrix for the Markov chain M (Samp(α)) can be defined
as follows.

Pα(x,y) = q(u, u′) iff (x,y) is a (u, u′) neighbor (3)

Similarly, we can define a Markov chain M (Rand-Perm(φ)) over Ω for
Rand-Perm(φ) as follows. For a given random permutation φ and v ∈ N (u),
let φ(v) be the random order assigned by φ. Assume that Rand-Perm(φ) checks
the neighbors N (u) in the order (φ−1(1), φ−1(2), φ−1(3), φ−1(4)). For a given
state x, location u and random order φ, the respective supportive neighbor of u
is defined as Nx,φ(u) = {v ∈ N (u) : xv = 0, xv′ = 0,∀v′ ∈ N (v), φ(v′) < φ(u)}.
In other words, Nx,φ(u) includes those neighbors v of u such that when we are at
state x while a request r with origin v arrives, Rand-Perm(φ) will surely match r
to a driver at u if present. The resultant transition matrix for the Markov chain
M (Rand-Perm(φ)) is non-zero iff (x,y) is a (u, u′) neighbor. The non-zero value
is as follows.

Pφ(x,y) = p(u,u′) +
∑

r=(v,u′):v∈Nx,φ(u)

pr. (4)

We use the following lemma about M (Samp(α)) and M (Rand-Perm(φ)). The
proof is deferred to the full version.

Lemma 1. Under the hot-spot assumption, Markov chains M (Samp(α)) and
M (Rand-Perm(φ)) defined in (3) and (4) are both irreducible and aperiodic for
any given α > 0 and permutation function φ. Additionally, both M (Samp(α))
and M (Rand-Perm(φ)) admit a unique limiting distribution π∗, which coincides
with the unique stationary distribution.
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4.1 Proof of Theorem 1

We prove this theorem by first showing the convergence rate for the objective (1)
for both the policies. Finally we show how this can be adapted to give the
convergence rates for the objective (2).

Convergence Rate of Samp(α) for Objective (1). We first show the con-
vergence rates for M (Samp(α)). From Lemma 1, we have that M (Samp(α))
is irreducible and aperiodic when α > 0 and thus, it admits a unique limiting
distribution (say π∗), regardless of the initial state. Suppose X(t) is the random
state after t steps (let the starting state be x0), which follows the distribution
P t(x(0), .). Let X(∞) be the random state when T → ∞, which follows the dis-
tribution π∗. For each u, v ∈ U , define γu,v as the probability that there is at
least one driver at location u and there are less than c drivers at v in π∗. Thus
by definition we have γu,v = Pr[X(∞)

u ≥ 1,X
(∞)
v < c] =

∑
x∈Ω:xu≥1,xv<c π∗(x).

For each u, v and t, define γ
(t)
u,v := Pr[X(t)

u ≥ 1,X
(t)
v < c]. We prove the following

Lemma 2 which is used in the proof of the main theorem.

Lemma 2. There exists a scalar C > 0, independent of t and β ∈ (0, 1) such
that |γ(t)

u,v − γu,v| ≤ 2Cβt for any u, v ∈ U and initial state x0.

Proof. Let P t(x0,y) = Pr[X(t) = y] be the probability of reaching state y after
t steps with initial state x0. Thus we have,

|γ(t)
u,v − γu,v| =

∣
∣
∣
∑

y:yu≥1,yv<c Pr[X(t) = y] − γu,v

∣
∣
∣ (5)

=
∣
∣
∣
∑

y:yu≥1,yv<c P t(x0,y) − ∑
z∈Ω:zu≥1,zv<c π∗(z)

∣
∣
∣ (6)

≤ ∑
y:yu≥1,yv<c

∣
∣
∣P t(x0,y) − π∗(y)

∣
∣
∣ (7)

≤ 2|P t(x0, ·) − π∗|TV ≤ 2Cβt. (8)

In Eq. (8), the first inequality is from the definition of total variation between
two distributions while the second inequality is from the convergence theorem
4.9 in [16]. �

Convergence Rate of M (Rand-Perm(φ)) for Objective (1). Recall that we
proved in Lemma 1 that M (Rand-Perm(φ)) admits a unique limiting distribu-
tion. For notational convenience, we overload π∗ and P to denote the limiting dis-
tribution and transition matrix of M (Rand-Perm(φ)). Set N (u) = {u} ∪ N (u).
Let Y(t) be the random state in M (Rand-Perm(φ)) after t steps starting with
y0. For a given u and v let ηu,v and η

(t)
u,v be the respective probabilities, in the

limiting distribution π∗ and Y(t), that there is at least one driver in N (u) and
less than c drivers at v. Therefore by definition we have that,

ηu,v = Pr
[ ∨

v∈N (u)

(
Y

(∞)
v ≥ 1

)
, Y

(∞)
v < c

]
=

∑
x:

∑
v∈N(u) xv≥1,xv<c π∗(x),

η(t)
u,v = Pr

[ ∨
v∈N (u)

(
Y

(t)
v ≥ 1

)
, Y

(t)
v < c

]
=

∑
x:

∑
v∈N(u) xv≥1,xv<c P t(y0,x).

Similar to Lemma 2, we have the following lemma for M (Rand-Perm(φ)).
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Lemma 3. There exists a scalar C > 0 independent of t and β ∈ (0, 1) such
that |η(t)

u,v − ηu,v| ≤ 2Cβt for any u, v ∈ U and initial state y0.

The proof of Lemma 3 is essentially the same as that of Lemma 2 since it
does not use the properties of Samp(α). Now we have all ingredients to prove
main Theorem 1.

Proof. We focus on applying Lemma 2 to prove the results for M (Samp(α)) in
Theorem 1. A similar analysis applies to the case M (Rand-Perm(φ)) by using
Lemma 3.

Consider the case σ = Samp(α) and a given r = (u, u′). Policy Samp(α)
implies that uσ = σ(X(t), r) will be equal to u with probability α and any
neighbor in N (u) with probability 1−α

4 . Thus, we claim that

limt→∞ E

[
I(X(t)

uσ ≥ 1,X
(t)
v < c)

]

= α Pr[X(∞)
u ≥ 1,X

(∞)
v < c] + 1−α

4

∑
k∈N (u) Pr[X(∞)

k ≥ 1,X
(∞)
v < c]

= αγu,v + 1−α
4

∑
k∈N (u) γk,v

Let W (α) = limt→∞ W (Samp(α), t). Thus we claim that W (α) is

limt→∞ E

[ ∑
r=(u,v)∈R pr · wr · I(X(t)

uσ ≥ 1,X
(t)
v < c

)]
(9)

=
∑

r=(u,v)∈R pr · wr ·
(
αγu,v + 1−α

4

∑
k∈N (u) γk,v

)
. (10)

Now we bound the convergence rate of W (Samp(α), t).
Let Δ(t) .= |W (Samp(α), t) − W (α)| (we omit the subscript of α in Δ(t)

here) and w
.= maxr∈R wr. We have

Δ(t) =
∣
∣
∣
∑

r=(u,v)∈R pr · wr ·
(
αPr[X

(t)
u ≥ 1, X

(t)
v < c] (11)

+ 1−α
4

∑
k∈N (u) Pr[X

(t)
k ≥ 1, X

(t)
v < c]

)
(12)

− ∑
r=(u,v)∈R pr · wr ·

(
αγu,v + 1−α

4

∑
k∈N (u) γk,v

)∣
∣
∣ (13)

≤ ∑
r=(u,v)∈R pr · wr ·

(
α
∣
∣γ

(t)
u,v − γu,v

∣
∣ + 1−α

4

∑
k∈N (u)

∣
∣γ

(t)
k,v − γk,v

∣
∣
)

(14)

≤ ∑
r=(u,v)∈R pr · wr · (2Cβt) (15)

≤ 2wCβt. (16)

Inequality (15) is a direct application of Lemma 2 and the fact that |N (u)| ≤ 4
for each u; Inequality (16) is due to the fact that

∑
r∈R pr ≤ 1.

Recall that Ŵ (α) = limT→∞ Ŵ (Samp(α), T ). We can verify that Ŵ (α) =
W (α). Now we bound the convergence rate of Ŵ (Samp(α), T ). Let Δ̂(T ) .=
|Ŵ (Samp(α), T ) − Ŵ (α)|. Then we have the following.

Δ̂(T ) ≤ 1
T

∑T
t=1 Δ(t) = 1

T

∑T
t=1 2wCβt ≤ 2wC

T
β

1−β . (17)

�
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A Special Case: Uniform Arrivals of Online Requests. We now focus
on the policy, Samp(α), and consider a special case when the requests arrive
as a uniform sample in each round (i.e., pr = p for all r ∈ R). Then we can
compute explicit values of C and β. Note that in this case, the transition matrix
for M (Samp(α)) is Pα(x,y) = αp(u,u′) + 1−α

4

∑
v∈N (u) p(v,u′) = p.

Consider a given instance of the rideshare setting I = (x0,p,w, T ) and
Samp(α).

Let W (α) .= limt→∞ W (Samp(α), t), and Ŵ (α) .= limT→∞ Ŵ (Samp(α), T ),
where W (Samp(α), t) and Ŵ (Samp(α), T ) are defined in Eqs. (1) and (2) respec-
tively. From Lemma 1, we have that the limits in Eqs. (1) and (2) both exist and
are the same for any given α > 0 with the limiting value as in Eq. (18). Define
Δα(t) .= |W (α)−W (Samp(α), t)| and Δ̂α(T ) .= |Ŵ (α)−Ŵ (Samp(α), T )|. From
Eqs. (10), (16) and (17) in the proof of Theorem 1 we have

W (α) = Ŵ (α) =
∑

r=(u,v)∈R pr · wr ·
(
αγu,v + 1−α

4

∑
k∈N (u) γk,v

)
. (18)

Δα(t) ≤ 2wCβt, Δ̂α(T ) ≤ 1
T

∑T
t=1 Δα(t) ≤ 2wC

T
1

1−β . (19)

In Eq. (18), γu,v is the probability that location u has at least one driver and
location v has fewer than c drivers in the limiting distribution π∗. In Inequali-
ties (19), w

.= maxr∈R wr and C > 0 and β ∈ (0, 1) are two scalars which are
independent of t and T , but may be related to parameters m and n. This yields
the result for Samp(α); we can get similar results for the policy Rand-Perm(φ).

Observe that if (x,y) is a (u, u′)-neighbor, then (y,x) is a (u′, u)-neighbor
and therefore we have Pα(y,x) = p, implying that Pα is symmetric. This implies
that M (Samp(α)) admits a unique uniform limiting distribution π∗ over Ω (see
more details in the full version). This enables us to get a closed-form expression
for W (α) (Theorem 2), and derive explicit values of C and β (Theorem 3).

Theorem 2 (Closed-form expression for W (α)). Consider the uniform
arrival distribution of the requests such that pr = p for all r ∈ R and
c = m. Objectives defined in Eqs. (1) and (2) for Samp(α) both converge to

mp
n+m−1

∑
r∈R wr for any given α > 0.

The condition c = m in Theorem 2 implies that there is no constraint on
the maximum number of drivers in any location. The main idea of proof for
Theorem 2 is to show that for any (u, v), γu,v = m

n+m−1 for the special case. We
defer the full proof of Theorem 2 to the full version.

Theorem 3 (Explicit values of C and β). Consider the uniform arrival
distribution of the requests such that pr = n−2 for all r ∈ R and c ≤ 2. For
any given α > 0, Objectives in (1) and (2) for Samp(α) both converge with
a rate upper bounded by ( i.e., as least as fast as) 4m

∑
r∈R wr

n2 exp(t/n2) and 4m
∑

r∈R wr

T ,
respectively.

We first show the following useful lemma with proof deferred to the full
version. We use this to show the proof of Theorem 3. Consider the Markov Chain
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M (Samp(α)) as defined in (3) and let τ(ε) be the mixing time of M (Samp(α))
as defined in Sect. 2.

Lemma 4. τ(ε) ≤ n2 ln(2m/ε) when the arrival distribution of online requests
is uniform such that pr = n−2 for all r ∈ R and c ≤ 2.

Proof. Setting τ(ε) = t implies that ε ≥ 2m exp(−t/n2) in Lemma 4. Let ε =
2m exp(−t/n2). Recall that the definition of τ(ε) = min{t : d(t′) ≤ ε,∀t′ ≥ t}
where d(t) = maxx∈Ω ||P t(x, ·) − π∗||TV . Thus, we have maxx∈Ω ||P t(x, ·) −
π∗||TV ≤ 2m

(
exp(−1/n2)

)t
.

From the proof of Lemma 2 (The first inequality in (8)), we have |γ(t)
u,v −

γu,v| ≤ 2maxx∈Ω ||P t(x, ·) − π∗||TV = 4m exp(−t/n2). Recall that W (α) =
limt→∞ W (Samp(α), t) and Δα(t) = |W (Samp(α), t) − W (α)|. Thus the RHS
in Eq. (16) can be upper-bounded by 4m exp(−t/n2)

n2

∑
r∈R wr. Similarly, we have

that Δ̂α(T ) ≤ 1
T

∑T
t=1 Δα(t) ≤ 4m

∑
r∈R wr

T ·n2
1

1−exp(−1/n2) ∼ 4m
∑

r∈R wr

T . �

A Lower Bound on Convergence Rates. We show that even in very special
cases, the convergence rate shown in Theorem 3 is almost optimal. When c = 1,
we have the following lower bound where the dependence on t and T nearly
matches our upper bounds. We defer the proof to the full version of the paper.

Theorem 4 (Lower bound for Θ(βt)). There is an instance with uniform
arrival distribution where pr = n−2 for all r ∈ R and c = 1 such that Objective
(1) for Samp(1) has an asymptotic convergence rate equal to 2m

∑
r∈R wr

n3 exp(t/n) .

5 Conclusions and Future Research

In this paper, we considered the rideshare dispatching problem and the corre-
sponding Markov chain for the evolution of the matching process. In turn, we
characterized the driver distribution over time. In particular, we showed that
the mixing time of this Markov chain is small, and gave explicit bounds on the
convergence rate of various algorithms. Under practical assumptions, our theory
shows that the convergence rates are fast, and in practice one would reach the
stationary distribution in a short amount of time. To complement the theory
we ran extensive experiments on both simulated and real datasets. Our theory
gives accurate insight into rideshare dynamics in practice, and also complements
a growing body of related research (e.g., [3,5,25]) that relies on assumptions
that were, until now, underexplored and poorly understood. Still, relaxing any
of the five commonly-made assumptions discussed in the preliminaries (Sect. 2)
would be practically useful.
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Abstract. Lagrangian duality underlies both classical and modern
mechanism design. In particular, the dual perspective often permits sim-
ple and detail-free characterizations of optimal and approximately opti-
mal mechanisms. This paper applies this same methodology to a close
cousin of traditional mechanism design, one which shares conceptual and
technical elements with its more mature relative: the burgeoning field of
persuasion. The dual perspective permits us to analyze optimal persua-
sion schemes both in settings which have been analyzed in prior work,
as well as for natural generalizations which we are the first to explore
in depth. Most notably, we permit combining persuasion policies with
payments, which serve to augment the persuasion power of the scheme.
In both single and multi-receiver settings, as well as under a variety of
constraints on payments, we employ duality to obtain structural insights,
as well as tractable and simple characterizations of optimal policies.

1 Introduction

There are two primary ways of influencing the actions of strategic agents: through
providing incentives and through influencing beliefs. The former is the domain
of traditional mechanism design, and involves the promise of payments or goods
contingent on behavior. The latter is the domain of information design, or per-
suasion, and involves the selective provision of information pertaining to the
payoffs and costs of various actions. There are striking similarities and parallels
between the two worlds, both in terms of the domains in which they are studied—
for example in auctions [9,10,15] and routing [3]—as well in the mathematical
models and techniques used to characterize and compute optimal policies (e.g.
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[11,12,20]). Combining the approaches and techniques of mechanism design and
persuasion leads to a more powerful toolkit for the design of economic systems,
and this paper takes a step in that direction.

We work with two fundamental models of persuasion: the Bayesian Persua-
sion model of [19], and the multi-receiver private Bayesian persuasion model of
[1] (further developed in [2] and [12]) which we generalize to allow externalities.
In the spirit of mechanism design and principal-agent problems, we generalize
both models by permitting payments, which serve as additional incentive for the
receiver(s) to behave in accordance with the wishes of the sender (principal).

We then explore these models through the lens of Lagrangian duality, much
in the spirit of the literature applying duality to auction theory and Bayesian
mechanism design. In particular, we vary constraints on the payments (arbitrary,
nonnegative, budget balanced) and the information/reward structure (symmet-
ric vs asymmetric actions), and derive canonical and/or tractable optimal poli-
cies through duality.

The Persuasion Models. In the Bayesian persuasion model, there is a receiver
who must select one of a number of actions, and a sender looking to influence
the receiver’s choice in order to maximize her own expected payoff. We adopt the
perspective of the sender. A state of nature, drawn from a common knowledge
prior distribution, determines the payoff of each action to each of the sender and
the receiver. The sender has an informational advantage over the receiver: access
to the realization of the state of nature. The problem facing the sender is that of
computing and committing to the optimal signaling scheme: a randomized map
from states of nature to signals. Once the state is drawn by nature, the signaling
scheme is invoked and the corresponding signal is sent to the receiver; she then
updates her prior belief and chooses the action maximizing her expected payoff.
The multi-receiver private Bayesian persuasion model generalizes the previous
model to multiple receivers. There is still a common knowledge prior distribution
over states of nature, and a single sender with an informational advantage. We
restrict attention to the special case of two actions {0, 1} for each receiver. The
state of nature determines a set function for the sender and a set function for each
receiver: each set function maps the set of receivers taking action 1 to a payoff. A
signaling scheme now is a randomized map from states of nature to a signal for
each receiver. In both models, a simple revelation principle style argument shows
that it suffices to restrict attention to schemes which are direct and persuasive
(see e.g. [1,19]). A direct scheme is one in which signals correspond to action
recommendations. Such a scheme is persuasive if it is a Bayes-Nash equilibrium
for each receiver to follow the recommendation.

Adding Payments. We augment each model by allowing a special form of pay-
ment contract. In addition to committing to a direct signaling scheme, the sender
also commits to a payment p(i) for each action i. If the signaling scheme recom-
mends action i, and the receiver follows the recommendation, she is then paid
p(i) by the sender (or pays the sender −p(i) if p(i) < 0). If the receiver deviates
from the scheme’s recommendation, no payment is exchanged. Since payments
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are exchanged only when the receiver follows the recommendation, nonnegative
payments can be viewed as augmenting the “persuasiveness” of the signaling
scheme. Negative payments are less natural, although their consideration will be
technically instructive.

We distinguish three classes of payment contracts: unrestricted (allowing
arbitrary positive and negative payments), nonnegative, and budget balanced.
For the latter, the sender’s expected payment should be zero over states of nature
and randomness in the signaling scheme, assuming the receiver(s) follow the rec-
ommendations of the scheme. Independent to our work, [21] also considers adding
payments to Bayesian persuasion. They analyze a special case of Bayesian per-
suasion with two states of nature, and examine how adding a payment contract
influences the optimal policy in that scenario. Our approach diverges from this
work by considering more general settings of Bayesian persuasion and various
classes of payment contracts.

Duality as a Unifying Lens. Persuasion and auction design share striking
parallels. Indeed, both are economic design problems in which the outputs—
recommendation(s) in the case of persuasion and allocations of goods in the
case of an auction—are subjected to incentive constraints which at the surface
appear quite similar in the two settings. This is made explicit by [11], who
draw an analogy between persuasion and single-item auctions: actions are anal-
ogous to bidders, and recommending an action is analogous to allocating the
item. Through this analogy, they were able to leverage techniques from auc-
tion theory—in particular Border’s theorem [4]—to characterize and compute
optimal signaling schemes for Bayesian persuasion when action payoffs are i.i.d.
This analogy is imperfect, however, as illustrated by the impossibility result of
[11] for independent non-identical action payoffs, contrasting the tractability of
single-item auctions with independent bidders.

Despite being imperfect, however, this similarity is suggestive: if a Border’s
theorem based approach of optimization of interim rules can be applied to per-
suasion, why not the “virtual value” approach of [23] as well? Myerson’s approach
can be viewed through the more general lens of Lagrangian duality, in particular
as a consequence of Lagrangifying the incentive constraints. The duality-based
approach has been applied to much more general mechanism design settings,
producing (often approximate) generalizations of Myerson’s virtual-value char-
acterization which have led to simple and approximately optimal mechanisms
in a number of multi-parameter settings (e.g. [5,7,8,13,14,16,17,22], and clas-
sic results such as [24]). It is therefore natural that we embark on the same
exploration for persuasion, as well as for models (such as ours) which combine
the approaches of persuasion and mechanism design. As a best case scenario,
we can hope for “simple” characterizations of optimal or near-optimal schemes,
akin to those derived from duality in mechanism design. Particularly attractive
are “canonical” characterizations which depend minimally on the details of the
instance at hand.
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Our Results. In Sect. 3, we apply Lagrangian duality to Bayesian persuasion,
and derive some elementary properties of the primal/dual pair which enable
our results to follow. Our first main result is in Sect. 4, and concerns (single-
receiver) Bayesian persuasion with a prior distribution which is symmetric across
n actions, and no payments are allowed. We show that a single dual variable nat-
urally interpolates between two extreme schemes: at one extreme (λ equals zero)
we get the (non-persuasive) scheme which always recommends the sender’s ex-
post preferred action, at the other extreme (λ very large) we get the (persuasive)
scheme which recommends the receiver’s ex-post preferred action. Intermediate
values of λ yield schemes which point-wise optimize the sender payoff plus nλ
times the receiver’s payoff. Moreover, there is a threshold λ∗ below which the
induced scheme is non-persuasive, and above which the scheme is persuasive.
This λ∗ induces the sender-optimal persuasive signaling scheme. This charac-
terization is detail-free, in the sense that it reduces the prior distribution to a
relative weighting of receiver to sender payoff. Furthermore, this optimal scheme
is Pareto efficient in a strong (ex-post) sense: for every state θ, no outcome
Pareto dominates the one picked by the scheme.

In Sect. 5, we use duality to characterize Bayesian persuasion schemes with
payments. When arbitrary payments are allowed and the prior is symmetric,
the optimal signaling scheme is canonical and does not depend on the prior: it
always (i.e. in every state of nature) recommends the action that maximizes the
sender utility plus n

n−1 times the receiver’s utility. Payments accompanying this
scheme are computed easily via a simple payment identity. Our main result in this
section is a dichotomy for Bayesian persuasion with a symmetric prior, but non-
negative payments: the optimal scheme is either the same as the aforementioned
arbitrary-payment scheme (in the event that non-negative payments are needed),
or else is the optimal no-payment signaling scheme. Finally, with only two actions
and an arbitrary prior, we show that when arbitrary payments are allowed,
the optimal scheme always recommends the action maximizing sender utility
plus twice receiver utility. Again, all of our optimal schemes are ex-post Pareto
efficient. We note that the strongest positive results of [11] (exact polynomial
time solvability) hold in the setting of i.i.d. actions. Our results therefore extend
and simplify theirs, while lending further insight.

Finally, we turn our attention to a multi-receiver private persuasion model
with externalities. Again, we employ duality to analyze the optimal scheme in
this setting. Our first main result shows that, when we allow budget balanced
payments, there exists an optimal scheme which is “simple” in the following
sense: It always recommends an action maximizing a weighted sum of sender
utility and the receivers’ marginal utility from following the recommendation of
the scheme. The relative weighting is determined by a single dual variable. This
characterization is interesting when contrasted with the optimal no-payment
scheme, which is not as simple in general, and we show is sometimes strictly out-
performed (in terms of sender expected utility) by the optimal budget-balanced
scheme. Our second main result is a generalization of an algorithmic result of
[12] to multi-receiver persuasion with positive externalities: when no payments
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are allowed, and sender and receiver utility functions lie in some cone of set
functions C, we use duality to exhibit a polynomial time reduction from optimal
signaling to the optimization problem for set functions in C. Due to the lack of
space, these results are deferred to the full version of this paper.

2 Preliminaries

Bayesian Persuasion. Bayesian persuasion is a game between a sender, also
termed as the principal, and a receiver, also termed as the agent. There is also
a set of possible states of nature Θ. The true state of nature θ ∈ Θ is drawn
from a prior distribution μθ, known to both the sender and the receiver. The
receiver has a set of possible actions [n] = {1, . . . , n} to pick. Based on the
action i picked by the receiver and the true state of nature θ, the sender and the
receiver gain payoffs1, denoted by sθ(i) and rθ(i) respectively. In the Bayesian
persuasion game, the sender commits to a signaling scheme φ, where in general
φ is a mapping from Θ to distributions over possible signals, Σ. Then the sender
observes θ ∼ μθ, and sends a signal σ ∈ Σ to the receiver, where σ ∼ φθ for
the observed θ. Given signal σ, the receiver updates her belief about the state of
nature θ, and selects an action ir that maximizes her expected payoff under this
posterior distribution. In this paper, without loss of generality, and by applying
the revelation principle [19], we focus on signaling schemes for which Σ = [n].
We use the notation φθ(i) to denote the probability that the sender recommends
action i conditioned on the state of nature being θ. A signaling scheme is said
to implement φθ, if it samples signal i ∼ φθ given the state of nature θ.

Persuasive Signaling and Optimal Bayesian Persuasion. A signaling scheme is
persuasive if the receiver is best off following the sender’s recommendation, i.e.
following the sender’s recommendation maximizes the receiver’s expected payoff
under the receiver’s posterior belief about the state of the nature (conditioned
on the received signal). In the optimal Bayesian persuasion problem, we wish to
find, over all persuasive schemes, the one that maximizes the sender’s expected
payoff.

Action Types. As typical in information structure design, we frequently think
of each action as having a “type” depending on the state of nature.2 That is,
θ = [θ1, . . . , θn] is a vector in [m]n, for some parameter m. Action i has type
θi, which completely determines the sender and receiver payoffs should action
i be selected, independent of θ−i. More clearly, there exist m pairs of payoffs
(ξi

1, ρ
i
1), . . . , (ξ

i
m, ρi

m) such that when the receiver selects action i with θi = j, ξi
j is

the payoff to the sender and ρi
j is the payoff to the receiver. Note that sθ(i) = ξi

θi

and rθ(i) = ρi
θi

, and for universality we stick to this notation. Distributions in

1 We use the words “payoff” and “reward” interchangeably in this paper.
2 We refer the reader to [11] for a list examples of Bayesian persuasions and how types

are defined in those.
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this setting may be independent, if μθ = ×
i

μθi
is a product distribution, where

each μθi
is a distribution over [m]. Distributions in this setting may also be

symmetric, if μθ is invariant under all permutations. Distributions that are both
independent and symmetric are i.i.d.

Bayesian Persuasion with Payments. We introduce a natural model of payments
into the Bayesian persuasion problem. In addition to recommending an action
i, the sender is allowed to “incentivize” the receiver to take the recommenda-
tion with an additional payment p(i). Mathematically, it also makes sense to
consider when payments are allowed to be negative (which corresponds to the
sender “charging” the receiver −p(i) in order to follow the recommendation).
This certainly could be relevant for practice (e.g. if the sender/receiver can com-
mit to contracts), but the non-negative payment model is clearly more natural.
We study four different payment models: zero payments (i.e. classic Bayesian
persuasion), non-negative payments (i.e. when the sender cannot charge the
receiver), budget-balanced payments (i.e. the payment of the sender is zero in
expectation) and general payments (i.e. payments are arbitrary real numbers).
To unify the notation throughout the paper, we use P to denote the feasible set of
payments, which plays the role of a different polytope for each relevant payment
model (note that in all four models P is closed and convex). A signaling scheme
implements (φθ, p) if given the observed state of nature θ, it samples i ∼ φθ

and pays the receiver a (randomized) payment p(i). Throughout this paper, it
will be convenient to focus on specifying the expected payments for following
the recommendation of action i, P (i) �

∑
θ∈Θ μθφθ(i)p(i) for any scheme. We

similarly define the implementability of (φθ, P ).3

Payment Identity and Optimal Payments. We conclude with an observation
about persuasion with payments. Similar to auction design, there is a “pay-
ment identity” capturing which payments will make an implementable signaling
scheme persuasive. In contrast to auctions, however, it is easy to see that every
signaling scheme can be made persuasive with sufficiently high payments.

Observation 1. Let μθ be any distribution over states of nature, and φθ be
any signaling scheme (not necessarily persuasive). Then there exist thresholds
T1, . . . , Tn such that (φθ, p) is persuasive if and only if P (i) ≥ Ti for all i.

Proof. Let Xφ(i, j) be the receiver’s expected utility by taking action j when
the scheme φθ recommends action i. Define Ti = maxj �=i{Xφ(i, j) − Xφ(i, i)}.
Therefore, Xφ(i, i)+Ti ≥ Xφ(i, j) for all j, and any scheme that pays P (i) ≥ Ti

is certainly persuasive when recommending i. Moreover, if P (i) < Ti, then there
exists some j s.t. Xφ(i, i) + P (i) < Xφ(i, j), and the scheme is not persuasive. ��

3 It is also easy to see how to implement payments p(i) from P (i) and an implemen-

tation of φθ: for a given state θ ∈ Θ, sample a payment P (i)
φθ(i)

whenever signal i ∼ φθ

is recommended.
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Definition 1. We refer to the T1, . . . , Tn in Observation 1 as the optimal pay-
ments for φ, and max{0, T1}, . . . ,max{0, Tn} as the optimal non-negative pay-
ments for φ.

3 Lagrangian Duality and Bayesian Persuasion

In this section, we create a unified analysis toolbox for various Bayesian per-
suasion problems through the lens of LP duality. Specifically, we use Lagrangian
duals to reveal the structures of the optimal signaling, á la successful instances of
a similar technique in Bayesian mechanism design [7]. As a prerequisite, we heav-
ily use linear programming techniques introduced in [19], and further improved
in [11], and build a bedrock for the analyses in future sections.

3.1 LP for General Bayesian Persuasion with Payments

Linear programming formulations of Bayesian persuasion without payments have
been introduced in numerous prior works (e.g. [11]). We now modify the pro-
gram slightly to capture payments, by observing that whenever action i is rec-
ommended the receiver gets additional payoff p(i) and the sender loses a payoff
p(i). The following program solves the sender’s optimization problem.

max
∑

θ∈Θ

∑

i∈[n]

μθφθ(i) (sθ(i) − p(i))

∑

θ∈Θ

μθφθ(i) (rθ(i) + p(i)) ≥
∑

θ∈Θ

μθφθ(i)rθ(j), ∀i, j �= i ∈ [n]

φθ ∈ Δn, ∀θ ∈ Θ, and p ∈ P

The first set of constraints, also called persuasiveness constraints, are similar
to Incentive Compatibility (IC) constraints from auction design, and ensure that
the receiver is best off (in expectation) by following the recommendation and
paying the payment. The rest ensure that the scheme is in fact a valid distribution
over recommendations, and the payments are feasible. While not yet a linear
program, the above program can be made linear by a simple change of variables
to expected payments P (i):4

max
∑

θ∈Θ

∑

i∈[n]
μθφθ(i)sθ(i) −

∑

i∈[n]
P (i) (LP-General-with-Payments)

P (i) +
∑

θ∈Θ
μθφθ(i)rθ(i) ≥

∑

θ∈Θ
μθφθ(i)rθ(j), ∀i, j �= i ∈ [n]

φθ ∈ Δn, ∀θ ∈ Θ, and P ∈ P

where we abuse the notation by using P to denote the feasible polytope of
average.

4 Recall that P (i) =
∑

θ∈Θ μθφθ(i)p(i).
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3.2 The Partial Lagrangian Dual

One of the main tools we use in this paper is taking the partial Lagrangians of
the linear programs of the Bayesian persuasion problem. Basically, similar to [7],
we do not take a “complete dual” of the LP formulation, instead “Lagrangifying”
only the persuasiveness constraints, and leave all feasibility constraints in the
primal. To take the partial Lagrangians, we apply the method of Lagrangian
multipliers by (a) introducing dual variables λ(i, j) for every pair of actions i, j ∈
[n] with i �= j, (b) multiplying the persuasiveness constraints with duals λ(i, j),
and (c) moving the persuasiveness constraints to the objective. By rearranging
the terms we have the following observation.

Observation 2. Assigning dual variables λ(i, j) to the persuasiveness con-
straint guaranteeing that the receiver prefers to take action i over action j when
i is recommended gives the following partial Lagrangian.

Lλ(φ, P ) =
∑

θ∈Θ,i∈[n]
μθφθ(i)

(
sθ(i) + rθ(i)

∑

j �=i
λ(i, j) −

∑

j �=i
λ(i, j)rθ(j)

)

+
∑

i∈[n]
P (i)

(∑

j �=i
λ(i, j) − 1

)
. (1)

We remind the reader that the optimal signaling schemes and payments are
solutions to the following min-max programs by applying strong duality (D
denotes the appropriate dual feasible polytope):

max
∀θ:φθ∈Δn,P∈P

(

min
λ∈D

Lλ(φ, P )
)

= min
λ∈D

(

max
∀θ:φθ∈Δn,P∈P

Lλ(φ, P )
)

. (2)

Definition 2. (Dual-adjusted receiver payoff). For any assignment of dual vari-
ables λ ∈ D, define rλ

θ (i) � rθ(i)
∑

j �=i λ(i, j) − ∑
j �=i λ(i, j)rθ(j).

We conclude by Proposition 1, which we repeatedly use to extract various prop-
erties of the corresponding optimal policy.

Proposition 1. [Strong Duality for Bayesian Persuasion] There exist dual vari-
ables λ(., .) such that the optimal signaling scheme, for every state of nature
θ, recommends the action maximizing the dual-adjusted receiver payoff, i.e.
sθ(i) + rλ

θ (i). Moreover, if λ(i, j) > 0, then when action i is recommended, the
receiver is indifferent between following the recommendation and taking action j
instead (Complementary Slackness).5

3.3 Exploiting Symmetries

When viewing actions by their types (recall this means that we view states of
nature as a profile [θ1, . . . , θn], with each θi ∈ [m]), some of our results
consider symmetric settings, where μθ1,...,θn

= μθπ(1),...,θπ(n) for any permutation

5 We will not actually make use of complementary slackness in this paper, but include
it here for completeness.
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π : [n] → [n]. It is well-known that symmetric LPs admit symmetric solutions
(e.g. [18]), and this fact has indeed been exploited in prior work on signaling and
auctions [6,11]. The proof of this is straight-forward (we provide a proof in the
full version). First, we state clearly what we mean by symmetric solutions.

Definition 3. We say that a signaling scheme (φ, P ) is symmetric if P (i) =
P (j) for all i, j and we have φ[θ1,...,θn](i) = φ[θπ(1),...,θπ(n)](π

−1(i)) for all per-
mutations π and for all i, θ. We say that a dual solution λ is symmetric if
λ(i, j) = λ(k, �) for all i, j, k, �.

Proposition 2. Let μθ be a symmetric instance of Bayesian Persuasion, with
any of the four referenced constraints on payments (none, non-negative, budget-
balanced, or arbitrary). Then there exists an optimal symmetric primal and an
optimal symmetric dual for μθ.

With Proposition 2 in hand, we can now draw further conclusions regarding
the format of the Lagrangian function L in the special case that μθ is symmetric:

Corollary 1. When μθ is symmetric, there exists a constant λ such that the
optimal scheme, on every state of nature θ, selects an action i maximizing sθ(i)+
nλrθ(i). Moreover, for the same λ and some constant C, the Lagrangian takes
the following form:

Lλ(φ, P ) =
∑

θ∈Θ,i∈[n]

μθφθ(i) (sθ(i) + nλrθ(i)) +
∑

i∈[n]

P (i) ((n − 1)λ − 1) − λC.

Proof. Consider an optimal and symmetric dual solution, which is guaranteed
to exist by Proposition 2, in which λ(i, j) = λ for all i �= j. Then we get the
following simplified form for L:

Lλ(φ, P ) =
∑

θ∈Θ,i∈[n]
μθφθ(i)

(
sθ(i) + rθ(i)

∑

j �=i
λ −

∑

j �=i
λrθ(j)

)

+
∑

i∈[n]
P (i)

(∑

j �=i
λ − 1

)

=
∑

θ∈Θ,i∈[n]
μθφθ(i)

(
sθ(i) + rθ(i)(n − 1)λ − λ

∑

j �=i
rθ(j)

)

+
∑

i∈[n]
P (i) ((n − 1)λ − 1)

=
∑

θ∈Θ,i∈[n]
μθφθ(i) (sθ(i) + nλrθ(i)) +

∑

i∈[n]
P (i) ((n − 1)λ − 1) − λC,

Where we have defined C =
∑

θ∈Θ μθφθ

∑
j∈[n] rθ(j). It is now easy to see that

the signaling scheme maximizing Lλ necessarily on every state of nature θ rec-
ommends an action maximizing sθ(i) + nλrθ(i). ��

4 Symmetric Actions and No Payments

Here, we consider the standard symmetric setting without payments. We show
how to derive structure on the optimal scheme by making use of duality. In any
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symmetric instance of Bayesian persuasion, there exists an optimal dual solution
λ∗(i, j) such that λ∗(i, j) = λ∗ ≥ 0 for all i �= j by applying Proposition 2. Now,
by plugging directly into Corollary 1 and observing that P (i) = 0 for all i, we
get that the Lagrangian for the optimal dual takes the following form:

Lλ(φ) =
∑

θ∈Θ,i∈[n]

μθφθ(i) (sθ(i) + nλrθ(i)) − λC. (3)

We immediately conclude that the optimal scheme recommends, for every state θ,
an action maximizing sθ(i)+nλ∗rθ(i). With a little more work, we can conclude
something stronger about the exact value of λ∗.

Definition 4 (λ-scaled welfare maximizer). For a given multiplier λ, define
φλ to be the scheme with φλ

θ (i) = 0 if i /∈ arg maxj{sθ(j) + nλrθ(j)}, and
φλ

θ (i) = 1/|{arg maxj{sθ(j)+nλrθ(j)}| if i ∈ arg maxj{sθ(j)+nλrθ(j)}. In other
words, φλ recommends a uniformly random action in arg maxj{sθ(j)+nλrθ(j)}.
Proposition 3. Let λ∗ be the smallest λ ≥ 0 such that the scheme φλ is per-
suasive for μθ. Then φλ∗

is the optimal scheme for μθ.

The proof will follow from the following. We claim that the persuasiveness
of φλ is monotone increasing in λ (larger λ is more persuasive), while the sender
payoff is monotone decreasing in λ. Together this immediately concludes that
the optimal persuasive scheme is φλ∗

. We’ll first need a technical lemma.

Lemma 1. Let φ1, φ2 be symmetric schemes and let μθ be symmetric. Let the
expected receiver payoff for accepting recommendation φ1 for μθ be at least as
large as the expected receiver payoff for accepting recommendation φ2 for μθ.
Then if φ2 is persuasive, so is φ1.6

Lemma 2. If φλ is persuasive, then φλ+δ is persuasive, for all δ ≥ 0. Fur-
thermore, the sender’s expected payoff when the receiver follows φλ is monotone
non-increasing in λ.

Proof. For the first part of the lemma, first observe that φλ is symmetric for
all λ. Further observe that the receiver’s expected payoff for following the rec-
ommendation is monotone in λ: On every state of nature θ, the recommended
action maximizes sθ(i) + nλrθ(i). The first part now immediately follows by
Lemma 1. For the second part, simply observe that on every state of nature θ,
the recommended action maximizes sθ(i) + nλrθ(i). As λ increases, the sender
payoff for the recommended action decreases. ��

6 Note that this does not hold generally, and absolutely requires the symmetry assump-
tions.
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5 Optimal Single Agent Signaling with Payments

In this section we study the single receiver Bayesian persuasion game with pay-
ments. While we consider our “main results” to be the case where payments are
constrained to be non-negative, it’s instructive to study general (positive or neg-
ative) payments. We characterize the optimal signaling scheme with payments in
the general setting, drawing similar conclusions to [7] for optimal auctions. This
is not a main result, but may be of independent interest. An easy corollary of this
characterization, however, immediately allows us to claim something interesting
in the case of two actions. The optimal scheme, for all states θ, recommends the
action i maximizing sθ(i)+2rθ(i) (paying the optimal payments), and this holds
for any distribution.

A deeper application of this result lets us characterize the optimal scheme
for a single receiver with n symmetric actions. In this setting, we show that the
optimal scheme recommends the action i maximizing sθ(i) + n

n−1rθ(i) (paying
the optimal payments).7 When payments are non-negative, we prove that the
optimal scheme is always either the optimal scheme without payments at all, or
the optimal scheme with arbitrary payments.

5.1 The General Setting with Payments

The Langrangian function for an arbitrary polytope P is given by Eq. 1. Recall
that for every choice λ of the Lagrange multipliers, maxφ,P Lλ(φ, P ) is an upper
bound to the performance of the optimal persuasive scheme. Strong duality fur-
ther implies that this bound is tight for some choice of the Lagrange multipliers.

Observe that if payments are allowed to be arbitrary, then maxφ,P Lλ(φ, P )
is unbounded whenever the coefficient for P (i) is non-zero for any i (as we can
simply set P (i) to be +∞ or −∞. Therefore, we certainly have

∑
j �=i λ(i, j) = 1

in the optimal dual, for all actions i. This means that for each action i, the dual
variables λ(i, .) form a distribution over actions other than i. The Lagrangian
becomes Lλ(φ, P ) =

∑
θ∈Θ

∑
i∈[n] μθφθ(i)

(
sθ(i) + rθ(i) − Ej∼λ(i,.)[rθ(j)]

)
.

For every choice of multipliers λ(i, j), the scheme φ that maximizes Lλ(φ, P )
recommends, for every state of nature θ, the action that maximizes sθ(i) +
rθ(i) − Ej∼λ(i,.)[rθ(j)].

Observation 3. The optimal persuasive scheme φ recommends, at each state
of nature θ, the action that maximizes sθ(i) + rθ(i) − Ej∼λ∗(i,.)[rθ(j)], where λ∗

is the optimal Lagrange multiplier.

Observation 3 provides a general framework to reason about optimal signaling
schemes with arbitrary payments. We repeat now a connection to optimal auc-
tion design: In optimal auction design, there are some cases where the optimal

7 Further recall that the sender/receiver payoffs for action i are completely determined
by action i’s type. So this can also be phrased as recommending a uniformly random
action with type k, where k maximizes ξk + n

n−1
ρk over all present types k.
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dual is “canonical,” and doesn’t depend on the input distribution (e.g. single-
dimensional) [23]. In such settings, one can identify simple structure of the opti-
mal mechanism. The case is similar in signaling: some cases admit a canonical
optimal dual that doesn’t depend on the input distribution. In these cases, we
obtain simple characterizations of the optimal scheme.

5.2 Two Actions, Arbitrary Payments

In the n = 2 case of only two actions, Observation 3 immediately allows us to
derive the simple structure of the optimal signaling scheme.

Proposition 4. When n = 2, for every distribution μθ, the optimal persuasive
scheme with possibly negative payments always recommends the action i that
maximizes sθ(i) + 2rθ(i) (and pays the optimal payments).

Proof. Observe that there are only two Lagrange multipliers, λ(0, 1) and λ(1, 0),
and are both equal to 1 in the optimal dual (by Observation 3). Therefore, the
Lagrangian can be further simplified:

Lλ(φ, P ) =
∑

θ∈Θ

∑

i∈[2]
μθφθ(i)

(
sθ(i) + rθ(i) −

∑

j �=i
rθ(j)

)

=
∑

θ∈Θ

∑

i∈[2]
μθφθ(i)

(

sθ(i) + 2rθ(i) −
∑

j∈[2]
rθ(j)

)

.

Observe that the term
∑

j∈[2] rθ(j) does not depend on the action selected at
all. So in order to maximize Lλ(φ, P ), the scheme must recommend the action
maximizing sθ(i) + 2rθ(i) for every state of nature θ. ��

5.3 Symmetric Actions

Here, we draw conclusions for the symmetric setting with payments. Again get-
ting initial traction from a canonical form for the optimal dual.

Arbitrary Payments

When arbitrary payments are allowed, i.e. P = R, then the multiplier (n−1)λ−1
of the payment variable P (i) must be equal to zero for all i. Otherwise the
Lagrangian would be unbounded. This immediately implies that for the optimal
dual, we have λ = 1

n−1 , and the Lagrangian becomes

Lλ(φ, P ) =
∑

θ∈Θ,i∈[n] μθφθ(i)
(
sθ(i) + n

n−1rθ(i)
)

− 1
n−1C.

The proof of the following proposition then immediately follows.

Proposition 5. In the single sender, single receiver setting with symmetric
actions and arbitrary payments, the optimal scheme recommends, on every state
of nature θ, the action i that maximizes sθ(i) + n

n−1rθ(i) (and pays the optimal
payments).
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Non-negative Payments: A Dichotomy

When payments are restricted to be non-negative, it is no longer the case that
λ is pinned down completely (in particular, λ must certainly be ≤ 1

n−1 , or else
setting P (i) = +∞ would result in an unbounded Lagrangian, but it is indeed
possible to have λ < 1

n−1 ). Our next result shows that the optimal scheme in
this scenario is essentially either the optimal scheme without any payments, or
the optimal scheme for arbitrary payments (because the payments are already
non-negative).

Proposition 6. In the single sender, single receiver setting with i.i.d. actions
and non-negative payments, the optimal scheme is either (1) the optimal no-
payment scheme, or (2) recommends the action i that maximizes sθ(i)+ n

n−1rθ(i)
(and pays the optimal non-negative payments).

Proof. Let λ∗ ∈ [0, 1
n−1 ] be the λ guaranteed by Corollary 1. Then there is an

optimal scheme (φ∗, P ∗) that maximizes Lλ∗(φ, P ) over all feasible (φ, P ).
If λ∗ < 1

n−1 , then (n − 1)λ∗ − 1 is strictly negative, and hence the multiplier
of each payment variable P (i) is strictly negative. Therefore, every scheme that
maximizes Lλ∗(φ, P ) must have P (i) = 0 for all actions i. Hence, the scheme
φ is in fact feasible and persuasive for the no-payments case, and must be the
optimal scheme without payments (as every scheme without payments is also
feasible for non-negative payments, and φ is optimal among all schemes with
non-negative payments).

If λ∗ = 1
n−1 , then we immediately observe that this is exactly the same

Lagrangian as for arbitrary payments, and therefore the second part of the
proposition follows.
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Abstract. The phenomenon of residential segregation was captured by
Schelling’s famous segregation model where two types of agents are
placed on a grid and an agent is content with her location if the fraction
of her neighbors which have the same type as her is at least τ , for some
0 < τ < 1. Discontent agents simply swap their location with a randomly
chosen other discontent agent or jump to a random empty cell.

We analyze a generalized game-theoretic model of Schelling segrega-
tion which allows more than two agent types and more general underlying
graphs modeling the residential area. For this we show that both aspects
heavily influence the dynamic properties and the tractability of finding
an optimal placement. We map the boundary of when improving response
dynamics (IRD) are guaranteed to converge and we prove several sharp
threshold results where guaranteed IRD convergence suddenly turns into
a strong non-convergence result: a violation of weak acyclicity. In partic-
ular, we show threshold results also for Schelling’s original model, which
is in contrast to the standard assumption in many empirical papers. In
case of convergence we show that IRD find equilibria quickly.

Keywords: Schelling segregation · Convergence of improving response
dynamics · Potential games · Computational hardness

1 Introduction

Residential segregation is a well-known phenomenon in many major metropoli-
tan areas where local location choices by many individuals with preferences over
their direct residential neighborhood yield cityscapes which are severely segre-
gated along ethnical lines (see Fig. 1(a)). There, local strategic choices on the
micro level lead to an emergent phenomenon on the macro level. This paradigm
of “micromotives” versus “macrobehavior” [34] was first investigated and mod-
eled by Schelling who proposed a simple stylized model for analyzing residential
segregation [32,33]. With two types of individual agents and a grid serving as
residential area, he demonstrated the emergence of segregated neighborhoods
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(a) New York City (b) Random grid placement (c) Stable grid placement

Fig. 1. (a) Residential segregation in New York City, color-coded by ethnicity. Every
dot corresponds to a citizen. Snippet from the Racial Dot Map [10] based on 2010
US Census data. (b) Initial random placement on a grid in Schelling’s model. (c)
Equilibrium found for the instance in (b) with τ = 1

2
via IRD. (Color figure online)

under the following threshold behavior: agents are content with their current
location if the fraction of agents of their own type in their neighborhood is at
least τ , with τ ∈ (0, 1) as a global parameter. Content agents do not move, dis-
content agents will swap their location with some other random discontent agent
or perform a random jump to an unoccupied place. Schelling demonstrated by
experiment that starting from a uniformly random distribution of the agents
(see Fig. 1(b)) the induced random process yields a residential pattern which
shows strong segregation (see Fig. 1(c)). While this is to be expected for intol-
erant agents, i.e., τ > 1

2 , the astonishing finding of Schelling was that this also
happens for tolerant agents, i.e., τ ≤ 1

2 . This explains why even in a very tolerant
population segregation along racial, religious or socio-economical lines emerges.

Schelling’s model became a landmark model in sociology and many variants
of the model have been studied, e.g. Clark [12], Alba and Logan [1], Benard and
Willer [5], Henry et al. [27] and Bruch [9]. A physical analogue was found by
Vinković and Kirman [36] but Clark and Fosset [13] argued that such models do
not enhance the understanding of the underlying social dynamics. In contrast,
they promote agent-based models where the agents’ utility function is inspired
by real-world behavior. Such models can be easily simulated and many empirical
studies have been conducted to investigate the influence of various parameters on
the obtained segregation, e.g. the works by Fossett [18], which use the simulation
framework SimSeg [19], Epstein and Axtell [17], Gaylord and d’Andria [22],
Pancs and Vriend [31], Singh et al. [35] and Benenson et al. [6].

All these empirical studies consider a random process where discontent agents
are activated at random and swap or jump to other randomly selected posi-
tions. In [19,31], agents change their location if this yields improved utility. This
assumption of having rational agents matches the behavior of real-world agents
more convincingly. In this papper we explore the properties of such strategic
dynamic processes and the tractability of the induced optimization problems.
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1.1 Related Work

Recently, a series of papers by Young [38], Zhang [39,40], Gerhold et al. [25],
Brandt et al. [8,28], Barmpalias et al. [2,3] and Bhakta et al. [7] initiated a
rigorous analysis of stochastic processes induced by Schelling’s model. In these
processes either two randomly chosen unhappy agents of different type swap
positions [38–40] or a randomly chosen agent changes her type with a certain
probability [2,3,7,8,28]. Both types of processes are closely related but not iden-
tical to the original model. The above mentioned works investigate the expected
size of the obtained homogeneous regions and it is also shown that the stochas-
tic processes starting from a uniform random agent placement converge with
high probability to a stable placement. The convergence time was considered by
Mobius & Rosenblat [29] who observe that the Markov chain analyzed in [38–40]
has a very high mixing time. Bhakta et al. [7] show in the two-dimensional grid
case a dichotomy in mixing times for high and very low τ values.

To the best of our knowledge, only a few papers have studied game-theoretic
models of Schelling segregation. Pancs & Vriend [31] used different types of util-
ity functions for their agents in extensive simulation experiments. On the theory
side, Zhang [40,41] analyzed a model where the agents are endowed with a noisy
single peaked utility function, which is a departure from the threshold behav-
ior proposed by Schelling. Grauwin et al. [26] generalized the results. In con-
trast, the behavior of the original model is closely captured by a game-theoretic
model which was proposed by Chauhan et al. [11]. The employed utility function
depends on the type ratio in the neighborhood and increases linearly with the
fraction of agents of the own type until a fraction of τ is reached. The authors
of [11] investigate the convergence behavior of the induced sequential game where
discontent agents are restricted either to performing only improving location
swaps (Swap Schelling Game (SSG)) or are only allowed to jump to empty loca-
tions (Jump Schelling Game (JSG)). This corresponds to analyzing IRD, whose
analysis is also our main contribution. We improve their main results in vari-
ous ways by exactly characterizing when IRD convergence is ensured. In [11] an
extension of Schelling’s model is considered, where agents have preferences over
different locations additionally strive for being close to their favorite one.

Very recently, Elkind et al. [16] studied a variant of the model in [11], where
the agents are partitioned into stubborn agents who do not move and strategic
agents who try to maximize the fraction of same-type agents in their neighbor-
hood by jumping to a suitable empty location. This corresponds to a variant of
the JSG with τ = 1. They show that equilibria are not guaranteed to exist and
that deciding whether equilibria or placements with certain social welfare exist
is NP-hard. This relates to our hardness results for computing socially optimal
states. They also prove that the price of anarchy and stability can be unbounded.

All mentioned works, with SimSeg [19] and Elkind et al. [16] as excep-
tions, assume that exactly two types of agents exist. In [19] and [16], agents
only differentiate between agents of their own type and of other types. This is
a very restricted point of view and this will correspond to our “one-versus-all”
version.
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1.2 Model and Notation

We consider a network G = (V,E), with V the set of nodes and E the set of
edges, which is connected, unweighted and undirected. The network G serves as
the underlying graph modeling the residential area in which the agents will select
a location. If every node in G has the same degree Δ, i.e., the same number of
incident edges, then G is a Δ -regular graph. Let degG(u) be the degree of a node
u ∈ V in G and let ΓG(u) denote the set of nodes v �= u so that an edge {u, v}
exists in E. We call ΓG(u) the neighborhood of u in network G. Let A be the set
of agents and P (A) = {T1, T2, . . . , Tk} be any partition of A into k non-empty
distinct sets, called types, which model racial/ethnic, religious or socio-economic
groups. For k = 2 this corresponds to Schelling’s original model [32,33] with two
different types of agents. Let t : A �→ P (A) be a surjective function such that
t(a) = T if a ∈ T . We say that agent a is of type t(a). A state of our games is
defined by an injective placement pG : A �→ V which assigns every agent to a
node in the network G and we call pG(a) agent a’s location under placement pG.
Two agents a, b ∈ A are neighbors under placement pG if pG(b) ∈ ΓG(pG(a)). We
denote the set of neighbors of a under placement pG as NpG

(a). For any agent
a ∈ A, we define NT

pG
(a) = {b ∈ T | b ∈ NpG

(a)}, as the set of agents of type T
in the neighborhood of agent a under placement pG.

For any agent a ∈ A in a placement pG, we define agent a’s positive neigh-
borhood N+

pG
(a) as N

t(a)
pG (a). For agent a’s negative neighborhood, we define two

different versions, called the one-versus-all and one-versus-one versions. In the
one-versus-all version an agent wants a certain fraction of agents of her own
type in her neighborhood, regardless of the specific types of neighboring agents
with other types, so N−

pG
(a) is NpG

(a) \ N+
pG

(a). In contrast to this, in the one-
versus-one version an agent only compares the number of own-type agents to
the number of agents in the largest group of agents with different type in her
neighborhood. Thus, we define the negative neighborhood of an agent a under
placement pG as the set of neighboring agents of the type T �= t(a) that make
up the largest proportion among all neighbors, i.e., N−

pG
(a) = NT

pG
(a) such that

T ∈ P (A) \ {t(a)} and |NT
pG

(a)| ≥ |NT ′
pG

(a)| for all T ′ ∈ P (A) \ {t(a)}. Notice
that the one-versus-all and one-versus-one version coincide for k = 2, thus both
versions generalize the two type case. If an agent a has no neighboring agents,
i.e., NpG

(a) = ∅, we say that a is isolated, otherwise a is un-isolated.
Let τ ∈ (0, 1) be the intolerance parameter. Similar to Schelling’s model we

say that an agent a is content with placement pG if agent a is un-isolated and
at least a τ -fraction of the agents in agent a’s positive and negative neighbor-
hood under pG are in agent a’s positive neighborhood. Hence, agent a is content

if she is un-isolated and
|N+

pG
(a)|

|N+
pG

(a)|+|N−
pG

(a)| ≥ τ , otherwise a is discontent with

placement pG. We call the ratio pnrpG
(a) =

|N+
pG

(a)|
|N+

pG
(a)|+|N−

pG
(a)| the positive neigh-

borhood ratio of agent a. An agent’s aim is to find a node in the given network
where she is content or, if this is not possible, where she has the highest possible
positive neighborhood ratio. Therefore, and analogous to [11], we define the cost
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function of an agent a in a placement pG for network G as follows:

costpG
(a) =

{
max{0, τ − pnrpG

(a)}, if a is un-isolated,

τ, if a is isolated.

Thus, agent a is content with placement pG, if and only if costpG
(a) = 0. The

placement cost, denoted costpG
(A), of a placement pG in a network G is simply

the number of all discontent agents: costpG
(A) = |{a ∈ A | costpG

(a) �= 0}|.
The strategy space of an agent is the set of all nodes in the network G.

An agent can change her strategy either via swapping with another agent who
agrees or via jumping to another unoccupied node in network. This yields the
Swap Schelling Game (SSG) and the Jump Schelling Game (JSG).

For the SSG we will assume that all nodes of G are occupied. A location swap,
or swap, of two agents a, b ∈ A under placement pG is to exchange the occupied
nodes of both agents. This yields a new placement p′

G with p′
G(a) = pG(b),

p′
G(b) = pG(a) and pG(x) = p′

G(x), for any other agent x ∈ A\{a, b}. Two agents
a, b ∈ A would only agree to such a swap if it strictly decreases the cost of both
agents, i.e., costp′

G
(a) < costpG

(a) and costp′
G
(b) < costpG

(b). Hence, swapping
agents are always of different types. If for some placement pG no improving swap
exists, then we say that pG is swap-stable.

In the JSG we assume that there exist empty nodes in the underlying graph
and an agent can change her strategy to any currently empty node, which we
denote as a jump to that node. An agent will only jump to another empty node,
if this strictly decreases her cost. An equilibrium placement in the JSG where
no agent can improve via jumping is called jump-stable.

If the game is clear from the context, we will simply say that a placement
pG is stable. If we have more than two different agent types we denote the one-
versus-all version of the SSG and the JSG as 1 − k − SSG and 1 − k − JSG,
respectively and the one-versus-one version of both games as 1 − 1 − SSG and
1 − 1 − JSG, respectively.

We analyze whether improving response dynamics (IRD), i.e., the natural
approach for finding equilibrium states where agents sequentially try to change
towards better strategies until no agent can further improve, will converge. For
showing this we employ ordinal potential functions. Such a function Φ maps
placements to real numbers such that if an agent (or a pair of agents) under
placement pG can improve by a jump (or a swap) which results in placement p′

G

then Φ(pG) > Φ(p′
G) holds. That is, any improving strategy change also decreases

the potential function value. The existence of an ordinal potential function shows
that a game is a potential game [30], which guarantees the existence of pure equi-
libria and that IRD must terminate in an equilibrium. In contrast, an improving
response cycle (IRC) is a sequence of improving strategy changes which vis-
its the same state of the game twice. The existence of an IRC directly implies
that a potential function cannot exist and thus, that IRD may not terminate.
However, even with existing IRCs it is still possible, that from any state of the
game there exists a finite sequence of improving strategy-changes which leads
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to an equilibrium. In this case the game is weakly acyclic [37]. Thus, a strong
non-convergence result is a proof that a game is not weakly acyclic.

1.3 Our Contribution

Our main contribution is a thorough investigation of the convergence behavior
of IRD in variants of Schelling’s model. Previous work, including Schelling’s
original papers and all the mentioned empirical simulation studies, assume that
IRD always converge to an equilibrium. We challenge this by precisely mapping
the boundary of when IRD are assured to find an equilibrium. We show that
IRD behave radically different in the swap version compared to the jump version.
Moreover, we show that this contrasting behavior can even be found within these
two variants. We demonstrate the extreme cases of guaranteed IRD convergence
and strong non-convergence results, i.e., that even weak acyclicity is violated. For
this, we provide sharp threshold results where for some τ∗ IRD are guaranteed to
convergence for τ ≤ τ∗ and we have non-weak-acyclicity for τ > τ∗, depending
on the underlying graph. See Table 1.

Table 1. Results regarding IRD. “reg.” stands for Δ-regular graphs, “arb” for arbi-
trary graphs, which model the residential area. “�” denotes that IRD converge to an
equilibrium, “o” denotes the existence of an IRC. “×” denotes that the version is not
weakly acyclic. If τ is omitted, the result holds for any 0 < τ < 1.

1-k-SSG 1-1-SSG 1-k-JSG 1-1-JSG

reg �(Theorem2) �(Theorem4) τ ≤ 1
Δ �(Theorem7) τ ≤ 2

Δ �(Theorem10) τ ≤ 1
Δ

o (Theorem5) τ ≥ 6
Δ o (Theorem8) τ > 2

Δ o (Theorem11) τ > 2
Δ

arb �[11] k = 2, τ ≤ 1
2 ×(Theorem6) ×(Theorem9) ×(Theorem12)

×(Theorems 1 and 3) ow

In case of IRD convergence, we show that this happens after O(|E|) many
jumps/swaps on a graph G = (V,E) and in [15] we show via experiments that
this bound is met by instances with randomly chosen initial placements.

Besides analyzing IRD, we start a discussion about segregation models with
more than two agent types. Besides the simple generalization of differentiat-
ing only between own type and other types, i.e., the 1-k-SSG and 1-k-JSG, we
propose a more natural alternative, called the 1-1-SSG and the 1-1-JSG, where
agents compare the type ratios only with the largest subgroup in their neigh-
borhood. The idea here is that a minority group mainly cares about if there is
a dominant other group within the neighborhood.

Moreover, we investigate the influence of the underlying graph on the hard-
ness of computing an optimal placement. We show that computing this is NP-
hard for arbitrary underlying graphs if τ = 1

2 or if τ is sufficiently high. In
contrast to this, we provide an efficient algorithm for computing the optimum
placement on a 2-regular graph with two agent types. The number of agent types
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also has an influence: we establish NP-hardness even on 2-regular graphs if there
are sufficiently many agent types.

All details omitted due to space constraints can be found in [15].

2 Schelling Dynamics for the Swap Schelling Game

In this section we analyze the convergence behavior of IRD for the SSG. The 1-k-
SSG seems to be a straightforward generalization of the two type case. An agent
simply compares the number of neighbors of her type with the total number of
neighbors. Interestingly, our IRD convergence results for the 1-k-SSG with k > 2
for arbitrary networks for τ ≤ 1

2 are in sharp contrast to the results for k = 2
proved in [11]: On arbitrary networks with tolerant agents, i.e., with τ ≤ 1

2 , and
k > 2 types IRD convergence is no longer guaranteed.

For the 1-1-variant an agent compares the number of neighboring agents of
her type with the size of the largest group of agents with a different type in
her neighborhood. This captures the realistic setting where agents simply try
to avoid being in a neighborhood where another group of agents dominates. We
will show that even on a Δ-regular network an IRC exists for sufficiently high τ .

2.1 IRD Convergence for the One-versus-All Version

The existence of a potential function for the SSG on arbitrary networks with
τ ≤ 1

2 was shown before in [11]. We show that this bound is tight.

Theorem 1. IRD are not guaranteed to converge in the SSG with k = 2 for
τ ∈ (

1
2 , 1

)
on arbitrary networks. Moreover, weak acyclicity is violated.
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Fig. 2. An IRC for the SSG with x = max
(
� 1

τ−0.5
�, � 1

2−2τ
�
)

for τ ∈ (
1
2
, 1

)
. The agents

types are marked orange and blue. Multiple nodes in series represent a clique of nodes
of the stated size. Edges between cliques or between a clique and single nodes represent
that all involved nodes are completely interconnected. (Color figure online)
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Proof (sketch). We prove the statement by providing an IRC where in every step
exactly one improving swap is possible. The construction is shown in Fig. 2. 	

We now generalize the results from [11] to the 1-k-SSG for any k ≥ 2.

Theorem 2. IRD are guaranteed to converge in at most |E| moves for the 1-k-
SSG with τ ∈ (0, 1) on any Δ-regular network G = (V,E).

Proof (sketch). We show that Φ(pG) = 1
2

∑
a∈A |N−

pG
(a)| is an ordinal potential

function. A swap between two agents a and b changes the current placement pG

only in the locations of the involved agents and yields a new placement p′
G. It

holds for agent a (and agent b likewise)
|N+

pG
(a)|

Δ <
|N+

p′
G
(a)|

Δ . Thus, |N+
pG

(a)| <

|N+
p′

G
(a)| ⇐⇒ Δ − |N−

pG
(a)| < Δ − |N−

p′
G
(a)| ⇐⇒ |N−

p′
G
(a)| < |N−

pG
(a)|. Since

Φ(pG) ≤ |E| and since Φ(pG) decreases after every swap by at least 1 IRD find
an equilibrium in at most |E| many steps. 	

We contrast the above result by showing that guaranteed IRD convergence is
impossible for any τ on arbitrary networks. This emphasizes the influence of the
number of agent types on the convergence behavior of the IRD.

Theorem 3. IRD are not guaranteed to converge in the 1-k-SSG with k > 2 for
τ ∈ (0, 1) on arbitrary networks. Moreover, weak acyclicity is violated.

Proof (sketch). We give an example of an IRC, where always exactly one improv-
ing swap exists. Together with Theorem 1 this yields the statement. See Fig. 3.
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Fig. 3. An IRC for the 1-k-SSG with x > 3
4τ

− 1 for any τ ∈ (0, 0.5]. Agent types are
marked orange, blue and gray. Multiple nodes in series represent a clique of nodes of
the stated size. Edges between cliques or between a clique and single nodes represent
that all involved nodes are completely interconnected. (Color figure online)
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2.2 IRD Convergence for the One-versus-One Version

Remember, that in the 1-1-SSG and 1-1-JSG, respectively, an agent only con-
siders the largest group of different type neighboring agents. We start with a
simple positive result for the 1-1-SSG.

Theorem 4. IRD are guaranteed to converge in at most |A|
2 moves, where A

is the set of agents, for the 1-1-SSG with τ ≤ 1
Δ on any Δ-regular network

G = (V,E).

Proof (sketch). Any agent a who is discontent has cost τ . Since a only considers
a swap that decreases her cost, the cost of a can be at most max(0, τ − 1

Δ ) after
swapping, which means a is content. Each agent will participate in at most one
swap. Therefore, the game converges after at most |A|

2 swaps. 	

If τ is high enough, then the 1-1-SSG is no longer a potential game.

Theorem 5. IRD are not guaranteed to converge in the 1-1-SSG for τ ≥ 6
Δ on

Δ-regular networks.

Proof (sketch). Consider Fig. 4 with x > 5(1−τ)
6τ . We omit edges between the

cliques u1, u2 and u3 of gray agents. The highest degree in the graph is 6(x+1).
To make the graph regular, we insert new nodes filled with agents such that
each new agent is the only agent of its type, and connect these new nodes with
existing nodes and each other as needed. From x > 5(1−τ)

6τ and Δ = 6(x + 1) we
obtain τ ≥ 6

Δ , where equality is reached if x is chosen as low as possible. 	

The situation is much worse on arbitrary graphs as the following theorem shows.

Theorem 6. IRD are not guaranteed to converge in the 1-1-SSG for τ ∈ (0, 1)
on arbitrary networks. Moreover, weak acyclicity is violated.

Proof (sketch). We show the statement by giving an example for an IRC where
in every step exactly one improving swap exists. Consider Fig. 4. 	


3 Schelling Dynamics for the Jump Schelling Game

We now analyze the convergence behavior of IRD for the JSG.

3.1 IRD Convergence for the One-versus-All Version

We first turn our focus to the 1-k-JSG, where an agent compares the number
of neighbors of her type with the total number of neighbors, and prove a sharp
threshold result for the convergence of IRD on Δ-regular graphs, for any Δ ≥ 2.
Moreover, we show that the game is not weakly acyclic on arbitrary graphs.

Theorem 7. IRD are guaranteed to converge in O(|E|) steps for the 1-k-JSG
with τ ≤ 2

Δ on any Δ-regular network G = (V,E).
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Fig. 4. An IRC with exactly one improving swap per step for the 1-1-SSG with x >

max
(

5(1−τ)
6τ

, τ
1−τ

)
for any τ ∈ (0, 1). Agents types are marked orange, blue and gray.

Multiple nodes in series represent a clique of nodes of the stated size. Edges between
cliques or between a clique and single nodes represent that all involved nodes are
completely interconnected. (Color figure online)

Proof (sketch). For any Δ-regular network G we define the weight wpG
(e) of any

edge e = {u, v} ∈ E with 1
2 − 1

2Δ < c < 1
2 as:

wpG
(e) =

⎧⎪⎨
⎪⎩

1, if u and v are occupied by agents of different types for pG,

c, if eitheruor v , but not both, are empty for pG,

0, otherwise.

We prove that Φ(pG) =
∑

e∈E wpG
(e) is an ordinal potential function. An agent

becomes content if she has two neighbors of her type. There is no incentive for
agent y to decrease the number of same-type neighbors. 	

Actually Theorem 7 is tight and convergence is not guaranteed if τ > 2

Δ .

Theorem 8. The 1-k-JSG for τ > 2
Δ on Δ-regular graphs is no potential game.

If the underlying network is an arbitrary network the situation is worse.

Theorem 9. IRD are not guaranteed to converge in the 1-k-JSG for τ ∈ (0, 1)
on arbitrary networks. Moreover, weak acyclicity is violated.

3.2 IRD Convergence for the One-versus-One Version

Now we turn to the 1-1-JSG. By using the same proof as in Theorem4 with
jumps instead of swaps we get the following positive result.

Theorem 10. IRD are guaranteed to converge in at most |A|
2 moves for the

1-1-JSG with τ ≤ 1
Δ on Δ-regular networks.

The same IRC which proves Theorem 8 for the 1-k-JSG yields the next result.

Theorem 11. IRD may not converge in the 1-1-JSG for τ > 2
Δ on Δ-regular

graphs.
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Finally the proof of Theorem9 works for the following result as well.

Theorem 12. IRD are not guaranteed to converge in the 1-1-JSG for τ ∈ (0, 1)
on arbitrary networks and weakly acyclicity is violated.

4 Hardness of Finding Optimal Placements

Here, we investigate the computational hardness of computing an optimal place-
ment, i.e., a placement where as many agents as possible are content.

4.1 Hardness Properties for Two Types

We start with two types of agents and show that finding an optimal placement
for the SSG in an arbitrary network G is NP-hard by giving a reduction from the
Balanced Satisfactory Problem was introduced in [23,24] and proven to
be NP-hard in [4]. This result directly implies that finding an optimal placement
for the JSG with no empty nodes is NP-hard as well.

Theorem 13. Finding an optimal placement of agents for the two types SSG
in a network G is NP-hard for τ = 1

2 .

The proof of the above theorem relies on the fact that there are no empty nodes.
The computational hardness of the JSG changes if many empty nodes exist.
Obviously, it is easy to find an optimal placement if there are enough empty
nodes to separate both types of agents completely and a suitable separator is
known. Mapping the boundary for the transition from NP-hardness to efficient
computation is a challenging question for future work.

Next we show that finding an optimal placement is hard for high τ via a
reduction from Minimum Cut Into Equal Size (MCIES) which was proven
to be NP-hard in [21].

Theorem 14. Finding an optimal placement in the SSG on an arbitrary net-
work G = (V,E) with maximum node degree ΔG = max{degG(v) | v ∈ V } is
NP-hard for τ > 3ΔG

3ΔG+1 .

Proof (sketch). Given a network G = (V,E) and W ∈ N. MCIES is the decision
whether there is a partition V1, V2 with V1 ∪V2 = V , V1 ∩V2 = ∅ and |V1| = |V2|
such that |{{v1, v2} ∈ V | v1 ∈ V1, v2 ∈ V2}| ≤ W . Let ΔG = max{degG(v) | v ∈
V } be the maximum node degree in G. We create a network G′ = (V ′, E′) in
which every node v ∈ V is replaced by a clique Cv in G′ of size 3ΔG + 1. Each
edge {u, v} ∈ E will be replaced by an edge {u′, v′} between two nodes u′ ∈ Cu

and v′ ∈ Cv such that each node in G′ has at most one neighbor outside its clique.
Therefore, the degree of nodes in G′ is either 3ΔG or 3ΔG + 1. We have two
different agent types, each consisting of |V ′|

2 agents. Let τ > ΔG′−1
ΔG′ = 3ΔG

3ΔG+1 .
For a placement pG′ to be optimal, all cliques C have to be uniform, i.e. assign
agents of the same type to each node in C. 	
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We used a placement cost function which counts the number of discontent agents.
However, we remark that even if we change this definition into summing up the
cost of all agents, i.e., cost′

pG
(A) =

∑
a∈A costpG

(a), like social cost, the above
hardness results still hold. This relates to the hardness results in [16] which hold
for the JSG with τ = 1 in the presence of stubborn agents.

We contrast the above results by providing an efficient algorithm for com-
puting an optimal placement for the SSG on a 2-regular network with k =
2 by employing a well-known dynamic programming algorithm for Subset
Sum [14,20].

Theorem 15. Finding an optimal placement of agents of two types in the SSG
on a 2-regular network with n nodes can be done in O(n2) for τ > 1

2 .

Optimal placements for the JSG can be found with an analogous algorithm.

4.2 Hardness Properties for More Types

We now show that also the number of different agent types has an influence on
the computational hardness of finding an optimal placement. We establish NP-
hardness even on 2-regular networks if there are sufficiently many agent types by
giving a reduction from 3-Partition which was proven to be NP-hard in [20].

Theorem 16. Finding an optimal placement of agents with k > 2 types in the
1-1-SSG and 1-k-SSG on a 2-regular network with τ > 1

2 is NP-hard.

We want to emphasize that solving the hardness question for optimal placements
does not allow equivalent statements for computing stable placements.

Theorem 17. For the SSG with two different types of agents there is a network
G where no optimal placement is stable.

Proof (sketch). We prove the statement by giving an example. See Fig. 5. 	


a

b
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u3 v2

7︷︸︸︷2︷︸︸︷
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u2

5︷︸︸︷ 2︷︸︸︷

u1 v1 a

b v3

u3 v2

7︷︸︸︷2︷︸︸︷
︸︷︷︸
3

u2

5︷︸︸︷ 2︷︸︸︷

u1 v1

Fig. 5. The optimal placement (left) is not in equilibrium for τ > 0.9 since agents a
and b profit from swapping (right).
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5 Conclusion and Open Questions

We provided tight threshold results for the IRD convergence for several game-
theoretic versions of Schelling’s segregation model. Furthermore, we found that
the number of agent types and the underlying graph both have severe impact
on the computational hardness of computing optimal placements.

It remains open whether IRD always converge for 1-1-SSG with τ ∈ (
1
Δ , 6

Δ

)
,

and for the 1-1-JSG with τ ∈ (
1
Δ , 2

Δ

)
. Since most versions are not guaranteed

to converge via IRD, the existence of stable placements for all graph types is
an interesting open problem. For the 1-k-JSG and τ = 1 it was shown in [16]
that stable placements exist if the underlying network is a star or a graph with
maximum degree 2 and that there are trees which do not admit stable place-
ments. Unfortunately, our examples for IRCs or non-weak-acyclicity cannot be
used as counter-examples since they all admit stable placements. We conjecture
that equilibria always exist on regular and almost regular graphs but that for
all versions for which we constructed IRCs on non-regular graphs there exist
underlying graphs which do not admit stable placements.

Also the computational hardness of finding optimal placements deserves fur-
ther study and could be extended to other interesting states, e.g., stable states
with low segregation. Moreover, from a Mechanism Design point of view it could
be interesting to study mechanisms which guide agents from a highly segregated
state towards equilibria with low segregation.

Our IRD convergence results can be adapted to hold for the extended model
in [11], where agents have single-peaked preferences over the locations. Moreover,
we are positive that also our computational hardness results can be carried over.

Last but not least, we emphasize that there are many possible ways to model
Schelling segregation with at least three agent types. For example, types could
have preferences over other types which then yields a rich unexplored setting.
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2 ETH Zurich, Zürich, Switzerland
meiera@student.ethz.ch, paolo.penna@inf.ethz.ch

3 King’s College London, London, UK
carmine.ventre@kcl.ac.uk

Abstract. Obviously strategyproof (OSP) mechanisms have recently
come to the fore as a tool to deal with imperfect rationality. They, in
fact, incentivize people with no contingent reasoning skills to “follow the
protocol” and be honest. However, their exact power is still to be deter-
mined. For example, even for settings relatively well understood, such as
binary allocation problems, it is not clear when optimal solutions can be
computed with OSP mechanisms.

We here consider this question for the large class of set system prob-
lems, where selfish agents with imperfect rationality own elements whose
cost can take one among few values. In our main result, we give a char-
acterization of the instances for which the optimum is possible. The
mechanism we provide uses a combination of ascending and descending
auctions, thus extending to a large class of settings a design paradigm
for OSP mechanisms recently introduced in [9]. Finally, we dig deeper in
the characterizing property and observe that the set of conditions can be
quickly verified algorithmically. The combination of our mechanism and
algorithmic characterization gives rise to the first example of automated
mechanism design for OSP.

Keywords: Extensive form mechanisms · Bounded rationality

1 Introduction

The role of incentives in the design of algorithms has been a very active research
area in the last two decades. Mechanism design has as its main objective the
alignment of the objectives of the designer (e.g., optimality of the solution)
with those of self-interested agents (e.g., maximize their utility). The crucial
assumption made in the area is that these self-interested agents have perfect
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rationality: they will be able to ascertain that there is no point in strategizing,
whenever the mechanism is proved to be truthful (a.k.a., strategyproof (SP)).

Unfortunately this might be too strong an assumption for practical applica-
tions of these theoretically sound mechanisms. Even for the well-known second-
price auction, bidders lie when submitting sealed bids but are truthful when the
mechanism is implemented via an ascending auction [14]. Intuitively, this means
that it is easier to understand how to play the latter implementation of Vickrey
auction, whilst the former can be confusing for agents with imperfect rationality.
The recent definition of obviously strategyproof (OSP) mechanisms [16] formal-
izes how a different (extensive-form) implementation can make it obvious for an
agent to decide what strategy to adopt. Roughly speaking, in OSP mechanisms,
the utility for the worst scenario when truth-telling is at least as good as that
of the best scenario when cheating. Li [16] proves that OSP mechanisms are
obvious to understand for people without any contingent reasoning skill.

Research about the power of OSP mechanisms has barely scratched the sur-
face. While it is clear that ascending/descending price auctions are OSP (as it is
obvious for a bidder to decide whether to quit the auction or not), few general
paradigms are known for the design of OSP mechanisms that return “good”
(e.g., optimal) solutions. Deferred-acceptance (DA) mechanisms [18] are OSP
(as they essentially are ascending price auctions), but unfortunately their per-
formance (approximation guarantee) for several optimization problems is quite
poor compared to what strategyproof mechanisms can do [6,9]. A combination
of ascending and descending auctions has recently been given in [9] for the well-
known scheduling related machines problem; the mechanism and its analysis rely
on a generalization of the cycle monotonicity (CMON) technique, that allows to
focus on the algorithmic component of OSP mechanisms.

A setting which is relatively better understood is the case of binary allocation
problems, such as set systems. Here we are given a ground set of elements, each
controlled by a selfish agent who privately knows the cost of the element, and
a set of feasible solutions, i.e., subsets of elements in the ground set. The cost
of each solution is the sum of the costs of its elements. The objective is to
compute the feasible solution of minimum cost. Each agent can then be either
selected or not. We normalize the utility of unselected agents to 0, whilst we use
a quasi-linear utility for the selected agents, defined as the difference between the
payment received from the mechanism and the cost of the element she contributes
to the chosen solution. Li characterizes the class of OSP mechanisms for binary
allocation problems, when the agents’ domain is [tmin, tmax], in terms of personal
clock auctions (PCAs) – essentially, each agent faces either a descending or an
ascending price auction. We are interested in the power of OSP mechanisms; in
particular when can we design an OSP optimal mechanism for set systems?

To highlight the issues behind this question, let us consider a special set
system, namely path auctions, as introduced in [19]. In this problem, each edge
corresponds to a link that is owned by a selfish agent, the cost for using link i is
some private nonnegative value ti which is known only to agent i, and the goal
is to pick the shortest path between two given nodes s and t.
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Can we compute the shortest path whilst guaranteeing OSP? For a graph
consisting of parallel links, we know from [16] that the answer is yes via a simple
descending auction to select the cheaper edge. Already for slightly more general
graphs, the answer is unclear. Consider, for example, the graph in Fig. 1(a).
To make things even simpler let us restrict to a two-value domain {L,H}, i.e.,
edges cost either L or H > 2L. (Note that this means that we cannot rely on the
PCA characterization, since our domains are not continuous.) In this setting, a
simple OSP mechanism can be designed by querying the agents according to the
implementation tree (i.e., a querying protocol where different actions are taken
according to the answers received) in Figure 1(b). This algorithm is augmented
with the following payments: H for edges in the selected path, 0 otherwise. It is
not hard to see that, for every edge e, it is not possible that e is selected when she
declares that her type is H and it is not selected when she says L. In particular,
edge (s, t) is always selected when she says L, while the remaining edges are never
selected when they declare H. Then, if e declares her true type, she receives a
utility of H − L if the true type is L and e is selected, and 0 otherwise; by
inspection, she would receive at most the same utility when cheating. It turns
out that this argument is enough to prove that the mechanism is indeed OSP.
Does the same approach work, for example, on the slightly more general graph
in Fig. 1(c)? Consider an edge e that is queried before the type of the remaining
edges is known (that is, the first edge to be queried in a sequential mechanism,
or an arbitrary edge in a direct revelation mechanism). Suppose that the type of
this edge is L. If she declares her type truthfully, then the worst that may occur
is that the corresponding path is not selected (that occurs when this path costs
H + L and the alternative path costs 2L), and thus e receives utility 0. If this
edge, instead, cheats and declares H, then it is possible that the corresponding
path is selected (if it costs H+L and the alternative path costs 2H) and e receives
utility H − L. Thus, it is not obvious for an edge e lacking contingent reasoning
skills, to understand that being truthful is dominant. For which graphs can we
then design an OSP optimal mechanism? The goal of this work is to answer this
kind of questions for set system problems.

Fig. 1. Two instances of path auctions are shown in (a) and (c), while (b) is an OSP
mechanism for instance (a).
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Our Contribution. Our main result is a complete characterization of OSP
optimal mechanisms for set system problems (which include path auctions as a
special case). To prove our results, we adopt the CMON technique developed
in [9]. CMON is a powerful technique in that it allows to abstract the OSP
constraints (which depend on both the solution – e.g., the shortest path – and
the implementation tree) and reduces the existence of OSP mechanisms to the
absence of negative-weight cycles in a carefully defined graph. This is very similar
to CMON for truthful mechanisms; the difference, however, is that whilst for SP
it is enough to focus on cycles of length two for essentially all domains of interest
[22], for OSP, 2-cycles are in general sufficient only for small domains (of up to
three-values) [9]. Hence, while the necessary condition of our characterization
holds irrespectively of the domain size, since non-negative 2-cycles are always
necessary, our mechanism restricts the agents to have these small domains. The
technical and conceptual challenge left open is then to what extent the necessary
condition are sufficient for larger domains.

Before we discuss our characterization, we exemplify our approach on a
restricted version of set systems, namely path auctions on graphs comprised
of two parallel paths, whose edges have two-value domains. We show how the
topology (i.e., number of edges of either path) and values in the domains can
change the OSP-implementability of optimal algorithms. Specifically, we show
that our observation for shortest path on the graph in Fig. 1(a) is not an accident
as for all the graphs where a path is a direct edge, we can design an optimum
OSP mechanism no matter what the alternative path looks like. Similarly, we
prove that there are no OSP optimal mechanisms for the graph in Fig. 1(c) and
all the graphs where the two paths are composed of the same number (larger
than one) of edges. As for the graphs where neither path is direct and each has
a different number of edges, the existence of an OSP mechanism returning the
shortest path depends on the values in the domains.

We then generalize the setting to any set system problem, wherein agents
have three-value (heterogeneous) domains and fully characterize the properties
needed to design OSP mechanisms.

Main Theorem (informal). There is an OSP optimal mechanism
iff the set of feasible solutions are “aligned” with agent’s subdomain.

The intuition behind the characterization is simple. From OSP CMON, we know
that if an OSP mechanism selects an agent e when she has a “high” cost then it
must select e when she has a “low” cost (akin to monotonicity for strategyproof-
ness). Therefore, to design an OSP optimal mechanism we need to define an
implementation tree which satisfies this property. At each node of the tree, the
domain of the agents is restricted to a particular subdomain, depending on the
particular history; in turn, the set of possible type profiles also shrinks. Hence,
there may solutions that become suboptimal for all type profiles in this set, and
others that are still alive (i.e., optimal for at least one type profile in the set).
When e is asked to separate a high cost from a low cost at node u of the tree,
we then need the alive solutions to be “aligned” for the subdomain at u, which
roughly means that it should never be the case that there are two bid profiles in
this subdomain for which e belongs to an optimal solution when she has a high
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cost and is not part of an optimal solution when she has a low cost. The somehow
surprising extra aspect is that even if the alive solutions were not aligned for one
single subdomain then there would be no way to design an implementation tree
to bypass this misalignment.

The technical definition of alignment has some nuisance to do with the partic-
ular ways in which the OSP monotonicity can be broken, but on the positive side,
rather immediately suggests how to interleave ascending and descending phases
to design an OSP optimal mechanism. This characterization precisely shows how
OSP needs to look at the quality of solutions among set of instances (encoded by
agent subdomains) rather than just the single instance and how this is needed
to inform the shape of the implementation tree. Moreover, this characterization
also enables us to give a testing algorithm, running in time polynomial in the size
of the set system instance, which flags whether an OSP optimal mechanism for
the instance at hand is possible or not. This coupled with our mechanism gives a
sort of automated mechanism design result in that the designer has a blackbox,
comprised of testing algorithm, and possibly our mechanism, to implement the
optimal solution in an OSP way.

Related Work. The notion of OSP mechanism has been introduced recently
by [16] and has received a lot of attention in the community. Several works have
focused on understanding better the notion of OSP mechanism, and studying
settings without money, namely matching and voting [2,4,17]. An early work
on the approximation guarantee of OSP mechanisms is [10] where the authors
consider OSP mechanisms for machine scheduling and facility location. A more
recent study on the approximation guarantee of OSP mechanisms without money
for machine scheduling is [15]. As mentioned above, a companion paper [9] intro-
duces CMON and gives tight bounds for OSP mechanism for scheduling related
machines. The use of verification [20] for OSP mechanisms is, instead, studied
in [11]. The tradeoff between approximation guarantee (for machine scheduling)
and relaxations of OSP is recently studied in [12].

Research in algorithmic mechanism design [5,13] has suggested to focus on
“simple” mechanisms to deal with bounded rationality. For example, posted-
price mechanisms received huge attention very recently and have been applied to
many different settings [1,3,7,8] In these mechanisms one’s own bid is immaterial
for the price paid to get some goods of interest. However, posted price mech-
anisms do not fully capture the concept of simple mechanisms: e.g., ascending
price auctions are not posted price mechanisms and still turn out to be “simple”.

The automatic generation of mechanisms has been a classic desiderata in
algorithmic mechanism design [23]: indeed, automated mechanisms are easier
to use in practice, where inputs may quickly evolve. However, few results are
known, even for SP mechanisms.

2 Preliminaries

A mechanism design setting is defined by a set of n selfish agents and a set of
allowed outcomes S. Each agent i has a type ti ∈ Di, where Di is called the
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domain of i. The type ti is usually assumed to be private knowledge of agent i.
We let ti(X) ∈ R denote the cost of agent i with type ti for the outcome X ∈ S.

A mechanism is a process for selecting an outcome X ∈ S. To this aim,
the mechanism interacts with agents. Specifically, agent i is observed to take
actions (e.g., saying yes/no) that may depend on her presumed type bi ∈ Di

(e.g., saying yes could “signal” that the presumed type has some properties that
bi alone might enjoy). We say that agent i takes actions compatible with (or
according to) bi to stress this. We highlight that the presumed type bi can be
different from the real type ti.

For a mechanism M, we let M(b) denote the outcome returned by the
mechanism when agents take actions according to their presumed types b =
(b1, . . . , bn). In our context, this outcome is given by a pair (f,p), where f = f(b)
(termed social choice function or, simply, algorithm) maps the actions taken
by the agents according to b to a feasible solution in S, and p = p(b) =
(p1(b), . . . , pn(b)) ∈ R

n maps the actions taken by the agents according to b to
payments from the mechanism to the agents.

Each selfish agent i is equipped with a utility function ui : Di × S → R. For
ti ∈ Di and for an outcome X ∈ S returned by a mechanism M, ui(ti,X) is
the utility that agent i has for outcome X when her type is ti. We define utility
as a quasi-linear combination of payments and costs, i.e., ui(ti,M(bi,b−i)) =
pi(bi,b−i) − ti(f(bi,b−i)).

A mechanism M is strategy-proof (SP) if it holds that ui(ti,M(ti,b−i)) ≥
ui(ti,M(bi,b−i)) for every i, every b−i = (b1, . . . , bi−1, bi+1, . . . , bn) and every
bi ∈ Di, with ti being the true type of i. That is, in a strategy-proof mechanism
the actions taken according to the true type are dominant for each agent.

We will be focusing on single-parameter settings, that is, the case in which
the private information of each bidder i is a single real number ti and ti(X) can
be expressed as tiwi(X) for some publicly known function wi.

Obvious Strategyproofness. We now formally define the concept of obvi-
ously strategy-proof (deterministic) mechanism. This concept has been intro-
duced in [16]. However, our definition is built on the more accessible ones given
in [2] and [10]. As shown in [4,17], our definition is equivalent to Li’s.1

Let us first formally model how a mechanism works. An extensive-form mech-
anism M is defined by a directed tree T = (V,E), called the implementation
tree, such that:

– Every leaf � of the tree is labeled with a possible outcome X(�) ∈ S of the
mechanism;

– Every internal vertex u ∈ V is labeled by an agent S(u) ∈ [n];
– Every edge e = (u, v) ∈ E is labeled by a subset T (e) ⊆ D = ×iDi of type

profiles such that:

1 More in detail, our definition of implementation tree is equivalent to the concept of
round-table mechanism in [17]. Consequently, our definition of OSP is equivalent to
the concept of SP-implementation through a round table mechanism, that is proved
to be equivalent to the original definition of OSP.
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• The subsets of profiles that label the edges outgoing from the same vertex
u are disjoint, i.e., for every triple of vertices u, v, v′ such that (u, v) ∈ E
and (u, v′) ∈ E, we have that T (u, v) ∩ T (u, v′) = ∅;

• The union of the subsets of profiles labelling the edges outgoing from a
non-root vertex u is equal to the subset of profiles that label the edge
going in u, i.e.,

⋃
v : (u,v)∈E T (u, v) = T (φ(u), u), where φ(u) is the parent

of u in T ;
• The union of the subsets of profiles that label the edges outgoing from the

root vertex r is equal to the set of all profiles, i.e.,
⋃

v : (r,v)∈E T (r, v) = D;
• For every u, v such that (u, v) ∈ E and for every two profiles b,b′ ∈

T (φ(u), u) such that bi = b′
i, i = S(u), if b belongs to T (u, v), then b′

must belong to T (u, v) also.

Roughly speaking, the tree represents the steps of the execution of the mech-
anism. As long as the current visited vertex u is not a leaf, the mechanism
interacts with the agent S(u). Different edges outgoing from vertex u are used
for modeling the different actions that agents can take during this interaction
with the mechanism. As suggested above, the action that agent i takes may
depend on her presumed type bi ∈ Di. That is, different presumed types may
correspond to taking different actions, and thus to different edges. The label T (e)
on edge e = (u, v) then lists the type profiles in which the type of S(u) is one
signalled by the actions assigned to e. In other words, when edge e is traversed,
then the mechanism (and the other agents) can infer that the type profile must
be contained in T (e). The execution ends when we reach a leaf � of the tree. The
mechanism then returns the outcome that labels �.

Observe that, according to the definition above, for every profile b there is
only one leaf � = �(b) such that b belongs to T (φ(�), �). For this reason we say
that M(b) = X(�). Moreover, for every type profile b and every node u ∈ V ,
we say that b is compatible with u if b ∈ T (φ(u), u). Finally, two profiles b, b′

are said to diverge at vertex u if there are two vertices v, v′ such that (u, v) ∈ E,
(u, v′) ∈ E and b ∈ T (u, v), whereas b′ ∈ T (u, v′). For every node u in a
mechanism M such that there are two profiles b,b′ that diverge at u, we say
that u is a divergent node, and i = S(u) the corresponding divergent agent. For
each agent i, we define the current domain at node u, denoted Di(u), such that
Di(r) = Di for the root r and Di(u) = ∪b∈T (φ(u),u)bi. In words, this is the
set of types of i that are compatible with the actions that i took during the
execution of the mechanism until node u is reached. Indeed, according to the
definition above, at each node u in which i diverges, M partitions Di(u) in k
subsets, where k is the number of children of u, and where for every child v of
u, Di(v) ⊂ Di(u) contains the types of bidder i compatible with the action that
she takes when interacting with the mechanism at node u.

We are now ready to define obvious strategyproofness. An extensive-form
mechanism M is obviously strategy-proof (OSP) if for every agent i with real
type ti, for every vertex u such that i = S(u), for every b−i,b′

−i (with b′
−i

not necessarily different from b−i), and for every bi ∈ Di, with bi 
= ti, such
that (ti,b−i) and (bi,b′

−i) are compatible with u, but diverge at u, it holds that
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ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b′
−i)). Roughly speaking, an obviously strategy-

proof mechanism requires that, at each time step agent i is asked to take a
decision that depends on her type, the worst utility that she can get if at this
time step she behaves according to her true type is at least the best utility
achievable by behaving as she had a different type. Hence, if a mechanism is
obviously strategy-proof, then it is also strategy-proof. Indeed, the latter requires
that truthful behavior is a dominant strategy when agents know the entire type
profile, whereas the former requires that it continues to be a dominant strategy
even if agents have only a partial knowledge of profiles limited to what they
observed in the mechanism up to the time they are called to take their choices.

We say that an extensive-form mechanism is trivial if for every vertex u ∈ V
and for every two type profiles b,b′, it holds that b and b′ do not diverge at
u. That is, a mechanism is trivial if it never requires agents to take actions
that depend on their type. If a mechanism is not trivial, then there is at least
one divergent node. On the other hand, every execution of a mechanism (i.e.,
every path from the root to a leaf in the mechanism implementation tree) may
go through at most

∑
i(|Di| − 1) divergent nodes, the upper bound being the

case in which at each divergent node u, the agent i = S(u) separates Di(u) in
Di(u) \ {b} and {b} for some b ∈ Di(u).

Cycle-Monotonicity for OSP Mechanisms. In [9], a technique – that
extends the well-known cycle monotonicity for strategyproofness [21] – is intro-
duced to study whether a mechanism is OSP. We here recall their results, needed
for our characterization.
Consider an extensive-form mechanism M = (f,p) with implementation tree T .

Definition 1 (separating vertices). A vertex u in the implementation tree T
is αβ-separating for agent i if the following holds: Node u is labelled with i, i.e.,
i = S(u); there are two profiles (α,a−i) and (β,b−i) which are compatible with
u but diverge at u, where a−i,b−i ∈ D−i(u) = ×j �=iDj(u).

Note that there might exist several αβ-separating vertices for agent i as the
agent may be asked to separate a from b in different paths from the root to a
leaf (but only once for every such path).

Definition 2 (OSP-graph). Let f be a social choice function and T be an
implementation tree. We define for every agent i, the OSP-graph OSP

(f,T )
i as

follows: There is a node for each type profile in D, and a directed edge e =
((α,a−i), (β,b−i)) for every α, β ∈ Di, α 
= β, and a−i,b−i ∈ D−i(u), where u
is an αβ-separating vertex of T . The weight of the edge is w(e) = α(f(β,b−i))−
α(f(α,a−i)).

Definition 3 (OSP CMON). We say that the OSP cycle monotonicity (OSP
CMON) property holds if, for all i, the graph OSP

(f,T )
i does not have nega-

tive weight cycles. Moreover, we say that the OSP two-cycle monotonicity (OSP
2CMON) holds if the same is true when considering cycles of length two only,
i.e., cycles with two edges only.
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We now state the relationship between OSP CMON and OSP mechanisms.

Theorem 1 ([9]). A mechanism with implementation tree T is an OSP mecha-
nism for a social function f on finite domains if and only if OSP CMON holds.

Theorem 2 ([9]). Let |Di| ≤ 3 for each agent i. A mechanism with implemen-
tation tree T and social choice function f is OSP iff OSP 2CMON holds.

Set Systems. In a set system (E,F) we are given a set E of elements and a
family F ⊆ 2E of feasible subsets of E. Each element i ∈ E is controlled by a
selfish agent, that is, the cost for using i is known only to agent i and is equal to
some non-negative value ti. The social choice function f must choose a feasible
subset in F ; we can use the same notation above for single-parameter agents
with the restriction that fi(b) ∈ {0, 1} to mean that the element controlled by
agent i is either chosen by f , with fi(b) = 1, or not, with fi(b) = 0. Here
our objective is social cost minimization, that is, f∗(b) ∈ arg minx

∑n
i=1 bi(x).

Several problems on graphs can be cast in this framework.

3 Warm-Up: Shortest Path with Two-Values Domains

Before stating our main results, we will illustrate our approach by providing a
characterization for a simpler setting: specifically, we consider the path auction
problem discussed in the introduction; this is a special case of a set system
problem where the set of feasible solutions is the set of all the paths between
the source node s and the destination node t in a given graph G. Moreover,
we consider the case in which G has two parallel paths from the source to the
destination; the first is comprised of a set T of t edges, that we will sometimes
call top edges, whilst the second is comprised of a set B of b edges, that we will
call bottom edges. Without loss of generality, we assume that t ≥ b.

Proposition 1. There is an OSP optimal mechanism for the shortest path prob-
lem on parallel paths and two-value domains D = {L,H}n if and only if either
(1) b = 1 or (2) t > b > 1 and H

L ≤ t−1
b−1 .

Proof (Sketch). Let us start by proving the sufficient condition. Consider the
optimal mechanism that returns the bottom path in case of ties. By a case
analysis, one can prove that under the hypotheses of the theorem: (i) For any
top edge e, if the corresponding agent reports H, then the bottom path is chosen,
i.e., fe(H,b−e) = 0 for all b−e; (ii) For any bottom edge e, if the corresponding
agent reports L, then the bottom path is chosen, i.e., fe(L,a−e) = 1 for all a−e.
Since fe(·) is either 0 or 1 for this problem, the two items above imply that OSP
2CMON, and thus, by Theorem 2, OSP CMON holds for every agent e.

We next prove the necessity and show that when either (i) t = b > 1 or (ii)
t > b > 1 and H

L > t−1
b−1 , no optimal mechanism M can be OSP. Since M is

optimal, it is not trivial and at some point it must separate L from H for at
least one agent. We consider the first divergent agent e, and show via a simple
case analysis, that OSP 2CMON is violated for this agent, thus implying that
mechanism M is not OSP (Theorem 1). �
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4 Set Systems

In this section we characterize when OSP optimal mechanisms exist for set sys-
tems. We will formally define the concept of alignment introduced above, with a
different and more technical terminology. The main message is that the feasibil-
ity of OSP optimal mechanisms depends on structural properties of the feasible
solutions and the values in the agents’ domains.

To this aim, let us first introduce the key concepts. Consider a set system
problem (E,F ,D). where D = (De)e∈E denotes the domain. We next define
some useful concepts and notation, to state our characterization and mechanism.
Consider an arbitrary subdomain D̃ of D, that is, a type domain D̃ = (D̃e)e∈E

such that D̃e ⊆ De for all e ∈ E. We denote by L(e, D̃) = min{t ∈ D̃e} and
H(e, D̃) = max{t ∈ D̃e} the lowest and the highest type for e according to
the subdomain D̃. Similarly, for any P ⊆ E, we let L(P, D̃) and H(P, D̃) be
the lowest and the highest possible cost of P according to subdomain D̃, i.e.,
L(P, D̃) =

∑
e∈P L(e, D̃) and H(P, D̃) =

∑
e∈P H(e, D̃). (When clear from the

context, we omit the reference to D̃ in these notations.) Finally, we let ≺ denote
a total order among the feasible solutions in F ; this order will be used to select
the optimal solution to return in case of ties.

Next concepts relate implementation trees and optimal solutions.

Definition 4 (selectable solution). A feasible solution P ∈ F is said
selectable for a subdomain D̃ if for every other P ′ ∈ F it holds that L(P\P ′, D̃) <
H(P ′ \ P, D̃) or L(P \ P ′, D̃) = H(P ′ \ P, D̃) and P ≺ P ′.

Any implementation tree gradually shrinks D to subdomains D̃ by querying the
agents. If the implementation tree has already shrunk to some D̃, a selectable
solution for D̃ cannot be excluded a priori because, for some profile in D̃, it
is either the unique optimum or the optimum preferred according to the tie-
breaking rule. Observe that at least one selectable solution exists for every D̃.

While the above concept refers only to implementation tree and optimality,
the next will turn out to be useful to study when there is a way to shrink D that
returns an optimal solution but also that is compatible with OSP.

Definition 5 (strongly selectable solution). A selectable solution P is said
strongly selectable for a subdomain D̃ if, for all e ∈ P , it continues to be
selectable even for the subdomain (D̃−e,H(e, D̃)), where D̃−f = (D̃e)e�=f and,
with a slight abuse of notation, H(e, D̃) denotes {H(e, D̃)}.

In words, this means that solution P is still potentially optimum when any one
of its elements has the largest possible cost H(e, D̃) in D̃.

The Analytical Characterization: Necessary Conditions. Our next two
lemmas identify necessary conditions for the implementation tree of an OSP
optimal mechanism for set systems. To this aim, we define the obstacle domain
set X to contain D and, for each f with |Df | > 2, D̃

�
f = (D−f , D̃�

f ), where

D̃�
f = Df \ L(f,D), and D̃

⊥
f = (D−f , D̃⊥

f ), where D̃⊥
f = Df \ H(f,D).
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The first necessary condition roughly says that if there is a domain in the
obstacle domain set X where elements of strongly selectable solutions can be
excluded when they reveal their type to be as low as possible, then there is no
implementation tree which yields an OSP optimal mechanism.

Lemma 1. There is no OSP optimal mechanism for a set system problem if
there is a domain D̃ ∈ X such that the following properties are both satisfied:

(i) the set S of strongly selectable solutions for D̃ contains at least one P with
f ∈ P such that |D̃f | > 1;

(ii) for every P ∈ S and every f ∈ P such that |D̃f | > 1, there is P̄f ∈ S with
f 
∈ P̄f such that P̄f remains selectable even for (D̃−f , L(f, D̃)).

Proof (Sketch). Assume by contradiction that there is a domain D̃ ∈ X for which
the conditions above are satisfied and yet there is an OSP optimal mechanism
M; let us denote with T its implementation tree.

Let S be the set of strongly selectable solutions defined in the statement,
which is not empty by hypothesis. Consider the first node u ∈ T in which
an agent f ∈

⋃
P∈S P diverges between L(f, D̃) and H(f, D̃) in the subtree

compatible with the type of every agent e ∈
⋃

P∈S P being in D̃e and the type of
every remaining agent e being H(e, D̃). First, observe that, since the mechanism
M is optimal, such a node u must exist.

Given the existence of u and f as above, we then apply the hypothesis (ii)
to show a negative OSP 2-cycle. �

The second necessary property regards domains D̃ ∈ X for which there are
solutions that are selectable but not strongly selectable. For each such solution
P there is an agent w, that we will call the witness of P , such that P is no longer
selectable for D̃hw = (D̃−w,H(w, D̃)).

The next lemma intuitively says that, if there exist domains where wit-
nesses of solutions that are selectable but not strongly selectable can be excluded
(included, respectively) when they reveal their type to be the lowest (highest,
respectively) possible, then there is no implementation tree which yields an OSP
optimal mechanism. Its proof uses ideas similar to that of Lemma 1.

Lemma 2. There is no OSP optimal mechanism for a set system problem if
there is a domain D̃ ∈ X such that the following properties are both satisfied:

(i) the set S of selectable solutions for D̃ has size |S| ≥ 2, and there is at least
one P ∈ S such that P is not strongly selectable;

(ii) for every f for which there is at least one selectable solution to which it
belongs and at least one selectable to which it does not belong (i.e., f ∈⋃

(P,P ′)∈S×S P \ P ′) both the following are true:
• there is P̄f ∈ S s.t. f /∈ P̄f and P̄f is selectable for D̄ = (D̃−f , L(f, D̃));
• there is P̌f ∈ S s.t. f ∈ P̌f and P̌f is selectable for Ď = (D̃−f ,H(f, D̃)).
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The Analytical Characterization: The Mechanism. The two necessary
conditions suggest that it is possible to design an OSP optimal mechanism when
both the following properties are satisfied for some subdomain D̃ containing
more than one instance. When all selectable solutions are also strongly selectable
then there is an f such that every P ′ with f /∈ P ′ ceases to be selectable if the
type of f is L(f, D̃) (this is the negation of Lemma 1). Moreover, if there is at
least one selectable solution that is not strongly selectable for D̃, then there is
f such that either every P ′ with f /∈ P ′ ceases to be selectable if the type of
f is L(f, D̃), or every P ′ with f ∈ P ′ ceases to be selectable if the type of f
is H(f, D̃) (this is the negation of Lemma 2). We prove that these properties
are indeed sufficient by proving that Algorithm 1 admit payments for an OSP
optimal mechanism, that we call Mopt

set , for set systems with three-value domains,
i.e., with De ⊆ {Le,Me,He} with Le < Me < He for every e.

Theorem 3. There is an OSP optimal mechanism for a set system problem
with three-value domains if and only if there is no domain D̃ ∈ X for which
conditions of Lemma 1 or of Lemma 2 hold.

The “only if” direction follows from Lemmas 1 and 2. For the “if” direction, we
will need the following lemma.

Lemma 3. If the properties of Lemma 1 or of Lemma 2 are not satisfied for
every domain D̃ ∈ X , then they are not satisfied for every subdomain D̂ of D.

We are now ready to prove our main theorem.

Proof (Sketch of Theorem 3). According to Lemma 3, we can assume that for
every subdomain of D the conditions of Lemmas 1 and 2 do not hold. The
algorithm looks for an agent f we can safely ask for OSP-ness to diverge between
their current L(f) and H(f); if f reveals type L(f), then she will be securely
selected, or if she reveals type H(f), then she will be never selected. This shows
that to each query that the mechanism does, there does not correspond a negative
weight two-cycle in the OSP-graph of the queried agent. By Theorem 2 we can
then conclude that Mopt

set is OSP.
Finally, the only solution in P at the end of the mechanism is by definition

selectable for the final subdomain D̃. To argue about optimality, we need to make
sure that all the solutions excluded for bigger subdomains are not selectable for
D̃. The last key piece of the puzzle is a property of inheritance: the solutions
removed for bigger subdomain, because they were not selectable, remain non-
selectable for all the smaller domains. �

Note that the mechanisms Mopt
set runs in polynomial time, since it makes at most

2 queries to each agent. Interestingly, this mechanism is not a DA auction or a
PCA. Indeed, it may require that single agents are involved first in an ascending
phase and then in a descending phase or vice versa. In fact, it is not hard to see
that this occurs even with a very simple example with only two feasible solutions,
say P and Q, and three elements, x, y, and z, with P = {x, y}, and Q = {z},
with domains Dx = Dy = Dz = {L,M,H}, where L = 1, M = 3, and H = 7.
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Input: E,F ,D
Output: An optimal solution

1 Initialize R = {P ∈ F : P not selectable for D}, P = F \ R and D̃ = D
2 while |R| < |F| − 1 do

3 while there is P ∈ P that is not strongly selectable for D̃ do
4 if ∃f ∈ ⋃

P∈P P s.t. every P ∈ P, with f /∈ P , is not selectable for

(D̃−f , L(f, D̃)) then

5 Ask f if her type is L(f, D̃)
6 if yes then

7 D̃ = (D̃−f , L(f, D̃))

8 Add to R and remove from P every P not selectable for D̃

9 else

10 D̃ = (D̃−f , Df \ L(f, D̃))

11 Add to R and remove from P every P not selectable for D̃

12 else
13 Pick f ∈ ⋃

P∈P P s.t. all P ∈ P, with f ∈ P , are not selectable for

(D̃−f , H(f, D̃))

14 Ask f if her type is H(f, D̃)
15 if yes then

16 D̃ = (D̃−f , H(f, D̃))

17 Add to R and remove from P every P not selectable for D̃

18 else

19 D̃ = (D̃−f , Df \ H(f, D̃))

20 Add to R and remove from P every P not selectable for D̃

21 if |R| < |F| − 1 then
22 Pick f ∈ ⋃

P∈P P s.t. every P ∈ P, with f /∈ P , are not selectable for

(D̃−f , L(f, D̃))

23 Ask f if her type is L(f, D̃)
24 if yes then

25 D̃ = (D̃−f , L(f, D̃))

26 Add to R and remove from P every P that is not selectable for D̃

27 else

28 D̃ = (D̃−f , Df \ L(f, D̃))

29 Add to R and remove from P every P that is not selectable for D̃

30 Return the only solution in P
Algorithm 1: The implementation tree of the optimal algorithm for mech-
anism Mopt

set

The Algorithmic Characterization. Note that the obstacle domain set con-
tains at most 2|E| + 1 domains. So we can enumerate all elements in this set
in time that is polynomial in the size of the set system instance. Observe also
that it takes only polynomial time (in the number of feasible solutions) to verify
whether a solution is (strongly) selectable or not. Hence, the testing algorithm,
that for every domain in the obstacle domain set checks for whether the condi-
tions of Lemmas 1 and 2 are satisfied, is a polynomial-time algorithm.
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Abstract. We study the trade-off between the Price of Anarchy (PoA)
and the Price of Stability (PoS) in mechanism design, in the prototyp-
ical problem of unrelated machine scheduling. We give bounds on the
space of feasible mechanisms with respect to the above metrics, and
observe that two fundamental mechanisms, namely the First-Price (FP)
and the Second-Price (SP), lie on the two opposite extrema of this bound-
ary. Furthermore, for the natural class of anonymous task-independent
mechanisms, we completely characterize the PoA/PoS Pareto frontier;
we design a class of optimal mechanisms SPα that lie exactly on this
frontier. In particular, these mechanisms range smoothly, with respect
to parameter α ≥ 1 across the frontier, between the First-Price (SP1)
and Second-Price (SP∞) mechanisms.

En route to these results, we also provide a definitive answer to an
important question related to the scheduling problem, namely whether
non-truthful mechanisms can provide better makespan guarantees in the
equilibrium, compared to truthful ones. We answer this question in the
negative, by proving that the Price of Anarchy of all scheduling mecha-
nisms is at least n, where n is the number of machines.

Keywords: Mechanism design · Price of anarchy · Price of stability ·
Pareto frontier

1 Introduction
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the intersection of economics and computer science. The research agenda put
forward in [15] advocates the study of approximate solutions to interesting opti-
mization problems, in settings where rational agents are in control of the input
parameters. More concretely, the authors of [15] proposed a framework in which,
not unlike classical approaches in approximation algorithms, algorithms that
operate under certain limitations are evaluated in terms of their approximation
ratio. In particular, in algorithmic mechanism design, this constraint comes from
the requirement that agents should have the right incentives to always report
their inputs truthfully. The corresponding algorithms, paired with appropriately
chosen payment functions, are called mechanisms.

Another pioneering line of work, initiated by Koutsoupias [12] and popular-
ized further by Roughgarden [18], studies the inefficiency of games through the
notion of the Price of Anarchy (PoA), which measures the deterioration of some
objective at the worst-case Nash equilibrium. A more optimistic version of the
same principle, where the inefficiency is measured at the best equilibrium, was
introduced in [1], under the name of Price of Stability (PoS).

Given the straightforward observation that mechanisms induce games
between the agents that control their inputs, as well as the fact that truth-
fulness is typically a very demanding property, an alternative approach to the
framework of Nisan and Ronen [15] is to design mechanisms that perform well
in the equilibrium, i.e., they provide good PoA or PoS guarantees. This app-
roach has been adopted, among others, by central papers in the field (e.g., see
[17] and references therein) and is by now as much a part of algorithmic mech-
anism design as the original framework of [15]. An interesting question that has
arisen in many settings is whether non-truthful mechanisms (evaluated at the
worst-case equilibrium, in terms of their PoA) can actually outperform truthful
ones (evaluated at the truth-telling, dominant strategy equilibrium), for a given
objective.

While the literature that studies the concepts of PoA and PoS is long and
extensive, there seems to be a lack of a systematic approach investigating the
trade-off between the two notions simultaneously. More concretely, given a prob-
lem in algorithmic mechanism design, it seems quite natural to explore not only
the best mechanisms in terms of the two notions independently, but also the
mechanisms that achieve the best trade-off between the two. In a sense, this
approach concerns a “tighter” optimality notion, as among a set of mechanisms
with an “acceptable” Price of Anarchy guarantee, we would like to identify the
ones that provide the best possible Price of Stability. Our main contribution in
the current paper is the proposal of such a research agenda and its application
on the canonical problem in the field, introduced in the seminal work of Nisan
and Ronen [15], that of scheduling on unrelated machines.

1.1 Our Contributions

PoA/PoS trade-off: We propose the research agenda of studying systematically
the trade-off between the Price of Anarchy and the Price of Stability in algorith-
mic mechanism design. Specifically, given a problem at hand and an objective
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function, we are interested in the trade-off between the PoA and the PoS of
mechanisms for the given objective. We apply this approach on the prototypi-
cal problem of algorithmic mechanism design studied in [15], that of unrelated
machine scheduling, where the machines are self-interested agents.

First, in Sect. 3, for the class of all possible mechanisms, we prove that PoA
guarantees imply corresponding PoS lower bounds and vice-versa (Theorem2),
which allows us to quantify the possible trade-off between the two inefficiency
notions in terms of a feasible region (see Fig. 1); we refer to the boundary of this
region as the inefficiency boundary. Interestingly, two well-known mechanisms,
namely the First-Price and the Second-Price mechanisms, turn out to lie on the
extreme points of this boundary.

Next, in Sect. 4, for the well-studied class of task-independent and anonymous
mechanisms, we are able to show a tighter feasibility region (Theorem 5). As a
matter of fact, its inefficiency boundary turns out to completely characterize
the achievable trade-off between the PoA and the PoS: we design a class of
mechanisms (Sect. 4.2) called SPα, parameterized by a quantity α, which are
optimal in the sense that for any possible trade-off between the two inefficiency
notions, there exists a mechanism in the class (i.e., an appropriate choice of α)
that exactly achieves this trade-off (Theorem 6). In other words, we obtain an
exact description of the Pareto frontier of inefficiency (see Fig. 2).

Our SPα mechanisms are simple and intuitive and are based on the idea of
setting reserve prices relatively to the declarations of the fastest machines. While
this is clearly not truthful, we prove that it induces the equilibria which are
desirable for our results. More precisely, the choice of α enables us to “control”
the set of possible equilibria in a way that allows us to achieve any trade-off on
the boundary.

The Price of Anarchy of scheduling: Our results also offer insights in an other
interesting direction. The inefficiency boundary result for general mechanisms is
based on a novel monotonicity lemma (Lemma 1), which is quite different from
the well-known weak monotonicity property [19]. Interestingly, we also use this
lemma to prove a general lower bound of n on the PoA of any mechanism for
the scheduling problem (Theorem 1), where n is the number of machines. This
result contributes to the intriguing debate [4,10,11] of whether general mecha-
nisms (that may be non-truthful, evaluated at the worst-case equilibrium) can
outperform truthful ones (evaluated at the truth-telling equilibrium). Given that
the best known truthful mechanism achieves an n-approximation, our results
here provide a definitive, negative answer to the aforementioned question. As
a matter of fact, in Theorem4, we actually show that when evaluated at their
worst-case equilibrium, truthful mechanisms are bound to perform even more
poorly, as their PoA is unbounded.

Due to space constraints, all omitted proofs can be found in the full version
of the paper [8].
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1.2 Related Work

The (Selfish) Scheduling Problem: The scheduling problem on unrelated selfish
machines is the prototypical problem studied by Nisan and Ronen [15] in 1999,
when they introduced the field of algorithmic mechanism design. The authors
consider the worst-case performance of truthful mechanisms on dominant strat-
egy, truth-telling equilibria, and discover that the well-known Second-Price auc-
tion1 has an approximation ratio of n for the problem, where n is the num-
ber of machines. Despite several attempts over the years, this is still the best-
known truthful mechanism. On the other hand, the succession of the best proven
lower bounds started with 2 in [15], improved to 2.41 in [5] and finally to 2.61
in [13]. Interestingly, Ashlagi et al. [2] showed a matching lower bound of n for
anonymous mechanisms (i.e., mechanisms that do not take the identities of the
machines into account) and whether there is a better mechanism that is not
anonymous is still the most prominent open problem in the area.

The Truthful Setting vs the Strategic Setting: As we mentioned earlier, given that
truthfulness is a very demanding requirement which imposes strict constraints
on the allocation and payment functions, it is an interesting direction to consider
whether non-truthful mechanisms could perform better, when evaluated in the
worst-case equilibrium. In other words, for a given problem, one could ask the
following question:

“Do there exist (non-truthful) mechanisms whose Price of Anarchy out-
performs the approximation ratio guarantee of all truthful mechanisms?”.

To differentiate, we will refer to the traditional approach of Nisan and
Ronen [15] as the truthful setting and to the setting where all mechanisms are
explored (with respect to their Nash equilibria) as the strategic setting.

Koutsoupias [11] studied the truthful setting for the problem of unrelated
machine scheduling without money but he explicitly advocated the strategic set-
ting as a future direction. This was later pursued in Giannakopoulos, Koutsou-
pias and Kyropoulou [10] for the same problem, where the authors answered the
aforementioned question in the affirmative. The same approach was taken in [4]
following the results of [7] on the limitations of truthful mechanisms for indivisi-
ble item allocation. In the literature of auctions, the strategic setting was studied
even in domains for which an optimal truthful mechanism (the VCG mechanism)
exists, motivated by the fact that non-truthful mechanisms are being employed
in practice, with the Generalized Second-Price auction used by Google for the
Adwords allocation being a prominent example [3]. We refer the reader to the
survey of Roughgarden [17] for more details.

Somewhat surprisingly, although the exploration of different solution con-
cepts besides dominant strategy equilibria was already explicitly mentioned as a
future direction in [15], the strategic setting for the scheduling problem was not

1 In the related literature, this mechanism is often referred to as the Vickrey-Clarke-
Groves (VCG) mechanism.
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studied before our paper. As we mentioned earlier, the answer to the highlighted
question above here is negative, but the setting proved out to be quite rich in
terms of the achievable trade-off between the two different inefficiency notions.

To the best of our knowledge, ours is the first paper that proposes the sys-
tematic study of the trade-off between the Price of Anarchy and the Price of
Stability. While preparing our manuscript, we became aware that a trade-off
between the two notions was very recently considered also in [16], though in
a fundamentally different setting: the authors of [16] study a special case of
covering games, originally introduced by Gairing [9], which is not inherently a
mechanism design setup. One the contrary, our interest is in explicitly studying
this trade-off in the area of algorithmic mechanism design, thus choosing the
prototypical scheduling problem as the starting point.

2 Model and Notation

Let R≥0 = [0,∞) denote the nonnegative reals and N = {1, 2, . . . } the posi-
tive integers. For any n ∈ N, let [n] = {1, 2, . . . , n}. In the strategic scheduling
problem (on unrelated machines), there is a set N = {1, . . . , n} of machines (or
agents) and a set J = {1, . . . , m} of tasks. Each machine i has a processing time
(or cost) ti,j ≥ 0 for task j. The induced matrix t ∈ R

n×m
≥0 is the profile of pro-

cessing times. For convenience, we will denote by ti = (ti,1, . . . , ti,m) the vector
of processing times of machine i for the tasks and by tj = (t1,j , . . . , tn,j)T the
vector of processing times of the machines for task j, so that t = (t1, . . . , tn) =
(t1, . . . , tm)T. The machines are strategic and therefore, when asked, they do
not necessarily report their true processing times t but they rather use strate-
gies s ∈ R

n×m
≥0 . To emphasize the distinction, we will often refer to t as the profile

of true processing times. Adopting standard game-theoretic notation, we use t−i

and s−i to denote the profile of true or reported processing times respectively,
without the coordinates of the i’th machine.

A (deterministic, direct revelation) mechanism M = (x,p) gets as input
a strategy profile s ∈ R

n×m reported by the machines and outputs allocation
x = x(s) ∈ {0, 1}n×m and payment p = p(s) ∈ R

n
≥0: xi,j is an indicator variable

denoting whether or not task j is allocated to machine j, and pi is the payment
with which M compensates machine i for taking part in the mechanism. Thus,
the allocation rule needs to satisfy

∑
i∈N xi,j(s) = 1 for all tasks j.

The utility of machine i under a mechanism M = (x,p), given true running
times ti and a reported profile s by the machines, is

uM
i (s|ti) = pi(s) −

m∑

j=1

xi,j(s)ti,j ,

that is, the payment she receives from M minus the total workload she has
to execute. This is exactly the reason why machines may lie about their true
processing times; they will change their report si and deviate to another s′

i if this
improves the above quantity. A stable solution with respect to such best-response
selfish behaviour is captured by the well-known notion of an equilibrium. Given
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a mechanism M and a strategy profile s, we will say that s is a (pure Nash)
equilibrium2 of M (with respect to a true profile t) if, for every machine i and
every possible deviation s′

i ∈ R
m
≥0,

uM
i (s|t) ≥ uM

i (s′
i, s−i|t).

Let QM
t denote the set of pure Nash equilibria of mechanism M with respect

to true profile t. As is standard in the literature, we focus on the case where
QM

t �= ∅ for all t ∈ R
n×m
≥0 (see, e.g.,[4,10,15]).

Our objective is to design mechanisms that minimize the makespan

CM(s|t) = max
i∈N

m∑

j=1

xi,j(s)ti,j ,

that is, the total completion time if our machines run in parallel. For a matrix
t of running times, let OPT(t) denote the optimum makespan, i.e., OPT(t) =
miny maxi∈N

∑m
j=1 yi,jti,j where y ranges over all feasible allocation of tasks to

machines. It is a well-known phenomenon that equilibria can result in suboptimal
solutions, and the following, extensively studied, notions where introduced to
quantify exactly this discrepancy: the Price of Anarchy (PoA) and the Price of
Stability (PoS) of a scheduling mechanism M on n machines are, respectively,

PoA(M) = sup
m∈N,t∈R

n×m
≥0

sups∈QM
t

CM(s|t)
OPT(t)

PoS(M) = sup
m∈N,t∈R

n×m
≥0

infs∈QM
t

CM(s|t)
OPT(t)

.

For simplicity, we will sometimes drop the M, t and s in the notation intro-
duced in this section, whenever it is clear which mechanism and which true or
reported profile we are referring to.

2.1 Task-Independent Mechanisms

For a significant part of this paper, we will focus on the class of anonymous,
task-independent mechanisms. This is a rather natural class of mechanisms; as
a matter of fact, two of the arguably most well-studied and used mechanisms in
practice, namely the First-Price and Second-Price, lie within this class.

Definition 1 (Task-independence). A mechanism M = (x,p) is called task-
independent if each one of its tasks is allocated independently of the others.
Formally, there exists a collection of single-task mechanisms {Aj}j=1,...,m, Aj =
(yj ,qj), such that, for any task j, any machine i, and for any strategy profile s,

xj(s) = yj(sj) and pi(s) =
m∑

j=1

qj
i (s

j).

2 We will be interested in pure Nash equilibria in this paper; we provide a discussion
on different solution concepts in the full version.
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We will refer to the single-task mechanisms Aj of the above definition as the
components of M. It is important to notice here that the definition does not
require the mechanism to necessarily use the same component for all the tasks.

Another standard property in the literature of the problem is anonymity. The
property can be defined generally (e.g., see [2,11]), but here we will define it for
task-independent mechanisms. Since we are dealing with potentially non-truthful
mechanisms, we need to handle the notion of anonymity in a more delicate way,
in order to appropriately deal with ties.3

Definition 2 (Anonymity). A single-task mechanism A = (x,p) is anony-
mous if, for any permutation of the reports:

– The winning agent is permuted in the same way and receives the same pay-
ment. If there are multiple agents with the same bid, the winner is chosen to
be the one with the largest index.4

– The payments of the agents that did not receive the task are permuted the
same way. Additionally, losing agents with the same report receive the same
payment.

Formally, for any inputs s, s̃ such that s̃ = π(s) for some permutation π, if si� is
the report of the winner in s, then the winner in s̃ has index max{i ∈ N |s̃i = si�}.
Additionally, let π′ be any permutation such that s̃ = π′(s) = π(s). For any i �= i�

we have pπ(i)(s̃) = pπ′(i)(s̃) = pi(s). In particular, if all entries in s are distinct:

x(s̃) = π(x(s)) and p(s̃) = π(p(s)).

A task-independent mechanism M is anonymous, if all its components are
anonymous (single-task) mechanisms.

Perhaps the simplest and most natural mechanism that one can think of is
the following, which assigns the task to the fastest machine (according to the
declared processing times) and pays her declaration.

Definition 3 (First-Price (FP) mechanism). Assign each task j to the
fastest machine ι(j) for it, i.e. ι(j) ∈ arg mini∈N si,j (breaking ties arbitrar-
ily), paying her her declared running time sι(i),j; pay the remaining N \ {ι(j)}
machines 0 for task j.

Second-Price mechanisms have also been extensively studied and applied in
auction theory, but also in strategic scheduling.

Definition 4 (Second-Price (SP) mechanism). Assign each task j to the
fastest machine ι(j) for it, i.e., ι(j) ∈ arg mini∈N si,j (breaking ties arbitrar-
ily), paying her the declared processing time of the second-fastest machine, i.e.
mini∈N\{ι(j)} si,j; pay the remaining N \ {ι(j)} machines 0 for task j.

3 For a more detailed discussion of anonymity and tie-breaking, see Remark 1 of the
full version.

4 This is without loss of generality for our results; the tie-breaking could be any fixed
total order on the machines that does not depend on the reports.
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Notice that both FP and SP mechanisms are task-independent and anony-
mous. Furthermore, SP is truthful. For a more detailed discussion on the con-
nection between the different solution concepts (truthfulness vs Nash equilibria)
and inefficiency notions (Price of Anarchy vs Price of Stability vs approximation
ratio), we refer the reader to Sect. 2.2 of the full version.

3 The Inefficiency of All Mechanisms

We start with a lower bound of n for the Price of Anarchy of the scheduling
problem, which applies to all mechanisms. The lower bound will be based on
the following monotonicity lemma. We note that this monotonicity property is
different from the weak monotonicity (WMON) used in the literature of truthful
machine scheduling, in the sense that (a) it is global, whereas WMON is local
and (b) it applies to the relation between the true processing times and the
equilibria of the mechanism, rather than the actual allocations.

Lemma 1 (Equilibrium Monotonicity). Let M be any mechanism for the
scheduling problem. Let t be a profile of true processing times and let s ∈ Qt be
an equilibrium under t. Denote by Si the set of tasks assigned to machine i by
M on input s. Consider any profile t̂ such that for every machine i, t̂i,j ≤ ti,j
if j ∈ Si and t̂i,j ≥ ti,j if j /∈ Si. Then s ∈ Qt̂, i.e., s is an equilibrium under t̂
as well.

Proof. Assume by contradiction that s /∈ Qt̂, which means that for the profile of
processing times t̂, there exists some machine i that has a beneficial deviation
s′
i, i.e., ui(s′

i, s−i|t̂) > ui(s|t̂). Let S′
i be the set of tasks assigned to machine

i under report s′ = (s′
i, s−i) (and underlying true reports t̂). The difference in

utility for machine i between profiles s′ and s is

Δui(t̂) ≡ ui(s′|t̂) − ui(s|t̂) = pi(s′) − pi(s) +
∑

j∈Si\S′
i

t̂i,j −
∑

j∈S′
i\Si

t̂i,j .

By the fact that s′
i is a beneficial deviation, it holds that Δui(t̂) > 0. Now

consider the profile of processing times t and the same deviation s′
i of machine

i. The increase in utility now is

Δui(t) = pi(s′) − pi(s) +
∑

j∈Si\S′
i

ti,j −
∑

j∈S′
i\Si

ti,j ≥ pi(s′) − pi(s)

+
∑

j∈Si\S′
i

t̂i,j −
∑

j∈S′
i\Si

t̂i,j = Δui(t̂),

which holds because ti,j ≥ t̂i,j , if j ∈ Si and ti,j ≤ t̂i,j , if j /∈ Si. This implies
that Δui(t) > 0, which contradicts the fact that s ∈ Qt. 	
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Using this lemma, we can prove our first lower bound:

Theorem 1. For any scheduling mechanism M for n machines, it must be that
PoA(M) ≥ n.

Proof. Let M be any mechanism and consider a profile of true processing times
t with n machines and n2 tasks, where ti,j = 1 for all machines i and all tasks
j. Let s = (s1, s2, . . . , sn) be a pure Nash equilibrium of M under t. For each
machine i, let Si be the set of tasks assigned to that machine and note that there
exists some machine k for which |Sk| ≥ n. Let Tk ⊆ Sk be any subset of Sk such
that |Tk| = n.

Now consider the following profile t̂ of processing times:

– For all i �= k, t̂i,j = 0, for all j ∈ Si and t̂i,j = ti,j , for all j /∈ Si.
– t̂kj = 0, for all j ∈ Sk\Tk and t̂kj = tk,j , for all j /∈ Sk\Tk.

By Lemma 1, the profile s = (s1, s2, . . . , sn) is a pure Nash equilibrium under
t̂ and the allocation is the same as before, for a makespan of at least n, since
machine k is assigned all the tasks in Tk. The optimal allocation will assign one
task from Tk to each machine, the tasks from Si to machine i for each i �= k and
the tasks from Sk\Tk to machine k, for a total makespan of 1 and the Price of
Anarchy bound follows. 	


3.1 PoA/PoS Trade-Off

In this section, we prove our main theorem regarding the trade-off between the
Price of Anarchy and the Price of Stability. The theorem informally says that if
the Price of Anarchy of a mechanism is small, then its Price of Stability has to
be high.

Theorem 2. For any scheduling mechanism M for n ≥ 2 machines, and any
positive real α,

PoA(M) < α =⇒ PoS(M) ≥ n − 1
α

+ 1.

By allowing α in Theorem 2 to grow arbitrarily large, we get the following:

Corollary 1. Even for just two machines, if a scheduling mechanism has an
optimal Price of Stability of 1, then its Price of Anarchy has to be unboundedly
large.

From the results of the section, as well as the trivial fact that PoA(M) ≥
PoS(M) for any mechanism M, we obtain a feasibility trade-off between the
PoA and the PoS of scheduling mechanisms, which is illustrated in Fig. 1. We
refer to the boundary of the shaded feasible region as the inefficiency boundary ;
the shape of the boundary follows from Theorem2, as well as Theorem 1, since
for PoS(M) > 2 − 1

n (or, in the language of Theorem2, for α < n), the best
(i.e. largest) lower bound on the PoA is now given by Theorem1.
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Fig. 1. The inefficiency boundary for general mechanisms, given by Theorem 2 (red
line). Combined with the global PoA lower bound of Theorem 1 (green line) and the
trivial fact that the PoS is at most the PoA (blue line), we finally get the grey feasible
region. (Color figure online)

Mechanisms on the Extrema of the Inefficiency Boundary: When look-
ing for mechanisms on the Pareto frontier, the first ones that come to mind
are perhaps the First-Price (FP) and Second-Price (SP) mechanisms, defined
in Sect. 2, which are straightforward adaptations of the well-known First-Price
auction and Second-Price auction mechanisms from the auction literature.

It follows from known results in the literature for the First-Price auction (see,
e.g., [6]) that in every pure Nash equilibrium of the FP, each task is allocated to
the machine with the smallest true processing time for the task. For the Second-
Price mechanism, again it follows from known observations in the literature that
while the mechanism is truthful, it has several other pure Nash equilibria as
well. More precisely, for a task j ∈ J and any machine i ∈ N , there exists an
equilibrium for which task j is allocated to machine i. Therefore, we have the
following.

Theorem 3. For the First-Price mechanism, the PoA and the PoS are both n.
For the Second-Price mechanism, the PoA of the mechanism is unbounded and
the PoS is 1.
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Both the First-Price mechanism and the Second-Price mechanism will be
obtained as corner-case mechanisms in the class that we will define in Sect. 4.2.
Interestingly, it turns out that the bad PoA bound for the Second-Price Mech-
anism is a inherent characteristic of all truthful mechanisms. In other words, if
one is interested in the set of all equilibria, they would have to reach out beyond
truthful mechanisms.

Theorem 4. The Price of Anarchy of any truthful mechanism is unbounded.

From Theorems 2 and 3, it is clear that both FP and SP lie on the boundary
of the PoA/PoS feasibility space (see Fig. 1).

4 The Pareto Frontier of Task-Independent Mechanisms

As we noted in the previous section, both the SP and FP mechanisms, which lie
on the inefficiency boundary (see Fig. 1), are anonymous task-independent mech-
anisms. In this section, we will construct a tighter boundary on the PoA/PoS
trade-off for the class of anonymous task-independent mechanisms. Furthermore,
we will show that this boundary is actually tight, by designing a class of optimal
mechanisms that lie exactly on it, meaning that for each point on the bound-
ary, there is a mechanism in our class that achieves the corresponding PoA/PoS
trade-off. Thus, this results in a complete characterization of the Pareto frontier
between the PoA and the PoS. For an illustration, see Fig. 2.

4.1 PoA/PoS Trade-Off

We start with the theorem that gives us the improved boundary on the space
of feasible task-independent and anonymous mechanisms. This is the red line
in Fig. 2.

Theorem 5. For any task-independent anonymous scheduling mechanism M
for n machines, and any real α > 1,

PoA(M) < (n − 1)α + 1 =⇒ PoS(M) ≥ (n − 1)
α

+ 1.

4.2 Optimal Mechanisms on the Pareto Frontier

Next, we will design a class of mechanisms, parameterized by a quantity α that
will populate, in a smooth way, the boundary given by Theorem5. Thus, these
mechanisms achieve trade-offs that lie on the Pareto frontier of inefficiency for
the class of task-independent and anonymous mechanisms.

Definition 5 (Second-Price mechanism with α-relative reserve price
(SPα)). For α ≥ 1, SPα is the task-independent mechanism that, for each
task j: finds a machine k ∈ arg mini∈N si,j and sets a reserve price at r =
α · sk,j; assigns the task to the fastest machine ι(j) ∈ argmini∈Nsi,j (breaking
ties-arbitrarily); pays machine ι(j) the amount min{mini∈N\{ι(j)} si,j , r}; pays
nothing to the remaining machines N \ ι(j).
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Fig. 2. The inefficiency boundary, for anonymous task-independent mechanisms, given
by Theorem 5 (red line). Combined with the global PoA lower bound of Theorem 1
(green line) and the trivial fact that the PoS is at most the PoA (blue line), we finally
get the grey feasible region. The family of mechanisms SPα described in Sect. 4.2 lies
exactly on this boundary (red line), thus completely characterizing the Pareto frontier
in a smooth way with respect to parameter α ≥ 1: on its one end (α = 1) is the First-
Price mechanism FP = SP1 and at the other (α → ∞) the Second-Price mechanism
SP = SP∞. (Color figure onlilne)

Informally, for each task j, the mechanism sets a reserve price which is α
times larger than the smallest declared processing time, allocates the task to
the fastest machine (according to the declarations) and pays the machine the
minimum of the second-smallest declared processing time and the reserve price.
What this mechanism achieves in terms of the equilibria that it induces is the
following: assume that we create a bucket of tasks with true processing times
at most α times larger than the smallest true processing time. Then, in every
equilibrium of the mechanism, task j is allocated to some machine in the bucket
and moreover, for any machine in the bucket, there exists some equilibrium under
which SPα allocates the task to that machine (see the full version for a formal
handling of this intuition). Referencing our discussion in Sect. 3.1, we remark
that in the case of FP = SP1, the bucket contains only the fastest machine(s)
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for the task, and in the case of SP = SP∞, the bucket contains the whole set of
machines. We have the following theorem.

Theorem 6. For SPα on n machines,

– the Price of Anarchy is at most (n − 1)α + 1,
– the Price of Stability is at most n−1

α + 1.

5 Discussion and Future Directions

On a general level, one could follow our agenda of studying the inefficiency
trade-off between the Price of Anarchy and the Price of Stability for many other
problems in algorithmic mechanism design, such as auctions [14,20], machine
scheduling without money [10,11], or resource allocation [4], to name a few, for
which the two inefficiency notions have already been studied separately.

In terms of the strategic scheduling setting, our work gives rise to a plethora
of intriguing questions for future work, both on a technical and a conceptual level.
The major open question is whether there exists a mechanism that achieves a
better trade-off than that of Theorem5, or in other words,

“Is the yellow region of Fig. 2 empty or not?”

If such a mechanism exists, it will most probably not be task-independent.
Another question is whether we can remove anonymity from the statement for
task-independent mechanisms. In that regard, we have come close, as captured
by the following theorem.

Theorem 7. For any task-independent scheduling mechanism M for n
machines, and real α > 1,

PoA(M) < (n − 1)
α√
2

+ 1 =⇒ PoS(M) ≥ (n − 1)
α
√

2
+ 1.

Another natural direction would be to consider different equilibrium notions,
beyond pure Nash equilibria, or randomized scheduling mechanisms. We refer
the reader to the discussion of the full version for a more insightful discussion of
these avenues for future work.
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Abstract. We study cost-sharing games in real-time scheduling systems
where the operation cost of the server at any given time is a function of
its load. We focus on monomial cost functions and consider both the case
when the degree is less than one (inducing positive externalities for the
jobs) and when it is greater than one (inducing negative externalities for
the jobs). For the former case, we provide tight price of anarchy bounds
which show that the price of anarchy grows to infinity as a polynomial of
the number of jobs in the game. For the latter, we observe that existing
results provide constant and tight (asymptotically in the degree of the
monomial) bounds on the price of anarchy. We then switch our attention
to improving the price of anarchy by means of a simple coordination
mechanism that has no knowledge of the instance. We show that our
mechanism reduces the price of anarchy of games with n jobs and unit
server costs from Θ(

√
n) to 2. We also show that for a restricted class of

instances a similar improvement is achieved for monomial server costs.
This is not the case, however, for unrestricted instances of monomial costs
for which we prove that the price of anarchy remains super-constant for
our mechanism.

1 Introduction

The model of cost-sharing in real-time scheduling systems was introduced by [29]
in response to the emergence and popularity of cloud computing as well as to the
efforts to reduce power consumption in large computing systems [2,6,9,19,20].
In the model studied in [29] there is a server and a collection of n jobs that are
to be scheduled on the server. Each job j has a release time rj and a deadline
dj . Time is slotted and each job gets to select which slot in [rj , dj) it will be
scheduled on. The server has a unit activation cost per time slot, which models
the energy spent to keep the server open. This is an expressive model for many
applications in cloud computing and data center optimization, which makes the
understanding of the inefficiency of such a system and ultimately its improvement
important tasks. In a more general model, the cost can depend on the load that
the server has to process at any given time slot t, i.e., the energy spent will be
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a function c(lt) that depends on the number of jobs lt that are to be processed
during t. This generalized model is the main focus of this work.

In the standard cost-sharing setting studied in [29], each of the jobs processed
at time t assumes an equal share of the server cost c(lt) (or a proportional share
for a more general setting where each job places a different load on the server).
Given this rule, we would expect each job j to optimize for its individual cost
share and declare the slot that minimizes the ratio of the server cost to the
number of jobs (which is precisely the individual cost share) among all slots in
its window [rj , dj). When this is true for every job, we have an assignment that
is a Nash equilibrium (NE). The inefficiency of a NE is captured by the price of
anarchy (PoA) which is the worst case ratio of the total cost in a NE assignment
over the total cost in the optimal assignment.

For the base case of unit server costs we have c(0) = 0 and c(x) = 1 for
every x > 0. The PoA of such games was shown in [29] to be Θ(

√
n) and

the question of what happens when the server has a cost that depends on the
load placed on it was posed as an open problem. A major part of our results
focuses precisely on answering this question. We study cost functions of the
form c(x) = xd for some parameter d > 0. Note that for d < 1 the cost share
function c(x)/x is monotonically decreasing and that for d > 1 it is monotonically
increasing. The game we study here belongs to the class of congestion games [26],
the PoA of which has received significant attention in the literature. Our games
are equivalent to singleton congestion games with uniform resources arranged
on a line and with strategy spaces that correspond to intervals on this line. We
provide tight PoA bounds for the case of positive externalities (which is the
best motivated case for our application of interest), i.e., d < 1, showing that the
PoA is Θ(n(1−d)/2). For d > 1, the upper bound for general congestions games
shows the PoA does not depend on the number of jobs and is at most dΘ(d) (i.e.,
constant for fixed d). We observe that an early dΘ(d) lower bound instance [4]
designed for routing games applies to our setting, showing that the PoA is in
fact dΘ(d).

Subsequently, we focus on the design of coordination mechanisms for the
problem in an effort to improve the PoA. A coordination mechanism [12] is
a set of a-priori rules the system designer can set without knowledge of the
instance. A coordination mechanism can, for example, modify the cost shares of
jobs, expand or restrict their strategy spaces, etc. The modified rules of the game
under the coordination mechanism will change the set of NE outcomes, hopefully
to the improvement of the PoA. We design a simple coordination mechanism that
merely expands the strategy space of each job by asking them to declare, not only
a slot, but also a payment. It is clear that this mechanism requires no knowledge
of the specifics of the instance and is very simple to implement. We show that
this simple modification has a surprisingly strong impact on the PoA for the case
of unit server costs, reducing it from infinity—specifically Θ(

√
n)—down to 2.

For monomial cost functions of degree less than 1, we prove that our mechanism
has super-constant PoA for general instances, however, we also prove that it does
achieve an improvement from super-constant to constant for a special family of
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instances. Specifically, for instances such that the optimal solution uses a single
slot (which includes, for example, instances with a common release time or a
common deadline), our mechanism reduces the PoA from Θ(n(1−d)/2) to Θ(1).
(Recall that for monomials of degree larger than 1, it is known that the PoA of
congestion games is already constant [1,4] as a function of n without applying
any coordination mechanism.)

1.1 Related Work

The work most closely related to our paper is the one in [29] where the model we
study was introduced and various results were obtained for the case of constant
(but possibly time-dependent) server costs with respect to the price of anarchy
and the related concepts of the strong price of anarchy (inefficiency of equilibria
with respect to coordinated deviations) and the price of stability (inefficiency of
the best Nash equilibrium as opposed to the worst). Our work also has ties to
literature on the price of anarchy of congestion games, cost-sharing in congestion
games, and coordination mechanisms, all three of which we discuss below.

Congestion games were introduced by Rosenthal in [26] as a class of games
that guarantee the existence of (pure) Nash equilibria. In a congestion game,
there is a set of resources that the participants can use. Each one of the par-
ticipants has a strategy space that allows them to select one of given subsets of
resources, something that allows for various expressive models, including rout-
ing in networks. The cost of each resource, which is a function of the number of
participants using it, is distributed equally among its users. The price of anar-
chy of a special case of congestion games was first studied in [23], where the
price of anarchy was first introduced. A long sequence of follow-up work gave a
strong understanding of the price of anarchy in congestion games [1,3,4,11,27].
Generalizations to weighted models have also been studied [1,7] albeit with the
drawback that, in contrast to standard congestion games, existence of a (pure)
Nash equilibrium is not guaranteed [16].

Cost-sharing aspects in the study of congestion games were brought into the
picture to correct for the absence of equilibria in weighted games. The work in
[22] shows how the Shapley value cost-sharing method can be applied to restore
pure equilibria, whereas [17] shows that the more general class of generalized
weighted Shapley values are the only ones that can guarantee this property. The
price of anarchy of the induced games has been the subject of extensive study,
with examples including [14,15,21,24,25,28]. Papers that use cost-sharing to
improve the efficiency of equilibria include [10], which focuses on the price of
stability, and [30], an approach which requires knowledge of the instance at
hand.

A more general approach seeking to improve the price of anarchy is that of
coordination mechanisms. A coordination mechanism gives the designer more
freedom in designing the game. This freedom includes modifying the strategy
spaces of the participants or changing how costs are defined on the resources. For
example, coordination mechanisms were applied in a multiple machine makespan
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minimization scheduling setting in [12] by means of introducing different schedul-
ing policies on different machines. Follow up work on coordination mechanisms
includes [5,8,13,18].

1.2 Summary of Our Results and Roadmap

Section 2 presents our model and notation. In Sect. 3.1 we focus on the case of
monomial cost functions of degree d < 1 and prove that the PoA is approximately
2n(1−d)/2/(1 + d), where n is the number of jobs in the game. In Sect. 3.2 we
discuss the case when d > 1 and observe that early results on congestion games
[4] can be used to show that the PoA is dΘ(d). Finally, in Sect. 4, we define our
coordination mechanism and, in Sect. 4.1, we prove that it achieves a strong
improvement on the PoA for the case of unit server costs (from Θ(

√
n) to 2).

Switching to monomials with d < 1, even though it is the case that the PoA
grows to infinity for our mechanism as well, we are still able to show in Sect. 4.2
that we can reduce the PoA from Θ(n(1−d)/2) to Θ(1) for the class of common slot
instances, in which the optimum uses a single slot (note that this class includes,
among others, instances with a common release time or a common deadline).
As stated earlier, the PoA for the case with d > 1 is already constant. Section 5
concludes the paper.

2 Preliminaries

The game is specified by the following parameters: (a) a cost function c(x) that
gives the cost at any given time step as a function of the number of jobs x
that have to be processed at that time step, (b) a time horizon T that specifies
the available time slots as t = 1, 2, . . . , T , and (c) a set of jobs J , with each
j ∈ J having an integer release time rj and an integer deadline dj such that
0 < rj < dj < T .

Let sj denote the slot declared by job j such that rj ≤ sj < dj and let
s denote the assignment, i.e., the vector of declared slots. The load on slot t,
lt(s) = |{j : sj = t}|, is the number of jobs declaring slot t. The cost on slot t is
then c(lt(s)) and the total cost is:

C(s) =
T∑

t=1

c(lt(s)).

An assignment s is a Nash equilibrium (NE) when for every job j we get:

c(lsj
(s))

lsj
(s)

≤ c(lt(s) + 1)
lt(s) + 1

,

for every t �= sj in [rj , dj). This expression suggests that the cost share at the
slot declared by j is at most the cost share j would get by deviating to any other
slot in its interval. The inefficiency of equilibrium solutions is given by the price
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of anarchy (PoA), which is the worst case ratio of the total cost in a NE over
the total cost in the optimal assignment:

PoA =
maxs a NE C(s)

mins∗ C(s∗)
.

3 Monomial Cost Functions

3.1 Decreasing Cost Shares: d < 1

In this section we analyze the PoA for the case when the cost function equals xd

with d < 1, for which the cost share c(x)/x is strictly decreasing. The main result
of the section is the following theorem, which we prove in the two subsequent
lemmas.

Theorem 1. For games with n jobs and cost function c(x) = xd with d < 1,
the worst case PoA is Θ(n(1−d)/2).

Lemma 1. Given a game with n jobs and cost function c(x) = xd with d < 1,
for any NE s and any optimal assignment s∗ we get:

C(s)
C(s∗)

= O
(
n

1−d
2

)
.

Proof. Consider an optimal assignment s∗ and focus on a slot t that holds
lt(s∗) = lt jobs in s∗. We will write J(t) for the set including these lt jobs.
The jobs in J(t) have a cost of c(lt) in s∗ and we wish to bound the cost they
can have in any given NE s.

We begin by proving the claim that, in the NE s and for any positive integer
x, there exist at most 2 slots that have x jobs and include jobs from J(t). We
prove this claim by contradiction. Suppose there are at least 3 slots with x jobs
that host jobs from J(t). Pick any such 3 slots and let t′ be the median. If t′ ≥ t,
then we have at least two slots that are greater than or equal to t and hold x
jobs including some from J(t), otherwise we have at least two slots that are less
than or equal to t with this property. We will treat the case when there are two
slots that are greater than or equal to t. The other case is symmetric. Call these
slots t′ and t′′ with t′′ > t′. Consider some job j ∈ J(t) that uses t′′ in s. The
allowed interval of j includes t, since it is scheduled on it in s∗, and t′′, since it
is scheduled on it in s. Since t ≤ t′ < t′′, it follows that t′ is also in the allowed
interval for j. However, we can observe that j has an incentive to deviate from
t′′ to t′ and improve its cost from c(x)/x to c(x + 1)/(x + 1). This contradicts
the fact that s is a NE and proves our original claim that at most 2 slots can
have jobs from J(t) and exactly x jobs.

Given the above, we return to the task of upper bounding the total payments
of jobs in J(t) in s. By the claim in the previous paragraph, at most 2x jobs
from J(t) can pay c(x)/x in s. This means at most 2 jobs can pay the maximum
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c(1)/1, at most 4 jobs the second highest c(2)/2, etc. It follows that the total
payments in s of the jobs in J(t) are upper bounded by:

ht∑

j=1

2c(j),

where ht is the smallest integer such that h2
t + ht ≥ lt. Then the ratio of the

total cost paid by the jobs in J(t) in s over the same cost in s∗ is at most:

∑ht

j=1 2c(j)
c(lt)

.

Suppose t is in fact the slot that maximizes this ratio, meaning the above expres-
sion is an upper bound on the PoA. We get:

C(s)
C(s∗)

≤
∑ht

j=1 2c(j)
c(lt)

=

∑ht

j=1 2jd

ldt

≤
∫ ht+1

0
xddx

ldt
≤ 2(ht + 1)1+d

(1 + d)ldt

≤ 2(ht + 1)1+d

(1 + d)hd
t (ht − 1)d

= O
(
h1−d

t

)
= O

(
l
1−d
2

t

)
= O

(
n

1−d
2

)
.

This completes the proof of the upper bound. ��
Lemma 2. For every positive integer h and for every cost function c(x) = xd

with d < 1, there exists a game with n = h2 + h jobs, and a NE s of that game,
such that:

C(s)
C(s∗)

= Ω
(
h1−d

)
= Ω

(
n(1−d)/2

)
,

where s∗ is an optimal assignment of that game.

Proof. Our instance has n = h2+h jobs and 2h+1 slots. For ease of exposition we
will shift time and call the slots −h,−h+1, . . . ,−1, 0, 1, . . . , h−1, h. There exist j
jobs that can use slots [−j, 0] and j jobs that can use slots [0, j] for j = 1, 2, . . . , h.
Observe that slot 0 is the only one that is common to all intervals. The optimal
solution s∗ would place all jobs on 0 for a total cost:

C(s∗) = (h2 + h)d = Θ(nd).

Consider the following assignment s, which as we will argue is a NE. Every
one of the j jobs with interval [−j, 0] selects slot −j and every one of the j jobs
with interval [0, j] selects slot j. Note that the number of jobs on slot t is |t|.
This fact implies the assignment is actually a NE, since the jobs on any slot t



206 E. Georgoulaki and K. Kollias

share the slot with |t| − 1 other jobs, while every other slot t′ between t and 0
has |t′| ≤ |t| − 1 jobs. The cost of this assignment is:

C(s) =
h∑

j=1

2jd ≥ 2
∫ h

1

xddx =
2

d + 1
(
hd+1 − 1

)
= Θ

(
n(d+1)/2

)
.

Taking the ratio C(s)/C(s∗) completes the proof. ��
Remark 1. From the proofs of Lemmas 1 and 2 it follows that the worst case
PoA is in fact approximately:

2n
1−d
2

1 + d
.

3.2 Increasing Cost Shares: d > 1

We now discuss the PoA for the case when the cost function equals xd with
d > 1. In this case the cost share c(x)/x is strictly increasing. We observe that
the general upper bound on the PoA of congestion games and an early lower
bound designed for routing games which applies to our model yield the following
theorem.

Theorem 2 ([4] Theorem 4.3). For games with cost function c(x) = xd with
d > 1, the worst case PoA is dΘ(d).

Note that the PoA is constant when d is fixed and is independent of the
number of players n, in contrast to the unit and d < 1 cases. In this work, we
are mostly interested in this behavior of the PoA as a function of n. However,
observing the PoA as a function of d is also of interest and we note that the
dΘ(d) expression hides a gap. For example, for d = 2, the lower bound of [4] is 2,
whereas the general upper bound for congestion games is 5/2. The lower bound
in [4] is a very natural instance, where, in the optimal solution, each slot has
unit occupancy, whereas in the NE, slots become progressively more congested.
This natural flavor of the instance could tempt us to conjecture that the lower
bound is in fact tight for our setting, however, in the next result we show that
this is not the case.

Lemma 3. For games with cost function c(x) = x2, the worst case PoA is
strictly larger than 2.

Proof. The game has the following slots in order: first a slot with label “6”, then
2 slots with label “5”, then 5 slots with label “4”, then 20 slots with label “3”,
then 60 slots with label “2”, then 120 slots with label “1”, and, finally, another
120 slots with label “0”. The labels of slots signify precisely how many jobs are
on them in the NE s. The allowable slots of a job on a slot with label “x” are all
slots with labels from “6” up to “x − 1”. Clearly s is a NE. Simple calculations
show that the total cost in s is 706.
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Now consider the outcome s∗ where all the jobs from slots with label “x”,
are spread as evenly as possible on the slots with label “x − 1”. Again simple
calculations show that the total cost of s∗ is 352, which gives a PoA bound
C(s)/C(s∗) > 2. ��

Identifying the precise PoA value as a function of d appears to be a challeng-
ing open problem that we leave as future work.

4 Coordination Mechanism

In this section we design a coordination mechanism that applies a simple modi-
fication to the game, without knowing anything about the instance, and signifi-
cantly improves the PoA. For the case of constant (unit) costs, we show that the
PoA is brought down to 2. For c(x) = xd with d < 1 we prove that the PoA is
improved from super-constant to constant for the class of instances which have
a single slot occupied in the optimal solution. This class includes instances with
a common release time or a common deadline for all jobs, as well as instances
with a batch of jobs centered around a common slot. We prove that, without
this restriction, the PoA for c(x) = xd with d < 1 remains super-constant even
under our mechanism. Note that for d > 1 the PoA is known to be constant even
without applying any coordination mechanism.

Our mechanism changes the strategy space of each job j, from being simply
a slot sj ∈ [rj , dj), to a pair (sj , ξj) where sj ∈ [rj , dj) is again the declared slot
and ξj ≥ 0 is a payment. The mechanism will open slot t under strategies (s, ξ)
if and only if: ∑

j:sj=t

ξj ≥ c(lt(s)),

i.e., if the jobs selecting slot s cover the server cost with their declared payments.
We assume every job j has an infinite cost for not being processed (i.e., when slot
sj is not opened), an assumption that is implicitly present in the base model
as well, since jobs do not have the option of staying out of the game. In this
framework, the NE condition asserts that each (sj , ξj) are such that:

∑

j′:sj′=sj

ξj′ ≥ c(lsj
(s))

and ξj ≤ max

⎧
⎨

⎩0, c(lt(s) + 1) −
∑

j′:sj′=t

ξj′

⎫
⎬

⎭ ,∀t ∈ [rj , dj) \ {sj}

and ξj ≤ max

⎧
⎨

⎩0, c(lsj
(s)) −

∑

j′:sj′=sj ,j′ �=j

ξj′

⎫
⎬

⎭ . (1)

The first inequality guarantees slot sj is open, the second that there is no slot t
that job j can move to, pay the minimum needed to open it (or keep it open),
and get a lower payment, and the third that the job should pay as much as
necessary to keep its current slot open.
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Lemma 4. Every NE (s, ξ) of our coordination mechanism is such that for every
occupied slot t we have

∑
j:sj=t ξj = c(lt(s)).

Proof. Suppose this is not the case. Then there exists some t such that:
∑

j:sj=t

ξj > c(lt(s)).

Consider any job j such that sj = t and ξj > 0. Clearly such a job must exist.
We get:

∑

j′:sj′=sj

ξj′ > c(lsj
(s)) ⇒ ξj > c(lsj

(s)) −
∑

j′:sj′=sj ,j′ �=j

ξj′ ,

which violates (1) and gives a contradiction. ��
Using Lemma 4, we may simplify the NE condition (1) as:
∑

j′:sj′=sj

ξj′ = c(lsj
(s)) and ξj ≤ c(lt(s)+1)−

∑

j′:sj′=t

ξj′ ,∀t ∈ [rj , dj) \ {sj}. (2)

4.1 Unit Server Costs

Lemma 5. Let (s, ξ) be a NE of our coordination mechanism in a game with
unit server costs. Then for every job j, either ξj = 0 or every slot in [rj , dj) \ sj

is unoccupied.

Proof. Suppose ξj > 0. Then, by (2), we get that for any slot t ∈ [rj , dj) \ {sj}:

1 −
∑

j′:sj′=t

ξj′ ≥ ξj > 0. (3)

However, by Lemma 4, we know that either t is unoccupied or
∑

j′:sj′=t ξj′ = 1.
From this, and given (3), we get that t is unoccupied. ��
Theorem 3. The PoA of our coordination mechanism for unit server costs is
2.

Proof. Focus on a slot t and the set of jobs J(t) that use it in a given optimal
assignment. The total cost paid by these jobs in the optimal assignment is 1. We
will show that the same set of jobs pay at most 2 in any NE (s, ξ).

We examine two cases. First the case when slot t is open in (s, ξ). The jobs
from J(t) that use t in (s, ξ) pay at most 1, as given by Lemma 4 (they might
be paying less than 1 as t might have additional jobs outside J(t)). The jobs in
J(t) that use other slots pay 0, as given by Lemma 5 and the fact that all of
these jobs have an occupied slot in their windows other than the one they are
using, namely, slot t. This proves that, in this case, the total payments of jobs
in J(t) are at most 1.
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We now focus on the case when slot t is not open in (s, ξ). We first show
that the jobs from J(t) who are using slots larger than t are paying a total of at
most 1. Focus on the smallest such slot t′. By the fact that (s, ξ) is a NE and
using Lemma 4 we get that the total payments on t′ are 1. Now focus on any
slot t′′ > t′ and any job j ∈ J(t) that uses t′′. Slot t′ must be in the window of
job j as both t′′ and t satisfy this property and t′ lies between them. Then, by
Lemma 5 we get that ξj = 0. This proves that the total payment over all jobs j
that use slots larger than t is 1. The proof is symmetric for slots smaller than
t, which shows that for every slot t in an optimal solution and for the jobs J(t)
using it, the total payment of the jobs J(t) in a NE is at most 2. This directly
implies an upper bound of 2 for the PoA.

We now present a lower bound of 2 for the PoA. There exist two jobs j1, j2.
Job j1 can be scheduled at times 1 or 2, whereas job j2 can be scheduled at
times 2 or 3. Assigning job j1 to slot 1, job j2 to slot 3, and setting ξ1 = ξ2 = 1
gives rise to a NE with total cost 2. It is easy to verify that this is a NE as each
job has only one alternative slot, slot 2, where again they would have to pay a
unit cost. The optimal assignment places both jobs in slot 2 for total cost 1. ��

We close with a note on existence of a NE for our mechanism. In fact we
prove that for any optimal solution there exist payments that will yield a NE.

Theorem 4. For unit server costs, our coordination mechanism induces games
such that, for every optimal assignment s∗, there exists a vector of payments ξ
such that (s∗, ξ) is a NE.

Proof. We first claim that an optimal assignment s∗ has the property that, on
every occupied slot t, there exists at least one job such that no other slot in its
allowed interval is occupied. If this is not true for some t, then moving all jobs j
with sj = t to some other occupied slot in their intervals will decrease the total
cost by 1, contradicting optimality of s∗. Given the above, we can find a job j
on every slot t that has no other occupied slot in its interval and charge it the
full cost of the slot by setting ξj = 1. Every other job pays 0. This solution will
be a NE since the open slot costs are covered and all jobs who do not freeload,
pay a unit cost and would pay the exact same cost if they were to deviate to
any other slot in their intervals, since they are all unoccupied. ��

4.2 Monomial Server Costs with d < 1

We first restrict ourselves to instances such that the optimal solution uses a single
slot. Clearly this is the case if and only if there is some slot that is included in
the interval of every job in the instance. This is the case, for example, when
the jobs have common release times or deadlines. Note that by the instance in
Lemma 2 (or simple modifications of it for the case of a common release time
or a common deadline) we get that the PoA is infinite in the original game. In
the next theorem we prove that our coordination mechanism reduces the PoA
to a constant for every d < 1 for the instances under consideration which we call
common slot instances.
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Theorem 5. For common slot instances and c(x) = xd with d < 1, the PoA of
our coordination mechanism is Θ(1).

Proof. For simplicity of exposition, suppose that, in a given game, we shift time
so that the only slot used by the optimal solution s∗ is slot 0. Let s be a NE of the
game. For simplicity and without loss of generality (due to symmetry), suppose
the non-negative slots have a larger or equal cost compared to the negative
slots in s. If the number of non-negative slots used in s is 1, then a bound of 2
on the PoA of the instance follows trivially, so we assume there are at least 2
non-negative slots used in the game.

Let t and t′ be used slots in s such that 0 < t < t′. Let x be the number of
jobs on t and y the number of jobs on t′. Observe that t must lie in the allowed
interval of all jobs using t′ since 0 < t < t′ and these jobs use t′ in s and 0 in s∗.
This means each of these jobs has the option to move to t and pay the marginal
contribution c(x+1)−c(x). Also note that, by Lemma 4, at least one of the jobs
on t′ has to pay, in s, the average cost share c(y)/y. The above, combined with
the equilibrium condition (2), imply:

c(x + 1) − c(x) ≥ c(y)
y

. (4)

Note that:

c(x + 1) − c(x) = (x + 1)d − xd

= xd−1

(
1 + 1

x

)d − 1
1
x

≤ xd−1 lim
x→+∞

(
1 + 1

x

)d − 1
1
x

= dxd−1, (5)

where the inequality follows by d < 1. Combining (4) with (5), we get:

dxd−1 ≥ yd−1 ⇒ y ≥ d
1

d−1 x.

This suggests that every slot t must have at least d1/(d−1) (which is always larger
than e) times the number of jobs as every other slot in [0, t). This in turn implies
that as we move from the largest slot closer and closer to 0, the number of jobs
decreases by at least a factor d1/(d−1). We will write α = d1/(d−1). Then, if h is
the number of jobs on the last occupied slot, we get that the cost on non-negative
slots is at most:

+∞∑

j=0

(
h

αj

)d

= hd
+∞∑

j=0

(
1
αd

)j

=
hd

1 − 1
αd

=
hd

1 − dd/(1−d)
.

Recall we have assumed that non-negative slots have at least as much cost as
the negative ones, meaning the total cost of s is at most:

C(s) ≤ 2hd

1 − dd/(1−d)
.



On the Price of Anarchy of Cost-Sharing in Real-Time Scheduling Systems 211

By the fact that we have h jobs on the largest slot, there at least h jobs in the
game and we get:

C(s∗) ≥ hd.

Taking the ratio gives:
C(s)
C(s∗)

≤ 2
1 − dd/(1−d)

,

which is a constant for every given d. ��
Remark 2. For c(x) =

√
x and for common slot instances with n jobs, our coor-

dination mechanism reduces the PoA from 4n1/4/3 to at most 4.

We note that for common slot instances there always exists a NE. In fact,
again we prove that any optimal solution can be a NE with the correct payment
vector.

Theorem 6. For c(x) = xd with d < 1 and common slot instances, our coor-
dination mechanism induces games such that, for every optimal assignment s∗,
there exists a vector of payments ξ such that (s∗, ξ) is a NE.

Proof. An optimal assignment will clearly place all jobs on the same slot. Charg-
ing each job the fair share xd−1 results in a NE since xd−1 < 1 with 1 being the
cost any job would have to pay to deviate to a different slot and open it. ��

Earlier in the section we proved that our coordination mechanism reduces
the PoA to a constant for common slot instances. On the contrary, we show that
for general instances, the PoA remains super-constant even for our mechanism.

Theorem 7. For a game with n jobs and c(x) = xd with d < 1, the worst case
PoA of our mechanism is Ω(nd(1−d)).

Proof. Consider a large number of jobs n such that nd is integer. Our instance
has nd slots and nd jobs 1, 2, . . . , nd such that job j can only be scheduled on slot
j. All other n − nd jobs can be scheduled on any slot. Let s∗ be the assignment
where every one of the unrestricted jobs is scheduled in slot 1. We get:

C(s∗) =
(
n − nd + 1

)d
+

(
nd − 1

)
= Θ

(
nd

)
.

The first term of the sum comes from slot 1 and the second term comes from
slots 2, 3, . . . , nd which hold one job each.

Now consider the following NE s. The unrestricted jobs are split equally
among all slots, with each slot having n1−d − 1 of them. The payments declared
by the unrestricted jobs are 0 and the full cost of each slot is paid for by the
corresponding restricted job. This outcome is a NE since the unrestricted jobs
get to freeload while the restricted jobs can’t move to a different slot and have
to pay enough to keep their slot open and avoid the large cost of remaining
unscheduled. We get:

C(s) = nd
(
n1−d

)d
= Θ

(
n2d−d2

)
.

Taking the ratio C(s)/C(s∗) completes the proof. ��
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5 Conclusion and Open Problems

In this work we tackled the problem of load-dependent server costs in real-
time scheduling systems, a question that was posed as an open problem in [29].
We precisely characterized the price of anarchy for monomial cost functions.
Furthermore, we came up with a novel coordination mechanism that achieved
a spectacular improvement of the price of anarchy in the original model of unit
server costs and in a restricted subclass of instances in our extended model.

There are several follow-up questions that emerge from our work. These
include extending our results to wider classes of cost functions and settling the
PoA gap between the constant bounds for d > 1 (e.g., between the 2.00568
lower bound we prove in this work and the standard 2.5 upper bound for d = 2).
Most importantly, it is interesting to see whether coordination mechanisms of
the type that we define here can yield similar improvements in other settings.
Our mechanism relies on the simple idea of offloading the cost sharing aspect of
the problem to the jobs themselves. This induces a setting where any deviation
is charged the marginal contribution of the job on the new slot. Variants of the
mechanism that impose, e.g., upper bounds on the cost share of a job/player
might prove useful in these endeavors (for instance, such a modification would
break the bad example in Lemma 7).
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Abstract. The complexity classes PPA-k, k ≥ 2, have recently emerged
as the main candidates for capturing the complexity of important prob-
lems in fair division, in particular Alon’s Necklace-Splitting problem
with k thieves. Indeed, the problem with two thieves has been shown
complete for PPA = PPA-2. In this work, we present structural results
which provide a solid foundation for the further study of these classes.
Namely, we investigate the classes PPA-k in terms of (i) equivalent defi-
nitions, (ii) inner structure, (iii) relationship to each other and to other
TFNP classes, and (iv) closure under Turing reductions.

Keywords: Computational complexity · TFNP · Necklace splitting

1 Introduction

The complexity class TFNP is the class of all search problems such that every
instance has a least one solution and any solution can be checked in polynomial
time. It has attracted a lot of interest, because, in some sense, it lies between P
and NP. Moreover, TFNP contains many natural problems for which no poly-
nomial algorithm is known, such as Factoring (given a integer, find a prime
factor) or Nash (given a bimatrix game, find a Nash equilibrium). However, no
problem in TFNP can be NP-hard, unless NP = co-NP [28]. Furthermore, it
is believed that no TFNP-complete problem exists [31,33]. Thus, the challenge
is to find some way to provide evidence that these TFNP problems are indeed
hard.

Papadimitriou [31] proposed the following idea: define subclasses of TFNP
and classify the natural problems of interest with respect to these classes. Proving
that many natural problems are complete for such a class, shows that they are
“equally” hard. Then, investigating how these classes relate to each other, yields
a relative classification of all these problems. In other words, it provides a unified
framework that gives a better understanding of how these problems relate to each
other. TFNP subclasses are based on various non-constructive existence results.
Some of these classes and their corresponding existence principle are:

– PPAD: given a directed graph and an unbalanced vertex (i.e. out-degree �=
in-degree), there must exist another unbalanced vertex.
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– PPA: given an undirected graph and vertex with odd degree, there must exist
another vertex with odd degree (Handshaking Lemma).

– PPP: given a function mapping a finite set to a smaller set, there must exist
a collision (Pigeonhole Principle).

Other TFNP subclasses are PPADS, PLS [24], CLS [11], PTFNP [19], EOPL
and UEOPL [14]. It is known that PPAD ⊆ PPADS ⊆ PPP, PPAD ⊆ PPA
and UEOPL ⊆ EOPL ⊆ CLS ⊆ PLS ∩ PPAD. Any separation of these classes
would imply P �= NP, but various oracle separations exist [2,4,5,30] (see Sect. 2
for more details).

TFNP subclasses have been very successful in capturing the complexity of
natural problems. The most famous result is that the problem Nash is PPAD-
complete [7,10], but various other natural problems have also been shown PPAD-
complete [6,8,9,25]. Many local optimisation problems have been proved PLS-
complete [12,13,24,26,32]. Recently, the first natural complete problems were
found for PPA [16,17] and PPP [34]. The famous Factoring problem has been
partially related to PPA and PPP [22].

Necklace-Splitting. The natural problem recently shown PPA-complete is a
problem in fair division, called the 2-Necklace-Splitting problem [17]. For
k ≥ 2, the premise of the k-Necklace-Splitting problem is as follows. Imagine
that k thieves have stolen a necklace that has beads of different colours. Since
the thieves are unsure of the value of the different beads, they want to divide
the necklace into k parts such that each part contains the same number of beads
of each colour. However, the string of the necklace is made of precious metal, so
the thieves don’t want to use too many cuts. Alon’s famous result [1] says that
this can always be achieved with a limited number of cuts.

The corresponding computational problem can be described as follows. We
are given an open necklace (i.e. a segment) with n beads of c different colours,
i.e. there are ai beads of colour i and

∑c
i=1 ai = n. Furthermore, assume that

for each i, ai is divisible by k (the number of thieves). The goal is to cut the
necklace in (at most) c(k − 1) places and allocate the pieces to the k thieves,
such that every thief gets exactly ai/k beads of colour i, for each colour i. By
Alon’s result [1], a solution always exists, and thus the problem lies in TFNP.

The complexity of this problem has been an open problem for almost
30 years [31]. While the 2-thieves version is now resolved, the complexity of
the problem with k thieves (k ≥ 3) remains open. The main motivation of the
present paper is to investigate the classes PPA-k, which are believed to be the
most likely candidates to capture the complexity of k-Necklace-Splitting.
Indeed, in the conclusion of the paper where they prove that 2-Necklace-
Splitting is PPA-complete, Filos-Ratsikas and Goldberg [15] mention:

“What is the computational complexity of k-thief Necklace-splitting, for k
not a power of 2? As discussed in [27,29], the proof that it is a total search
problem, does not seem to boil down to the PPA principle. Right now, we
do not even know if it belongs to PTFNP [19].
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Interestingly, Papadimitriou in [31] (implicitly) also defined a number of
computational complexity classes related to PPA, namely PPA-p, for a
parameter p ≥ 2. [...] Given the discussion above, it could possibly be the
case that the principle associated with Necklace-Splitting for k-thieves is
the PPA-k principle instead.”

PPA-p. The TFNP subclasses PPA-p were defined by Papadimitriou almost
30 years ago in his seminal paper [31]. Recall that the existence of a solution to
a PPA problem is guaranteed by a parity argument, i.e. an argument modulo 2.
The classes PPA-p are a generalisation of this. For every prime p, the existence
of a solution to a PPA-p problem is guaranteed by an argument modulo p. In
particular, PPA-2 = PPA. Surprisingly, these classes have received very little
attention. As far as we know, they have only been studied in the following:

– In [31] Papadimitriou defined the classes PPA-p and proved that a prob-
lem called Chevalley-mod-p lies in PPA-p and a problem called Cubic-
Subgraph lies in PPA-3.

– In an online thread on Stack Exchange [21], Jeřábek provided two other equiv-
alent ways to define PPA-3. The problems and proofs can be generalised to
any prime p.

– In his thesis [23], Johnson defined the classes PMODk for any k ≥ 2, which
were intended to capture the complexity of counting arguments modulo k.
He proved various oracle separation results involving his classes and other
TFNP classes. While the PPA-p classes are not mentioned by Johnson, using
Jeřábek’s results [21] it is easy to show that PMODp = PPA-p for any prime
p. In Sect. 6, we characterise PMODk in terms of the classes PPA-p when
k is not prime. In particular, we show that PMODk only partially captures
existence arguments modulo k.

Our Contribution. In this paper, we use the natural generalisation of
Papadimitriou’s definition of the classes PPA-p to define PPA-k for any k ≥ 2.
We then provide a characterisation of PPA-k in terms of the classes PPA-p. In
particular, we show that PPA-k is completely determined by the set of prime
factors of k. In order to gain a better understanding of the inner structure of
the class PPA-k, we also define new subclasses that we denote PPA-k[#�] and
investigate how they relate to the other classes. We show that PPA-k[#�] is
completely determined by the set of prime factors of k/ gcd(k, �).

Furthermore, we provide various equivalent complete problems that can be
used to define PPA-k and PPA-k[#�] (Sect. 4). While these problems are not
“natural”, we believe that they provide additional tools that can be very useful
when proving that natural problems are complete for these classes. In Sect. 7,
we provide an additional tool for showing that problems lie in these classes: we
prove that PPA-pr (p prime, r ≥ 1) and PPA-k[#�] (k ≥ 2) are closed under
Turing reductions. On the other hand, we provide evidence that PPA-k might
not be closed under Turing reductions when k is not a prime power.
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Finally, in Sect. 6 we investigate the classes PMODk defined by Johnson [23]
and provide a full characterisation in terms of the classes PPA-k. In particular,
we show that PMODk = PPA-k if k is a prime power. However, when k is not a
prime power, we provide evidence that PMODk does not capture the full strength
of existence arguments modulo k, unlike PPA-k. This characterisation of PMODk

in terms of PPA-k leads to some oracle separation results involving PPA-k and
other TFNP classes (using Johnson’s oracle separation results). We note that a
significant fraction of our results were also obtained by Göös, Kamath, Sotiraki
and Zampetakis in concurrent and independent work [20].

2 Preliminaries

TFNP. Let {0, 1}∗ denote the set of all finite length bit-strings and for x ∈
{0, 1}∗ let |x| be its length. A computational search problem is given by a binary
relation R ⊆ {0, 1}∗ ×{0, 1}∗. The problem is: given an instance x ∈ {0, 1}∗, find
a y ∈ {0, 1}∗ such that (x, y) ∈ R, or return that no such y exists. The search
problem R is in FNP (Functions in NP), if R is polynomial-time computable
(i.e. (x, y) ∈ R can be decided in polynomial time in |x| + |y|) and there exists
some polynomial p such that (x, y) ∈ R =⇒ |y| ≤ p(|x|). Thus, FNP is the
search problem version of NP (and FNP-complete problems are equivalent to
NP-complete problems under Turing reductions).

The class TFNP (Total Functions in NP [28]) contains all FNP search prob-
lems R that are total : for every x ∈ {0, 1}∗ there exists y ∈ {0, 1}∗ such that
(x, y) ∈ R. With a slight abuse of notation, we can say that P lies in TFNP.
Indeed, if a decision problem is solvable in polynomial time, then both the “yes”
and “no” answers can be verified in polynomial time. In this sense, TFNP lies
between P and NP.

Note that the totality of problems in TFNP does not rely on any “promise”.
Instead, there is a syntactic guarantee of totality: for any instance in {0, 1}∗,
there is always at least one solution. Nevertheless, TFNP can capture various
settings where the instance space is restricted. For example, if a problem R
in FNP is total only on a subset L of the instances and L ∈ P , then we can
transform it into a TFNP problem by adding (x, 0) to R for all x /∈ L.

Reductions. Let R and S be total search problems in TFNP. We say that
R (many-one) reduces to S, denoted R ≤ S, if there exist polynomial-time
computable functions f, g such that

(f(x), y) ∈ S =⇒ (x, g(x, y)) ∈ R.

Note that if S is polynomial-time solvable, then so is R. We say that two problems
R and S are (polynomial-time) equivalent, if R ≤ S and S ≤ R.

There is also a more general type of reduction. A Turing reduction from R
to S is a polynomial-time oracle Turing machine that solves problem R with the
help of queries to an oracle for S. Note that a Turing reduction that only makes
a single oracle query immediately yields a many-one reduction.
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PPA. The class PPA (Polynomial Parity Argument) [31] is defined as the set
of all TFNP problems that many-one reduce to the problem Leaf [2,31]: given
an undirected graph with maximum degree 2 and a leaf (i.e. a vertex of degree
1), find another leaf. The important thing to note is that the graph is not given
explicitly (in which case the problem would be very easy), but it is provided
implicitly through a succinct representation.

The vertex set is {0, 1}n and the edges are given by a Boolean circuit C :
{0, 1}n → {0, 1}n ×{0, 1}n. For any x ∈ {0, 1}n, we abuse notation and interpret
C(x) = (y1, y2) as the set {y1, y2} \ {x}. Thus, C(x) is the set of potential
neighbours of x. We say that there is an edge between x and y if x ∈ C(y) and
y ∈ C(x). Thus, every vertex has at most two neighbours. Note that the size of
the graph can be exponential with respect to its description size.

The full formal definition of the problem Leaf is: given a Boolean circuit
C : {0, 1}n → {0, 1}n × {0, 1}n such that |C(0n)| = 1 (i.e. 0n is a leaf), find

– x �= 0n such that |C(x)| = 1 (another leaf)
– or x, y such that x ∈ C(y) but y /∈ C(x) (an inconsistent edge)

Type 2 Problems and Oracle Separations. We work in the standard Turing
machine model, but TFNP subclasses have also been studied in the black-box
model. In this model, one considers the type 2 versions of the problems, namely,
the circuits in the input are replaced by black-boxes. In that case, it is pos-
sible to prove unconditional separations between type 2 TFNP subclasses (in
the standard model this would imply P �= NP). The interesting point here is
that separations between type 2 classes yield separations of the corresponding
classes in the standard model with respect to any generic oracle (see [2] for more
details on this). This technique has been used to prove various oracle separa-
tions between TFNP subclasses [2,4,5,30]. In Sect. 6 we provide some oracle
separations involving PPA-k and other TFNP subclasses.

On the other hand, any reduction that works in the type 2 setting, also works
in the standard setting. Indeed, it suffices to replace the calls to the black boxes
by the corresponding circuits that compute them. In this paper, our reductions
are stated in the standard model, but they also work in the type 2 setting,
because they don’t examine the inner workings of the circuits.

3 Definition of the Classes

3.1 PPA-k: Polynomial Argument Modulo k

For any prime p, Papadimitriou [31] defined the class PPA-p as the set of all
TFNP problems that many-one reduce to the following problem, that we call
Bipartite-mod-p: We are given an undirected bipartite graph (implicitly rep-
resented by circuits) and a vertex with degree �= 0 mod p (which we call the
trivial solution). The goal is to find another such vertex. This problem lies in
TFNP: if all other vertices had degree = 0 mod p, then the sum of the degrees
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of all vertices on each side would have a different value modulo p, which is
impossible.

The problem remains well-defined and total if p is not a prime, and so we
will instead define it for any k ≥ 2. Let us now provide a formal definition
of the problem. A vertex of the bipartite graph is represented as a bit-string
in {0, 1} × {0, 1}n, where the first bit indicates whether the vertex lies on the
“left” or “right” side of the bipartite graph. Given a vertex, a Boolean circuit C
outputs the set of its neighbours (at most k, see Remark 1). Note that we can
syntactically enforce that the graph is bipartite, i.e. a vertex 0x can only have
neighbours of the type 1y and vice-versa.

Definition 1 (Bipartite-mod-k [31]). Let k ≥ 2. The problem Bipartite-
mod-k is defined as: given a Boolean circuit C that computes a bipartite graph
on the vertex set {0, 1} × {0, 1}n with |C(00n)| ∈ {1, . . . , k − 1}, find
– u �= 00n such that |C(u)| /∈ {0, k}
– or x, y such that y ∈ C(0x) but x /∈ C(1y).

Here the trivial solution is the vertex 00n. The first type of solution corresponds
to a vertex with degree �= 0 mod k. The second type of solution corresponds
to an edge that is not well-defined. We can always ensure that all edges are
well-defined by doing some pre-processing. Indeed, in polynomial time we can
construct a circuit C ′ such that all solutions are of the first type and yield a
solution for C. On input 0x the circuit C ′ first computes C(0x) = {1y1, . . . , 1ym}
and then for each i removes 1yi from this list, if 0x /∈ C(1yi).

Remark 1. Note that in this problem statement we take all degrees to lie in
{0, 1, . . . , k}. This is easily seen to be equivalent to the more general formu-
lation, since any vertex with degree higher than k can be split into multiple
vertices that each have degree at most k, and a solution of the original problem
is easily recovered from a solution in this new version. Note that since the set
of neighbours is given as the output of a circuit, it will have length bounded by
some polynomial in the input size and so this argument can indeed be applied.

Definition 2 (PPA-k [31]). For any k ≥ 2, the class PPA-k is defined as the
set of all TFNP problems that many-one reduce to Bipartite-mod-k.

As a warm-up let us show the following:

Proposition 1 ([31]). PPA-2 = PPA

Proof. Recall that PPA can be defined using the canonical complete problem
Leaf [2,31]: given an undirected graph where every vertex has degree at most
2, and a leaf (i.e. degree = 1), find another leaf. This immediately yields PPA-2
⊆ PPA, since Bipartite-mod-2 is just a special case of Leaf where the graph
is bipartite.

Given an instance of Leaf with graph G = ({0, 1}n, E) we construct an
instance of Bipartite-mod-2 on the vertex set {0, 1} × {0, 1}2n as follows.
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For any u ∈ {0, 1}n we have a vertex xu := 0u0n on the left side of the bipartite
graph. For any edge {u, v} ∈ E (u, v ordered lexicographically) we have a vertex
yuv := 1uv on the right side of the bipartite graph and we create the edges
{xu, yuv} and {xv, yuv}. All other vertices in {0, 1} × {0, 1}2n are isolated. In
polynomial time we can construct a circuit that computes the neighbours of any
vertex. Furthermore, w ∈ {0, 1}n is a leaf, if and only if xw has degree 1. Finally,
all vertices on the right-hand side have degree 0 or 2. 
�

3.2 PPA-k[#�]: Fixing the Degree of the Trivial Solution

In the definition of the PPA-k-complete problem Bipartite-mod-k (Defini-
tion 1) the degree of the trivial solution 00n can be any number in {1, . . . , k−1}.
In this section we define more refined classes where the degree of the trivial solu-
tion is fixed. In Sect. 5, these classes will be very useful to describe how the
PPA-k classes relate to each other. These definitions are inspired by the corre-
sponding “counting principles” studied in Beame et al. [3] that were also defined
in a refined form in order to describe how they relate to each other. We believe
that these refined classes will also be useful to capture the complexity of natural
problems. Note that for k = 2, the degree of the trivial solution will be always
be 1 and thus the question does not even appear in the study of PPA.

Definition 3. Let k ≥ 2 and 1 ≤ � ≤ k−1. The problem Bipartite-mod-k[#�]
is defined as Bipartite-mod-k (Definition 1) but with the additional condition
|C(00n)| = �.

Note that this condition can be enforced syntactically and so this problem also
lies in TFNP.

Definition 4 (PPA-k[#�]). Let k ≥ 2 and 1 ≤ � ≤ k−1. The class PPA-k[#�]
is defined as the set of all TFNP problems that many-one reduce to Bipartite-
mod-k[#�].

If k is some prime p, then these classes are not interesting. Indeed, it holds
that PPA-p[#�] = PPA-p for all 1 ≤ � ≤ p − 1. This can be shown using the
following technique: take multiple copies of the instance and “glue” the trivial
solutions together. If p is prime, then any other degree of the glued trivial solution
can be obtained (by taking the right number of copies). In fact this technique
yields the stronger result:

Lemma 1. If gcd(k, �1) divides �2, then PPA-k[#�1] ⊆ PPA-k[#�2].

Proof. Since gcd(k, �1) divides �2, there exists m < k such that m × �1 = �2
mod k. Given an instance of Bipartite-mod-k[#�1], take the union of m copies
of the instance, i.e. m2n vertices on each side (and any additional isolated vertices
needed to reach a power of 2). Then, merge the m different copies of the trivial
solution into one (by redirecting edges to a single one). This vertex will have
degree m�1 = �2 mod k. Finally, apply the usual trick to ensure all degrees are
in {0, 1, . . . , k} (Remark 1). 
�
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In particular, we also get the nice result PPA-k[#�] = PPA-k[# gcd(k, �)].
Applying the result to the case k = 6, we get that PPA-6[#1] = PPA-6[#5],
PPA-6[#2] = PPA-6[#4], as well as PPA-6[#1] ⊆ PPA-6[#2] and PPA-6[#1]
⊆ PPA-6[#2]. Thus, we have three “equivalence classes” {1, 5}, {2, 4} and {3}
and the relationships {1, 5} ≤ {2, 4} and {1, 5} ≤ {3}. In Sect. 5, we will show
that {2, 4} corresponds to PPA-3, {3} to PPA-2 and {1, 5} to PPA-2 ∩ PPA-3.

Now let us introduce some notation that will allow us to precisely describe
the relationship between PPA-k and the PPA-k[#�].

Definition 5. (& operation [5]). Let R0 and R1 be two TFNP problems. Then
the problem R0 & R1 is defined as: given an instance I0 of R0, an instance I1
of R1 and a bit b ∈ {0, 1}, find a solution to Ib.

This operation is commutative and associative (up to many-one equivalence).
Indeed, R0 & R1 is many-one equivalent to R1 & R0, and (R0 &R1)&R2 is
many-one equivalent to R0 &(R1 &R2). Since the & operation is associative, the
problem &k

�=1R� is well-defined up to many-one equivalence. It is also equivalent
to the following problem: given instances I1, . . . , Ik of R1, . . . , Rk and an integer
j ∈ {1, . . . , k}, find a solution to Ij .

We extend the & operation to TFNP subclasses in the natural way. Let C0

and C1 be TFNP subclasses with complete problems R0 and R1 respectively.
Then C0 & C1 is the class of all TFNP problems that many-one reduce to R0 &
R1. Note that the choice of complete problems does not matter. Intuitively, this
class contains all problems that can be solved in polynomial time by a Turing
machine with a single oracle query to either C0 or C1. The following result is
easy to prove:

Lemma 2. For all k ≥ 2 we have PPA-k =
k−1

&
�=1

PPA-k[#�].

Together with Lemma 1, this yields e.g. PPA-6 = PPA-6[#2] & PPA-6[#3].

4 Equivalent Definitions

In this section we show that PPA-k can be defined by using other problems
instead of Bipartite-mod-k. The totality of these problems is again based
on arguments modulo k. By showing that these problems are indeed PPA-k-
complete, we provide additional support for the claim that PPA-k captures the
complexity of “polynomial arguments modulo k”. While these problems are not
“natural” and thus not interesting in their own right, they provide equivalent
ways of defining of PPA-k, which can be very useful when working with these
classes. In particular, we make extensive use of this equivalence in this work.

The TFNP problems we consider are the following:

– Imbalance-mod-k: given a directed graph and a vertex that is unbalanced-
mod-k, i.e. out-degree − in-degree �= 0 mod k, find another such vertex.
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– Hypergraph-mod-k: given a hypergraph and a vertex that has degree �= 0
mod k, find another such vertex or a hyperedge that has size �= k.

– Partition-mod-k: given a set of size �= 0 mod k and a partition into subsets,
find a subset that has size �= k.

As usual, the size of the graph (respectively hypergraph, set) can be exponential
in the input size, and the edges (resp. hyperedges, subsets) can be computed
efficiently locally. We also define the corresponding problems Imbalance-mod-
k[#�], Hypergraph-mod-k[#�] and Partition-mod-k[#�] analogously. The
formal definitions and the proof of the following result can be found in the full
version.

Theorem 1. Let k ≥ 2 and 1 ≤ � ≤ k − 1.

– Imbalance-mod-k[#�], Hypergraph-mod-k[#�], Partition-mod-k[#�]
are PPA-k[#�]-complete,

– Imbalance-mod-k, Hypergraph-mod-k, Partition-mod-k are PPA-k-
complete.

In his online post [21], Jeřábek proves that Bipartite-mod-3, Imbalance-
mod-3 and Partition-mod-3 are equivalent and (correctly) claims that the
proof generalises to any other prime. Thus, our contribution is the definition of
the problems for any k ≥ 2 (and the �-parameter versions) and the generalisation
of the result to any k ≥ 2 (not only primes) and to the �-parameter versions of
the problems, as well as to the new problem Hypergraph-mod-k.

The problem Imbalance-mod-k is a generalisation of the PPAD-complete
problem Imbalance [2,18]: given a directed graph and a vertex that is unbal-
anced (i.e. out-degree − in-degree �= 0), find another unbalanced vertex. Since
the latter trivially reduces to the former, Theorem 1 also yields1:

Corollary 1. For all k ≥ 2, we have PPAD ⊆ PPA-k.

Furthermore, if we set k = 0, then Imbalance-mod-0 actually corresponds
to Imbalance. Thus, in a certain sense we could define PPA-0 = PPAD. On
the other hand, Imbalance-mod-1 is a trivial problem.

5 Relationship Between the Classes

In this section, we present some results that provide deeper insights into how the
classes relate to each other. For any k ≥ 2, PF(k) denotes the set of all prime
factors of k. The main conceptual result is that PPA-k is entirely determined by
the set of prime factors of k:

Theorem 2. For any k ≥ 2 we have PPA-k = &
p∈PF(k)

PPA-p.

1 This observation was also made by Jeřábek for the classes PPA-p (p prime).



The Classes PPA-k: Existence from Arguments Modulo k 223

This equation can be understood as saying the following:

– Given a single query to an oracle for PPA-k, we can solve any problem in
PPA-p for any p ∈ PF(k)

– Given a single query to an oracle that solves any PPA-p problem for any
p ∈ PF(k), we can solve any problem in PPA-k.

Corollary 2. In particular, we have:

– For k1, k2 ≥ 2, if PF(k1) ⊆ PF(k2), then PPA-k1 ⊆ PPA-k2.
– For all k1, k2 ≥ 2, PPA-k1k2 = PPA-k1 & PPA-k2.
– For all k ≥ 2 and all r ≥ 1 we have PPA-kr = PPA-k.

Using the PPA-k[#�] classes, we can formulate an even stronger and more
detailed result. For any k ≥ 2, 1 ≤ � ≤ k − 1, we define PF(k, �) =
PF(k/ gcd(k, �)). In this case the conceptual result says that PPA-k[#�] is
entirely determined by the set of prime factors of k/ gcd(k, �).

Theorem 3. Let k ≥ 2, 0 < � < k. Then

PPA-k[#�] = PPA-

⎛

⎝
∏

p∈PF (k,�)

p

⎞

⎠ [#1] =
⋂

p∈PF(k,�)

PPA-p.

The proof of Theorem 3 can be found in the full version. It mainly relies on
a technical result (Theorem 4) presented in the next section. Before we move on
to that, let us briefly show that Theorem 2 follows from Theorem 3.

Proof (of Theorem 2). Using Lemma 2 and Theorem 3 we can write

PPA-k =
k−1

&
�=1

PPA-k[#�] =
k−1

&
�=1

⎛

⎝
⋂

p∈PF(k,�)

PPA-p

⎞

⎠ = &
p∈PF(k)

PPA-p

where the last equality follows by noting that PF(k, �) ⊆ PF(k) for all �, and
PF(k, k/p) = {p} for all p ∈ PF(k). 
�

5.1 Proof Overview

In [3] Beame et al. investigated the relative proof complexity of so-called “count-
ing principles”. These counting principles are formulas that represent the fact
that a set of size �= 0 mod k cannot be partitioned into sets of size k. They inves-
tigated the relationship between these principles in terms of whether one can be
proved from the other by using a constant-depth, polynomial-size Frege proof.
Their main result is a full characterisation of when this is possible or not. As
noted by Johnson [23], these counting formulas do not yield NP search problems,
but they can be related to corresponding NP search problems (TFNP, in fact).
Indeed, Johnson uses this connection to obtain some separation results between
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his PMODk classes (see Sect. 6) from Beame et al.’s negative results. Our contri-
bution is using Beame et al.’s positive results in order to prove inclusion results
about the PPA-k[#�] classes. More precisely, we modify their proofs to obtain
polynomial-time reductions between our Partition-mod-k[#�] problems. Thus,
we obtain the following result which is proved in the full version.

Theorem 4. Let k1, k2 ≥ 2 and 0 < �i < ki for i = 1, 2. If PF(k2, �2) ⊆
PF(k1, �1), then PPA-k1[#�1] ⊆ PPA-k2[#�2].

6 Johnson’s PMODk Classes and Oracle Separations

Inspired by the definition of the PPA-complete problem Lonely [2], Buss and
Johnson [5] defined TFNP problems called MODp to represent arguments mod-
ulo some prime p. Their main motivation was to use these problems to show
separations (in the type 2 setting) between Turing reductions with m oracle
queries and Turing reductions with m+1 oracle queries. In his thesis [23], John-
son generalised the definition of MODk to any k ≥ 2 and defined corresponding
classes PMODk. He also proved some separations between these classes and
other TFNP classes in the type 2 setting (which yield oracle separations in the
standard setting). It seems that Johnson was not aware of Papadimitriou’s [31]
PPA-p classes.

In this section, we study the classes PMODk and prove a characterisation
in terms of the classes PPA-p. In particular, we show that PMODk does not
capture the full strength of arguments modulo k, when k is not a prime power.
This characterisation also allows us to use Johnson’s separations to obtain some
oracle separations involving PPA-k and other TFNP classes.

Informally, the problem MODk can be defined as follows. We are given a
partition of {0, 1}n into subsets and the goal is to find one of these subsets that
has size �= k. If k is not a power of 2, then such a subset must exist. If k is
a power of 2, then we instead consider {0, 1}n \ {0n} and the problem remains
total. The formal definition of MODk can be found in the full version.

Definition 6 (PMODk [23]). For any k ≥ 2, the class PMODk is defined as
the set of all TFNP problems that many-one reduce to MODk.

Note that the problem MODk is a special case of our problem Partition-
mod-k (which was indeed inspired by this definition). As a result, we immediately
get that PMODk ⊆ PPA-k. Unless k is a prime power, we don’t expect this to
hold with equality. The intuition is that restricting the size of the base set to
always be a power 2 has the effect of only achieving a subset of the possible
�-parameter values of PPA-k[#�]. Namely, only � ∈ {2n mod k : n ∈ N} are
achieved (for k not a power of 2).

The following result provides a full characterisation of PMODk in terms of
the classes PPA-p. The proof can be found in the full version.
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Theorem 5. Let k ≥ 2.

– if k is not a power of 2, then PMODk = PPA-k̃[#1] = ∩p∈PF(˜k)PPA-p where

k̃ is the largest odd divisor of k
– if k is a power of 2, then PMODk = PPA-2.

Corollary 3. In particular, we have:

– for all primes p and r ≥ 1, PMODpr

= PPA-pr = PPA-p
– for all k ≥ 2, PMOD2k = PMODk

– for all odd k ≥ 3, PMODk = PPA-k[#1] = ∩p∈PF(k)PPA-p

If k is a prime power, then PMODk is the same as PPA-k. However, for
other values of k, we argue that PMODk fails to capture the full strength of
arguments modulo k. For example, PMOD15 = PPA-15[#1] = PPA-3 ∩ PPA-5,
whereas PPA-15 = PPA-3& PPA-5. This means that PPA-15 can solve any
problem that lies in PPA-3 or PPA-5, while PMOD15 can only solve problems
that lie both in PPA-3 and PPA-5. In particular, if PMOD15 = PPA-15, then
it would follow that PPA-3 = PPA-5, which is not believed to hold (see oracle
separations below). Even worse perhaps, is the fact that PMOD2k = PMODk for
any k ≥ 2. In particular, this means that PMOD6 = PMOD3, which indicates
that PMOD6 does not really capture arguments modulo 6.

Nevertheless, Johnson’s oracle separation results (obtained from the cor-
responding type 2 separations as in [2]) also yield corresponding results for
the PPA-k classes (using Theorem 5). We briefly mention a few of the results
obtained this way. See Johnson [23, Chapter 8] for additional results. Relative
to any generic oracle (see [2]):

– PPA-p �⊆ PPA-q for any distinct primes p, q
– PPA-k �⊆ PPP, PPA-k �⊆ PLS, PPA-k �⊆ PPADS for any k ≥ 2
– PPP �⊆ PPA-p, PLS �⊆ PPA-p for any prime p

7 Many-One vs Turing Reductions

Theorem 6. For any prime p ≥ 2, PPA-p is closed under Turing reductions.

In particular, PPA-pr = PPA-p is also closed under Turing reductions. The
proof can be found in the full version. Furthermore, we also obtain:

Corollary 4. For all k ≥ 2 and 0 < � < k, PPA-k[#�] is closed under Turing
reductions.

Proof (of Corollary 4). Using Theorem 3, we have PPA-k[#�] =
⋂d

p=1 PPA-pi,
where PF(k, �) = {p1, . . . , pd}. Consider a Turing reduction from some problem
to PPA-k[#�]. Since PPA-k[#�] ⊆ PPA-pi, this yields a Turing reduction to
PPA-pi, in particular. By Theorem 6, it follows that there exists a many-one
reduction to PPA-pi, i.e. the problem lies in PPA-pi. Since this holds for all pi,
the result follows. 
�
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If k is not a prime power, then it is not known whether PPA-k is closed under
Turing reductions. Using our results from Sect. 6, we can actually provide an oracle
separation between PPA-k and the Turing-closure of PPA-k, i.e. an oracle under
which PPA-k is not closed under Turing reductions. Let R1, . . . , Rk be TFNP prob-
lems. Following Johnson [23] we define

⊗k
j=1 Rj as the problem: given instances

(I1, . . . , Ik), where Ij is an instance of Rj , solve Ij for all j. As we did with the &
operation, with a slight abuse of notation, we can also use the operation ⊗ with the
PPA-k classes. In [23, Theorem 7.6.1], Johnson proved that for m ≥ 2 and distinct
primes p1, . . . , pm,

⊗m
i=1 MODpi does not many-one reduce to &m

i=1 MODpi in the
type 2 setting. Together with our Theorems 2 and 5 this yields:

Theorem 7. Let k ≥ 2 not a power of a prime. Relative to any generic oracle,
it holds that

⊗
p∈PF(k) PPA-p �⊆ PPA-k. In particular, relative to any generic

oracle, PPA-k is not closed under Turing reductions.

S =
⊗

p∈PF(k) PPA-p corresponds to solving PPA-p for all prime factors p

of k simultaneously. In particular, this can be done by using |PF(k)| queries to
PPA-k, i.e. a Turing reduction to PPA-k. Thus, S lies in the Turing closure of
PPA-k, but not in PPA-k (relative to any generic oracle).
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Abstract. We focus on a canonical Bayesian mechanism design setting:
a seller wants to sell a single item to n bidders, whose values are drawn
i.i.d. from a monotone-hazard-rate distribution. In the literature, three
mechanisms receive particular attention: the revenue-optimal mechanism
Myerson Auction (OPT), the welfare-optimal mechanism Second-Price
Auction (SPA), and the most widely-used mechanism Anonymous Pric-
ing (AP). In terms of revenue, we investigate how well the later two
mechanisms can approximate Myerson Auction.

OPT vs. AP: over all n ∈ N≥1, the supremum ratio is 1.27, and the
worst-case distribution is exponential-like. This answers an open question
of Giannakopoulos and Zhu (WINE 18), who proved an asymptotically
tight bound of 1 + Θ

(
log logn
logn

)
for large n ∈ N≥1. Thus, the approxima-

bility of AP is well understood.
OPT vs. SPA: for each n ≥ 2, this ratio is upper-bounded by(

1 − (1 − 1/e)n−1
)−1

= 1 + 2−O(n); an asymptotically matching lower
bound can be reached by a truncated exponential distribution. This
result settles an open problem asked of Allouah and Besbes (EC 18),
who attained the supremum ratio of 1.40 over all n ≥ 2. Both bounds
together supplement the seminal result of Bulow and Klemperer (Am.
Econ. Rev. 96).

Keywords: Approximation ratio · Myerson Auction · Anonymous
Pricing · Second-Price Auction

1 Introduction

Extracting optimal revenue from selling a single item is a most basic problem in
economics. The Bayesian version of this question was settled by Myerson [28].
Provided with symmetric bidders, Myerson Auction admits a concise and system-
atic format – Second-Price Auction with Anonymous Reserve. In that reserve-based
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auctions are quite prevalent in practice (e.g., eBay’s auction), Myerson Auction is
advocated by many as a triumph of auction theory. Nonetheless, both of Myer-
son Auction and Second-Price Auction with Anonymous Reserve still experience
the following drawbacks.

– Prior Dependency: according to Wilson’s doctrine [31], practical mechanisms
should rely on least details of the input, hence being robust. On the con-
trary, Myerson Auction and Second-Price Auction with Anonymous Reserve both
require an entire access to the bidders’ distributions.

– Privacy Concern: in either mechanism, a bidder must propagate his value
distribution to others. Also, even if a bidder were to lose the item, he still
needs to submit his true value to the seller. Conceivably, these issues may
stimulate the bidders to concern their privacy.

– Synchronization: for any auction scheme, all the bidders have to join in it
simultaneously. Such synchronization may incur extra cost, or even make an
auction non-implementable.

To remove the above complications, two even simpler mechanisms come to
the rescue. Literally, Second-Price Auction with Anonymous Reserve composes of
(a) Second-Price Auction and (b) Anonymous Pricing. Both mechanisms appear
everywhere in the real life, and thus receive particular attention from the AGT,
operations research and economics communities.

– Second-Price Auction is perhaps the most famous prior-independent mecha-
nism. It is used in numerous scenarios, e.g., selling radio spectrum licenses [27]
and the allocation of government or public goods [26]. Notably, this mecha-
nism generates the optimal social-welfare, which further distinguishes it from
any other mechanism.

– Anonymous Pricing addresses the second and third issues mentioned: (a) the
bidders participate in this mechanism sequentially, and thus the synchroniza-
tion issue automatically vanishes; (b) when a bidder arrives, he simply makes
a take-it-or-leave-it decision, which would effectively conceal his private infor-
mation. Besides, far less communication is involved in Anonymous Pricing. All
these and other merits together make Anonymous Pricing the most widely-used
mechanism in the real-world applications (e.g., eBay’s buy-it-now pricing).

The significance and prevalence of Second-Price Auction and Anonymous Pricing
have stimulated an abundance of research (e.g., see [2,3,5,6,14,16–18,20,23,24])
on the next question:

Under moderate assumptions on the value distributions, compared with
Myerson Auction, how much revenue can the two simple mechanisms guar-
antee?

In this work, we concentrate on the natural setting where symmetric bidders
draw their values independently and identically from a monotone-hazard-rate
(MHR) distribution. By offering new insights into how to characterize the worst-
case distributions, we settle the above question and respectively summarize the
results as Theorems 1 and 2 in Sects. 3 and 4.
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1.1 Further Related Work

This work fits in both of the “simple versus optimal” program (e.g., see also
[4,7–10,29]) and the “robust mechanism design” program (e.g., see also [13,
15,22,30]). The approximability of Anonymous Pricing is also widely studied in
various broader settings (e.g., see [17–19,21,25,28].

A technical objective of our work is to demonstrate the power of “reduc-
tion to worst-case distributions” in proving tight approximation ratios of simple
mechanisms. Previously, such reductions were only developed for regular dis-
tributions (e.g., see [2,23,24]). Our reductions are the first ones applicable for
MHR distributions. Given all these successes, this methodology may be further
developed, resulting in an arsenal of tools for proving tight ratios in algorithmic
mechanism design.

2 Notations and Preliminaries

Throughout this paper, we focus on the scenario where n ∈ N≥1 bidders compete
for an indivisible item, and independently draw their values v = {vi}n

i=1 for the
item from a common distribution. This distribution would be denoted by its
CDF F , and has a positive support supp(F ) ⊆ R≥0. In addition, the monopoly
price p and the monopoly quantile q of this distribution are defined as follows1:

p
def= arg max

x∈[0,∞]

{
x · (

1 − F (x)
)} ∈ supp(F ) q

def=
(
1 − F (p)

) ∈ [0, 1];

We always assume the distribution F satisfies the monotone-hazard-rate (MHR)
property. To enable our proofs, however, we take into account the broader family
of regular distributions as well. We introduce both concepts below, and then
elaborate on the concerning mechanisms.

2.1 Distribution Families

Regular Distribution. By standard notions (e.g., see [23, Section 2.2]), the fol-
lowing properties hold for any regular distribution F :

– Continuity: the support supp(F ) is a single interval, and only at its right-
endpoint can the distribution F have probability mass.

– Differentiability: the CDF F is left- and right-differentiable everywhere in the
interior of support supp(F ); w.l.o.g., the corresponding PDF f exists, and is
right-continuous everywhere.

We safely define the virtual value function ϕ(x) def= x − 1−F (x)
f(x) on the support

x ∈ supp(F ). By definition, the distribution F is regular (i.e., F ∈ Reg) iff

1 When there are multiple alternative monopoly prices p’s, we would break ties by
choosing the largest one.
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the function ϕ(x) is non-decreasing. Under this assumption, ϕ−1(0)2 is exactly
the monopoly price p. The monotonicity of ϕ(x) indicates that the virtual value
CDF D(x) introduced below is well defined. (In Sect. 2.2, we will see that this
concept helps us to formulate the revenues from the concerning mechanisms.)

D(x) def= F
(
ϕ−1(x)

) ∀x ∈ R.

MHR Distribution. Compared with the regularity, the monotone-hazard-rate
(MHR) property is a stronger assumption on the distribution F , requiring3

G(x) = ln
(
1 − F (x)

)
to be a concave and decreasing function on supp(F ). The

mentioned continuity and differentiability hold for all the MHR distributions.
Further, the next fact will be useful in Sect. 4, and is rather a folklore in the
literature (e.g., see [1]).

Fact 1. Any MHR distribution F has a monopoly quantile q ∈ [1/e, 1].

Truncated Exponential Distribution. Given a monopoly price p ∈ R≥0 and a
monopoly quantile q ∈ [1e , 1], the truncated exponential distribution TrExp(p, q)
has a CDF of

TrExp(p, q) def=

{
1 − e

ln q
p ·x ∀x ∈ (0, p)

1 ∀x ∈ [p,+∞)
.

This distribution will be useful in Sect. 4 to construct worst-case and lower-
bound instances. Also, it is easy to check that this distribution belongs to the
MHR family4.

2.2 Mechanisms

We will focus on three basic mechanisms – Second-Price Auction, Anonymous
Pricing and Myerson Auction – together with the (expected) revenues from them.
The next lemma is known as the revenue-equivalence theorem (see [28]), which
bridges any mechanism and its revenue formula via the virtual value function.

Lemma 1 (Revenue-Equivalence Theorem). A mechanism can be fully
determined by its allocation rule π(v) ∈ [0, 1]n, and the expected revenue is equal to
E

[ ∑n
i=1 ϕ(vi) · πi(v)

]
.

2 Note that the virtual value function ϕ may not be strictly increasing, i.e., may be
two different values x < y both correspond to the same virtual value ϕ(x) = ϕ(y).
For ease of notation, throughout the paper we always break ties by choosing the
largest value, namely ϕ−1(z) = max{x ≥ 0 | ϕ(x) ≤ z}.

3 Here is another equivalent definition of the MHR property: y = f(x)
1−F (x)

is a non-

decreasing function on support supp(F ). Intuitively, an MHR distribution has a tail
decaying (at least) exponentially fast.

4 Distribution TrExp(p, q) corresponds to a linear (and thus concave) function G(x) =
ln

(
1 − F (x)

)
= ln q

p
· x.
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Anonymous Pricing (AP). In such a mechanism, the item is labeled with a price
x ∈ (0,+∞). W.l.o.g., in the lexicographic order5, upon the arrival of each i-th
bidder:

1. If the item remains unsold and vi ≥ x, then bidder i
wins the item

2. Otherwise, bidder i leaves forever

When the mechanism terminates, the item is sold out with probability 1 −(
F (x)

)n. For simplicity, we abuse the notation AP
(
x, F

)
= x · [

1 − (
F (x)

)n]

to denote the revenue. We figure out the optimum among this family of mecha-
nisms, resulting in a revenue of

AP
(
F

) def= max
{
AP(x, F ) : x ∈ R≥0

}
.

Second-Price Auction (SPA). In this mechanism: the highest bidder i∗ ∈
arg maxi∈[n]

{
vi

}
wins the item, and then pays the second-highest bid

maxi∈[n]\{i∗}
{
vi

}
. By Lemma 1, we can write down the revenue in terms of vir-

tual value CDF D.

SPA
(
F

)
= E

[
maxi∈[n]

{
ϕ(vi)

}]
=

∫ +∞
0

(
1 − (

D(y)
)n) · dy − ∫ 0

−∞
(
D(y)

)n · dy.

Myerson Auction (OPT). As mentioned, in the concerning setting, Myerson Auc-
tion can be viewed as the composition of Anonymous Pricing and Second-Price
Auction. Given the monopoly price p of the distribution F , and upon receiving
values {vi}n

i=1, Myerson Auction runs as follows:

1. If vi < p for all i ∈ [n], withhold the item
2. Otherwise,

(a) W.l.o.g., vσ1 ≥ vσ2 ≥ · · · ≥ vσn
for some

permutation {σi}n
i=1

(b) Bidder σ1 wins the item, with payment
max

{
vσ2 , p

}

Once again, the corresponding revenue can be formulated6 in terms of virtual
value CDF D.

OPT
(
F

)
= E

[
max

{
0, ϕ(vσ2)

}]
=

∫ +∞
0

(
1 − (

D(y)
)n) · dy.

From all of the above revenue formulas, one can infer the next Fact 2. Intuitively,
we can “rank” distributions in a stochastic-domination sense. (For Anonymous
Pricing and Second-Price Auction, one can verify Fact 2 via simple calculations
about the first and second order statistics. As for Myerson Auction, a generalized
result was proved by [12].)

5 In different orders, the winner of the item may be different, but the corresponding
revenue is always the same.

6 For revenue formulas in more general settings, see [11, Section 4] and [23, Fact 1].
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Fact 2 ([28]). Given two distributions F and F that F (x) ≥ F (x) for all
x ∈ R≥0, we have AP

(
x, F

) ≤ AP
(
x, F

)
for all x ∈ R≥0, SPA

(
F

) ≤ SPA
(
F

)
,

and OPT
(
F

) ≤ OPT
(
F

)
.

3 Approximation Ratio of Anonymous Pricing

In this section, we concentrate on the Myerson Auction (OPT) vs. Anonymous
Pricing (AP) problem, aiming to establish Theorem1.

Theorem 1. To sell an item to n ∈ N≥1 bidders with values drawn i.i.d. from
an MHR distribution, the supremum ratio of Myerson Auction to Anonymous
Pricing is 1.2683.

Recall the revenue of Anonymous Pricing: AP
(
x, F

)
= x · [

1 − (
F (x)

)n]
.

Since the Myerson Auction revenue and the Anonymous Pricing revenue both
scale proportionally under scaling up the distributions, given a specific n ∈ N≥1,
we formulate the concerning problem as the following program.

sup
F∈MHR

OPT
(
F

)
(P1)

s.t. AP
(
x, F

)
= x · [1 − (

F (x)
)n] ≤ 1 ∀x ∈ R≥0 (C1.1)

After being rearranged, constraint (C1.1) becomes another equivalent constraint:

ln
(
1 − F (x)

) ≤ H(x) ∀x ∈ R≥0, (C1.2)

where H(x) def=

{
0 ∀x ∈ [0, 1]
ln

(
1 − n

√
1 − 1/x

) ∀x ∈ (1,+∞)
. Later, we will see that

this transformation and the next technical lemma together enable the proof of
Theorem 1.

Lemma 2. H(x) is a decreasing and strictly convex function on the interval
(1,+∞).

Worst-Case Distribution. As mentioned in Sect. 2.1, a distribution F satisfies the
MHR property iff y = ln

(
1−F (x)

)
is a concave function on the interval supp(F ).

Combining this fact, Lemma 2, and constraint (C1.2) together, we characterize
the worst case of Program (P1).

First, in a worst case: the concave function y = ln
(
1 − F (x)

)
is tangent to

the strictly convex function H(x) at
(
a,H(a)

)
, for some a > 1. Due to con-

straint (C1.2) that curve y = ln
(
1 − F (x)

)
is point-wise upper bounded by

curve y = H(x), the concavity of y = ln
(
1 − F (x)

)
and the strict convexity

of y = H(x) together imply that the point of tangency
(
a,H(a)

)
is unique (if

exists).
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If there is no such a point of tangency, constraint (C1.2) is strictly loose
everywhere. After being scaled up, distribution F becomes another feasible MHR
distribution F , hence a larger revenue from Myerson Auction (see Fact 2). Appar-
ently, we can always manipulate the scale-up factor, such that the resulting curve
y = ln

(
1 − F (x)

)
is tangent to curve y = H(x).

Recall Fact 2, if F (x) ≤ F (x) for all x ∈ R≥0, then OPT(F ) ≥ OPT(F ).
Among all MHR distributions satisfying the mentioned “tangency” property,
we need to find a distribution F ∗

a that stochastically dominates all of the others
(and thus, in view of the revenue monotonicity, gives a better Myerson Auction
revenue than all of the others). Parameterize by a > 1, define tangent line

Ga(x) def= H ′(a) · (x − a) + H(a).

Distribution F ∗
a is given by ln

(
1 − F ∗

a (x)
) ≡ min

{
0, Ga(x)

}
, i.e.,

F ∗
a (x) =

{
0 ∀x < a − H(a)

H′(a) ,

1 − eH′(a)·(x−a)+H(a) ∀x ≥ a − H(a)
H′(a) .

(1)

Moreover, we shall take into account the implicit condition that support supp(F ∗
a )

is non-negative, i.e., another constraint that Ga(0) = H(a) − a · H ′(a) ≥ 0. In
that H(x) is a strictly convex function (recall Lemma 2), the following holds:

– Ga(0) can be viewed as a strictly decreasing function of a.
– All feasible a’s together form a single interval (1, amax], where amax is defined

by letting H(amax) − amax · H ′(amax) = 0.

To sum up, for Program (P1): its optimal solution falls into the family of
“exponential-like” distributions given by Eq. (1); its optimal objective value
equals to that of the following single-variable optimization problem.

sup
a>1

OPT(F ∗
a ) (P2)

s.t. H(a) − a · H ′(a) ≥ 0 (C2)

Optimal Objective Values. Via case analysis, we next explicitly formulate the
revenue of Myerson Auction OPT(F ∗

a ) as functions of a. By definition, on the
interval

[
a − H(a)

H′(a) ,+∞)
, distribution Fa has a virtual value function of

ϕ∗
a(x) = x − 1−F ∗

a (x)
F ∗

a
′(x)

(1)
= x + 1

H′(a) ≡ x − 1
|H′(a)| .

(We shall notice that H ′(a) < 0.) Hence, the virtual value CDF D∗
a(x) is sup-

ported on
[
s(a),+∞)

, where s(a) def= a − H(a)
H′(a) + 1

H′(a) . In this range,

D∗
a(x) = F ∗

a

(
x − 1/H ′(a)

)
= 1 − eH′(a)·(x−s(a)).

Recall Sect. 2.2 that OPT(F ∗
a ) =

∫ +∞
0

[
1 − (

D∗
a(y)

)n] · dy. In either case s(a) >
0 or s(a) ≤ 0, the tight ratio is respectively the optimal objective value of
Program (P3) and that of Program (P4).
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max
a>1

s(a) +
∫ +∞

s(a)

[
1 − (

D∗
a(y)

)n] · dy

s.t. H(a) − a · H ′(a) ≥ 0

s(a) = a + 1
H′(a) − H(a)

H′(a) > 0
(P3)

max
a>1

∫ +∞
0

[
1 − (

D∗
a(y)

)n] · dy

s.t. H(a) − a · H ′(a) ≥ 0

s(a) = a + 1
H′(a) − H(a)

H′(a) ≤ 0
(P4)

Noticeably, the feasible space of either program is a non-empty bounded
interval, since7 (a) s′(a) < 0 for all a ∈ (

1, amax

]
, (b) s(amax) < 0, and (c)

s(1+) > 0. (See footnote 7 for the proofs.) Also, the objective functions are obvi-
ously continuous functions in a. For these reasons, the optimum objective values
of both programs are achievable, and we can find them numerically. Afterward,
the larger objective value is exactly the revenue ratio of Myerson Auction to
Anonymous Pricing, for any given n ∈ N≥1.

Supremum Ratio. In the rest of Sect. 3, we will catch the supremum ratio over all
n ∈ N≥1: when n ≤ 44, we offer the numerical results in Table 1; when n ≥ 44, we
exploit tools developed by [17], showing that the supremum ratio can never be
reached. Hence, the supremum ratio of 1.2683 claimed in Theorem 1 is reached
when n = 17.

Table 1. The ratios when n ≤ 44; the worst case (n = 17) is marked in bold and italic.

n 2 3 4 5 6 7 8 9 10

ratio 1.1832 1.2206 1.2369 1.2460 1.2517 1.2558 1.2587 1.2610 1.2627

11 12 13 14 15 16 17∗ 18 19 20

1.2642 1.2654 1.2664 1.2672 1.2679 1.2682 1.2683 1.2682 1.2680 1.2676

21 22 23 24 25 26 27 28 29 30

1.2672 1.2667 1.2662 1.2656 1.2650 1.2643 1.2637 1.2630 1.2624 1.2617

31 32 33 34 35 36 37 38 39 40

1.2610 1.2603 1.2597 1.2590 1.2583 1.2577 1.2570 1.2564 1.2558 1.2551

41 42 43 44 ...

1.2545 1.2539 1.2533 1.2527 ...

Lemma 3 below can be easily summarized from [17], Theorem 2. We will adopt
it to establish the next Lemma 4.

7 More concretely, (a) given any a ∈ (
1, amax

]
, we have s′(a) = H(a)−1

(H′(a))2 · H ′′(a) < 0,

where the inequality is due to H(x) < 0 and H ′′(x) > 0, for all x ∈ (1, +∞); (b)

s(amax) = amax − H(amax)
H′(amax)

+ 1
H′(amax)

(†)
= 1

H′(amax)
< 0, where (†) is due to the

definition of amax; (c) s(1+) = 1 + lim
a→1+

1−H(a)
H′(a) = 1 + 1−0

+∞ = 1 > 0.
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Lemma 3. Define function Gn(x)
def
= x · [

1 − (
1 − e−x

)n]
on x ∈ [

0,Hn −
1
]
, where Hn

def
=

∑n
k=1

1
k is the n-th harmonic number. For each n ≥ 5, the

revenue ratio of Myerson Auction to Anonymous Pricing is upper bounded by Rn
def
=

Hn−1

max
{

Gn(x): x∈[0,Hn−1]
} + (e−1)n−1

en−(e−1)n−1 .

Lemma 4. Rn ≤ R44 < 1.2683 for every n ≥ 44.

Remark. As mentioned in Sect. 1, Programs (P3) and (P4) basically do not admit
a close-form optimal solution. Hence, the worst-case ratio (for each specific n ≥
2) can only be found numerically. Another observation is that the ratios are
unimodal when 1 ≤ n ≤ 44: it is increasing in n when n ≤ 17 and is decreasing
in n when 17 ≤ n ≤ 44. Beyond that, we actually believe the ratios always
decrease when n ≥ 17.

4 Approximation Ratio of Second-Price Auction

In this section, we probe into the Myerson Auction (OPT) vs. Second-Price Auction
(SPA) problem. The results are summarized in Theorem 2.

Theorem 2. To sell an item to n ≥ 2 bidders with values drawn i.i.d. from
an MHR distribution, the following holds for the ratio of Myerson Auction to
Second-Price Auction:

1. The worst case is always achieved by a truncated exponential distribution.
2. The ratio is upper bounded by

(
1 − (1 − 1/e)n−1

)−1 = 1 + 2−Ω(n), and there
is a matching lower bound of 1 + 2−O(n).

Actually, the upper-bound part of Theorem2 is an implication of a result by
Fu et al. [16]. Our main contributions are to characterize the worst-case distri-
bution (see Sect. 4.1) and to establish a matching lower bound (see Sect. 4.2).
Namely, via a novel reduction, we demonstrate that the worst-case distribution
(in the MHR distribution family) is always a truncated exponential distribu-
tion. In that describing a truncated exponential distribution requires merely two
parameters8, we can exploit standard techniques to establish the whole theorem.

Upper Bound. Lemma 5 is basically a reformulation of [16], Corallary 1. Putting
this together with Fact 1 completes the upper-bound part of Theorem2.

Lemma 5 ([16]). For any regular distribution F with monopoly quantile of
q ∈ [0, 1], Second-Price Auction generates at least

[
1 − 1∑n−1

i=0 (1−q)−i

]
-fraction as

much revenue as Myerson Auction.

8 Actualy, one of the parameters has no effect on the ratio between Myerson Auction
and Second-Price Auction.
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Proof (Proof of Theorem 2 part 2). Recall Fact 1 that any MHR distribution F
has a monopoly quantile of q ∈ [1/e, 1]. Thus, it follows from Lemma 5 that

SPA(F )
OPT(F )

≥ 1 − 1
∑n−1

i=0 (1 − q)−i
≥ 1 − 1

∑n−1
i=0 (1 − 1/e)−i

≥ 1 − (1 − 1/e)n−1.

This completes the proof of Theorem 2 part 2. 	


4.1 Worst Case

We reformulate Theorem 2 part 1 as the following Lemma 6.

Lemma 6. Given any MHR distribution F with monopoly price p ∈ R≥0

and monopoly quantile q ∈ [1/e, 1], the truncated exponential distribution
TrExp(p, q) satisfies that

SPA(F )
OPT(F )

≥ SPA
(
TrExp(p, q)

)

OPT
(
TrExp(p, q)

) .

Proof. As mentioned in Sect. 2.2, we can formulate the Myerson Auction revenue
and the Second-Price Auction revenue in terms of virtual value CDF D. That is,

OPT(F ) =
∫ +∞

0

[
1 − (

D(y)
)n

]
· dy,

SPA(F ) = OPT(F ) −
∫ 0

−∞

(
D(y)

)n · dy.

(2)

To prove Lemma 6, we consider the distribution F̂
def=

{
F (x) ∀x ∈ (0, p)
1 ∀x ∈ [p,+∞)

and

truncated exponential distribution F
def= TrExp(p, q). Both new distributions

have the same monopoly price p and monopoly quantile q as distribution F .
We first claim that SPA(F̂ )

OPT(F̂ )
≤ SPA(F )

OPT(F ) . Since F̂ (x) ≥ F (x) for all x ∈ R≥0, it

follows from Fact 2 that OPT
(
F̂

) ≤ OPT(F ). Due to the definition of monopoly
price p, only values x ∈ (0, p) are mapped to negative virtual values. Because
F̂ (x) = F (x) for all x ∈ (0, p), in terms of virtual value CDF, we observe that

D̂(x) = D(x) for all x ∈ R−, and thus
∫ 0

−∞

(
D̂(y)

)n · dy =
∫ 0

−∞

(
D(y)

)n · dy.

Plugging everything into Eq. (2) settles our claim:

SPA(F̂ )

OPT(F̂ )
= 1 − 1

OPT(F̂ )
·
∫ 0

−∞

(
D̂(y)

)n · dy

≤ 1 − 1
OPT(F )

·
∫ 0

−∞

(
D(y)

)n · dy =
SPA(F )
OPT(F )

.
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Next, we turn to prove that SPA(F )

OPT(F )
≤ SPA(F̂ )

OPT(F̂ )
. For both distributions F̂ and

F , notice again that values x ∈ (0, p) are mapped to negative virtual values. By
contrast, the Myerson Auction revenue is determined by positive virtual values
(corresponding to the probability mass at monopoly price p). Since lim

x→p−
F (x) =

lim
x→p−

F̂ (x) = 1 − q and F (p) = F̂ (p) = 1, we know OPT
(
F

)
= OPT

(
F̂

)
.

It remains to prove that SPA(F ) ≤ SPA(F̂ ). Due to the MHR property,
function Ĝ(x) def= ln

(
1 − F̂ (x)

)
= ln

(
1 − F (x)

)
is a concave function on interval

x ∈ (0, p). By contrast, G(x) def= ln
(
1 − F (x)

)
= ln q

p · x is a line segment on
x ∈ (0, p). Because both curves have the same endpoints (0, 0) and (p, ln q), we
know from the concavity of Ĝ that G(x) ≤ Ĝ(x), or equivalently,

F (x) ≥ F̂ (x), ∀x ∈ (0, p).

Due to Fact 2, such domination relationship indicates that SPA(F ) ≤ SPA(F̂ ).
This completes the proof of Lemma 6 as SPA(F )

OPT(F )
≤ SPA(F̂ )

OPT(F̂ )
≤ SPA(F )

OPT(F ) . 	


4.2 Lower Bound

By Lemma 6, the worst case of the Myerson Auction vs. Second-Price Auction
problem is reached by a truncated exponential distribution TrExp(p, q). Recall
Fact 1 that monopoly quantile q ∈ [1/e, 1]. For ease of notation, we let t

def=
− ln q ∈ [0, 1], and scale monopoly price p to 1. Afterward, CDF F becomes

F (x) =

{
1 − e−t·x ∀x ∈ (0, 1),
1 ∀x ∈ [1,+∞).

In the range of x ∈ (0, 1): we reformulate virtual value function ϕ(x) = x −
1−F (x)

f(x) = x − 1
t ; note that − 1

t < ϕ(x) < 1 − 1
t . Virtual value CDF D is given by

D(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 x < − 1
t ,

1 − e−(t·x+1) − 1
t ≤ x < 1 − 1

t ,

1 − e−t 1 − 1
t ≤ x < 1,

1 x ≥ 1.

(3)

Plugging this formula into Eq. (2) and then assigning t ← ln 2 (i.e., q ← 1/2),
then

SPA
(
TrExp(p, q)

)

OPT
(
TrExp(p, q)

)
(2,3)
= 1 −

∫ 1− 1
t

− 1
t

[
1 − e−(t·y+1)

]n · dy +
(
1 − e−t

)n · (
1
t

− 1)

1 − (1 − e−t)n

≤ 1 − (
1 − e−t

)n · (1/t − 1)

= 1 − [
(ln 2)−1 − 1

] · 2−n (since t = ln 2)

≤ 1 − 2−(n+2). (since (ln 2)−1 − 1 ≈ 0.4427 > 0.25)

This indicates the lower-bound part claimed in Theorem2.
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Abstract. We consider clustering games in which the players are
embedded in a network and want to coordinate (or anti-coordinate) their
choices with their neighbors. Recent studies show that even very basic
variants of these games exhibit a large Price of Anarchy. Our main goal is
to understand how structural properties of the network topology impact
the inefficiency of these games. We derive topological bounds on the Price
of Anarchy for different classes of clustering games. These topological
bounds provide a more informative assessment of the inefficiency of these
games than the corresponding (worst-case) Price of Anarchy bounds. As
one of our main results, we derive (tight) bounds on the Price of Anarchy
for clustering games on Erdős-Rényi random graphs, which, depending
on the graph density, stand in stark contrast to the known Price of Anar-
chy bounds.

Keywords: Clustering games · Coordination games · Price of
Anarchy · Random graphs · Nash equilibrium existence

1 Introduction

Motivation. Clustering games on networks constitute a class of strategic games
in which the players are embedded in a network and want to coordinate (or anti-
coordinate) their choices with their neighbors. These games capture several key
characteristics encountered in applications such as opinion formation, technology
adoption, information diffusion or virus spreading on various types of networks
(e.g., the Internet, social networks, biological networks, etc.).

Different variants of clustering games have recently been studied intensively
in the algorithmic game theory literature, both with respect to the existence and
the inefficiency of equilibria (see, e.g., [3,4,11,15,16,18,20,21]). Unfortunately,
several of these studies reveal that the strategic choices of the players may lead to
equilibrium outcomes that are highly inefficient. Arguably the most prominent
notion to assess the inefficiency of equilibria is the Price of Anarchy (PoA)
[19], which refers to the worst-case ratio of the optimal social welfare and the
c© Springer Nature Switzerland AG 2019
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social welfare of a (pure) Nash equilibrium. It is known that even the most
basic clustering games exhibit a large (or even unbounded) Price of Anarchy
(see below for details). These negative results naturally trigger the following
questions: Is this high inefficiency inevitable in clustering games on networks?
Or, can we trace more precisely what causes a large inefficiency? These questions
constitute the starting point of our investigations: Our main goal in this paper is
to understand how structural properties of the network topology impact the Price
of Anarchy in clustering games.

In general, our idea is that a more fine-grained analysis may reveal topological
parameters of the network which can be used to derive more accurate bounds on
the Price of Anarchy; we term such bounds topological Price of Anarchy bounds.
Given the many applications of clustering games on different types of networks,
our hope is that such topological bounds will be more informative than the
corresponding worst-case bounds. Clearly, this hope is elusive for a number of
fundamental games on networks whose inefficiency is known to be independent
of the network topology, the most prominent example being the selfish routing
games studied in the seminal work by Rougharden and Tardos [22]. But, in con-
trast to these games, clustering games exhibit a strong locality property induced
by the network structure, i.e., the utility of each player is affected only by the
choices of her direct neighbors in the network. This observation also motivates
our choice of quantifying the inefficiency by means of topological parameters
(rather than other parameters of the game).

We derive topological bounds on the Price of Anarchy for different classes of
clustering games. Our bounds reveal that the Price of Anarchy depends on dif-
ferent topological parameters in the case of symmetric and asymmetric strategy
sets of the players and, depending on these parameters, stand in stark con-
trast to the known worst case bounds. As one of our primary benchmarks, we
use Erdős-Rényi random graphs [13] to obtain a precise understanding of how
these parameters affect the Price of Anarchy. More specifically, we show that the
Price of Anarchy of clustering games on random graphs, depending on the graph
density, improves significantly over the worst case bounds. To the best of our
knowledge, this is also the first work that addresses the inefficiency of equilibria
on random graphs.1

We note that the applicability of our topological Price of Anarchy bounds
is not limited to the class of Erdős-Rényi random graphs. The main reason for
using these graphs is that their structural properties are well-understood. In
particular, our topological bounds can be applied to any graph class of interest
(as long as certain structural properties are well-understood).

Our Clustering Games. We study a generalization of the unifying model
of clustering games introduced by Feldman and Friedler [11]: We are given an
undirected graph G = (V,E) on n = |V | nodes whose edge set E = Ec ∪ Ea

is partitioned into a set of coordination edges Ec and a set of anti-coordination

1 We note that Valiant and Roughgarden [23] study Braess’ paradox in large random
graphs (see Related Work).
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edges Ea.2 Further, we are given a set [c] = {1, . . . , c} of c > 1 colors and edge-
weights w : E → R≥0.3 Each node i corresponds to a player who chooses a color
si from her color set Si ⊆ [c]. We say that the game is symmetric if Si = [c]
for all i ∈ V and asymmetric otherwise. An edge e = {i, j} ∈ E is satisfied if
it is a coordination edge and both i and j choose the same color, or if it is an
anti-coordination edge and i and j choose different colors. The goal of player i
is to choose a color si ∈ Si such that the weight of all satisfied edges incident to
i is maximized.

We consider a generalization of these games by incorporating additionally:
(i) individual player preferences (as in [21]), and (ii) different distribution rules
(as in [3]): We assume that each player i has a preference function qi : Si → R≥0

which encodes her preferences over the colors in Si. Further, player i has a split
parameter αij ≥ 0 for every incident edge e = {i, j} which determines the share
she obtains from e: if e is satisfied then i obtains a proportion of αij/(αij + αji)
of the weight we of e. The utility ui(s) of player i for choosing color si ∈ Si is
then the sum of the individual preference qi(si) and the total share of all satisfied
edges incident to i. We consider the standard utilitarian social welfare objective
u(s) =

∑
i ui(s).

We use ᾱe to denote the disparity of an edge e = {i, j}, defined as ᾱe =
max{αij/αji, αji/αij}, and let ᾱ = maxe∈E ᾱe refer to the maximum disparity
of all edges. We say that the game has the equal-split distribution rule if ᾱ = 1
(equivalently, αij = αji for all {i, j} ∈ E).

Our clustering games generalize several other strategic games, which were
studied extensively in the literature before, such as max cut games and not-
all-equal satisfiability games [15], max k-cut games [16], coordination games [4],
clustering games [11] and anti-coordination games [20].

Main Contributions. We derive results for symmetric and asymmetric clus-
tering games. Due to space restrictions, we elaborate on our main findings for
symmetric clustering games only below; our results for the asymmetric case are
discussed in Sect. 5. An overview of the bounds derived in this paper is given in
Table 1.

1. Topological Price of Anarchy Bound. We show that the Price of Anar-
chy for symmetric clustering games is bounded as a function of the maximum
subgraph density of G which is defined as ρ(G) = maxS⊆V {|E[S]|/|S|}, where
|E[S]| is the number of edges in the subgraph induced by S. More specifically,
we prove that PoA ≤ 1 + (1 + ᾱ)ρ(G) and that this bound is tight (even for
coordination games). Using this topological bound, we are able to show that
the Price of Anarchy is at most 4 + 3ᾱ for clustering games on planar graphs
and 1 + 2ρ(G) for coordination games with equal-split distribution rule. We
also derive a (qualitatively) refined bound of PoA ≤ 5 + 2ρ(G[Ec]) for cluster-
ing games with equal-split distribution rule which reveals that the maximum

2 The game is called a coordination game if all edges are coordination edges and an
anti-coordination game (or cut game) if all edges are anti-coordination edges.

3 In this paper, we use [k] to denote the set {1, . . . , k} for a given integer k ≥ 1.
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Table 1. Overview of our topological Price of Anarchy bounds for symmetric and
asymmetric clustering games. A “+” or “1” in the column “distr. α” indicates whether
the distribution rule α is positive or equal-split, respectively. ᾱ is the maximum dis-
parity, and c is the number of colors. ρ(G) and Δ(G) refer to the maximum subgraph
density and the maximum degree of G, respectively. The stated bounds for random
graphs hold with high probability.

Symmetric clustering games

Graph topology Coord.

only

Indiv.

pref.

Distr.

α

Topological PoA (our bounds) PoA

(prev. work)

Arbitrary ✗ ✓ + 1 + (1 + ᾱ) ρ(G) (Theorem 1) c [3,11]

Planar ✗ ✓ + ≤ 4 + 3ᾱ (Corrollary 1)

Arbitrary ✗ ✓ 1 1 + 2ρ(G) (Corrollary 2)

Arbitrary ✗ ✓ 1 ≤ 5 + 2ρ(Gc) (Theorem 2)

Sparse random ✓ ✓ 1 Θ(1) (Corrollary 3)

Dense random ✓ ✗ 1 Ω(c) (Theorem 3)

Asymmetric clustering games

Graph topology Coord.

only

Indiv.

pref.

Distr.

α

(ε, k) -topological PoA (our bounds) (ε, k) -PoA

(prev. work)

Arbitrary ✓ ✗ 1 ≤ 2εΔ(G) (Theorem 5)

Arbitrary ✓ ✗ 1 ≥ ε(
Δ(G)
k−1 − 1) (Theorem 5) ≤ 2ε n−1

k−1

Dense random ✓ ✗ 1 Ω(εn) ≥ 2ε n−k
k−1 +1

Sparse random ✓ ✗ 1 Θ
( ε ln(n)
ln ln(n)

)
(Theorem 6) [21]

+ common color ✓ ✗ 1 O(1) (Theorem 7)

subgraph density with respect to the graph G[Ec] (or simply Gc) induced by the
coordination edges Ec only is the crucial topological parameter determining the
Price of Anarchy.

These bounds provide more refined insights than the known (tight) bound of
PoA ≤ c (number of colors) on the Price of Anarchy for (i) symmetric coordina-
tion games with individual preferences and arbitrary distribution rule [3], and (ii)
clustering games without individual preferences and equal-split distribution rule
[11] (both being special cases of our model). An important point to notice here is
that this bound indicates that the Price of Anarchy is unbounded if the number
of colors c = c(n) grows as a function of n. In contrast, our topological bounds
are independent of c and are thus particularly useful when this number is large
(while the maximum subgraph density is small). Moreover, our refined bound of
5 + 2ρ(G[Ec]) mentioned above provides a nice bridge between the facts that for
max-cut (or anti-coordination) games the price of anarchy is known to be con-
stant, whereas for coordination games the price of anarchy might grow large.

2. Price of Anarchy for Random Coordination games. We derive the
first price of anarchy bounds for coordination games on random graphs. We
focus on the Erdős-Rényi random graph model [13] (also known as G(n, p)),
where each graph consists of n nodes and every edge is present (independently)
with probability p ∈ [0, 1]. More specifically, we show that the Price of Anarchy
is constant (with high probability) for coordination games on sparse random
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graphs (i.e., p = d/n for some constant d > 0) with equal-split distribution
rule. In contrast, we show that the Price of Anarchy remains Ω(c) (with high
probability) for dense random graphs (i.e., p = d for some constant 0 < d ≤ 1).

Note that our constant bound on the Price of Anarchy for sparse random
graphs stands in stark contrast to the deterministic bound of PoA = c [3,11]
(which could increase with the size of the network). On the other hand, our
bound for dense random graphs reveals that we cannot significantly improve
upon this bound through randomization of the graph topology.

It is worth mentioning that all our results for random graphs hold against
an adaptive adversary who can fix the input of the clustering game knowing the
realization of the random graph. To obtain these results, we need to exploit some
deep probabilistic results on the maximum subgraph density and the existence
of perfect matchings in random graphs.

3. Convergence of Best-Response Dynamics. In general, pure Nash equilib-
ria are not guaranteed to exist for clustering games with arbitrary distribution
rules α, even if the game is symmetric (see, e.g., [3]). While some sufficient condi-
tions for the existence of pure Nash equilibria, or, the convergence of best-response
dynamics (see also [3]) are known, a complete characterization is elusive so far.

In this work, we obtain a complete characterization of the class of distribu-
tion rules which guarantee the convergence of best-response dynamics in clus-
tering games on a fixed network topology. Basically, we prove that best-response
dynamics converge if and only if α is a generalized weighted Shapley distribution
rule (Theorem 4). Our proof relies on the fact that there needs to be some form
of cyclic consistency similar to the one used in [14].

Prior to our work, the existence of pure Nash equilibria was known for certain
special cases of coordination games only, namely for symmetric coordination
games with individual preferences and c = 2 [3], and for symmetric coordination
games without individual preferences [11]. To the best of our knowledge, this is
the first characterization of distribution rules in terms of best-response dynamics
(which, in particular, applies to the settings in which pure Nash equilibria are
guaranteed to exist for every distribution rule [3,11]).4

Related Work. The literature on clustering and coordination games is vast; we
only include references relevant to our model here. The proposed model above
is a mixture of (special cases of) existing models in [3,4,11,21].

Anshelevich and Sekar [3] consider symmetric coordination games with indi-
vidual preferences and (general) distribution rules. They show existence of ε-
approximate k-strong equilibria, (ε, k)-equilibria for short, for various combina-
tions; in particular, (2, k)-equilibria always exist for any k. Moreover, they show
that the number of colors c is an upper bound on the PoA. Apt et al. [4] study
asymmetric coordination games with unit weights, zero individual preferences,
and equal-split distribution rules. They derive an almost complete picture of the

4 In the full version, we extend our ideas and provide a characterization of the existence
of pure Nash equilibria in symmetric coordination games, complementing a result
by Anshelevich and Sekar [3].



246 P. Kleer and G. Schäfer

existence of (1, k)-equilibria for different values of c. Feldman and Friedler [11]
introduce a unified framework (as introduced above) for studying the (strong)
Price of Anarchy in clustering games with individual preferences set to zero and
equal-split distribution rules. In particular, they show that the number of colors
is an upper bound on the PoA and that 2(n − 1)/(k − 1) is an upper bound
on the (1, k)-PoA. Rahn and Schäfer [21] consider the more general setting of
polymatrix coordination games with equal-split distribution rule, of which our
asymmetric coordination games with individual preferences are a special case.
They show a bound of 2ε(n − 1)/(k − 1) on the (ε, k)-PoA and that an (ε, k)-
equilibrium is guaranteed to exist for any ε ≥ 2 and any k.

There is also a vast literature on different variants of anti-coordination (or
cut) games, see, e.g., [16,18] and the references therein, which are also captured
by our clustering games. In a recent paper, Carosi and Gianpiero [8] consider so-
called k-coloring games. Moreover, clustering and coordination games were also
studied on directed graphs [4,7]. Finally, certain coordination and clustering
games can be seen as special cases of hedonic games [10]; we refer the reader to
[6] for, in particular, a survey of recent literature on (fractional) hedonic games.
Identifying topological inefficiency bounds for these type of games, as well as for
clustering games on directed graphs, could be an interesting direction for future
work.5

Regarding the study of the inefficiency of equilibria on random graphs, closest
to our work seems to be the work by [23]. They study the Braess paradox on
large Erdős-Rényi random graphs and show that for certain settings the Braess
paradox occurs with high probability as the size of the network grows large. The
study of randomness in games has also received some attention in other setting,
see, e.g., [1,5]. These are mostly settings with small strategy sets and random
utility functions, and are not comparable with ours.

Finally, our characterization results regarding the existence of pure Nash
equilibria and convergence of best-response dynamics are conceptually similar
to the work of Chen et al. [9] and Gopalakrishnan et al. [14].

2 Preliminaries

Clustering Games. As introduced above, an instance of a clustering game
Γ = (G, c, (Si), (αij), w, q) is given by:

– an undirected graph G = (V,E), where the set of edges E = Ec ∪ Ea is
partitioned into coordination edges Ec and anti-coordination edges Ea;

– a subset Si ⊆ [c] of colors available to player i ∈ V ;
– a split parameter αij ≥ 0 for every player i ∈ V and incident edge {i, j} ∈ E;
– a weight function w : E → R≥0 on the edges;
– a vector q = (qi)i∈V of individual preference functions qi : Si → R≥0.

5 Our results do not seem to extend to clustering games on directed graphs. One could
model a directed edge e = (i, j) by setting αij = 0 and αji > 0. E.g., Theorem 1
does not apply then as ᾱ = ∞ in this case.
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Whenever we refer to a clustering game below, we assume that all of the above
input parameters are non-trivial; we specify the respective restrictions otherwise.

Each node i ∈ V corresponds to a player whose goal is to choose a color
si ∈ Si from the set of colors available to her to maximize her utility

ui(s) = qi(si) +
∑

{i,j}∈Ec:si=sj

αij

αij + αji
wij +

∑

{i,j}∈Ea:si �=sj

αij

αij + αji
wij .

We call α = (αij) ≥ 0 a distribution rule. We assume that α satisfies αij +
αji > 0 for every edge e = {i, j} ∈ E; in particular, not both i and j have
a zero split for edge e. We say that α is positive if αij > 0 and αji > 0 for
all e = {i, j} ∈ E; we also write α > 0. Further, α is called the equal-split
distribution rule if αij = αji for all e = {i, j} ∈ E; we also indicate this by α = 1.
The disparity of an edge e = {i, j} is defined as ᾱe = max{αij/αji, αji/αij} and
we use ᾱ = maxe∈E ᾱe to denote the maximum disparity.

We say that the clustering game is symmetric if Si = {1, . . . , c} for every
player i ∈ V and asymmetric otherwise. If we focus on symmetric clustering
games, we omit the explicit reference of the strategy sets (Si) with Si = [c]. A
clustering game is called a coordination game if Ea = ∅ and an anti-coordination
game (or cut game) if Ec = ∅. We use n = |V | to refer to the number of players.

We consider the utilitarian social welfare objective u(s) =
∑

i∈V ui(s). The
Price of Anarchy of an instance Γ is defined as PoA(Γ ) = maxs∈NE(Γ ) u(s∗)/u(s),
where NE(Γ ) is the set of all pure Nash equilibria of Γ and s∗ is a socially optimal
strategy profile. Given a class of clustering games G, the Price of Anarchy is defined
as PoA(G) = supΓ∈G PoA(Γ ).

Random Clustering Games. In our probabilistic framework to study the
Price of Anarchy of random clustering games, we use the well-known Erdős-Rényi
random graph model [13], denoted by G(n, p):6 There are n nodes and every
(undirected) edge is present (independently) with probability p = p(n) ∈ [0, 1].
We say that a random graph is sparse if p = d/n for some constant d > 0, and it
is dense if p = d for some constant 0 < d < 1. In this paper, we focus on random
graph instances with equal-split distributions rules.7

Fix some probability p = p(n) ∈ [0, 1] and let β = β(n, c(n)) be a given
function. Define GGn

as the set of all clustering games on random graph Gn ∼
G(n, p). We say that the Price of Anarchy for random clustering games is at most
β with high probability (PoA(GGn

) ≤ β,for short) if PGn∼G(n,p){PoA (GGn
) ≤

β} ≥ 1−o(1). We use a similar definition if we want to lower bound the Price of
Anarchy. Finally, for a constant β (independent of n and c) we say that the Price
of Anarchy for random clustering games is β with high probability (PoA(GGn

) →
β, for short) if for all ε > 0 PGn∼G(n,p) {|PoA (GGn

) − β| ≤ ε} ≥ 1 − o(1). All
our results for clustering games on random graphs hold with high probability.

6 Although this model was first introduced by Gilbert, it is often referred to as the
Erdős-Rényi random graph model.

7 Some of our results naturally extend to more general distribution rules, but we omit
the (technical) details here because they do not provide additional insights.
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Shapley Distribution Rules. We adapt the definition of Shapley distribution
rules for resource allocation games [14] to our setting.

A distribution rule α corresponds to a generalized weighted Shapley distri-
bution rule if and only if there exists a permutation σ of the players in V and
weight vector γ ∈ R

V
≥0 such that the following two conditions are satisfied for

every edge e = {i, j}: (i) If αij = 0, then σ(i) < σ(j). (ii) If αij > 0, then
αij

αij+αji
= γi

γi+γj
. If all weights are strictly positive, then the resulting distribu-

tion rule is a weighted Shapley distribution rule. If γi = γj for all i, j ∈ V the
resulting distribution rule is an unweighted Shapley distribution rule. Note that
this case corresponds to an equal-split distribution rule.

Due to space restrictions, some proofs below are omitted and will be given
in the full version of the paper.

3 Refined Bounds on the Price of Anarchy

In this section, we first establish our topological bound on the Price of Anarchy
for symmetric clustering games and then use it to derive new bounds for some
special cases as well as random clustering games.

3.1 Topological Price of Anarchy Bound

Our topological bound depends on the maximum subgraph density of G which
is defined as ρ(G) = maxS⊆V {|E[S]|/|S|}, where |E[S]| is the number of edges
in the subgraph induced by S. Recall that ᾱ refers to the maximum disparity.

Theorem 1 (Density bound). LetΓ = (G, c, α,w, q) be a symmetric clustering
game with α > 0. Then PoA(Γ ) ≤ 1 + (1 + ᾱ) ρ(G) and this is tight.

Proof (upper bound). Let s and s∗ be a Nash equilibrium and a social optimum,
respectively. Consider an edge {i, j} ∈ E and assume without loss of generality
that ui(s) ≤ uj(s). If {i, j} is a coordination edge, then ui(s) ≥ ui(s−i, sj) ≥
αij/(αij+αji)wij , where (s−i, sj) is the strategy profile in which player i deviates
to the color of player j and all other players play according to s. Suppose {i, j}
is an anti-coordination edge. If si 
= sj , then we trivially have ui(s) ≥ αij/(αij +
αji)wij by non-negativity of the weights and individual preferences. If si = sj ,
then the same inequality holds by using the Nash condition for some arbitrary
color which is not sj . (We may assume that every player has at least two colors
in her strategy set.) In either case, we conclude that

wij ≤
(

1 +
αji

αij

)

ui(s) ≤
(

1 + max
e∈E

ᾱe

)

ui(s) = (1 + ᾱ) ui(s). (1)

Moreover, by exploiting that s is a Nash equilibrium and the non-negativity of
the edge weights, we obtain for every i ∈ V , ui(s) ≥ ui(s−i, s

∗
i ) ≥ qi(s∗

i ).
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Using that the sum of the weights of all satisfied edges in s∗ is at most the
sum of all edge weights, we obtain

u(s∗) ≤
∑

i∈V

qi(s∗
i ) +

∑

e={i,j}∈E

wij ≤
∑

i∈V

ui(s) + (1 + ᾱ)
∑

{i,j}∈E

min{ui(s), uj(s)}.

If we can find a value M such that
∑

{i,j}∈E

min{ui(s), uj(s)} ≤ M ·
∑

i∈V

ui(s) (2)

then it follows that u(s∗) ≤ (1 + (1 + ᾱ) · M)u(s). We show that M =
maxS⊆V {|E[S]|/|S|} satisfies (2).

Let N(i) = {j ∈ V : {i, j} ∈ E} be the set of neighbors of i. Define
mi =

∣
∣{j ∈ N(i) : ui(s) < uj(s) or (ui(s) = uj(s) and i < j)}∣∣ and note that∑

i∈V mi = |E|. We can assume without loss of generality that
∑

i∈V ui(s) = 1,
since the expression in (2) is invariant under multiplication with a constant
positive scalar. Moreover, the players may be renamed such that u1(s) ≤ u2(s) ≤
· · · ≤ un(s).

We continue by showing that M is an upper bound for the linear program
below (in which ui = ui(s) and the mi are considered constants).

max
∑

i∈V uimi s.t. u1 + u2 + · · · + un = 1
0 ≤ u1 ≤ u2 ≤ · · · ≤ un

The dual of this program is given by

min z s.t. −πi + πi+1 + z = mi, i = 1, . . . , n − 1
−πn + z = mn

πi ≥ 0, i = 1, . . . , n
z ∈ R

We now construct a feasible dual solution. Set z∗ = maxl∈V {∑n−1
i=l mi/(n − l)}.

We will often use that (n − l)z∗ ≥ ∑n−1
i=l mi for any fixed l. In particular, with

l = n − 1, we find z∗ ≥ mn, so that π∗
n := z∗ − mn ≥ 0. Then we define

π∗
n−1 := π∗

n + z∗ − mn−1 = 2z∗ − (mn−1 + mn) ≥ 0. Using induction it then
easily follows that π∗

i := π∗
i+1 + z∗ − mi ≥ 0 for all i = 1, . . . , n − 2 as well. We

have constructed a feasible dual solution with objective function value z∗. Using
weak duality it follows that for any feasible primal solution u = (u1, . . . , un), we
have

∑

{i,j}∈E

uimi ≤ max
l∈V

{∑n−1
i=l mi

n − l

}

≤ max
S⊆V

{ |E[S]|
|S|

}

,

since the term in middle is precisely the density of the induced subgraph on the
nodes l, . . . , n. This completes the upper bound proof. ��
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We use our topological bound to derive deterministic bounds on the Price
of Anarchy for two special cases of clustering games. Note that these bounds
cannot be deduced from [3,11].

Corollary 1 (Planar clustering games). Let Γ = (G, c, α,w, q) be a symmet-
ric clustering game on a planar graph G with α > 0. Then PoA(Γ ) ≤ 4 + 3ᾱ.

Proof. By Euler’s formula, |E(H)|/|V (H)| ≤ 3 for any planar graph H. Further,
any induced subgraph H of a planar graph G is again planar. Using this in
Theorem 1 proves the claim. ��
Corollary 2 (Equal-split coordination games). Let G be a given undirected
graph, and let GG be the set of all symmetric coordination games Γ = (G, c,1, w, q)
with equal-split distribution rule on G. Then PoA(GG) = 1 + 2ρ(G).

We emphasize that the bound in Corollary 2 is tight on every fixed graph
topology G, rather than only in the value of ρ(G).

It is known that the Price of Anarchy of anti-coordination games is 2 (see,
e.g., [18]), which is not reflected by our bound in Theorem 1. Intuitively, this
suggests that a large Price of Anarchy is caused by the coordination edges of
the graph. Theorem 2 reveals that this intuition is correct: it shows that the
maximum subgraph density with respect to the coordination edges only is the
determining topological parameter.

Theorem 2 (Refined density bound). Let Γ = (G, c,1, w, q) be a symmetric
clustering game with equal-split distribution rule. Then PoA(Γ ) ≤ 5 + 2ρ(G[Ec]),
where G[Ec] is the subgraph induced by the coordination edges Ec.

Using a similar construction as in the proof of Corollary 2 we can also estab-
lish a lower bound of 1 + 2maxS⊆V {|Ec[S]|/|S|}.

Note that for anti-coordination games we obtain an upper bound of 5 which
is inferior to the known (tight) bound of 2. It would be interesting to see whether
our topological bound in Theorem 2 can be improved to match this bound.

3.2 Price of Anarchy for Random Coordination Games

We now turn to our bounds for random coordination games. Recall that for
random graphs we consider equal-split distribution rules only. We first show that
for sparse random graphs the Price of Anarchy is constant with high probability.

Corollary 3 (Sparse random coordination games). Let d > 0 be a constant.
Let GGn

be the set of all symmetric coordination gamesΓ = (Gn, c,1, w, q) on graph
Gn ∼ G(n, d/n)with equal-split distribution rule.Then there is a constantβ = β(d)
such that PoA (GGn

) → β.

Proof. The maximum subgraph density of a random graph Gn approaches a
constant β = β(d) with high probability [2] (see [17] for approximations of this
constant). Combining this with the bound in Corollary 2 proves the claim. ��



Topological Price of Anarchy Bounds for Clustering Games on Networks 251

As we show in Theorem 3, the result of Corollary 3 does not hold for suffi-
ciently dense random graphs if the number of available colors grows large.

Theorem 3 (Dense random coordination games). Let 0 < d ≤ 1 be a con-
stant and let (cn)n∈N → ∞ be a sequence of available colors. Let GGn

(cn) be the set
of all symmetric coordination games Γ = (Gn, cn,1, w,0) on graph Gn ∼ G(n, d)
with cn colors, equal-split distribution rule andno individual preferences.Then there
is a constant β = β(d) such that PoA (GGn

(cn)) ≥ βcn.

We note that this lower bound holds even for coordination games without
individual preferences (as studied in [11]). Basically, this bound implies that
for dense graph topologies we cannot significantly improve upon the Price of
Anarchy bound of c by [3,11], even if we randomize the graph topology.

Proof (Theorem 3). We first construct a deterministic instance Γ with Price
of Anarchy Ω(cn) and then show that we can embed this construction into a
random graph with high probability.

Consider a graph G = (V,E) and let c be the number of available colors. Let
M = {e1, . . . , eq} ⊆ E be a matching of size at most c. Let VM be the set of
nodes which are matched in M . Define the weight of an edge e ∈ E as w(e) = 2 if
e ∈ M , w(e) = 1 if precisely one of e’s endpoints is matched in M , and w(e) = 0
otherwise.

Consider the strategy profile s in which the nodes adjacent to ei play color
i, for i = 1, . . . , q. Note that this is possible because q ≤ c by assumption. All
other nodes play an arbitrary color; these nodes are irrelevant as all the edges
that they are adjacent to have weight zero. In a social optimum s∗ all players
choose a common color. It follows that PoA(Γ ) ≥ |E[VM ]|/(2q), where |E[VM ]|
is the number of edges in the induced subgraph of VM . Note that all these edges
have weight at least one.

Now, let Gn = (Vn, En) ∼ G(n, d) and assume without loss of generality that
Vn = {1, . . . , n}. We claim that with high probability the induced subgraph on
nodes Wn = {1, . . . , �cn/4�} contains both Ω(c2n) edges and a perfect matching
(if �cn/4� is odd, we consider the first �cn/4� + 1 nodes).8

The first claim follows from standard arguments. Note that μ =
E{En[Wn]} = d

(
cn/4�
2

)
= Ω(c2n). Using Chernoff’s bound, it follows that

P{En[Wn] < μ/2)} ≤ exp(−μ/8) = exp(−Ω(c2n)/8) → 0 as n → ∞ as (cn) →
∞. The second claim relies on the following result (see, e.g., [12]): For every fixed
0 < d ≤ 1 it holds that limn→∞ PGn∼G(n,d){Gn contains a perfect matching} =
1. By applying this result to the induced subgraph on Wn and using that cn

approaches infinity as n → ∞, the claim follows.9

8 One may focus on any set of �cn/4� nodes. The important thing to note is that we
need a set of nodes with many edges on its induced subgraph and a perfect matching
(it is not sufficient to find two different sets each satisfying one of these properties).
Moreover, if cn ≥ 4n, we consider Wn = {1, . . . , n} and then the same argument
works.

9 Note that here we implicitly use that the intersection of two probabilistic events
which occur with high probability also occurs with high probability.



252 P. Kleer and G. Schäfer

Combining this with the deterministic bound on the Price of Anarchy derived
above concludes the proof. ��

4 Convergence of Best-Response Dynamics

We provide a characterization of distribution rules that guarantee the conver-
gence of best-response dynamics in symmetric clustering games.

Theorem 4 (Best-response convergence). LetGG,c,α be the set of all symmet-
ric clustering games Γ = (G, c, α,w, q) on a fixed graph G with c common colors
and distribution rule α. Then best-response dynamics are guaranteed to converge to
a pure Nash equilibrium for every clustering game in GG,c,α if and only if α corre-
sponds to a generalized weighted Shapley distribution rule.

Remark 1. Theorem 4 remains valid also for various settings without individual
preferences. For example, this holds for coordination games (corresponding to
certain models in [3,11]) and for general clustering games with c = 2.10

For symmetric coordination games with c ≥ 3 colors, we can strengthen the
condition in Theorem 4 to “guaranteed existence of a pure Nash equilibrium”,
which complements the result in [3] (details will be given in the full version).

5 Results for Asymmetric Clustering Games

We give an overview of our results for asymmetric clustering games. We focus
on coordination games with equal-split distribution rule and no individual pref-
erences.

Apt et al. [4] show that the Price of Anarchy of coordination games is
unbounded if c ≥ n + 1; notably, this holds for arbitrary graph topologies.
We slightly generalize this observation by showing that the Price of Anarchy is
unbounded if and only if c ≥ χ(G) + 1, where χ(G) is the chromatic number of
G. We exploit this insight to prove that if the number of colors c is a constant
then the Price of Anarchy is unbounded for sparse random graphs, while it is
bounded by some constant for dense random graphs (details will be given in the
full version).

Subsequently, we focus on the Price of Anarchy of ε-approximate k-strong
equilibria, called (ε, k)-equilibria for short.11 The Price of Anarchy naturally

10 In general, this is not true if c ≥ 3. For example, consider a cycle of length three
with only anti-coordination edges.

11 A strategy profile s is an (ε, k)-equilibrium with ε ≥ 1 and k ∈ [n] if for every set of
players K ⊆ V with |K| ≤ k and every deviation s′

K = (s′
i)i∈K , there is at least one

player j ∈ K such that ε · uj(s) ≥ uj(s−K , s′
K). We turn to (ε, k)-equilibria because

pure Nash equilibria are not guaranteed to exist in asymmetric coordination games
(see, e.g., [4]).
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extends to the set of (ε, k)-equilibria. It is known that the (ε, k)-PoA of coordi-
nation games is between 2ε(n−1)/(k−1)+1−2ε and 2ε(n−1)/(k−1) for k ≥ 2
[21]. In particular, the Price of Anarchy grows like Θ(εn) if k is a constant.

We derive a topological bound on the (ε, k)-Price of Anarchy which depends
on the maximum degree Δ(G) of the graph G.

Theorem 5 (Degree bound). Let ε ≥ 1, k ≥ 2, c ≥ 3, and let G be an arbitrary
graph. Let GG(c) be the set of all coordination games Γ = (G, c, (Si),1, w,0) on
graph G with c colors, equal-split distribution rule and no individual preferences.
Then ε · max{1,Δ(G)/(k − 1) − 1} ≤ (ε, k)-PoA(GG(c)) ≤ 2ε · Δ(G).

We use this result to bound the (ε, k)-Price of Anarchy for random graphs. It
is known that the maximum degree of a dense random graph is Θ(n) (see, e.g.,
[12]). So for these graphs the (ε, k)-Price of Anarchy still grows like Ω(εn) (as
in the worst case). In contrast, we obtain an improved bound for sparse random
graphs.

Theorem 6. Let ε ≥ 1, k ≥ 2 and d > 0 be constants. Let (cn)n∈N be a sequence
of integers with cn ≥ 3 for all n. Let GGn

(cn) be the set of all coordination
games Γ = (Gn, cn, (Si),1, w,0) on graph Gn ∼ G(n, d/n) with cn colors, equal-
split distribution rule and no individual preferences. Then (ε, k)-PoA(GGn

(cn)) =
Θ(ε ln(n)/ ln ln(n)).

If, in addition, the strategy sets are drawn according to a sequence of dis-
tributions that satisfy the so-called common color property, and all weights are
equal to one (corresponding to the games studied in [4]), then we can even prove
that the (ε, k)-Price of Anarchy is bounded by a constant. Intuitively, the com-
mon color property requires that with positive probability any two players have a
color in common in their strategy sets.12 In particular, this condition is satisfied
if we draw the strategy sets uniformly at random from 2[c] \ ∅.

Theorem 7. Let ε ≥ 1, k ≥ 2 and d > 0 be constants. Let (cn)n∈N be a sequence
of integers with cn ≥ 3 for all n and let (Fn)n∈N be a sequence of strategy set
distributions satisfying the common color property. Let GGn,(Si)(cn) be the set
of all coordination games Γ = (Gn, cn, (Si),1,1,0) on graph Gn ∼ G(n, d/n)
with cn colors, strategy set Si ∼ Fn for every i, equal-split distribution rule, unit
weights and no individual preferences. Then there exists a constant β = β(d, ε)
such that (ε, k)-PoA(GGn,(Si)(cn)) ≤ β.

Theorem 7 does not hold for k = 1. To see this, consider the uniform dis-
tribution over strategy sets {s0, s1}, . . . , {s0, sn}. In the strategy profile where
every player picks her color different from s0, at most a constant number of edges
will be satisfied with high probability. Thus, (ε, 1)-PoA ≥ βn for some β with
high probability.

Acknowledgements. The first author thanks Remco van der Hofstad for a helpful
discussion on random graph theory and, in particular, the results in [2].

12 Note that in the deterministic setting the Price of Anarchy does not improve if all
players have a color in common (see [21]).
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Abstract. We consider a setting where a verifier with limited compu-
tation power delegates a resource intensive computation task—which
requires a T ×S computation tableau—to two provers where the provers
are rational in that each prover maximizes their own payoff—taking into
account losses incurred by the cost of computation. We design a mech-
anism called the Minimal Refereed Mechanism (MRM) such that if the
verifier has O(logS + log T ) time and O(logS + log T ) space computa-
tion power, then both provers will provide a honest result without the
verifier putting any effort to verify the results. The amount of computa-
tion required for the provers (and thus the cost) is a multiplicative log
S-factor more than the computation itself, making this schema efficient
especially for low-space computations.

Keywords: Outsourcing · Minimal refereed mechanism · Merkle hash
tree · Prisoner’s dilemma

1 Introduction

The growing number of computationally intensive tasks has led to the delegation
of computation to “computing as a service” platforms such as Amazon’s EC2,
Microsoft’s Azure, etc. This enables users with widely varying loads to only pay
for the computation they need. This mirrors a larger trend to out-source: Uber
(car as a service), Amazon Turk (computer plugged in worker), etc. When out-
sourcing tasks, some labors may perform the task honestly due to their intrinsic
preference for honesty; however, often labors need incentives which encourage
them to dutifully perform the task. If the requester has ability to (cheaply) verify
the completion of tasks, the incentive problem can be solved naturally by only
providing payment for satisfactory results. However, in the case of outsourcing
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computation, the verifier cannot necessarily verify the task’s completion. What
should an incentive system look like for outsourcing computation?

Motivated by the need for verifiable computations, recent results have drawn
on the work of interactive proof systems (IP)—where a resource-limited verifier
can verify an extremely complicated proof provided by a untrusted prover—as
main ingredients. However, the classical IP work diverges from the outsourced
computation application in two ways: (1) in the crowdsourcing setting, the cost
an honest prover incurs in performing the proof must be taken into consideration,
while in the classical IP, the honest prover may suffer a heavy (and uncompen-
sated) burden in proving her result; (2) in the crowd-sourcing setting provers can
be assumed rational rather than merely untrusted, while the classical IP setting
work does not assume or make use of the rationality of the prover.

Several works (e.g. [1,9,25]) either take point (1) or (2) into consideration.
But few works consider the both divergences. In this paper, we consider the
relation between the related IP work and outsourced computation applications.
We take the effort of the provers into consideration, and provide a mechanism—
that we call the Minimal Refereed Mechanism—which harnesses the rationality
of provers in that it is individual rational, and has the truthful computation
as the only equilibrium. In particular, this means that our protocol is robust
against agents communicating, as long as they cannot make binding commit-
ments to one another (for example, to redistributing the payoffs in the future).
Moreover, an honest prover always obtains a positive utility even if her opposite
is irrational. While our mechanism requires that the verifier can perform a com-
putation requiring O(log S + log T ) time and space, in equilibrium the verifier
need only check the equality of answers.

Each prover that faithfully follows our mechanism must spend a factor of
log(S) more computational effort than is required to simply run the computation.
This, of course, must be compensated by the verifier. However, in the case where
the verifier has many different processes to run, we can reduce this overhead by
a factor of nearly two. Instead of having two provers run every program, the vast
majority will only be run by one prover.

A key ingredient in the construction of the minimal refereed mechanism is
from the “prisoner dilemma”. When provers are paid based on whether they have
the same output, they may collude to obtain agreement without exerting any
effort. To solve the “collusion” problem, our minimal refereed mechanism pays
an agent who betrays the collusion and tells the truth a large reward. We also
draw on techniques form IP so that the verification is possible with dramatically
fewer resources than the computation itself requires.

1.1 Related Work

Outsourced Computation Literature. The most closely related works in this area
to the current paper are Belenkiy et al. [5], Dong et al. [11]. We all implement the
idea of the “prisoner dilemma” in outsourced computation. Dong et al. [11] also
employ smart contract to implement the “prisoner dilemma” based outsourced
computation. However, Belenkiy et al. [5], Dong et al. [11] require that the
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verifier has the ability to run the program by himself and infrequently performs
the whole computation to verify the correctness of the prover’s output. Our work
only requires that the verifier has the ability to perform a simple O(log T +log S)
time arbitration process when the provers disagree where the computation size
is T × S.

Canetti et al. [9] also designs a O(log T +log S) time process where a verifier
can determine which prover is honest with the help of Merkle hash tree. However,
they do not make use of the rationality of the provers but instead assume one
of the provers must be honest.

Conceptually, our paper combines the results of the two aforementioned
works. However, naively combining them does not work. Game theory and com-
putation are notoriously tricky to combine [20,21]. For example, our results do
not yield a dominant strategy equilibrium as those of Belenkiy et al. [5], and
using a collision resistant hash function as in Canetti et al. [9] seems not to
be enough for our setting. We carefully integrate the two ideas, and, moreover,
provide a delicate game theoretical analysis to show that rational provers must
be honest even if the arbitration process gives an arbitrary answer when both of
them are dishonest.

Interactive Proof (IP) Literature. Since the seminal work of Goldwasser et al.
[17] and Babai and Moran [3] introducing interactive proofs (IP), a host of results
in closely related models have followed (see, e.g., [4,7,15,16]). In the classical
model (e.g., Lund et al. [24], Shamir [26]), a verifier with limited computation
power has the ability to verify statements provided by a untrustworthy prover
with unlimited computation power. This desirable property makes IP work an
important ingredient in many outsourced computation applications. However,
in the classical IP work, the verifier usually employs an arithmetization method
that imposes a heavy computational burden on the prover even when the prover
is honest. Moreover, the classical IP work always consider the worst case—the
prover is an adversary.

Azar and Micali [1] assume that the prover is rational. With this assump-
tion, Azar and Micali [1] show that the verifier can easily incentivize a rational
prover to provide the answer of �SAT in the following manner: the verifier asks
the prover to report �SAT

2n which can be seen as the prover’s prediction for the
event that a randomly chosen assignment is satisfied. The verifier uses a tool
called proper scoring rules [8,14] to measure the accuracy of the prover’s pre-
diction via only one sample and pays the prover the score of the accuracy. For
a SAT instance with n variables, uniformly randomly picking an assignment,
the assignment is satisfied with probability �SAT

2n , and so a property of proper
scoring rule implies that the prover should provide the exact value of �SAT

2n to
maximize her expected payment. This clever design works with the assumption
that the prover can obtain the exact answer without any effort. However, in real
life applications, the exponential precision required in some of the reports is very
costly to provide. This influential work has been extended to work for different
complexity classes, to improve the efficiency of the verifier, and to improve the
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efficiency of the prover [2,18,19]. However, while this line of work does explic-
itly have incentives, the costs of computation are ignored while computing these
incentives.

Several works successfully design an interactive proof system where the com-
putational resources of both the verifier and honest prover run are limited, but
they do not take the rationality of the prover into consideration. The most closely
related work in this area to the current paper are refereed games [12] and doubly
efficient IP [25]. The arbitration process in the current paper is designed based
on the idea of the refereed game in Feige and Kilian [12]. However, [12] do not
make use of the rationality of provers and still put a heavy burden on the honest
prover. Reingold et al. [25] designs a doubly efficient and constant-round inter-
active proofs for languages that have a unique witness—if x ∈ L there exists a
unique witness y, of polynomial size, that attests to this. In their proof system
the verifier runs in linear time with respect to |y|, and the honest provers run
in polynomial time with respect to |y|. However, if we do not have better than
polynomial bound of |y| in terms of |x| this tells us little about the required run
time of verifier. Note that the prover’s polynomial time bound does not account
for the time it takes the prover to find |y|, which could be super-polynomial, if
L is a hard language (e.g. L �∈ P ). Reingold et al. [25] do not explicitly take the
rationality into consideration. Moreover, even if we use the prisoner dilemma
technique to modify Reingold et al. [25] to a mechanism where the verifier does
not need to spend effort when the provers are rational, that modified mechanism
still requires the verifier has the ability to run a linear time verification (in the
size of |y|), while our mechanism only requires a sublinear time verification in
|x| (as long as the computation itself is computable in subexponential time).

Kalai and Yang [22] update this work to include various additional settings
such as making the computation publicly verifiable (while keeping the result
private), non-interactive, and employing standard cryptographic assumptions.
Moreover, their work applies to polynomial computation rather than NP com-
putations. The running time required by the verifier is still polynomially related
(T ε) to the actual running time of the delegated computation T , and the verifier
incurs an additional polynomial overhead.

The aforementioned Canetti et al. [9] uses interactive proofs with multiple
provers to design schemes with increased efficiency. aforementioned Canetti et al.
[10] extends this line of results to be more efficient and apply to more realistic
architectures (instead of Turing Machines), but both assume one honest prover.

Gennaro et al. [13] gives a construction that allows the outsourcing of a
single function for multiple inputs, a different setting that considered here. The
verifier’s need for computational power scales linearly with the output size of
the computation by cleaverly employing techniques from Yao’s garbled circuit
and fully-homomorphic encryption.

Teutsch and Reitwießner [27] produce a white paper for TrueBit, a system
which allows out-sourced computation via smart contracts for the digital cur-
rency Ethereum. The system allows users to post computations with a reward
for the answer. A user proposing to have solved the computation must also post
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a bounty. The proposed answer then can be challenged by any user. A challenge
results in an arbitration process where the solver must prove the validity of her
solution. If she fails, she loses her bounty. If no successful challenge occurs before
a deadline, the solver collects the original reward and reclaims her bounty. Unfor-
tunately, in the equilibrium, agents should shirk the task and report randomly
with a small probability.

2 Preliminaries

Consider the scenario where a verifier wants to solve a question q and has pro-
gram M that can solve the question. The verifier, however, only has limited
computational power and cannot run the code by himself. Therefore, the veri-
fier gives the program to two agents: Alice and Bob. In this paper, we design
a mechanism for the verifier which collects reports from Alice and Bob, and
rewards them based on their reports in a way that incentivizes both agents to
faithfully execute the program. In this section, we first review cryptographical
hash functions and the Merkle hash tree which are used by our mechanism, and
then discuss the mechanism design goals.

2.1 Merkle Hash Tree H(T ) of Computation Table T

In our setting, Alice and Bob use the same code M to solve q if both of them
are honest. We assume the program M requires at most time T and space S.

Definition 1 (computation table). The computation table T of a Turing
machine M that calculates question q is a T × S matrix. The first row encodes
the input and initial configuration of M. Each row has an active region around
where the read/write head of M is located. The last non-blank row has only one
non-blank entry—the answer of question q.

Definition 2 (hash function [23]). A hash function (with output length �) is a
pair of probabilistic polynomial-time algorithms (Gen,H) satisfying the following:

– Gen is a probabilistic algorithm which takes as input a security parameter 1n

and outputs a key k. We assume that 1n is implicit in k.
– H takes as input a key k and a string x ∈ {0, 1}∗ and outputs a string Hk(x) ∈

{0, 1}�(n) (where n is the value of the security parameter implicit in s).

We call Hk(x) the hash value of x.

A standard property that a hash function (Gen,H) has is the collision-
resistance, meaning that it is computationally infeasible to find a collision—x, x′ ∈
{0, 1}∗ such that Hk(x) = Hk(x′), even if the algorithm knows the key k.
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Definition 3 (collision-resistance). Given a hash function (Gen,H), an
adversary A is a probabilistic algorithm which takes as inputs the security param-
eter n and a key k generated by Gen(1n), and outputs x, x′ ∈ {0, 1}∗. The hash
function is collision-resistant if Pr(Hk(x) = Hk(x′)) ≤ t2

2n for all probabilistic
adversaries A that run in time at most t (where the randomness in this proba-
bility comes from A, not the key generation k ∼ Gen(1n)).

For simplicity, we refer to H or Hk instead of (Gen,H) as a hash function,
and all the hash functions in this paper satisfy collision-resistance. Throughout
the paper, we make a standard assumption that the hash function (Gen,H) can
only be accessed as a random oracle [6]. As a result, for a fixed message x, we
assume that the time required to compute the hash value depends only on n.
Moreover, it is infeasible to obtain the value Hk(x) without knowing x.

Definition 4 (Merkle (hash) tree). A Merkle tree is a binary tree in which
every internal node stores the hash value of the concatenation (denoted by symbol
||) of its two children and the leaves are the hash values of different data blocks.

We are interested in constructing a Merkle tree MT H(T ) for a computation
table T . Definition 5 illustrates the construction.

Definition 5 (Merkle tree for a computation table). Given a computation
table T of a Turing machine M and a Hash function H, the Merkle tree for T ,
denoted by MT H(T ), is constructed as follows.

1. The Lower Part of MT H(T ): For each row Ti of T , we split it into several
data blocks of size λ, and construct a Merkle tree MT H(Ti) where each leaf
is the hash value of a data block.

2. The Upper Part of MT H(T ): The upper part of MT H(T ) is a binary tree
with T leaves such that the i-th leaf is the root of MT H(Ti). Each internal
node has value which is the hash value of the concatenation of its two children
as it is in a Merkle tree.

Throughout the paper, we use r to denote the value of the root node of
MT H(T ), ri to denote the value of the root of the subtree MT H(Ti) which
corresponding to the i-th row of T , and rij to denote the value of the leaf
corresponding to the j-th block of the i-row. Denote the j-th block of the
i-row of T by bij , and then rij is the hash value of bij . We use rA, rA

i , rA
ij , b

A
ij to

refer to the corresponding values that Alice provides (which may be subjected to
Alice’s strategical manipulation), and let rB , rB

i , rB
ij , b

B
ij have similar meanings.

We sometimes abuse the notations a little bit and use r, ri, rij to refer to the
nodes themselves instead of the values stored in these nodes.

An advantage of the Merkle tree is that we can verify the consistency between
a single data block bA

ij (or bB
ij) and the value rA (or rB) with time complexity

only O(log T + log S), as we will see soon.

Definition 6 (consistent path). Given MT H(T ) for a computation table T
and two nodes u, v of MT H(T ) such that u is an ancestor of v, we say the path
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from u to v is consistent if for each node w on the (shortest) u-v path the value
of w is the hash value of the concatenation of the values stored in w’s children.
In particular, for w = v being a leaf, the value must be the hash value of the
corresponding data block.

From the definition above, to check the consistency of a path from u to v, we
need the values of all the nodes on the path and all their children. For example,
to check the consistency between bA

ij and rA, we need to check if the path from
the root to the leaf corresponding to this data block is consistent. Since this
path has length O(log(ST )) = O(log S + log T ) and each node on the path has
at most two children, this consistency can be checked in time O(log S + log T ).

2.2 An Informal Description of Mechanism Design Goals

In this section, we describe our mechanism design goals in an informal way.
Formal descriptions are deferred to Sect. 4.

We say a mechanism is truthful if the strategy profile where each of the agents
plays a truthful strategy that always submits the correct report to the verifier
is a Nash equilibrium. We have two goals for our mechanism design. Other than
the truthfulness, our second goal is that, through an iterative query process,
the mechanism must be able to verify the correctness of the answer that Alice
and Bob provide in logarithmic time: O(log S + log T ). As we will see later, our
mechanism satisfies a stronger notion of truthfulness, for which we name strong
truthfulness.

3 Minimal Refereed Mechanism

Remember that the high level idea is from the prisoner’s dilemma. When Alice
and Bob are paid based on whether they have the same output, they may col-
lude to obtain agreement without exerting any effort. To solve this “collusion”
problem, our minimal refereed mechanism pays an agent who betrays the col-
lusion and tells the truth a large reward. We also draw on techniques from IP
so that the verification is possible with dramatically fewer resources than the
computation itself requires.

Minimal Refereed Mechanism (M, fH(·), AP, d1, d2):

Step 1 The verifier samples a hash key k ∼ Gen(1n) and assigns a program M
to both Alice and Bob and asks them to commit to r = fH(M). We call fH(·)
the commitment function, which is a mapping from a program M to a report
profile (a, t, r), where a is the output of M, t is the time spent in computing
M (i.e., the number of non-blank rows in T ), and r is the value of the root
of the Merkle hash tree MT H(T ), for T being the computation table of M.

Step 2 (Computation Stage) Alice and Bob do the computation separately
and commit rA and rB to the verifier privately.
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Step 3 (Arbitration Stage) If rA = rB , the verifier pays both Alice and Bob
the amount d1(t) that depends on and is monotone in t, the time spent as
reported by both agents. Otherwise, the verifier runs an arbitration process
in which the verifier asks both agents several questions and finally announces
for each of Alice and Bob if she(he) is a winner. The verifier pays each winner
d2 � d1(T ) and each loser 0 (recall that T is the number of rows in T
including blank rows, which is an upper bound on t).

MRM: Arbitration Process AP. The arbitration process takes in the two com-
mitments rA, rB that are different, and outputs either “winner” or “loser” for
each of Alice and Bob. Below we give a verbal summary of the arbitration pro-
cess, while the precise description of the process is available in the full version
of this paper.

When Alice and Bob agree with the value of the root of MT H(T ), then they
must disagree on either a or t. The verifier first checks, in the case tA �= tB, if the
last rows from both agents contains the halting state, and if the agent reporting
the larger running time has a halting state in the middle row min{tA, tB}. Notice
that in a correct execution of M, the halting state should appear and only appear
in the last non-blank row. The arbitration process terminates immediately if an
agent is caught for violating this, and moves on otherwise.

The verifier then asks their values for the root of the subtree corresponding
to the min{tA, tB}-th row:

– If they agree with each other, the verifier checks the path from the root of
this subtree to the first block of the min{tA, tB}-th row, and announces the
winner or the loser based on if the agent can provide a consistent path.

– If they disagree, then the verifier checks the consistency of the path from the
root of this subtree to the root of the entire tree MT H(T ), and announces
the winner or the loser based on the consistency.

When Alice and Bob disagree on the value of the root of MT H(T ), the veri-
fier runs a subroutine FirstDivergence(rA, rB , r) (with the precise definition in
the full version of this paper) to figure out the first place on which Alice disagrees
with Bob in T . The subroutine FirstDivergence takes in three inputs: a hash
value vA, a hash value vB, and a node v in the Merkle tree, where vA and vB are
the values Alice and Bob provide (respectively) for the node v, and vA �= vB. It
outputs either the identity of the agents (either one or two) which are identified
as “liars”, or a block bij in T . As a brief description, FirstDivergence travels
from the node v to a leaf based on the following rules: at a node u with children
u1, u2 during the traversal, FirstDivergence checks if the hash is consistent,
i.e., if H(uA

1 ||uA
2 ) = uA and H(uB

1 ||uB
2 ) = uB, and moves on to the left-most

child ui with uA
i �= uB

i . If an inconsistency in the hash computation is found
during the traversal, FirstDivergence terminates and outputs the identity of
the agent(s) with the inconsistent computation as the liar(s). Otherwise, the
traversal process will not end until a leaf is reached. This is because we start
at v on whose value Alice and Bob disagree, and Alice and Bob must disagree
on at least one of the children u1, u2 if they disagree on the parent u. When
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the traversal ends at a leaf rij , assuming both agents have not broken the hash
function, we know that bij is the first block where Alice and Bob disagree. Intu-
itively, FirstDivergence performs a binary search, viewing the Merkle tree as
the binary search tree, and checks the consistency of hashing during the search.

If FirstDivergence(rA, rB , r) outputs the identity of the liar(s), the algo-
rithm terminates by announcing the liar(s) being the loser(s). If the output is a
block bij , then we consider two cases: i = 1 and i > 1.

– If i = 1, i.e., the block is in the first row, since the first row of T encodes the
input of M, it is easy for the verifier to check the correctness of bA

ij and bB
ij

by herself.
– If i > 1, i.e., the block is in a middle row, the verifier asks Alice and Bob the

value of the corresponding block b(i−1)j in the previous row which contains
the active region. If Alice and Bob agree on b(i−1)j , the verifier calculates bij

by himself and spot the liar(s) who has a different value than the verifier. If
Alice and Bob disagree on b(i−1)j , the verifier checks the consistency of the
path from the leaf r(i−1)j all the way to the root r of the Merkle tree.

Complexity Analysis of fH and AP: The time complexity of computing fH is
O(S+T log S+T ) since for every i-th, (i+1)-th row, given the hash tree of the i-th
row, we only need to modify the path from the active region to the root (O(log S))
to obtain the hash tree of (i+1)-th row. The time complexity of AP is O(log S+
log T ). The main computations are the computation of FirstDivergece and the
consistency check of paths. Both of them require log S + log T time. The verifier
needs O(log S + log T ) space to record the position of the leaf (which represents
the path from the root to that leaf). Thus, a verifier, who has the ability to run
a computation that needs O(log S + log T ) time and O(log S + log T ) space, can
run an MRM with AP as the arbitration process. This shows the achievement
of the second goal mentioned in the last section.

4 Mechanism Design Goals Revisited

We define strategy and effort in a natural way, and each agent’s utility is quasi-
linear. Once we have defined strategies and utilities, the definition of Nash equi-
librium becomes standard. The precise definitions of these terms are omitted
due to the space limit, and they are available in the full version of this paper.

We say a strategy is truthful if it specifies the correct report in the compu-
tation stage, and let T be the set of all truthful strategies. We call the strategy
that correctly reports r in the computation stage and truthfully responds to
the verifier in the arbitration stage absolutely truthful, and we denote it as τ .
The precise definitions for the truthfulness and the absolute truthfulness of a
strategy, which depend on the precise definition of strategy, are available in the
full version of this paper. We say the mechanism MRM is truthful if (τ, τ) is a
Nash equilibrium, and is strongly truthful if, in addition, (sA, sB) being a Nash
equilibrium implies sA, sB ∈ T.
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Throughout the paper, we use M(i) to denote the (minimum) amount of
effort required to compute the first i rows of T and the Merkle tree MT H(T ),
Mc := M(T ) to denote the maximum effort a truthful agent can spend in the
computation stage, and Map to denote the maximum possible effort a truthful
agent can spend in the arbitration stage. In particular, for the absolutely truthful
strategy τ = (τc, τap), the effort of computing τc(M,H) = (a, t, h) is M(t),
and we use Mτ

c to denote this. From our discussion earlier, we have Mc =
O(S + T log S + T ) and Map = O(log S + log T ).

5 Strong Truthfulness of MRM

In this section, we prove that the mechanism MRM is strongly truthful with
appropriate choices of parameters.

Theorem 1. For any program M, if we choose large enough security parameter
n such that n > 2 log(Mc+Map)+C for some constant C, there exists b such that
MRM (M, fH , AP, d1, d2) with d2 = 2(Mc +Map)+2b and d1(t) = M(t)+b is
strongly truthful, where t is the time spent in computing M as reported by both
agents (their reports are the same if payment d1(·) is considered).

This main theorem is straightforwardly implied by the following four lemmas.
The proofs of Lemmas 1, 2 and 3 are available in the full version of this paper.

Lemma 1. Given a program M, a hash function (Gen,H) and a pure strategy
s = (sc, sap) /∈ T such that the total effort of computing sc(M,Hk) is strictly less
than Mτ

c , there exists ε < 1 such that Prk∼Gen(1n)

(
sc(M,Hk) = fHk(M)

)
< ε.

Lemma 2. An agent playing the absolutely truthful strategy τ always wins in the
arbitration process AP, regardless of the strategy the other agent plays. Moreover,
when the security parameter n is large enough with n > 2 log(Mc +Map)+15, if
there exists a dishonest agent that plays a pure strategy s /∈ T and all dishonest
agents spend effort at most ζ := 2(n−15)/2, the probability that AP announces
two winners is smaller than δ := 2−10.

Note that Lemma 2 does not say anything about the situation where both
two agents are dishonest and only one of them wins AP.

Lemma 3. MRM(M, fH , AP, d1, d2) is truthful if d1(t) = M(t) + b, b >
δd2 + εMc

1−ε and ζ > d2.

Lemma 4. MRM(M, fH , AP, d1, d2) is strongly truthful if d1(t) = M(t) + b,

d2 = 2(Mc + Map) + 2b for ζ−2(Mc+Map)
2 > b >

2δ(Mc+Map)+
εMc
1−ε

1−2δ > 0.

Proof. It is easy to see ζ > d2. By some calculations, we also have b > δd2+ εMc

1−ε .
Thus, we know MRM is truthful by Lemma 3.

To show MRM is strongly truthful, we consider any (pure or mixed) strategy
Nash equilibrium (sA, sB). We will show that (sA, sB) is a Nash equilibrium if
and only if both agents tell the truth in the computation stage: sA, sB ∈ T.

We classify the possible outcomes of (sA, sB) into the below disjoint cases:
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O Alice and Bob agree with each other and both of them tell the truth.
A Alice and Bob agree with each other on correct commitment but at least
one of them is dishonest.

A1 Alice is truthful but Bob spends effort less than the effort of τc(M,H).
A2 Bob is truthful but Alice spends effort less than the effort of τc(M,H).
A3 Both Alice and Bob spend effort less than the effort of τc(M,H).

B Alice and Bob agree with each other on a wrong commitment.
C Alice wins in AP via a non-truthful strategy. Bob loses.
D Alice wins in AP via a truth-telling strategy. Bob loses.
E Bob wins in AP via a non-truthful strategy. Alice loses.
F Bob wins in AP via a truth-telling strategy. Alice loses.
G Both lose in AP.
H Both win in AP.

H1 Alice is honest in the computation stage. Bob is dishonest.
H2 Bob is honest in the computation stage. Alice is dishonest.
H3 Both of them are dishonest in the computation stage.

In the remaining part of this proof, when we mentioned probability of certain
event, the randomness is from both the hash key generation k ∼ Gen(1n) and
the mixed strategy. We will show that (sA, sB) is a Nash equilibrium if and only
if the probability that outcome O happens is 1. The same arguments in the proof
of Lemma 3 show the if direction, so we focus on the only-if direction.

Let M∗ = M+Map be the maximum effort the truth-telling strategy can cost
in the whole MRM game. For convenience, we write Pr(A,B) as the probability
event A or event B happens. Since the cases we consider are disjoint, we can see
Pr(A,B) = Pr(A) + Pr(B).

First of all, any pure strategies that spend effort at least ζ is strictly domi-
nated, since the maximum possible payment d2 is less than ζ. Therefore, in the
remaining part of this proof, we assume with probability 0 that one of Alice and
Bob will spend effort at least ζ.

We compare Alice’s expected utility when Alice plays τ and Bob plays sB

with the expected utility of (sA, sB). Notice that a truthful agent always has
utility M(t) + b − M(t) = b if AP is not launched, and has utility at least
d2 − M∗ if AP is launched.

μA(sA, sB) − μA(τ, sB) ≤ Pr(A2, A3) · (Mc + b − b) + Pr(B) · (Mc + b − (d2 −
M∗)) + Pr(C) · (d2 − (d2− M∗)) + Pr(E) · (0 − (d2 − M∗)) + Pr(F ) · (0 − b)+
Pr(G) · (0− (d2 −M∗))+Pr(H2) · (d2 − b)+Pr(H3) · (d2 − (εb+(1− ε)(d2 −M∗))

Since (sA, sB) is a Nash equilibrium, μA(sA, sB) − μA(τ, sB) ≥ 0. By simpli-
fication, rearranging terms and substituting d2 − (εb+(1− ε)(d2 −M∗)) < d2 − b
(which is straightforward to show) for the coefficient of Pr(H3), we have

Pr(A2, A3) · Mc + Pr(C) · M∗ + Pr(H2,H3) · (d2 − b)
≥ Pr(B) · (d2 − Mc − b − M∗) + Pr(E,G) · (d2 − M∗) + Pr(F ) · b. (1)

Moreover, let Σ be the event that Alice spends effort less than the effort of
τc(M,H), we know Pr(A2, A3) = Pr((A2, A3) ∧ Σ) = Pr(Σ) Pr(A2, A3 | Σ) ≤
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εPr(Σ) by Lemma 1, which implies Pr(B,C,E, F,G,H2,H3) ≥ (1 − ε) Pr(Σ),
and which further implies

Pr(A2, A3) ≤ ε

1 − ε
Pr(B,C,E, F,G,H2,H3)

=
ε

1 − ε
(Pr(B,C,E, F,G) + Pr(H2,H3)) . (2)

Let Π be the event that Alice is dishonest in the computation stage and AP
is implemented. We know Pr(H2,H3) = Pr((H2,H3) ∧ Π) = Pr(Π) Pr(H2,H3 |
Π) ≤ δ Pr(Π) by Lemma 2 (as mentioned earlier, we can assume no one spends
at least ζ effort), which implies Pr(C,E, F,G) ≥ (1−δ) Pr(Π), and which further
implies

Pr(H2,H3) ≤ δ

1 − δ
Pr(C,E, F,G). (3)

After replacements according to (2) and (3), we can rewrite (1) as

Pr(C)

(

M∗ +
ε · Mc

1 − ε
+

δ · (d2 − b + ε·Mc

1−ε )
1 − δ

)

≥Pr(B)
(

(d2 − Mc − b − M∗) − ε · Mc

1 − ε

)
+ Pr(E,G)

(

d2 − M∗ − ε · Mc

1 − ε

−
δ · (d2 − b + ε·Mc

1−ε )
1 − δ

)

+ Pr(F )

(

b − ε · Mc

1 − ε
−

δ · (d2 − b + ε·Mc

1−ε )
1 − δ

)

. (4)

Since b > δd2 + εMc

1−ε , we have the coefficient of Pr(F ) in (4) satisfies b −
ε·Mc

1−ε − δ·(d2−b+ ε·Mc
1−ε )

1−δ = 1
1−δ

(
b − δd2 − ε·Mc

1−ε

)
> 0. This further implies

d2 = 2M∗ + 2b > 2M∗ + 2
ε · Mc

1 − ε
+ 2

δ · (d2 − b + ε·Mc

1−ε )
1 − δ

, (5)

so the coefficients of Pr(G) in (4) is positive. By b > δd2 + εMc

1−ε again and
d2 = 2M∗+2b, (d2−Mc−b−M∗)− ε·Mc

1−ε = b+M∗−Mc− ε·Mc

1−ε > δd2+M∗−Mc =
δd2 + Map > 0, so the coefficients of Pr(B) in (4) is also positive. Therefore, we
have

Pr(C)

(

M∗ +
εMc

1 − ε
+

δ(d2 − b + ε·Mc

1−ε )
1 − δ

)

≥ Pr(E) ·
(

d2 − M∗ − εMc

1 − ε
−

δ(d2 − b + ε·Mc

1−ε )
1 − δ

)

. (6)
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Symmetrically, by analyzing Bob, we have

Pr(E)

(

M∗ +
εMc

1 − ε
+

δ(d2 − b + ε·Mc

1−ε )
1 − δ

)

≥ Pr(C) ·
(

d2 − M∗ − εMc

1 − ε
−

δ(d2 − b + ε·Mc

1−ε )
1 − δ

)

. (7)

Equation (5) implies the coefficient of Pr(E) is strictly greater (less) than
the coefficient of Pr(C) in (6) (in (7)), then Pr(C) = Pr(E) = 0 for otherwise
(6) and (7) cannot be valid at the same time. When Pr(C) = Pr(E) = 0, (4)
implies that Pr(B) = Pr(F ) = Pr(G) = 0, which, by (2) and (3), further implies
that Pr(A2, A3) = 0 and Pr(H2,H3) = 0. Combining with a similar analysis for
Bob, we will have Pr(O) = 1 in every pure or mixed equilibrium.

6 On Other Notions of Truthfulness

The mechanism MRM is not dominant-strategy truthful (meaning τ or any s ∈ T
is a dominant strategy), unlike the prisoner’s dilemma game. If fixing Bob’s
strategy such that Bob only computes M up to the i-th row and reports it as a,
then τ (or any other truthful strategies) is not a best respond to Alice, as Alice
only needs to compute M up to the (i+1)-th row (maybe also manually inserts
a halting state in the (i + 2)-th row) and wins in AP.

Notice also that (τ, τ) is not a subgame perfect Nash equilibrium (SPNE).
For our problem, SPNE is difficult to achieve, but it is also unnecessary and
unnatural in some sense. We further remark on this in the full version of this
paper. Our notion of strong truthfulness ensures that the mechanism MRM will
obtain the correct output of M if the two agents are rational (by playing any
equilibrium strategy).
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Abstract. Our work concerns the class of core-selecting mechanisms,
as introduced by Ausubel and Milgrom [3]. Such mechanisms have been
known to possess good revenue guarantees and some of their variants
have been used in practice especially for spectrum and other public sec-
tor auctions. Despite their popularity, it has also been demonstrated that
these auctions are generally non-truthful. As a result, current research
has focused either on identifying core-selecting mechanisms with minimal
incentives to deviate from truth-telling, such as the family of Minimum-
Revenue Core-Selecting (MRCS) rules, or on proposing truthful mecha-
nisms whose revenue is competitive against core outcomes. Our results
contribute to both of these directions. We start with studying the core
polytope in more depth and provide new properties and insights, related
to the effects of unilateral deviations from a given profile. We then uti-
lize these properties in two ways. First, we propose a truthful mechanism
that is O(log n)-competitive against the MRCS benchmark. Our result
is the first deterministic core-competitive mechanism for binary single-
parameter domains. Second, we study the existence of non-decreasing
payment rules, meaning that the payment of each bidder is a non-
decreasing function of her bid. This property has been advocated by
the core-related literature but it has remained an open question if there
exist MRCS non-decreasing mechanisms. We answer the question in the
affirmative, by describing a subclass of rules with this property.

1 Introduction

The VCG mechanism has been undoubtedly one of the early landmarks within
the field of mechanism design. At the same time however, VCG is rarely preferred
in more complex real-life auction scenarios, such as allocation of spectrum or
other governmental licences. The shortcomings that have led to this situation
have been well summarized by [4], and one of the most prominent drawbacks is
the unacceptably low revenue that VCG generates on instances that do not lack
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competition. In worst case, one can have even zero payments for the winners,
giving rise to free-riders [2].

To counterbalance this issue, Ausubel and Milgrom [3,4] adapted the notion
of the core from the theory of cooperative games and introduced the class of
core-selecting mechanisms. These mechanisms first select an optimal (welfare-
maximizing) allocation as in VCG, but then the payments are set in a way that no
coalition of bidders together with the auctioneer can switch to a better outcome,
of higher revenue for the auctioneer. It was argued in [4] that a mechanism is
of suboptimal performance in terms of revenue precisely when the payments
it assigns may not be in the core, which is quite common for VCG when the
goods exhibit complementarities. Over the last years, core-selecting mechanisms
gained even higher support especially among practitioners, due to the fact that
they have been successfully implemented for a number of high-profile public
sector auctions in several countries [8].

Interestingly, for complement-free settings, the VCG payments can lie in the
core. When there are complementarities however, core payments do not generally
yield truthful mechanisms [13]. With this negative aspect in mind, research on
this topic has focused mainly on two directions. The first one concerns a game-
theoretic analysis of core-selecting mechanisms so as to identify which payments
from the core polytope have better incentive properties. As an example, it has
been shown in [10] that selecting a minimum revenue core outcome also min-
imizes in a certain sense, the total gain from unilateral deviations. When the
minimum revenue does not prescribe a unique outcome, a further refinement
needs to take place, guided again by incentives. This has led to the family of
quadratic payment rules (see Sect. 5). In parallel to this, another way to evaluate
such mechanisms is by analyzing the performance of their Bayes Nash equilib-
ria, e.g., [2]. At the moment, these works have not yet led to definite conclusions
and there is still a lively debate on what are the best core-selecting mechanisms,
given also the recent experimental evaluation of [7].

The second direction was initiated by [12] and concerns the design of truth-
ful (hence, not core-selecting) mechanisms whose revenue is competitive against
a core outcome. The core benchmark was naturally taken to be the minimum
revenue core outcome, given the properties highlighted in the previous para-
graph. Hence, a mechanism is then called α-core-competitive when it achieves
a 1/α fraction of the minimum revenue core outcome, for α ≥ 1. The main
results of [12] involved the design of core-competitive mechanisms for a particu-
lar single-parameter domain motivated by online ad auctions. For more general
combinatorial auctions, one can also obtain core-competitive mechanisms using
the results of [17], where a stronger benchmark has been considered. This app-
roach is still worth further investigation, as finding the best ratio against the
core benchmark has remained open for various domains of interest.

Our Contribution. We focus on binary single-parameter domains where each
bidder is either accepted or rejected in every outcome. We start in Sect. 3, with
providing new insights and properties on the geometry of the core polytope. Our
aim is to understand how the polytope is affected by a unilateral deviation of a
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bidder from a given profile. To do this, we perform a kind of sensitivity analysis
for the core constraints. In the remaining of the paper, we make use of the
results of Sect. 3 in two ways. First, in Sect. 4, we derive a deterministic O(log n)-
core-competitive strategyproof mechanism, where n is the number of bidders.
So far, only a randomized mechanism with the same ratio was known, implied
by [17]. Our result is the first deterministic core-competitive mechanism for
arbitrary single-parameter domains. It also provides a separation between core-
competitiveness, and the stronger benchmark of [17], for which an impossibility
result of Ω(n) for deterministic mechanisms has been known even for single-
parameter environments. Second, in Sect. 5, we focus on the class of minimum
revenue core-selecting (MRCS) payment rules, and study the existence of non-
decreasing payment rules, where the payment of each bidder is a non-decreasing
function of her bid [6,11]. This property has been advocated, among others,
for minimizing the marginal incentive to deviate, but it has remained an open
question if there exist MRCS rules satisfying it. We provide a positive answer
by describing a subclass of rules possessing the property, which can be seen as a
further refinement towards selecting MRCS mechanisms with the most desirable
attributes. Overall, our results shed more light on understanding core-selecting
and core-competitive mechanisms, and expect that the properties established
here can have even broader appeal and applicability.

1.1 Related Work

The core in the context of auctions was introduced in [3,4], as a suitable formal-
ism to understand settings where the VCG mechanism underperforms in terms
of revenue. In [3], Ausubel and Milgrom also proposed core-selection as a stan-
dalone auction design goal by introducing an ascending auction format called the
ascending-proxy auction, whose equilibrium outcomes are in the core. The topic
gained popularity both in theory and in practice, and several follow up works
emerged on exploring different core-selecting Pareto-efficient rules with minimal
incentives to deviate or mechanisms that are core-selecting at equilibrium, see
e.g., [2,8–11,19]. The incentives to deviate from truth-telling have been quanti-
fied under different metrics and, to our understanding, no consensus on the most
acceptable metric has been reached. Recently, an experimental comparison was
also conducted by [7] in an attempt to offer more insights on that front.

Regarding truthfulness and core-selection, the work of [13] showed that when
VCG payments lie in the core, then this is the only truthful mechanism in the
core, whereas when VCG is not in the core, there exists no other truthful core-
selecting mechanism. This reveals a severe incompatibility between truth-telling
and core-selection, especially for auction domains that exhibit complementari-
ties. Such domains can arise naturally in spectrum auctions or in auctions related
to online advertising. Motivated by these considerations, Goel et al. suggested in
[12] the use of the minimum revenue core-selecting (MRCS) outcome, as a com-
petitive benchmark for truthful mechanisms. In their work, they focus on the so
called Text and Image Ad-Auctions, a special case of knapsack auctions, where
k ad slots are being auctioned and each bidder is known to require 1 or k ad
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slots. They proposed a truthful deterministic mechanism that is O(
√

log k)-core-
competitive and a randomized one which is O(log log k)-core-competitive. To
our knowledge, this is the only work where a core benchmark has been explicitly
used for truthful revenue maximization.

Clearly, the problem of designing mechanisms with revenue guarantees is a
fundamental question that has attracted considerable attention. For example,
the notion of envy-free pricing [14] gave rise to various revenue benchmarks,
with several follow up papers. These lines of inquiry mostly focused on environ-
ments where goods are substitutes (for which VCG payments are in the core),
whereas the core-benchmark is meaningful for environments with complemen-
tarities. For such environments, two notable benchmarks have been proposed
in [1] for knapsack auctions and in [17] for general combinatorial auctions. We
refer the reader to [12] for a detailed comparison of all these benchmarks with
the MRCS benchmark. The two main takeaways are that, the mechanism of [1]
performs arbitrarily bad against the MRCS benchmark, whereas the benchmark
of [17] is stronger than MRCS. The results of [17] imply a truthful randomized
mechanism for general combinatorial auctions that is O(log n)-core-competitive.

2 Definitions and Preliminaries

2.1 Single-Parameter Domains and Mechanisms

Our work focuses on mechanisms for binary, single-parameter domains. We con-
sider a set of bidders N = {1, 2, . . . , n}, who can express a request for some type
of service (e.g., for obtaining a set of goods, or access to a facility). Each bidder
i ∈ N has a single private parameter vi, which denotes the value derived by bid-
der i if she is granted the service. The environment is binary and every bidder
will be either accepted or rejected. For every S ⊆ N , we let F(S) ⊆ 2S be the set
of feasible allocations for the bidders of S. Unless otherwise stated, we assume
that F(N) is downward-closed, i.e., for every X ∈ F(N) and every Y ⊆ X it
holds that Y ∈ F(N). We also assume that for every S ⊆ T , F(S) ⊆ F(T ).

An auction mechanism M = (X,p), in this setting, when run on the set N
of agents, consists of an allocation algorithm X : Rn

+ �→ 2N and a payment rule
p : Rn

+ �→ R
n. Initially, the auctioneer collects the vector of bids b = (bi)i∈N ,

where bi ∈ [0,∞) denotes the bid declared by bidder i ∈ N . Then, given a bidding
profile b, the auctioneer runs the allocation algorithm to determine a feasible
allocation X(b) ∈ F(N), and the payment rule to determine the payment vector
p(b) = (p1(b), . . . , pn(b)), where pi(b) is the payment requested by bidder i.

We will often need to refer to sub-instances defined by a coalition of bidders.
Given a bidding vector b, and a subset of bidders S ⊆ N , we denote by bS the
projection of b on S. We also denote by b−i the vector of all bids except for
some bidder i. Given a profile b, if we run a mechanism M = (X,p) on a sub-
instance defined by S ⊆ N , then X(bS) ∈ F(S) will be the resulting allocation
and p(bS) will be the corresponding payment vector for the members of S.

We assume that bidders have quasi-linear utilities and hence, given a mech-
anism M = (X,p), the final utility of bidder i ∈ N for a profile b is
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uM
i (b) = vi − pi(b), when i ∈ X(b), and 0 otherwise. We say that M sat-

isfies individual rationality if for every profile b and for every bidder i ∈ N it
holds that uM

i (b) ≥ 0. Additionally, a mechanism is truthful, or strategyproof,
if for every bidder i ∈ N , every bi ≥ 0 and every profile b−i it holds that
uM

i (vi,b−i) ≥ uM
i (bi,b−i).

Since we are in a single-parameter environment, in order to design truthful
mechanisms, we use the characterization of Myerson [18]. In particular, we say
that an allocation algorithm X is monotone if for every agent i ∈ N and every
profile b, if i ∈ X(b), then i ∈ X(b′

i,b−i) for b′
i ≥ bi. Thus, if a bidder is selected

by declaring a bid bi, then she should also be selected when declaring a higher
bid. Any monotone algorithm can be turned to a truthful mechanism by using
the so called threshold payments described in [18].

2.2 Welfare Maximization and VCG Payments

For a mechanism M = (X,p), the social welfare produced when run on a profile
b (from the viewpoint of the mechanism since each bi may differ from vi) is equal
to

∑
i∈X(b) bi. Furthermore, for any coalition S ⊆ N , the optimal allocation with

respect to bS is the one achieving maximum welfare, defined as

X∗(bS) := arg max
T∈F(S)

∑

i∈T

bi

We will denote by W (bS) the social welfare achieved by an optimal allocation.
This is also referred to as the coalitional value of S: W (bS) := maxT∈F(S)

∑
i∈T bi

=
∑

i∈X∗(bS) bi. When S = N , we refer to an optimal allocation by X∗(b) instead
of X∗(bN ), and to the optimal welfare by W (b).

Regarding tie-breaking issues, throughout this work, we assume that a con-
sistent (deterministic) tie-breaking rule is used to select an allocation, whenever
there are multiple optimal allocations at a given profile. For example a fixed
ordering on subsets of bidders would suffice to resolve ties.

A mechanism is called efficient or welfare-maximizing if for every input pro-
file, it outputs an optimal allocation. The VCG mechanism is the most popular
example of an efficient and strategyproof mechanism, where for a bidding profile
b, the payment of bidder i ∈ X∗(b) is the externality she imposes to the other
bidders (i.e., the loss to their welfare), defined as

pV CG
i (b) = W (b−i) −

∑

j∈X∗(b)\{i}
bj (1)

2.3 Core-Selecting and Core-Competitive Payment Rules

The notion of the core as a solution concept originates from cooperative game
theory where it captures the fact that coalitions of agents do not have incentives
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to appeal to a payoff division. To adjust these ideas to the auctions context, we
first define the following quantity, for every S ⊆ N and bidding profile b.

β(S,b) := W (bS) −
∑

j∈X∗(b)∩S

bj .

This quantity is a generalization of the VCG payment formula, and can be
interpreted as the collective externality that bidders in N \ S impose to the
bidders in S. Indeed, with this notation we can restate VCG payments in Eq.
(1) as pV CG

i (b) = β(N \ {i},b), for every bidder i ∈ X∗(b).
Core-selecting payment rules were initially defined in the space of utility

vectors by [3]. In our work we follow the equivalent formulation of [8] that recasts
them to the space of payment vectors. For a profile b, the core polyhedron is
defined w.r.t. an optimal allocation X∗(b) as follows

CORE(b) = {p ∈ R
n :

∑

j∈X∗(b)\S

pj ≥ β(S,b) ∀S ⊆ N, pj = 0 ∀j 
∈ X∗(b)}. (2)

Definition 1. A payment rule is called core-selecting, if it is individually ratio-
nal w.r.t. the reported bids, and p(b) ∈ CORE(b) for every profile b. Fur-
thermore, a mechanism M = (X,p) is core-selecting if (i) X(b) is a welfare-
maximizing allocation for every profile b, and (ii) p is a core-selecting payment
rule.

The constraints of the core polytope in (2) require that every coalition of bidders
pays at least their collective externality, i.e., the damage their presence inflicts
on the remaining bidders. An equivalent way to view this is that under a core
payment vector, every coalition S, together with the auctioneer creates a collec-
tive utility at least as high as W (bS), which is the best they could achieve if they
ran an auction among themselves. Using this interpretation, if a payment vector
is not in the core, this implies that there was a coalition that could offer the
auctioneer a higher revenue and yet this did not happen. For further intuition
on the core polytope, we refer the reader to [4].

As an example, it is easily verifiable that the pay-your-bid mechanism, cou-
pled with the optimal allocation, is a core-selecting mechanism (referred to also
as the seller-optimal payment rule). Given that core-selecting mechanisms are
not truthful in general, see also [13], a natural quest has been to identify pay-
ments in the core where the incentives to misreport are minimized. Formalizing
this idea, Day and Milgrom [9] proposed the use of Pareto-efficient core pay-
ments, which, in the core-literature are also referred to as bidder-optimal payment
rules. We say that a payment vector p is a Pareto-efficient core payment if for
every other payment p′ such that p′

i ≤ pi for every bidder i ∈ X∗(b), with strict
inequality for at least one bidder, we have that p′ 
∈ CORE(b).

A prominent class of Pareto-efficient payment rules in the literature are the
Minimum Revenue Core-Selecting (MRCS) rules, i.e., the minimum revenue
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points in the core, first introduced in [10]. An MRCS rule assigns payments
given a profile b, that are optimal solutions of the linear program:

min
p∈Rn

⎧
⎨

⎩

∑

j∈N

pj : p ∈ CORE(b), p ≤ b

⎫
⎬

⎭
. (3)

It is straightforward to see that this is indeed a Pareto-efficient core payment
rule. We denote by MREV(b) the optimal value of the objective function in (3).
As shown in [9], the minimum core revenue still gives a better revenue guarantee
than VCG, i.e., for a profile b, MREV(b) ≥ ∑

i∈N pV CG
i (b). A further advantage

of MRCS rules, established in [10], is that they minimize the total gains from
unilateral deviations. Finally, it is also interesting to note that whenever the
VCG payment belongs to the core, it is the unique MRCS rule, because it is
the unique Pareto-efficient point [9]. Otherwise, the linear program in (3) has
a continuum of solutions and a secondary refinement is required in practice to
select a particular MRCS payment rule in a disciplined way. We continue this
discussion in Sect. 5, by studying Quadratic Payment Rules.

Core-Competitive Mechanisms. A different approach has been initiated in
[12] concerning revenue guarantees in relation to the core outcomes. Since core-
selecting mechanisms are not always truthful, [12] proposed the design of truthful
mechanisms whose revenue is competitive against a core outcome. Given the
discussion in Sect. 2.3, it is quite natural to use as a core benchmark the revenue
attained by the MRCS rules. One can evaluate then truthful mechanisms as
follows:

Definition 2 ([12]). Let M = (X,p) be a truthful mechanism. We say that
M is α-core-competitive, with α ≥ 1, if for any bidding profile b it assigns a
payment vector p(b) such that

∑n
i=1 pi(b) ≥ 1

αMREV(b).

3 Insights on the Geometry of the Core

We focus first on some properties of the core polytope with regard to how the
polytope changes when a single bidder declares a higher bid, i.e., we study the
relation between CORE(b) and CORE(b′

i,b−i), with b′
i > bi for some i ∈

X∗(b). Throughout this section, we assume that for all payment vectors that we
consider, we have set pj = 0 for every j 
∈ X∗(b), and a profile b. Finally, we
defer all missing proofs in the remainder of this paper to the full version of our
work.

3.1 Pareto-Efficiency and Individual Rationality Within the Core

According to Definition 1, a core-selecting mechanism must be individually ratio-
nal with respect to the reported bids. We show that for Pareto-efficient core-
selecting payment rules, we have individual rationality for free, and there is, in
fact, no need for the auctioneer to explicitly enforce the IR constraints.
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Lemma 1. A payment rule that for a profile b prescribes a Pareto-efficient
vector of payments p ∈ CORE(b), satisfies pi ≤ bi for every bidder i ∈ X∗(b).

Lemma 1 allows us to focus only on the core constraints, when reasoning about
Pareto-efficient payment rules. Moreover, using the fact that MRCS payments
are Pareto-efficient, we can now simplify the linear program of Eq. (3).

Corollary 1. A payment rule is MRCS if, given a profile b, it assigns payments
that are optimal solutions of the linear program

min
p∈Rn

⎧
⎨

⎩

∑

j∈N

pj : p ∈ CORE(b)

⎫
⎬

⎭
. (4)

3.2 The Effects of Unilateral Deviations on the Core

We now aim to understand how the core polytope that forms after a unilateral
deviation of a winning bidder is related to the initial core polytope. Initially, we
focus on how each of the constraints in the polytope is modified and perform
a sensitivity analysis for the term β(S,b), the collective externality in the core
constraints in (2), for every S ⊆ N .

To proceed, our analysis will be dependent on the following quantity, defined
for an input profile b, a bidder i ∈ X∗(b), and a coalition S ⊆ N with i ∈ S.

ti(bS\{i}) = min{z : ∃T ⊆ S, s.t. i ∈ T and
∑

j∈T\{i}
bj + z = W (z,bS\{i})}

The term ti(bS\{i}) is the minimum bid i should declare to be included in
some optimal allocation in an auction where only the bidders from S are present.
The following key lemma encapsulates the effects on the collective externality of
S by a unilateral deviation of a bidder i ∈ S.

Lemma 2 (Sensitivity analysis for β(S,b)). Let b be a bidding profile. Fix
a bidder i ∈ X∗(b), and a coalition S ⊆ N . Suppose that bidder i unilaterally
deviates to b′

i > bi. Then:

1. If i 
∈ S or if i ∈ S and bi ≥ ti(bS\{i}) then β(S, (b′
i,b−i)) = β(S,b).

2. Otherwise, it holds that β(S, (b′
i,b−i)) = β(S,b) − (min{b′

i, ti(bS\{i})} − bi).

Lemma 2 enables us to prove the two theorems that follow.

Theorem 1. Let b be a bidding profile and i ∈ X∗(b). Then, for every b′
i > bi,

CORE(b) ⊆ CORE(b′
i,b−i).

Proof. Note first that for b′
i > bi, since the optimal allocation algorithm is mono-

tone and i ∈ X∗(b), it holds that X∗(b′
i,b−i) = X∗(b). Consider now a vector p

in CORE(b). We will show that p is also a member of CORE(b′
i,b−i). This is
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equivalent to showing that for every S ⊆ N , p satisfies
∑

j∈X∗(b)\S

pj ≥ β(S, (b′
i,b−i)).

When S ⊆ N is a coalition such that either i 
∈ S or i ∈ S and bi ≥ ti(bS\{i}),
then by Lemma 2 (Condition 1), we immediately have

∑

j∈X∗(b)\S

pj ≥ β(S,b) = β(S, (b′
i,b−i)).

On the other hand, when i ∈ S and bi < ti(bS\{i}), then again by Lemma 2
(Condition 2), and since p ∈ CORE(b), we obtain

∑

j∈X∗(b)\S
pj ≥ β(S,b) = β(S, (b′

i,b−i)) + min{b′
i, ti(bS\{i})} − bi > β(S, (b′

i,b−i)),

where the last inequality follows from the facts that b′
i > bi and ti(bS\{i}) > bi.

�
We note that the set inclusion claimed in Theorem 1 can be strict. Theorem 1
also has the following corollary for MRCS core payments, defined in (4).

Corollary 2. Let b be a bidding profile, and i ∈ X∗(b). For b′
i > bi, we have

MREV(b′
i,b−i) ≤ MREV(b).

Corollary 2 states that a higher willingness to pay will never lead to an increase of
the auctioneer’s revenue under MRCS. This may look counter-intuitive on a first
reading, and is commonly mentioned as a violation of revenue monotonicity1.
Pareto-efficient core payments have been known to be susceptible to violating
this property. Namely, it has been shown by [5,16] that in a multi-parameter
domain with at least three items, revenue-monotonicity is violated. In fact we
can strengthen these results to single-parameter auctions by exhibiting instances
where we can have strict inequality in the statement of Corollary 2. We defer a
further analysis of these issues to our full version.

Aside from this discussion, and quite surprisingly, Corollary 2 also plays a
crucial role in the analysis of the mechanism we present in Sect. 4.

The next theorem says that in order to obtain a payment that is in the enlarged
polyhedron after a bidder’s deviation, the deviating bidder should be charged a
payment that exceeds her previous bid. This will be particularly useful in Sect. 5.

Theorem 2. Let b be a bidding profile and fix a bidder i ∈ X∗(b). For b′
i > bi,

let p ∈ CORE(b′
i,b−i) be a payment vector with pi ≤ bi. Then, p ∈ CORE(b).

4 An O(logn)-core-competitive Mechanism

In this section, we present a first application of the properties derived in Sect. 3.
We move away from core-selecting mechanisms and our main result is a deter-
ministic, truthful mechanism that is also O(logn)-core-competitive with respect
1 There are several facets in studying revenue monotonicity, as it concerns the effects

on revenue when adding new bidders, or increasing the offers of the current bidders.
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to the MRCS benchmark. Although we are not analyzing core-selecting mecha-
nisms in this section, the properties of the core, (namely Corollary 2 of Theorem
1), will still come in handy for the analysis of our mechanism.

Fig. 1. An O(log n)-core-competitive and strategyproof mechanism.

The mechanism is described in Fig. 1, where we have used the real valuation
profile for the bidders (b = v). We also denote the n-th harmonic number
by Hn =

∑n
i=1 1/i. In the first step, we find a welfare-maximizing allocation.

However, instead of accepting all bidders in the optimal solution, the second step
disqualifies some bidders with values that do not meet a certain cutoff. In case
of ties in step 2, it suffices to have a consistent deterministic tie-breaking rule,
e.g., given by an ordering on the set of bidders. The mechanism tries, in some
sense, to be as inclusive as possible, as long as the value of the last member of
X̂(v) is not too small for the coalition to collectively miss the cutoff.

Theorem 3. The mechanism M̂ is individually rational, truthful, and O(log n)-
core-competitive.

Section 4.2 is devoted to the proof of Theorem 3. Before this, we discuss first
some aspects of the mechanism, and comparisons with other results.

4.1 Remarks on Tightness, Complexity and Other Implications

Prior to our work, a randomized, exponential, strategyproof mechanism was
known that is also O(log n)-core-competitive [17]. This result is based on estab-
lishing competitiveness against a stronger benchmark, which is the maximum
welfare when the highest bidder is ignored. What we find most valuable in our
deterministic matching upper bound is that it yielded a better understanding
of the core polytope, through the properties of Sect. 3. On the other hand, the
mechanism of [17] does not reveal any properties for the core, since it is centered
around a different benchmark. Moreover, our result provides a strict separation
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on the performance of the two benchmarks, since [17] shows that deterministic
mechanisms cannot perform better than Ω(n) for their benchmark. Hence, our
mechanism illustrates that the benchmark of [17] is much more stringent.

Regarding complexity, our mechanism clearly has a worst-case exponential
running time, because it requires the computation of an optimal allocation and of
MREV(b). This bottleneck is not uncommon in the core auction literature, and it
is often assumed that the mechanism has oracle access to a welfare maximization
algorithm. Given the results in [10] for computing MREV(b), we can conclude
that our mechanism can be implemented with a polynomial number of oracle
calls to welfare maximization. Faster algorithms have also been proposed for
MREV(b), e.g., [15], but these compute ε-bidder-optimal core points and are
not suitable for our mechanism. Finally, for settings where there exist efficient
algorithms for welfare optimization, our mechanism is also implementable in
polynomial time.

As for tightness, recall that the mechanism selects a subset of the optimal
allocation X∗(v) as the set of winning bidders. For the special case studied in
[12], it is shown that mechanisms whose allocation is a subset of an optimal
allocation, cannot perform better than O(log n). This directly implies that our
result is tight, and among such mechanisms, it achieves the best possible core-
competitiveness.

4.2 Feasibility, Monotonicity and Competitiveness of X̂

To show that the mechanism always outputs a feasible allocation, we use the fact
that for a given v, X̂(v) ⊆ X∗(v). Since the optimal allocation X∗(v) ∈ F(N)
and since we have assumed that F(N) is downward-closed, then X̂(v) is feasible.

Moreover, we claim that the allocation algorithm X̂ always outputs a non-
empty allocation, i.e., the cutoff set in (5) is always achievable by at least one
index k ∈ {1, . . . , |X∗(v)|}. This is precisely what the next lemma establishes.

Lemma 3. Let v be a value profile, and m = |X∗(v)|. Let s1, s2, . . . sm be an
ordering of the bidders in X∗(v) by their value in a non-increasing order. Then
maxj∈{1,...,m} j · vsj

≥ MREV(v)
Hn

.

Next, we show that the allocation algorithm X̂ is monotone. Lemma 4 will
be the key to establish this argument, which is in turn based on Corollary 2
from Sect. 3. Lemma 4 states that when a winning bidder increases her bid, the
allocation algorithm X̂ may only increase the number of bidders it serves.

Lemma 4. For every value profile v, bidder i ∈ X̂(v) and every v′
i > vi it holds

that |X̂(v)| ≤ |X̂(v′
i,v−i)|.

Proof. Suppose for contradiction that there exists a profile v with a bidder
i ∈ X̂(v) and a bid v′

i > vi for which |X̂(v)| > |X̂(v′
i,v−i)|. Since i ∈ X∗(v) and

due to the fact that the welfare-maximizing algorithm is monotone, it holds that
i ∈ X∗(v′

i,v−i) as well. Let s be the ordering of the players in X∗(v), produced by
the mechanism at step 2, on input v, and let s′ be the corresponding ordering of
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bidders in X∗(v′
i,v−i). Let k = |X̂(v)| and k′ = |X̂(v′

i,v−i)|. By our assumption,
k′ < k. Bidder i can only be at a lower index in the ranking s′ compared to her
position at s, since she has deviated to v′

i > vi. This implies that vs′
k

≥ vsk
. To

verify this, either the bidder at position k in s′ has remained the same but with
equal or higher value (in case bidder i is at position k) or bidder i has moved up
in the ranking and it has displaced some bidder with a higher value to position
k. However, this yields

k · vs′
k

≥ k · vsk
≥ MREV(v)

Hn
≥ MREV(v′

i,v−i)
Hn

.

The second inequality follows from what we assumed for the execution of the mech-
anism on v, whereas the third inequality follows from Corollary 2. Thus, k bidders
can still be served on input (v′

i,v−i), and k′ is not the largest index of bidders who
can meet the cutoff of (5) under (v′

i,v−i), which is a contradiction. �
By using Lemma 4, we can prove the monotonicity of the allocation algorithm.

Lemma 5. The allocation algorithm X̂ is monotone.

Hence, the mechanism is truthful, and all that is left to prove is that M̂ is
O(log n)-core-competitive. The following lemma provides a relationship for the
threshold payment of each bidder and is crucial to obtain our revenue guarantee.

Lemma 6. Given a value profile v, the threshold payment p̂i(v) of every bidder
i ∈ X̂(v) for the mechanism M̂ satisfies p̂i(v) ≥ pV CG

i (v) and, additionally,

p̂i(v) ≥ MREV(p̂i(v),v−i)
|X̂(p̂i(v),v−i)| · Hn

.

The proof of Theorem 3 is completed by exploiting Lemma 6 and establishing
the following lemma.

Lemma 7. The mechanism is O(logn)-core-competitive.

5 A Class of Non-decreasing Quadratic Payment Rules

In this section, we illustrate a second application of our results from Sect. 3.

5.1 Quadratic Payment Rules

As mentioned in Sect. 2, when VCG is not in the core, the linear program of
Eq. (3) that determines the MRCS payments has a continuum of solutions.
Even though all these solutions have been shown in [10] to minimize the gain
of deviating, the question remained whether one of these points should be more
preferred over others. This motivated [8,11] to propose a class of core-selecting
mechanisms, based on the idea of picking the point on the minimum revenue face
of the core that is the closest in Euclidean distance to a given reference point
in the vector space. This payment rule can be expressed using the quadratic
program defined below, and are called quadratic rules.
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Definition 3. Let r ∈ R
n
+. We call a payment rule r-nearest when, for every

vector b, it assigns the payment

pr(b) = arg min
p∈Rn

⎧
⎨

⎩

∑

j∈X∗(b)

(pj − rj)
2 : p ∈ CORE(b),

∑

j∈X∗(b)

pj = MREV(b)

⎫
⎬

⎭
.

The vector r is referred to as the reference point of the rule. Note that, since
this quadratic program expresses a minimization of Euclidean distance from a
convex set to a fixed point, the payment vector pr(b) is unique.

A number of vectors have been proposed as potential reference points for this
class of payments. Initially, in [8] Day and Cramton used the VCG payments for a
reference point, r = pV CG(b). The motivation came from the findings of [20] who
observed that the quantity pi − pV CG

i (b) represents the bidder’s “residual incen-
tive to misreport”. Hence, minimizing this quantity seemed a reasonable choice
with good incentive properties. In parallel to this, Erdil and Klemperer [11] leaned
more towards constant payment rules with reference points that do not depend on
the bidding profile, motivated by minimizing marginal incentives to deviate. One
well-studied and intuitive example is the 0-nearest mechanism: pick the point in
MRCS that is closest to 0. Yet another perspective was given in [2] who proposed
the b-nearest rule, i.e., the MRCS payments closest to the actual bids. Overall,
such quadratic rules have formed the basis for many deployments in practice in
several countries, especially for public sector auctions [8].

5.2 Non-decreasing Payment Rules

We now consider the following desirable property for payment rules.

Definition 4. A payment rule is called non-decreasing, if for every profile b,
every bidder i ∈ N and every b′

i > bi it holds that pi(b′
i,b−i) ≥ pi(b).

This notion has been defined independently in [11] and [6], with a different moti-
vation in mind. In [11], it is argued that payment rules satisfying this property
weakly dominate all other rules in terms of the so called marginal incentive to
deviate. Hence, even though such mechanisms may not be truthful, they possess
very desirable incentive guarantees. In [6], another advantage is highlighted, of
computational nature: limiting our attention to non-decreasing rules makes the
daunting task of computing Bayes Nash equilibria much simpler.

Hence, it becomes important to understand which mechanisms satisfy this
property. It can be seen that the VCG mechanism and the pay-your-bid auction
do satisfy Definition 4. In the context of MRCS rules, it is shown in [6], that
pV CG-nearest is not non-decreasing. To our knowledge, it has remained an open
question whether there exist MRCS rules that satisfy Definition 4.

We answer this question in the affirmative for single parameter domains, by
providing a class of quadratic rules that are non-decreasing. To proceed, given a
vector b, for all i ∈ N , define fi(bi) to be any non-decreasing function of bi. Let
f(b) = (f1(b1), . . . , fn(bn)). The following is the main result of this section, and
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we also note that it does not require the assumption that F(N) is downward-
closed.

Theorem 4. For all f = (f1(·), . . . , fn(·)), where each fi(·) is a non-decreasing
function of bi, the f(b)-nearest payment rule is non-decreasing.

Notice that as a corollary, we have that the well known 0-nearest and b-nearest
mechanisms that were advocated by [11] and [2] respectively, are non-decreasing.
The proof of Theorem 4, is based on Theorems 1 and 2 from Sect. 3.
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Abstract. We consider a scheduling game in which jobs try to minimize
their completion time by choosing a machine to be processed on. Each
machine uses an individual priority list to decide on the order according
to which the jobs on the machine are processed. We characterize four
classes of instances in which a pure Nash equilibrium (NE) is guaranteed
to exist, and show by means of an example, that none of these char-
acterizations can be relaxed. We then bound the performance of Nash
equilibria for each of these classes with respect to the makespan of the
schedule and the sum of completion times. We also analyze the computa-
tional complexity of several problems arising in this model. For instance,
we prove that it is NP-hard to decide whether a NE exists, and that
even for instances with identical machines, for which a NE is guaranteed
to exist, it is NP-hard to approximate the best NE within a factor of
2 − 1

m
− ε for every ε > 0.

In addition, we study a generalized model in which players’ strategies
are subsets of resources, where each resource has its own priority list
over the players. We show that in this general model, even unweighted
symmetric games may not have a pure NE, and we bound the price of
anarchy with respect to the total players’ costs.

Keywords: Scheduling games · Priority lists · Price of anarchy

1 Introduction

Scheduling problems have traditionally been studied from a centralized point
of view in which the goal is to find an assignment of jobs to machines so as
to minimize some global objective function. Two of the classical results are
that Smith’s rule, i.e., schedule jobs in decreasing order according to their ratio
of weight over processing time, is optimal for single machine scheduling with
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the sum of weighted completion times as the objective [23], and list schedul-
ing, i.e., greedily assign the job with the highest priority to a free machine,
yields a 2-approximation for identical machines with the minimum makespan
objective [14]. Many modern systems provide service to multiple strategic users,
whose individual payoff is affected by the decisions made by others. As a result,
non-cooperative game theory has become an essential tool in the analysis of
job-scheduling applications. The jobs are controlled by selfish users who inde-
pendently choose which resources to use. Job-scheduling games have by now
been widely studied and many results regarding the inefficiency of equilibria in
different settings are known.

A particular focus has been placed on finding coordination mechanisms [6],
i.e., local scheduling policies, that induce a good system performance. In fact,
recently Caragiannis et al. [4] proposed a framework that uses such policies
to come up with combinatorial approximation algorithms for the underlying
optimization problem. It is common to assume that ties are broken in a consistent
manner (see, e.g., Immorlica et al. [17]), or that there are no ties at all (see,
e.g., Cole et al. [7]). In practice, there is no real justification for this assumption,
except that it avoids subtle difficulties in the analysis. In this paper we relax this
restrictive assumption and consider the more general setting in which machines
have arbitrary individual priority lists. That is, each machine schedules those jobs
that have chosen it according to its priority list. The priority lists are publicly
known to the jobs.

In this paper we analyze the effect of having machine-dependent priority lists
on the corresponding job-scheduling game. We study the existence of Nash equi-
librium, the complexity of identifying whether a NE profile exists, the complexity
of calculating a NE, in particular a good one, and the equilibrium inefficiency.

1.1 The Model

An instance of a scheduling game with machine-dependent priority lists is given
by a tuple G = 〈N,M, (wi)i∈N , (cj)j∈M , (πj)j∈M 〉, where N is a finite set of n ≥
1 jobs, M is a finite set of m ≥ 1 machines, wi ∈ R+ is the weight of job i ∈ N ,
cj ∈ R+ is the processing delay of machine j ∈ M , and πj : N → {1, . . . , n} is
the priority list of machine j ∈ M . In the literature, it is common to characterize
the jobs by their processing time and the machines by their speed. We prefer to
refer to weight instead of to processing time, and to delay, which is the inverse of
speed, in order to be consistent with the general definition of congestion games.

A strategy profile s = (si)i∈N assigns a machine si ∈ M to every job i ∈ N .
Given a strategy profile s, the jobs are processed according to their order in the
machines’ priority lists. The set of jobs that delay job i in s is Bi(s) = {i′ ∈
N |si′ = si ∧ πsi

(i′) ≤ πsi
(i)}. Note that job i itself also belongs to Bi(s). Let

wi(s) =
∑

i′∈Bi(s)

wi′ . The cost of job i ∈ N is equal to its completion time in s,

given by cost i(s) = cj · wi(s).
A more general model is that of a congestion game with resource-dependent

priority lists, in which the strategy space of a player consists of subsets of
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resources. Formally, an instance of the general game is given by a tuple G =
〈N,E, (Σi)i∈N , (wi)i∈N , (ce)e∈E , (πe)e∈E〉, where N is a finite set players, E is a
finite set of resources, Σi ⊆ 2E is the set of feasible strategies for player i ∈ N ,
wi ∈ R+ is the weight of player i ∈ N , ce ∈ R+ is the cost coefficient of resource
e ∈ E, and πe : N → {1, . . . , n} is the priority list of resource E that defines its
preference over the players using it.

Scheduling games are symmetric singleton congestion games in which the
strategy space of each job is the set of all machines. For the general setting,
the players’ costs are defined as follows. Given a strategy profile s = (si)i∈N ∈
×i∈NΣi, for every player i ∈ N , and resource e ∈ si, let Bie(s) = {i′ ∈ N | e ∈
si′ ∧ πe(i′) ≤ πe(i)}, and define wi

e(s) =
∑

i′∈Bie(s)

wi′ . The cost of a player i ∈ N

is given by, cost i(s) = wi · ∑
e∈si

ce · wi
e(s).

Notice that for general congestion games, we assume that players’ costs are
multiplied by their weight, whereas we do not make that assumption for schedul-
ing games. This has no implications for the existence of Nash equilibria, but only
affects the efficiency result.

Each job chooses a strategy so as to minimize its cost. A strategy profile
s is a pure Nash equilibrium (NE) if for all i ∈ N and all s′

i ∈ Σi, we have
cost i(s) ≤ cost i(s′

i, s−i). Let E(G) denote the set of Nash equilibria for a given
instance G. Notice that E(G) may be empty.

For a profile s, let cost(s) denote the cost of s. The cost is defined with
respect to some objective. For example, the total players’ cost or the maximum
cost of a player. It is well known that decentralized decision-making may lead
to sub-optimal solutions from the point of view of the society as a whole. For a
game G, let P (G) be the set of feasible profiles of G. We denote by OPT (G) the
cost of a social optimal (SO) solution; i.e., OPT (G) = mins∈P (G) cost(s). We
quantify the inefficiency incurred due to self-interested behavior according to the
price of anarchy (PoA) [19] and price of stability (PoS) [2] measures. The PoA
is the worst-case inefficiency of a pure Nash equilibrium, while the PoS measures
the best-case inefficiency of a pure Nash equilibrium.

Definition 1. Let G be a family of games, and let G be a game in G. Let E(G)
be the set of pure Nash equilibria of the game G. Assume that E(G) 
= ∅.
– The price of anarchy of G is the ratio between the maximal cost of a NE and

the social optimum of G. That is, PoA(G) = maxs∈E(G) cost(s)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = supG∈GPoA(G).

– The price of stability of G is the ratio between the minimal cost of a NE and
the social optimum of G. That is, PoS(G) = mins∈E(G) cost(s)/OPT (G). The
price of stability of the family of games G is PoS(G) = supG∈GPoS(G).

1.2 Our Contribution

We start by studying scheduling games, i.e., each job has to choose one machine
to be processed on, and then based on the choices of the jobs, each machine
schedules the jobs according to its individual priority list. We first show that a
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Nash equilibrium in general need not exist, and use this example to show that it
is NP-complete to decide whether a particular game has a Nash equilibrium. We
then extend known results in order to provide a characterization of instances in
which a pure Nash equilibrium is guaranteed to exist. Specifically, existence is
guaranteed if the game belongs to at least one of the following four classes: G1 :
all jobs have the same weight, G2 : there are two machines, G3 : all machines have
the same processing delay (shown in [9]), and G4 : all machines have the same
priority list (shown in [11]). For all four of these classes, there is a polynomial
time algorithm that computes a Nash equilibrium. In fact, if jobs are unweighted,
better-response dynamics converge to a Nash equilibrium in polynomial time.
This characterization is tight in a sense that our inexistence example disobeys
it in a minimal way: it describes a game on three machines, two of them having
the same processing delay and the same priority list.

We analyze the inefficiency of Nash equilibria by means of two different mea-
sures of efficiency: the makespan, i.e., the maximum completion time of a job,
and the sum of completion times. For all four classes of games with a guaran-
teed Nash equilibrium we provide tight bounds for the price of anarchy and the
price of stability with respect to both measures. Our results are summarized in
Table 1. For two machines with processing delays c1 = 1 and c2 = c ≥ 1, we
prove that the PoA and the PoS are at most 1 + c

c+1 if c ≤
√
5+1
2 , and 1 + 1

c if

c ≥
√
5+1
2 . Our analysis is tight for all c ≥ 1. The maximal inefficiency, listed in

Table 1, is achieved with c =
√
5+1
2 .

Table 1. Our results for the equilibrium inefficiency.

Instance class\objective Makespan Sum of completion times

PoA PoS PoA PoS

G1 : Unweighted jobs 1 1 1 1

G2 : Two machines (
√

5 + 1)/2 (
√

5 + 1)/2 Θ(n) Θ(n)

G3 : Identical machines 2 − 1/m 2 − 1/m Θ(n/m) Θ(n/m)

G4 : Global priority list Θ(m) Θ(m) Θ(n) Θ(n)

In terms of computational complexity, we prove that it is NP-hard to approx-
imate the best NE within a factor of 2 − 1

m − ε for all ε > 0, if machines have
identical processing delays and the minimum makespan objective is considered.
Recall that 2 − 1

m is the price of anarchy for these instances. In particular, this
implies that the simple greedy algorithm that computes a Nash equilibrium by
letting each machine with the current least load get the most preferred unas-
signed job, is the best one can hope for.

We finally generalize the model to allow for arbitrary strategy sets. We show
that in general, even with unweighted jobs, a Nash equilibrium need not exist by
making use of the famous Condorcet paradox [8]. We then use this example to
prove that the question whether a Nash equilibrium exists is NP-hard, even with
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unweighted jobs. We lastly study the price of anarchy with respect to the sum
of weighted costs and show that the upper bound of 4 proven by Cole et al. [7]
for unrelated machine scheduling with Smith’s rule also extends to congestion
games with resource-dependent priority lists. This ratio is smaller than the price
of anarchy of the atomic game with priorities defined by Farzad et al. [11].

Due to space constraints, some of the proofs are omitted. A full version of
this paper with all the proofs can be found at https://arxiv.org/abs/1909.10199.

1.3 Related Work

Scheduling Games. The existence and inefficiency of Nash equilibria in
scheduling games gained lots of attention over the recent years. We refer to
Vöcking [24] for a recent overview. For existence, Immorlica et al. [17] proved
that for unrelated machines, i.e., different machines can have different process-
ing times for jobs, and priority lists based on shortest processing time first with
consistent tie-breaking, the set of Nash equilibria is always non-empty and cor-
responds to the set of solutions of the Ibarra-Kim algorithm [16].

The standard measure for the inefficiency of Nash equilibria is the price
of anarchy [19]. This measure has been widely studied for different measures
of efficiency. Most attention has been addressed on minimizing the makespan.
Czumaj and Vöcking [10] gave tight bounds for related machines that grow as
the number of machines grows, whereas Awerbuch et al. [3] and Gairing et al. [12]
provided tight bounds for restricted machine settings. An alternative measure
of efficiency is utilitarian social welfare, that is, the sum of weighted completion
times. Correa and Queyranne [9] proved a tight upper bound of 4 for restricted
related machines with priority lists derived from Smith’s rule. Cole et al. [7]
generalized the bound of 4 to unrelated machines with Smith’s rule. Hoeksma
and Uetz [15] gave a tighter bound for the more restricted setting in which jobs
have unit weights and machines are related.

Congestion Games with Priorities. Rosenthal [21] proved that congestion
games are potential games and thus have a pure Nash equilibrium. Ackermann
et al. [1] were the first to study a congestion game with priorities. They proposed
a model in which users with higher priority on a resource displace users with lower
priority. Similar to our model, Farzad et al. [11] studied priority based selfish rout-
ing for non-atomic and atomic users. Gourvès et al. [13] studied capacitated con-
gestion games to characterize the existence of pure Nash equilibria and compu-
tation of an equilibrium when they exist. Piliouras et al. [20] assumed that the
priority lists are unknown to the players a priori and consider different risk atti-
tudes towards having a uniform at random ordering.

2 Equilibrium Existence and Computation

In this section we give a precise characterization of instances that are guaranteed
to have a NE. The conditions that we provide are sufficient but not necessary.
A natural question is to decide whether a given game instance that does not

https://arxiv.org/abs/1909.10199
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fulfill any of the conditions has a NE. We show that answering this question is
a NP-complete problem.

We first show that a NE may not exist, even with only three machines, two
of which have the same delay and the same priority list.

Example 1. Consider the game G∗ with 5 jobs, N = {a, b, c, d, e}, and three
machines, M = {M1,M2,M3}, with π1 = (a, b, c, d, e), and π2 = π3 =
(e, d, b, c, a). The first machine has delay c1 = 1 while the two other machines
have delay c2 = c3 = 2. The job weights are wa = 5, wb = 4, wc = 4 + 2ε, wd =
9 + ε, and we = 2, where ε > 0 but small.

Job a is clearly on M1 in every NE. It is easy to see that in every NE at least
one of b, c and d is on M1. Therefore, job e is first on M2 or M3. Since these
two machines have the same priority list and the same delay function, we can
assume w.l.o.g., that if a NE exists, then there exists a NE in which job e is on
M3. We show that no NE exists by considering the three possible strategies of
job b.

1. b is on M1: If d is not on M2 or M3, then b prefers M2 to M1. If d is on M2,
then c is on M3 (since 12 + 4ε < 13 + 2ε). As a result, d prefers M1 (since
18 + ε < 18 + 2ε), so b prefers M2. Finally, given that e is on M3, d is not on
M3.

2. b is on M2: job c prefers M1, where it completes at time 9+2ε, while after e on
M3 it completes at time 12+4ε. Now d prefers M2, (since 18+2ε < 18+3ε).
So b prefers M1.

3. b is on M3: Being after e, job b prefers M1.

Thus, the game G∗ has no pure Nash equilibrium.

We can use the above example to show that deciding whether a game instance
has a NE is NP-complete by using a reduction from 3-bounded 3-dimensional
matching. The proof is omitted. A more involved hardness proof that uses a
similar technique is given in the proof of Theorem 12.

Theorem 1. Given an instance of a scheduling game, it is NP-complete to
decide whether the game has a NE.

Our next results are positive. When combined with known results regarding
equilibrium existence, and our example above, we get a tight characterization of
classes of instances with a guaranteed Nash equilibrium.

The following algorithm is intended for instances in the class G1, that is, for
all i ∈ N , wi = 1. It assigns the jobs greedily, where in each step, a job is added
on a machine on which the cost of the next job is minimal.
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Algorithm 1. Calculating a NE of unit-weight jobs on related machines
1: Let �j denote the number of jobs assigned on machine j. Initially, �j = 0 for all

1 ≤ j ≤ m.
2: repeat
3: Let j� = arg minj cj · (�j + 1).
4: Assign on machine j� the first unassigned job on its priority list.
5: �j� = �j� + 1.
6: until all jobs are scheduled

Theorem 2. If wi = 1 for all jobs i ∈ N , then Algorithm 1 calculates a NE.

In fact, for the unweighted case, every sequence of better responses converges
in polynomial time. Given a strategy profile s, a strategy s′

i for job i ∈ N is a better
response if costi(s′

i, s−i) < costi(s). The proof of the following theorem is omitted,
but analyzes a potential function that is introduced by Gourvès et al. [13].

Theorem 3. If wi = 1 for all jobs i ∈ N , then jobs reach an equilibrium after
polynomially many better response moves.

Our next result considers the number of machines and completes the picture.
Since our inexistence example uses three machines, out of which two are identical
(in both delay and priority list), we cannot hope for a wider positive result.

Theorem 4. If m ≤ 2, then a NE exists and can be calculated efficiently.

Proof. For a single machine, the priority list defines the only feasible schedule,
which is clearly a NE. For m = 2, assume w.l.o.g., that c1 = 1 and c2 = c ≥ 1.
Consider the following algorithm, which initially assigns all the jobs on the fast
machine. Then, the jobs are considered according to their order in π2, and every
job gets an opportunity to migrate to M2.

Algorithm 2. Calculating a NE schedule on two related machines
1: Assign all the jobs on M1 (the fast machine) according to their order in π1.
2: For 1 ≤ k ≤ n, let the job i for which π2(i) = k perform a best-response move

(migrate to M2 if this reduces its completion time).

Denote by s1 the schedule after the first step of the algorithm (where all the
jobs are on M1), and let s denote the schedule after the algorithm terminates.
We show that s is a NE.

Claim. No job for which si = 1 has a beneficial migration.
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Proof. Assume by contradiction that job i is assigned on M1 and has a beneficial
migration. Assume that π2(i) = k. Job i was offered to perform a migration in
the k-th iteration of step 2 of the algorithm, but chose to remain on M1. The only
migrations that took place after the k-th iteration are from M1 to M2. Thus, if
migrating is beneficial for i after the algorithm completes, it should have been
beneficial also during the algorithm, contradicting its choice to remain on M1.

Claim. No job for which si = 2 has a beneficial migration.

Proof. Assume by contradiction that the claim is false and let i be the first job
on M2 (first with respect to π2) that may benefit from returning to M1. Let
s1 denote the schedule before job i migrates to M2 - during the second step of
the algorithm. Recall that cost i(s) is the completion time of job i on M2, and
cost i(s1) is its completion time on M1 before its migration.

Since the jobs are activated according to π2 in the 2-nd step of the algorithm,
no jobs are added before job i on M2. Job i may be interested in returning
to M1 only if some jobs that were processed before it on M1, move to M2

after its migration. Denote by Δ the set of these jobs, and let δ be their total
weight. Let i′ be the last job from Δ to complete its processing in s. Since
job i′ performs its migration out of M1 after job i, and jobs do not join M1

during step 2 of the algorithm, the completion time of i′ when it performs the
migration is at most cost i′(s1). The migration from M1 to M2 is beneficial for
i′, thus, cost i′(s) < cost i′(s1).

The jobs in Δ are all before job i in π1 and after job i in π2. Therefore,
cost i′(s1) < cost i(s1), and cost i′(s) ≥ cost i(s) + cδ. Finally, we assume that s is
not stable and i would like to return to M1. By returning, its completion time
would be cost i(s1) − δ. Given that the migration is beneficial for i, and that i is
the first job who likes to return to M2, we have that cost i(s1) − δ < cost i(s).

Combining the above inequalities, we get

cost i(s
1) < cost i(s)+δ ≤ cost i′(s)−(c−1)δ < cost i′(s1)−(c−1)δ < cost i(s

1)−(c−1)δ.

This contradicts the fact that c ≥ 1 and δ ≥ 0.

By combining the two claims, we conclude that s is a NE. �

3 Equilibrium Inefficiency

Two common measures for evaluating the quality of a schedule are the makespan,
given by Cmax(s) = maxi∈N cost i(s), and the sum of completion times, given
by

∑
i∈N cost i(s). In this section we analyze the equilibrium inefficiency with

respect to each of the two objectives, for each of the four classes for which a NE
is guaranteed to exist.

We begin with G1, the class of instances with unweighted jobs. For this class
we show that allowing arbitrary priority lists does not hurt the social cost, even
on machines with different speeds.
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Theorem 5. PoA(G1) = PoS(G1) = 1 for both the min-makespan and the sum
of completion times objective.

In Theorem 4 it is shown that a NE exists for any instance on two related
machines. We now analyze the equilibrium inefficiency of this class. Let Gc

2 denote
the class of games played on two machines with delays c1 = 1 and c2 = c ≥ 1.

Theorem 6. For the min-makespan objective, PoA(Gc
2) =PoS(Gc

2) = 1 + 1
c if

c ≥
√
5+1
2 , and PoA(Gc

2) = PoS(Gc
2) = 1 + c

c+1 if c ≤
√
5+1
2 .

Proof. Let G ∈ Gc
2. Let W =

∑
i wi be the total weight of all jobs. Assume first

that c ≥
√
5+1
2 . For the minimum makespan objective, OPT (G) ≥ W/(1 + 1/c).

Also, for any NE s, we have that Cmax(s) ≤ W , since every job can migrate to
be last on the fast machine and have completion time at most W . Thus, PoA
≤ 1 + 1/c.

Assume next that c <
√
5+1
2 . Let job a be the last job to complete in a worst

Nash equilibrium s, w1 be the total weight of all jobs different from a on machine
1, and w2 be the total weight of all jobs different from a on machine 2 in s. Then
since s is a Nash equilibrium, Cmax(s) ≤ w1 + wa and Cmax(s) ≤ c · (w2 + wa).
Combining these two inequalities yields

Cmax(s) ≤ W + wa

1 + 1
c

≤ (1 + c/(c + 1)) · OPT (G),

where for the inequality we use that OPT (G) ≥ W/(1+1/c) and OPT (G) ≥ wa,
and thus PoA≤ 1 + c/(c + 1).

For the PoS lower bound, assume first that c >
√
5+1
2 . Consider an instance

consisting of two jobs, a and b, where wa = 1 and wb = c. The priority lists
are π1 = π2 = (a, b). The unique NE is that both jobs are on the fast machine.
costa(s) = 1, costb(s) = c + 1. For every c >

√
5+1
2 , it holds that c + 1 < c2,

therefore, job b does not have a beneficial migration. An optimal schedule assigns
job a on the slow machine, and both jobs complete at time c. The corresponding
PoS is c+1

c = 1 + 1
c .1

Assume now that c <
√
5+1
2 . Consider an instance consisting of three jobs,

x, y and z, where wx = 1, wy = 1+c−c2

c2 , and wz = 1+c
c . The priority lists are

π1 = π2 = (x, y, z). Note that wy ≥ 0 for every c ≤
√
5+1
2 . The unique NE is

when jobs x and z are on the fast machine, and job y on the slow machine.
Indeed, job y prefers being alone on the slow machine since 1+c

c2 > 1+c−c2

c . Job z
prefers joining x on the fast machine since 1 + wz < c(wy + wz). The makespan
is 1+wz = 1+2c

c . In an optimal schedule, job z is alone on the fast machine, and
jobs x and y are on the slow machine. Both machines have the same completion
time 1+c

c . The PoS is 1+2c
1+c = 1 + c

c+1 . �
Theorem 7. For the sum of completion times objective, PoA(Gc

2) = Θ(n) and
PoS(Gc

2) = Θ(n) for all c ≥ 1.

1 For c =
√
5+1
2

, by taking wb = c + ε, the PoS approaches 1 + c/(c + 1) as ε → 0.
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We turn to analyze the equilibrium inefficiency of the class G3, consisting of
games played on identical-speed machines, having machine-based priority lists.
The proof of the following theorem is based on the observation that every NE
schedule is a possible outcome of Graham’s List-scheduling (LS) algorithm [14].

Theorem 8. For the min-makespan objective, PoA(G3) =PoS (G3) = 2 − 1
m .

Theorem 9. For the sum of completion times objective, PoA(G3) ≤ n−1
m + 1,

and for every ε > 0, PoS(G3) ≥ n
m − ε.

The last class of instances for which a NE is guaranteed to exist includes
games with a global priority list, and is denoted by G4. It is easy to verify
that for this class, the only NE profiles are those produced by List-Scheduling
algorithm, where the jobs are considered according to their order in the priority
list. Different NE may be produced by different tie-breaking rules. Thus, the
equilibrium inefficiency is identical to the approximation ratio of LS [5]. Since
the analysis of LS is tight, this is also the PoS.

Theorem 10. For the min-makespan objective, PoS(G4) =PoA(G4) = Θ(m).

For the sum of completion times objective, we note that the proof of Theorem
7 for two related machines uses a global priority list. The analysis of the PoA is
independent of the number and delays of machines.

Theorem 11. For the sum of completion times objective, PoA(G4) = Θ(n) and
PoS(G4) = Θ(n).

3.1 Hardness of Approximating the Minimum Makespan NE

Correa and Queyranne [9] showed that if all the machines have the same speeds,
but arbitrary priority lists, then a NE is guaranteed to exist, and can be calcu-
lated by a simple greedy algorithm. In Theorem 8, we have shown that the PoA
is at most 2 − 1

m . In this subsection, we show that we cannot hope for a better
algorithm than the simple greedy algorithm. More formally, we prove that it is
NP-hard to approximate the best NE within a factor of 2 − 1

m − ε for all ε > 0.

Theorem 12. If for all machines cj = 1, then it is NP-hard to approximate the
best NE w.r.t. the makespan objective within a factor of 2 − 1

m − ε for all ε > 0.

Proof. We show that for every ε > 0, there is an instance on m identical machines
for which it is NP-hard to distinguish whether the game has a NE profile with
makespan at most m + 2ε or at least 2m − 1.

The hardness proof is by a reduction from 3-bounded 3-dimensional matching
(3DM-3). The input to the 3DM-3 problem is a set of triplets T ⊆ X × Y × Z,
where |X| = |Y | = |Z| = n. The number of occurrences of every element of
X ∪ Y ∪ Z in T is at most 3. The number of triplets is |T | ≥ n. The goal is to
decide whether T has a 3D-matching of size n, i.e., there exists a subset T ′ ⊆ T ,
such that |T ′| = n, and every element in X ∪ Y ∪ Z appears exactly once in T ′.
3DM-3 is known to be NP-hard [18].
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Given an instance of 3DM-3 and ε > 0, consider the following game on
m = |T | + 2 machines, M1,M2, . . . , M|T |+2. The set of jobs includes job a of
weight m, job b of weight m − 1, a set D of |T | − n dummy jobs of weight 3ε,
two dummy jobs d1, d2 of weight 2ε, a set U of (m − 1)2 unit-weight jobs, and
3n jobs of weight ε - one for each element in X ∪ Y ∪ Z.

We turn to describe the priority lists. When the list includes a set, it means
that the elements can appear in an arbitrary order. For the first machine, π1 =
(d1, b, a, U,X, Y, Z,D, d2). For the second machine, π2 = (d2,X, Y, Z, b, U, a, d1).
The m − 2 right machines are triplet-machines. For every t = (xi, yj , zk) ∈ T ,
the priority list of the triplet-machine corresponding to t is (D,xi, yj , zk, U,X \
{xj}, Y \ {yj}, Z \ {zj}, d1, d2, a, b).

The heart of the reduction lies in determining the priority lists. The idea is
that if a 3D-matching exists, then job b would prefer M2 and let job a be assigned
early on M1. However, if there is no 3D-matching, then some job originated from
the elements in X ∪Y ∪Z will precede job b on M2, and b’s best-response would
be on M1. The jobs in U have higher priority than job a on all the machines
except for M1, thus, unless job a is on M1, it is assigned after |U |/(m − 1)
unit-jobs from U , inducing a schedule with high makespan.

Observe that in any NE, the two dummy jobs of weight 2ε are assigned as the
first jobs on M1 and M2. Also, the dummy jobs in D have the highest priority on
the triplet-machines, thus, in every NE, there are |D| = |T |−n triplet-machines
on which the first job is from D.

The following two claims complete the proof. Figure 1 provides an example
for m = 5.

Fig. 1. (a) A NE schedule for n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}.
A matching of size 2 exists. The makespan is 5 + 3ε. (b) A NE schedule for T =
{(x1, y1, z1), (x2, y2, z1), (x1, y2, z2)}. A matching of size 2 does not exist. The makespan
is 9 + 2ε.
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Claim. If a 3D-matching of size n exists, then the game has a NE schedule whose
makespan is m + 2ε.

Proof. Let T ′ be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the
triplet-machines corresponding to T ′ and the jobs of D on the remaining triplet-
machines. Also, assign d1 and d2 on M1 and M2 respectively. M1 and M2 now
have load 2ε while the triplet machines have load 3ε. Next, assign job a on M1

and job b on M2. Finally, add the unit-jobs as balanced as possible: m jobs on
each triplet-machine and a single job after job b on M2. It is easy to verify that
the resulting assignment is a NE. Its makespan is m + 3ε.

Claim. If a 3D-matching of size n does not exist then every NE schedule has
makespan at least 2m − 1.

Proof. Let s be a NE profile of an instance for which a matching does not exist.
From the above observations, there are exactly n triplet-machines on which the
first element is not from D. Since a matching does not exist, for at least one such
machine, there are at most two jobs from X ∪ Y ∪ Z whose priority is higher
than the priority of the unit jobs. Thus, at least one job from X ∪ Y ∪ Z prefers
M2, and is assigned after d2. As a result, job b prefers M1, where it can start
being processed at time 2ε. Given that job b is on M1, and that there are at
least m − 1 unit jobs on each machine, job a cannot start its processing earlier
than m − 1, implying that its completion time is at least 2m − 1. �

4 General Congestion Games with Priority Lists

In this last section we consider a generalization of the model that allows for
arbitrary strategy sets. First, we show that a Nash equilibrium need not exist
and in fact, the question whether a Nash equilibrium exists is NP-complete, even
for unweighted players. Recall that in our unweighted singleton game a NE is
guaranteed to exist. Second, we show a tight upper bound on the price of anarchy
for the sum of weighted costs.

4.1 Unweighted Games

In this subsection, we restrict ourselves to unweighted congestion games with
priority lists, i.e., wi = 1 for all i ∈ N . We first provide an example that shows
that a Nash equilibrium need not exist. Farzad et al. [11] give a different exam-
ple with two players for which a NE need not exist. Our example describes a
symmetric game.

Example 2. The game, G� contains 3 unweighted players, wi = 1 for all i ∈ N ,
and 6 resources. Each players i ∈ N has two pure strategies: {e1, e2, e3} and
{e4, e5, e6}. The delays are equal to 1 for all resources, and the priority lists are
πj(i) = i + j − 1 (modulo 3) for all j ∈ E and i ∈ N . Observe that there is
no Nash equilibrium if all three players choose the same three resources. Also,
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due to the Condorcet paradox [8], there is no Nash equilibrium in which two
players choose one subset of resources and the other player chooses the other.
Specifically, one of these two players has cost 5 and the other has cost 4. By
deviating to the other triplet of resources, the player whose cost is 5 can reduce
its cost to 4.

A natural question is to decide whether a game instance with unweighted
players have a NE profile. Our next result shows that this is NP-complete. The
hardness proof is different from the one in Theorem 1, since this proof consid-
ers unweighted players and multiple-resources strategies, while that proof is for
weighted players and singleton strategies.

Theorem 13. Given an instance of a congestion game with priority lists, it is
NP-complete to decide whether the game has a NE profile. This is valid also for
unweighted players.

4.2 Equilibrium Inefficiency

We consider the sum of weighted players’ costs as a measure of the quality of a
strategy profile. Our analysis below is for linear cost functions, and is trivially
extended to affine cost functions. A game G is said to be (λ, μ)-smooth if for all
strategy profiles s, s′ we have

∑

i∈N

costi(s′
i, s−i) ≤ λ · cost(s′) + μ · cost(s).

Roughgarden [22] showed that if a game G is (λ, μ)-smooth with λ > 0 and
μ < 1, then PoA(G)≤ λ

1−μ .

Theorem 14. Every congestion game with resource-specific priority lists is(
2, 1

2

)
-smooth. Hence PoA(G) ≤ 4.

Proof. Given a strategy profile s, define we(s) =
∑

i′∈N :e∈si′
wi′ . For all s, s′,

∑

i∈N

costi(s′
i, s−i)

≤
∑

i∈N

∑

e∈s′
i

wi · ce · (we(s) + wi) =
∑

e∈E

ce ·
⎛

⎝we(s′) · we(s) +
∑

i∈N :e∈s′
i

w2
i

⎞

⎠

≤
∑

e∈E

ce ·
⎛

⎝we(s′)2 +
1
4

· we(s)2 +
∑

i∈N :e∈s′
i

w2
i

⎞

⎠ ≤ 2 · cost(s′) +
1
2

· cost(s),

where the second inequality follows from
(
we(s′) − 1

2 · we(s)
)2 ≥ 0 and the third

inequality from cost(s) =
∑

e∈E
1
2 · ce · (

we(s)2 +
∑

i∈N :e∈si
w2

i

)
for all s. �

Correa and Queyranne [9] give an example that shows that the bound of 4
is tight for restricted singleton congestion games with priority lists derived from
Smith’s rule.
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Abstract. Online platforms, such as Airbnb, hotels.com, Amazon, Uber
and Lyft, can control and optimize many aspects of product search
to improve the efficiency of marketplaces. Here we focus on a com-
mon model, called the discriminatory control model, where the platform
chooses to display a subset of sellers who sell products at prices deter-
mined by the market and a buyer is interested in buying a single product
from one of the sellers. Under the commonly-used model for single prod-
uct selection by a buyer, called the multinomial logit model, and the
Bertrand game model for competition among sellers, we show the fol-
lowing result: to maximize social welfare, the optimal strategy for the
platform is to display all products; however, to maximize revenue, the
optimal strategy is to only display a subset of the products whose quali-
ties are above a certain threshold. This threshold depends on the quality
of all products, and can be computed in linear time in the number of
products.

Keywords: Online platform markets · Bertrand competition game ·
Search segmentation

1 Introduction

In recent years, we have witnessed the rise of many successful online platform
markets, which have reshaped the economic landscape of modern world. The
online platforms facilitate the exchange of goods and services between buyers
and sellers. For example, buyers can purchase goods from sellers on Amazon,
eBay and Etsy, arrange accommodation from hosts on Airbnb and Expedia,
order transportation services from drivers on Uber and Lyft, and find qualified
workers on online labor markets, such as Upwork and Taskrabbit. The total
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market value of online platforms has exceeded 4.3 trillion dollars worldwide, and
is growing quickly [10].

Compared with traditional markets, the modern online marketplaces have
greater controls over price determination, search and discovery, information rev-
elation, recommendation, etc. For example, Uber and Lyft adopt the full control
model, in which the ride-sharing platforms use online matching algorithms to
determine matches between drivers and riders as well as the fee for the route.
Amazon and Airbnb use the discriminatory control model, where the platforms
only control the list of products to display for each buyer’s search, and the poten-
tial matches and transaction prices are determined by the preference of buyers
and the competition among sellers. The platform can also use other types of
control, such as commissions/subscriptions fees [7], to influence the outcomes of
markets. The rich control options for online platforms have led to an increasing
discussion about the design of online marketplaces with different optimization
objectives [4,5,14].

In this paper, we investigate social welfare and revenue optimization under
the discriminatory control model for online marketplaces. In the discriminatory
control model, the platform has only control over search segmentation mecha-
nisms - which products to display for each buyer’s search, and the transaction
prices are endogenously determined by the competition among sellers. Unlike
traditional firms, most online platforms do not manufacture goods or provide
services, and thus they also do not dictate the specific transaction prices. Instead,
buyers and sellers jointly determine the prices at which the goods or services will
be traded. For example, sellers set prices for their goods on Amazon, hosts decide
on the price for their properties on Airbnb, and freelancers negotiate employers
with hourly fee on Upwork. These prices depend on the demand and supply for
comparable goods and services in the market, and choosing different products
to display for buyers impacts the transaction prices and then the social welfare
and revenue. Motivated by this, we study the role of search segmentation mech-
anisms in social welfare and revenue optimization in the discriminatory control
model with endogenous prices.

To calculate the social welfare and revenue, we first need to specify demand
and supply in online marketplaces. Much of prior work simply represent the
demand/supply curves with non-increasing/non-decreasing distributions [5,7].
Instead, we consider a demand and supply function derived from a basic market
setting in which each seller has one unit of product to offer, and each buyer
demands at most one unit of product chosen from the products displayed to
her1. Given the quality and prices of products, the demand for each product
is equivalent to the proportion of potential buyers that purchase such a prod-
uct. Thus, the demand function is closely related to the purchase behaviors of
buyers who face multiple substitutable products. We adopt the standard multi-
nomial logit (MNL) model [16] to describe buyers’ choice behaviors, and then
derive the demand as a softmax function. With such a specific demand function,

1 Throughout the article, we use product to refer good/service, and use the terms of
product and seller interchangeably.
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we can model the competition among sellers via a Bertrand price competition
game, which is a useful model for investigating oligopolistic competition in real
markets [23]. For instance, the Bertrand game can model the situation where
the hosts on Airbnb compete for potential guests by setting prices for their
properties. The basic questions for the Bertrand competition game are exis-
tence, uniqueness, closed-form expression and learning algorithm of the equilib-
rium. The results in [2,11] have shown that there exists a unique (pure) Nash
equilibrium in the Bertrand game with a MNL model. Furthermore, the Nash
equilibrium coincides with the solution of a system of first-order-condition equa-
tions. We can then characterize the Nash equilibrium in a “closed” form, and
express the equilibrium social welfare/revenue by employing a variant of Lam-
bert W function [8]. We also derive myopic learning strategies, i.e., best response
dynamics, for sellers to reach the Nash equilibrium in practice.

The online platform can further optimize the equilibrium social wel-
fare/revenue by employing search segmentation mechanisms. Different sets of
sellers involved in the Bertrand competition game lead to different equilibrium
solutions. The goal of the search segmentation mechanisms is to efficiently choose
a set of products to display for buyers (or in other words, choose a set of sellers
to compete in the Bertrand game) that maximizes the equilibrium social welfare
or revenue. This display control optimization problem is combinatorial in nature
and the number of possible product sets can be very large, particularly when
there are many potential products to offer. One of our main contributions is to
identify the efficient and optimal search segmentation mechanism, which turns
out to have a simple structure. We show that the online platform will display all
products to maximize equilibrium social welfare, but just display the top k∗ high-
est quality products to maximize equilibrium revenue. We also refer the optimal
mechanism for revenue maximization as quality-order mechanism. The optimal
threshold k∗ depends on the quality of all products, and can be calculated in
linear time in terms of the number of products. The optimality of such simple
search segmentation mechanisms has crucial theoretical and practical implica-
tions. On the theoretical side, this result allows the platform to find the optimal
set of displayed products in linear time, significantly reducing the computational
complexity. On the practical side, optimality of quality-order mechanism is quite
appealing as it guarantees that a lower quality product will not be chosen for
display over a higher quality product. Moreover, in order to increase the oppor-
tunity of being selected, sellers would improve the quality of their products as
product quality is the selection criteria of the optimal mechanism, which will
benefit all the market participants in the long term.

The optimality of the quality-order mechanism for revenue maximization is
established by making a novel connection between the quasi-convexity of equi-
librium revenue function and the optimal control decision on selecting displayed
products. We show that in the Bertrand game with a given subset of sellers, the
equilibrium revenue can be expressed as a quasi-convex function with respective
to an independent variable, which is a one-to-one transformation of the qual-
ity of a candidate product. The property of quasi-convexity guarantees that the
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maximum revenue can be obtained at one of the two endpoints, which corresponds
to the options of displaying the current set of products or involving a new product
with the highest quality among the remaining products. With this critical observa-
tion, if the platform decides to add a new product, it will always select the available
product with the highest quality. Thus, we can efficiently construct the optimal set
of displayed products from any product set. Specifically, if the current product set
does not contain all the top k∗ products, we can further improve the equilibrium
revenue by repeatedly replacing one currently selected product with an unselected
product with a higher quality.

Our work in this paper is related to work on the design of markets for net-
worked platforms [1,5,6,15,19]. We present a detailed discussion of related work
towards the end of the paper. Here, we briefly discuss the similarities and dif-
ferences between our work and prior work on networked market platforms. In
networked markets, there are buyers and sellers connected by a bipartite graph,
where each link indicates that a specific buyer is allowed to buy from a specific
seller. The goal is to remove links from the complete bipartite graph to maximize
either social welfare or revenue. However, much of the prior work focuses on a
linear price-demand curve which does not explicitly model situations where each
buyer is interested in buying only one product (such as one copy of a book) and
each buyer takes into account the quality of each product (available typically
in the form of reviews) while making a buying decision. For such situations,
economists use the MNL model, which we have adopted in this paper. On the
other hand, compared to prior work on networked markets, we only consider a
much simpler bipartite graph where there is only one representative buyer. Such
a model is appropriate when there are no capacity constraints for products at
a seller, for example, each seller may have many copies of a book and there is
no danger of immediately selling out a particular book title. The model is also
appropriate for hotels.com-type settings in situations when most hotels have
multiple available rooms. In situations where multiple buyers are performing
searches simultaneously and hotels are about to sell out of rooms, capacity con-
straints do matter. Such capacity-constrained situations have not been studied
either in this paper or in prior work, and is a topic for future research.

We now summarize the main contributions of this paper.

• We introduce a stylized model to capture the main features of online platform
markets. We explicitly model the market, where each buyer is interested in
purchasing one product, and takes into account the quality of products when
making choice. Specifically, the demand function for products is derived from
the multinomial logit (MNL) choice model, and the supply response of sellers
is described by the outcome of Bertrand competition game. We show that the
Bertrand game exists a unique (pure) Nash equilibrium, and the best response
dynamics converge to the equilibrium. We also explicitly express the social
welfare and revenue under the equilibrium.

• We design efficient search segmentation mechanisms to optimize equilibrium
social welfare and revenue under the Bertrand model of competition. We first
prove that it is optimal to display all products to maximize social welfare. For

http://www.hotels.com
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revenue maximization, we then show that the optimal mechanism, referred to
as quality-order mechanism, only needs to display the top k∗ highest quality
products, where the optimal number of products k∗ can be found in linear
time.

• We prove the result for social welfare maximization by showing the equilib-
rium social welfare function is decreasing with respective to an independent
variable, which also decreases for involving a new product. We establish the
optimality of the quality-order mechanism for revenue maximization by mak-
ing a novel connection between the quasi-convexity of equilibrium revenue
function and the optimal decision on selecting displayed products.

2 Preliminaries

We consider a two-sided market with n sellers S = {1, 2, · · · , n} and one rep-
resentative buyer, representing a set of homogeneous buyers. Each seller i ∈ S

offers a product with quality θi and price pi. We denote the quality and price
vectors by θ = (θ1, θ2, · · · , θn) and p = (p1, p2, · · · , pn), respectively. The qual-
ity vector θ is fixed, while the price vector p is determined by the competition
among sellers. Without loss of generality, we assume the products’ quality and
prices are non-negative, i.e., θi ≥ 0 and pi ≥ 0, and the sellers are sorted accord-
ing to the product quality in a non-decreasing order, i.e., θ1 ≥ θ2 ≥ · · · ≥ θn.
Given the quality θ and prices p of all products, the buyer purchases one of the
n products, or adopts an outside option, i.e., buys nothing from this market. We
normalize the problem parameters so that outside option’s quality θ0 and price
p0 are zero, i.e., θ0 = p0 = 0.

In the random utility model [17], the buyer derives utility ui from purchasing
the product i ∈ S or selecting the outside option i = 0 as follows

ui � θi + ξi − pi,

where ξi is a random variable representing buyer’s (private) preference about
the ith alternative. Given the n+1 choices (n products and the outside option),
the buyer selects the alternative with the maximum utility. Under the standard
assumption that the random variables {ξi} are independent and identically dis-
tributed (i.i.d.) with Gumbel distribution [3,12], it can be shown [3,16] that the
buyer selects the alternative i ∈ {0} ∪ S with probability

qi(p) � Pr(ui = max
j∈{0}∪S

uj) =
ai

1 +
∑

j∈S
aj

, (1)

where ai = exp(θi − pi) for all i ∈ S. We refer to qi as demand or market share
of the alternative i ∈ {0} ∪ S. We can also interpret qi as the expected sales of
quantity of product i normalized by the total number of potential buyers. This
choice model is known as multinomial logit (MNL) model in economic litera-
ture [3,12,16]. We use q = (q0, q1, · · · , qn) to denote the demands of products.



306 Z. Zheng and R. Srikant

Under the above model, we can also obtain an explicit form for the utility ū
of the representative buyer

ū � E[ max
i∈{0}∪S

ui] = log(1 +
∑

i∈S

ai).

From the demand qi(p) in (1), we can express seller i’s expected revenue ri(p)
in terms of prices

ri(p) � pi × qi(p) = pi × ai

1 +
∑

j∈S
aj

. (2)

The social welfare of the two-sided market is measured by the sum of buyer’s
utility and the total revenue of sellers, i.e.,

sw(p) � ū +
∑

i∈S

ri(p) = log(1 +
∑

j∈S

aj) +
∑

i∈S

pi × ai

1 +
∑

j∈S
aj

. (3)

The revenue of the market is the total revenue of all sellers, i.e.,

re(p) �
∑

i∈S

ri(p) =
∑

i∈S

pi × ai

1 +
∑

j∈S
aj

. (4)

We now note the relation between price and demand in the MNL model, which
would be quite useful for optimization and analysis later. Using the price-demand
model in (1), we can express the price pi in terms of demands q:

pi(q) = θi + log(1 −
∑

j∈S

qj) − log(qi). (5)

The social welfare and revenue optimization would become convenient if we work
with the demands q rather than the prices p. For example, the social welfare and
revenue functions are not concave in p, but become jointly concave if we express
the functions in terms of q [9,13,21]. We can leverage this property to derive
the optimal prices for social welfare and revenue maximization in the full control
model, where the platform can control both price and displayed products. We
leave the detailed discussion in Appendix A of technical report [24].

3 Bertrand Competition Game

In discriminatory control model, the online platform can only control the list
of products to display for buyers, and the transaction prices are endogenously
determined by the oligopolistic competition among sellers. In a Bertrand com-
petition game, the seller of each product sets a price. Based on the prices of
the products and the set of available products, the market produces a certain
demand for each product. In our MNL model, the demand is simply the proba-
bility with which a product will be purchased by the buyer. This is the typical
situation in a Airbnb-like model, where the owner of each rental unit sets a price,
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the platform controls the manner in which the rental units are displayed, and
the renter selects a unit to rent.

In this section, we investigate the existence and uniqueness of equilibrium
in the Bertrand competition game, explicitly express the equilibrium social wel-
fare/revenue, and derive the best response dynamics to reach the Nash equilib-
rium. We assume that only a subset S ⊆ S of sellers are involved in the game.
In other words, we assume that the platform has chosen to display the products
of a subset S of the sellers. In the next section, we will show how the choice of S
can be optimized by the platform to maximize either social welfare or revenue.

In the Bertrand competition game, seller i ∈ S selects price pi to maximize
her revenue ri(p) = pi × qi(p), where the demand qi(p) is determined by the
prices p of all products in (1). We can formally represent the Bertrand game as
a triplet Gb = (S, (Pi)i∈S , (ri)i∈S), where S is a set of players, Pi is the strategy
space of player i ∈ S (i.e., Pi � {pi|pi ≥ 0}), and ri(p) is the payoff of player
i ∈ S. We represent the set of strategy profiles by P = P1 × P2 × · · · × Pn.
We also denote the strategy profile p ∈ P as p = (pi,p−i), where p−i is the
strategies (or prices) of all the players except i. For such Bertrand game, we
have the following result from [11].

Theorem 1. There exists a unique (pure) Nash equilibrium in the Bertrand
game Gb = (S, (Pi)i∈S , (ri)i∈S). A vector of prices p̄ = (p̄1, p̄2, · · · , p̄n) ∈ P
satisfies ∂ri(p̄)/∂pi = 0 for all i ∈ S if and only if p̄ is a Nash equilibrium in P.

We next calculate a closed-form expression for the Nash equilibrium prices
p̄. For each seller i ∈ S, by the first-order condition ∂ri(p̄)/∂pi = 0, we have the
following relation for p̄i:

p̄i =
1 +

∑
j∈S āj

1 +
∑

j∈S āj − āi
=

1
1 − q̄i

, (6)

where āi � exp(θi− p̄i) and q̄i is the demand of product i at the equilibrium, i.e.,
q̄i � āi/(1+

∑
j∈S āj). From the price function in (5) and with some calculations

applied to (6), we have the following equations

q̄0 × exp(θi − 1) = q̄i × exp(
q̄i

1 − q̄i
), ∀i ∈ S, (7)

where q̄0 � 1 − ∑
j∈S q̄j is the probability of the buyer that purchases nothing.

We introduce a function V (x) : (0,+∞) → (0, 1), such that for any x ∈ (0,∞),
V (x) is the solution v ∈ (0, 1) satisfying

v × exp(
v

1 − v
) = x. (8)

We can verify that V (x) is a strictly increasing and concave function over
[0,+∞). This function is similar to the Lambert function W (x) [8], which is
the solution w satisfying w × exp(w) = x. With the function V (x) and (7), we
can obtain a closed-form expression for the demand q̄i = V (q̄0 × exp(θi − 1)).
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Combing with the definition of q̄0, we can determine q̄0 by solving the following
single-variable equation

∑

i∈S

V (q̄0 × exp(θi − 1)) = 1 − q̄0. (9)

This equation has a unique solution because V (x) is a strictly increasing func-
tion. We also refer this equation as the equilibrium constraint. The next theo-
rem presents a closed-form expression for the Nash equilibrium solution in the
Bertrand competition game.

Theorem 2. In the Bertrand game Gb = (S, (Pi)i∈S , (ri)i∈S), the Nash equilib-
rium price p̄i and the demand q̄i for each product i ∈ S are given by

p̄i =
1

1 − V (q̄0 × exp(θi − 1))
and q̄i = V (q̄0 × exp(θi − 1)),

where q̄0 is the unique solution to (9).

Substituting the equilibrium solutions into (3), we obtain the equilibrium
social welfare in the Bertrand game with the sellers S ⊆ S

sw(S) = − log (q̄0) +
∑

i∈S

q̄i
1 − q̄i

. (10)

By (4), we can similarly get the equilibrium revenue in the Bertrand game with
the set of sellers S ⊆ S

re(S) =
∑

i∈S

q̄i
1 − q̄i

. (11)

Instead of directly deriving the equilibrium strategies in one single step, in
practice, the sellers may employ some simple, natural and myopic learning algo-
rithms, such as best response, fictitious play or no-regret learning algorithm, to
interact with each other and eventually reach the equilibrium. One straightfor-
ward procedure for sellers in online platform markets to reach the Nash equilib-
rium is best response dynamics. Specifically, suppose that the current vector of
price p is not a Nash equilibrium, and a seller i ∈ S deviates by setting a new
p∗
i , which is the optimal price with respective to the other prices p−i, i.e.,

p∗
i = B(p−i) � arg max

p∈[0,+∞)

ri(p,p−i).

We can verify that the revenue function ri(p,p−i) is strictly quasi-concave in p,
and thus it is not easy to explicitly solve the above optimization problem. One
key observation is that the revenue function is strictly concave in the domain
of the demand, which enables us to obtain closed-form expressions for the best
response strategies, as shown in the following lemma.
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Lemma 1. The best response price p∗
i with respective to a fixed price vector p−i

can be calculated as

p∗
i = θi − log((1 +

∑

j∈S\{i}
aj) × W (

exp(θi − 1)
1 +

∑
j∈S\{i} aj

)),

where W (x) is the Lambert function and aj = exp(θj − pj) for all j ∈ S.

The proof of Lemma 1 is in Appendix B of technical report [24]. We further
have the following result for such best response dynamics in the Bertrand game.

Lemma 2. From an arbitrary price vector p, the best response dynamics con-
verge to the Nash equilibrium of the Bertrand game in a finite number of steps.

The basic idea to derive this result is to show the Bertrand game is an
ordinal potential game [18] with a finite value; the detailed proof of Lemma 2 is
in Appendix C of technical report [24].

4 Optimal Segmenting Mechanisms

In online marketplaces, the platform has control over search segmentation mech-
anisms - which set of products to display for a buyer. The platform can display
any set of products, and the competition among selected sellers then takes place
endogenously through the Bertrand game in Sect. 3. The goal of the platform
is to decide the optimal products S∗ ⊆ S to display, in order to maximize the
equilibrium social welfare/revenue. For n potential products in the market, there
are 2n − 1 possible sets of products, thus an exhaustive search to determine the
optimal set of displayed products is infeasible. We also note that the equilibrium
constraint (9) imposed by the Bertrand competition game is highly nonlinear,
which presents another challenge in deriving the optimal search segmentation
mechanisms. In this section, we exploit the structure of social welfare/revenue
functions to efficiently design the optimal search segmentation mechanisms.

4.1 Social Welfare Maximization

In the following theorem, we show the online platform would display all products
to maximize social welfare.

Theorem 3. For social welfare maximization, the optimal search segmentation
mechanism is to display all products S in the platform.

Proof. We prove this theorem by showing that adding a new product will always
improve the equilibrium social welfare. Suppose the platform has already selected
sellers S ⊂ S, and consider introducing a new product j ∈ S\S. According to
(10), we can express the equilibrium social welfare sw as

sw = − log q̄0 +
∑

i∈S

q̄i
1 − q̄i

+
xj × q̄j

1 − xj × q̄j
. (12)
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Here, q̄i is a function of q0, i.e., q̄i = V (q̄0 × exp(θi − 1)) and xj is an indicator
for product j ∈ S\S, where xj = 1 denotes product j is selected for display;
otherwise xj = 0. It is difficult to directly compare sw with xj = 1 and the one
with xj = 0. From (9), the demands q satisfy the equilibrium constraint:

1 − q̄0 =
∑

i∈S

q̄i + xj × q̄j =
∑

i∈S

V (q̄0 exp(θi − 1)) + xj × V (q̄0 exp(θj − 1)). (13)

Since V (x) is an increasing function, we can observe from the above equation
that q̄0 decreases when xj changes from 0 to 1. Furthermore, with (12) and (13),
we can express the equilibrium social welfare as a function of q̄0:

sw(q̄0) = − log q̄0 +
∑

i∈S

q̄i
1 − q̄i

+
1 − q̄0 − ∑

i∈S q̄i

q̄0 +
∑

i∈S q̄i
. (14)

Thus, we only need to prove sw(q̄0) is a decreasing function. The basic idea is to
explicitly calculate the first derivative of sw(q̄0), and show sw′(q̄0) < 0. We put
the detailed proof of the following lemma in Appendix D of technical report [24].

Lemma 3. The social welfare sw(q̄0) is a decreasing function.

From this lemma and the above discussion, we can always improve the equi-
librium social welfare by adding a new product, which completes the proof. 
�

4.2 Revenue Maximization

The optimal search segmentation mechanism with the objective of revenue max-
imization is different from the optimal mechanism when the platform attempts
to maximize social welfare. To illustrate this difference, we consider two cases:
a low quality case, e.g., θ1 = θ2 = · · · = θn = 0.5, and a high quality case, e.g.,
θ1 = θ2 = · · · = θn = 10. From the result in Theorem 3, the optimal mechanisms
for social welfare maximization in these two cases are to display all products.
However, for revenue maximization, it can be verified that the platform still dis-
plays all products in the low quality case, but only selects the first product in
the high quality case. The intuition behind this difference is that in some sce-
narios, the platform can further improve price and then revenue by reducing the
competition among sellers. We next show the design rationale for the optimal
search segmentation mechanisms for the revenue maximization.

One critical decision the platform has to make is the following: given a set
of products S ⊂ S, whether to just display the currently selected product set S,
or add a new product j from S\S. We refer to such a decision problem as the
“incremental” problem. Similar to the discussion on social welfare maximization,
given a set of selected products S ⊂ S, we can represent the equilibrium revenue
under these two decision options with the following function:

re =
∑

i∈S

q̄i
1 − q̄i

+
xj × q̄j

1 − xj × q̄j
. (15)
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We recall that xj is an indicator for product j ∈ S\S, where xj = 1 indicates
that product j is selected for display; otherwise xj = 0. The demands q̄i’s need
to satisfy the following equilibrium constraint:

1 − q̄0 =
∑

i∈S

q̄i + xj × q̄j =
∑

i∈S

q̄i + xj × V (q̄0 × exp(θj − 1)). (16)

Since V (x) is an increasing function, we have a critical observation from (16):
given a selected product set S, the quality θj of the potential product j ∈ S\S
has a one-to-one and inverse relation with the demand q̄0, i.e., when xj = 1,
involving the product with a higher quality θj leads to the lower value of q0.
With this observation, we can derive the feasible range of the independent value
q̄0. On the one hand, when the platform selects the available product with the
highest quality, i.e., the product j ∈ S\S with θj ≥ θj′ for all j′ ∈ S\S, the
demand q̄0 achieves its lower bound at q̄min

0 . On the other hand, setting xj to 0
represent the case that the platform does not select any new product, and the
corresponding demand q̄max

0 in this case is the upper bound of q̄0. Thus, we have
q̄0 ∈ [

q̄min
0 , q̄max

0

]
for the decision on selecting different product j ∈ S\S.

Using Eq. (16), we can replace xj × q̄j with 1− q̄0−∑
i∈S q̄i in (15) to express

the equilibrium revenue as a function of q̄0:

re(q̄0) =
∑

i∈S

q̄i
1 − q̄i

+
1

q̄0 +
∑

i∈S q̄i
− 1. (17)

Such revenue function indeed captures the equilibrium revenue of making differ-
ent decisions in the “incremental problem”. Specifically, adding a new product
j ∈ S\S (i.e., xj = 1) or do not add anything (i.e., xj = 0 for all j ∈ S\S)
can obtain different values q̄0 calculated by (16), and then re(q̄0) from (17) is
the corresponding equilibrium revenue. The property of the revenue function in
(17), especially the quasi-convexity, is a key step to derive the optimal search
segmentation mechanisms for revenue maximization.

Fig. 1. re(q̄0) is a quasi-convex revenue function for the possible product set to display
when the product 1 has been selected. re(q̄min

0 ) is the revenue obtained by displaying
S∗ = {1, 2}, re(q̄middle

0 ) is the revenue from showing S∗ = {1, n}, and re(q̄max
0 ) is the

revenue of displaying S∗ = {1}.
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Based on the above discussion, we show that the optimal search segmentation
mechanism is to choose the k∗ products with the best quality, for an appropriate
value of k∗, using the following steps:

• First, we show that one should always display the product with the best
quality to maximize revenue (Lemma 4).

• Then, we consider the decision of adding one product to display. As discussed
previously, we show that re(q0) is quasi-concave in q0 which implies that the
optimal decision is to add the next highest quality product or to not add a
product at all, as illustrated in Fig. 1. The quasi-convexity of re(q0) is shown
in Lemma 5 under a certain condition. Using the quasi-convexity of re(q0),
in Lemma 6, we prove that if the optimal display set consists of k∗ products,
then one should select the top k∗ products in terms of quality.

• The final step is to find the optimal k∗. This can be done by the following
calculation. For each possible value of k∗ ∈ {2, · · · , n}, we select the top k∗

products and calculate the revenue. We choose k∗ to maximize this revenue.
This is clearly a linear-time algorithm in n, since one has to add one term
to the expression for the revenue when we increase k∗ by one. This result is
summarized in Theorem 4.

We first show that revenue maximization implies that the highest quality
product is always selected for display.

Lemma 4. For revenue maximization, it is optimal to always display the prod-
uct with the highest quality.

The intuition behind the proof is to show that for any displayed product set,
the revenue function in (17) increases with the quality of the product with the
highest quality in this set. The proof is in Appendix E of technical report [24].

Lemma 4 implies that when the optimal search segmentation mechanism is
to display one product, i.e., k∗ = 1, the platform will choose the first prod-
uct. To obtain the result for the general case with k∗ ≥ 2, we need to estab-
lish the quasi-convexity of the revenue function in (17). It is non-trivial to
directly verify this property because the first term in the revenue function, i.e.,∑

i∈S
q̄i

1−q̄i
, is increasing and concave with respective to q0, while the remaining

term 1
q̄0+

∑
i∈S q̄i

− 1 is decreasing and convex. We first prove the desired quasi-
convexity by assuming all demands q̄i’s are less than 0.5, i.e., q1 < 0.5, due to
qi ≤ q1 for i ∈ S, meaning that no seller dominates the market. This assumption
simplifies the analysis, but still preserves the major intuition. Our results also
hold without this assumption, as shown in Appendix H of technical report [24].

Lemma 5. For any selected product set S, the revenue function re(q̄0) in (17)
is quasi-convex in the range

[
q̄min
0 , q̄max

0

]
, under the assumption of q1 < 0.5.

The basic idea to prove this result is to check the second-order conditions of
a quasi-convex function, i.e., at any point with zero slope, the second derivative
is non-negative, i.e., re′(q̄0) = 0 ⇒ re′′(q̄0) > 0. The details are in Appendix
F of technical report [24]. Equipped with Lemma 5, we can derive the optimal
search mechanism for the case with k∗ ≥ 2.
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Lemma 6. For revenue maximization, the optimal search segmentation mech-
anism is to display the top k∗ products if the cardinality of the optimal product
set is k∗ ≥ 2, under the assumption of q1 < 0.5.

The optimality of the top k∗ mechanism in this lemma can be established by
showing that replacing any product with a product of higher quality will increase
the revenue (see Appendix G in technical report [24] for the proof).

While the specific value of k∗ depends on the quality of all products θ, The
platform can find the optimal k∗ in linear time by computing the revenue of each
set with the top k ∈ [1, n] products, and selecting the one with the maximum
revenue. Thus, from Lemmas 4 and 6, we obtain the main result for the case of
revenue maximization.

Theorem 4. For revenue maximization, the optimal search segmentation mech-
anism is to display the top k∗ products, where k∗ is determined by the quality of
all products θ, and can be calculated in linear time.

5 Related Work

Our work is related to the burgeoning literature that studies online platform
marketplaces of using control levels other than pricing to influence the mar-
ket outcomes [4,5,7,14]. Kanoria and Saban designed a framework to facilitate
the search for buyers and sellers on matching platforms, and found that simple
restrictions on what buyers/sellers can access would boost social welfare [14].
Arnosti et al. investigated the welfare loss due to the uncertainty about seller
availability in asynchronous dynamic matching markets, and also found that
limiting the visibility of sellers can improve social welfare [4]. Our result, dis-
playing only a subset of products to buyers can increase the equilibrium revenue,
extends the findings in these two pieces of work to the context of revenue opti-
mization. Banerjee et al. studied how the platform should control which sellers
and buyers are visible to each other, and provided polynomial-time approxima-
tion algorithms to optimize social welfare and throughput [5]. In their model,
supply and demand are associated with public distributions. By contrast, we
adopt the MNL model to derive a specific demand system, and use the Bertrand
game to capture supply response to this demand system, doing so leads to very
different optimization problems.

Revenue management under general demand model has been extensively
studied in economics, marketing and operation management [9,20–22]. The
model considered in this paper is closely related to that in assortment optimiza-
tion, which is an active area in revenue management research. For assortment
optimization, the demand of products are governed by the variants of attraction-
based choice models [3], e.g., MNL model, mixed nested logit model and nested
logit model, and each product is associated with a fixed price. The objective is to
find a set of products, or an assortment to offer that maximizes the expected rev-
enue. In [22], Talluri and van Ryzin studied the assortment optimization problem
under the MNL model, and showed that the optimal assortment includes a cer-
tain number of products with the highest prices. We also derive a similar result,
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but use the criteria of quality rather than price to rank the potential products.
In our setting a key difference from this line of work is that the product prices
are determined endogenously by the outcome of oligopolistic competition games
instead of being given beforehand. Pricing multiple differentiated products in
the context of the MNL model is another fairly active direction [9,13,21]. In
this setting, all products are displayed, and the objective is to choose pries of
products to maximize revenue. In contrast, we focus on search segmentation
mechanisms with endogenous prices, where the platform only controls the set of
displayed products, to optimize the equilibrium social welfare/revenue.

6 Conclusion

In this paper, we have studied the problems of social welfare maximization and
revenue maximization in designing search space for online platform markets. In
the discriminatory control model, the platform can only control the search seg-
mentation mechanisms, i.e., determine the list of products to display for buyers,
and the products’ prices are determined endogenously by the competition among
sellers. Under the standard buyer choice model, namely the multinomial logit
mode, we have developed efficient and optimal search segmentation mechanisms
to maximize the equilibrium social welfare and revenue under Bertrand com-
petition game. For social welfare maximization, it is optimal to display all the
products. For revenue maximization, the optimal search mechanism, referred as
quality-order mechanism, is to display the top k∗ highest quality products, where
k∗ can be computed in at most linear time in the number of products.
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Abstract. We study Nash equilibria and the price of anarchy in the clas-
sic model of Network Creation Games introduced by Fabrikant, Luthra,
Maneva, Papadimitriou and Shenker in 2003. This is a selfish network
creation model where players correspond to nodes in a network and each
of them can create links to the other n − 1 players at a prefixed price
α > 0. The player’s goal is to minimise the sum of her cost buying edges
and her cost for using the resulting network. One of the main conjectures
for this model states that the price of anarchy, i.e. the relative cost of
the lack of coordination, is constant for all α. This conjecture has been
confirmed for α = O(n1−δ) with δ ≥ 1/ logn and for α > 4n − 13. The
best known upper bound on the price of anarchy for the remaining range
is 2O(

√
log n).

We give new insights into the structure of the Nash equilibria for
α > n and we enlarge the range of the parameter α for which the price
of anarchy is constant. Specifically, we prove that for any small ε > 0,
the price of anarchy is constant for α > n(1 + ε) by showing that any
biconnected component of any non-trivial Nash equilibrium, if it exists,
has at most a constant number of nodes.

1 Introduction

Many distinct network creation models trying to capture properties of Internet-
like networks or social networks have been extensively studied in Computer
Science, Economics, and Social Sciences. In these models, the players (also called
nodes or agents) buy some links to other players creating in this way a network
formed by their choices. Each player has a cost function that captures the need of
buying few links and, at the same time, being well-connected to all the remaining
nodes of the resulting network. The aim of each player is to minimise her cost
following her selfish interests. A stable configuration in which every player or
agent has no incentive in deviating unilaterally from her current strategy is
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called a Nash equilibrium (ne). In order to evaluate the social impact of the
resulting network, the social cost is introduced. In this setting the social cost is
defined as the sum of the individual costs of all the players. Since there is no
coordination among the different players, one can expect that stable networks
do not minimise the social cost. The price of anarchy (PoA) is a measure that
quantifies how far is the worst ne (in the sense of social cost) with respect to
any optimal configuration that minimises the social cost. Specifically, the PoA
is defined as the ratio between the maximum social cost of ne and the social
cost of the optimal configuration. If we were able to prove formally that the PoA
is constant, then we could conclude that the equilibrium configurations in the
selfish network creation games are so good in terms of social cost.

Since the introduction of the classical network creation game by Fabrikant
et al. in [8], many efforts have been done in order to analyse the quality of the
resulting equilibrium networks. The constant PoA conjecture is a well-known
conjecture that states that the PoA is constant independently of the price of
the links. In this work we provide a new understanding of the structure of the
equilibrium networks for the classical network creation game [8]. We focus on the
equilibria for high-price links and show that in the case that an equilibrium is
not a tree, then the size of any of its biconnected components is upper bounded
by a constant. This is the key ingredient to prove later that, for any small ε > 0,
the PoA is constant for α > n(1 + ε) where α is the price per link and n is the
number of nodes.

Let us first define formally the model and related concepts.

1.1 Model and Definitions

The sum classic network creation game Γ is defined by a pair Γ = (V, α) where
V = {1, 2, ...., n} denotes the set of players and α > 0 a positive parameter. Each
player u ∈ V represents a node of an undirected graph and α represents the cost
of establishing a link.

A strategy of a player u of Γ is a subset su ⊆ V \ {u}, the set of nodes
for which player u pays for establishing a link. A strategy profile for Γ is a
tuple s = (s1, . . . , sn) where su is the strategy of player u, for each player
u ∈ V . Let S be the set of all strategy profiles of Γ . Every strategy profile
s has associated a communication network that is defined as the undirected
graph G[s] = (V, {uv | v ∈ su ∨ u ∈ sv}). Notice that uv denotes the undirected
edge between u and v.

Let dG(u, v) be the distance in G between u and v. The cost associated to a
player u ∈ V in a strategy profile s is defined by cu(s) = α|su| + DG[s](u) where
DG(u) =

∑
v∈V,v �=u dG(u, v) is the sum of the distances from the player u to all

the other players in G. As usual, the social cost of a strategy profile s is defined
by C(s) =

∑
u∈V cu(s).

A Nash Equilibrium (ne) is a strategy vector s such that for every player u
and every strategy vector s′ differing from s in only the u component, su �= s′

u,
satisfies cu(s) ≤ cu(s′). In a ne s no player has incentive to deviate individually
her strategy since the cost difference cu(s′)− cu(s) ≥ 0. Finally, let us denote by
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E the set of all ne strategy profiles. The price of anarchy (PoA) of Γ is defined
as PoA = maxs∈E C(s)/mins∈S C(s).

It is worth observing that in a ne s = (s1, ..., sn) it never happens that u ∈ sv

and v ∈ su, for any u, v ∈ V . Thus, if s is a ne, s can be seen as an orientation
of the edges of G[s] where an arc from u to v is placed whenever v ∈ su. It is
clear that a ne s induces a graph G[s] that we call NE graph and we mostly omit
the reference to such strategy profile s when it is clear from context. However,
notice that a graph G can have different orientations. Hence, when we say that
G is a ne graph we mean that G is the outcome of a ne strategy profile s, that
is, G = G[s].

Given a graph G we denote by X ⊆ G the subgraph of G induced by
V (X). In this way, given a graph G = G[s] = (V,E), a node v ∈ V , and
X ⊆ G, the outdegree of v in X is defined as deg+X(v) = | {u ∈ V (X) | u ∈ sv} |,
the indegree of v in X as deg−

X(v) = | {u ∈ V (X) | v ∈ su} |, and, finally, the
degree of v in X as degX(v) = deg+X(v) + deg−

X(v). Notice that degX(v) =
| {u ∈ V (X) | uv ∈ E} |. Furthermore, the average degree of X is defined as
deg(X) =

∑
v∈V (X) degX(v)/|V (X)|.

Furthermore, remind that in a connected graph G = (V,E) a vertex is a
cut vertex if its removal increases the number of connected components of G. A
graph is biconnected if it has no cut vertices. We say that H ⊆ G is a biconnected
component of G if H is a maximal biconnected subgraph of G. More specifically,
H is such that there is no other distinct biconnected subgraph of G containing H
as a subgraph. Given a biconnected component H of G and a node u ∈ V (H), we
define S(u) as the connected component containing u in the subgraph induced
by the vertices (V (G) \ V (H)) ∪ {u}. The weight of a node u ∈ V (H), denoted
by |S(u)| is then defined as the number of nodes of S(u). Notice that S(u)
denotes the set of all nodes v in the connected component containing u induced
by (V (G) \ V (H)) ∪ {u} and then, every shortest path in G from v to any node
w ∈ V (H) goes through u.

In the following sections we consider G to be a ne for α > n and H ⊆ G, if it
exists, a non-trivial biconnected component of G, that is, a biconnected compo-
nent of G of at least three distinct nodes. Then we use the abbreviations dG, dH

to refer to the diameter of G and the diameter of H, respectively, (although
dG(u, v) denotes the distance between u, v in G), and nH the size of H.

1.2 Historical Overview

We now describe the progress around the central question of giving improved
upper bounds on the PoA of the network creation games introduced by Fabrikant
et al. in [8].

First of all, let us explain briefly two key results that are used to obtain
better upper bounds on the PoA. The first is that the PoA for trees is at most
5 [8]. The second one is that the PoA of any ne graph is upper bounded by
its diameter plus one unit [6,7]. Using these two results it can be shown that
the PoA is constant for almost all values of the parameter α. Demaine et al. in
[6,7] showed constant PoA for α = O(n1−δ) with δ ≥ 1

log n by proving that the
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diameter of equilibria is constant for the same range of α. In the view that the
PoA is constant for a such a wide range of values of α, Demaine et al. in [6,7]
conjectured that the PoA is constant for any α. This is what we call the constant
PoA conjecture. More recently, Bilò and Lenzner in [5] demonstrated constant
PoA for α > 4n − 13 by showing that every ne is a tree for the same range of
α. For the remaining range Demaine et al. in [6,7] determined that the PoA is
upper bounded by 2O(

√
log n).

The other important conjecture, the tree conjecture, stated by Fabrikant et al.
in [8], still remains to be solved. The first version of the tree conjecture said that
there exists a positive constant A such that every ne is a tree for α > A. This
was later refuted by Albers et al. in [4]. The reformulated tree conjecture that is
believed to be true is for the range α > n. In [11] the authors show an example of a
non-treene for the range α = n−3 and then, we can deduce that the generalisation
of the tree conjecture for α > n cannot be extended to the range α > n(1−δ) with
δ > 0 any small enough positive constant. Notice that the constant PoA conjecture
and the tree conjecture are related in the sense that if the tree conjecture was true,
then we would obtain that the PoA is constant for the range α > n as well.

Let us describe the progress around these two big conjectures considering
first the case of large values of α and after the case of small values of α.

For large values of α it has been shown constant PoA for the intervals α >
n3/2 [9], α > 12n log n [4], α > 273n [10], α > 65n [11], α > 17n [1] and
α > 4n − 13 [5], by proving that every ne for each of these ranges is a tree, that
is, proving that the tree conjecture holds for the corresponding range of α.

The main approach to prove the result in [1,10,11] is to consider a bicon-
nected (or 2-edge-connected in [1]) component H from the ne network, and
then to establish non-trivial upper and lower bounds for the average degree
of H, noted as deg(H). More specifically, it is shown that deg(H) ≤ f1(n, α)
for every α ≥ c1n and deg(H) ≥ f2(n, α) for every α ≥ c2n, with c1, c2 con-
stants and f1(n, α), f2(n, α) functions of n, α. From this it can be concluded
that there cannot exist any biconnected component H for any α in the set
{α | f1(n, α) < f2(n, α) ∧ α ≥ max(c1, c2)n}, and thus every ne is a tree for this
range of α.

In [10,11], to prove the upper bound on the term deg(H) the authors basically
consider a BFS tree T rooted at a node u minimising the sum of distances in
H and define a shopping vertex as a vertex from H that has bought at least
one edge of H but not of T . The authors show that every shopping vertex
has bought at most one extra edge and that the distance between two distinct
shopping vertices is lower bounded by a non-trivial quantity that depends on
α and n. By combining these two properties the authors can give an improved
upper bound on deg(H) which is close to 2 from above when α is large enough
in comparison to n. On the other hand, to prove a lower bound on deg(H) the
authors show that in H there cannot exist too many nodes of degree 2 close
together.

In [1], the authors use the same upper bound as the one in [11] for the term
deg(H) but give an improved lower bound better than the one from [11]. To
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show this lower bound they introduce the concept of coordinates and 2-paths.
For α > 4n, the authors prove that every minimal cycle is directed and then use
this result to show that there cannot exist long 2−paths.

In contrast, Bilò and Lenzner in [5] consider a different approach. Instead
of using the technique of bounding the average degree, they introduce, for any
non-trivial biconnected component H of a graph G, the concepts of critical pair,
strong critical pair, and then, show that every minimal cycle for the correspond-
ing range of α is directed. The authors play with these concepts in a clever way
in order to reach the conclusion.

In a very preliminary draft [2], we take another perspective and conclude
that given ε > 0 any positive constant, the PoA is constant for α > n(1 + ε).
Specifically, in [2], we prove that if the diameter of a ne graph is larger than a
given positive constant, then the graph must be a tree. Such proposal represents
an interesting approach to the same problem but the calculations and the proofs
are very involved and hard to follow. In this work we present in a clear and
elegant way the stronger result that, for the same range of α, the size of any
biconnected component of any non-tree ne is upper bounded by a constant.

For small values of α, among the most relevant results, it has been proven
that the PoA is constant for the intervals α = O(1) [8], α = O(

√
n) [4,9] and

α = O(n1−δ) with δ ≥ 1/ log n [6,7].
The most powerful technique used in these papers is the one from Demaine

et al. in [6,7]. They show that the PoA is constant for α = O(n1−δ) with δ >
1/ log n, by studying a specific setting where some disjoint balls of fixed radius
are included inside a ball of bigger radius. Considering the deviation that consists
in buying the links to the centers of the smaller balls, the player performing such
deviation gets closer to a majority of the nodes by using these extra bought edges
(if these balls are chosen adequately). With this approach it can be shown that
the size of the balls grows in a very specific way, from which then it can be
derived the upper bounds for the diameter of equilibria and thus for the PoA.

1.3 Our Contribution

Let us consider a weaker version of the tree conjecture that considers the exis-
tence of biconnected components in a ne having some specific properties regard-
ing their size.

Conjecture 1 (The biconnected component conjecture). For α > n, any bicon-
nected component of a non-tree ne graph has size at most a prefixed constant.

Let ε > 0 be any positive constant. We show that the restricted version of
this conjecture where α > n(1 + ε) is true (Sect. 5, Theorem 3). This result
jointly with dG ≤ dH + 250 (Theorem 1, Sect. 4) for α > n, whenever H exists,
imply that dG is upper bounded by a prefixed constant, too. Recall that, the
diameter of any graph plus one unit is an upper bound on the PoA and the price
of anarchy for trees is constant. Hence, we can conclude that the PoA is constant
for α > n(1 + ε).
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In order to show these results, we introduce a new kind of sets, the A sets,
satisfying some interesting properties and we adapt some well-known techniques
and then, combine them together in a very original way. Let us describe the
main ideas of our approach:

– Inspired by the technique considered in [6,7] which is used to relate the diame-
ter of G with the size of G, we obtain an analogous relation between the diam-
eter of H and the size of H (Sect. 3, Proposition 4), that can be expressed as
dH = 2O(

√
log nH).

– We improve the best upper bound known on deg(H) (Sect. 5, Theorem 2).
We show this crucial result by using a different approach than the one used in
the literature. We consider a node u ∈ V (H) minimising the sum of distances
and, instead of lower bounding the distance between two shopping vertices,
we introduce and study a natural kind of subsets, the A sets (Sect. 2). Each A
set corresponds to a node v ∈ V (H) and a pair of edges e1, e2 where v ∈ V (H)
and e1, e2 ∈ E(H) are two links bought by v. The A sets play an important
role when upper bounding the cost difference of player v associated to the
deviation of the same player that consists in selling e1, e2 and buying a link
to u (Sect. 2, Proposition 1 and Proposition 2). By counting the cardinality
of these A sets we show that the term deg(H) can be upper bounded by an
expression in which the terms n, α, nH , and dH appear (Sect. 2, Proposition
3). By using the relation dH = 2O(

√
log nH) we can refine the upper bound

for the deg(H) even more. Subsequently, we consider the technique used in
[1,10,11], in which lower and upper bounds on the average degree of H are
combined to reach a contradiction whenever H exists, i.e. whenever G is a
non-tree ne graph.

Due to space constraints we refer to [3] for all omitted details.

2 An Upper Bound for deg(H) in Terms of the Size and
the Diameter of H

Remind that in all the sections we consider that G is a ne of a network creation
game Γ = (V, α) where α > n. If G is not a tree then we denote by H a maximal
biconnected component of G.

In this section we give an intermediate upper bound for the term deg(H)
that will be useful later to derive the main conclusion of this paper.

Let u ∈ V (H) be a prefixed node and suppose that we are given v ∈ V (H)
and e1 = (v, v1), e2 = (v, v2) two links bought by v. The A set of v, e1 =
(v, v1), e2 = (v, v2), noted as Ae1,e2(v), is the subset of nodes z ∈ V (G) such
that every shortest path (in G) starting from z and reaching u goes through v
and the predecessor of v in any such path is either v1 or v2.

Therefore, notice that v �∈ Ae1,e2(v) and the following remark always holds:

Remark 1. Let e1, e2, e
′
1, e

′
2 be four distinct edges such that e1, e2 are bought by

v and e′
1, e

′
2 are bought by v′. If dG(u, v) = dG(u, v′) then the A set of v, e1, e2

and the A set of v′, e′
1, e

′
2 are disjoint even if v = v′.
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Notice that the definition of the A sets depends on u ∈ V (H), a prefixed
node. For the sake of simplicity we do not include u in the notation of the A
sets. Propositions 1 and 2 are stated for any general u ∈ V (H) but in Corollary
1 we impose that u minimises the function DG(·) in H.

For any i = 1, 2, we define the Ai set of v, e1 = (v, v1), e2 = (v, v2), noted as
Ai

e1,e2
(v), the subset of nodes z from Ae1,e2(v) for which there exists a shortest

path (in G) starting from z and reaching u such that goes through v and the
predecessor of v in such path is vi.

With these definitions, Ae1,e2(v) = A1
e1,e2

(v) ∪ A2
e1,e2

(v) and Ai
e1,e2

(v) = ∅
iff dG(u, vi) = dG(u, v) − 1 or dG(u, vi) = dG(u, v). Furthermore, the subgraph
induced by Ai

e1,e2
(v) is connected whenever Ai

e1,e2
(v) �= ∅.

Now, suppose that e1, e2 ∈ E(H) and think about the deviation of v that
consists in deleting ei for i = 1, 2 and buying a link to u. Let ΔC be the
corresponding cost difference and define crossings(X,Y ) for subsets of nodes
X,Y ⊆ V (G) to be the set of edges xy with x ∈ X, y ∈ Y . Then we derive
formulae to upper bound ΔC in the two only possible complementary cases: (i)
crossings(A1

e1,e2
(v), A2

e1,e2
(v)) �= ∅ and (ii) crossings(A1

e1,e2
(v), A2

e1,e2
(v)) = ∅.

In case (i), A1
e1,e2

(v), A2
e1,e2

(v) �= ∅ so that the subgraphs induced by
A1

e1,e2
(v), A2

e1,e2
(v) are both connected. This trivially implies that the graph

induced by Ae1,e2(v) = A1
e1,e2

(v) ∪ A2
e1,e2

(v) is connected as well. Therefore,
since H is biconnected and e1, e2 ∈ E(H) by hypothesis, there must exist at
least one connection distinct from e1, e2 joining Ae1,e2(v) with its complement.
Taking this fact into the account we obtain the following result:

Proposition 1. Let us assume that crossings(A1
e1,e2

(v), A2
e1,e2

(v)) �= ∅ and xy
is any connection distinct from e1, e2 between Ae1,e2(v) and its complement, with
x ∈ Ae1,e2(v). Furthermore, let l be the distance between v1, v2 in the subgraph
induced by Ae1,e2(v). Then ΔC, the cost difference for player v associated to
the deviation that consists in deleting e1, e2 and buying a link to u, satisfies the
following inequality:

ΔC ≤ −α + n + DG(u) − DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|

z

v1

v
u

v2

Ae1,e2(v)

A1
e1,e2

(v)

A2
e1,e2

(v)

x

y

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. The new path from z to v in the deviated graph G′
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Proof. The term −α is clear because we are deleting the two edges e1, e2 and
buying a link to u. Now let us analyse the difference of the sum of distances in
the deviated graph G′ vs the original graph. For this purpose, suppose wlog that
x ∈ A1

e1,e2
(v) and let z be any node from G. We distinguish two cases:

(A) If z �∈ Ae1,e2(v) then:
(1) Starting at v, follow the connection vu.
(2) Follow a shortest path from u to z in the original graph.

In this case we have that dG′(v, z) ≤ 1 + dG(u, z).
(B) If z ∈ Ae1,e2(v) then there exists some i such that z ∈ Ai

e1,e2
(v). Consider

the following path (see the Fig. 1 above for clarifications):
(1) Starting at v, follow the connection vu, which corresponds to one unit dis-

tance.
(2) Follow a path from u to y contained in the complementary of Ae1,e2(v). Since

y �∈ Ae1,e2(v) we have that dG(u, y) ≤ dG(u, v) + dG(v, x) + 1. Therefore, in
this case we count at most dG(u, v) + dG(v, x) + 1 unit distances.

(3) Cross the connection yx, which corresponds to one unit distance.
(4) Go from x to v1 inside Ae1,e2(v) giving exactly dG(x, v) − 1 unit distances.
(5) Go from v1 to vi inside Ae1,e2(v) giving at most l unit distances.
(6) Go from vi to z inside Ae1,e2(v) giving exactly dG(v, z) − 1 unit distances.

In this case we have that:

dG′(v, z) ≤
(1)
︸︸
1 +

(2)
︷ ︸︸ ︷
dG(u, v) + dG(v, x) + 1 +

(3)
︸︸
1 +

(4)
︷ ︸︸ ︷
dG(x, v) − 1 +

(5)
︸︸
l +

(6)
︷ ︸︸ ︷
dG(v, z) − 1

= 1 + dG(u, z) + (2dG(v, x) + l)

Combining the two inequalities we reach the conclusion:

ΔC ≤ −α + n + DG(u) − DG(v) + (2dG(v, x) + l)|Ae1,e2(v)|

In case (ii), we assume that crossings(A1
e1,e2

(v), A2
e1,e2

(v)) = ∅. Since H is
biconnected and e1, e2 ∈ E(H) by hypothesis, for each i such that Ai

e1,e2
(v) �= ∅

there must exist at least one connection distinct from ei joining Ai
e1,e2

(v) with
its complement. Taking this fact into the account we obtain the following result:

Proposition 2. Let us assume that crossings(A1
e1,e2

(v), A2
e1,e2

(v)) = ∅ and let
I ⊆ {1, 2} be the subset of indices i for which Ai

e1,e2
(v) �= ∅. Furthermore,

suppose that for each i ∈ I, xiyi is any connection distinct from ei between
Ai

e1,e2
(v) and its complement, with xi ∈ Ai

e1,e2
(v). Then ΔC, the cost difference

of player v associated to the deviation that consists in deleting e1, e2 and buying
a link to u, satisfies the following inequality:

ΔC ≤ −α + n + DG(u) − DG(v) + max(0, 2max
i∈I

dG(v, xi))|Ae1,e2(v)|
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Now, notice the following simple fact:

Remark 2. If z1, z2 ∈ V (H) then any shortest path from z1 to z2 is contained in
H. This is because otherwise, using the definition of cut vertex, any such path
would visit two times the same cut vertex thus contradicting the definition of
shortest path. Therefore, if z1, z2 ∈ V (H) then dG(z1, z2) = dH(z1, z2) ≤ dH .

Combining the formulae from Proposition 1 and Proposition 2 together with
this last remark, we can obtain a lower bound for the cardinality of any A set of
v, e1, e2 when u satisfies a very specific constraint:

Corollary 1. If u ∈ V (H) is such that DG(u) = minz∈V (H) {DG(z)}, then
|Ae1,e2(v)| ≥ α−n

4dH

Now we use this last formula to give an upper bound for the average degree
of H. Recall that we are working in the range α > n:

Proposition 3.

deg(H) ≤ 2 +
16dH(dH + 1)n

nH(α − n)

Proof. For any node v ∈ V (H) let Z(v) be any maximal set of distinct and
mutually disjoint pairs of edges from H bought by v. Let X be defined as the
set of tuples ({e1, e2} , v) with v ∈ V (H) and {e1, e2} a pair of edges from Z(v).
Now define S =

∑
({e1,e2},v)∈X |Ae1,e2(v)|. On the one hand, using Corollary 1

we deduce that S ≥ α−n
4dH

|X|.
On the other hand, for each distance index i, let Si be the sum of the car-

dinalities of the A sets for all the tuples ({e1, e2} , v) ∈ X with dG(u, v) = i. By
Remark 1, Si ≤ n. Therefore:

|X|α − n

4dH
≤ S = S0 + ... + SdH

≤ n(dH + 1)

Next, notice that there are exactly �deg+
H(v)

2  pairs in Z(v) for each v consid-

ered. Furthermore, �deg+
H(v)

2  = deg+H(v)/2 if deg+H(v) is even and �deg+
H(v)

2  =
(deg+H(v) − 1)/2 otherwise. Hence:

|X| ≥
∑

v∈V (H)

deg+H(v) − 1
2

=
|E(H)| − |V (H)|

2

Finally:

deg(H) =
2|E(H)|
|V (H)| ≤ 2 +

4|X|
|V (H)| ≤ 2 +

16(dH + 1)ndH

nH(α − n)
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3 The Diameter of H vs the Number of Nodes of H

In this section we establish a relationship between the diameter and the number
of the vertices of H which allows us to refine the upper bound for the term
deg(H) using the main result of the previous subsection.

We start extending the technique introduced by Demaine et al. in [6,7].
Instead of reasoning in a general G, we focus our attention to the nodes from
H reaching an analogous result. Since for α > 4n − 13 every ne is a tree it is
enough if we study the case α < 4n.

For any integer k and u ∈ V (H), let Nk,H(u) = {v ∈ V (H) | dG(u, v) ≤ k}
be the set of nodes from V (H) at distance at most k from u. With this definition
in mind then Sk(u) = ∪v∈Nk,H(u)S(v) is the set of all nodes inside S(v) for all
v ∈ V (H) at distance at most k from u. In other words, Sk(u) is the set of all
nodes z such that the first cut vertex that one finds when following any shortest
path from z to u is at distance at most k from u.

Furthermore, for any integer k we define mk = minu∈V (H) |Nk,H(u)|. That
is, mk is the minimum cardinality that any k-neighbourhood in H can have.

Lemma 1. For any integer k ≥ 0, either there exists a node u ∈ V (H) such
that |S4k+1(u)| > n/2 or, otherwise, m5k+1 ≥ mkk/4.

Proof. If there is a vertex u ∈ V (H) with |S4k+1(u)| > n/2, then the claim
is obvious. Otherwise, for every vertex u ∈ V (H), |S4k+1(u)| ≤ n/2. Let u be
any node from V (H) minimising the cardinality of the balls of radius 5k + 1
intersected with V (H). That is, u is any node from V (H) with |N5k+1,H(u)| =
m5k+1. Let Z = {v1, ..., vl} be any maximal set of nodes from V (H) at distance
4k +1 from u (in H) with the property that every two distinct nodes vi, vj ∈ Z,
we have that dG(vi, vj) ≥ 2k + 1.

Now, consider the deviation of u that consists in buying the links to every
node from Z and let G′ be the new graph resulting from such deviation. Let
z ∈ S(w) with w ∈ V (H) and dG(w, u) ≥ 4k + 1 and consider any shortest
path (in H) from w to u. Let wπ be the node from any such shortest path at
distance 4k + 1 from u. By the maximality of Z there exists at least one node
vw ∈ Z for which dG(vw, wπ) ≤ 2k. The original distance between z and u is
dG(z, u) = dG(z, w) + dG(w, u). In contrast, the distance between z and u in G′

satisfies the following inequality:

dG′(z, u) ≤ 1 + dG(vw, wπ) + dG(wπ, w) + dG(w, z)

≤ 1 + 2k + (dG(u,w) − (4k + 1)) + dG(w, z) = −2k + dG(u,w) + dG(w, z)

Therefore, dG(z, u)−dG′(z, u) ≥ 2k. Since we are assuming that |S4k+1(u)| ≤
n/2 then this means that

∑
{v∈V (H)|dG(v,u)>4k+1} |S(v)| ≥ n/2, that is, the sum

of the weights of the nodes from H at distance strictly greater than 4k + 1 from
u is greater than or equal n/2. Then ΔC, the cost difference for u associated to
such deviation, satisfies:

ΔC ≤ lα − 2k
(n

2

)
≤ 4nl − kn
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Since G is a ne then from this we conclude that l ≥ k/4.
Finally, notice that the distance between two nodes in Z is at least 2k + 1

implying that the set of all the balls of radius k with centers at the nodes from
Z are mutually disjoint. Therefore, m5k+1 = |N5k+1,H(u)| ≥ lmk ≥ mkk/4.

Lemma 2. If r < dH/4 − 4 then |Sr(u)| ≤ n/2 for every node u ∈ V (H).

Combining these results we are able to give an extension of the result from
Demaine et al. in [6,7]:

Proposition 4. dH < 5
√

2 log5 nH+5.

4 The Diameter of G vs the Diameter of H

In this section we establish a relationship between the diameter of G and the
diameter of H when α > n. Since for α > 4n− 13 every ne is a tree it is enough
if we study the case n < α < 4n.

We show that in this case, the distance between any pair w, z ∈ V (G) where
z ∈ S(w), is upper bounded by 125 from where we can conclude that dG <
dH + 250. To obtain these results we basically exploit the fact that G is a ne
graph together with key topological properties of biconnected components:

Proposition 5. Let w ∈ V (H) and z ∈ S(w) maximising the distance to w.
Then dG(z, w) < 125.

Proof. Let Z be the subgraph of G induced by S(w) and W the subgraph of
G induced by w together with the set of nodes V (G) \ S(w). Then, define r =
dG(z, w) = maxt∈V (Z) dG(w, t), s = maxt∈V (W ) dG(w, t). With these definitions
it is enough to show that r < 125. Notice that, for instance, if S(w) = {w} then
the result trivially holds.

First, let us see that min(r, s) ≤ 8.
Let v any node maximising the distance to w in W and ΔC1 and ΔC2

the corresponding cost differences of players z and v, respectively, associated
to the deviations of the same players that consist in buying a link to w. Then
ΔC1 ≤ α − |V (W )|(r − 1) and ΔC2 ≤ α − |V (Z)|(s − 1). Adding up the two
inequalities and using that α < 4n:

ΔC1 + ΔC2 ≤ 2α − (min(r, s) − 1)(|V (Z)| + |V (W )|) < 8n − (min(r, s) − 1)n

Since G is a ne graph then ΔC1 + ΔC2 ≥ 0 and from here we deduce that
min(r, s) ≤ 8, as we wanted to see.

If r ≤ 8 then we are done. Therefore we must address the case s ≤ 8.
Next, since H is a non-trivial biconnected component, there exist nodes t, t′ ∈

V (H) such that they are adjacent in H, t has bought the link e = (t, t′) and one of
the two following cases happen: either (i) t is at distance 1 from w, t′ is at distance
1 or 2 from w or (ii) t′ is at distance 1 from w and t at distance 2 from w.
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In case (i) we deduce that |S(w)| = |V (Z)| ≤ n 4s−2
4s−1 ≤ n 30

31 . This is because
of the following reasoning. Let ΔCdelete be the corresponding cost difference of
player t associated to the deviation of the same player that consists in deleting
the edge e. Since H is biconnected then there exists a loop going through e and
contained in H of length at most 4s + 1. Notice that when deleting e, t only
increases the distances maybe to the nodes from V (W ) \ {w} but not to the
nodes from V (Z) by at most 4s − 1 distance units. Therefore:

ΔCdelete ≤ −α + (4s − 1)(n − |V (Z)|) < −n + (4s − 1)(n − |V (Z)|)
Since G is a ne graph then ΔCdelete ≥ 0 and from here, using the hypothesis
s ≤ 8, we deduce the conclusion:

|V (Z)| <
−n + n(4s − 1)

4s − 1
= n

4s − 2
4s − 1

≤ 30
31

n

In case (ii) we deduce that |S(w)| = |V (Z)| ≤ n/2. This is because of the
following reasoning. Let ΔCswap be the corresponding cost difference of player t
associated to the deviation of the same player that consists in swapping the edge
e for the link (t, w). Notice that when performing such swap, t only increases the
distances maybe to the nodes from V (W ) \ {w} but strictly decreases for sure,
one unit distance to all the nodes from V (Z). Therefore:

ΔCswap ≤ −|V (Z)| + (n − |V (Z)|) ≤ n − 2|V (Z)|
Since G is a ne graph then ΔCswap ≥ 0 and from here we deduce the con-

clusion |V (Z)| ≤ n/2.
Hence, we have obtained that either |S(w)| ≤ 30

31n, in case (i), or |S(w)| ≤ n
2 ,

in case (ii).
Finally, consider the deviation of z that consists in buying the link to w.

Then the corresponding cost difference ΔCbuy satisfies the following inequality:

ΔCbuy ≤ α − (r − 1)(n − |S(w)|) < 4n − (r − 1)(n − |S(w)|)
Since G is a ne graph, then ΔCbuy ≥ 0 so that we conclude that r <
4n

n−|S(w)| + 1. Using this property we conclude that r < 125 in case (i) and
r ≤ 8 in case (ii), so we are done.

As a consequence:

Theorem 1. dG < dH + 250.

5 Combining the Results

Finally, in this section we combine the distinct results obtained so far to prove
the main conclusion.

On the one hand, combining Proposition 3 with Proposition 4 we reach the
following result for the average degree of H:
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Theorem 2.

deg(H) < 2 +
16n

α − n

52
√

2 log5 nH+10

nH

On the other hand, recall that from Lemma 4 and Lemma 2 from [10] and
[11], respectively, the general lower bound deg(H) ≥ 2 + 1

16 that works for any
α can be obtained.

With these results in mind we are now ready to prove the following strong
result:

Theorem 3. Let ε > 0 be any positive constant and α > n(1 + ε). There exists
a constant Kε such that every biconnected component H from any non-tree Nash
equilibrium G has size at most Kε.

Proof. Let G be any non-tree ne graph. Then there exists at least one bicon-
nected component H. By Theorem 2 when α > n(1 + ε) we have that deg(H) <

2+ 16
ε

52
√

2 log5 nH+10

nH
. On the other hand, we know that for any α, deg(H) ≥ 2+ 1

16 .
Then this implies that there exists a constant Kε upper bounding the size of H,
otherwise we would obtain a contradiction comparing the asymptotic behaviour
of the upper and lower bounds obtained for deg(H) in terms of nH .

In other words, the restricted version of the biconnected component conjec-
ture where α > n(1 + ε) holds.

Furthermore, recall that it is well-known that the diameter of any graph
plus one unit is an upper bound for the PoA and the PoA for trees is constant.
Therefore, we conclude that:

Theorem 4. Let ε > 0 be any positive constant. The price of anarchy is constant
for α > n(1 + ε).

Proof. Let G be a ne. If G is a tree we are done, because the PoA for trees is at
most 5. Therefore to prove the result consider that G is a non-tree configuration.
Then, G has at least one non-trivial biconnected component H. On the one hand,
by Theorem 3, there exists a constant Kε that upper bounds the size of H. This
implies that dH ≤ nH ≤ Kε. On the other hand, by Theorem 1, dG ≤ dH + 250.
In this way, dG ≤ Kε +250 and since Kε +250 is a constant, then the conclusion
follows because the PoA is upper bounded by the diameter plus one unit.

6 The Conclusions

The most relevant contribution we have made in this article is to show that the
price of anarchy is constant for α > n(1 + ε). The technique we have used relies
mostly on the improved upper bound on the term deg(H) for α > n. However,
as in [10,11], our refined upper bound still depends on the term n/(α − n), that
tends to infinity when α approaches n from above. This makes us think that
either our technique can be improved even more to obtain the conclusion that
the tree conjecture claims or it might be that there exist some non-tree equilibria
when α approaches n from above.
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One of the salient and understudied features of ride-hailing markets is that riders
and drivers can move between platforms with relatively low friction or have a
presence on several applications at the same time. This feature of the market
has created an intense competition among platforms. The goal of this paper is
to understand the dynamics and outcome of this competition. We aim to answer
the following questions: What is the impact of platform competition on prices
as well as the overall throughput of the market? Could competition lead to a
“tragedy of the commons” and market failure as the platforms compete over the
shared resource of open cars?

To address these questions, building on the market dynamics framework
developed in [1] for a single platform, we propose and study a game-theoretic
model in which two ride-hailing platforms compete for market share via pricing.
Riders and drivers seek to maximize their own utilities and can choose to be
present on only a single platform or participate in both platforms simultane-
ously. We see that at any equilibrium, all users will patronize both platforms
which must offer equal prices; an equilibrium that results in a potential market
failure always exists, but we show surprisingly that under many realistic settings,
other more promising equilibria also exist.

This result is additionally supported by numerical analysis, using parameters
estimated from Uber data to define the demand model, and simulations. We
observe that if riders are not very sensitive to waiting times, the loss of efficiency
due to competition could be small, corresponding to the second equilibrium
outcome of the above theorem.
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Abstract. Motivated by practical concerns in applying information
design to markets and service systems, we consider a persuasion prob-
lem between a sender and a receiver where the receiver may not be an
expected utility maximizer. In particular, the receiver’s utility may be
non-linear in her belief; we deem such receivers as risk-conscious. Such
utility models arise, for example, when the receiver exhibits sensitivity to
the variability and the risk in the payoff on choosing an action (e.g., wait-
ing time for a service). In the presence of such non-linearity, the standard
approach of using revelation-principle style arguments fails to character-
ize the set of signals needed in the optimal signaling scheme. Our main
contribution is to provide a theoretical framework, using results from
convex analysis, to overcome this technical challenge. In particular, in
general persuasion settings with risk-conscious agents, we prove that the
sender’s problem can be reduced to a convex optimization program. Fur-
thermore, using this characterization, we obtain a bound on the number
of signals needed in the optimal signaling scheme.

We apply our methods to study a specific setting, namely binary per-
suasion, where the receiver has two possible actions (0 and 1), and the
sender always prefers the receiver taking action 1. Under a mild convex-
ity assumption on the receiver’s utility and using a geometric approach,
we show that the convex program can be further reduced to a linear
program. Furthermore, this linear program yields a canonical construc-
tion of the set of signals needed in an optimal signaling mechanism. In
particular, this canonical set of signals only involves signals that fully
reveal the state and signals that induce uncertainty between two states.
We illustrate our results in the setting of signaling wait time information
in an unobservable queue with customers whose utilities depend on the
variance of their waiting times.
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acknowledges support from the NSF under grant CMMI-1633920.
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Abstract. In economies without monetary transfers, scrip systems serve
an alternative to sustain cooperation, improve efficiency and mitigate free
riding. This paper considers a marketplace, in which at each time period,
one agent requests a service, one agent provides the service, and a unit
of artificial currency is used to pay for service provision. We ask whether
agents can sustain cooperation when the market is thin, in the sense that
only few agents are available to provide the requested service. To study
this problem, we analyze the stability of the scrip distribution assum-
ing that among the available agents, the one with the minimum amount
of scrips is selected to provide service. When exactly one random agent
is available to provide service, the scrip distribution is unstable, since
the number of scrips each agent has behaves like a simple random walk
in one dimension. However, already when just two random agents are
available to provide service, the scrip distribution is stable, in the sense
that agents do not deviate much from their initial endowment, with high
probability. This suggests that even with minimal liquidity in the mar-
ket, cooperation can be sustained by balancing service provisions among
agents. We further explore cases, in which agents request and become
available to provide service at different rates, and generalize our positive
results to the case, in which the request and availability rates of each
agent are equal. Our theory builds on the literature on the power of two
choices paradigm and load balancing problems. Finally, our results sug-
gest that scrip systems can lead to efficient outcomes in kidney exchange
platforms by sustaining cooperation between hospitals.

Keywords: Scrip systems · The power of two choices ·
Kidney exchange

A full draft of the paper is available at https://web.stanford.edu/iashlagi/papers/
scrips.pdf
S. Kerimov—Supported by the Stanford Management Science & Engineering Graduate
Fellowship, the Nakagawa Special Steel-Mitani Fellowship, and the Jerome Kaseberg
Doolan Fellowship.
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Abstract. We initiate the study of the capacity constrained facility
location problem from a mechanism design perspective. In the capacity
constrained setting, the facility can serve only a subset of the population,
assumed to be the k-closest with respect to agents’ true locations (this
can be justified as the essentially unique equilibrium outcome of a first-
come-first-serve game induced by the facility location). The main result
is a complete characterization of dominant-strategy incentive compati-
ble (DIC) mechanisms via the family of generalized median mechanisms
(GMMs). Thus, the framework we introduce surprisingly provides a new
characterization of GMMs, and is responsive to gaps in the current social
choice literature highlighted by Border and Jordan [1983] and Barbarà,
Massó and Serizawa [1998]. We also provide algorithmic results and study
the performance of DIC mechanisms in optimizing welfare. Adopting a
worst-case approximation measure, we attain tight lower bounds on the
approximation ratio of any DIC mechanism. Interestingly, the standard
median mechanism achieves the optimal approximation ratio for smaller
capacity settings.

ArXiv link: https://arxiv.org/abs/1806.00960.

Keywords: Facility location · Mechanism design without money ·
Capacity · Approximation
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Most of the literature concerning the price of anarchy (PoA) has focused on the
search of tight worst case bounds for specific classes of games, such as congestion
games and, in particular, routing games. Some papers have studied the PoA as a
function of some parameter of the model, such as the traffic demand in routing
games, and have provided asymptotic results in light or heavy traffic. Other
studies have empirically shown that in real networks, for intermediate levels
of traffic the PoA oscillates and exhibits some kinks at specific values of the
demand, often without reaching the worst case bounds.

The shape and number of these oscillations is the object of this paper, where
we provide theoretical results for the behavior of the PoA. We first present some
results for general nonlinear costs, and then we focus on affine cost functions. We
establish some smoothness properties of Wardrop equilibria and social optima.
Under mild assumptions, we show that the price of anarchy is a smooth function
of the traffic inflow, except at values of the demand where the set of paths
used in equilibrium changes. We call these values break points. We then turn
our attention to a class of cost functions that are heavily used in applications,
namely, the ones proposed by the Bureau of Public Roads, and we show that for
these costs we have a scaling law between the equilibrium and optimum flows
which induces a similar scaling for the break points. Moreover, for affine cost
functions we show that the number of break points is finite for any given network,
and we present an example showing that this number can be exponential in the
number of paths.

The relevance of break points is due to the fact that between break points
the PoA is either monotone or it has a unique minimum, therefore, the PoA can
have a local maximum only at a break point. The main fact that supports these
results is that, with affine costs, if an equilibrium uses a certain set of paths at
two different demand levels, then it uses the same set of paths at all intermediate
demands. Finally, we show that this does not hold for less regular cost functions.

The details of the proofs and the relevant references can be found in [1].
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Abstract. Increased availability of high-quality customer information
has fueled interest in personalized pricing strategies, i.e., strategies that
predict an individual customer’s valuation for a product and then offer a
customized price tailored to that customer. While the appeal of person-
alized pricing is clear, it may also incur large costs in the form of market
research, investment in information technology and analytics expertise,
and branding risks. In light of these trade-offs, our work studies the value
of personalized pricing strategies over a simple single price strategies.

We first provide tight, closed-form upper and lower bounds on the
ratio between the profits of an idealized personalized pricing strategy
and a single price strategy. Our upper bounds depend on simple statis-
tics of the valuation distribution and shed light on the types of markets
for which personalized pricing has the most potential. Our lower bounds
depend on simple statistics as well as a unimodal assumption and shed
light on which markets are ill served by a fixed price. Second, we demon-
strate how to obtain bounds that depend on arbitrary moments of the
valuation distribution via infinite dimensional linear programming dual-
ity. Finally, we show how to transform our upper and lower bounds on
idealized personalized pricing strategies to stronger bounds on feature
based personalized pricing strategies that better model current industry
practices.

Keywords: Price discrimination · Personalization ·
Market segmentation

A full version is available at: https://papers.ssrn.com/sol3/papers.cfm?abstract
id=3127719.
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Abstract. Voting systems based on decoy ballots aim at preventing
real ballots from being bought. Decoy ballots do not count in election
outcomes, but are indistinguishable from real ballots. We introduce a
“Devil’s Menu” consisting of several price offers and allocation rules,
which can be used by a malevolent third party—called the adversary—to
curb the protection offered by decoy ballots. In equilibrium, the adversary
can buy the real ballots of any strict subset of voting districts at a price
corresponding to the willingness to sell them. By contrast, the voters
holding decoy ballots are trapped into selling them at a low or negligible
price. Decoy ballots may thus be ineffective against vote-buying even if
the adversary’s budget is limited.

Keywords: Voting · Decoy ballots · Adversary · Mechanism design ·
Attacks · Adverse selection

JEL Classifications: C72 · D4 · D82 · D86
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Abstract. We study the allocation of divisible goods to competing
agents via a market mechanism, focusing on agents with Leontief utili-
ties. The majority of the economics and mechanism design literature has
focused on linear prices, meaning that the cost of a good is proportional
to the quantity purchased. Equilibria for linear prices are known to be
exactly the maximum Nash welfare allocations.

Price curves allow the cost of a good to be any (increasing) func-
tion of the quantity purchased. We show that price curve equilibria are
not limited to maximum Nash welfare allocations with two main results.
First, we show that an allocation can be supported by strictly increasing
price curves if and only if it is group-domination-free. A similar charac-
terization holds for weakly increasing price curves. We use this to show
that given any allocation, we can compute strictly (or weakly) increas-
ing price curves that support it (or show that none exist) in polynomial
time. These results involve a connection to the agent-order matrix of an
allocation, which may have other applications. Second, we use duality to
show that in the bandwidth allocation setting, any allocation maximiz-
ing a CES welfare function can be supported by price curves.

The full version of the paper can be found at https://arxiv.org/pdf/
1807.05293.pdf.
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We study oligopolistic competition in service markets where firms offer a service
to customers. The service quality of a firm – from the perspective of a customer –
depends on the level of congestion and the charged price. A firm can set a price
for the service offered and additionally decides on the service capacity in order to
mitigate congestion. The total profit of a firm is derived from the gained revenue
minus the capacity investment cost. Firms simultaneously set capacities and
prices in order to maximize their profit and customers subsequently choose the
services with lowest combined cost (congestion and price). For this basic model,
Johari, Weintraub and Van Roy [1] derived the first existence and uniqueness
results of pure Nash equilibria (PNE) assuming mild conditions on congestion
functions. Their existence proof relies on Kakutani’s fixed-point theorem and a
key assumption for the theorem to work is that demand for service is elastic,
that is, there is a smooth inverse demand function determining the volume of
customers given the effective customers’ costs.

In this paper, we consider the case of perfectly inelastic demand. This scenario
applies to realistic cases where customers are not willing to drop out of the
market, e.g., if prices are regulated by reasonable price caps. We investigate
existence, uniqueness and quality of PNE for models with inelastic demand and
price caps. We show that for linear congestion cost functions, there exists a
PNE. This result requires a completely new proof approach compared to previous
approaches, since the best response correspondences of firms may be empty, thus
standard fixed-point arguments are not directly applicable. We show that the
game is C-secure (see Reny [3], and McLennan, Monteiro and Tourky [2]), which
leads to the existence of PNE. We furthermore show that the PNE is unique,
and that the efficiency compared to a social optimum is unbounded in general.

A full version of this paper is available at https://arxiv.org/abs/1905.05683.
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Abstract. Ronald Dworkin’s equality of resources and the closely
related concept of envy-freeness, are two of the fundamental ideas behind
fair allocation of private goods. The appropriate analog to these con-
cepts in a public decision-making environment is unclear, since all agents
consume the same “bundle” of resources (though they may have dif-
ferent utilities for this bundle). Drawing inspiration from equality of
resources and the Dworkin quote below, we propose that equality in pub-
lic decision-making should allow each agent to cause equal cost to the rest
of society, which we model as equal externality. We term this equality of
power. The first challenge here is that the cost to the rest of society must
be measured somehow, and it is generally impossible to elicit the scale of
individual utilities (in the absence of monetary payments). Again draw-
ing inspiration from foundational literature for private goods economies,
we normalize each agent’s utility so that every agent’s marginal utility
for additional power is the same. We show that for quadratic utilities, in
the large market limit, there always exists an outcome that simultane-
ously satisfies equal power, equal marginal utility for additional power,
and social welfare maximization with respect to the normalized utilities.

The full version of the paper can be found at: https://papers.ssrn.
com/sol3/papers.cfm?abstract id=3420450.

“Equality of resources supposes that the resources devoted to each per-
son’s life should be equal. That goal needs a metric. The auction proposes
what the envy test in fact assumes, that the true measure of the social
resources devoted to the life of one person is fixed by asking how impor-
tant, in fact, that resource is for others. It insists that the cost, measured
in that way, figure in each person’s sense of what is rightly his and in
each person’s judgment of what life he should lead, given that command
of justice.”

Ronald Dworkin, What is Equality? Part II: Equality of
Resources, 1981
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Abstract. We study a generalization of the secretary problem, where
decisions do not have to be made immediately upon candidates’ arrivals.
After arriving, each candidate stays in the system for some (random)
amount of time and then leaves, whereupon the algorithm has to decide
irrevocably whether to select this candidate or not. The goal is to max-
imize the probability of selecting the best candidate overall. We assume
that the arrival and waiting times are drawn from known distributions.

Our first main result is a characterization of the optimal policy for
this setting. We show that when deciding whether to select a candidate
it suffices to know only the time and the number of candidates that have
arrived so far. Furthermore, the policy is monotone non-decreasing in the
number of candidates seen so far, and, under certain natural conditions,
monotone non-increasing in the time. Our second main result is proving
that when the number of candidates is large, a single threshold policy is
almost optimal.

Keywords: Secretary problem · Online algorithms · Threshold policy

The full paper can be found at http://arxiv.org/abs/1909.08660.
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Abstract. This work deals with implementation of social choice rules
using dominant strategies for unrestricted preferences. When monetary
transfers are allowed and quasi-linear utilities w.r.t. money is assumed,
Vickrey-Clarke-Groves (VCG) mechanisms were shown to implement any
affine-maximizer, and by the work of Roberts only affine-maximizers can
be implemented whenever the type sets of the agents are rich enough.

In this work, we generalize these results and define a new class of
preferences: Preferences which are positive-represented by a quasi-linear
utility. That is, preferences which can be modeled using quasi-linear util-
ities on a subspace of the outcomes: outcomes with non-negative utility.
We show that the characterization of VCG mechanisms as the incentive-
compatible mechanisms extends naturally to this domain. We show that
the original characterization of VCG mechanism is an immediate corol-
lary of our generalized characterization. Our result follows from a simple
reduction to the characterization of VCG mechanisms. Hence, we see our
result more as a fuller more correct version of the VCG characterization
than a new non quasi-linear domain extension.

This work also highlights a common misconception in the community
attributing the VCG result to the usage of transferable utility. Our result
shows that these results extend naturally to the non-transferable utility
domain. That is, that the incentive-compatibility of the VCG mecha-
nisms does not rely on money being a common denominator, but rather
on the ability of the designer to fine the agents on a continuous (maybe
agent-specific) scale.

We would like to thank Reshef Meir and Hongyao Ma for stimulating early discussions
on the topic. We also would like to thank the anonymous reviewers for their detailed
reviews, which helped us to improve the presentation of this work.
This work was supported in part by Israel Science Foundation (ISF) Grant 1626/18.
A full version of this paper is available at https://arxiv.org/abs/1805.05094v2.
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We think these two insights, considering the utility as a representa-
tion and not as the preference itself (which is common in the economic
community) and considering utilities which represent the preference only
for the relevant domain, would turn out to fruitful in other domains as
well.

Keywords: Mechanism design · Strategy-proofness · Dominant
strategy incentive compatibility · Non Quasi-linear Utilities ·
Positive-representation · Roberts’ Theorem
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Abstract. We consider information design in spatial resource com-
petition, motivated by ridesharing platforms sharing information with
drivers about rider demand. Each of N co-located agents (drivers) decides
whether to move to another location with an uncertain and possi-
bly higher resource level (rider demand), where the utility for moving
increases in the resource level and decreases in the number of other agents
that move. A principal who can observe the resource level wishes to share
this information in a way that ensures a welfare-maximizing number
of agents move. Analyzing the principal’s information design problem
using the Bayesian persuasion framework, we study both private signal-
ing mechanisms, where the principal sends personalized signals to each
agent, and public signaling mechanisms, where the principal sends the
same information to all agents. We show:

(1) For private signaling, computing the optimal mechanism using the
standard approach leads to a linear program with 2N variables, ren-
dering the computation challenging. We instead describe a compu-
tationally efficient two-step approach to finding the optimal private
signaling mechanism. First, we perform a change of variables to solve
a linear program with O(N2) variables that provides the marginal
probabilities of recommending each agent move. Second, we describe
an efficient sampling procedure over sets of agents consistent with
these optimal marginal probabilities; the optimal private mechanism
then asks the sampled set of agents to move and the rest to stay.

(2) For public signaling, we first show the welfare-maximizing equilib-
rium given any common belief has a threshold structure. Using this,
we show that the optimal public mechanism with respect to the
sender-preferred equilibrium can be computed in polynomial time.

(3) We support our analytical results with numerical computations
that show the optimal private and public signaling mechanisms
achieve substantially higher social welfare when compared with no-
information and full-information benchmarks.

Keywords: Bayesian persuasion · Spatial resource competition

The full paper is available at http://arxiv.org/abs/1909.12723. K. Iyer gratefully
acknowledges support from the NSF under grants CMMI-1462592 and CMMI-1633920.
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