
Improving Programming Education Quality
with Automatic Grading System

Yun-Zhan Cai(&) and Meng-Hsun Tsai

Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan

caiyz@imslab.org

Abstract. As the rapid growth of information technology, the demand for
proficiency in software programming skyrockets. Compared to teaching with
slides traditionally, hands-on programming training is more beneficial and
practical. However, it is exhausting and time-consuming for educators to grade
all assignments in person. Besides, students may not get feedback immediately
to correct their wrong conceptions. Therefore, an automatic grading system is
required to grade and send feedback to students. Based on an existing contin-
uous integration system, which checks whether new programs behave as
expected, we develop a set of course management tools and deploy an automatic
grading system in this paper. Our system requires a server to run and test the
programs. However, the server is susceptible to being compromised by hackers.
Therefore, how we protect sensitive data and prevent malicious network traffic
are demonstrated in this paper as well. The tools were applied in an Android
application development course with 140 students enrolled. Around 72% of the
students indicate the automatic grading system is beneficial to their learning.

Keywords: Android � Continuous integration � Programming education �
Software design

1 Introduction

As the rapid growth of information technology, the demand for proficiency in software
programming skyrockets. Compared to teaching with slides traditionally, hands-on
programming training is more beneficial and practical. For example, students are able
to get acquainted with development tools and consider problems more deeply during
the course of hands-on programming. Besides, as the saying goes, “practice makes
perfect”. Students can gain precious experience after troubleshooting problems.
Unfortunately, the number of students is much more than that of educators in most
cases, which in turn makes educators be overwhelmed with the heavy workload.
Especially for an Android application development course, each build takes a few
minutes. Building all Android projects to grade students’ assignments is extremely
time-consuming. Students cannot obtain feedback in a short time if their assignments
are not reviewed immediately. What’s worse, conceptions in the class are coherent
mostly. If educators are not able to correct students’ wrong conceptions, it is likely that
students will struggle to keep up with the class. Therefore, there are still lots of room

© Springer Nature Switzerland AG 2019
L. Rønningsbakk et al. (Eds.): ICITL 2019, LNCS 11937, pp. 207–215, 2019.
https://doi.org/10.1007/978-3-030-35343-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35343-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35343-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35343-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-35343-8_22

for improvement on training approaches of hands-on programming, for instance, how
to effectively track learning status of students and give immediate feedback to them.

In order to track learning status of students, there are some cases that the educators
apply version control tools such as Git [4] to the hands-on programming courses, and
ask the students to upload their source codes to the source-code-hosting facility such as
GitHub or SourceForge [3, 5, 10]. This approach not only helps the educators manage
students’ assignments more easily but also help the students familiarize conceptions of
the version control and share their projects with others. Nowadays, GitHub has laun-
ched ClassRoom service, which allows educators to establish associations between
students and their GitHub accounts [8]. Besides, ClassRoom provides a convenient
way to download all projects in single click as well. However, we found the following
problems during a trial of ClassRoom. First, importing the starter codes sometimes
fails, which was reported and discussed before. This situation implies that GitHub
ClassRoom is still unstable. Second, ClassRoom imports all branches from the starter
repository, which forces educators to place questions and answers of an assignment in
separate repositories instead of in separate branches. Otherwise, Students are able to
view the answer branch, which is imported along with the question branch. Storing
questions and answers in different repositories may also produce redundant and messy
codes, which are not easy to organize. Last, after educators update some files in the
starter repository, the modifications are not synchronized to students’ repositories. This
limitation hinders educators in adding or modifying questions, which means that
ClassRoom is not flexible enough to meet the update requirements. Given the three
problems mentioned above, how to improve programming hands-on courses requires
more studies.

Continuous integration plays a significant role for enterprises and open source
software communities of today [6, 12, 13]. After a software developer pushing a new
commit to the source-code-hosting facility, the continuous integration system will build
and check if there is any problem automatically, which assists the developer to find out
bugs as soon as possible. Hence if we can apply the continuous integration to the
hands-on programming courses, the students will be able to realize and correct their
mistakes in the assignments according to the error messages in the build logs. There are
plenty of continuous integration platforms nowadays such as Jenkins, Travis, Circle CI
and so on [20]. Among them, Travis has built the GitHub App and sold it in the GitHub
Market. That makes the workflow automation process of Travis easier. Furthermore,
Travis supports the Google App Engine deployment, which allows educators to get rid
of difficulties in setting up a server to run continuous integration system [11]. After
applying for an educator discount, educators are able to create private repositories
under the organization and use Travis for free [19]. On the basis of the reasons we
mentioned above, we think Travis is highly suitable to serve as the grading platform for
programming courses.

Since the technique for applying continuous integration to the software hands-on
programming is still incomplete, we develop a set of course management tools, con-
sisting of CourseManager.py, result_collector.py and grade.py, based
on an existing continuous integration system to make assignment management easier.
(The .py extension means the tools are written in Python language which is supported
by most operating systems nowadays.) Besides, educators need to connect servers or

208 Y.-Z. Cai and M.-H. Tsai

devices outside Travis sometimes. For example, we speed up builds in Travis by using
an external Android emulator instead of creating a new one in Travis for each build.
However, it is dangerous to expose a server to the Internet without any defense
mechanism. The server is susceptible to be attacked [7]. Therefore, we will demonstrate
an example to protect sensitive data and block malicious network traffic in this paper.

The remainder of the paper is organized as follows. In Sect. 2, we take an Android
course for example and give an overview of our system architecture. In Sect. 3, details
of the system are discussed along with figures. In terms of system stability, security
issues concerning the system are described in Sect. 4. In Sect. 5, opinions of students
who used our system in an Android application development course are showed.
Finally, Sect. 6 concludes our paper and lists some future works.

2 System Architecture

2.1 Use Case of an Android Course

Figure 1 illustrates a use case diagram of an Android course. First of all, a student
pushes a new commit to GitHub. GitHub then send a notification to the server though
the webhook along with information including a list of modified files, commit hash,
commit message, etc. [9]. After receiving the notification, the server checks if the
student modifies some sensitive files such as the .travis.yml and update the
cheating records to the database. At the same time, Travis pulls the new commit from
GitHub and start to build according to the settings defined in .travis.yml.
Eventually, Travis sends the result of the build to the server, and then the result is saved
in a Sqlite database. Therefore, educators are able to track status of students’ assign-
ments whenever they need.

2.2 Workflow

Figure 2 shows the workflow of the assignment management. First, educators create a
repository for the starter codes and add testcases, which are the programs used to check

Fig. 1. Use case diagram of an Android course

Improving Programming Education Quality with Automatic Grading System 209

whether students’ programs correct or not, to the repository. Afterwards, educators edit
.travis.yml and testcases.yml so that Travis and the server can build the
project and record the result respectively. With the CourseManager.py, educators can
execute a series of commands such as creating students’ repositories, importing starter
codes (copy all files from the default branch of the starter repository to the students’
repositories) and inviting students as collaborators. If there is any error in testcases,
educators can push new commits to correct the error with CourseManager.py as well,
and the modifications will be synchronized to the students’ repositories. In the end of
school term, scores of each assignment can be exported from the database with another
tool named grade.py, which prevents educators from grading all assignments
manually.

3 Details in Workflow of Assignment Management

In this section, we describe the details of each step in Fig. 2 in sequence.

3.1 Add Testcases to the Starter Repository

Testcases are the programs which are used to check if there is any logic error in
students’ assignments. We can classify testcases into two categories: unit test and user
interface (UI) test. The former makes sure a section in the program generates expected
outputs according to corresponding input arguments. For example, We can program a
unit test, test_add(), to verify whether the function, add(a, b), returns the
summation of a and b correctly. The latter ensures components in the screen react

Fig. 2. Workflow of the assignment management

210 Y.-Z. Cai and M.-H. Tsai

correctly when a user interacts with them. For example, after a user clicking a button on
the screen, an app should be launched. Testing libraries vary from a programming
language to another. Take Android for instance, testing libraries for the unit test include
Junit [16] and Robolectric [15]. The former aim to test the framework of java and logic
of functions. The latter aim to emulate Android components on the JVM and check the
configurations of the components. Testing libraries for the UI test in Android include
Espresso [1] ad UI Automator [2]. The former is only used inside an application. If
there is a need to test components outside an application such as notifications, then the
latter should be used instead of the former. In this step, educators have to translate the
grading criteria to the testcases and upload the testcases to the starter repository, and
then the students’ assignments will be tested as specified by testcases.

3.2 Edit .travis.yml and testcases.yml Files

In order to let Travis build and test automatically and save the results sent from Travis
to the database, educators have to edit two files: .travis.yml and testcases.
yml. After preparation of both files has done, educators are able to start the server
called result_collector.py.

The .travis.yml is a configuration file of Travis, which defines the executed
instructions to build the project. After a programmer pushes a new commit to GitHub
with the .travis.yml, the build will be triggered immediately. A job in Travis
contains two parts: install and script [18]. The installation of Android SDK is in install
part, and an emulator is connected at the part of before_script. With respect to the
part of script, gradlew is used to build the Android project. As to the part of
after_script, we send the result of the building to the server by HTTP POST.

As for the testcases.yml, it records the information regarding the testcases of
the assignments and is placed under the same directory as the server programs. The
testcases.yml defines information which is used to create and interact with Sqlite
database. Without the knowledge regarding database, educators only need to fill out
testcases.yml with the assignment names, testcase names and the point of each
testcase as shown in Fig. 3, and the server will create the database table that contains
results of tests, commit time, branch and commit hash, etc.

Fig. 3. Example of the testcases.yml

Improving Programming Education Quality with Automatic Grading System 211

3.3 Create Students’ Repositories

In this step, educators place the students.csv under the directory same as the
server programs and utilize CourseManager.py to do a series actions to students’
repositories.

CourseManager.py is a command-line interface tool written in Python. It com-
municates with GitHub and Travis after authenticated by tokens. Educators can create
students’ assignment projects, import starter code and add webhook with start
command, which requires two positional parameters: the name of assignment and
starter repository. Considering creating students’ assignment projects consumes lots of
time, we separate start and invite commands and execute them independently.
By doing so, educators can prepare all assignment projects in advance before class and
invite all students as collaborators when announce the assignment.

As shown in Fig. 4, students.csv contains students’ IDs and their GitHub
accounts, which is collected through Google form, in order to create students’ repos-
itories and invite the students as the collaborators. When educators create the students’
repositories with CourseManager.py, CourseManager.py reads relation between stu-
dents’ IDs and GitHub accounts of the students from the students.csv, and then
create the students’ repositories.

3.4 Update Testcases

If educators want to modify some files in the starter repository, all educators need to do
is to push a new commit to the starter repository and execute the overwrite com-
mand. Similar to start command, the overwrite command has two positional
parameters as well. Modified files including testcases, .travis.yml, README.md
will be synchronized to students’ assignment projects.

3.5 Grade

Figure 5 is an example of using the grading tool. After specifying a name and deadline
of an assignment, educators can export scores of the assignment via grade.py tool,
which calculates the scores of the students by reading from the database and accu-
mulating the point of each testcase. Later, grade.py will adjust the scores of the
students according to the status of the late work and the regulation. Take our Android
course for example, if a student’s assignment is delayed for n weeks, the score of the

Fig. 4. Example of students’ IDs and GitHub accounts

212 Y.-Z. Cai and M.-H. Tsai

student will be 0.9n of the original score. We choose the larger one between the original
score and the late score as the final score. If there is a student who modify sensitive files
such as testcases and .travis.yml, which results in unfair grading, then the date
when the student modify sensitive files will be shown in the output.

4 Security Issues

4.1 Encrypt Environment Variables

To prevent attacks from the Internet, sensitive data such as the server’s IP or URL,
which results of build are sent to, cannot be revealed in .travis.yml. The educators
can edit the dictionary, TRAVIS_SECURE_VAR, in the CourseManager.py, and then
the keys and values in TRAVIS_SECURE_VAR will be encrypted before added to the
.travis.yml [17]. In this way, only Travis is able to decrypt and use these secure
variables.

4.2 Configurations of the Firewall

To speed up builds in Travis, we run an Android emulator on the server and instruct
Travis to connect our emulator before building. While using the remote Android
emulator shortens the execution time of a build indeed, the emulator with exposed ports
is likely be scanned by a botnet and then compromised. Hence, we execute the com-
mands in Table 1 on the server, which inserts some rules to the iptables of the server
and filters out the network traffic from the devices other than Travis to the emulator
[14].

Table 1. Commands of iptables

Step Command

1 sudo iptables -A INPUT -s localhost -p tcp –dport <port> -j ACCEPT
2 sudo iptables -A INPUT -s nat.travisci.net -p tcp –dport <port> -j ACCEPT
3 sudo iptables -A INPUT -p tcp –dport <port> -j DROP

Fig. 5. Example of grading

Improving Programming Education Quality with Automatic Grading System 213

5 Result of Applying Automatic Grading System
on Programming Education

Our system was applied in an Android application development course with 140 stu-
dents enrolled. At the end of the course, we sampled about one third of the students and
asked for their opinions on the automatic grading system. The statistical result shows
that 72% of the students speak highly of the system. Most of the students tell that an
immediate feedback helps them to figure out whether there is any mistake in their
programs. Unfortunately, some students reflect the grading logic is not flexible enough,
which limit implementation methods of some functions. The extent of limitations
depends on how an educator translates grading criteria to testcases. For example, if the
goal of an assignment is to create a square, however a student creates a rectangle
instead. The student cannot get any point for the testcase just because of the wrong
shape. To solve the problem, the educator should claim the goal of assignments clearly
before students start doing their assignments. Generally, we think our system is able to
improve programming education quality.

6 Conclusion and Future Works

Hands-on programming training is indispensable to cultivate a skillful software
developer. However, a system for hands-on programming training is still immature. We
aim at designing a system which can help educators manage assignments more easily
and provide a better learning experience to students.

In this paper, we develop a set of course management tools based on an existing
continuous integration system. Compared with GitHub ClassRoom, our course man-
agement tools enable educators to update and synchronize files in the starter repository.
Besides, our tools allow educators to place the question and answer branches in the
same repository. With our course management tools, educators are able to manage
assignments more flexible and stable. A better learning experience can be provided to
students as well. Students are able to find errors in their assignments and correct wrong
conception immediately. In terms of security issues, we encrypt sensitive environment
variables before adding them to the .travis.yml. Furthermore, the firewall is set to
filter out the malicious network traffic, which prevents our system from being attacked
by hackers. After using our system in an Android application development course, 72%
of students indicate that the automatic grading system is beneficial to their learning.

In the future, we plan to create a website with Javascript libraries such as D3.js or
JQuery for educators. Compared to the CLI, operations on the website are more
intuitive for educators. Instead of presenting the information of the students with plain
texts, we are going to show the information with charts. For example, the distribution
of students’ scores can be plotted with a histogram, and the error rate of each testcase
can be plotted with a pie chart. In this way, educators are able to track the status of the
students faster than before. What’s more, after analyzing the status of a student with the
data mining technology, we can recommend some additional materials to the student.

214 Y.-Z. Cai and M.-H. Tsai

After enhancing the user interface and the data analysis, we believe we can build a
sounder learning platform for educators to provide a better learning experience to
students.

Acknowledgement. This work was supported by the Center for Open Intelligent Connectivity
through the Featured Areas Research Center Program within the Framework of the Higher
Education Sprout Project by the Ministry of Education in Taiwan. The work of Y.-Z. Cai was
sponsored by the R&D enhancement project “R&D of Network Behavior Security Analyses for
IoT Devices on Advanced Edge Switch in an AIOT plus SDN Integrated Platform,” which is
executed by EstiNet Technologies Inc. and partially sponsored by Hsinchu Science Park Bureau,
Ministry of Science and Technology, Taiwan, R.O.C. The work of M.-H. Tsai was supported in
part by the MOST under Grant 107-2221-E-006-062 and Grant 108-2221-E-006-112, and in part
by the Industrial Technology Research Institute.

References

1. Android_Developers: Espresso. https://developer.android.com/training/testing/espresso
2. Android_Developers: Ui automator. https://developer.android.com/training/testing/uiauto-

mator
3. Britton, J., Berglund, T.: Using version control in the classroom. In: Proceeding of the 44th

ACM Technical Symposium on Computer Science Education, pp. 753–753. ACM (2013)
4. Chacon, S., Straub, B.: Pro GIT. Apress, New York (2014)
5. Clifton, C., Kaczmarczyk, L.C., Mrozek, M.: Subverting the fundamentals sequence: using

version control to enhance course management. ACM SIGCSE Bull. 39(1), 86–90 (2007)
6. Cusumano, M.A.: Extreme programming compared with microsoft-style iterative develop-

ment. Commun. ACM 50(10), 15–18 (2007)
7. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile malware in the

wild. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices, pp. 3–14. ACM (2011)

8. GitHub_Inc.: Github classroom. https://github.com/education/classroom
9. GitHub_Inc.: Github developer: webhooks. https://developer.github.com/webhooks/
10. Glassy, L.: Using version control to observe student software development processes.

J. Comput. Sci. Coll. 21(3), 99–106 (2006)
11. Google: Implementing continuous delivery with Travis CI and App Engine (2019). https://

cloud.google.com/solutions/continuous-delivery-with-travis-ci
12. Holck, J., Jørgensen, N.: Continuous integration and quality assurance: a case study of two

open source projects. Australas. J. Inf. Syst. 11(1), 45 (2003)
13. Miller, A.: A hundred days of continuous integration. In: Agile 2008 Conference, pp. 289–

293. IEEE (2008)
14. Rash, M.: Linux Firewalls: Attack Detection and Response with iptables, psad, and fwsnort.

No Starch Press, San Francisco (2007)
15. Robolectric: Robolectric, http://robolectric.org/
16. The_JUnit_Team: Junit (2019). https://junit.org/
17. Travis: Encryption keys. https://docs.travis-ci.com/user/encryption-keys/
18. Travis: Job lifecycle. https://docs.travis-ci.com/user/job-lifecycle/
19. Travis: Travis CI education. https://education.travis-ci.com/
20. Watters, C., Johnson, P.: Version numbering in single development and test environment

(2013)

Improving Programming Education Quality with Automatic Grading System 215

https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/uiautomator
https://developer.android.com/training/testing/uiautomator
https://github.com/education/classroom
https://developer.github.com/webhooks/
https://cloud.google.com/solutions/continuous-delivery-with-travis-ci
https://cloud.google.com/solutions/continuous-delivery-with-travis-ci
http://robolectric.org/
https://junit.org/
https://docs.travis-ci.com/user/encryption-keys/
https://docs.travis-ci.com/user/job-lifecycle/
https://education.travis-ci.com/

	Improving Programming Education Quality with Automatic Grading System
	Abstract
	1 Introduction
	2 System Architecture
	2.1 Use Case of an Android Course
	2.2 Workflow

	3 Details in Workflow of Assignment Management
	3.1 Add Testcases to the Starter Repository
	3.2 Edit .travis.yml and testcases.yml Files
	3.3 Create Students’ Repositories
	3.4 Update Testcases
	3.5 Grade

	4 Security Issues
	4.1 Encrypt Environment Variables
	4.2 Configurations of the Firewall

	5 Result of Applying Automatic Grading System on Programming Education
	6 Conclusion and Future Works
	Acknowledgement
	References

