
Xavier Franch
Tomi Männistö
Silverio Martínez-Fernández (Eds.)

LN
CS

 1
19

15

20th International Conference, PROFES 2019
Barcelona, Spain, November 27–29, 2019
Proceedings

Product-Focused
Software Process Improvement

Lecture Notes in Computer Science 11915

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Xavier Franch • Tomi Männistö •

Silverio Martínez-Fernández (Eds.)

Product-Focused
Software Process Improvement
20th International Conference, PROFES 2019
Barcelona, Spain, November 27–29, 2019
Proceedings

123

Editors
Xavier Franch
Universitat Politècnica de Catalunya
Barcelona, Spain

Tomi Männistö
University of Helsinki
Helsinki, Finland

Silverio Martínez-Fernández
Fraunhofer Institute for Experimental
Software Engineering
Kaiserslautern, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35332-2 ISBN 978-3-030-35333-9 (eBook)
https://doi.org/10.1007/978-3-030-35333-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9733-8830
https://orcid.org/0000-0001-7470-5183
https://orcid.org/0000-0001-9928-133X
https://doi.org/10.1007/978-3-030-35333-9

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 20th International Conference on Product-Focused Software Process
Improvement (PROFES 2019) held in Barcelona. The hosting institution was the
Universitat Politècnica de Catalunya - BarcelonaTech in Spain. Since 1999, PROFES
has established itself as one of the top recognized international process improvement
conferences. In the spirit of the PROFES conference series, the main theme of PROFES
2019 was professional software process improvement (SPI) motivated by product,
process, and service quality needs.

PROFES 2019 provided a premier forum for practitioners, researchers, and
educators to present and discuss experiences, ideas, innovations, as well as concerns
related to professional software development and process improvement driven by
product and service quality needs. At PROFES 2019, solutions found in practice and
relevant research results from academia were presented.

A committee of leading experts in software process improvement, software process
modeling, and empirical software engineering selected the technical program. This
year, 65 full research papers were submitted. At least three independent experts
reviewed each paper. After thorough evaluation, 24 technical full papers were finally
selected (37% acceptance rate). In addition, four out of nine industrial papers were
selected to the program.

Furthermore, we received 30 short paper submissions. Each submission was
reviewed by three members from the PROFES Program Committee. Based on the
reviews and overall assessments, 11 short papers were accepted for presentation at the
conference and for inclusion in the proceedings (37% acceptance ratio).

Continuing the open science policy in the previous PROFES 2017 and PROFES
2018, we encouraged and supported the authors of all accepted submissions to make
their papers and research publicly available.

The topics addressed in this year’s papers indicate that SPI is still a vibrant research
discipline, but is also of high interest for industry. Several papers report on case studies
or SPI-related experience gained in industry. The accepted papers of PROFES 2019
addressed, for example, the following topics:

– Continuous Delivery and Experimentation
– Software Testing
– Software Development
– Technical Debt
– Estimations
– Microservices

Since the beginning of the PROFES conference series, the purpose has been to
highlight the most recent findings and novel results in the area of process improvement.
We were proud to have Professor Neil Maiden (City, University of London) and

Jennifer Nerlich (Vogella), two renowned keynote speakers from research and industry,
at the 2019 edition of PROFES.

Further relevant topics were added by the events co-located with PROFES 2019: the
Third International Workshop on Managing Quality in Agile and Rapid Software
Development Processes, the 4th International Workshop on Human Factors in Software
Processes, and four tutorials addressing themes relevant to industry. The role of two
European space co-chairs was added to the Organizing Committee. Responsibilities
included providing an opportunity for researchers involved in ongoing and/or recently
completed research projects (national, European, and international) related to the topics
of the conference to present their projects and disseminate the objectives, deliverables,
or outcome. Complementing the main scientific program, these events were included in
the program to bring together researchers and representatives from industry by
providing researchers with the opportunity to attend industry tutorials and providing
practitioners with the latest research.

We are thankful for the opportunity to have served as chairs for this conference. The
Program Committee members and reviewers provided excellent support in reviewing
the papers. We are also grateful to all authors of submitted manuscripts, presenters, and
session chairs for their time and effort in making PROFES 2019 a success. We would
also like to thank the PROFES Steering Committee members for the guidance and
support in the organization process. Furthermore, we thank everyone in the
organization team as well as the student volunteers for making PROFES 2019 an
experience that will live on in the participants’ memory for years to come.

November 2019 Xavier Franch
Tomi Männistö

Silverio Martínez-Fernández

vi Preface

Organization

Organizing Committee

General Chair

Xavier Franch Technical University of Catalunya, Spain

Program Co-chairs

Tomi Männistö University of Helsinki, Finland
Silverio

Martínez-Fernández
Fraunhofer IESE, Germany

Short Paper Co-chairs

Oscar Dieste Universidad Politécnica de Madrid, Spain
Pilar Rodríguez University of Oulu, Finland

Industry Paper Chair

Danilo Caivano SER & Practices, Italy

Workshop Co-chairs

Casper Lassenius Aalto University, Finland
Andreas Vogelsang Technical University of Berlin, Germany

Tutorial Co-chairs

Matthias Galster University of Canterbury, New Zealand
Dietmar Pfahl University of Tartu, Estonia

Journal-First Track Chair

Daniel Méndez Fernández Blekinge Institute of Technology, Sweden,
and fortiss GmbH, Germany

European Project Space Co-chairs

Alessandra Bagnato Softeam, France
Davide Fucci HITeC – University of Hamburg, Germany

Organization Chair

Carme Quer Technical University of Catalunya, Spain

Proceedings Co-chairs

Claudia Ayala Technical University of Catalunya, Spain
Jordi Marco Technical University of Catalunya, Spain

Social Media and Publicity Co-chairs

Marc Oriol Technical University of Catalunya, Spain
Anna Maria Vollmer Fraunhofer IESE, Germany

Webmaster

Carles Farré Technical University of Catalunya, Spain
Maria José Salamea Technical University of Catalunya, Spain

Contact Person

Dolors Costal Technical University of Catalunya, Spain

Local Organization Team

Katarzyna Biesialska Technical University of Catalunya, Spain
Xavier Burgués Technical University of Catalunya, Spain
Cristina Gómez Technical University of Catalunya, Spain
Lidia López Technical University of Catalunya, Spain
Martí Manzano Technical University of Catalunya, Spain
Cristina Palomares Technical University of Catalunya, Spain

Program Committee

Full Research and Industry Papers Program Committee

Silvia Abrahao Universitat Politècnica de València, Spain
Sousuke Amasaki Okayama Prefectural University, Japan
Maria Teresa Baldassarre University of Bari, Italy
Vita Santa Barletta University of Bari, Italy
Stefan Biffl Vienna University of Technology, Austria
Andreas Birk SWPM, Germany
Luigi Buglione Engineering Technology Services (ETS), Italy
Gerardo Canfora University of Sannio, Italy
Bruno da Silva California Polytechnic State University, USA
Maya Daneva University of Twente, The Netherlands
Michal Dolezel University of Economics – Prague, Czech Republic
Christof Ebert Vector, Germany
Fabian Fagerholm University of Helsinki, Finland
Davide Falessi California Polytechnic State University, USA
Masud Fazal-Baqaie Fraunhofer, Germany
Michael Felderer University of Innsbruck, Austria
Davide Fucci HITeC – University of Hamburg, Germany
Lina Garcés University of São Paulo, Brazil

viii Organization

Carmine Gravino University of Salerno, Italy
Daniel Graziotin University of Stuttgart, Germany
Noriko Hanakawa Hannan University, Japan
Frank Houdek Daimler AG, Germany
Andrea Janes Free University of Bolzano, Italy
Petar Jovanovic Universitat Politècnica De Catalunya – Barcelona Tech,

Spain
Oliver Karras Leibniz Universität Hannover, Germany
Petri Kettunen University of Helsinki, Finland
Jil Klünder Leibniz Universität Hannover, Germany
Jingyue Li Norwegian University of Science and Technology,

Norway
Lidia López Universitat Politècnica De Catalunya – Barcelona Tech,

Spain
Stephen MacDonell University of Otago, New Zealand
Kenichi Matsumoto Nara Institute of Science and Technology (NAIST),

Japan
Maurizio Morisio Politecnico di Torino, Italy
Maleknaz Nayebi Ecole Polytechnique de Montréal, Canada
Risto Nevalainen Spinet Oy, Finland
Edson Oliveira Jr. State University of Maringá, Brazil
Paolo Panaroni INTECS, Italy
Dietmar Pfahl University of Tartu, Estonia
Rudolf Ramler Software Competence Center Hagenberg, Austria
Daniel Rodriguez The University of Alcalá, Spain
Simone Romano University of Basilicata, Italy
Bruno Rossi Masaryk University, Czech Republic
Gleison Santos Federal University of the State of Rio de Janeiro, Brazil
Giuseppe Scanniello University of Basilicata, Italy
Klaus Schmid University of Hildesheim, Germany
Kari Smolander Lappeenranta University of Technology, Finland
Martin Solari Universidad ORT, Uruguay
Michael Stupperich Daimler AG, Germany
Guilherme Travassos Federal University of Rio de Janeiro, Brazil
Rini Van Solingen Delft University of Technology, The Netherlands
Antonio Vetrò Politecnico di Torino, Italy
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Dietmar Winkler Vienna University of Technology, Austria

Short Papers Program Committee

Muhammad Ovais Ahmad Karlstad University, Sweden
Elina Annanperä University of Oulu, Finland
Beatriz Bernárdez Jiménez Universidad de Sevilla, Spain
Dante Carrizo University of Atacama, Chile

Organization ix

Jessica Díaz Universidad Politécnica de Madrid, Spain
Efraín R. Fonseca C. Universidad de las Fuerzas Armadas ESPE, Ecuador
Davide Fucci HITeC — University of Hamburg, Germany
Vahid Garousi Queen’s University Belfast, UK
Itir Karac University of Oulu, Finland
Kati Kuusinen Technical University of Denmark, Denmark
Lucy Ellen Lwakatare Chalmers University of Technology, Sweden
Marc Oriol Universitat Politècnica de Catalunya, Spain
Simone Romano University of Basilicata, Italy
Norsaremah Salleh International Islamic University Malaysia, Malaysia
Davide Taibi Tampere University of Technology, Finland
Xiaofeng Wang Free University of Bozen–Bolzano, Italy

Additional Reviewers

Corrado Aaron Visaggio
Monica Anastassiu
Justus Bogner
Eliezer Dutra
Jonas Fritzsch

Hong Guo
Nektaria Kaloudi
Vasileios Theodorou
Eugenio Zimeo

x Organization

Intertwining Creative and Design Thinking
Processes for Software Products

(Keynote Abstract)

Neil Maiden

Cass Business School, City, University of London, 106 Bunhill Row, London
EC1Y 8TZ, UK

N.A.M.Maiden@city.ac.uk

Abstract. Most software development processes still pay little attention to
creativity and creative thinking, even though creative outcomes are
pre-requisites for innovation. The recent interest in design thinking methods
places shifts the focus to both software products and processes, but still does not
address the creativity deficit of most design thinking practices. This keynote
presentation and paper proposes an alternative and more effective framing of
design thinking – as situated uses of creativity techniques and design artefacts,
opportunistically, in agile development processes. It will introduce the role of
design thinking as creative thinking for specific ends. It will summarize common
characteristics of high-performance design behaviours – behaviours that are
often impeded by software development methods. It will then demonstrate, with
multiple examples, how coupling creativity techniques with playful artefacts for
design thinking can lead to original design outcomes, often more productively,
than with existing software development processes and models.

Keywords: Software development • Software product • Creativity

1 Creativity, Design Thinking and Innovation

Creativity and creative thinking have emerged as essential capabilities of most busi-
nesses. It has become a strategic, macro-economic activity, replacing the focus on
information at the end of the last century. The World Economic Forum identified it to
be a top-three need for economic growth in the next decade, alongside complex
problem solving and critical thinking. It is identified as a precondition for business
success – for example an IBM survey of 1500 CEOs identified creativity as the leading
need and differentiator in their businesses [3]. It is also recognized as a critical
pre-condition to effective innovation, generating new forms of creative capitalism
based on knowledge and talent. And as digital technologies have become critical to the
functioning of many organizations, creativity assumes a more important role in the
specification and design of these technologies. Unfortunately, few methods and tech-
niques for software product development explicitly support creative thinking by
developers or stakeholders.

Outside of software product development, creative thinking is core to early design
activities. For example, the United Kingdom’s Design Council defines design as
shaping ideas to become practical and attractive propositions for users or customers,
and it can be described as creativity deployed to a specific end. Design is both a
creative and user-centred approach to problem solving that cuts across different
professions, from art and design to engineering and architecture. As such, creativity is
needed to generate new ideas that design can shape to become the practical and
attractive propositions for users or customers [2].

To deliver more creative design processes over the last decade, design thinking has
become accepted practice for many forms of product and service. Design thinking is a
human-centred innovation process that involves observation, collaboration, fast
learning, the visualization of ideas and rapid prototyping, all of which run concurrent to
business analysis activities [4]. It has been successfully used in projects to design new
workplaces, consumer products and even brands.

However, one criticism that can be leveled at most design thinking processes is the
lack of explicit use of creativity techniques from creative problem solving communi-
ties. Indeed, we observe an increasing disconnect between design thinking and creative
problem solving, and believe that new techniques and tools that bridge the outputs
of these communities are needed. More connected creative problem solving and design
thinking methods and techniques can impact on the development of many forms of
service and product, including software products.

This keynote proposes an alternative and more effective framing of design
thinking – as situated uses of creativity techniques and design artefacts, opportunisti-
cally, in agile and other software development processes. It will introduce the role of
design thinking as creative thinking for specific ends. It will summarize common
characteristics of high-performance design behaviours – behaviours that are often
impeded by software development methods. It will then demonstrate, with multiple
examples, how coupling creativity techniques such as constraint removal [5] and
creativity triggers [1] with playful artefacts for design thinking such as storyboards and
desktop walkthroughs [6] can lead to original design outcomes, often more produc-
tively, than with existing software development processes.

References

1. Burnay, C., Horkoff, J., Maiden, N.: Stimulating stakeholders’ imagination: new creativity
triggers for eliciting novel requirements. In: Proceedings of IEEE International Requirements
Engineering Conference, 12–16 September 2016, Beijing, China (2016)

2. Design Council, Design for Innovation (2011). https://www.designcouncil.org.uk/sites/
default/files/asset/document/DesignForInnovation_Dec2011.pdf

3. IBM, IBM Global CEO Study: Capitalizing on Complexity (2010)
4. Lockwood, T.: Design Thinking, Allworth Press, New York (2010)
5. Maiden, N.A.M., Robertson, S.: Integrated creativity into requirements processes: experiences

with an air traffic management system. In: Proceedings of 13th IEEE International Conference
on Requirements Engineering, 105–114. IEEE Computer Society Press (2015)

6. Stickdorn, M., Schneider, J.: This is Service Design Thinking, BIS Publishers (2010)

xii N. Maiden

https://www.designcouncil.org.uk/sites/default/files/asset/document/DesignForInnovation_Dec2011.pdf
https://www.designcouncil.org.uk/sites/default/files/asset/document/DesignForInnovation_Dec2011.pdf

Contents

Testing

An Empirical Assessment on Affective Reactions of Novice Developers
When Applying Test-Driven Development . 3

Simone Romano, Davide Fucci, Maria Teresa Baldassarre,
Danilo Caivano, and Giuseppe Scanniello

Applying Surveys and Interviews in Software Test Tool Evaluation 20
Päivi Raulamo-Jurvanen, Simo Hosio, and Mika V. Mäntylä

Test-Case Quality – Understanding Practitioners’ Perspectives 37
Huynh Khanh Vi Tran, Nauman Bin Ali, Jürgen Börstler,
and Michael Unterkalmsteiner

Test Reporting at a Large-Scale Austrian Logistics Organization:
Lessons Learned and Improvement . 53

Dietmar Winkler, Kristof Meixner, Daniel Lehner, and Stefan Biffl

Software Development

Embracing Software Process Improvement in Automotive Through
PISA Model . 73

Fabio Falcini and Giuseppe Lami

Establishing a User-Centered Design Process for Human-Machine
Interfaces: Threats to Success . 89

Mario Winterer, Christian Salomon, Georg Buchgeher,
Martin Zehethofer, and Alexandra Derntl

Combining GQM+Strategies and OKR - Preliminary Results
from a Participative Case Study in Industry . 103

Bianca Trinkenreich, Gleison Santos, Monalessa Perini Barcellos,
and Tayana Conte

Software Development Practices and Frameworks Used in Spain
and Costa Rica: A Survey and Comparative Analysis 112

Ignacio Díaz-Oreiro, David Chaves, Brenda Aymerich,
Julio C. Guzmán, Gustavo López, Marcela Genero, and Aurora Vizcaíno

Does the Migration of Cross-Platform Apps Towards the Android
Platform Matter? An Approach and a User Study . 120

Maria Caulo, Rita Francese, Giuseppe Scanniello, and Antonio Spera

Software Knowledge Representation to Understand Software Systems 137
Victoria Torres, Miriam Gil, and Vicente Pelechano

When NFR Templates Pay Back? A Study on Evolution of Catalog
of NFR Templates. 145

Sylwia Kopczyńska, Jerzy Nawrocki, and Mirosław Ochodek

Improving Quality of Data Exchange Files. An Industrial Case Study 161
Günter Fleck, Michael Moser, and Josef Pichler

Containers in Software Development: A Systematic Mapping Study 176
Mikael Koskinen, Tommi Mikkonen, and Pekka Abrahamsson

Technical Debt

Empirical Analysis of Hidden Technical Debt Patterns in Machine
Learning Software . 195

Mohannad Alahdab and Gül Çalıklı

Constraining the Implementation Through Architectural Security Rules:
An Expert Study . 203

Stefanie Jasser

Technical Debt and Waste in Non-functional Requirements Documentation:
An Exploratory Study . 220

Gabriela Robiolo, Ezequiel Scott, Santiago Matalonga,
and Michael Felderer

Technical Debt in Costa Rica: An InsighTD Survey Replication 236
Alexia Pacheco, Gabriela Marín-Raventós, and Gustavo López

Estimations

Exploring Preference of Chronological and Relevancy Filtering
in Effort Estimation. 247

Sousuke Amasaki

Automated Functional Size Measurement: A Multiple Case Study
in the Industry . 263

Christian Quesada-López, Alexandra Martínez, Marcelo Jenkins,
Luis Carlos Salas, and Juan Carlos Gómez

Can Expert Opinion Improve Effort Predictions When Exploiting
Cross-Company Datasets? - A Case Study in a Small/Medium Company 280

Filomena Ferrucci and Carmine Gravino

xiv Contents

Continuous Delivery

Excellence in Exploratory Testing: Success Factors in Large-Scale
Industry Projects . 299

Torvald Mårtensson, Antonio Martini, Daniel Ståhl, and Jan Bosch

Comparison Framework for Team-Based Communication Channels. 315
Camila Costa Silva, Fabian Gilson, and Matthias Galster

DevOps in Practice – A Preliminary Analysis of Two
Multinational Companies . 323

Jessica Díaz, Jorge E. Perez, Agustín Yague, Andrea Villegas,
and Antonio de Antona

Implementing Ethics in AI: Initial Results of an Industrial Multiple
Case Study. 331

Ville Vakkuri, Kai-Kristian Kemell, and Pekka Abrahamsson

Agile

How Agile Is Hybrid Agile? An Analysis of the HELENA Data. 341
John Noll and Sarah Beecham

Challenges of Scaled Agile for Safety-Critical Systems 350
Jan-Philipp Steghöfer, Eric Knauss, Jennifer Horkoff,
and Rebekka Wohlrab

On the Benefits of Corporate Hackathons for Software
Ecosystems – A Systematic Mapping Study . 367

George Valença, Nycolas Lacerda, Maria Eduarda Rebelo,
Carina Alves, and Cleidson R. B. de Souza

Agile in the Era of Digitalization: A Finnish Survey Study 383
Petri Kettunen, Maarit Laanti, Fabian Fagerholm,
and Tommi Mikkonen

Project Management

What’s Hot in Product Roadmapping? Key Practices and Success Factors . . . 401
Jürgen Münch, Stefan Trieflinger, and Dominic Lang

Integrating Data Protection into the Software Life Cycle 417
Ralf Kneuper

Revisiting the Product Configuration Systems Development Procedure
for Scrum Compliance: An i* Driven Process Fragment. 433

Yves Wautelet, Sara Shafiee, and Samedi Heng

Contents xv

Microservices

Kuksa: A Cloud-Native Architecture for Enabling Continuous Delivery
in the Automotive Domain . 455

Ahmad Banijamali, Pooyan Jamshidi, Pasi Kuvaja, and Markku Oivo

Inputs from a Model-Based Approach Towards the Specification
of Microservices Logical Architectures: An Experience Report 473

Nuno Santos, Helena Rodrigues, Nuno Ferreira,
and Ricardo J. Machado

A Modular Approach to Calculate Service-Based Maintainability
Metrics from Runtime Data of Microservices . 489

Justus Bogner, Steffen Schlinger, Stefan Wagner,
and Alfred Zimmermann

Consumer-Driven Contract Tests for Microservices: A Case Study 497
Jyri Lehvä, Niko Mäkitalo, and Tommi Mikkonen

Continuous Experimentation

Data Driven Development: Challenges in Online, Embedded
and On-Premise Software . 515

Helena Holmström Olsson and Jan Bosch

Continuous Experimentation for Software Organizations with Low Control
of Roadmap and a Large Distance to Users: An Exploratory Case Study 528

Robin Sveningson, David Issa Mattos, and Jan Bosch

Deep Unsupervised System Log Monitoring . 545
Hubert Nourtel, Christophe Cerisara, and Samuel Cruz-Lara

Enablers and Inhibitors of Experimentation in Early-Stage
Software Startups . 554

Jorge Melegati, Rafael Chanin, Xiaofeng Wang, Afonso Sales,
and Rafael Prikladnicki

European Project Space

European Project Space Papers for the PROFES 2019 - Summary. 573
Alessandra Bagnato and Davide Fucci

Application of Computational Linguistics Techniques for Improving
Software Quality . 577

Amin Boudeffa, Antonin Abherve, Alessandra Bagnato, Cedric Thomas,
Martin Hamant, and Assad Montasser

xvi Contents

Monitoring ArchiMate Models for DataBio Project 583
Kaïs Chaabouni, Alessandra Bagnato, and Antonio Garcia-Dominguez

Showcasing Modelio and pure:variants Integration in REVaMP2 Project 590
Alessandra Bagnato, Alexandre Beaufays, Etienne Brosse,
Kaïs Chaabouni, Uwe Ryssel, Michael Schulze, and Andrey Sadovykh

DECODER - DEveloper COmpanion for Documented and annotatEd
code Reference . 596

Victoria Torres, Miriam Gil, and Vicente Pelechano

DECIDE: DevOps for Trusted, Portable and Interoperable Multi-cloud
Applications Towards the Digital Single Market . 602

Leire Orue-Echevarria, Juncal Alonso, Marisa Escalante,
Kyriakos Stefanidis, and Lorenzo Blasi

Q-Rapids: Quality-Aware Rapid Software Development –
An H2020 Project . 608

Lidia López and Marc Oriol

IMPRESS: Improving Engagement in Software Engineering Courses
Through Gamification . 613

Tanja E. J. Vos, I. S. W. B. Prasetya, Gordon Fraser,
Ivan Martinez-Ortiz, Ivan Perez-Colado, Rui Prada, José Rocha,
and António Rito Silva

Software Governance in a Large European Project - GÉANT Case Study . . . 620
Marcin Wolski and Toby Rodwell

AMASS: A Large-Scale European Project to Improve the Assurance
and Certification of Cyber-Physical Systems. 626

Jose Luis de la Vara, Eugenio Parra, Alejandra Ruiz,
and Barbara Gallina

3rd International Workshop on Managing Quality in Agile
and Rapid Software Development Processes (QuASD)

Do Internal Software Quality Tools Measure Validated Metrics? 637
Mayra Nilson, Vard Antinyan, and Lucas Gren

A Unique Value that Synthesizes the Quality Level of a Product
Architecture: Outcome of a Quality Attributes Requirements
Evaluation Method . 649

Mariana Falco and Gabriela Robiolo

Comparison of Agile Maturity Models . 661
Anna Schmitt, Sven Theobald, and Philipp Diebold

Contents xvii

4th International Workshop on Human Factors
in Software Development Processes (HuFo)

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps:
A Controlled Experiment . 677

Maria Caulo, Rita Francese, Giuseppe Scanniello, and Antonio Spera

Understanding How and When Human Factors Are Used in the Software
Process: A Text-Mining Based Literature Review . 694

Mercedes Ruiz and Davide Salanitri

Working Conditions for Software Developers in Colombia:
An Effort-Reward-Imbalance-Based Study . 709

Judy Moreno, Jairo Aponte, and Mario Linares-Vásquez

Towards a Better Understanding of Team-Driven Dynamics in Agile
Software Projects: A Characterization and Visualization Support in JIRA. . . . 725

Fabian Kortum, Oliver Karras, Jil Klünder, and Kurt Schneider

Evaluating the Utility of the Usability Model for Software
Development Process and Practice. 741

Diego Fontdevila, Marcela Genero, Alejandro Oliveros,
and Nicolás Paez

Short Tutorials

PROFES 2019: Tutorial Summary. 761
Matthias Galster and Dietmar Pfahl

DevOps Practices Tutorial . 764
Nicolás Paez

Conformance Checking: Relating Processes and Models:
A Tutorial for Researchers and Practitioners . 766

Josep Carmona

Benefitting from Grey Literature in Software Engineering Research
(Tutorial Summary) . 768

Michael Felderer, Vahid Garousi, Mika Mäntylä, and Austen Rainer

Tutorial: Data Preparation – Tackle the Most Effort-Prone Phase
in Data Projects . 770

Adam Trendowicz, Julien Siebert, and Andreas Jedlitschka

Author Index . 773

xviii Contents

Testing

An Empirical Assessment on Affective
Reactions of Novice Developers

When Applying Test-Driven Development

Simone Romano1(B) , Davide Fucci2 , Maria Teresa Baldassarre1 ,
Danilo Caivano1 , and Giuseppe Scanniello3

1 University of Bari, Bari, Italy
{simone.romano,mariateresa.baldassarre,danilo.caivano}@uniba.it

2 University of Hamburg, Hamburg, Germany
fucci@informatik.uni-hamburg.de

3 University of Basilicata, Potenza, Italy
giuseppe.scanniello@unibas.it

Abstract. We study whether and in which phase Test-Driven Devel-
opment (TDD) influences affective states of novice developers in terms
of pleasure, arousal, dominance, and liking. We performed a controlled
experiment with 29 novice developers. Developers in the treatment group
performed a development task using TDD, whereas those in the control
group used a non-TDD development approach. We compared the affec-
tive reactions to the development approaches, as well as to the implemen-
tation and testing phases, exploiting a lightweight, powerful, and widely
used tool, i.e., Self-Assessment Manikin. We observed that there is a
difference between the two development approaches in terms of affective
reactions. Therefore, it seems that affective reactions play an important
role when applying TDD and their investigation could help researchers
to better understand such a development approach.

Keywords: Test-Driven Development · TDD · Affective state · SAM

1 Introduction

Test-Driven Development (TDD) is an Agile software development approach in
which a developer first writes a unit test to frame a chunk of functionality and
then writes production code to make the test pass and applies refactorings to
improve the internal quality of production and test code. This iterative process
happens in fast-paced iterations of five to ten minutes [2].

TDD promises to increase external quality of software (i.e., less functional
bugs) and developers’ productivity as: (i) writing test first forces developers to
break a problem into simpler ones; (ii) the tests provide initial software quality
assurance; and (iii) the regression test suite resulting after several iterations
allows the developer to catch breaking changes early. The safety net provided
by the regression tests boosts developers’ confidence to the extent that TDD
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-35333-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_1&domain=pdf
http://orcid.org/0000-0003-4880-3622
http://orcid.org/0000-0002-0679-4361
http://orcid.org/0000-0001-8589-2850
http://orcid.org/0000-0001-5719-7447
http://orcid.org/0000-0003-0024-7508
https://doi.org/10.1007/978-3-030-35333-9_1

4 S. Romano et al.

is referred to as “The art of fearless programming” [22]. However, empirical
research on the effects of TDD has so far shown inconclusive results [29,32,39].
Some research relates these results to the negative affective states that developers
experience when initially exposed to TDD—e.g., frustration due to the counter-
intuitive behavior of designing test cases rather than immediately working on
a solution [39].

Recent studies have leveraged affective states of developers to improve
requirements engineering [8], software development [17], and software evolu-
tion [31]. Further, sentiment analysis has been applied to study the collabo-
rative facets of software development [15]. These previous studies are based on
the analysis of artifacts, mostly in textual form, produced during the software
development life-cycle. Graziotin et al. [17] showed that unhappiness (i.e., expe-
riencing a sequence of negative affective states) impacts developers’ productivity.

Although there is a growing interest in studying the affective states of devel-
opers and previous research hypothesizes that TDD elicits negative and positive
affects (e.g., counter-intuitive order and regression tests), no work has investi-
gated whether and in which phase TDD influences affective states of (novice)
developers. To fill this gap, we conducted a controlled experiment with 29 novice
developers. Our experimental design allowed us to isolate the affective reactions
to TDD from a baseline—i.e., “Your Way development” (YW)—, in the short
run, in terms of four dimensions: pleasure, arousal, dominance, and liking. To
measure these dimensions, we relied on a lightweight yet powerful tool, namely
Self-Assessment Manikin (SAM) [4].

The results of our study provide initial evidence that novice developers like
TDD less than YW. Moreover, developers following TDD seem to like the imple-
mentation phase less than the others, and the testing phase seems to make devel-
opers using TDD less happy. To foster replications of our study so increasing the
confidence in this initial evidence, we make our laboratory package public.1

Paper Structure. Sect. 2 discusses background and related work. Section 3
details the planning of our experiment. The results from the experiment are
presented in Sect. 4 and discussed in Sect. 5. Possible limitations are reported in
Sect. 6. Section 7 concludes the paper.

2 Background and Related Work

In this section, we report background information and work investigating devel-
opers’ affective states. We also provide evidence on the effects of TDD.

2.1 Affective States and Studies About Developers’ Affective States

In psychology, affective states are due to a set of stimuli and directed toward
such stimuli. They can be characterized according to two theories, discrete and
dimensional [37]. The former states that there is a fixed set that can be firmly

1 https://doi.org/10.6084/m9.figshare.9778019.v1.

https://doi.org/10.6084/m9.figshare.9778019.v1

An Empirical Assessment on Affective Reactions of Novice Developers 5

Fig. 1. From top down, the pleasure, arousal, dominance, and liking dimensions visu-
alized by means of the extended version of SAM by Koelstra et al. with nine-point
rating scales to self-assess each dimension [26].

distinguished (e.g., resulting in joy, fear, or disgust). The latter characterizes
affective states over three orthogonal dimensions: pleasure, arousal, and dom-
inance. Pleasure varies from unpleasant (e.g., sad/unhappy) to pleasant (e.g.,
joyful/happy). Arousal varies from inactive (e.g., calm/bored) to active (e.g.,
stimulated/excited). Finally, dominance ranges from a helpless and weak feeling
(i.e., “without control”) to an empowered one (i.e., “in control”) [26].

SAM is a non-verbal self-assessment method for a person’s affective reaction
based on the dimensional theory and it is used to measure pleasure, arousal, and
dominance associated with a stimulus [4]. Each dimension is described graphi-
cally and evaluated thanks to a rating scale—usually a nine-point rating scale—
placed below the graphical representation of that dimension (Fig. 1). For exam-
ple, pleasure is visualized by means of figures ranging from an unhappy figure
to a happy one. SAM was extended by Koelstra et al. [26], who added the liking
dimension. This dimension ranges from dislike to like and is visualized through
thumb-down, -middle, and -up symbols with the rating scale placed below these
symbols (Fig. 1). SAM is used in Human-Computer Interaction (HCI) and affec-
tive computing studies [19,26,36]; lately Software Engineering (SE) work has
used this method to study developers’ affective states [16,18].

Graziotin et al. [18] showed that happier developers are more productive.
They studied eight developers working on individual projects. Every ten minutes,
they measured the developers’ affective states using SAM and their productivity
using a self-assessment questionnaire. The results of a mixed-effect model show
that pleasure, arousal, and dominance explained 25% of the variance in produc-
tivity. A follow-up multi-method study with 317 professional developers [17]

6 S. Romano et al.

showed that both happiness and unhappiness are experienced in relation to
increased and decreased productivity and quality of the development process. A
survey of 49 developers provides further evidence that affective states influence
the productivity of software developers [41]. In particular, positive ones enhance
development productivity, whereas negative ones—particularly frustration—are
associated with decreased productivity. In an interview with 45 professional
developers, Ford and Parnin [11] showed that frustration can occur due to the
difficulty of constructing a mental model of the code, learning new tools, dealing
with too large task sizes, on boarding a new project, accurate effort estimation,
dealing with teammates. Mueller and Fritz [28] investigated frustration—and
its counterpart, progress or flow [9]—using biometrics. Physiological signals are
suited to distinguish the affective states experienced by software developers. The
authors studied 17 novice developers, equipped with three biometric sensors, per-
forming software evolution. Their results show that different affective states are
correlated with the perceived (i.e., self-assessed) progress.

Developers’ affective states can be identified in the textual artifact produced
during software development (e.g., commit messages). Murgia et al. [30] ana-
lyzed 17 open-source projects to investigate whether and to what extent issue
reports contain information that can be related to specific affective conditions.
They showed that developers express mostly positive affects. Mantyla et al. [27]
investigated the association between developers’ affective states and productiv-
ity by applying sentiment analysis to 700,000 Jira issue reports. The authors
showed that different pleasure is associated with different types of issues (e.g.,
enhancement vs. bug fix request).

Only a few studies assessed affective reactions of developers while perform-
ing a task in a controlled fashion. An example is the work of Khan et al. [25].
The authors linked the effect of mood on debugging in two experiments. In the
first, they elicited specific affective states of 72 developers, who then performed
debugging. The results show a significant difference in performance between the
developers exposed to a stimulus eliciting low arousal and the ones exposed to a
stimulus eliciting high arousal. In the second, 19 developers worked on a debug-
ging task for 16 min, then performed physical exercise, and finally continued
working on that task. After the physical exercise, the authors reported increased
arousal and pleasure correlated with better task performance.

2.2 Effects of TDD

The effects of TDD on a number of outcomes (e.g., developers’ productivity)
is the subject of several empirical studies, summarized in Systematic Reviews
(SR) and Meta-Analysis (MA). Turhan et al.’s SR [39] includes 32 primary
studies (e.g., case studies) investigating TDD in different settings (e.g., industry
and academia). The results are inconsistent, as they show a positive effect on
quality, but not regarding productivity. Rafique and Misic [32] conducted an
MA of 25 controlled experiments published between 2000 and 2011. Overall, the
results are mixed. However, TDD seems to improve quality to the cost of a loss
in productivity when considering subjects from academia. Finally, Munir et al.’s

An Empirical Assessment on Affective Reactions of Novice Developers 7

SR [29] took into account 41 primary studies. The results show, for both student
and professional developers, that TDD increases quality but not productivity.

3 Experiment Planning

To conduct our experiment, we followed Wohlin et al.’s guidelines [40]. We report
the planning of this experiment based on Jedlitschka et al.’s template [21].

3.1 Goals

We studied the following Research Question (RQ):

RQ1. Is there a difference in the affective reactions of novice developers to a
development approach (i.e., TDD vs. a non-TDD one)?

With RQ1, we aimed to understand the affective reactions of novice developers
due to the use of TDD in terms of pleasure, arousal, dominance, and liking.
A positive (or negative) effect of TDD with respect to these four dimensions
might imply that TDD developers are more (or less) effective when performing
development tasks. We deepened our investigation by focusing on two central
phases of the process underlying TDD: testing and implementation.2 To this end,
we considered the effect of TDD in terms of the four above-mentioned dimensions
when testing and implementing code. Accordingly, we devised two further RQs:

RQ2. Is there a difference in the affective reactions of novice developers to the
implementation phase when comparing TDD to a non-TDD development app-
roach?

RQ3. Is there a difference in the affective reactions of novice developers to the
testing phase when comparing TDD to a non-TDD development approach?

3.2 Experimental Units

The participants of the experiment were 29 final-year undergraduate students
in Computer Science (CS) at the University of Basilicata. In particular, the stu-
dents were enrolled in the SE course, which represents the context of our exper-
iment. To encourage participation in the study, we informed the students that,
regardless of the outcomes they would achieve in the experiment, they would
be rewarded with two bonus points on the course final mark. We can consider
final-year undergraduates in CS as a proxy of novice software developers [20,38].

Before the SE course, the participants had passed exams related to Procedu-
ral and Object Oriented Programming. During these courses, all students had
acquired programming experience in C and Java. According to the curricula,
2 Although refactoring is part of the process underlying TDD, we did not consider

this phase because refactoring could not be performed when following a non-TDD
development approach (and some participants who used a non-TDD approach did
not refactor their code).

8 S. Romano et al.

the students did not have a notion of TDD. We also verified that they had
never practiced TDD. We trained the participants with a series of both frontal
and laboratory lessons after which they performed three homework assignments
(i.e., development tasks) in preparation for the experiment. The lessons cov-
ered unit testing, JUnit, Test-Last (TL) development,3 Incremental Test-Last
(ITL) development,4 and TDD. Initially, 47 students accepted to take part in
the experiment; 29 completed the training. This sample is homogeneous in terms
of skills because of the training process the students underwent (Sect. 3.7) and
their similar academic background.

3.3 Experimental Material

The experimental objects consisted of the specifications of two development tasks
to be implemented in the Java programming language: Bowling Score Keeper
(BSK)—an API for calculating the score of a bowling game including bonus—
and Mars Rover API (MRA)—an API for controlling the movements of a rover
on a 2D planet on which obstacles are present. Regardless of the experimental
object, we provided the students with the following experimental material: (i) a
brief description of the program (i.e., a problem statement); (ii) a series of
features to implement reported as a set of user stories; (iii) a template project
for the Eclipse IDE containing stubs of the expected API signatures and an
example JUnit test class; and (iv) an acceptance test suite, developed by the
authors, to simulate customers’ acceptance of the user stories. The acceptance
tests were executed using the Concordion framework.5 We opted for BSK and
MRA as experimental objects because they are often adopted to learn/practice
TDD and were used in past empirical studies on TDD [10,13,14,38].

To gather the affective reactions, we relied on the extended version of SAM by
Koelstra et al. [26], which includes four dimensions: pleasure, arousal, dominance,
and liking. Each dimension was thus measured through a nine-point rating scale.

3.4 Tasks

We asked the participants to carry out one development task each, in which
they tackled either BSK or MRA. That is, we asked them to implement the
user stories associated with these programs—MRA had 11 user stories, while
BSK had 13 user stories—by following TDD or an alternative approach. The
participants were asked to take into account one user story at a time (starting
from the first one). The participant could implement the next user story only
when the current one passed its related acceptance test suite. The total time
allotted to accomplish the task was three hours. Right after the development
task, we asked the participants to self-assess their affective reactions—in terms

3 In TL development, a developer first implements a feature entirely and then tests it.
4 In ITL development, a developer alternates implementing a code increment with

testing that increment until the entire feature is implemented.
5 https://concordion.org/.

https://concordion.org/

An Empirical Assessment on Affective Reactions of Novice Developers 9

of pleasure, arousal, dominance, and liking—of the development approach using
SAM. Similarly, they self-assessed their affective reactions to the testing and
implementation phases.

Table 1. Summary of the dependent variables.

Name Values Description

APPPLS 1–9 Affective reaction to the development
approach in terms of pleasure

APPARS 1–9 Affective reaction to the development
approach in terms of arousal

APPDOM 1–9 Affective reaction to the development
approach in terms of dominance

APPLIK 1–9 Affective reaction to the development
approach in terms of liking

IMPPLS 1–9 Affective reaction to the implementation
phase in terms of pleasure

IMPARS 1–9 Affective reaction to the implementation
phase in terms of arousal

IMPDOM 1–9 Affective reaction to the implementation
phase in terms of dominance

IMPLIK 1–9 Affective reaction to the implementation
phase in terms of liking

TESPLS 1–9 Affective reaction to the testing phase in
terms of pleasure

TESARS 1–9 Affective reaction to the testing phase in
terms of arousal

TESDOM 1–9 Affective reaction to the testing phase in
terms of dominance

TESLIK 1–9 Affective reaction to the testing phase in
terms of liking

3.5 Hypotheses, Parameters, and Variables

We manipulated two independent variables: Approach and Object. The former
represents the development approach the participants had to follow to carry out
the development task, namely TDD or the approach they preferred (i.e., YW).
Therefore, Approach is a categorical variable with two values, TDD and YW.
The Object variable indicates the experimental object the participants dealt
with (i.e., BSK or MRA) in the experiment. Similarly to Approach, Object is a
categorical variable. It can assume the following two values: BSK and MRA.

10 S. Romano et al.

Table 2. Number of participants assigned to each studied approach and object.

Approach

TDD YW

Object MRA 7 7

BSK 8 7

To measure PLeaSure (PLS), ARouSal (ARS), DOMinance (DOM), and LIKing
(LIK) associated with the development APProach (APP), we used the follow-
ing ordinal dependent variables: APPPLS, APPARS, APPDOM, and APPLIK. Similarly,
we quantified pleasure, arousal, dominance, and liking for the IMPlementation
(IMP) and TESting (TES) phases by means of the following ordinal dependent
variables: IMPPLS, IMPARS, IMPDOM, IMPLIK, TESPLS, TESARS, TESDOM, and TESLIK. In
Table 1, we summarize the dependent variables of our experiment.

We formulated and tested the following null hypotheses:

H0X . There is no difference between TDD and YW with respect to the depen-
dent variable X ∈ {APPPLS, APPARS, APPDOM, APPLIK, IMPPLS, IMPARS, IMPDOM,
IMPLIK, TESPLS, TESARS, TESDOM, TESLIK}.

3.6 Experiment Design

The design of our experiment was 2 × 2 factorial—a type of between-subjects
design [40]. In particular, each participant used only one development approach
(i.e., either TDD or YW). Within each development approach, each participant
tackled only one experimental object—i.e., either BSK or MRA. Those who used
TDD (either tackling BSK or MRA) form the treatment group, while those who
experimented YW (either tackling BSK or MRA) form the control group.

In Table 2, we show the number of participants assigned to each of four
groups constituted by the combination of development approaches and experi-
mental objects. The assignment was randomly performed. By looking at Table 2,
we can notice that the number of participants distributed among development
approaches, experimental objects, and their combination was almost uniform.

3.7 Procedure

The experimental procedure included the following steps.

1. We gathered the availability of the students to participate in the experiment
through a questionnaire (also used to gather demographic information).

2. The participants attended the frontal lessons on unit testing, JUnit, TL devel-
opment, and ITL development. They also took part in a laboratory session
(of two hours) on unit testing with JUnit.

3. We (randomly) split the participants into two groups: TDD and YW. The par-
ticipants in the YW and TDD groups were 14 and 15, respectively (Table 2).
Based on the group, the participants underwent two different training:

An Empirical Assessment on Affective Reactions of Novice Developers 11

– The students in the TDD group attended a face-to-face lesson on TDD
and experimented this approach through two laboratory sessions (of two
hours each) and three homework assignments. Handing in the assignments
was mandatory to participate in the experimental session.

– The students in the YW group did not attend lessons on TDD nor used
the approach in the laboratory sessions and assignments. However, the
students in the YW group took part in two laboratory sessions (of two
hours each) and performed the same homework assignments as the TDD
group, but to practice TL and ITL. Similarly to the TDD group, home-
work assignments were mandatory.

4. The experimental session took place under controlled conditions in a research
laboratory at the University of Basilicata. All the laboratory computers were
equipped with the same hardware and software. Furthermore, they contained
all the material necessary to complete the tasks, i.e., the template project (of
Eclipse) corresponding to the assigned experimental object. During the exper-
imental session, the participates performed the development tasks and then
they self-assessed their affective reactions (Sect. 3.4). We avoided interactions
among participants by monitoring them during the task execution.

3.8 Analysis Procedure

We relied on diverging stacked bar plots to summarize the distributions of the
values of the dependent variables. To test the null hypotheses (one for each
dependent variable), we used a non-parametric version of ANOVA, namely
ANOVA Type Statistic (ATS) [5]. We opted for ATS because this method
is frequently used in the medical field and recommend, in place of ANOVA,
in the HCI field to analyze data from rating scales in factorial designs like
ours [23]. For each dependent variable X, we built ATS models as follows:
X ∼ Approach + Object + Approach : Object.

Approach and Object are the variables we manipulated, while App-
roach:Object represents their interaction. That is, this model allows determining
if Approach, Object, and Approach:Object had statistically significant effects on
a given dependent variable. To judge whether an effect is statistically significant,
we used α = 0.05 as the threshold value. It indicates 5% chance that a Type-I-
error occurs (i.e., rejecting the null hypothesis when it is true) [40]. If a p-value
is less than α, it is deemed statistically significant. In case of a statistically signif-
icant effect of Approach, we quantified the magnitude of that effect through the
Cliff’s δ effect size. We opted for such a kind of effect size since it was originally
developed for use with ordinal variables (like ours) [7]. The effect size is consid-
ered: negligible if |δ| < 0.147, small if 0.147 ≤ |δ| < 0.33, medium if 0.33 ≤ |δ| <
0.474, or large if |δ| ≥ 0.474 [33].

Further Analysis. To better contextualize our experiment, we also assessed
participants’ performance. We counted the number of user stories each partici-
pant implemented in the allotted time. We normalized them in the [0, 1] interval
to obtain a fair comparison between participants tackling tasks with a different

12 S. Romano et al.

number of user stories. We named this additional dependent variable STR. The
strategy we followed to quantify participants’ performance is time-fixed—the
number of successful steps within a fixed time span defines performance [3]. The
higher the value of STR, the better the developer’s performance.

Percent

A
pp

ro
ac

h

YW

TDD

APP_PLS APP_ARS APP_DOM APP_LIK

YW

TDD

IMP_PLS IMP_ARS IMP_DOM IMP_LIK

YW

TDD

50 0 50 100

TES_PLS

50 0 50 100

TES_ARS

50 0 50 100

TES_DOM

50 0 50 100

TES_LIK

1 2 3 4 5 6 7 8 9

Fig. 2. Diverging stacked bar plots for the dependent variables. (Color figure online)

4 Results

In Fig. 2, we show the diverging stacked bar plots summarizing the distributions
of the values of the twelve dependent variables. The x-axes report the frequen-
cies of the dependent variable values, which range from one—the most negative
value—to nine—the most positive value. Therefore, the neutral value is five. The
diverging stacked bar plots display positive values in shades of blue, while those
negative in shades of red. The neutral value is displayed in grey. The y-axes
allow grouping the values based on the Approach variable. As for the results
from ATS, they are summarized in Table 3.

RQ1—Affective Reactions to Development Approach. By looking at
Fig. 2, there is no noticeable difference between TDD and YW regarding pleasure
(APPPLS), arousal (APPARS), and dominance (APPDOM). As for liking (APPLIK), Fig. 2
suggests that participants in the YW group liked this approach more, compared
to the participants in the TDD group.

The ATS results (Table 3) indicate that there is no statistically significant
difference between TDD and YW regarding pleasure, arousal, and dominance.
Accordingly, we cannot reject the corresponding null hypotheses. The test results
allow us to reject H0APPLIK , showing an effect of the development approach on

An Empirical Assessment on Affective Reactions of Novice Developers 13

Table 3. Results from ATS—F-statistic (in parentheses) and p-values (in bold those
less than α = 0.05) for the dimensions associated with the development approach, and
implementation and testing phases.

Dep. Var. Indep. Var.

Approach Object Approach:Object

APPPLS 0.1615 (2.1094) 0.7721 (0.0861) 0.8998 (0.0162)

APPARS 0.2774 (1.2378) 0.7794 (0.0803) 0.1816 (1.8985)

APPDOM 0.2796 (1.2313) 0.8569 (0.0333) 0.4296 (0.6487)

APPLIK 0.0024 (11.4580) 0.1650 (2.0467) 0.6368 (0.2285)

IMPPLS 0.2008 (1.7454) 0.6663 (0.1914) 0.9793 (0.0007)

IMPARS 0.6799 (0.1755) 0.6881 (0.1661) 0.5752 (0.3249)

IMPDOM 0.3449 (0.9330) 0.5614 (0.3480) 0.4672 (0.5481)

IMPLIK 0.0396 (4.7562) 0.1862 (1.8557) 0.2703 (1.2752)

TESPLS 0.0178 (6.5782) 0.6500 (0.2118) 0.7652 (0.0915)

TESARS 0.4147 (0.6887) 0.4765 (0.5230) 0.3406 (0.9451)

TESDOM 0.6341 (0.2324) 0.2564 (1.3508) 0.4738 (0.5293)

TESLIK 0.0504 (4.2785) 0.1194 (2.6224) 0.0547 (4.1112)

APPLIK. The frequencies displayed in Fig. 2 suggest that such an effect is in favor
of YW. The effect size is large (δ = 0.6048, CI95% = [0.2018, 0.8326]).

Based on these results, we can answer RQ1 as follows: developers using TDD
seem to like their development approach less than those using a non-TDD one.

RQ2—Affective Reactions to Implementation Phase. Figure 2 does not
highlight remarkable difference between TDD and YW for pleasure (IMPPLS),
arousal (IMPARS), and dominance (IMPDOM) during the implementation phase.
However, for these dimensions, we can observe a slight trend in favor of YW
since the percentages of very positive scores (i.e., >6) appear to be higher for
YW. With respect to the liking dimension (IMPLIK), Fig. 2 suggests that partici-
pants who followed YW liked the implementation phase more, compared to the
ones following TDD.

The results in Table 3 do not show a statistically significant difference between
TDD and YW regarding pleasure, arousal, and dominance. Accordingly, we can-
not reject the null hypotheses corresponding to these dimensions. We reject
H0IMPLIK as there is a statistically significant effect of Approach on IMPLIK. The
effect is in favor of YW as the plot in Fig. 2 suggest. The size of the effect of
Approach is medium (δ = 0.4286, CI95% = [0.0209, 0.714]).

According to the obtained results, we can answer RQ2 as follows: developers
using TDD seem to like the implementation phase less than those using a non-
TDD development approach.

RQ3—Affective Reactions to Testing Phase. Figure 2 suggests that there
is a difference between TDD and YW in terms of pleasure (TESPLS) during the

14 S. Romano et al.

testing phase. In particular, the participants using TDD reported negative scores
with some frequency while those using YW never reported negative scores. When
considering the arousal (TESARS) and dominance (TESDOM) dimensions, we can-
not observe any substantial difference between the two development approaches
(Fig. 2). On the contrary, when considering liking (TESLIK), we can notice a dif-
ference between TDD and YW in favor of the latter as YW tends to have more
very positive scores (i.e., > 6) than TDD.

The results of ATS (Table 3) reveal a statistically significant difference for
the pleasure dimension, which allows us to reject the H0TESPLS hypothesis. Such
a difference is in favor of YW (Fig. 2). The effect size is large (δ = 0.5, CI95%
= [0.0796, 0.7694]). As for arousal and dominance, the effect of the development
approach is not statistically significant during the testing phase. Regarding lik-
ing, the observed difference in TESLIK between YW and TDD is not significant.

The obtained results allowed us to answer RQ3 as follows: the testing phase
seems to make developers using TDD less happy compared to those using a non-
TDD development approach.

Further Analysis Results. We also studied participants’ performance by run-
ning ATS using STR as dependent variable.6 The results indicates that Approach
(p−value = 0.4765), Object (p−value = 0.2596) and their interaction (p-value
= 0.0604) have no statistically significant effect on STR.

5 Discussion

The results from this experiment present initial evidence about aspects that are
not investigated by the empirical TDD research. Current research on the effects
of TDD shows inconclusive results [29,32,39], which can be attributed to the
disliking the developers experience when using TDD, at least in the experiment
time frame. We show initial evidence—supported by a large effect size—that,
although participants’ performance do not vary significantly (Sect. 4) due to
the development approach, TDD seems to negatively impact affective reactions
(i.e., liking) of novice developers. Researchers need to be aware of the effect that
disliking TDD can have (e.g., low motivation to perform a task) when designing
experiments involving such an approach.

We observed a difference between TDD and YW regarding the liking dimen-
sion for the implementation phase. The medium effect size shows initial evidence
that implementing production code when performing TDD seems to be disliked
by developers. Writing production code during TDD is trivial, at least in the
first few iterations, and usually consists in taking shortcuts (e.g., returning hard-
coded values) to make the test pass. In our study, developers did not like such
an activity. We conjecture this may be the case because they did not base their
implementation on creative activities requiring challenging decisions. Conversely,

6 STR does not meet the normality assumption (Shapiro-Wilk normality test p−value
= 0.0114); this is why we run ATS (rather than ANOVA).

An Empirical Assessment on Affective Reactions of Novice Developers 15

this should have resulted in different levels of arousal (i.e., low for TDD) com-
pared to non-TDD developers which we did not observe. Our explanation for
the lack of such an observation lies in the task complexity which could have not
been enough to elicit stronger arousal responses. The lack of significant effect
due to the Object in our ATS models partially supports this explanation.

The liking dimension could change over time. Longitudinal studies could be
necessary to validate such hypothesis and qualitative studies are required to
pinpoint the reason for the observed results. In particular, the latter is necessary
to explain the contrasting results presented in Romano et al. [34,35] in which a
preference for the implementation phase among TDD developers emerged due
to its rewarding feeling (i.e., observing the JUnit red bar turn green).

The testing phase seems to make developers using TDD less happy than those
using a non-TDD approach. Previous work [34,35] shows that TDD developers
create a mental model of their solution to a task which is then translated into unit
tests. Novice developers can be uncomfortable with such an activity due to the
counter-intuitiveness of this step, but also due to the difficulty of writing tests
of good granularity in the absence of the underlying production code [12,24].
Conversely, developers following the non-TDD approach can decide when and
what to test without (mindlessly) following a process. Such freedom of action—
e.g., testing what is worth according to the developer’s own understanding—can
explain the higher pleasure score of non-TDD developers. Although this can be
the case in the short term, longitudinal studies of TDD developers’ affective
states are also necessary in this case.

In general, our observations are supported by the results of a survey among
professional developers, who are new to TDD [1]. They expressed concerns that
worrying about writing unit tests and working in small increments distracts
them from achieving their implementation goals while the extra effort necessary
to perform TDD is perceived as waste [1]. Practitioners should take into account
the results of this study when introducing TDD. The disliking attitude towards
this development approach can (negatively) impact developers’ performance in
the long run (which we did not observe in the short term). Considering the results
regarding the (negative) affective reactions to the implementation and testing
phases, we suggest that, for greenfield development tasks, developers could skip
TDD for few initial iterations and rely on their preferred development approach.
This should not have an impact on performance but could reduce their negative
affect which, in turn, could impact motivation and job satisfaction [17,39].

6 Threats to Validity

We discuss the threats that could affect the validity of the results according to
the guidelines presented by Wohlin et al. [40]. We ranked these threats from the
most to the least sensible for the goal of our study. In particular, being this the
first investigation of developers’ effective states when using TDD, we prioritize
threats to internal validity. That is, we were more interested in studying that
cause-effect relationships were correctly identified.

16 S. Romano et al.

Internal Validity. A possible threat is the voluntary participation in the study
(i.e., selection threat) by students particularly willing to be assessed. However,
we limited this threat by embedding the experiment in the SE course and did not
consider its outcome when grading. To deal with a threat of diffusion or treat-
ments imitations, two authors of this paper monitored participants to prevent
them from exchanging information during the experiment. Another threat might
be resentful demoralization—participants assigned to a less desirable treatment
might not perform as good as they normally would.

Construct Validity. Each dependent variable was measured by means of a
single self-assessment at the end of the task. If there was a measurement bias,
the results would be misleading (i.e., mono-method bias threat). Although the
participants were not informed about the research goals of our experiment, they
might guess them and change their behavior accordingly (i.e., threat of hypothe-
ses guessing). To deal with an evaluation apprehension threat, we did not eval-
uate the participants in the experiment on the basis of their performances. We
acknowledge the presence of a threat of restricted generalizability across con-
structs. That is, while influencing the affective states, the approach might affect
other non-measured constructs (e.g., cognitive load).

Conclusion Validity. To mitigate a threat of random heterogeneity of par-
ticipants, our sample included students who followed the same course at the
same university, underwent a similar training, and had similar background, skills
and experience. A threat of reliability of treatment implementation might occur
(e.g., some participants might follow TDD more strictly than others so influenc-
ing their affective reactions). In several occasions, during the task execution, we
reminded the participants to follow the treatment they were assigned to. Finally,
our sample was limited because of the difficulty of recruiting participants avail-
able for all the period of the experiment including training.

External Validity. The participants in our study were undergraduate students.
This could pose some threats to the generalizability of the results to the popula-
tion of professional developers (i.e., threat of interaction of selection and treat-
ment). However, the use of students has the advantage that they have homoge-
neous background and are particularly suitable to obtain preliminary evidence
from empirical studies [6]. Therefore, the use of students could be considered
appropriate, as suggested in the literature [6,20]. The used experimental objects
might pose a threat of interaction of setting and treatment. BSK and MRA can
be completed in a single exercise session of three hours [13,14] so allowing a
better control over the participants. This was our preferred trade-off due to the
theory-testing nature of our experiment.

7 Conclusions

We presented a controlled experiment to study whether and in what phase TDD
influences affective states of novice developers in terms of pleasure, arousal,
dominance, and liking. Developers in the treatment group implemented a task

An Empirical Assessment on Affective Reactions of Novice Developers 17

using TDD whereas the control group used a non-TDD development approach
(i.e., YW). We compared the affective reactions of developers with respect to
the development approach they used, further focusing on the implementation
and the testing phases. The results indicate a significant difference between the
two development approaches in terms of affective reactions. Developers seem to
like YW more than TDD. Moreover, developers like the implementation phase
in YW more than that in TDD and the testing phase makes developers using
TDD less happy. The findings from our study can help explain the inconclusive
results of experiments focusing on the claimed effect of TDD. As future work,
we plan to conduct replications, investigations focusing on settings closer to the
real world, and longitudinal studies to measure affective states in the long run.

References

1. Aniche, M.F., Ferreira, T.M., Gerosa, M.A.: What concerns beginner test-driven
development practitioners: a qualitative analysis of opinions in an agile conference.
In: Proceedings of Brazilian Workshop on Agile Methods. Springer (2011)

2. Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2003)
3. Bergersen, G.R., Sjøberg, D.I.K., Dyb̊a, T.: Construction and validation of an

instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12),
1163–1184 (2014)

4. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and
the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

5. Brunner, E., Dette, H., Munk, A.: Box-type approximations in nonparametric fac-
torial designs. J. Am. Stat. Assoc. 92(440), 1494–1502 (1997)

6. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in using students in empirical
studies in software engineering education. In: Proceedings of International Sympo-
sium on Software Metrics, pp. 239–249. IEEE (2003)

7. Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Psychology Press (1996)
8. Colomo-Palacios, R., Hernández-López, A., Garćıa-Crespo, Á., Soto-Acosta, P.:

A study of emotions in requirements engineering. In: Lytras, M.D., Ordonez de
Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS
2010. CCIS, vol. 112, pp. 1–7. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16324-1 1

9. Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Every-
daylife. Basic Books (1997)

10. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Trans. Softw. Eng. 31(3), 226–237 (2005)

11. Ford, D., Parnin, C.: Exploring causes of frustration for software developers. In:
Proceedings of International Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 115–116. IEEE (2015)

12. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of the
test-driven development process: does it really matter to test-first or to test-last?
IEEE Trans. Softw. Eng. 43(7), 597–614 (2017)

13. Fucci, D., et al.: A longitudinal cohort study on the retainment of test-driven
development. In: Proceedings of International Symposium on Empirical Software
Engineering and Measurement, pp. 18:1–18:10. ACM (2018)

https://doi.org/10.1007/978-3-642-16324-1_1
https://doi.org/10.1007/978-3-642-16324-1_1

18 S. Romano et al.

14. Fucci, D., et al.: An external replication on the effects of test-driven development
using a multi-site blind analysis approach. In: Proceedings of International Sym-
posium on Empirical Software Engineering and Measurement, pp. 3:1–3:10. ACM
(2016)

15. Gachechiladze, D., Lanubile, F., Novielli, N., Serebrenik, A.: Anger and its direction
in collaborative software development. In: Proceedings of International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track, pp.
11–14. IEEE (2017)

16. Girardi, D., Lanubile, F., Novielli, N., Fucci, D.: Sensing developers’ emotions: the
design of a replicated experiment. In: Proceedings of International Workshop on
Emotion Awareness in Software Engineering, pp. 51–54. IEEE (2018)

17. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. J. Syst. Softw. 140, 32–47 (2018)

18. Graziotin, D., Wang, X., Abrahamsson, P.: Are happy developers more productive?
In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 50–64. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39259-7 7

19. Herbon, A., Peter, C., Markert, L., Van Der Meer, E., Voskamp, J.: Emotion
studies in HCI-a new approach. In: Proceedings of International Conference on
Human-Computer Interaction (2005)

20. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects–a comparative study
of students and professionals in lead-time impact assessment. Empirical Softw.
Eng. 5(3), 201–214 (2000)

21. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Guide to advanced empirical software
engineering. In: Shull, F., Singer, J., Sjoberg, D.I.K. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 201–228. Springer, London (2008). https://
doi.org/10.1007/978-1-84800-044-5 8

22. Jeffries, R., Melnik, G.: Guest editors’ introduction: TDD-the art of fearless pro-
gramming. IEEE Softw. 24(3), 24–30 (2007)

23. Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of
likert-type ratingscales. In: Proceedings of International Conference on Human
Factors in Computing Systems, pp. 2391–2394. ACM (2010)

24. Karac, I., Turhan, B.: What do we (really) know about test-driven development?
IEEE Softw. 35(4), 81–85 (2018)

25. Khan, I.A., Brinkman, W.P., Hierons, R.M.: Do moods affect programmers’ debug
performance? Cogn. Technol. Work 13(4), 245–258 (2011)

26. Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

27. Mäntylä, M., Adams, B., Destefanis, G., Graziotin, D., Ortu, M.: Mining valence,
arousal, and dominance: possibilities for detecting burnout and productivity? In:
Proceedings of International Conference on Mining Software Repositories, pp. 247–
258. ACM (2016)

28. Müller, S.C., Fritz, T.: Stuck and frustrated or in flow and happy: sensing develop-
ers’ emotions and progress. In: International Conference on Software Engineering,
vol. 1, pp. 688–699. IEEE (2015)

29. Munir, H., Moayyed, M., Petersen, K.: Considering rigor and relevance when eval-
uating test driven development: a systematic review. Inf. Softw. Technol. 56(4),
375–394 (2014)

30. Murgia, A., Tourani, P., Adams, B., Ortu, M.: Do developers feel emotions? an
exploratory analysis of emotions in software artifacts. In: Proceedings of Working
Conference on Mining Software Repositories, pp. 262–271. ACM (2014)

https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8

An Empirical Assessment on Affective Reactions of Novice Developers 19

31. Ortu, M., et al.: The emotional side of software developers in JIRA. In: Proceedings
of International Conference on Mining Software Repositories, pp. 480–483. ACM
(2016)

32. Rafique, Y., Mǐsić, V.B.: The effects of test-driven development on external quality
and productivity: a meta-analysis. IEEE Trans. Softw. Eng. 39(6), 835–856 (2013)

33. Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Appropriate statistics for
ordinal level data: should we really be using t-test and Cohen’sd for evaluating
group differences on the NSSE and other surveys? In: Annual Meeting of the
Florida Association of Institutional Research, pp. 1–3 (2006)

34. Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Results from an
ethnographically-informed study in the context of test driven development. In: Pro-
ceedings of the International Conference on Evaluation and Assessment in Software
Engineering, pp. 10:1–10:10. ACM (2016)

35. Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Findings from a
multi-method study on test-driven development. Inf. Softw. Technol. 89, 64–77
(2017)

36. Rudmann, D.S., McConkie, G.W., Zheng, X.S.: Eyetracking in cognitive state
detection for HCI. In: Proceedings of international conference on Multimodal inter-
faces, pp. 159–163. ACM (2003)

37. Russell, J.A.: Core affect and the psychological construction of emotion. Psychol.
Rev. 110(1), 145–172 (2003)

38. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of profession-
als in software engineering experiments? In: International Conference on Software
Engineering, vol. 1, pp. 666–676. IEEE (2015)

39. Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F.: How effective is
test-driven development. In: Making Software: What Really Works, and Why We
Believe It, pp. 207–217. O’Reilly Media (2010)

40. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, New York (2012). https://doi.org/
10.1007/978-1-4615-4625-2

41. Wrobel, M.R.: Emotions in the software development process. In: Proceedings of
International Conference on Human System Interactions, pp. 518–523. IEEE (2013)

https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2

Applying Surveys and Interviews
in Software Test Tool Evaluation

Päivi Raulamo-Jurvanen1(B), Simo Hosio2, and Mika V. Mäntylä1

1 ITEE, M3S, University of Oulu, Oulu, Finland
{paivi.raulamo-jurvanen,mika.mantyla}@oulu.fi

2 ITEE, UBICOMP, University of Oulu, Oulu, Finland
simo.hosio@oulu.fi

Abstract. Despite the multitude of available software testing tools, lit-
erature lists lack of right tools and costs as problems for adopting a
tool. We conducted a case study to analyze how a group of practitioners,
familiar with Robot Framework (an open source, generic test automation
framework), evaluate the tool. We based the case and the unit of analysis
on our academia-industry relations, i.e., availability. We used a survey
(n= 68) and interviews (n = 6) with convenience sampling to develop a
comprehensive view of the phenomena. The study reveals the importance
of understanding the interconnection of different criteria and the potency
of the context on those. Our results show that unconfirmed or unfocused
opinions about criteria, e.g., about Costs or Programming Skills, can
lead to misinterpretations or hamper strategic decisions if overlooking
required technical competence. We conclude surveys can serve as a use-
ful instrument for collecting empirical knowledge about tool evaluation,
but experiential reasoning collected with a complementary method is
required to develop into comprehensive understanding about it.

Keywords: Test automation · Software testing tool · Tool support ·
Tool evaluation · Case study · Survey · Interviewing

1 Introduction

Testing and test automation are expected to have potential combining quality
with speed and reducing costs. Nevertheless, those tasks are reported to be
under-exploited activities in Quality Assurance (QA) [2]. It seems rather easy to
search for types of software testing tools, but practically hard to evaluate and
select the most suitable one from the plethora of tools. Despite the volume of
software testing tools available, practitioners tend to find lack of right tools as
an obstacle [2,18]. Marketing material or promotional tool comparisons tend to
focus on desirable benefits, but seem to fail in providing realistic details about
prerequisites or related challenges. In software engineering (SE), practitioners
tend to find beliefs of their peers more credible than empirical evidence [15,19].

In this paper, we report a case study [23,29], a common case of a tool evalua-
tion in the context of software testing. We find it relevant to ask, whether expert
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 20–36, 2019.
https://doi.org/10.1007/978-3-030-35333-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_2

Applying Surveys and Interviews in Software Test Tool Evaluation 21

advice is accurate and appropriate for tool selection. Case studies are suitable
to settings where how and why questions are favorable, researchers do not have
control over variables and the focus is on some contemporary events [16,29].
The use of multiple sources of evidence is a major strength of case study data
collection [29]. We study the different criteria of the tool and its potential, as
evaluated by software practitioners in the field, in the form of a survey. To pro-
vide a broader view on the concept, we complement the survey with interviews
and assess quantitative results of the survey in the light of qualitative data from
the interviews. We formulated the following research questions:

– RQ1. How do practitioners ground their tool evaluations?
– RQ2. How to identify possible false expectations from tool surveys?

To answer our research questions, we will compare the results of both meth-
ods for supportive and conflicting perceptions. By triangulation, we intend to
capture rich dimensions on the characteristics of the tool [23].

2 Related Work

Evaluating software testing techniques and tools is time-consuming, expensive
and difficult [17,28]. According to Fenton et al. [4], a single tool evaluation trial,
even with a realistic project having realistic subjects, is not adequate, and claims
by analytical advocacy are considered insupportable. In academia, publication
bias of positive research results may be a problem, especially in stronger sources
of evidence [18]. Dyb̊a et al. [3] promoted evidence-based SE (EBSE) as a mech-
anism to aid adoption of technology related decisions. The research should seek
evidence of realization of expected outcomes, potential side effects and causes
of those, that can be integrated from both research and practical experience [3].
Sjøberg et al. [25] consider the viewpoint of practitioners as means to explore,
describe, predict and explain phenomena.

Murphy-Hill et al. [13] focused on events where a need for a tool arises on
its discovery. They reported tool encountering to be the most frequent discovery
mode [13]. A widely used tool is likely found useful upon tool discovery [13]. In
software projects, the need for a software testing tool is often perceived, but it
is problematic to discover and select the most suitable tool(s). Comprehensive
understanding of usage habits of software practitioners in a community is seen
more reliable than an opinion of just one individual [13]. It is important to
understand the experiences, both positive and negative, related to those habits.

Practitioners seem to have common but not systematically applied consensus
about important criteria for selecting software testing tools [20,21]. For example,
costs, in general is one frequently mentioned factor for the adoption and use of
software testing tools [1,5,14,20,27]. Cost is an important factor, but not con-
sidered to be a characteristic of product quality1. Rather, costs are categorized
as a tool external factor [21]. In our prior research on tool evaluations [22], we

1 http://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

22 P. Raulamo-Jurvanen et al.

found that practitioner evaluations for a tool, in a survey, may be dispersed. To
improve understanding and robustness of the results, we analyze the topic using
a complementary method.

3 Case Study Design

We apply a case study as an empirical research method for studying the evalu-
ation of the selected software testing tool, in the context of shared open source
software (OSS) ecosystem. For a case study, both the case and the unit of analysis
should be selected intentionally [23]. We based the tool selection on our existing
academia-industry relations, i.e., availability [23]. The case tool is Robot Frame-
work, an open source (OS), “generic test automation framework for acceptance
testing and acceptance test-driven development (ATDD)”2. The tool is utilized
by a set of collaborating companies in our research project, EUREKA ITEA3
TESTOMAT 3. We could reach practitioners familiar with the tool via the com-
panies, representing an example case of shared OSS ecosystem. See Fig. 1 for the
design of the case study.

Fig. 1. Case study design, complementing a survey with interviews

The primary objective of our study is of exploratory nature. Perry et al. [16]
find case studies to be useful for exploratory studies that “attempt to understand
and explain phenomenon or construct a theory”. Kitcheham et al. [8] emphasize
that although case studies are not scientifically as rigor as formal experiments,
those are useful in judging whether some technologies will be of advantage in a
setting. To evaluate software testing tools, we need collective information, knowl-
edge from people who have invested in choosing and using tools [20]. For our
study, we considered two methods for collecting data, a survey and interviews.
Kitchenham et al. [9] outline a survey as “comprehensive system for collecting
information to describe, compare or explain knowledge, attitudes and behavior”.
2 https://robotframework.org/.
3 https://itea3.org/project/testomatproject.html.

https://robotframework.org/
https://itea3.org/project/testomatproject.html

Applying Surveys and Interviews in Software Test Tool Evaluation 23

Complementing a survey with interviews allows us to increase the amount and
diversity of the data, to develop a more comprehensive understanding about the
phenomena and possibly to confirm the validity of conclusions [11,23,24].

3.1 Tool Evaluation Survey

The questionnaire4 included 15 questions. The questions are based on our prior
work [20] and on the ISO/IEC 25010 quality model. The approach for the survey
tool was adopted from the studies of Hosio et al. [7] and Goncalves et al. [6]. The
survey tool was validated by the authors and an industry partner. As a result, we
added the options to indicate the basis of the answers (i.e., hands-on experience
or generic opinion) and any experience in the development of the tool to the
questionnaire. The survey was sent to seven software professionals collaborating
in the research project (March 1st, 2018). We requested them to distribute the
survey to their colleagues experienced with Robot Framework. To reach users
of the tool, the survey was also promoted in Robot Framework Slack and in
Twitter (with hashtag robotframework). The survey was open for a month.

Background information was given in 80 unique responses. We excluded the
responses known to be for testing purposes, and those having only default values.
68 respondents completed the survey (998 unique questionnaire answers for the
15 criteria, in total). The response rate among those having started the survey
was 85%. We could not calculate the overall response rate as the number of prac-
titioners having received the link was not known. As the survey was anonymous,
we could not ask for reasons not completing or not responding the survey. We
used MS Excel and R/RStudio for analyzing the data. We analyzed the numeric
data using descriptive statistics and graphical visualization (boxplots).

3.2 Interviews

While the purpose of the survey was to collect quantitative data, the interviews
were designed to collect rich descriptions, i.e., qualitative data. The interview
questions were based on the questionnaire, to have the experts elaborate on
their personal experiences. We recruited six volunteering practitioners, using
convenience sampling [10] for interviews, from our contacts via the TESTOMAT
project and Robot Framework Slack.

The objective of the interviews was descriptive and explanatory. The inter-
views were semi-structured, the questions open and the content and order of the
questions the same for all interviewees although the questions could be answered
freely. The interviews were conducted via Skype (March–April 2018). To miti-
gate the risks of misunderstandings and loss of information, we requested each
interviewee the permission to record the interview. To minimize the bias related
to different interviewers, the interviews were conducted by one of the authors.
The recordings were analyzed in NVivo 11. The data were coded against the
survey criteria, to find explanations in the descriptions, i.e., to “illuminate the
quantitative findings” [24].
4 https://drive.google.com/open?id=1xzXG5ypANvOCbMdRyAyUnmYd0N24VCr4.

https://drive.google.com/open?id=1xzXG5ypANvOCbMdRyAyUnmYd0N24VCr4

24 P. Raulamo-Jurvanen et al.

4 Results

First, we present the demographics of the survey respondents and interviewees
in Sect. 4.1. Thereafter, we present the overview of the results from both the
survey and the interviews in Sect. 4.2. To build a comprehensive picture of the
phenomena under study, we will triangulate the results from both methods, in
detail in Sect. 4.3 and answer our research questions in Sect. 5.

4.1 Background Information

Unsurprisingly, most of the survey respondents (54%) work in Finland (the tool
originated in Finland, and the survey was initially promoted via Finnish collab-
oration companies). Most questionnaire answers (97%) were based on hands-on
experience using the tool. Of the respondents, nearly 6% had contributed to
the development of either the core of the tool or both the core of the tool and
related libraries, about 21% to the development of related libraries, while major-
ity (63%) had not contributed at all. About 85% of the respondents had used
Python in their work and 50% Java. Six respondents had not used either of those
while two had not reported (or used) any programming languages.

The interviewees represented different companies, in different domains (from
consulting to cyber security). Regarding the experience in the industry, the inter-
viewees were more experienced than the survey respondents in areas other than
the maximum number of years, see Table 1. Three interviewees had not con-
tributed to the development of the tool, two had contributed to the development
of libraries, and one to both the core of the tool and libraries. Five interviewees
had been using Python and two Java in their work while one had not been using
either of those.

Table 1. Experience in years

Source Experience in Min Max Mean Median Mode

Survey (68) Industry 3.0 33.0 12.4 10.0 5.0

Current role 0.0 14.0 3.5 2.0 1.0

Interviews (6) Industry 11.0 18.0 14.2 13.5 11.0

Current role 0.0 6.0 2.2 1.5 0.0

4.2 Overview of Data from Tool Surveys and Interviews

In the boxplots5 of questionnaire answers, see Fig. 2, the median is shown as
a horizontal line and the arithmetic mean as a dot. The interquartile range
5 https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/

boxplot.

https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/boxplot
https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/boxplot

Applying Surveys and Interviews in Software Test Tool Evaluation 25

(IQR) describes the middle 50% of the data. By default, in R, the formula for
calculating the upper whisker is min(max(x), Q3+1.5∗IQR), and for the lower
whisker max(min(x), Q1 − 1.5 ∗ IQR).

0
20

40
60

80
10

0

R
at

in
g

App
lic

ab
ilit

y

Com
pa

tib
ilit

y

Con
fig

ur
ab

ilit
y

Cos
t−

Effe
cti

ve
ne

ss
Cos

ts

Cro
ss

−P
lat

for
m

 S
up

po
rt

Eas
y T

o
Dep

loy

Eas
y T

o
Use

Exp
an

da
bil

ity

Fur
th

er
 D

ev
elo

pm
en

t

M
ain

te
na

nc
e

of
 T

C&Dat
a

Per
for

m
an

ce

Pop
ula

rit
y

Pro
gr

am
m

ing
 S

kil
ls

Rep
or

tin
g

Fe
at

ur
es

16.25 17.50 21.25 15.00 5.00 12.50 15.00 18.75 20.00 20.00 21.25 20.00 25.00 45.00 17.50IQR
Mean

Median

n=68 n=68 n=68 n=64 n=66 n=67 n=67 n=66 n=65 n=66 n=68 n=65 n=68 n=65 n=67

82.72 81.40 79.85 88.98 92.50 83.73 80.15 79.09 78.38 79.70 76.69 77.54 68.97 63.00 79.78
85.00 80.00 80.00 95.00 100.00 85.00 85.00 80.00 80.00 85.00 80.00 80.00 75.00 70.00 80.00

Fig. 2. Variability of questionnaire answers for the criteria in the survey

The interview transcripts were coded according to the criteria (related sen-
tences were coded accordingly) as the questions were based on those. We clas-
sified the thoughts for the criteria from the interviews as positive, negative and
neutral, based on the sentiment, see Table 2. The column “Rank” in Table 2
indicates the order of the column “n”, the total number of coded items for each
criterion. The columns “Positive”, “Negative” and “Neutral” items include the
number of coded items and the number of associated interviewees. Most of the
coded items were either positive or neutral (roughly about 40% both), see exam-
ple statements in Table 3. The quantity of coded items provides an overview of
the topics of interest or familiarity, those the interviewees felt easy, comfortable
or important to discuss. A high positive rank may indicate favorable attitude
towards the criterion while a high negative rank may reveal concerns or prob-
lems. Next, we will discuss the criteria in the light of the thoughts from the
interviews.

4.3 Analysis of the Criteria

Applicability. The participants evaluated the applicability of the tool to their
tasks, methods and processes. The interviewees highlighted that the tool is appli-
cable for various different purposes, provided the users have relevant technical

26 P. Raulamo-Jurvanen et al.

Table 2. Interview data coded as Positive, Negative & Neutral items

Rank n Criterion Positive items Negative items Neutral items

Interviewees # Interviewees # Interviewees

4 33 Applicability 16 6 7 3 10 4

9 26 Compatibility 15 6 1 1 10 4

15 17 Configurability 11 6 0 0 6 4

10 25 Cost-
effectiveness

13 4 2 2 10 5

10 25 Costs 4 3 4 3 17 5

13 18 Cross-platform
support

8 4 0 0 10 5

12 20 Easy to deploy 8 5 11 6 1 1

2 44 Easy to use 18 6 7 2 19 5

3 36 Expandability 23 6 3 2 10 3

1 52 Further
development

16 5 12 4 24 4

6 31 Maintenance 7 3 11 5 13 6

13 18 Performance 4 4 7 5 7 3

6 31 Popularity 11 5 6 4 14 6

5 32 Programming
skills

4 3 10 4 18 6

8 28 Reporting
features

17 4 3 2 8 4

Total 436 175 84 177

= Number of coded items, Interviewees = Number of unique respondents

skills. However, applicability was seen as a dilemma. A multitude of possible con-
texts and ways of utilizing the tool prevents generalizing, e.g., providing detailed
guidelines and best practices. “The fact that the tool is desinged to be a com-
mand line tool enables its use in many contexts, in many operating systems. So,
I would say rather well.”(#2)6. “In terms of tools, it is very applicable and then,
in terms of the language, the structure of writing tests in Robot Framework, that
is also very applicable, because the group that I am working in, this is mostly
manual testers.”(#4).

Compatibility. Compatibility of Robot Framework with the existing tools was
not considered to be a problem threshold by the interviewees. In the survey, it
was the only criterion for which the arithmetic mean was greater than median.
The interviewees pointed out that there are always issues that could be simply
improved, in general. For example, there were needs to have the tool started via
REST-API, or to integrate it with other tools. “And then, whenever there is not

6 #n = ID of the interviewee.

Applying Surveys and Interviews in Software Test Tool Evaluation 27

Table 3. Example statements from the interviews

Criterion ID Type Statement

Applicab. 2 - “Many times people try to use Robot Framework for many other purposes

for which it is not the best tool”

1 +/- “It is good for mature cases, where the lifespan of the product or system

is long”

Compatib. 4 + “It is very compatible. The community has created a large number of

libraries for integrating with other tools”

2 - “In my opinion the problem is that people expect it to work out-of-the

box and that is not how it always work”

Configurab. 3 + “It is an advantage that we can easily do configurations from files and we

can avoid hard-coded items”

4 + “I think it is highly configurable, meaning there are several ways in which

to override settings, several ways in which to specify settings”

Cost-Effect. 3 + “Cost-effectiveness and re-use are developed along with the experience

and know-how of the tool and its usage”

6 - “It (test automation) may not even be any cheaper than manual work”

Costs 4 + “They are, I mean the only cost is training, so they are very low”

6 - “Deployment costs, a lot, to gain benefits”

Cross-Pl.S. 1 + “You can run the tool basically for any platform where needed”

4 +/- “Depending on the environment you are running in, you can specify the

configuration for that, at run-time”

Easy to Dep. 2 - “You don’t have to have in-depth know-how but for a non-technical

person deployment may be quite difficult”

1 +/- “Building the test environment is many times the biggest challenge in

every project. But it not necessarily due to the selected tool but more

about the characteristics of the underlying system”

Easy to Use 2 - “To use the tool efficiently, you need to have technical competence. That

is not always clear”

6 +/- “There are many libraries, developed in many ways for different purposes

and it’s more of a question which libraries you use and how easy that is”

Expandab. 5 - “For developing libraries you will need programming skills and more

understanding about the system”

6 +/- “It is open source and if you want to touch the core system, that is

doable. And the libraries, those are, as a general rule, open source and

you may expand those, too”

Further Dev. 3 + “There is the Foundation developing the tool and it convinces again, end

customers or other customers, that there is sustainable development for

the tool”

5 - “It was some web-automation demo I found, and I tried to use it... it did

not quite work and the instructions would require small elaboration and

the links updating... then it would be easier for the people to get started”

Maintainab. 1 + “Another good feature is the tool is keyword-based, at the core of the

maintainability, how you can create layers of keywords and how you can

create meaningful abstractions for the test cases”

4 +/- “The way in which you write your tests and your keywords... will

essentially determine how easy or how difficult it is, for maintenance and

re-use in the future”

Performance 2 + “The tool itself is good, or has always been adequate, so I have not had

such problems”

1 +/- “At the end of the day, it is up to the user of the tool”

(continued)

28 P. Raulamo-Jurvanen et al.

Table 1. (continued)

Criterion ID Type Statement

Popularity 6 + “In Finland, the tool is well-known and you would have to have good

reasons for selecting another tool”

3 - “A community-type tool like this has not had credibility in all branches of

industry”

Progr. Skills 5 + “I have heard that people without any programming skills can create

test-automation scripts with the tool, and that is based on the keywords”

6 - “If you have a misconception about Robot Framework, library or any

other framework, that you do not have to write any code, that is a

terrible misconception”

Reporting F. 4 + “As long as the tests were written well, anybody without programming

skills should be able to read the log and understand what happened”

5 - “There is not much visualization. If you want something more, you have

to build it yourself, that is my opinion”

ID=Interviewee ID, Type: (+)=Positive, (-)=Negative & (+/-)=Neutral

a particular library for integrating with a tool, it is often to make a tool available
via an API, so that Robot simply then just calls the tool’s API.”(#4).

Configurability. Our participants evaluated the possibilities for configuring the
tool for their needs. The interviewees found configuration of both the run time
environment and reporting for a test set very practical. None of the interviewees
came up with negative coded items, but Configurability had the least coded
items. Thus, it could be seen as an issue having no use for emphasis. For those
having experience with configurations, the tool seems configurable. “There are
moderately a lot of different options to configure the handlig of the tests, the kind
of tests you want, how you want to view the report, format and all that.”(#6).

Cost-Effectiveness. Surprisingly, there were not very many coded items, and
most of those were positive or neutral. A tool, as test automation in general, is
cost-effective if applied the right way, at the right time alongside the development
work. What is the right way and the right time are volatile and contexts specific
concepts. Amount of money was seen as a likely issue for consultants and clients
to discuss, but difficult to verify in real life. One of the interviewees pointed out
cost-effectiveness as a way to prioritize the work load. They emphasized the fact
that test automation helps to become faster, i.e., in the best case it helps to
deliver software more often, in smaller batches and with better quality. “If one
starts from the scratch, it takes some time and some studying. Like everything
else, from scratch, so I do not see that as a problem .”(#3).

Costs. The tool was evaluated for expected costs (for acquisition and use).
In survey responses, the median was the highest. We expect the main reason
for that to be the fact the tool is free. Costs was the criterion with the most
outliers (given by 10 respondents having been in the software industry on average

Applying Surveys and Interviews in Software Test Tool Evaluation 29

12.9 years). In the interviews, there were 25 coded items, most of which were
neutral (17). The interviewees highlighted the importance of understanding the
inevitable costs related to the tool. The required resources for setting up and
maintaining a system (e.g., people, training or time) depend on the context, and
have direct effect on Costs and Cost-Effectiveness. “The problem is, how you
organize the use in the company... where the costs come from, that holds true
how much you have available resources, people, how technically competent they
are.”(#2). “And its [test automation] maintenance costs, a lot.”(#6).

Cross-Platform Support. The participants evaluated their view on cross-
platoform support of the tool. In the interviews, there were no negative coded
items. The tool was considered to have good support for different platforms.
“The support for SUTs comes via the libraries and the support is broad. We have
tested all kinds of systems, from elevators to insurance systems... and network
protocols, and dynamic web-applications, so it is very, very versatile, in that
sense.”(#1). “You may run Robot anywhere where you can run Python, which
means from mainframes to Raspberry Pi’s and small micro controllers.”(#6).

Easy to Deploy. The participants considered the initial efforts to take the tool
into use. In the interviews, there were the 2nd most negative items (of all crite-
ria). All interviewees had stated one or more negatively coded items. Although
the interviewees found the deployment to be rather easy, they emphasized the
need for technical know-how, preferably with Python. The interviewees high-
lighted the fact that the difficulties may not only be related the tool but also to
test automation, in general, and to the underlying system itself as well. “When
considering the easiness of the deployment, it is difficult to disassociate the tool,
the system and all that is around it.”(#1). “In a way, it is easy to deploy, but
the difficulty lies in that it truly requires planning.”(#3).

Easy to Use. We requested the participants to consider their perceptions of
Easy to Use. In the interviews, the criterion had the 2nd most coded items. Those
were mainly positive (18) and neutral (19). Thus, we assume interviewees felt
easy to talk about their experiences using the tool. The interviewees pointed
out the need for technical know-how. They thought that the concept of test
automation in general, in the given context, may be difficult to comprehend.
Possible wrong choices or mistakes in the setup may require unexpected changes
to the test sets (or even to the system) later on. Effective use of the tool requires
careful planning. “Planning must be done the right way, meaning, that you can
also make bad choices that may backfire on you later.”(#3). “The people on
my teams have really seen the effectiveness of it, and have enjoyed working in
it.”(#4). “Writing the actual tests is easy and clear, of course.”(#5).

Expandability. For Expandability, the participants could share their views on
the possibility to remold or expand the tool. An OSS tool has its benefits and its

30 P. Raulamo-Jurvanen et al.

downsides when considering expandability. There may be an active community
of software practitioners developing the features of the tool. Nevertheless, one
needs programming skills and understanding of the problem area and/or the
architecture to make changes. “With Robot Framework, you need to be careful
whether to talk about the tool itself or the ecosystem, as many issues that have
been discussed over the years, that would be good to have in a tool in one way
or another, are such that could already be done as an extension (library) and in
that sense there is necessarily no need to modify the tool itself.”(#2). “There are
true programming languages to use, and the sky is the limit, so, expandability
can be achieved with those.”(#1).

Further Development. The participants could evaluate whether they find
the Further Development of the tool (by the OS community) active or not. The
criterion was the most discussed among the interviewees and the coded items
were mainly neutral (24). What could not be understood from the survey was
the dualistic nature of the tool. The tool consists of two fundamental entities,
the core tool and related ecosystem (libraries and tooling type of development).
The core tool is a framework using the functionality provided by the ecosystem.
The two concepts are distinct, developed and maintained separately. The core
tool itself is rather stable. It is the ecosystem that needs to change according
to the conditions around the tool, in the industry, in general. The interviewees
emphasized that the core tool is well designed for adding new functionality via
libraries. The documentation must be up-to-date to provide value to the users.

The Robot Framework Foundation supports the resourcing for the develop-
ment of the core tool. “We have this foundation, which will support development,
collect membership fees from member companies to finance basic updates to Robot
[Framework] to keep it compatible and to work in all platforms in the future, too.
And of course, there is the open source community that contributes a lot to the
libraries.”(#1). “The fact that the foundation supports the development, it is a
good thing.”(#3). It was noted that if the difference between the core tool and
the ecosystem is not understood, a low quality library may invite unfounded crit-
icism for the core tool. “What I hope is that the discussions, in general, would
move from the core tool to the libraries and testing... and there would be the
common understanding that if something goes wrong, it is not necessarily Robot
Framework but some library, instead. And even though Robot Framework has
a public site for reporting bugs, many of those are closed because those are not
related to the core tool but to some specific library.”(#2). “You should develop all
libraries and other type of development following the good software development
practices, but what those really are, that is a good question.”(#2).

Maintenance of Test Cases and Data. The participants could evaluate
maintenance and re-use of test cases and data. In the interviews, the coded
items were mainly neutral (13) and negative (11). It became clear the prac-
titioners find maintenance of test cases and data laborious and costly, if not
planned carefully. Furthermore, practitioners maintaining the test system must

Applying Surveys and Interviews in Software Test Tool Evaluation 31

need competence for the tasks. The help of possible external consultants must
meet the needs and competence level of the clients. “I think that you have to
be very careful in setting up your library of tests, and it can be very simple
to create a maintenance headache for yourself.”(#4). “Development of libraries
may be challenging, development of keywords, what I have heard, may easily
explode.”(#5).

Performance. We queried about the Performance of the tool for its purpose.
In the survey, based on the boxplots, Performance was evaluated as many other
criteria. In the interviews, there were not many coded items. The interviewees
considered the tool itself to be fine, performance-wise, although they found per-
formance to be a difficult concept to measure. The problems with performance
can be related to the system under test (SUT), set up of the overall test system
and its users, not just the tool. So, this is not a self-contained criterion. “So, as
you are using the tool, the tool itself performs just fine, but... there are things like
parsing files, for example, that is probably done faster outside of the tool.”(#4).

Popularity. In the survey, Popularity had the 2nd lowest arithmetic mean. The
interviewees noted that the tool is rather well-known in Finland and in the Nordic
countries, but not globally. According to the interviewees, practitioners seem to
rely on positive hearsay and meet-ups, as well as testimonials from reference
companies. Companies may be reluctant to change an invested tool, even if the
tool was not found as the best option in the task. “Testing as a field suffers a
bit from the fact that information is not shared the similar way as in software
development.”(#2). “I’m not actively involved in the community but I have been
following the Slack channel, the Slack work space, which I think is great... I think
the most important enablers for future development are the community itself, the
fact that the community is welcoming, that the community is helpful.”(#4).

Programming Skills. The participants assessed the level of required Program-
ming Skills. In the survey, the criterion had the lowest arithmetic mean. In the
interviews, it was the 5th most coded criterion. Programming skills and technical
skills are issues of importance for the use of the tool. A high variance in ques-
tionnaire answers and a negative nuance in the coded items from the interviews,
suggests that technical competence, in general, is of importance. Building and
maintenance of the test environment, and development of needed functionalities
are linked to performance and cost-effectiveness of the tool yet tool cost itself is
not the issue. “Would be good to understand the basic concepts of programming
for creating test cases in the right abstraction level, which impacts maintainabil-
ity.”(#1). At the time of the study, the testing capabilities of the tool could be
extended by test libraries implemented with Python or Java7. So, it is not only
about programming skills, but also about specific programming languages.

7 https://robotframework.org/.

https://robotframework.org/

32 P. Raulamo-Jurvanen et al.

Reporting Features. The participants assessed the set of reporting features in
the tool to be limited or rich. In the interviews, the coded items in the interviews
were mainly positive (17). The interviewees emphasized Reporting Features as a
tool not only for the developers, testers and managers but also for the clients.
The tool provides logs for finding bugs and understanding the behaviour of
the system, and rich data for visualization. Programming skills are not needed
for reading the logs or reports, but for creating rich reports with charts and
graphs (for connecting external tools). “An example of tasks where you don’t need
programming skills, I would say, reading the logs and reading the reports.”(#4).

5 Discussion

Tool evaluations depend on the interpretation of a construct under study, i.e.,
have a degree of subjectivity [26] but also validity as measures [12]. The question-
naire answers are results from plain realism acquired from personal experiential
knowledge for reasoning about each criterion as such. We conducted interviews
to grasp detailed understanding about the findings.

For RQ1. “How do practitioners ground their tool evaluations?” we assessed
the foundation for the responses of the interviews. One emphasized testable
requirements and realistic benefits for the test system to be built. Another
noted that test automation is expensive in the short term, but may be very
economical, in the long run. Importantly, test automation is efficient and pru-
dent use of resources in the development process. “It (test automation) helps you
to be faster... helps you to achieve the goals and to release faster, more often, in
small batches. It helps you to achieve better quality, if you have done it the right
way.”(#6).

The different criteria are interconnected. The interviewees connected crite-
ria like Costs, Cost-Effectiveness and Expandability not only to the to technical
competence, but also to the level of Programming skills. Evaluation of a tool cri-
teria may be related to the level of knowledge of the system, in general. “Building
the test environment is the biggest challenge, in general, in every project.”(#1).
“Sometimes, it is really difficult to find the right way to apply your solution...
efficient use of the tool requires some level of technical competence.”(#2). “Test
automation is always a programming issue, and if you want to have test automa-
tion, you need to be able to program.”(#6).

The issues regarding Costs and Programming skills are interconnected to
the main characteristics of OSS8: free to use and source code accessible to all.
An OS tool is free and expandable, and there may be an active OS community
developing it. Yet, tool related tasks require investments (e.g., competent people,
time and money), within contexts of the organizations utilizing the tool and the
community developing the tool. Lack of technical competence or programming
skills seem disadvantageous for tool usage and evaluations. Practitioners seem

8 https://opensource.org/osd.

https://opensource.org/osd

Applying Surveys and Interviews in Software Test Tool Evaluation 33

to ground their evaluations on conscious understanding of encountered or envi-
sioned issues. The interviewees reflected on their insights with rich, informative
examples from real life, verbalizing their reasoning.

With RQ2. “How to identify possible false expectations from tool surveys?”,
we focused on finding possible potentially misleading or restrictive perceptions.
From the boxplots (see Fig. 2), we could observe many of the criteria, for exam-
ple, Easy to Use, Expandability and Performance, to be of similar shape, and to
have both the median and the length of the whiskers roughly the same. However,
Costs and Programming Skills were the criteria having the lowest and the high-
est variance in the questionnaire answers, respectively. Furthermore, the findings
for those criteria from the two methods were contradictory.

The respondents agreed the most on Costs, majority finding costs for acqui-
sition and usage of the tool to be very low. The finding suggests they considered
the licensing fee, not costs of required training or using the tool. Thus, it seems
we missed to cover different aspects of Costs in the survey. However, it is pos-
sible they had not faced costs (as extra costs but work) or needs for training.
“If you have enough of technical competence, at that stage, costs will be trivially
small, because you just re-prioritize the tasks of those people for Robot Frame-
work”(#2). The interviewees, highlighted that software test automation costs, a
lot, no matter the tool. “Test automation is always a big investment for a com-
pany. It costs, always. Costs is not about just getting the software, it is about
using it, setting up the infrastructure, learning to use it, creating, maintaining,
all that. It includes a lot of costs and Robot Framework is not an exception.”(#6).

Programming skills had the lowest arithmetic mean and median of the crite-
ria. Role and tasks of a practitioner using the tool impact the level of required
programming skills. The interviews revealed the dualistic nature of the tool. The
Robot Framework foundation is resourcing the development of the core tool, but
has no control over resourcing or quality of the ecosystem around it. “If some
of the libraries does not support your thing, you are basically on your own, you
need to build the library yourself.”(#6).

To summarize our findings, we consider that well-argued experiences from
expert practitioners allow to reveal unexpected problems, clarify common mis-
conceptions or confirm understanding about tool criteria. Neither single criterion
nor grounded reasoning by a peer should be decisive. “It is the accumulation of
that information, not the ratings themselves, that is decisive [12]”.

6 Threats to Validity

As our target population for the use case was very specific, i.e., software practi-
tioners experienced with Robot Framework, we could not rely on random sam-
ples. We used non-probabilistic sampling methods: convenience sampling com-
plemented with snowball sampling [10]. We expected to have representative sam-
ples of the target population, i.e., software practitioners experienced on using
the tool (in their contexts). While the survey respondents (n = 68) were expected
to be experienced in using Robot Framework, we could not assess their expe-
riences of each criterion. In a survey, the likelihood of participation may be

34 P. Raulamo-Jurvanen et al.

related to negative experiences [10]. To mitigate deficiencies in collecting data
and to understand the phenomena better, we used a complementary method,
interviewing (n = 6), and triangulated the results with those from the survey.

As the participants of the study were mainly from Finland, the results may
be biased by confounding factors e.g., knowledge of the tool or contexts. How-
ever, the survey participants came from 13 countries, 10 participants from other
European countries and 21 from outside Europe. Experience in the development
of the tool was seen as in depth view of the tool. The cohesion and consistency
of the results from the survey are impacted by the facts that tool evaluations are
highly subjective, and we could not control the contexts or the constructs. Thus,
our results are not generalizable as such, but provide a snapshot of opinions, in
a given time, and are presented to be useful for analyzing dissenting opinions.

7 Conclusions and Future Work

We complemented a survey with interviews for analyzing differing opinions about
characteristics of an OSS testing tool. Our survey revealed Costs and Program-
ming Skills to be quite different from the other criteria. The interviews clarified
a tool may be free, but investments carry costs which, in turn, are always context
specific. While cost is not a quality characteristic of a tool, tool related costs are
restrictive and can hamper strategic decisions. Technical competence is vital for
efficient tool adoption and usage, and development of the tool. A tool is no silver
bullet but a facility for re-prioritizing tasks in the software development work.

We conclude that complementary methods can dispel common misconcep-
tions about characteristics or usage of a tool, or about software test automation
as a whole. Contradictions should merit further studies and reasoning, in the
context. There is a need for more, in depth research on software testing tool
evaluations. In the future, we plan to study viewpoints of the practitioners, in
more detail. Academic research on software test tool criteria can help the prac-
titioners to view the forest from the trees, and focus on achievable goals.

Acknowledgments. The work was supported partially by research Grants No.:
3192/31/2017 from Business Finland for the EUREKA ITEA3 TESTOMAT project
(16032), and No.: 286386-CPDSS from the Academy of Finland for the CPDSS project.

References

1. Bhargava, S., Guleria, S., Gaurang, A.: A study on the current trends in software
testing tools. Int. J. Adv. Res. Comput. Sci. 8(5), 129–131 (2017)

2. Capgemini, Micro Focus and Sogeti: World quality report 2017–2018 (2017).
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/
wqr 2017 v9 secure.pdf. Accessed 5 June 2019

3. Dyb̊a, T., Kitchenham, B.A., Jørgensen, M.: Evidence-based software engineering
for practitioners. IEEE Softw. 22(1), 58–65 (2005). https://doi.org/10.1109/MS.
2005.6

https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://doi.org/10.1109/MS.2005.6
https://doi.org/10.1109/MS.2005.6

Applying Surveys and Interviews in Software Test Tool Evaluation 35

4. Fenton, N., Pfleeger, S.L., Glass, R.L.: Science and substance: a challenge to
software engineers. IEEE Softw. 11(4), 86–95 (1994). https://doi.org/10.1109/52.
300094

5. Garousi, V., Zhi, J.: A survey of software testing practices in canada. J. Syst.
Softw. 86(5), 1354–1376 (2013). https://doi.org/10.1016/j.jss.2012.12.051

6. Goncalves, J., Hosio, S., Kostakos, V.: Eliciting structured knowledge from situated
crowd markets. ACM Trans. Internet Technol. 17(2), 1–21 (2017). https://doi.org/
10.1145/3007900

7. Hosio, S., Goncalves, J., Anagnostopoulos, T., Kostakos, V.: Leveraging wisdom
of the crowd for decision support. In: Proceedings of the 30th International BCS
Human Computer Interaction, pp. 1–12. BCS Learning & Development Ltd., Swin-
don (2016). https://doi.org/10.14236/ewic/HCI2016.38

8. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation. IEEE Softw. 12(4), 52–62 (1995). https://doi.org/10.1109/52.391832

9. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C.,
Emam, K.E., Rosenberg, J.: Preliminary guidelines for empirical research in soft-
ware engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002). https://doi.org/
10.1109/TSE.2002.1027796

10. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Shull, F., Singer,
J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp.
63–92. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5 3

11. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empirical Softw. Eng. 10(3), 311–341 (2005).
https://doi.org/10.1007/s10664-005-1290-x

12. Linacre, J.M.: Judge ratings with forced agreement. Trans. Rasch Meas. SIG Am.
Educ. Res. Assoc. 16(1), 857–858 (2002)

13. Murphy-Hill, E., Lee, D.Y., Murphy, G.C., McGrenere, J.: How do users discover
new tools in software development and beyond? Comput. Support. Coop. Work
(CSCW) 24(5), 389–422 (2015). https://doi.org/10.1007/s10606-015-9230-9

14. Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A preliminary survey
on software testing practices in Australia. In: Proceedings of the 2004 Australian
Software Engineering Conference, pp. 116–125. IEEE, NJ, USA (2004). https://
doi.org/10.1109/ASWEC.2004.1290464

15. Pano, A., Graziotin, D., Abrahamsson, P.: Factors and actors leading to the adop-
tion of a Javascript framework. Empirical Softw. Eng. 23(6), 3503–3534 (2018).
https://doi.org/10.1007/s10664-018-9613-x

16. Perry, D.E., Sim, S.E., Easterbrook, S.M.: Case studies for software engineers. In:
Proceedings. 26th International Conference on Software Engineering, pp. 736–738
(2004). https://doi.org/10.1109/ICSE.2004.1317512

17. Poston, R.M., Sexton, M.P.: Evaluating and selecting testing tools. In: Proceedings
of the Second Symposium on Assessment of Quality Software Development Tools,
pp. 55–64 (1992). https://doi.org/10.1109/AQSDT.1992.205836

18. Rafi, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M.V.: Benefits and limitations
of automated software testing: systematic literature review and practitioner survey.
In: 7th International Workshop on Automation of Software Test (AST), pp. 36–42
(2012). https://doi.org/10.1109/IWAST.2012.6228988

19. Rainer, A., Hall, T., Baddoo, N.: Persuading developers to “buy into” software
process improvement: a local opinion and empirical evidence. In: Proceedings of the
2003 International Symposium on Empirical Software Engineering, 2003, ISESE
2003, pp. 326–335. IEEE, Rome, September 2003. https://doi.org/10.1109/ISESE.
2003.1237993

https://doi.org/10.1109/52.300094
https://doi.org/10.1109/52.300094
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1145/3007900
https://doi.org/10.1145/3007900
https://doi.org/10.14236/ewic/HCI2016.38
https://doi.org/10.1109/52.391832
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1007/s10664-018-9613-x
https://doi.org/10.1109/ICSE.2004.1317512
https://doi.org/10.1109/AQSDT.1992.205836
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1109/ISESE.2003.1237993
https://doi.org/10.1109/ISESE.2003.1237993

36 P. Raulamo-Jurvanen et al.

20. Raulamo-Jurvanen, P., Kakkonen, K., Mäntylä, M.: Using surveys and web-
scraping to select tools for software testing consultancy. In: Abrahamsson, P.,
Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.)
PROFES 2016. LNCS, vol. 10027, pp. 285–300. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49094-6 18

21. Raulamo-Jurvanen, P., Mäntylä, M.V., Garousi, V.: Choosing the right test
automation tool: a grey literature review of practitioner sources. In: Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering, EASE 2017, pp. 21–30. ACM, New York (2017). https://doi.org/10.
1145/3084226.3084252

22. Raulamo-Jurvanen, P., Hosio, S., Mäntylä, M.V.: Practitioner evaluations on soft-
ware testing tools. In: Proceedings of the Evaluation and Assessment on Software
Engineering, EASE 2019, pp. 57–66. ACM, New York (2019). https://doi.org/10.
1145/3319008.3319018

23. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009). https://doi.
org/10.1007/s10664-008-9102-8

24. Seaman, C.B.: Qualitative methods in empirical studies of software engineer-
ing. IEEE Trans. Softw. Eng. 25(4), 557–572 (1999). https://doi.org/10.1109/32.
799955

25. Sjøberg, D.I.K., Dyb̊a, T., Jørgensen, M.: The future of empirical methods in
software engineering research. In: Future of Software Engineering, FOSE 2007, pp.
358–378. IEEE (2007). https://doi.org/10.1109/FOSE.2007.30

26. Stemler, S.E.: A comparison of consensus, consistency, and measurement
approaches to estimating interrater reliability. Pract. Assess. Res. Eval.
9(4), 1–11 (2004). https://www.ingentaconnect.com/content/doaj/15317714/
2004/00000009/00000004/art00001

27. Taipale, O., Smolander, K., Kälviäinen, H.: Cost reduction and quality improve-
ment in software testing. In: Software Quality Management Conference (2006)

28. Vos, T.E.J., Marin, B., Escalona, M.J., Marchetto, A.: A methodological frame-
work for evaluating software testing techniques and tools. In: 12th International
Conference on Quality Software, pp. 230–239. IEEE (2012). https://doi.org/10.
1109/QSIC.2012.16

29. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications, Inc.
(2014)

https://doi.org/10.1007/978-3-319-49094-6_18
https://doi.org/10.1007/978-3-319-49094-6_18
https://doi.org/10.1145/3084226.3084252
https://doi.org/10.1145/3084226.3084252
https://doi.org/10.1145/3319008.3319018
https://doi.org/10.1145/3319008.3319018
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/FOSE.2007.30
https://www.ingentaconnect.com/content/doaj/15317714/2004/00000009/00000004/art00001
https://www.ingentaconnect.com/content/doaj/15317714/2004/00000009/00000004/art00001
https://doi.org/10.1109/QSIC.2012.16
https://doi.org/10.1109/QSIC.2012.16

Test-Case Quality – Understanding
Practitioners’ Perspectives

Huynh Khanh Vi Tran(B), Nauman Bin Ali, Jürgen Börstler,
and Michael Unterkalmsteiner

SERL Sweden, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
{huynh.khanh.vi.tran,nauman.ali,jurgen.borstler,

michael.unterkalmsteiner}@bth.se

Abstract. Background: Test-case quality has always been one of the
major concerns in software testing. To improve test-case quality, it is
important to better understand how practitioners perceive the quality of
test-cases.

Objective: Motivated by that need, we investigated how practitioners
define test-case quality and which aspects of test-cases are important for
quality assessment.

Method: We conducted semi-structured interviews with professional
developers, testers and test architects from a multinational software com-
pany in Sweden. Before the interviews, we asked participants for actual
test cases (written in natural language) that they perceive as good, nor-
mal, and bad respectively together with rationales for their assessment.
We also compared their opinions on shared test cases and contrasted
their views with the relevant literature.

Results: We present a quality model which consists of 11 test-case
quality attributes. We also identify a misalignment in defining test-case
quality among practitioners and between academia and industry, along
with suggestions for improving test-case quality in industry.

Conclusion: The results show that practitioners’ background, includ-
ing roles and working experience, are critical dimensions of how test-case
quality is defined and assessed.

Keywords: Software testing · Natural-language test case · Test-case
quality

1 Introduction

Testing plays an important role in software quality assurance, which has been
one of the main concerns in the software development life cycle. The fundamental
artefacts in testing are test cases. Grano et al. have shown in their study that
good test cases in terms of being simple and readable make it easier for developers
to maintain them and to keep up with fast software development life cycle [11]. A
study by Athanasiou et al. also showed that high quality of test code could also
increase the performance of development teams in fixing bugs and implementing
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 37–52, 2019.
https://doi.org/10.1007/978-3-030-35333-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_3

38 H. K. V. Tran et al.

new features [1]. Therefore, good test cases increase the confidence in testing,
and thereby assist product release decisions. Hence, assuring the quality of test
cases is an important task in quality assuring software-intensive products.

There have been studies which focused on different test-case quality
attributes such as performance, readability, and effectiveness [3,7,10,11,13,17,
19,20,24]. Some studies adapted the ISO standard for software quality to define
test-case quality [18,23]. Those studies provided researchers’ perceptions of test-
case quality. Though the contributions from academia are important, it is neces-
sary to verify how knowledge could be transferred between academia and indus-
try. The first step would be to investigate how test-case quality is understood
by practitioners. However, there is currently a lack of empirical studies on the
topic.

To reduce this gap, we conducted an exploratory study to investigate how
test-case quality is defined and assessed in practice. Our focus was manual test
cases written in natural language. This type of test cases is still required for test-
ing levels such as system testing, acceptance testing, and for a testing approach
such as exploratory test. Hence, studying how the quality of natural-language
tests is perceived in practice is as important as of code-based test cases. The
contributions of the study are as follows:

– Descriptions of test-case quality attributes identified by practitioners.
– Reasons for the difference in defining and assessing test-case quality among

practitioners with different roles, and between academia and practice.
– Context factors to consider when defining test-case quality.
– Suggestions to improve test-case quality by practitioners.
– Sources of information for understanding and assessing test-case quality sug-

gested by practitioners.

The remainder of the paper is structured as follows: Sect. 2 describes related
work. Section 3 describes the study design, followed by Sect. 4 which discusses
threats to validity. Section 5 discusses our findings. Our conclusions and future
work are summarised in Sect. 5.

2 Related Work

We identified nine studies which involved practitioners in their work focusing on
test-case quality [1,2,4,6,8,9,12,15,22]. We organised them into three groups.

The first group includes two studies which integrated practitioners’ knowl-
edge into the studies’ results regarding test-case quality [2,22]. Adlemo et al. [22]
introduced 15 criteria for good test cases. There was no specific focus on types of
test cases. Of those criteria, ten were inspired by the literature while five came
from practitioners’ suggestions. The criteria were ranked by 13 Swedish practi-
tioners with experience in software testing and software development. Repeatabil-
ity, meaning that a test case should produce the same result whenever it receives
the same input, had the highest votes from practitioners. Bowes et al. [2], focused
on test code in unit testing. The authors identified 15 testing principles collected

Test-Case Quality – Understanding Practitioners’ Perspectives 39

from three sources: a workshop with industrial partners, their software testing
teaching materials, and practitioners’ books. Simplicity in terms of test-code
size, number of assertions and conditional test logic, is considered as the most
important principle, and is the foundation for the other ones.

The second group contains four studies which had practitioners evaluate their
hypotheses relating to some test-case quality attributes [1,4,6,15]. Jovanovikj
et al. [15] introduced an approach and a tool to evaluate and monitor test-
case quality. They presented eight quality characteristics based on Zeiss et al.’s
work [23], which relied on the ISO/IEC 25010 (ISO/IEC, 2011) software quality
models. To verify their approach’s applicability, they conducted a case study
in the context of natural-language tests, and had interviews with two quality
managers and some testers. Similarly, Athanasiou et al. [1] proposed a model
to assess three test-code quality attributes, namely Completeness, Effectiveness,
and Maintainability with associated metrics. To verify if the model was aligned
with practitioners’ opinions, they compared its results from two software systems
with the evaluations of two experts via focused interviews. They concluded that
there is a strong correlation between test code quality, throughput, and produc-
tivity of issue handling. In another study, Daka et al. [6] introduced a model of
unit test readability which could help to generate test suites with high coverage
and high readability. Their model involved human judgement, but there was no
clear indication on their selection criteria. Focusing on only test-case effective-
ness, Chernak [4] proposed an evaluation and improvement process for test cases
in general. The process was used by one project team, including three testers
and 10 developers who worked on a banking system.

The third group includes three studies which discussed test smells [8,9,12].
Hauptman et al. [12] presented seven test smells in natural-language tests, which
were collected based on their experiences with evaluating natural-language sys-
tem tests. Their study was claimed as the first work on test smells in the context
of natural-language tests. For smells in test code, Garousi et al. [9] conducted
a systematic ‘multivocal’ literature mapping and developed a classification for
196 test smells. The authors included their descriptions of top 11 most discussed
test smells in a subsequent study [8].

The related works show that practitioners’ perceptions of test-case quality
have not been well studied. Particularly, we have not identified any study focus-
ing on eliciting first-hand data from practitioners on their perceptions of test-case
quality in the context of natural language tests.

3 Research Method

The objective of the study is to gain a better understanding of practitioners’
perceptions towards test-case quality. We conducted an exploratory study with
a multinational telecommunication company in Sweden. This type of study was
chosen since the research focus on eliciting practitioners’ genuine perspective on
test-case quality has not been well studied. The exploratory study helped us to
get more familiar with the research topic, to determine what the study design(s)
should be for our subsequent studies on the same topic.

40 H. K. V. Tran et al.

In this study, we used semi-structured interviews to explore the practitioners’
perspectives on the topic. According to Robson and McCartan [21], this interview
approach allows researchers to flexibly modify the interview questions depending
on the interviewees’ answers. Since the interviews were about discussing test-case
quality, the same strict questionnaire would not be applicable to all interviewees.
Also, the interviews were based on real test cases provided by the interviewees.
Thanks to the explicit test cases, our approach makes it easier for interviewees
to refer to instances of quality aspects instead of vague, generic or abstract ideas.

3.1 Research Questions

– RQ1. How do practitioners describe test-case quality? The research question
directly connects to our study’s objective. Without defining quality criteria
upfront, we first want to elicit information on how practitioners perceive test-
case quality.

– RQ2. How well is the understanding of test-case quality aligned among practi-
tioners in a company? Test-case quality might be assessed differently depend-
ing on how it is perceived by the assessors. That could affect testing-related
activities such as test-case design, and test-case maintenance. Therefore, we
want to understand whether practitioners perceive test-case quality differ-
ently; if so, then we want to identify the potential reasons.

– RQ3. What context factors do practitioners consider when assessing test-case
quality? The context factors could be testing level, testing purpose, charac-
teristics of the software system under test, etc. Test-case quality might be
context-dependent. Hence, we want to identify the potential context factors
or aspects which could influence how test-case quality is assessed.

– RQ4. What are potential improvements suggested by practitioners for improv-
ing test-case quality? Answers to this research question would help us to
understand practitioners’ needs regarding test-case quality, which could give
us and researchers potential research directions.

– RQ5. What information sources guide practitioners’ opinions of test-case
quality? Identifying such information sources could helps us to understand
why practitioners perceive test-case quality in certain ways.

3.2 Data Collection

The data was collected from the interviews which included test cases provided
by the interviewees. Before conducting the study, we had a meeting with the
company’s representatives to present our study’s design and to obtain basic
understanding of the company’s structure, and potential interviewees.

Interview Design. Before conducting the interviews, we asked each participant
to provide us three test cases with their quality classification (good, bad or
normal). They could choose any test case from the company’s test suites that
they are familiar with. We also asked for a written rationale for the classification,

Test-Case Quality – Understanding Practitioners’ Perspectives 41

since we not only wanted to see whether other interviewees would rate them
similarly, but also whether they would provide similar reasons. We intentionally
did not define quality criteria upfront in order to elicit the genuine perceptions of
the interviewees. We swapped the test cases between two participants who work
in the same team. Before the interviews, we informed the interviewees which test
cases they had to review extra. Hence, in the interviews, the swapped test cases
were also judged by the interviewees so that we could gauge their alignment.

We used the pyramid model [21] for our interview session. Hence, each inter-
view starts with specific questions followed by more open questions. More specif-
ically, the interview session is divided into three phases.

– Part 1: Background Information: we focused on obtaining information about
the interviewee’s testing experience.

– Part 2: Test Case Classification: we asked the interviewee to clarify his reasons
for his test-case quality classification and to discuss some test cases given by
another participant.

– Part 3: General Perception of Test-Case Quality: we had a more generic dis-
cussion with the interviewee about his or her perception of test-case quality.

To mitigate flaws in our interview design, we conducted a pilot interview
with a colleague whose research interest includes software testing and has been
working with test cases for years. The interview questionnaire could be found at
https://tinyurl.com/y6qakcjc.

Participants Selection. Our selection criteria were that (1) a participant
should be a tester and/or a developer; (2) the participant has at least one year
of working experience relating to software testing. Our selection is convenience
sampling [16] as we involved those who meet our criteria and are willing to par-
ticipate in the interviews. At the end, we had six participants from three different
teams working in different projects. Their information is described in Table 1.
Even though four of them are test architects, their responsibilities still involve
working with test cases. Hence, having them participate in the study did not
affect our study design.

Interview Execution. The interviews were conducted by two researchers each.
One researcher asked questions while the other took notes and added extra
questions for clarification if needed. Each interview took around one hour, and
was audio-recorded with the participant’s consent.

Test Cases. In total, we collected 17 manual natural-language test cases as
not all practitioners followed the instruction of providing three test cases each.
They were extracted from the company’s test suites for functional testing. We
focused on the following information of a test case in our analysis: ID, name,
description, and steps. Even though there is no strict format for the test case’s
description, it often includes, but does not require, the following information:

https://tinyurl.com/y6qakcjc

42 H. K. V. Tran et al.

Table 1. Participants’ experience, roles, tasks and test cases provided

ID Role Expa Make
TPb

Design
TCsc

Review
TCs

Report
TRd

Maintain
TCs

Execute
TCs

TC ID

P1 Test architect 6 � � � � � P1.1-3

P2 Tester 14 � � P2.1-4

P3 Test architect 6 � � � � � P3.1-2

P4 Tester, test
architect,
consultant

20 � � � � � P4.1-3

P5 Developer 5 � � P5.1-2

P6 Test architect 15 � � � � � P6.1-3
aExp: number of years of working experience in testing
b TP: test plan
c TC: test case
d TR: test results

purpose, preconditions, additional information, references, and revision history.
Additionally, we also received the quality classification (Good/Bad/Normal) and
the written explanations before the interviews. Nonetheless, we could not report
the actual test cases’ content due to confidentiality reasons.

3.3 Data Analysis

Interview Data. Before analysing the data, the first author transcribed and
anonymised all audio recordings of the interviews. The transcribed data were
coded using a thematic coding approach [5]. More specifically, we applied an inte-
grated approach, which allows codes to be developed both inductively from the
transcribed data and deductively from the research questions and researchers’
understanding of test-case quality in general. The main themes which were
inspired by the research questions are as follows:

– Practitioners’ Background Information: contains information such as roles,
testing experience;

– Test-Case Quality Description: contains information about how practition-
ers described test-case quality and their selection of the top three quality
indicators or attributes of a good test case and of a bad one;

– Test-Case Quality Assessment: contains information about practitioners’ clas-
sification of test-case quality and their reasoning;

– Test-Case Quality Alignment: contains information about differences and sim-
ilarities in practitioners’ perceptions of test cases and their reasoning;

– Test-Case Quality Improvement: contains information about practitioners’
suggestions to improve test-case quality;

– Source of Information: contains information about sources that practitioners
refer to when they need to assess or get a better understanding of test-case
quality.

Test-Case Quality – Understanding Practitioners’ Perspectives 43

For each interview, we followed the following steps:

Step 1: Starting from the beginning of the interview, mark a segment of text
which is relevant to the pre-defined themes with a code and assign it to a cor-
responding theme. For the Test-Case Quality Description theme, relevant codes
could be test-case quality attributes such as understandability, effectiveness,
traceability, etc. Some of those attributes were named and explained explicitly
by the practitioners while the others were generated based on their discussions
during the interviews.
Step 2: Find the next relevant segment of text. Mark it with an existing code
or with a new code and assign it to a relevant main theme. If the information
is related to test-case quality but does not belong to any main theme then a
new theme is created for that new information. It helps us to capture emerging
concepts related to our study’s focus.
Step 3: Repeat Step 2 until no relevant information is found.
Step 4: Create sub-themes under every main theme to cluster related codes
together.

During the process, codes, themes, and their descriptions were continuously
refined to fit the data. We used a commercial tool to complete this coding process,
which allows us to maintain traceability between the transcribed data and the
related codes and themes. To mitigate bias and increase the reliability of the
coding, the first set of codes and themes were discussed by two researchers, and
the coding scheme was refined. Furthermore, the final set was reviewed by all
researchers. All disagreements regarding the coding were resolved in a meeting
by discussion.

To obtain an overall ranking of the top quality indicators and attributes of a
good test case and of a bad one, each of them gets three points if it was ranked
first by a practitioner, two points if it was ranked second, and one point other-
wise. We wanted to get a general picture of which quality attributes or indicators
are normally considered more important than the other by practitioners. Hence,
we did not consider the contextual factors identified by RQ3 in the ranking.

Test Case Data. To analyse the collected test cases, we extracted the quality
classifications and reasons from practitioners’ written notes. The information
was coded in the same manner as the interview data (see previous section).
To compare practitioners’ opinions with the literature, before the interviews, we
searched for test smells in those test cases based on test smells’ descriptions from
two studies [8,12]. This step did not only give us another assessment angle but
also helped us to better understand the test cases’ quality. We selected those
studies for reference for two reasons. The first study [12] is the most recent
work on test smells of natural-language tests. The second study [8] provides us
descriptions of the top 11 most discussed smells of test code. There are common
characteristics between natural language test cases and unit test cases such as
testing logic, issues in test steps, dependencies between test cases, test behaviour
when executing, etc. Hence, the study of Garousi et al. [8] is a relevant reference.

44 H. K. V. Tran et al.

Even though that study was based on a former work of Garousi et al. [9], the
former one did not provide definitions of test smells, hence not chosen as a
reference.

4 Threats to Validity

Construct Validity. Construct validity is concerned with the reliability of
operational measures to answer the research questions. Our interviews were
semi-structured with follow-up questions which gave us opportunities to clar-
ify practitioners’ answers and reduce misunderstandings during the interview.
Their written explanations for the test cases’ quality assessment reduced the
risk of misinterpreting their answers. The test cases were selected subjectively
by the practitioners to demonstrate their perspective of good/bad/normal test
cases in terms of their perceived quality. Since our study’s type is exploratory
and attempts to capture practitioners perspective, this selection method is not
considered a threat to the validity of our results. Additional information about
practitioners such as whether they were ISTQB1-certified might influence their
perspective on test-case quality. Since we did not collect this information, it is a
limitation of the study. Nevertheless, we collected important information (their
testing experience, roles, and working tasks relating to test cases) which would
be still sufficient to describe the participants’ background information.

Internal Validity. Internal validity is about causal relations examined in the
study. Even though we identified possible aspects which should be considered
when defining and assessing test-case quality, our focus was not to generate a
complete list of such aspects. By not eliminating one aspect or another, this type
of threat is not of concern.

External Validity. External validity is concerned with the generalisability of
the study’s findings. In general, with the “convenience sampling” [16], the sample
might not represent the population, which could potentially affect the findings’
generalisability. However, as our study is exploratory, not confirmatory, this
sampling method is not considered as a validity threat. Our study’s context is
characterised by the type of the company, which is a global company working on
embedded software systems, the practitioners’ documented working background
and the nature of the natural-language tests. That is the context to which the
findings can be potentially applied.

Reliability. Reliability is about the reliability of the results. Our study’s design
was discussed among all authors of the paper. The interviews were conducted
by two researchers and the findings were discussed by all researchers to mitigate
the bias from one researcher. The data collection process and interview questions
were clearly documented to increase the reliability.
1 https://www.istqb.org/.

https://www.istqb.org/

Test-Case Quality – Understanding Practitioners’ Perspectives 45

5 Results and Discussion

In this section, we present and discuss our findings in relation to each of the
research questions stated in Sect. 3.1.

5.1 Test-Case Quality Definition (RQ1)

To answer the first research question, we asked practitioners to define test-case
quality and explain how they would assess such quality (the interview question
Q7–11). Table 2 contains a list of 11 test-case quality attributes that we collected.
It also includes the practitioners’ authentic terms and phrases used to describe
the attributes. It is worth mentioning that the use of specific test cases, chosen
by the participants from the organization’s test suites, triggered more in-depth
reflections. The insights from practitioners regarding these test cases identified
as many unique test-case quality attributes as a discussion in abstract of what
constitutes test-case quality.

Overall, we could see that the quality attributes could be placed into two
groups. The first group, including understandability, step cohesion, complete-
ness, efficiency, and flexibility, is oriented around quality attributes of a test
case which could be relevant for practitioners when executing it. The second
group includes understandability, simplicity, completeness, homogeneity, issue-
identifying capability, repeatability, traceability, effectiveness, and reasonable size.
The latter group of attributes relates to general concerns, namely the design, the
maintenance, and the objective of testing in general.

Understandability is the most common attribute, and discussed by all prac-
titioners. A reason for this could be the nature of the discussed test cases, which
were written in natural language. Hence, it makes sense that ambiguity in test
cases is considered as a major concern. We could also see an alignment between
practitioners’ perceptions and the literature. Understandability is directly con-
nected to three test smells, namely ambiguous tests in natural-language tests [12],
long/complex/verbose/obscure test, and bad naming in test code [8]. Even though
the last two smells are for test code, according to their definitions, which are “It
is difficult to understand the test at a glance. The test usually has excessive
lines of code” and “The test method name is not meaningful and thus leads
to low understandability” respectively, those smells could also occur in natural-
language tests. The other connection is between the quality attribute simplicity
and the test smell eager test, which is described as “The test is verifying too
much functionality in a single test method” [8].

Apart from identifying test-case quality attributes, practitioners also listed
the top characteristics and indicators of a good test case and of a bad one. The
outcome is a mixture of specific quality indicators: clear objective (the purpose
of a test case), clear precondition (how to set up the testing environment), clear
steps with clear expected results, and general quality attributes: understandabil-
ity, completeness, effectiveness. According to our ranking scheme, understand-
ability is rated as the most important attribute. This is consistent with the most
commonly discussed quality attributes in the general discussion. The second

46 H. K. V. Tran et al.

place goes to the quality indicator clear objective. One of the reasons given by
one practitioner was that “the objective of each test case or of each component
of the test scope is the most important thing because those are combined to
make sure that all the requirements of each of the projects are met.”

Table 2. Test-case quality attributes

Quality
attribute

Description Practitioners’ phrases Na

Understand-
ability

The information of a test case
(name, objective,
precondition, steps, terms)
should be easy to understand
by both testers, and
developers

Straightforward, understandable
description, how and what to test, clear
steps, clear objective, clear precondition

6

Simplicity A test case should not
combine different test cases
together nor contain so many
steps

A big story for many test, not so many
steps cases

4

Step cohesion Steps in a test case should be
well connected. The test case
should not contain redundant
steps or miss necessary steps

Unnecessary step, mandatory steps 3

Completeness A test case should contain all
relevant information for its
execution

All information needed to perform the
test, all kind of information that
developers and testers need

2

Homogeneity Test-case design should follow
the same rules

Homogeneous, unity with the same rules,
harmony

2

Issue-
identifying
capability

A test case should help to
identify issues, weakness of
features/functions

Find bug, mitigate possible issues 2

Repeatability A test case returns the same
results every time it is
executed

Run any time, tested repeatedly 2

Traceability There should be traces
between a test case and other
related artefacts such as
issues, ISO quality attributes,
functionality

Mentioned issue, function category, ISO
attributes category

2

Effectiveness A test case covers the
expected requirements

Meets the requirement 1

Efficiency A test case should be easy to
run so that it does not waste
time

Efficient, easy to run, not complicated,
save time

1

Flexibility A test case should have
flexibility in how to execute it

Flexible, loosely written test, freedom,
run differently

1

aN: Number of practitioners discussed the quality attribute

5.2 Alignment in Understanding of Test-Case Quality (RQ2)

We asked practitioners to classify test cases given by the others into good, bad
or normal in terms of their quality (Sect. 2 of the interview questionnaire). Due
to the interviews’ time constraint, only seven out of 17 test cases, were analysed

Test-Case Quality – Understanding Practitioners’ Perspectives 47

by more than one practitioners as shown in Table 3. Half of them, P1.3, P2.4,
P3.1, and P3.2, had the same quality classification while the other half, P1.2,
P3.1, P4.1, and P5.2, received a mixed assessment.

In general, we could see that test-case understandability was always the first
concern. For the test cases having the same quality assessment (P1.3, P2.4, P3.1,
P3.2), a test case’s quality is considered as absolutely bad if the practitioners
could not understand what they are supposed to do, especially when both the
test objective and other details like steps, precondition, expected results of steps
are unclear. If the test case’s objective is sufficiently clear enough that the prac-
titioners could get some idea about its purpose, they would consider its quality
as acceptable or normal, though other details like preconditions are missing.

By analysing test cases which had different quality classification results (P1.2,
P3.1, P4.1, and P5.2), we could see that the difference is strongly associated with
the practitioners’ responsibilities relating to test cases. If one of their responsibil-
ities is to execute test cases, then they are more concerned about whether they
have all relevant information to run the test cases. If they are responsible for
broader tasks, in this case mainly about test-case maintenance and test results
analysis such as what faults to fix, then they would have other concerns such as
the test cases’ complexity or their traceability to issues, bugs.

Our observation aligns with the perceptions of practitioners as they explained
that they might have different concerns regarding test cases depending on their
responsibilities. Those responsible for executing test cases prioritise understand-
ability and completeness of test cases, that is, whether they have all relevant
and clear information for executing the test cases. Those responsible for broader
tasks like test architects do not only care about how test cases execute but also
about the outcome of the test cases and the test suites in general. Hence, they
have extra expectations such as whether the test cases cover the requirements,
or whether it is easy to maintain the test cases. They also explained that the
difference in working styles might have an impact on the test-case quality assess-
ment. If they have different approaches in designing test cases, they would have
different requirements on how to assure the test-case quality.

To provide a different perspective on the test-case quality assessment, the lead
author used the list of test smells from the literature (see Sect. 3.3) to identify
test smells in those seven test cases. As a result, there is a considerable overlap
between the practitioners’ concerns and the identified test smells (ambiguous
test [12], conditional tests [12], long/complex/verbose/obscure test [8], and eager
test [8]) (shown in Table 3). It is shown that the concerns about understand-
ability, ambiguity, cohesion of test cases match with the test smells ambiguous
test and long/complex/verbose/obscure test. Likewise, the concerns about the
complexity of test cases directly relate to the test smells eager test.

However, the concerns about two quality attributes, traceability and repeata-
bility, have no corresponding smells according to our list of test smells. One
potential reason is that those quality concerns could be the consequences of
some other test smells. Traceability could be affected by the test smells eager
test, ambiguous test and long/complex/verbose/obscure test. As pointed out by

48 H. K. V. Tran et al.

Table 3. Test-Case (TC) quality classification

TC
ID

Concerns from Assessor 1 Classification
(G/B/N)

Concerns from
Assessor 2

Literature
[8,12]

P1.2 -Understandability:
explained objective, links
to specs/requirements,
unclear precondition
-Complexity:
combination of multiple
TCs -Traceability to
bugs: not clear due to
the complexity

Assessor1 [P1]: N
Assessor2 [P4]: G

-Ambiguity: not
well written
pre-conditions
-Complexity:
combination of
multiple TCs

-Ambiguous
test [12]
-VOLC test [8]

-Eager test [8]

P4.1 -Ambiguity: unclear
terms, missing expected
results of steps, missing
pre-conditions

Assessor 1 [P4]: B
Assessor 2 [P1]: N

-Ambiguity: unclear
terms
-Repeatability: can
be run anytime

-Ambiguous
test [12]
-VOLC test [8]

P5.2 -Ambiguity: unclear
terms -Complexity:
combination of multiple
TCs -Traceability to
bugs: not clear due to
the complexity

Assessor 1 [P5]: B
Assessor 2 [P2]: N

-Ambiguity: unclear
terms

-Ambiguous
test [12] VOLC
test [8] -Eager
test [8]

P3.1 -Understandability:
sufficient description

Assessor 1 [P3]: N
Assessor 2 [P2]: B

-Ambiguity: unclear
terms due to poor
English

-Conditional
test [12]
-Ambiguous
test [12]
-VOLC test [8]

P3.1 -Understandability:
sufficient description

Assessor1 [P3]: N
Assessor2 [P5]: N

-Understandability:
explained objective
-Ambiguity: missing
pre-conditions
-Traceability to
bugs: established

-Conditional
test [12]
-Ambiguous
test [12]
-VOLC test [8]

P1.3 -Ambiguity: unclear
objective -Complexity:
combination of multiple
TCs -Traceability to
bugs: not clear due to
the complexity

Assessor1 [P1]: B
Assessor2 [P6]: B

-Ambiguity: unclear
objective, unclear
terms, unclear
expected results for
multiple steps
-Complexity:
combining several
TCs

-Conditional
test [12]
-Ambiguous
test [12]
-VOLC test [8]
- Eager test [8]

P2.4 -Ambiguity: missing
pre-conditions

Assessor1 [P2]: B
Assessor2 [P5]: B

-Ambiguity: unclear
objective, missing
pre-conditions

-Ambiguous
test [12]
-VOLC test [8]

P3.2 -Ambiguity: missing
objective -Cohesion:
missing steps

Assessor1 [P3]: B
Assessor2 [P5]: B

-Ambiguity: unclear
step

Ambiguous
test [12]
-VOLC test [8]

1VOLC: Long/complex/verbose/obscure [8]

Test-Case Quality – Understanding Practitioners’ Perspectives 49

practitioners, if a test case contains multiple test cases, it becomes complex.
Hence, it is harder to understand which part the test case leads to found issue(s).
Ambiguity in a test case’s description could also make the test execution non-
deterministic [12], which potentially affects the traceability to found issue(s).
Likewise, repeatability might not be possible if there are dependencies among
the test cases. Indeed, there are test smells due to dependencies in testing [8].
However, they were not in our list as they were not the top discussed smells [8].

5.3 Quality-Related Factors (RQ3)

By answering our interview questions (Q4–9), the practitioners described factors
which could influence how they assess test-case quality. In general, practitioners
believe that the test-case quality depends on the test case’s context. For example,
the assessment could depend on whether the practitioner knows how the code
was written. He or she might have a different opinion on how to design test cases
for testing that code compared with those who do not know the code. Another
context factor is the maturity level of the software system under test (SUT).
According to three practitioners, to save their time, they could combine multiple
test cases into one when the SUT is more or less working properly as those test
cases hardly fail at that state. Hence, in that case, a test case is not considered
as bad even though it contains different test cases. Two practitioners mentioned
that the testing level also has an impact on how test-case quality is defined.
For example, for exploratory tests, practitioners whose responsible is execute
test cases prefer to have flexibility in executing test cases. They would rather
not to follow steps so closely as that might not help them to identify new issues.
Therefore, if an exploratory test case’s execution instructions are restrictive, that
test case could be perceived as bad. Hence, practitioners’ pre-knowledge of the
test-case context has a strong influence on their test-case quality perceptions.

5.4 Improvement (RQ4)

With the interview question Q14, we identify several suggestions for improving
test-case quality. In general, a homogeneous directive or procedure for test-case
design could improve the quality as it could guarantee test cases are designed sys-
tematically. A uniform quality policy could also help to ensure the quality is met
and aligned among practitioners. More specifically, to enhance test-case under-
standability in the test-case design phase, it was suggested that each test case
should contain all necessary information. Importantly, the information should
be relevant to both testers and developers. That will help to avoid a situation
in which testers or developers have to look for information of related test cases
in order to understand their assigned test cases. For test-case maintenance, the
most common suggestion was that test cases should be reviewed regularly as they
could become obsolete due to the evolution of the SUT. Updating test cases so
that they contain all relevant information for execution and removing no-longer-
needed test cases are important steps in this phase. Apart from improvements in
test-case design and maintenance, practitioners also suggested that developers

50 H. K. V. Tran et al.

and testers should have active communication in order to mitigate misunder-
standing in executing and analysing test results.

5.5 Source of Information (RQ5)

With the interview question Q15, we collected information sources that practi-
tioners refer to for a better understanding of test-case quality. The most com-
mon source is from colleagues like testers and developers working on the same
projects, especially seniors who have experience in similar tasks. It is consistent
with the previous research on information sources consulted by practitioners [14].

Regarding test-case design, product specifications are considered the most
relevant internal source of information. Other types of internal sources include
software architect documents, test cases in previous projects, guidelines and
templates for writing test cases, rules and policies from test architects, and test
plans. The practitioners also refer to external sources such as guidelines provided
by the ISTQB and ISO standards. Apart from those common sources, one prac-
titioner also mentioned that he or she learns about test-case quality by attending
industrial seminars and workshops on related topics. Some practitioners also said
that they rely on their own experience when assessing test-case quality.

6 Conclusions and Future Work

We conducted an interview-based exploratory study involving six practitioners,
working in three different teams in a company to understand practitioners’ per-
ceptions of test-case quality. We identified 11 quality attributes for test cases,
of which understandability was perceived as most important. That could be
due to the nature of the studied test cases, which were written in natural lan-
guage. Nevertheless, the study of Garousi et al. [8] also reported the related test
smell long/complex/verbose/obscure test as the main concern in test code, which
means that understandability is also important in test code.

We also found that there is a misalignment in practitioners’ perceptions
of test-case quality. The explanation is that, depending on the practitioners’
responsibilities, they have different quality requirements. For practitioners whose
responsibility is to run test cases, the focus is more on acquiring relevant infor-
mation for test-case execution. Hence, their priority is the understandability of
test cases. For those who need to design and maintain test cases like test archi-
tects and developers, their concerns are more about test-case maintenance and
outcomes of test suites. Therefore, they require other quality attributes such
as traceability to other artefacts, efficiency, effectiveness, repeatability, etc. The
context factors of test cases, such as code-related knowledge, the maturity level
of software under test, testing types such as exploratory test potentially also
impact how practitioners define test-case quality.

We also identified suggestions for improving test-case quality. The most com-
mon suggestion is a homogeneous procedure for test-case design, with focus on
completeness of test cases, meaning that a test case should contain all relevant

Test-Case Quality – Understanding Practitioners’ Perspectives 51

information for execution by any involved party. Reviewing test cases and regular
communication between developers and testers were also highly recommended by
practitioners. Practitioners also discussed different sources of information they
refer for a better understanding of test-case quality. In general, their informa-
tion comes from external sources such as ISTQB and ISO standards. For specific
test cases, they rely on the internal sources, such as product specifications, and
discussion with other colleagues.

Even though our findings were based on a few data points, we had a sound,
repeatable strategy to identify them. They are not generic, but for a specific
context. For more general findings, we plan to interview more practitioners in
different contexts. We will also compare our findings of the quality attributes
and quality definition(s) with other existing studies. Another planned future
work is to have a broader investigation on differences and similarities between
the industry and the literature on defining and assessing test-case quality.

Acknowledgment. This work has been supported by ELLIIT, a Strategic Area
within IT and Mobile Communications, funded by the Swedish Government, and by
the VITS project from the Knowledge Foundation Sweden (20180127).

References

1. Athanasiou, D., Nugroho, A., Visser, J., Zaidman, A.: Test code quality and its
relation to issue handling performance. IEEE Trans. Softw. Eng. 40(11), 1100–1125
(2014)

2. Bowes, D., Hall, T., Petric, J., Shippey, T., Turhan, B.: How good are my tests? In:
2017 IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics (WET-
SoM), pp. 9–14, May 2017

3. Čaušević, A., Sundmark, D., Punnekkat, S.: Test case quality in test driven devel-
opment: a study design and a pilot experiment. In: 16th International Conference
on Evaluation Assessment in Software Engineering (EASE 2012), pp. 223–227, May
2012

4. Chernak, Y.: Validating and improving test-case effectiveness. IEEE Softw. 18(1),
81–86 (2001)

5. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement, pp. 275–284, September 2011

6. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pp. 107–118. ACM, New York (2015)

7. Garousi, V., Felderer, M.: Developing, verifying, and maintaining high-quality
automated test scripts. IEEE Softw. 33(3), 68–75 (2016)

8. Garousi, V., Kucuk, B., Felderer, M.: What we know about smells in software test
code. IEEE Softw. 36(3), 61–73 (2019)

9. Garousi, V., Küçük, B.: Smells in software test code: a survey of knowledge in
industry and academia. J. Syst. Softw. 138, 52–81 (2018)

10. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by develop-
ers. In: Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 72–82. ACM, New York (2014)

52 H. K. V. Tran et al.

11. Grano, G., Scalabrino, S., Gall, H.C., Oliveto, R.: An empirical investigation on
the readability of manual and generated test cases. In: Proceedings of the 26th
Conference on Program Comprehension, ICPC 2018, pp. 348–351. ACM, New York
(2018)

12. Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun, P.: Hunting
for smells in natural language tests. In: 2013 35th International Conference on
Software Engineering (ICSE), pp. 1217–1220, May 2013

13. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 435–445. ACM, New York (2014)

14. Josyula, J., Panamgipalli, S., Usman, M., Britto, R., Ali, N.B.: Software practi-
tioners’ information needs and sources: a survey study. In: Proceedings of the 9th
International Workshop on Empirical Software Engineering in Practice (IWESEP),
pp. 1–6, December 2018

15. Jovanovikj, I., Narasimhan, V., Engels, G., Sauer, S.: Context-specific quality eval-
uation of test cases. In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development - Volume 1: MODELSWARD, pp.
594–601. INSTICC, SciTePress (2018)

16. Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. SIGSOFT Softw. Eng. Notes 27(5), 17–20 (2002)

17. Nagappan, N., Williams, L., Osborne, J., Vouk, M., Abrahamsson, P.: Providing
test quality feedback using static source code and automatic test suite metrics. In:
16th IEEE International Symposium on Software Reliability Engineering (ISSRE
2005), pp. 10–94, November 2005

18. Neukirchen, H., Zeiss, B., Grabowski, J.: An approach to quality engineering of
TTCN-3 test specifications. Int. J. Softw. Tools Technol. Transf. 10(4), 309 (2008)

19. Pfaller, C., Wagner, S., Gericke, J., Wiemann, M.: Multi-dimensional measures
for test case quality. In: 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pp. 364–368, April 2008

20. Reichhart, S., Gı̂rba, T., Ducasse, S.: Rule-based assessment of test quality. J.
Object Technol. 6(9), 231–251 (2007)

21. Robson, C., McCartan, K.: Real World Research: A Resource for Users of Social
Research Methods in Applied Settings, 4th edn. Wiley, Hoboken (2016)

22. Tan, H., Tarasov, V.: Test case quality as perceived in Sweden. In: 2018 IEEE/ACM
5th International Workshop on Requirements Engineering and Testing (RET), pp.
9–12, June 2018

23. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the
ISO 9126 quality model to test specifications - exemplified for TTCN-3 test speci-
fications. In: Bleek, W.G., Raasch, J., Züllighoven, H. (eds.) Software Engineering
2007 - Fachtagung des GI-Fachbereichs Softwaretechnik, pp. 231–242. Gesellschaft
für Informatik e. V, Bonn (2007)

24. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

Test Reporting at a Large-Scale Austrian
Logistics Organization: Lessons Learned

and Improvement

Dietmar Winkler1,2(&) , Kristof Meixner1,2, Daniel Lehner2,
and Stefan Biffl2

1 Christian Doppler Laboratory for “Security and Quality Improvement in the
Production System Lifecycle”, Institute of Information Systems Engineering,
Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna, Austria

{Dietmar.Winkler,Kristof.Meixner}@tuwien.ac.at
2 Institute of Information Systems Engineering, Vienna University

of Technology, Favoritenstrasse 9-11, 1040 Vienna, Austria
{Daniel.Lehner,Stefan.Biff}@tuwien.ac.at

Abstract. Context and Background. Software testing and test automation are
important activities in software development where frequent requirements
changes and the fast delivery of software increments are supported by traditional
and agile development processes. Test reports are often used as “proof of evi-
dence” for executed software tests. However, the practical impact of test reports,
such as decision making and quality assessment, requires structured information
which might not be available in sufficient quality. Goal. In this paper we
(a) report on needs of test reports of different stakeholders at a large-scale
Austrian logistics organization, (b) develop candidate improvement actions
based on the state of the practice, and (c) conceptually evaluate selected
improvement actions. Method. We used surveys and interviews to elicit needs
and expected capabilities for test reporting and developed candidate improve-
ment. We used expert discussions prioritize improvement actions in the orga-
nization context for further implementation. Results. Based on 23 recommended
improvement actions, 14 were initially selected for implementation. Most of
these accepted improvement action focus on regular test status reports and
visualization aspects of test reports. Conclusion. Although test reporting is
systematically applied in development processes, there is still some potential to
improve test reports to gain (additional) benefits for related stakeholder.

Keywords: Software testing � Test reporting � Engineering process
improvement � Case study

1 Introduction

Delivering high-quality software products is the most important objective in software
development projects [9]. Static quality assurance approaches, such as reviews and
inspections can help to identify defects early in the software development life cycle [6].

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 53–69, 2019.
https://doi.org/10.1007/978-3-030-35333-9_4

http://orcid.org/0000-0002-4743-3124
http://orcid.org/0000-0002-3413-7780
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_4

Because no executable software code is required, reviews and inspection can focus on
various types of software artifacts, e.g., requirements specifications, architecture dia-
grams, or code. Dynamic quality assurance approaches, such as software tests, require
executable code and can help identifying defects in the software system or sub-systems
based on defined test scenarios and test cases [8]. In context of continuous integration
and test strategies [2], test runs are typically embedded within a software build process
and, thus, represents the foundation for test automation. Figure 1 presents a typical and
simplified continuous integration and test process: (1) Developers commit newly
constructed software code into a code repository; (2) Release Managers initiate a build
process (on purpose or on a regular basis, e.g., daily/nightly builds) including test runs
and reporting; (3) Test managers and Testers prepare test scenarios, test cases and test
data for test execution; (4) Developers receive feedback, e.g., by using test reports, on
the test runs with focus on of their committed piece of code; (5) finally, a test report is
generated, used by different stakeholders for analysis and decision making. For
instance, test managers and testers can use test reports for providing evidence on the
results of executed test runs, project managers can use test reports for analyzing the
quality of the software code and for assessing the status of the project and business
managers can use test reports to assess the overall progress of the project, e.g., based
on coverage analysis.

However, an important question focus on the impact of test reports usage, i.e., to
derive what is most beneficial in a test report for all involved stakeholders. Although
there exist standards for test reporting, e.g., by ISO/IEC/IEEE 29119-3:2013 [4] a
remaining question is to what extent required (and standardized) test documentation
can help development teams or test/project managers to better control software engi-
neering projects.

In this paper we focus on (a) the identification of stakeholder needs in context of
test reporting at a large-scale Austrian Logistics Organization, (b) identifying
improvement candidates based on test report best-practices as foundation for
improvement action implementation, and (c) on a conceptual analysis of selected

Development Build Test Run

Source
Code

Repos.

Commit
Code

Build
Release

Test Cases
& Data

Test
Results

Test Report
Test Manager

& Tester

(Project)
Management

Developer
Release

Manager

Test Manager
& Tester

Feedback on Test Runs

1 2 3
5

4

Fig. 1. Simplified continuous integration and test process.

54 D. Winkler et al.

improvement actions in the study context. For identifying stakeholder needs we con-
ducted a survey and a set of interviews at the logistics organization. Based on the
results we developed a set of candidate improvements as foundation for improvement
and discussed benefits and limitations with the related stakeholders in the organization.
Finally, we conceptually evaluated selected improvement actions in the study context.
Note that the implementation and further investigations remain for future work.

The remainder of this paper is structured as follows: Sect. 2 summarizes related
work on software testing and test automation, test reporting, and engineering process
improvement. We present the research issues in Sect. 3 and describe the study process
in Sect. 4. Section 5 summarize results and Sect. 6 focuses on the discussion of the
results. Finally, Sect. 7 summarizes and concludes.

2 Background and Related Work

This section summarizes background and related work on Software Tests and Test
Automation (2.1) Test Reporting (2.2), and Engineering Process Improvement (2.3).

2.1 Software Test Automation

Software tests aim at identifying defects in executable software engineering artefacts,
i.e., in software code [8, 10]. Manual testing approaches and the creation of manual test
reports require (high) human effort for test case and test data definition and test exe-
cution. However, frequent test runs, common in agile software development, make it
hard to manage manual tests because of effort and cost considerations. In addition,
testing of non-functional requirements, such as performance and load tests, require
appropriate tool support because such type of tests cannot be conducted efficiently by
human experts [7]. Thus, automated tests embedded within continuous delivery
strategies need to be implemented to overcome limitations of manual activities and/or
enable defined types of tests, such as performance or load testing [3].

Although application context and customer requirements have a strong impact on
selection appropriate test types, test processes follow a defined sequence of steps (see
Fig. 2):

1. Test Analysis and Design focuses on the specification of test levels and types. Test
levels focus on different levels/scopes of the software/system under test, such as
units, components, sub-systems, or systems. Test types refer approaches how to test
these system parts, e.g., functions, performance, or load.

Analysis &
Design

Implementa�on
& Execu�on

Evalua�on &
Repor�ng

Closing &
Follow-up

Test Management

1 2 3 4

5

Fig. 2. Basic software test process according to Spillner et al. [10].

Test Reporting at a Large-Scale Austrian Logistics Organization 55

2. Implementation & Execution includes the setup of the test infrastructure,
generation/construction of test cases, test data and the (automated) execution of
software tests.

3. Evaluation & Reporting include test results analysis for feedback (e.g., within a
continuous integration and test strategy) and for test report generation.

4. Closing & Follow-up focuses on test run and environment archiving and preparing
decision support for test and/or project management.

5. Test management includes test planning, decision of test strategies, and control of
test runs based on analysis results and test reports.

In this paper we focus on test reports and the impact of test reports on a defined set
of stakeholders, e.g., developers, release managers, test managers, test experts, and
(project) management – key stakeholders as depicted in Fig. 1. Often test reports are
used to provide some evidence on executed test runs and for decision making. How-
ever, based on observations in industry, we see the need to investigate test reports to
improve the acceptance and usability of test reports.

2.2 Test Reporting

The ISO/IEC/IEEE 29119-3 standard [4] focuses on general software test documen-
tation templates and how they map to the several levels/scopes of software testing.
Furthermore, the standard defines the Organizational Test Documentation including
the Test Policy and Organizational Test Strategies derived from this policy as general
guidelines from the organization to be used for test processes in specific projects. The
Test Management Documentation contains Test Plans for defining particular testing
strategies beforehand as well as a Test Completion Report available after a particular
testing effort. The Dynamic Test Documentation which is produced during actual
testing efforts including the Test Specification, Test Environment Readiness Report, and
Test Data Readiness Report (prerequisites for executing the tests). When executing test
cases, Test Execution Documentation holds related information. Incident Reports
include defects, deviations, and incidents identified during test execution.

Although this standard provides some guidance for implementing test reporting in
an organization, one should also consider more general factors to satisfy a wider range
of stakeholders. Kelley [5] defines a set of guidelines and recommendations for
reporting in a medical context: (a) Quality before quantity, i.e., focus on data that is
needed by readers of the reports in order to do their job; (b) Focus on patterns, rather
than on isolated occurrences; (c) Apply benchmarks for comparing current results to
similar institutions; (d) Include Data Analysis and Interpretation, i.e., never use raw or
unexplained data; and (e) Include a Management Summary, i.e., highlight actions and
options for board consideration. In this work, we want to find out to which degree these
recommendations are relevant in the context of test reporting. For example, a test
report, e.g., embedded within a continuous integration and test strategy (see Fig. 1),
holds test individual case definitions and test results that can be aggregated to test
scenarios, and related (summarized) results. Furthermore, individual test results rep-
resent the foundation for deriving quality metrics, such as test coverage or quality
estimations for decision-making.

56 D. Winkler et al.

2.3 Engineering Process Improvement

Industry organization often follow a pre-defined set of test report items (e.g., recom-
mended by standards, such as [4]) without carefully analyzing strength and limitations
of test reports in their individual context. Thus, we see the need to analyse the current
state of the practice in organizations, identify strength and limitations in context of best
practices, and initiate a process improvement initiative to improve test reporting and
tests processes. For initiating and executing engineering process improvement strate-
gies, there is the need to follow a systematic process approach, such as the Quality
Improvement Paradigm (QIP) [1]. In context of this paper we applied the Quality
Assurance Tradeoff Analysis Method (QATAM) [11], an engineering process
improvement approach that helps identifying strengths and limitations and suggests
candidate improvements in a defined context (see Fig. 3 for a conceptual overview).
Main building blocks of the QATAM approach includes (1) Context and Scope defi-
nition of the planned improvement initiative, e.g., improving test reporting; (2) Method
Repositories as a pool of mechanisms, methods and tools available from best practice
recommendations; (3) Candidate Improvement Options as possible improvement
strategies; and (4) Evaluation of Candidate Improvements as a foundation from
implementation in the organization context.

In context of this paper, we focus on test reporting (Context and Scope) based on
best practice recommendations (Method Repository), e.g., in [4] to derive an initial set
Candidate Improvement Options to be evaluated in collaboration with the organization
to elicit appropriate improvement action (Strategy Evaluation and Selection).

3 Research Issues

Based on the related work on test automation and test reporting, we identified a set of
research issues as part of the process improvement initiative at a large-scale Austrian
logistics organization.

RQ.1: What are critical stakeholder requirements for test reporting in context of
the case study organization? Although there are some further goals of reports, like

Context and Scope

Method Repository

1

2

Candidate Improvement
Op�ons

3
Evalua�on of Candidate

Improvements
4

Organiza�on and
Applica�on Context

Best Prac�ce Recommenda�on
(candidate improvement ac�ons)

Candidate
Improvements

Goals, Scope, Expected Benefits

Feedback on Method Improvement

Selected
Improvement
Ac�ons

Fig. 3. Quality Assurance Tradeoff Analysis Method (QATAM) according to [11].

Test Reporting at a Large-Scale Austrian Logistics Organization 57

documenting the work that has been done, we want to focus on reports for transmitting
information with a clear purpose, to a specific audience, i.e., to relevant stakeholders
like developers, testers, test managers, release managers, project management, and
business management. The first research question focusses on eliciting requirements
from best practice recommendations and defined stakeholder groups at the industry
partner.

RQ.2: What are the best-practices implemented in the organization, i.e., a large-
scale Austrian logistics organization? Up to now, test reports have been established
within the organization. A specific test department offers testing as a service to
developer groups. However, it remains unclear how individual reports are implemented
and used and what are the conclusions drawn out of the reports. In context of this work,
we used a survey to identify he current use of test reports. Thus, the second research
questions focuses on identifying best practices implemented in the organization.

RQ.3: What is the impact of improved reporting in context of a logistics organi-
zation? Following the QATAM approach, we analysed strength and limitations of
current approaches, derived improvement actions, and discussed selected improvement
actions in the organization as foundation for implementation. The third research
question focuses on investigating the impact of improved test reports.

4 Study Process

This section introduces to the study company (4.1) and summarizes the study design
and process steps (4.2).

4.1 Case Study Company

The case study organization is a large-scale Austrian logistics organization with an
integrated IT department with around 250 people, including dedicated departments for
testing and architecture and project management. These two departments represent
important core producers and consumers of test reports. The main business goal of the
logistics organization focuses on worldwide shipping of items (and related processes
and applications). The software developed and maintained by the IT department aims at
supporting and optimizing relevant processes, e.g., passing metadata of items through
barcodes as well as improving customer experience, e.g., tracking of items.

4.2 Study Process

Main objective of this work focus on (a) identifying test reporting needs and
requirements, (b) analyzing the state of the practice in the case study organization, and
(c) eliciting and evaluating improvement candidates. Figure 4 illustrates the study
design and the study process steps.

Step 1. Test Report Requirements Identification. We used surveys to capture specific
test report needs of external stakeholders (i.e., stakeholders that are outside the testing
department, e.g., project managers) in the organization. The second part of the

58 D. Winkler et al.

requirements elicitation process focuses on interviewing test managers to identify their
expectation on test reporting.
Step 2. State of the Practice Analysis. Test processes and related artifacts are stan-
dardized in the case study company, we selected a typical project to analyze the state of
the practice on test report usage in the study context. The analysis process focuses on
whether or not identified requirements are captured in the selected project.
Step 3. Identification of Improvement Candidate. We identified gaps between the state
of the practice (step 2), requirements (step 1), and the state of the art derived from the
literature. Based on the results of this analysis process step we came up with a set of 25
concrete improvement suggestions (i.e., improvement candidates) for optimizing test
reporting to close these gaps.

Step 4. Evaluation of Improvement Candidates. We evaluated improvement candidates
(Step 3) to assess their relevance in the case study organization and whether or not they
can be accepted by key stakeholders in the organization, i.e., test managers. The
assessment was based on informal interviews and discussions with test managers in the
case study company. The study was executed in 2017 by process improvement and
testing experts, i.e., the authors. One of the authors was responsible for conducting the
study at the case study organization, supervised by the other authors. Several feedback
rounds were implemented to ensure the quality of the study design.

4.3 Survey and Interview Structure

For the assessment of requirements, we separated internal and external stakeholders.
We created a survey with focus on team members of the Architecture and Project
Management Office, involving 30 people. The department consists of project man-
agers, i.e., users of test reports, as well as roles whose work is indirectly influenced by
test reports, e.g., requirements engineers and enterprise architects. Additionally, we
included team leads who are responsible for a group of project managers, requirement
engineers and enterprise architects. As line managers, they need to have an overall view

Test Report Requirements
Iden�fica�on

State of the Prac�ce Analysis

Elicita�on of
Improvements

Candidate

Evalua�on of
Improvements

Candidate

Survey Interviews State of the Art Expert
Discussions

Needs

As-it-is

Best
Prac�ces

Business
Needs

Agreed
Candidate
Improvement
Ac�ons

1

2

3 4

Fig. 4. Study process overview.

Test Reporting at a Large-Scale Austrian Logistics Organization 59

on the projects of their team members. Therefore, they are mainly interested in the
current quality status of the individual projects. Additionally, they want to improve the
working conditions of their staff, so they are highly interested in improving test reports
to improve the engineering process and support project management. These employees
were all considered external stakeholders of the testing department.

The survey is structured into seven sections: (a) Demographics and Background;
(b) General Question on test reporting; (c) Current Usage of Regular Test Reports;
(d) Test Automation; and (e) Current Usage of Final Test Status Reports. The detailed
questionnaires are available online1. We used an online tool for executing the survey2.

In addition, we interviewed the test managers within the testing department (i.e.,
internal stakeholders). Main tasks of test managers is to plan and control the execution
of testing, to solve problems that occur during testing and to communicate the work of
the testing department by sending out reports. The four test managers that were
employed by the testing department had a different view on the work and especially on
the reporting of the testing department. The goal of the interviews was to capture
insights and get a broader and more un-biased view on test reports. We used open
questions (see footnote 1) to get qualitative information on the state of the practice and
to complement quantitative data collected during the surveys.

5 Results

This section summarizes the results of the improvement initiative in context of test
reporting at the case study organization.

5.1 Stakeholder Needs for Test Reporting

We derived general stakeholder needs (requirements) from the literature for identifying
general factors of “well-designed” reports (see [5] Section 2.2) and extended require-
ments derived from [4] as the test reporting framework at the case study organization
was initially set up using this standard. Note that the organization decided to apply all
reports (recommended by the standard [4]).

Additionally, we identified some further needs of stakeholders during the case
study. Note that the mapping between identified requirements and stakeholders was
based on a discussion with test center managers. Table 1 summarizes identified
requirements and shows the relevant and related stakeholders. Note that requirements
(R07–R12) were identified during the case study (see Sects. 5.2 and 5.3 for details).

5.2 Survey Results

The survey has been sent to 30 external stakeholders of the testing department (see
Sect. 4.3 for details). We received an overall number of 15 responses, i.e., a response

1 Complementary study material: qse.ifs.tuwien.ac.at/profes-2019-test-reporting
2 Online Survey: www.umfrageonline.com/

60 D. Winkler et al.

http://qse.ifs.tuwien.ac.at/profes-2019-test-reporting
http://www.umfrageonline.com/

rate of 50%. We divided the responses into three groups: (a) Project Managers (PM),
(b) Team Leads (TL), and (c) ENGineers (ENG), including requirements engineers and
enterprise architects, as their work is indirectly influenced by test reports.

The survey results were exported as raw .csv data and then analyzed by using
descriptive statistics supported by a spreadsheet solution. Table 2 presents background
and demographics of participant roles of collected responses. The majority of survey
respondents were project managers (PM), i.e., 8 participants (53%), followed by
technical experts and engineers (ENG) including 5 participants (33%) and team leads
(TL) with 2 participants (14%).

The first section batch of questions focuses on general questions regarding test
reports, i.e., how test reports are perceived by the participants. Figure 5 summarizes the
goals of stakeholders related to test reports they receive from the testing center. Note
that in the case study company a dedicated testing support supports various projects.
We used a Likert-Scale for collecting different ratings (1 refers to disagreement and 6
indicates a high agreement to a given statement). Figure 5 presents mean values of
responses related to test report aspects and roles.

Table 1. Identified requirement and related stakeholders.

Req.ID Requirement Stakeholder
PM TM BM Others

R01 Quality before quantity x x x
R02 Patterns instead of isolated occurrences x x x
R03 No raw or unexplained data x x x
R04 Highlight actions and options x
R05 Use benchmarks x x
R06 Fulfill standard, e.g., ISO/IEC/IEEE 29119-3:2013 [4] x x
R07 Use graphics instead of metrics for visualization x x x
R08 Modular reports x
R09 Support decision making x x x
R10 Status of software development x x
R11 Status of software testing x
R12 Minimum time effort for reporting x

PM = Project Management, TM = Test Management, BM = Business Management, Others
= developers, testers, etc.)

Table 2. Distribution of participant roles of collected responses.

Role Distribution PM TL ENG* ALL
Number of responses 8 2 5 15
Share of Responses 53% 14% 33% 100%
*Engineer includes 2 Requirements Engineers, 2 Enterprise Architects and 1 Developer

Test Reporting at a Large-Scale Austrian Logistics Organization 61

The main goal of PMs is to get an overview of the quality level based to executed
tests and some indication on the project progress. For TL it is more important to
receive concrete measures, provided by the test center, to improve the product.
Engineering roles focus on a project progress overview and some decision support
(i.e., classified as “others” in Fig. 5) It is notable that PM are more interested in test
reports, i.e., all aspects has been rated above average, while for TL and ENG test
reports seem to be less important.

Results on the question regarding stakeholder expectations on the content of test
reports are summarized in Fig. 6. For PM trend graphics (mean value: 3.5) are most
important to assess the project progress and to have a quality level overview. TL expect
textual summaries (4.0) and quality metrics (3.0) as foundation for decision support
and to derive measures, while ENG are most interesting in a textual summary including
measures and improvement suggests from the test center.

In the case study company, the test center provides testing as a service for indi-
vidual projects. Typically, there is an order for the test center to execute a set of tests
related to a test plan, e.g., a sequence of manual tests that could be relevant for
acceptance testing. Another option is an order for implementing a continuous inte-
gration and test strategy as testing infrastructure that can be maintained by project
members. However, an interesting question focuses on the expectation when to place
which type of testing orders in the test center. Figure 7 summarize the findings.

Based on the results, PM expect highlighted issues and defect reports (5.7) based
on the test runs to ensure the quality (5.6) of the product under test. For TL, in addition
to ensuring the quality, where all participants agreed (6.0), they also expect suggestion

PM TL ENG ALL
Derive Measures 4,1 3,5 1,6 3,1
Quality Level Overview 5,9 2,5 2,2 4,1
Observe Quality Trends 4,7 3,0 1,6 3,4
Project Progress Overview 5,6 2,5 2,4 4,0
Others 4,1 3,0 1,2 2,9
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

What is your goal when using test reports you receive from the testing
department?

0
1
2
3
4
5
6

Derive
Measures

Quality
Level

Overview

Observe
Quality
Trends

Project
Progress
Overview

Others

PM TL ENG ALL

Fig. 5. Goals of test report usage from different perspectives.

PM TL ENG ALL
Textual Summary 2,3 4,0 3,2 2,8
Quality Metrics 2,5 3,0 2,0 2,4
Trend Graphics 3,5 1,0 2,3 2,7
Status Graphics 1,5 2,0 2,2 1,8
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

What do you expect from a test report?

0

2

4

6

Textual
Summary

Quality
Metrics

Trend
Graphics

Status
Graphics

PM TL ENG ALL

Fig. 6. Expectations of test report content.

62 D. Winkler et al.

for QA and testing activities to further improve the product. ENG focus on similar
goals compared to PM but with a lower rate of agreement.

In test automation, reports are typically generated on a regular basis, e.g., based on
iterations or based on a defined schedule, e.g., once a week or month. Therefore, we
asked for the current usage of regular test reports with focus on content and frequency.
Figure 8 presents typical content elements of (regular) test reports and the estimations
on their stakeholder value. It is notable that highlighted test report elements seem to be
of limited interest (maximum mean value 3.0 on a Likert-Scale from 1 to 6). This is
quite surprising as common test reports are often based on a standard configurations.
However, another question is, how well are test report content elements understood by
test report consumers. Figure 9 summarizes the results on the understandability of test
reports components. The results show on average that test report elements are well-
understood by PM and TL but of limited value for ENG. Thus, there seem to be an
improvement option to increase the usefulness of test reports.

What do you expect when placing an order in the tes�ng department?

PM TL ENG ALL
Highlight Issues 5,7 4,0 4,6 5,1
Ensure Quality 5,6 6,0 5,0 5,4
Suggest QA Activities 5,1 4,5 4,0 4,6
Improve Communic. 4,0 4,0 3,6 3,9
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0

2

4

6

Highlight
Issues

Ensure
Quality

Suggest QA
Ac�vi�es

Improve
Communic.

PM TL ENG ALL

Fig. 7. Expectations when placing an order in the testing department.

Which parts of a regular test status report has most value for your own work?

PM TL ENG ALL
"Traffic Light Status" 1,0 2,0 1,7 1,3
Management Summary 1,4 2,0 2,0 1,7
Next Steps 1,1 2,0 2,3 1,6
Defect Trend 1,3 2,0 2,3 1,7
Requirements Coverage 1,4 3,0 1,7 1,7
Test Case Evolution 1,6 3,0 2,3 1,9
Defect Evolution 1,3 3,0 2,3 1,7
Metrics 1,5 3,0 2,3 1,9
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0
1
2
3
4
5
6

PM TL ENG ALL

Fig. 8. Perceived importance of test report components.

How well understandable are the following parts of a regular test status report?

PM TL ENG ALL
"Traffic Light Status" 3,7 4,0 2,5 3,5
Management Summary 3,7 2,0 2,0 3,1
Next Steps 3,7 4,0 2,5 3,5
Defect Trend 3,1 2,0 1,0 2,8
Requirements Coverage 4,0 3,0 2,5 3,4
Test Case Evolution 3,8 3,0 1,0 3,3
Defect Evolution 3,8 3,0 1,0 3,4
Metrics 3,0 - 1,0 2,7
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0

1

2

3

4

5

6

"Traffic Light
Status"

Management
Summary

Next Steps Defect Trend Requirements
Coverage

Test Case
Evolu�on

Defect
Evolu�on

Metrics

PM TL ENG ALL

Fig. 9. Understandability of test reports components.

Test Reporting at a Large-Scale Austrian Logistics Organization 63

Often, test reports are generated and distributed on a regular and timely basis. This
could lead to effects that test reports do not receive much attention. The results on the
frequency of test reports showed that PM would like to receive test reports on a weekly
basis (72%) while TL want to receive test reports weekly (50%) and depending on the
project context and project state (50%). In contrast to PM and TL, ENG support longer
time-interval (e.g., bi-weekly or monthly) but would also prefer to configure test report
frequency depending on the project context (similar to TL) and on request.

Independent on test report frequency, Fig. 10 presents the value of regular status
reports per stakeholder group. PM are mainly interesting in the quality status and
suggestions for QA activities, TL are interested in the testing progress and quality
trends and ENG stakeholders focus on the quality status and quality trend. The result
seem to be in conflict to goals and expectations of test reports in general (see Figs. 5
and 6).

In context of Test Automation, were test reports are typically generated as part of
the testing tool chain automatically, we wanted to know to what extent test automation
has been applied by the stakeholders. While 86% of PM and 100% of TL have already
applied test automation at least in one project, 75% of ENG did not apply test
automation in their projects. Note that ENG include requirements engineers and
architects. Similar results have been derived when asking whether or not test
automation should be strengthened in their projects. Although there is some agreement
to include test automation results in the test report, an interesting question focuses on
the perceived value of a final test report. Figure 11 summarizes these results. PM
participants see the summary of issues as most valuable part of test reports (5.7). TL are
more interested in final test results and detailed defect detection results (5.5 each) all
ENG participant see final test status report as most beneficial for a summary of issues
(6.0).

Where do you see the value of regular test status reports?

PM TL ENG ALL
Testing Progress 5,0 5,5 4,5 5,0
Quality Trends 5,0 5,5 5,0 5,1
Quality Status 6,0 5,0 5,0 5,6
Propose QA Activities 5,3 4,5 3,0 4,7
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0

2

4

6

Tes�ng
Progress

Quality
Trends

Quality
Status

Propose QA
Ac�vi�es

PM TL ENG ALL

Fig. 10. Perceived value of regular test reports.

What is the perceived value of a final test status report?

PM TL ENG ALL
Summary of Issues 5,7 5,0 6,0 5,6
Test Effort Review 4,3 5,0 2,5 4,1
Final Test Results 5,0 5,5 5,5 5,2
Deviation Detection 4,7 5,5 5,0 4,9
Improvement Options 5,0 3,0 4,0 4,5
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0
1
2
3
4
5
6

Summary of
Issues

Test Effort
Review

Final Test Results Devia�on
Detec�on

Improvement
Op�ons

PM TL ENG ALL

Fig. 11. Perceived value of final test report.

64 D. Winkler et al.

To improve test reporting and test automation, we included as set of candidate
improvements in the survey. Figure 12 summarize the survey results. All stakeholder
groups support and expect recommendations from the test center based as core part of a
test report. The management roles PM and TL would prefer to adapt test activities
(based on current test results and their needs) instead of sticking to a standardized test
report. This adaption also include the definition of the frequency of test reports, which
is especially interesting for TL. For ENG, capabilities for test report configuration is
critical as size and complexity seem to be too large for this stakeholder group.

Based on these survey, we conducted three interviews with test managers to discuss
the results and derive additional requirements (see Table 1). Stakeholders use reports to
support decision making (R09) and get an overview of the status of software devel-
opment (R10) and software testing (R11). Additionally, they found some parts of the
reports unnecessary and wanted modular reports where they could define for each
project separately which parts should be included into a specific test report (R08). More
generally, they stated to prefer graphics for visualizing data instead of raw numbers in
the form of metrics (R07). Finally, the effort for reporting should be minimized (R12)
as data visualization currently takes much effort and involves a couple of manual
human steps to produce test reports. Finally, each of the test managers stated that they
would like to establish a cross-project learning process. The idea came up to implement
an internal report only used within the testing department that summarizes and docu-
ments key learnings with a more general project summary.

5.3 Candidate Improvements and Assessment

Following the QATAM approach (see Fig. 3) and the study process (see Fig. 4), we
collected a set of candidate improvements based on survey results, complemented with
interview results, and industry best practices.

Table 3 summarizes 23 candidate improvement action (I01-I23) to be considered
for improving the usage (and acceptance) of test reporting at our industry partner. Note
that we classified these candidate improvements according to the survey structure and
assigned them to identified requirements (see Table 1). Note that Table 1 consists of
best practices recommended by standards (R01–R06) such as [4] complemented by
additional requirements coming from survey results and interviews (R07–R12).

Some of the candidate improvements (i.e., I02 and I12) are not directly linked to
requirements but were elicited from interviews to improve internal testing processes.

How do you rate the following improvement sugges�ons in
context of test reports and test automa�on?

PM TL ENG ALL
Test Center Recommendation 6,0 5,0 5,5 5,7
Adapt Test Activities 5,3 5,0 5,0 5,2
Size of the Test Report 4,1 4,0 6,0 4,5
Flexibe TR size config 4,6 4,5 2,5 4,2
Frequency definition 3,3 5,5 2,5 3,5
*mean value based on Likert Scale 1 (disagree) to 6 (agree)

0
1
2
3
4
5
6

Test Center
Recommenda�on

Adapt Test
Ac�vi�es

Size of the Test
Report

Flexibe TR size
config

Frequency
defini�on

PM TL ENG ALL

Fig. 12. Suggested improvements for test reports and test automation.

Test Reporting at a Large-Scale Austrian Logistics Organization 65

Candidate improvements were informally discussed with testing experts at our industry
partner, i.e., test managers, which were stakeholders similar to the interview partners.
Because they represent key stakeholders in the testing center, they are also responsible
for implementation. We have discussed all candidate improvements with these testing
experts, elicited benefits and limitations based on the current state of the practice.
Based on the discussion results we classified every candidate improvement with a
yes/no decision. “Yes” means that this candidate improvement is important and
promising to be implemented at the industry partner. “No” refers to candidate
improvements that (a) are less important for implementation in the near future; (b) has
been considered as less useful in the given company context; or (c) needs further
investigations on the expected benefits. Finally, based on the assessment (see Table 3)
14 suggested candidate improvements (61%) have been selected for implementation in
the near future. Those candidate improvements which have not been selected in the
near future were separated in (a) promising approaches that need to be considered for
future improvement initiatives (i.e., 7 improvement actions (30%)) and (b) improve-
ment actions that are not planned yet (i.e., 2 improvement actions (9%)).

Based on these evaluation results, 14 improvement actions have been selected for
implementation. Note that implementing these improvement actions and the evaluation
are out of scope of this paper.

6 Discussion and Limitations

The goal of this paper was to analyse the usage, benefits, expectations and acceptance
of test reporting at our industry partner, a large-scale Austrian logistics organization
with focus on improving test reports to increase the benefits, provided by test reports on
the quality of projects. Therefore, we set up a case study to collect requirements (based

Table 3. Candidate improvements and stakeholder assessment results.

ID Suggested Improvement Requirement Category Assessment Decision
I01 Provide modular and configurable reports R01, R06, R08 General yes Selected
I02 Establish a cross-project learning process - General yes Selected
I03 Include recommendaƟons/suggesƟons from test center for QA- AcƟons R04 Test Status Report yes Selected
I04 Report current tesƟng progress according to target measures (defined at R10, R11 Test Status Report yes Selected
I05 Focus on a management summary explaining the "traffic-light" status R04, R07 Test Status Report yes Selected
I06 State-Gate-Model following QATAM - Test Status Report yes Selected
I07 Make "Defect Trends" and "Indicators and Metrics" more R04, R05 Test Status Report yes Selected
I08 Clarify "Requirements coverage" R01, R03 Test Status Report no not now
I09 Dynamic Interval for sending the report - Test Status Report no not now
I10 Focus on trends instead of the current status R02, R03, R07 Test Status Report no Not planned
I11 Define target goals for specific measures at the beginning of the project R05, R09 Test concept yes Selected
I12 Send test concept only in project with external partners - Test concept yes Selected
I13 Define specific Test End Criteria R05, R09 Test concept no Not planned
I14 Generate reports according to stated stakeholder needs R06, R08 Final Test Status report no not now
I15 Overview on idenƟfied issues in the Final Test Status Report R01, R04, R12 Final Test Status report no not now
I16 Include lessons learned in the Final Test Status Report F04 Final Test Status report no not now
I17 Create Cross-Project Learning Backlog for internal use - Final Test Status report no not now
I18 Suggest possible applicaƟon of Test AutomaƟon at the project start R01, R08 Test automaƟon yes Selected
I19 Explicitly highlight Test automaƟon results in the Test status report R01, R08, R12 Test automaƟon yes Selected
I20 Visualize Data instead of presenƟng staƟsƟcal metrics R07 Test automaƟon yes Selected
I21 Present a general trend in the specific test (overview) followed by R10, R11 Test automaƟon yes Selected
I22 Use Graphs instead of tables to support understandability R01, R07 Test automaƟon yes Selected
I23 Create standard report templates R12 Test automaƟon no not now

66 D. Winkler et al.

on survey and interviews), developed candidate improvements based on the state-of-
the-practice and industry best practices, given by standards (such as [4]), evaluated
candidate improvements in informal interviews with test experts at the industry partner
as foundation for establishing an improvement strategy in the company.

RQ.1: What are critical stakeholder requirements for test reporting in context of
the case study organization? We derived basic stakeholder needs and requirements
based on literature as the case study organization follows the suggestions given by the
standard [4]. Based on a survey, where we received 15 qualified responses from
different stakeholder groups, we complemented the list of requirements by stakeholder
needs from the organization. In total we derived 12 requirements, where 7 requirements
have been derived from literature and 6 additional requirements have been derived
from survey and interviews in the case study organization. Table 1 presents the
summarized results of retrieved requirements.

RQ.2: What are the best-practices implemented in the organization, i.e., a large-
scale Austrian logistics organization? We applied the survey approach to identify the
state of the practice at our industry partner in context of test reporting, test status
reports, and test automation (see Sect. 5.2 for the results). As the case study organi-
zation typically follow test reporting standards, we identified a set of limitations
regarding the usage and acceptance of the current practice. The most important finding
focus on the structure and complexity of test reporting which have to be improved and
modularized to improve acceptance. Therefore, there is a need for a configuration
capability according to the project context which needs to be considered in the
improvement initiative.

RQ.3: What is the impact of improved reporting in context of a logistics organi-
zation? We used the QATAM approach [11] for driving the improvement initiative.
Based on identified requirements (derived from RQ.1), survey results and interviews
we came up with a set of 23 candidate improvements where 14 improvement actions
have been found useful for implementation and 7 remain for future work, and 2 have
been rejected (for now). Note that the candidate improvement actions have been
assessed by testing experts from the organization, supported by the authors by using
informal interviews and discussions. However, 14 improvement actions have been
finally selected for implementation in the organization.

Limitations: In context of the study we have identified a set of threats to validity and
tried to address them. The most critical limitation focuses the selection of survey and
interview participants because of the low number of participants. Survey participants
include 15 experts (including 8 project managers (PM), 2 team leads (TL), and 5
engineers (ENG) including requirements engineers and software architects). The low
number of participants may not be representative enough for generalization. However,
in the case study organization and the study context the selection of participants is
representative. Similar arguments apply for the selection of interview partners (3 test
managers of the case study organization). The setup of the questionnaire and the
interview guideline was designed to initiate an improvement strategy at the case study
organization. However, the questionnaire can be used in different contexts as foun-
dation for eliciting the state of the practice in context of test reporting. In addition these

Test Reporting at a Large-Scale Austrian Logistics Organization 67

guidelines have been extensively reviewed by testing experts (i.e., the authors, where
one author designed the questionnaire and the others provide feedback on the content)
to ensure the correctness and completeness in the stud context.

7 Conclusion and Future Work

Test reporting us usually used to provide some evidence on the quality of a software
product or to report on the quality status of a project/product at a defined time within
the project course. However, a well-defined test report can also be used to support
project teams in better monitoring and supporting the project progress. An agreed test
report structure, the content and the level of detail of a test report (within a project team
or an organization or) represent the foundation for acceptance and for application in the
project context. Therefore, we initiated an improvement initiative at our industry
partner as starting point for establishing test reports and vehicle for project and quality
improvement. We used surveys, interviews, and industry best-practices as foundation
for providing a set of candidate improvement that are evaluated by testing experts at the
case study organization. 14 improvement action have been selected for evaluation.
Based on the case study results we believe that the case study approach (in general) and
the identified improvement actions can support organizations in improving test reports
and, as a consequence, improving engineering projects.

Future work will include two aspects: (a) we are planning to support the case
study organization in the implementation of the suggested and selected candidate
improvements. Furthermore, an empirical study is planned to investigate the impact of
improvements of test reporting in context to the state of the practice; (b) with focus on
the questionnaire we are planning to re-visit the survey questionnaire and interview
guidelines with respect to improving and re-using the material in other contexts, such
as organizations with testing and test report needs. Future work will also include
replication of the improvement approach in larger contexts to collect a higher number
of responses and interviews.

Acknowledgement. The financial support by the Austrian Federal Ministry for Digital, Busi-
ness and Enterprise and the National Foundation for Research, Technology and Development is
gratefully acknowledged.

References

1. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 68–83. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57209-0_6

2. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software Quality
and Reducing Risk. Addison-Wesley, Boston (2007)

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Pearson Professional, Gurugram (2010)

4. ISO/IEC/IEEE 29119-3:2013: Software and Systems Engineering. Software Testing. Part 3:
Test Documentation. International Standard, ISO/IEC/IEEE (2013)

68 D. Winkler et al.

http://dx.doi.org/10.1007/3-540-57209-0_6

5. Kelley, J.J.: Quality assurance reporting to the governing board. Trustee: J. Hospital
Governing Boards 43(5), 10–12 (1990)

6. Laitenberger, O., DeBaud, J.-M.: An encompassing life cycle centric survey of software
inspection. J. Syst. Softw. 50(1), 5–31 (2000)

7. Molyneaux, I.: The Art of Application Performance Testing: From Strategy to Tools, 2nd
edn. O’Reilly and Associates, Sebastopol (2014)

8. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley, Hoboken
(2011)

9. Sommerville, I.: Software Engineering. Global Edition, 10th edn. Pearson Education
Limited, Bengaluru (2015)

10. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations: A Study Guide for the
Certified Tester Exam, 4th edn. Rocky Nook, San Rafael (2014)

11. Winkler, D., Elberzhager, F., Biffl, S., Eschbach, R.: Software process improvement
initiatives based on quality assurance strategies: a QATAM pilot application. In: Riel, A.,
O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 71–
82. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15666-3_7

Test Reporting at a Large-Scale Austrian Logistics Organization 69

http://dx.doi.org/10.1007/978-3-642-15666-3_7

Software Development

Embracing Software Process Improvement
in Automotive Through PISA Model

Fabio Falcini and Giuseppe Lami(&)

Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie
dell’Informazione, via G. Moruzzi, 1, 56124 Pisa, Italy

giuseppe.lami@isti.cnr.it

Abstract. Vehicles innovation is principally driven by electronics components
and software that play today a predominant role for the vehicle’s functions.
Because the quality of on-board automotive electronic systems is strongly
dependent on the quality of their development practices, car-makers and sup-
pliers proactively focused on improvement of technical and organizational
processes. In this setting, several reference standards for the assessment and
improvement of automotive electronics processes and projects have been con-
ceived and used in the last decade. Although the effects of the application of
them in automotive industry have been generally positive, getting compliance in
the short period may represent, in some contexts, a target hardly achievable, or
even a chimera. In this context, a novel scheme addressing both project eval-
uation and process improvement and targeting a hand-on approach for the
practitioners has been recently developed starting from the analysis of practi-
tioners needs and success factors in the software process improvement. This
scheme is named Process Improvement Scheme for Automotive (PISA Model).
The structure and contents of the PISA Model is described in this paper.

1 Introduction

The last two decades witnessed a deep change in the vehicle manufacturing, car OEMs
(Original Equipment Manufacturer) reshaped their vehicles from mechanical devices
into elaborated digitally controlled systems. As a result, the software (with increasing
demand in terms of size and complexity and cybersecurity) is a crucial component
since it is part of embedded systems called Electronic Control Units (ECU) that control
electronically a large number of the vehicle functions. The number of ECUs, from
economic to luxury vehicle models, is remarkably increased during the last
fifteen/twenty years. Electronics is so pervasive in today’s cars that almost all the main
features and functionalities are controlled by software; not to mention the innovation
driven by the deep-learning-based systems that are becoming pervasive in automobiles
[8]. But technological innovation still run on the fast lane, today’s trend towards
connected and autonomous cars is presenting new and very complex challenges.

In this setting, the quality of on-board automotive electronic systems is the key
issue OEMs shall face. Because the quality of products strongly dependent on the
quality of their development practice, car-makers and suppliers are proactively and
increasingly focusing on the improvement of technical and organizational processes.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 73–88, 2019.
https://doi.org/10.1007/978-3-030-35333-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_5

Several models and standards addressing both automotive system and software
development are available for the automotive market. These models and standards have
typically a strong focus on processes; among them the most relevant and influencing
are Automotive SPICE [1], ISO 26262 [4], and IATF 16949 [15]. Moreover, it is worth
mentioning the ISO 21434 [14] that is on the way to be published.

The application of such standards, in particular Automotive SPICE, produced
undoubted positive effects on the automotive industry in the last years. Advancements
have been achieved in terms process awareness, possibility of benchmarking, devel-
opment discipline, and incitement to improvement [7].

Nevertheless, the specifics and the complexities reached by today’s automotive
software-intensive systems have shown that current models and standards have some
drawbacks in responding to the needs of the automotive industry [5, 6]. In particular,
the automotive players are in need of the following aspects: more focus on projects
rather than a pure process-centred approach, improved technical guidance, and explicit
links to already established automotive quality frameworks. Several initiatives and
studies have been conducted with the aim of finding out solutions to such problems
[9–11].

In this context, a novel scheme addressing both project evaluation and process
improvement and targeting a hand-on approach for the practitioners has been devel-
oped. This scheme is named Process Improvement Scheme for Automotive (PISA
Model). The PISA Model [12] is being applied in practice by means of trials on real
projects with the aim of getting feedbacks and identifying improvement indications for
the next releases. In this paper the PISA Model Rating System is addressed. Starting
from the definition of the quality characteristic the PISA Model addresses (i.e. Ade-
quacy), the mechanism to determine the rating will be presented and discussed.

This paper is structured as follows: in Sect. 2 the overview of relevant existing
standards in automotive is provided. In Sect. 3 a discussion on the motivations for a
new scheme for process assessment and improvement in automotive is provided. In
Sect. 4 the Adequacy quality characteristic is defined. The structure of the PISA Model
is described in Sect. 5 and the PISA Model rating system in Sect. 6. Finally, in Sect. 7
conclusions are provided and on-going activities are described.

2 Reference Standards in Automotive Software-Intensive
Components Development

In automotive, similarly to the other transportation domains (e.g. aerospace and rail-
ways), exist several technical standards that are often used as reference for evaluation
or qualification of software-intensive components.

In this Section an overview of the existing automotive-specific reference models for
evaluating or qualifying software-intensive development projects and processes is
provided. In the last years standards addressing software development have been
released and applied in automotive, the most relevant and impacting are:

Automotive SPICE (SPICE stands for Software Process Improvement and Capa-
bility Determination) [1]: it provides a process framework that disciplines, at high level
of abstraction, the software development activities and allows their capability

74 F. Falcini and G. Lami

assessment in matching pre-defined sets of numerous process requirements. Automo-
tive SPICE, as a de-facto process standard, is used by car manufacturers to push
software process improvement among suppliers of software-intensive systems [2]. The
purpose of the standard is to provide both a scheme for evaluating the capability of
software processes and a path for their improvement. Process capability is defined as a
characterization of the ability of a process to meet current or projected business goals.
Many car makers are using also this standard to qualify suppliers by requiring to them
the achievement of specific rating [3]. Automotive SPICE standard provides a Process
Reference Model and a Process Assessment Model including a Measurement Frame-
work to assign ratings to processes.

ISO 26262 [4]: it is a Functional Safety standard titled Road vehicles – Functional
safety released in late 2011. Similarly to its parent standard IEC61508, ISO 26262 is a
risk based safety standard, where the risk of hazardous operational situations are
qualitatively assessed and safety measures are defined to avoid or control systematic
failures and to detect or control random hardware failures, or mitigate their effects.
The ISO 26262 standard:

Provides an automotive safety lifecycle (management, development, production,
operation, service, decommissioning) and supports tailoring the necessary activities
during these lifecycle phases.

Covers functional safety aspects of the entire development process (including such
activities as requirements specification, design, implementation, integration, verifica-
tion, validation, and configuration).

Provides an automotive-specific risk-based approach for determining risk classes
(Automotive Safety Integrity Levels, ASILs).

Uses ASILs for specifying the item’s necessary safety requirements for achieving
an acceptable residual risk.

Provides requirements for validation and confirmation measures to ensure a suffi-
cient and acceptable level of safety is being achieved.

The ISO 26262 scope embraces the whole system life cycle and addresses
specifically the hardware and the software development lifecycles.

The application of the ISO 26262 standard in industry represents a real challenge
for many automotive software-intensive systems. In fact, the 687 requirements, 100
work products and 62 decisional tables in the standard require a significant effort (both
from a technical and managerial point of view) to adapt existing (hopefully sound and
mature) processes and to acquire possible additional technical competencies and tools
as well.

ISO/PAS 21448 [13] - Safety of the Intended Functionality (SoTIF). This standard,
recently published, aims at overcome a limitation of the ISO 26262 standard. In fact,
what it is not always recognized is that ISO 26262 only covers fault failures and not the
so-called Safety of the Intended Functionality (SOTIF). This ISO document addresses
the fact that for some automotive applications there can be safety violations with a
system free from faults - for example a false-positive detection by a radar of an obstacle
for the vehicle – because it is extremely problematic to develop systems able to address
every possible scenario. The ISO/PAS 21448 aims at providing guidance to the design,
verification and validation measures applicable to avoid malfunctioning behaviour in
the system in absence of faults, resulting from system definition shortcomings. It is

Embracing Software Process Improvement in Automotive Through PISA Model 75

intended to be applied to systems for which a proper situational awareness by the item
is critical for safety, and is derived from complex sensors and processing algorithms,
especially.

ISO/SAE CD 21434 [14]: This standard is still under development (it reached the
status of CD on September 2018). Its focus is on defining common terminology and the
key aspects of cybersecurity in automotive. The application of the standard aims to
help companies demonstrate responsible and careful handling of vehicle development
and cyber-threat prevention. The activities in the product development according to
standard are controlled on the basis of a risk assessment, for this purpose measures for
the organizational anchoring are demanded. Although processes are required, the
standard only describes the task of a process, but leaves the design of the process to the
user. Special technologies or solutions are not proposed and autonomous vehicles are
not given special status in the recommendations of the standard.

IATF 16949: it is a standard for the Quality Management System (QMS) in
automotive [15]. It is based on the requirements of the ISO9001 standard with the
addition of specific requirements for automotive. The definition of such a special
version of the ISO 9001 for automotive, has been supported by major international car
manufacturers with the aim of providing a mean to increase the confidence in the
automotive suppliers. The IATF 16949 promotes a process-oriented approach in the
development, enactment, and improvement of the QMS.

3 Motivations for a New Process Assessment
and Improvement Model in Automotive

In this section we discuss, on the basis of our wide experience as Automotive SPICE
Principal Assessors (qualification obtained by the IntACS [18]), some objective
motivations for the definition of a new model for process assessment and improvement
in automotive.

1. Automotive-native Assessment and Improvement Schemes:
Automotive electronics is an application domain having its own peculiarities and
specific characteristics both in terms of product and process. Automotive software-
intensive components are principally ECUs, inter-connected via the vehicle net-
work, with specific demands in terms of interoperability, modularity, calibration,
and time-to-market. The platform-based approach to the design and development of
automotive software-intensive systems, as well as the wide deployment of model-
driven software development and the application of agile methods make the picture
even more complex. In such a context, generic process assessment and improve-
ment schemes are not able fit at all for such a kind of products. In particular,
Automotive SPICE is a model derived from the generic SPICE model (former
ISO/IEC 15504, today moved in the ISO 33000 series). For this reason, though
Automotive SPICE contains automotive-specific elements, nevertheless it is still
affected by the original approach. In particular, some process elements to be
addressed to achieve compliance (e.g. Base Practices) are both hard to be applied in
real development project contexts and at the same time can provide little added

76 F. Falcini and G. Lami

value from a process improvement perspective. Moreover, the terminology used in
Automotive SPICE is sometimes far from the technical lexicon and then difficult to
understand by practitioners.

2. Technology readiness:
If we consider the main success factors for software process improvement according
to the existing literature [18, 19] [20], we can understand that some of them are not
sufficiently addressed by current reference standards, in particular by Automotive
SPICE. In particular, the resource availability as suitable technology for deploying
and supporting development projects (identified as a relevant success factor) is a
success factor that is not sufficiently addressed by the existing standards. Tech-
nology is not explicitly addressed by reference standards principally because the
need of being general (i.e. applicable in several contexts) as well as the need of
being updated (i.e. the technology evolves in a fast way and the standard should be
maintained updated with a high frequency). Nevertheless, technology factor cannot
be omitted, because in such a context, in which innovation runs in a very fast way,
the technological readiness is a fundamental requirement.

3. Unique Rating:
As in automotive process assessment results are used to qualify E/E suppliers
(mainly on the basis of Automotive SPICE), the availability of reference assessment
models providing a unique final rating is desirable. Unfortunately, Automo-
tive SPICE doesn’t provide a unique rating but it is able to provide a rating for each
single process under assessment, and for this reason it not suitable at all for this
purpose. To cope with this gap OEMs defined assessment scopes (composed of
processes and related target ratings) for supplier qualification purposes. Such a
situation presents some drawbacks as, for instance, the heterogeneity of target
assessment scopes due to different requirements from different OEMs. Having a
qualification scheme providing a unique rating for qualification purposes would be
an advantage.

4. Availability of application guidelines:
Standard should be a proper balance between general clauses and precise guidelines
for their implementation. Automotive SPICE, for instance, lacks of guidelines for a
correct interpretation and an easier implementation of clauses. For this reason, a
book has been recently released by VDA with the aim of filling this gap [19].
Anyway, having a standard inclusive of application guidelines would give benefits
in order to facilitate the application of and the achievement of compliance with
respect standards as well as increase the uniformity.

5. Cross references among different standards:
The reference standards presented in Sect. 2 have some commonalities in terms of
technical and managerial areas addressed. Moreover, an organization may need to
achieve compliance with several standards on the same development project. For
these reasons, it is important standards have cross references each other in order to
optimize achievement of compliance with respect different standards. Currently
such a kind of mutual reference among automotive standards is poor.

Embracing Software Process Improvement in Automotive Through PISA Model 77

4 Adequacy Quality Characteristic

The authors, in order to overtake the drawbacks discussed in Sect. 2, defined a new
approach to face the challenge of providing an effective model for quantitatively
evaluate quality of automotive software-intensive developments from a process per-
spective. As initial step a new quality characteristic has been defined, such a charac-
teristic has been named Adequacy.
Definition: Adequacy is the responsiveness of process deployed in development
projects to automotive demands from technical and organizational perspectives.

A new framework able to allow the rating of a development project in terms of
Adequacy has been developed by the authors. Such a framework has been named PISA
(Process Improvement Scheme for Automotive) Model [12]. The PISA Model will be
described in detail in Sect. 4.

A project is then said being Adequate (i.e. it fulfils the quality characteristic of
Adequacy) when the project performance includes the deployment of a core set of
technical and managerial practices and when state-of-the-art technology is used.

Adequacy has been defined in order to integrate the concepts of: process capability,
organizational maturity and technological readiness. In the following, the way these
concepts have been addressed in the definition of the quality characteristics of Ade-
quacy is described:

1. Process capability: the achievement of project Adequacy is based on the perfor-
mance of a precise set of technical and managerial practices. Performing a prede-
fined set of practices is the basis of the achievement of process capability (as, for
instance, in the case of Automotive SPICE). The combination of the PISA Model-
provided practices allows to define the processes and addresses their capability as
well.

2. Organizational maturity is defined as “the extent to which an organizational unit
consistently implements processes within a defined scope that contributes to the
achievement of its business needs” [16]. It’s about the derivation of a unique rating
valid for the whole organization calculated starting from ratings of single processes.
The approach of the PISA Model is the same. As it will be described later in this
paper, the Adequacy characteristic is derived by combination of the ratings of single
processes.

3. Technological readiness is a novel element in existing automotive process models.
Technology is a key element to achieve high quality process and to improve them as
well. The PISA Model addresses this element by including among the Adequacy
indicators a set of requirements addressing the use of state-of-the-art technology in
development projects.

The PISA Model is composed of the three pillars:

– Process Scope and Augmented Framework
– Process Structure and Requirements
– Evaluation and Rating System

78 F. Falcini and G. Lami

In Sect. 4 Process Scope and Augmented Framework, and the Process Structure
and Requirements are presented. Evaluation and Rating System is presented and dis-
cussed in Sect. 5.

5 Process Improvement Scheme for Automotive (PISA
Model)

The purpose of the PISA (Process Improvement Scheme for Automotive) Model is to
provide the automotive community with a quality model with innovative features that
targets the specific needs of the automotive industry in the context of the development
of electronic systems.

Explicitly, the peculiar needs for an effective quality model in the context of
automotive electronics developments are:

– Ability to evaluate the project performance in the context of automotive in order to
provide usable feedbacks on the project risk level;

– Ability to evaluate process capability in the context of automotive, as a means to
identify risks associated to development processes.

The PISA model addresses both project evaluation and process improvement in a
balanced fashion and targets a hand-on approach for the practitioners.

The PISA model, in the context of electronic automotive systems, addresses:

1. System-level development
2. Electronic and mechanics hardware-level development
3. Software-level development.

The PISA Model fits the characteristics of automotive developments by incorpo-
rating automotive technical and procedural requirements as well as a more project-
centered perspective into a standard process framework. Conceptually, the PISA Model
can be defined as an automotive-specific “augmentation” of a process model, conceived
to better serve the needs of automotive electronics developments.

5.1 Processes Scope and Augmented Framework

The PISA Model encompasses processes at technical and managerial levels that
incorporate the backbone of a typical automotive project structure. The processes
belonging to the PISA Model are twenty-two (22) in total (as shown in Fig. 1).

They are divided into five (5) Process Segments:

– Three (3) Technical Segments: System Engineering, Hardware Engineering, and
Software Engineering

– Two (2) Coordination Segments: Management, and Sustenance.

Embracing Software Process Improvement in Automotive Through PISA Model 79

In the following, the PISA Model processes are grouped by segment and shortly
described. System Engineering Segment processes address the product view – the
processes belonging to this segment are described in Table 1.

Fig. 1. PISA model processes

Table 1.

Process Id. and Name Pertinence

SY1 - Technical concept
development

Early setup of the overall system architecture; this
process acknowledges the fact that in the automotive
market crucial design decisions are often taken during
the commercial phases of the project

SY2 – Requirements engineering Definition, documentation and maintenance of
requirements for development at system level

SY3 – System design and
calibration

Definition of a detailed system design with strong
focus on hardware-software interfaces and system
calibration aspects. Such a level of design takes into
account typical automotive design drivers such as
“design for manufacturing”

SY4 – Functional validation Verification of the conformance of the developed
system to its functional specification

SY5 – Advanced product quality
planning (APQP) validation

Confirmation that the organization can produce
products that meet customer requirements in a cost-
effective and repeatable way

80 F. Falcini and G. Lami

Hardware Engineering Segment processes address the product view – the processes
belonging to this segment are described in Table 2.

Software Engineering Segment processes address the product view – the processes
belonging to this segment are described in Table 3.

Management Segment processes address the product view – the processes
belonging to this segment are described in Table 4.

Table 2.

Process Id. and Name Pertinence

HW1 – Electronic hardware design Definition of electronics design, including the
preparation of the physical layout

HW2 – Electronic hardware integration
and validation

Validation of electronic sub-system(s) from a
functional and electrical point of views

HW3 – Electronic hardware verification
and dependability evaluation

Performance of in-depth design verification as
well as the performance of dependability analysis

HW4 – Housing mechanics engineering Deployment of both the design and the verification
of mechanical housing

HW5 – Actuation mechanics
engineering

Deployment of both the design and the verification
of actuation mechanical hardware

Table 3.

Process Id. and Name Pertinence

SW1 – Software
requirements specification

Definition, documentation and maintenance of requirements
for software development

SW2 – Software design Definition of the software architectural design following a
multi-level and multi-perspective approach

SW3 – Software
construction

Deployment of consolidated best practices for the
implementation of the software design

SW4- Software units
verification

Deployment of verification activities to ensure correctness of
software units. The robustness verification of software units is
pivotal for this process

SW5 – Software integration
and validation

Verification and validation of software sub-system(s) from a
functional and performance point of views

Table 4.

Process Id. and Name Pertinence

MG1 – Program
management

High-level management of projects within the program
umbrella and related customer interfacing

MG2 – Project and risk
management

Management of projects according to automotive industry best
practices

MG3 – Technical
supervision

Management of technical operative aspects of project activities

Embracing Software Process Improvement in Automotive Through PISA Model 81

Sustenance Segment processes address the product view – the processes belonging
to this segment are described in Table 5.

5.2 Process Structure and Requirements

The PISA Model process definition structure is composed of the following fields:

1. Process Name
2. Context of the Process: general information on the process and on its context of use.
3. Entry Criteria: pre-conditions that are expected to be satisfied when the process

starts.
4. Input Work products
5. Requirements: definition of practices to be performed by the process.
6. Output Work Products and related content outline
7. Exit Criteria: conditions expected to be satisfied when the process ends.

The PISA model requirements are divided into three (3) categories:

a. Process Requirements
b. Governance Requirements
c. Technological Requirements

PISA Model requirements are prioritized in terms of impact on Adequacy evalu-
ation. With this aim, requirements are classified as high-priority or low-priority. In
Appendix A an example of PISA Model requirement is provided. For more details on
processes and related requirements refer to [12].

6 Adequacy Measurement System

Evaluation and rating within the PISA Model is governed by the PISA Rating System
(PISA-RS). The PISA-RS works according to a bottom-up approach. The PISA Model
contains the demonstration of compliance of PISA-RS with the ISO/IEC 33003
requirements [17]. Figure 2 shows the conceptual path towards the project evaluation
in terms of Adequacy.

As Fig. 2. shows, the PISA-RS provides a step-wise, bottom-up mechanism to
project evaluation that is based on process-specific sets of requirements belonging to
three categories (process, governance, and technological).

Table 5.

Process Id. and Name Pertinence

SU1 – Configuration
management

Deployment of configuration management at system, hardware
and software levels

SU2 – Reuse management Management of the reuse of hardware and software elements
SU3 – Documentation
management

Deployment of a rigorous and lean documentation management

82 F. Falcini and G. Lami

Table 6 describes the rating scale of the Adequacy attribute and associated
semantics.

Table 7 summarizes the rating attribute related to each element under evaluation at
each step of the PISA-RS.

Fig. 2. PISA model adequacy measurement approach

Table 6.

Adequacy rating
value

Meaning

Adequate - A Project is run in a sound fashion and project objectives are not at risk
Process improvement opportunities are limited in scope and criticality

Sufficient - S Project is run satisfactorily and project objectives are largely not at risk
Process improvement opportunities are present

Incomplete - I Project is deployed nearly satisfactorily and project objectives are
exposed to some noteworthy risk
Significant Process improvement opportunities are present

Inadequate - N Project objectives are at risk
Process improvement opportunities are important and require immediate
improvement action items

Embracing Software Process Improvement in Automotive Through PISA Model 83

Step 1: Compliance to process requirements. Compliance to all the requirements
(Process, Governance, Technology) is verified starting from the analysis of related
work products. Compliance is rated by a binary scale.
Step 2: Process rating. On the basis of the requirements compliance and their priority,
the rating of each process in terms of Adequacy is determined (Table 8).

Step 3: Segment rating. The weighted aggregation of process ratings determines the
relevant process segment rating (segment rating level). It is possible that not all the
processes belonging to a Process Segment are applicable (i.e. it is possible that, because
the project characteristics, some activities are not executed and, consequently, some
evidences are not available for rating a process). According to that, Np represents the
number of applicable processes in a Process Segment.

For System Engineering, Hardware Engineering, Software Engineering, and
Management Segments if Np < 3 the whole Process Segment is not applicable and,
consequently, it cannot be rated. For sustenance Process Segment if Np < 2 the whole
Process Segment is not applicable and, consequently, it cannot be rated.

Table 9 summarizes the rating rules at for a Process Segment:

Table 8.

Process
Requirements

Governance
Requirements

Technological
Requirements Process

RatingsHigh
prior.

Low
prior.

High
prior.

Low
prior.

High
prior.

Low
prior.

ALL * ALL * ALL * A

ALL * >0 * >0 * S

ALL * >0 * >0 * I

otherwise N

Table 7.

PISA model rating level Attribute

Project Adequacy
Process segment
Process
Requirement Compliance

84 F. Falcini and G. Lami

Step 4: Project rating. The combination of the process segments ratings determines the
project rating in terms of Adequacy attribute.

The Rating of a Project in terms Adequacy is based on the ratings of the three
(3) Technical Segments (System Engineering, Hardware Engineering, Software Engi-
neering) and on the ratings of the two (2) Coordination Segments (Management and
Sustenance).

It is possible that not all the Technical Process Segments are applicable (i.e. it is
possible that, because the project characteristics, some activities are not executed and,
consequently, some processes are not performed).

The PISA–RS allows to evaluate a project in terms of Adequacy also in the case of
one or two Technical Process Segments are not applicable.

Project
rating

Ratio

A (All Segments rated A) || (All Technical Segments A) && (Coordination
Segments rated A or S)

S (Project Not Rated A) && (No Technical Segments rated I or N) & (No
Coordination Segments rated I or N)

I (Project Not Rated S) && (No Technical Segments rated N) & (No
Coordination Segments rated N)

N Otherwise

In addition, a set of argumentations are provided in the PISA-RS on how to use the
project-level Adequacy characteristic in the context of organizations benchmarking.
These argumentations support the exploitation of the PISA Model to give a risk-based
evaluation that is specifically referred to the involved organization (e.g. an ECU
supplier). A mechanism to extend the Adequacy rating to the whole organization is
provided in [12]. This mechanism can be used to qualify an organization, and

Table 9.

Number of occurrencies of process ratings Segment
Rating

A S I N

Np 0 0 0
A

Np - 1 1 0 0

* >1 0 0
S

* * 1 0

* * >1 0
I

* * 0 1

* * >0 1
N

* * * >1

Embracing Software Process Improvement in Automotive Through PISA Model 85

consequently as a mean for benchmarking. The mechanism is based on the concept of
project representativeness (that for space reasons is not described in this paper).

7 Conclusions and On-going Activities

In this paper we presented the mechanism to evaluate an automotive software-intensive
development project from a process perspective. The quality characteristic under
evaluation is named Adequacy. A project is said being adequate (i.e. fulfill the quality
characteristic of Adequacy) when the project performance includes the deployment of a
core set of technical and managerial practices and when state-of-the-art technology is
used.

The Adequacy evaluation mechanism is part of the PISA Model, a novel model
aimed at providing the automotive community with a quality model with innovative
features that targets the specific needs of the automotive industry in the context of the
development of electronic systems.

The authors, on the basis of their wide experience in automotive, recognized that
the existing standards and schemes used in automotive to assess and improve the
development of electronic components for automobiles present some weaknesses and
their application is not always respondent to players demands. The PISA Model has
been conceived with the aim of overtaking such lacks. Therefore, the PISA Model’s
processes are synthetically defined and embrace the whole product development life-
cycle including development processes at system, hardware, software level.

Though the PISA Model has been released recently, it is going to be applied on real
projects in order to get feedbacks on its suitability for the intended use.

The authors are conducting several trial PISA Model assessments with the aim of:

– Evaluating the ease of use, the completeness and the correctness of the PISA Model;
– Assessing the capability of the PISA Model to serve as a driver for improvement;
– Assuring its alignment with the State of the Art and Practice
– Spreading the knowledge of the PISA Model in the automotive community;
– Studying possible relationships and dependencies with other automotive-relevant

standards.

The trial assessments with PISA Model are carried out on real projects in parallel
with Automotive SPICE assessments. Data are collected during the trial PISA Model
assessments and a related empirical study will be provided in a next paper. The evi-
dences collected so far show that achieving the A rating in terms of Adequacy
according to the PISA Model rating mechanism assures the achievement of the
Capability Level 2 on the processes belonging to the assessment scope of the major
OEMs. We are also noticing that there is an increasing interest by OEMs in the PISA
Model to include it in their supplier qualification mechanisms.

86 F. Falcini and G. Lami

Appendix A

In this Appendix an example of Process Requirement is provided in order to show the
structure of PISA Model Requirements. The exemplar requirements is related to the
SW2 Software Design process. Each requirement of the PISA Model independently of
its category (process, governance, technological) has the same structure of the exemplar
process requirement shown below.

SW2-PR1 Develop high-level soŌware design

Clause SoŌware design shall be provided in order to represent the soŌware part of the
system and its interfaces.

Elabora
ons

A complete architecture of soŌware shall be elaborated and documented. It shall
contain the soŌware components and the related interfaces and relaƟonship.
The soŌware high-level design shall provide a complete representaƟon of
soŌware units and their interfaces and interacƟons.
SoŌware high-level design shall address staƟc aspects of soŌware, as:
External interfaces of the soŌware; Interfaces between soŌware units/soŌware
components; Resources usage constraints for soŌware; AllocaƟon of system
requirements to the system elements
SW high-level design shall address dynamic aspects of soŌware behavior, as:
Dataflow between soŌware units/soŌware components; Dataflow at soŌware
external interfaces; Interrupts management; SW operaƟng modes
SoŌware design shall specify the notaƟon to be used. Possible notaƟons to
represent soŌware design are: natural language; semi-formal graphical notaƟons
(as UML, SysML); informal notaƟons
In the case of model-based soŌware development the first levels of model
decomposiƟon can be equated to high-level design.
In case of arƟficial intelligence, the definiƟon of the structure of neural
network(s) such as layers and number of nodes, learning strategy can be equated
to high-level design.

LINKS TO ISO 26262 Requirement(s): ISO 26262-6:2011, clause 6.4.1, 11.2; ISO
26262-6:2011, clause 9.4.
LINKS TO APQP Requirement(s): Engineering Drawings

Tip(s) A layered representaƟon of soŌware design is encouraged in the case of
architectural high complexity of soŌware.
The use of formal notaƟons to represent soŌware design is not to be encouraged,
because their costs in terms of tool support and people training.
To address soŌware design dynamic aspects, the use of graphical notaƟon is
profitable.

Tailoring
Criteria

High-level design can be expressed as collecƟon of separate work-product,
documental and electronic.

Notes AUTOSAR provides a set of specificaƟons that builds a common design
methodology based on standardized exchange format.

Embracing Software Process Improvement in Automotive Through PISA Model 87

References

1. VDA QMC Working Group 13/Automotive SIG “Automotive SPICE Process
Assessment/Reference Model”, ver. 3.1, Verband der Automobilindustrie (2017). http://
www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf

2. Hoermann, K., Mueller, M., Dittman, L., Zimmer, J.: Automotive SPICE in Practice:
Surviving Implementation and Assessment. Rocky Noor (2008). ISBN 978-1933952291

3. Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: A SPICE-based supplier qualification
mechanism in automotive industry. Softw. Process Improvement Practice J. 12, 523–528
(2007)

4. ISO 26262 - Road Vehicles - Functional Safety, International Organization for Standard-
ization (2018)

5. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software improvement
implementation: an empirical study. Softw. Process Improvement Practice 11, 193–211
(2006)

6. Niazi, M., Ali, B.M., Verner, J.M.: Software process improvement barriers: a cross-cultural
comparison. Inf. Softw. Technol. 52(2010), 1204–1216 (2010)

7. Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: Software engineering in the european
automotive industry: achievements and challenges. In: COMPSAC, pp. 1039–1044. IEEE
Computer Society (2008)

8. Falcini, F., Lami, G., Costanza, A.M.: Deep learning in automotive. software. IEEE Softw.
34(3), 56–63 (2017)

9. Kreiner, C., et al.: Automotive knowledge alliance AQUA – integrating automotive SPICE,
six sigma, and functional safety. In: McCaffery, F., O’Connor, Rory V., Messnarz, R. (eds.)
EuroSPI 2013. CCIS, vol. 364, pp. 333–344. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39179-8_30

10. Lami, G., Falcini, F.: Is ISO/IEC 15504 applicable to agile methods? In: Abrahamsson, P.,
Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 130–135. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4_16

11. Johannessen, P., Halonen, Ö., Örsmark, O.: Functional safety extensions to automotive
SPICE according to ISO 26262. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A.
(eds.) SPICE 2011. CCIS, vol. 155, pp. 52–63. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21233-8_5

12. Falcini, F., Lami, G.: Process Improvement Scheme for Automotive - PISA Model ver. 2.0.
Rapporto Tecnico ISTI n. 390840 (2018)

13. ISO/PAS 21448 - Road Vehicles - Safety of the Intended Functionality, International
Organization for Standardization (2019)

14. ISO/SAE CD 21434 - Road Vehicles - Cybersecurity engineering, International Organiza-
tion for Standardization (2018)

15. IATF16949:2016 Quality management system requirements for automotive production and
relevant service parts organizations, International Automotive Task Force. 1st Edition

16. ISO/IEC 33001. Information Technology – Process Assessment – Concepts and terminol-
ogy. International Organization for Standardization (2015)

17. ISO/IEC 33003. Information Technology – Process Assessment – Requirements for process
measurement frameworks. International Organization for Standardization (2015)

18. International Assessor Certification Scheme. www.intacs.org
19. Verband der Automobilindustrie e. V. Automotive PSICE Guidelines, 1st Ed. September

2017

88 F. Falcini and G. Lami

http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
http://dx.doi.org/10.1007/978-3-642-39179-8_30
http://dx.doi.org/10.1007/978-3-642-39179-8_30
http://dx.doi.org/10.1007/978-3-642-01853-4_16
http://dx.doi.org/10.1007/978-3-642-21233-8_5
http://dx.doi.org/10.1007/978-3-642-21233-8_5
http://www.intacs.org

Establishing a User-Centered Design
Process for Human-Machine Interfaces:

Threats to Success

Mario Winterer1(B) , Christian Salomon1 , Georg Buchgeher1 ,
Martin Zehethofer2, and Alexandra Derntl2

1 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
mario.winterer@gmail.com

2 ENGEL Austria GmbH, Schwertberg, Austria

Abstract. While user-centered design (UCD) processes have widely
been established in domains like end-user electronics and business-to-
consumer products, such processes still lack widespread adaptation for
the development of industrial human-machine interfaces (HMIs). Over a
period of more than two years, we have worked as part of a development
team at a company from the manufacturing domain in a pilot project
to introduce a UCD process. During this period, we have - via partic-
ipant observation - collected a set of observed practices and behaviors
that violate well-known UCD principles. Furthermore, we derived some
root causes of these violations. Our insights are that introducing a UCD
processes cannot be performed isolated for a single development team
but impacts the entire organization including management and requires
trust as well as changes with regard to mindset, methods, technologies,
and team organization.

Keywords: User-centered design · Design process · Industry 4.0

1 Introduction

User-centered design (UCD) processes are well established in development of
end-consumer electronics and web-based business-to-consumer products, as a
good user experience (UX) is considered as a key success factor in these domains.
However, in industrial companies, most human-machine interfaces (HMIs) are
still developed traditionally in a feature-oriented manner. The design of HMIs
in the mechanical engineering domain, which are used to inspect and modify
process parameters or to manipulate automated processes, is typically heavily
influenced by the logical structure of the control system, more precisely, the
information model of the programmable logic control (PLC), without taking
human factors into account.

The resulting HMIs focus on data such as functional blocks and their param-
eters, rather than on workflows or tasks that need to be performed by their
operators. This, combined with the increasing complexity of modern industrial
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 89–102, 2019.
https://doi.org/10.1007/978-3-030-35333-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_6&domain=pdf
http://orcid.org/0000-0002-3894-4635
http://orcid.org/0000-0002-5665-2919
http://orcid.org/0000-0002-8565-6257
https://doi.org/10.1007/978-3-030-35333-9_6

90 M. Winterer et al.

machines, leads to cumbersome HMIs that do not match the high expectations
raised by modern user interfaces of business-to-consumer products like smart-
phones. Today, companies see user experience as differentiating factor to get
competitive advantage over competitors [23]. The need for user participation
to build flexible, nevertheless understandable and fault-tolerant HMIs is also
motivated by the industry 4.0 initiative [6,24].

In this case study we report on our experiences of introducing a UCD pro-
cess at ENGEL Austria GmbH, a company from the manufacturing domain. The
company is manufacturer of injection molding machines and is currently in the
process of developing a new generation of its software stack. As part of this soft-
ware stack a new version of a Sequence Editor application for the programming
of robot arms is being developed. This project was selected as a pilot project for
introducing UCD at ENGEL. As part of an industrial research cooperation, the
authors of this paper have worked over two years as project members in this pilot
project to supervise the introduction of the UCD process. As a result, we have
obtained deep insights in the processes and social fabric of the company which is
advantageous over other inquiry approaches as for this research we considered it
important to be able to look behind the facade of the organization. Based on our
experiences we have collected a set of practices and behaviors we encountered
during the introduction of UCD, that violate the core UCD principles.

The remainder of this paper is organized as follows: In Sect. 2 we describe
the industrial context of this work. Section 3 presents a brief overview of UCD
including central principles. In Sect. 4 we present malpractices we have found.
Section 5 discusses related work. Section 6 concludes this paper with a summary
of our main findings.

2 Industrial Context

ENGEL is a large manufacturer of injection molding machines. Such machines
are used across many industry domains like consumer electronics, automotive,
avionics, food industry for producing different kinds of plastic parts like enclo-
sures of cell phones and laptops, toys, car parts, bottles, tooth brushes, etc. By
using different molds and adaptable machine parameters, a single machine is able
to process varying types of material and hence produce many different products.
Nevertheless, certain domains require very specific adaptions of machines. Pro-
viding almost any requested customization is one of the key success factors of
the company.

In 2016, the company started the development of its next generation of soft-
ware for injection molding machines. This project encompasses the development
of a new HMI (framework and applications), and a new middleware tier based
on the OPC Unified Architecture (OPC UA) specification [19] for a unified com-
munication with PLC control systems and auxiliary devices (e.g. robot arms
and conveyor belts) of different vendors. As a consequence, large parts of the
software have to be re-engineered and migrated to new technologies and frame-
works. This undertaking affects many different stakeholders across several orga-
nizational units in the company. The core parts of the HMI are developed by four

Establishing a UCD Process for HMIs: Threats to Success 91

different agile teams in a Scrum process. Once, the HMI framework is released,
several customization teams, which adapt the machine to the customer’s needs,
will also make use of it. In addition, many other teams are working on software
products that are not directly related to the HMI, but may have influence on
the overall user experience (e.g. the customer portal).

One application of the HMI is a Sequence Editor for the programming of
industrial robots and the manipulation of machine workflows. The Sequence
Editor supports visual motion-level programming and is used by a wide range
of technicians from well-trained maintenance engineers to novice factory atten-
dants. The company selected the Sequence Editor as a suitable application for
piloting a UCD process.

3 User-Centered Design Principles

UCD processes focus on putting users into the center of product design and
development [18]. Existing approaches aim to integrate users in the develop-
ment process because user involvement is a critical factor for system acceptance
and success [1,3,10]. No matter which concrete methods [4] are applied by a
particular approach, they all share the following common principles:

Integrated and Comprehensive Solution. In order to provide a consis-
tent user experience, surrounding services and products must be developed
together with core functions. Therefore, the development teams should coop-
erate closely with surrounding departments like marketing, training, and cus-
tomer service [9].

Focus on Users and Tasks. For a good and minimal system design it is
necessary to understand which people are using the system and what goals
they are trying to achieve [8].

Active User Participation. End-users and domain experts, which in the man-
ufacturing domain are often end-users as well, should participate through all
process stages [12] beginning with early analysis. Identifying and selecting
representative users is an ongoing process [13] that is crucial for project suc-
cess.

Continuous Evaluation and Iteration. Development is iterative and based
on prototypes even in very early states of the project. These prototypes are
incrementally evaluated by either experts or (again) in collaboration with
potential users [17]. Insights of these evaluations are used to build enhanced
prototypes in subsequent iterations.

Interdisciplinary Teams. As a consequence of the preceding principles, a team
must allocate a broad range of skills and knowledge to satisfy the UCD pro-
cess needs. Usually, (software) engineers alone cannot cover this range but
must be assisted sporadically by members of other departments and sup-
ported consistently by UX designers and usability engineers [5]. It is highly
recommended to integrate these experts into the development teams.

92 M. Winterer et al.

One approach that transfers these principles to agile development environ-
ments is Lean UX as proposed by Gothelf and Seiden [7]. Lean UX focuses on
vertical prototypes and minimum viable products (MVP) to gain rapid feedback
and test the relevance and usability of implemented concepts (there are a lot
of different definitions for MVP [16], we agreed on the definition given by Ries
[21]).

4 Experiences When Introducing UCD

In this Section, we report on our experiences of introducing a UCD process for
the development of the Sequence Editor in the UCD pilot project after about
two years. For this purpose, we identified malpractices that symptomatically
violate the UCD principles and methods we presented in Sect. 3. Figure 1 gives
an overview of all findings. The figure lists all observed symptoms on the left
side and categorize them by the principles (see Sect. 3) violated. Outgoing arrows
mean that the source item is caused by the target item. So each of the symptoms
can ultimately be tracked down to at least one root cause that originates in the
behavior of the project team or their surrounding (processes, supervisors, etc.).
As Fig. 1 shows we have identified four major root causes:

Inappropriate Development Organization, Tools, and Mindset. User
interface development based on UCD requires appropriate mindsets. As indus-
trial companies don’t see themselves as software developers, they are much
more traditional concerning methods, organization, tools, and mindset than
modern software development organizations. These outdated attitudes may
have severe impact on UCD based software product development.

UCD Intrinsic Issues. The user-centered design process is not perfect and
has also some drawbacks [2]. Issues that are related to these drawbacks are
summarized by this root cause.

Domain Specific Difficulties. HMI development in the industrial domain is
very special due to its tight coupling to the machinery hardware and its
special usage environment. Although hard- and software must work together
perfectly, the software development process differs significantly from the hard-
ware development process. Apart from that, there is the very long product
life-cycle, which can last 20 years or longer. Within this time, the company
must provide support and maintenance of both, software and hardware. As
many machines are not connected to the internet, updating the software sys-
tem requires maintenance personnel to be on-site. So for cost reasons, updates
should not be done too frequently. Last, but not least, industrial companies
want to keep their production knowledge secret. Due to this and because the
companies are spread worldwide, it is not too easy to perform UCD related
tasks like observations or interviews with end-users.

Too Less UCD Experience. ‘Exercise makes perfect’ is also true for introduc-
ing a new process. The team members as well as all other people concerned
have to learn new ways of doing things and - even more important - accepting

Establishing a UCD Process for HMIs: Threats to Success 93

that things are different now. Lack of experience is especially noticeable when
something goes wrong. But even when everything runs fine, people tend to
revert to old habits.

The following sections (Sects. 4.1, 4.2, 4.3, 4.4 and 4.5) systematically
describe all found problems and their symptoms grouped by UCD principle.
Even more, where appropriate, mitigation strategies to overcome the correspond-
ing problem are given. These strategies arise mainly from personal experiences of
the authors mixed with tried and tested statements of literature. It is important
to note that currently not all of these optimal situations are already established
in the pilot project, hence their effectiveness is not proven yet.

4.1 Integrated and Comprehensive Solution

Feature-Driven Vs. User-Driven Development. While the pilot project
follows a user-centric approach from start, all other teams continued to work
feature oriented. This situation is a continuous source of conflict in a multi-
team project. In a feature-driven development process, the overall model and
the feature list are specified first; then the features are implemented step-wise.
This is inconsistent with the user-centered design, where new features are defined
and refined gradually based on user research.

Symptom: The framework team is busy implementing components like UI
controls or input dialogues without any user need. Special framework features
defined by the pilot project team are postponed as they do not match the prede-
fined feature list of the framework team. As a consequence, the pilot project team
must either implement the features by themselves, or wait until the framework
team is able to deliver the requested feature. As the latter is irreconcilable with
the UCD process (which demands early user-testing of implemented features),
the pilot project team has to do much more work than planned.

Mitigation: All teams of the multi-team project follow the UCD approach.
User research is done in tight cooperation. New features can be defined on
demand.

Departmental Thinking. Traditionally, there is no communication channel
between departments like marketing and the development teams. As a conse-
quence, business goals do not necessarily align with product requirements nor
do they drive innovation.

Symptom: There is no general design system that covers all different com-
munication channels between company and customer: print media, the company
web page, the web based customer portal, the product, and auxiliary apps. All
these parts are developed independently and tell their own story to the user.
As the marketing department is not interested in HMI development, and the
product manager is not informed about marketing activities, the business goals
of marketing and product development do not match.

Another example is the missing link between development department and
customer training. While the customer training team usually has deep knowledge

94 M. Winterer et al.

Fig. 1. Identified issues grouped by UCD principles and their causes.

Establishing a UCD Process for HMIs: Threats to Success 95

about the needs and sufferings of many customers, they are not really integrated
in the development process. Therefore, valuable information that is actually
already within the company remains unused.

Mitigation: Development is driven by business goals. There is a clear vision
for the next generation HMI which is defined interdisciplinary by UX experts,
business executives, marketing experts, technicians and more. The vision is not
necessarily restricted to virtual user interfaces. Every development iteration cycle
generates value for the user and hence for the company.

Non-holistic Approach. Although the HMI is part of an integrated industrial
environment, the HMI development is restricted to the graphical display only.
This is disadvantageous in situations, where the user research findings demand
a holistic approach which touches both, display and machine hardware as well.
This issue is related to Departmental thinking, which is one of the root causes of
this misconception.

Symptom: The team is presented with a fait accompli. Important decisions
which have deep impact on user experience, are already made and cannot be
(easily) changed. These may be size, orientation and position of the display pan-
els, specification of the visualization hardware, or form and position of hardware
keys. Adding additional hardware, like sensors or input devices are out of the
question.

Mitigation: Due to a holistic approach, UCD means rethinking the entire
machine and its environment from the point of view of user interaction. This
provides an integrated solution that works best for the user.

4.2 Focus on Users and Tasks

Missing Usage Data. Due to missing usage data, the pilot project team has
no idea about how the thousands of users interact with the HMI of the machines
in-use. Knowledge about usage can make time-consuming observations and dis-
cussion obsolete. The reasons for the lack of data are manifold. Most industrial
machines in-use are either not connected to the internet at all, or are not acces-
sible from outside due to security reasons. So usage data has to be collected
manually. Apart from that, many of the machines in-use are rather old and out-
dated from a technical point of view and provide too little data storage to collect
user interaction data and its usage context (e.g. machine state) over time.

Symptom: Although the stakeholders pretend to know the users (see 4.3),
they are not able to answer questions like ‘Which UI parts are used most?’, ‘How
many minutes/hours per day do users use the HMI?’, ‘Which navigation paths
are used most?’, ‘Do the users use swipe gestures or previous/next buttons for
navigating between views?’, or ‘What are the top ten operation errors?’. Based
on such information, the development team could focus on UIs that are really
relevant to the user instead of laboriously gathering such information through
user research.

96 M. Winterer et al.

Mitigation: Usage data is collected automatically and periodically uploaded
to a centralized cloud storage so that it can be used for detailed usage analysis.
The results are an important basis for further development.

Cornucopia of Users Misbelief. The process of defining personas based on
observations is regularly distrusted by stakeholders. They believe that the com-
pany has so many end-users, and all of them work differently, so it is impossible
to unify their personalities in just a few personas. As a non-domain expert, these
believes are hard to assess or even declare invalid, especially when there is no
usage data to verify this (see Missing usage data).

Symptom: Experts that act as stakeholders of the project often point out
the great functionality of the existing product by telling stories about a special
user or use case, which, at first glance, seem to render the prospected solution
impractical or incomplete.

Mitigation: Although special users and use cases are real and respected by
the HMI team, they do not drive HMI development. The stakeholders have trust
in the team and the process and know, that the result of a design iteration does
not support all possible use cases. There are enough domain experts that defend
the design iteration result against disbelievers.

We-Need-This-Feature Thinking. Stakeholders tend to use the old system
as requirement reference. They demand features from this system to be trans-
ferred to the new system without taking user needs into account. As a result,
they question feature-incomplete iteration results. Similar to Cornucopia of users
misbelief, the main causes are distrust in the process and in the team, but the
symptoms are different.

Symptom: Again - similar to Cornucopia of users misbelief, experts act as
stakeholder. But instead of telling a story about individuals, they pretend a
certain feature is crucial to most of the users. For non-domain experts, it is
very hard or even impossible to refute this claim, hence these features are often
re-implemented without any confirmation by user research or testing.

Mitigation: Stakeholders focus on the iterative progress of the team, even
if they know that the current product still misses features that seem to be
important at first glance. This requires a certain level of trust in the team and
in the UCD process.

Parameter-Driven HMI Misconception. The PLC of ENGEL defines about
16.000 parameters that may be relevant to the HMI. Due to multiple product
lines and individual customization, the parameters actually viewed in the HMI
vary heavily. The easiest way to support this flexibility is to just visualize the
logical structure of the control system, ignoring any user tasks or workflows.

Symptom: Instead of focusing on tasks, the UI focuses on parameters. Most
of the views are just parameter lists without additional information. The group-
ing and ordering of these parameters are defined by the PLC and customer

Establishing a UCD Process for HMIs: Threats to Success 97

customization developers without assistance by UI/UX experts. Concepts like
wizards or ’intelligent’ workflow assistants are missing.

Mitigation: The HMI is two-layered. The parameter layer provides a flexible
mechanism for both, the developer and the end user to define easily, which
parameters should be displayed on which page and in which order. This layer
is sufficient to control and operate the machine. Apart from that there is the
workflow layer, that provides explicitly developed user interfaces that support
important workflows and tasks. These UIs can be introduced step-by-step each
improving the overall user experience.

4.3 Active User Participation

We-Know-Our-Users Misconception. As the company is unfamiliar with
user-driven development, the project stakeholders are still tempted to ignore
user research and demand features, they think are relevant instead. They argue
this by mentioning their many years of experience. Although the company has
sufficient knowledge about the customer’s usage scenarios, it is almost exclusively
in the minds of service technicians and customer advisers. The knowledge is not
structured and therefore not directly usable.

Symptom: When presenting insights gained from user observations in the
field, experienced employees, which are not part of the project team, claim
that they already knew about that and this information could have easily been
requested.

Mitigation: Although service technicians and customer advisers are impor-
tant sources of information, the main user needs are based on user research in
the fields.

Too Few User Research There are many reasons, why user research in the
industrial domain is difficult. Obviously, there are safety and information security
reasons. In addition, intrusive techniques like interviews keep workers away from
their work, so not all companies are suitable for that. We also found that observ-
ing infrequent tasks requires good planning, so it is important to synchronize
the schedule of the UX researchers with the work schedule of the participants.
Hence, often the right user is not next door. Last, but not least, typical work-
flows often consist of many technical steps, which are less interesting to the UX
expert. All in all, observing the entire workflow may take a few hours or even
several days. All this causes high costs. As a result, the team tends to do less
observations than necessary.

Symptom: The symptoms are obvious: for many scenarios, confirmation by
observation is still pending; results from ideation workshops are not validated
with end-users; colleagues are used as representative for real end-users.

Trade-off: Observations happen on a regular basis for important workflows.
Missing user needs due to missing observations are mitigated by defining user
need assumptions and trying to confirm or refute them early by user testing
rapid prototypes. Participants are real end-users, but also service technicians,
customer advisers, trainers, apprentices and other personnel of the company.

98 M. Winterer et al.

Lack of Management Support. Although the management supports the pilot
project and the UCD process, it has too little knowledge about the philosophy
of UCD. The consequences are lack of trust and demand for intervention.

Symptom: Time spent on user observations is criticized by supervisors (see
Too few user research), especially if their main findings are already known by
stakeholders (see We-know-our-users misconception).

4.4 Continuous Evaluation and Iteration

No Questioning of Concepts. Once, an early prototype has been tested
and proven to work at a certain degree, it is never questioned any more. As
a consequence, iterations just improve existing prototypes gradually and never
raise radical changes. Although this issue is inherent to UCD methods in general,
it is even worse in this industry. Due to high domain complexity, it is almost
impossible to test all technical details of concepts, so there is always the risk
of improving a prototype that is basically broken without knowing it. A similar
issue has already been identified by [15] in 1997.

Symptom: Shortly after project start a central prototype was elaborated in
detail to overcome some doubts about the user-centered approach. Even so user
tests have shown that the prototype basically works for experienced users another
promising concept has never been tested, because of the effort already spent.

Mitigation: Interaction concepts are tested at a very early stage. In this
phase, there are often several concept proposals that can be tested against each
other using A/B tests. This makes it possible to find concept errors early on
and to optimally combine the best solutions. In addition, special domain expert
reviews improve the prototype quality on a conceptual level.

Horizontal Teams. Currently, the multi-team project is set up with four hor-
izontal teams. One team is responsible for the OPC UA based layer set up on
top of machine and robot control, which is developed by a second team. Third,
a team implements the HMI framework and the HMI base application accessing
information of the OPC UA layer. Fourth, the pilot project team develops the
Sequence Editor by means of the HMI framework and integrates it into the HMI
base application. As a consequence, new interaction concepts designed by the
pilot project team cannot be integrated into the system without support from
the other teams. This causes latency which makes it hard to evaluate new UI
concepts in time.

Symptom: A new concept that should facilitate trouble shooting in the
Sequence Editor caused the robot control layer to provide novel data. This cir-
cumstance was not foreseen by the team implementing the Sequence Editor and
so the group of persons participating in the technical coordination meetings on
this issue has been successively increased, with a lead time of more than two
Scrum sprints (3 weeks each) [22].

Mitigation: The teams are vertically organized, so they can work indepen-
dently most of the time. Dependencies between teams arise only when both
teams share the same user needs.

Establishing a UCD Process for HMIs: Threats to Success 99

Inflexible UI Technology. Both, technology-in-use and system architecture
did not support exchanging UI parts and modifying interaction concepts easily.
Even more, due to the limited capabilities of the mobile touch device, interaction
concepts are limited too.

Symptom: The UI framework in use does not or barely support multi-touch
input. Implementing animations like fade-out of dialogs, transitions or rotations
is hard and requires major code changes. Controls like text input fields, buttons
or check boxes cannot be styled or skinned to be adapted to modern UI designs.
Features like visualization of 3D models or embedding multimedia are missing
or difficult to integrate.

Mitigation: Existing legacy components have been replaced and a more suit-
able UI framework has been introduced. Furthermore, a more capable mobile
touch device has been prospected in favor of better user experience.

4.5 Interdisciplinary Teams

UX-Consultant Misconception. In the first months of the pilot project, the
main UX work was done by external UX experts. As a result, the team had
too little knowledge about UX related aspects to be able to develop the MVPs.
Furthermore, external UX experts have too little domain know-how, which is
necessary for a holistic understanding of scenarios.

Symptom: As the UX-consultants have only very few contact to the devel-
oper team, most of the user stories are already specified into detail when they
are presented to the software developers. Although the stories might be perfect
from a UX point of view, they are not technically validated, hence the developers
might face several technical difficulties while implementing them. As they were
not involved in the user research nor design process, they miss any reasoning
and don’t know if and how far they can deviate from the specification to cir-
cumvent these difficulties. Again, as the UX-consultants are separated from the
development team, most of these problems are not discussed, thus the features
are implemented exactly as specified - no regard to expenses. Even worse, expe-
rienced software developers often question the UX designs and concepts, which
leads to disparaging opinions and disrespect toward the UX experts.

Mitigation: UX is an integrated part of the development process. The teams
defines UX roles similar to the typical software development roles ‘Software
Architect’, ‘Tester’ or ‘DevOps Engineer’. All team members take part in UX-
related tasks like user research or evaluation for the sake of knowledge transfer
in both directions.

UX-Team Misconception. Separating the UX experts from the development
team by building a UX team of its own was another misconception. This app-
roach clearly conflicts with the vertical team thinking (see Horizontal teams).
Although this keeps the UX know-how inside the company at least, it also keeps
UX know-how away from the development teams.

100 M. Winterer et al.

Symptom: The symptoms are similar to UX-consultant misconception,
although less severe, as at least there is UX know how in the company.

Mitigation: See UX-consultant misconception

5 Related Work

In the manufacturing industry the need for usability and user experience as
explicit quality measures for user interfaces of cyber-physical systems (CPS)
[24] is rather new. This need is based on changing requirements, a higher level
of automation, and increasing complexity driven by the Smart Factory idea
of the Industry 4.0 initiative [14]. These requirements demand for appropriate
and proper working UCD processes, as described by Pfeiffer et al. [20], but
industry still lacks long-time experience on how to integrate these processes in
their development practice.

Systematic reviews [4,11] have shown that most publications that discuss
UCD processes in practice primarily discuss issues that emerge when introduc-
ing particular UCD methods (e.g. personas, user tests,...) in the context of agile
processes. In [15] Lauesen investigates the introduction of UCD processes. We
can confirm his findings, i.e., that early prototypes are only modified in details
in later phases (see Sect. 4.4), and that there exists a friction between software
developers and UX-experts (before UX-experts became part of the team). Com-
pared to Lauesen, we have identified additional issues, which had negative impact
on the project’s pace.

6 Conclusion

Introducing UCD in the industrial domain represents a significant paradigm
shift, since industrial HMIs are typically still developed in feature-oriented man-
ner. UCD processes are based on a set of principles that must be followed in
order to be successful. We have presented a set of issues that we have encoun-
tered when introducing UCD in a company from the manufacturing domain
including symptoms and potential mitigation strategies. The root cause of most
of the problems seems to be the lack of trust in the process on all organizational
levels (line management, stakeholders, other teams, other departments), which
itself originates from lack of knowledge about the UCD process.

Acknowledgement. The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry for
Digital and Economic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH.

Establishing a UCD Process for HMIs: Threats to Success 101

References

1. Abelein, U., Sharp, H., Paech, B.: Does involving users in software development
really influence system success? IEEE Softw. 30(6), 17–23 (2013)

2. Abras, C., Maloney-Krichmar, D., Preece, J., et al.: User-centered design. In: Bain-
bridge, W. (ed.) Encyclopedia of Human-Computer Interaction. Sage Publications,
Thousand Oaks, 37(4), 445–456 (2004)

3. Bano, M., Zowghi, D.: A systematic review on the relationship between user
involvement and system success. Inf. Softw. Technol. 58, 148–169 (2015)

4. Da Silva, T.S., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile
methods: a systematic review. In: 2011 AGILE conference. pp. 77–86. IEEE (2011)

5. Göransson, B., Sandbäck, T.: Usability designers improve the user-centred design
process. In: Proceedings for INTERACT, vol. 99, pp. 1–4 (1999)

6. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in
the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), pp. 289–294. IEEE (2014)

7. Gothelf, J., Seiden, J.: Lean UX: Applying Lean Principles to Improve User Expe-
rience. O’Reilly Media, Inc., Sebastopol (2013)

8. Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers
think. Commun. ACM 28(3), 300–311 (1985)

9. Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., Cajander, Å.:
Key principles for user-centred systems design. Behav. Inf. Technol. 22(6), 397–409
(2003)

10. Harris, M.A., Weistroffer, H.R.: A new look at the relationship between user
involvement in systems development and system success. Commun. Assoc. Inf.
Syst. 24(1), 42 (2009)

11. Jurca, G., Hellmann, T.D., Maurer, F.: Integrating agile and user-centered design:
a systematic mapping and review of evaluation and validation studies of agile-ux.
In: 2014 Agile Conference, pp. 24–32. IEEE (2014)

12. Kujala, S.: User involvement: a review of the benefits and challenges. Behav. Inf.
Technol. 22(1), 1–16 (2003)

13. Kujala, S., Kauppinen, M.: Identifying and selecting users for user-centered design.
In: Proceedings of the Third Nordic Conference on Human-Computer Interaction,
pp. 297–303. ACM (2004)

14. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf.
Syst. Eng. 6(4), 239–242 (2014)

15. Lauesen, S.: Usability engineering in industrial practice. In: Howard, S., Ham-
mond, J., Lindgaard, G. (eds.) Human-Computer Interaction INTERACT 1997.
ITIFIP, pp. 15–22. Springer, Boston, MA (1997). https://doi.org/10.1007/978-0-
387-35175-9 4

16. Lenarduzzi, V., Taibi, D.: Mvp explained: a systematic mapping study on the defi-
nitions of minimal viable product. In: 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 112–119. IEEE (2016)

17. Nielsen, J.: Usability inspection methods. In: Conference Companion on Human
Factors in Computing Systems, pp. 413–414. ACM (1994)

18. Norman, D.A., Draper, S.W.: User Centered System Design: New Perspectives on
Human-Computer Interaction. CRC Press, Boca Raton (1986)

19. OPC Foundation: IEC 62541: OPC Unified Architecture. Standard, International
Electrotechnical Commission (2015–2016)

https://doi.org/10.1007/978-0-387-35175-9_4
https://doi.org/10.1007/978-0-387-35175-9_4

102 M. Winterer et al.

20. Pfeiffer, T., Hellmers, J., Schön, E.M., Thomaschewski, J.: Empowering user inter-
faces for industrie 4.0. Proc. IEEE. 104(5), 986–996 (2016)

21. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Crown Books (2011)

22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

23. Väätäjä, H., Seppänen, M., Paananen, A.: Creating value through user experience:
a case study in the metals and engineering industry. Int. J. Technol. Mark. 9(2),
163–186 (2014)

24. Wittenberg, C.: Human-CPS interaction-requirements and human-machine inter-
action methods for the industry 4.0. IFAC-PapersOnLine 49(19), 420–425 (2016)

Combining GQM+Strategies and OKR -
Preliminary Results from a Participative Case

Study in Industry

Bianca Trinkenreich1(&), Gleison Santos1,
Monalessa Perini Barcellos2, and Tayana Conte3

1 PPGI/UNIRIO - Graduate Program in Informatics,
UNIRIO, Rio de Janeiro, Brazil

{bianca.trinkenreich,gleison.santos}@uniriotec.br
2 NEMO Ontology and Conceptual Modeling Research Group – UFES,

Vitória, Brazil
monalessa@inf.ufes.br

3 USES Research Group, Institute of Computing (IComp) – UFAM,
Manaus, Brazil

tayana@icomp.ufam.edu.br

Abstract. Aligning IT strategies to business goals is a top priority for CIOs.
However, measuring results that IT brings to business is a challenging task. We
carried out a study to help an IT director of a large mining company to define
OKRs (Objective Key Results) and quantitatively monitor the achievement of
goals. We performed a participative case study to define OKRs for goals and
initiatives to achieve them, by using GQM+Strategies to support us in that
matter. As a result, after three meetings with the IT director and IT managers, we
defined OKRs for five IT goals and initiatives to achieve them. From this
experience, we noticed that GQM+Strategies and OKR can be used together,
working in a complimentary way: OKR gives simplicity and agility to the
process, while GQM+Strategies provides useful knowledge to define OKRs and
initiatives to achieve them properly.

Keywords: GQM+Strategies � Objective Key Results � OKR � Measurement

1 Introduction

Alignment between IT (Information Technology) and business goals is considered by
both practitioners and researchers a management practice to enhance organizational
performance. However, there is still lack of knowledge about what organizational
actors really should do in practice for this alignment to happen [5]. There is a need for
researchers to adapt and extend knowledge about what means IT to be aligned with
business and how to measure it [6].

Measurement is a key process to support organizations in managing and improving
processes, products, and services to achieve customer satisfaction [1]. Measures should
be used to monitor the alignment of IT to business goals by providing useful infor-
mation for decision-making [3]. However, managers face difficulties to define

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 103–111, 2019.
https://doi.org/10.1007/978-3-030-35333-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_7

measures, evaluate if projects are bringing expected results to business and monitor
results to keep alignment between IT and business goals [3, 4].

The first author of this paper works at IT team of a large global mining company.
She was asked to help the director and the five managers to define measures for goals
and to review initiatives (projects and operational activities) to achieve those goals. At
that point, goals were qualitative and subjective, and the director was not able to verify
if the initiatives were contributing to goals achievement. We have already successfully
used GQM+Strategies [2] in other areas of the organization to aid in the alignment
between goals and strategies through measurement [10]. However, the IT director was
running a tight schedule and needed a fast approach, which did not require training or
many phases. He asked us to use OKR (Objective Key Results) [7], a method to
support defining and tracking goals and their outcomes, which has been increasingly
used in industry. OKR has an agile appeal, while GQM+Strategies provides detailed
knowledge on how to align goals and strategies through measurement. Thus, we
decided to explore the combined use of the two methods in a way that they work
complementarily. As a result, after three meetings, we defined OKRs to five IT goals
and initiatives to achieve them.

This paper presents the study and its main findings. It is organized as follows:
Sect. 2 provides the background for the paper; Sect. 3 presents the study planning and
execution; Sect. 4 addresses the process that arose from the study, Sect. 5 discusses our
findings and study limitations; and Sect. 6 presents conclusions and future work.

2 Background

IT-business alignment can be considered the level of fit and integration between
business, IT processes, projects, and infrastructure of an organization [13]. Aligning
goals and IT projects help focus resources and projects towards value creation and
requires finding the connections between them so that the links are explicit and allow
for analytic reasoning about what is successful and where change is necessary [2].

The GQM+Strategies approach [2] is an extension of the Goal-Question-Metric
paradigm and helps control the success or failure of strategies and goals by using a
measurement system. In GQM+Strategies, strategies refer to projects, actions, or other
initiatives performed to achieve goals. The GQM+Strategies model relates goals and
strategies at several organizational levels. One or more strategies can accomplish the
same goal. Context factors and assumptions influence goals and strategies. A GQM
+Strategies element includes an organizational goal, respective strategies, context, and
assumptions that influence them. GQM+Strategies elements and related models are
represented in a GQM+Strategies Grid, making goals and strategies explicit, as well as
measures related to them, providing a transparent correlation between goals, strategies
and measurement initiatives. The GQM+Strategies process consists of an initial phase
and a repeatable cycle with three stages and six phases: Develop (phases 1 and 2);
Implement (phases 3 and 4) Learn (phases 5 and 6) [2].

Objective Key Results (OKR) is a collaborative goal-setting protocol to help ensure
that the company is consistently focusing and prioritizing efforts on the same issues
throughout the organization [8]. An OKR has two components: the Objective,

104 B. Trinkenreich et al.

qualitative and inspirational, and Key Results, quantitative and measurable. The
objective should be meaningful, significant, concrete, actionable, and inspirational. Key
results gauge and measure how to achieve the objective and are quantitative, usually
time-bound, verifiable, and realistic. The process to define OKRs consists in setting the
objectives; determining the key results for each objective, executing actions to achieve
the objectives; providing regular feedbacks.

3 Study Planning and Execution

Participative case study was selected as research method as the researcher was a
member of organization, she observed the particular group of organization’ subjects,
and was one participant in the process being observed [11]. The researcher had some
control over some intervening variables and was a stakeholder in the process’ outcome,
as she was part of the department and would work to achieve OKRs. The participative
case study report attempts to capture and communicate the biased interpretation by
stakeholders of their particular environment during a particular period in time. We
followed two phases Planning, for case study preparation, and Execution, for data
collection.

The organization where we carried out the study is a large global mining company
operating in over 30 countries, with offices, operations, exploration, and joint ventures
across five continents. Information Technology (IT) department is composed of five
areas: Innovation and Projects, Architecture and Technology, IT Services, Business
Partners, and Strategy and Planning. At the beginning of the year, the IT director
defined a set of goals, and the IT managers elicited 140 initiatives to achieve them. In
April, the director realized that the goals seemed non-measurable, and he was not able
to verify if initiatives elicited by IT managers were able to achieve the defined IT goals.
The IT director needed a fast approach to focus efforts on the right direction and had
not enough time to spend on training or following many phases of a traditional goal-
setting method.

Since OKR (Objective Key Results) [8] has been increasingly used by industry to
support the creation of measurable and achievable goals to foster alignment, engage the
team and follow a fast cadence, the IT director showed interest in using it. The OKR
literature provides knowledge (examples, good practices, tips, concepts) to build OKRs
and monitor results [8]. However, there is no practical direction or procedure about
how to gather contextual information and turn a qualitative objective into a measurable
goal for a key result. There is also no direction about how to elicit initiatives (i.e.,
strategies) to achieve goals. GQM+Strategies [2] provides this kind of knowledge. We
had previous experience using GQM+Strategies [2] in other departments of the com-
pany [10], and thus, we decided to combine both methods. By doing that, we expected
that OKR would satisfy the need for a faster approach, while GQM+Strategies would
provide complementary knowledge to perform the activities. Next, we present infor-
mation about the study planning and execution.

Combining GQM+Strategies and OKR - Preliminary Results 105

3.1 Planning

The goal of the study is to analyze the combined use of OKR and GQM+Strategies to
support defining measurable goals, OKRs, and initiatives for IT goals. Aligned with
this goal, we defined the following research question: How to combine OKR and
GQM+Strategies to measure qualitative goals and support their achievement? The
expected outcomes were (i) a list of OKRs agreed by both IT director and IT managers
to measure the achievement of IT goals, (ii) a process to support defining OKRs.

The technique used to collect data was document analysis and three brainstorm
meetings with the IT director and IT managers. When we received the following list of
five IT goals (G) defined by the IT director, it became clear for us that goals could not
be easily quantified without contextual information: (G1) Become the natural provider
of Operational Technology (OT) support; (G2) Continue to streamline and improve
services delivery; (G3) Improve customer experience through innovation; (G4) Enable
Digital Transformation journey; (G5) Be a role model for digital transformation inside
IT. We also received spreadsheets containing the initiatives elicited by the IT managers
and the initiative´s deliverables. Meetings were scheduled to review goals in measur-
able terms, define OKRs, and review the initiatives.

3.2 Execution

We followed a plan of using practical work meetings, lasting between 1 and 2 h each.
The IT director and the five IT managers participated in all meetings. We started by
analyzing the IT goals under the perspective of OKR in order to verify if they were
meaningful, significant, concrete, actionable, and inspirational. The main problem we
found was that the IT goals were defined using qualitative terms (e.g., natural provider),
without a rationale to explain them. This makes it difficult to measure goals achieve-
ment. We needed the information to express the goal in measurable terms. Thus, we
followed practices from the Develop stage – Phase 1 of the GQM+Strategies process,
which says that rationale, context factors, and assumptions characterize the environ-
ment and help define and understand goals. We asked questions to brainstorm dis-
cussion and get information to define aspects that could bring a basis to measure the
achievement of qualitative objectives (e.g., aspects to explain and quantify what means
to be a natural provider for the organization).

Once the aspects to be measured were identified, we used practices from the
Develop stage – Phase 2 of the GQM+Strategies process to, first, define key results
(KRs) and, then, elicit strategies to achieve them. To define KRs, we considered OKR
guidelines (KRs should be quantitative, time-bound, verifiable, and realistic). When
discussing being verifiable, the IT director and managers quickly defined how to collect
data, as a brief measurement plan that would be further detailed. For sake of confi-
dentiality, we used X and Y to represent current and target values, respectively, and
omitted the time to achieve the result (Table 1).

106 B. Trinkenreich et al.

Once we had measurable goals expressed by OKRs, next step was to review
elicited initiatives to verify and prioritize the ones aligned to OKRs. Due to the high
number of initiatives and for the sake of confidentiality, we discuss only some of them.

First, we verified alignment between initiatives and OKRs by analyzing if the
initiative deliverable could contribute to the achievement of the OKR. We also ques-
tioned the high number of initiatives (IT managers listed 140 initiatives) and their
connection with the IT goals. Thus, we selected only the initiatives truly aligned with
OKRs. For example, by analyzing the initiatives, it was noted that the initiative
“Elaborating Software as a Services Contract Guidelines,” which includes bench-
marking studies, architecture guidelines and contracts review, was not aligned to any
OKR, since it was not able to produce deliverables that contribute to achieving the
OKRs.

We also verified the need for new initiatives. For example, there were only two
initiatives related to the goal “Become the natural provider of Operational Technology
(OT) support,” namely: “Include scope for supporting OT users in outsourcing con-
tract” and “Implementation of network standards to improve the security posture for
OT sites.” When we defined measurable goals and created OKRs, the participants
realized that those initiatives were not enough, and new initiatives should be created to
achieve the OKRs. The OKR goal-setting protocol does not provide any mechanism to
elicit initiatives to achieve KRs. Thus, we followed an approach based on GQM
+Strategies [10] to fulfill this gap. This proposal suggests that in order to elicit effective
initiatives, processes related to the goals to be achieved should be analyzed. Hence, we
qualitatively analyzed processes associated with each KR and investigated root-causes
of problems related to these processes that impact KRs achievement. As a result, new
initiatives were created to support goals achievement.

For example, we analyzed the process performed to provide the required infras-
tructure foundation for a new location, and we found out that the main obstacles related
to the OKR “Increase the number of OT locations with foundation implemented from
X to Y” are related to network and support. So, we defined two initiatives: Implement
network standards and Extend the outsourcing contract to support OT users. After
reviewing the initiatives to achieve each OKR, we consolidated OKRs and respective
initiatives in a GQM+Strategies grid [10] to visualize results and analyze conflicts.

Table 1. OKRs for “Become the natural provider of Operational Technology (OT) support”

Service delivery aspects to
be improved

Key results

Increase availability Reduce planned and unplanned downtime of high impact
applications from X to Y

Reduce baseline costs Reduce baseline costs from X to Y
Reduce security and
operational risks

Reduce outdated components from X to Y
Increase the number of components being tracked by Software
Asset Manager from X to Y

Expand coverage to
Location Z

Increase the maturity level of maturity model in Location Z
(people, process and technologies) from X to Y

Combining GQM+Strategies and OKR - Preliminary Results 107

4 Results

The OKR provides a simple way to define and track goals and measurable results,
including agile principles to help define and monitor objectives and key results, and
some ideas about techniques to use during meetings to define OKRs (e.g., Design
Thinking) [7]. However, it does not provide a process to guide establishing quantitative
key results for qualitative objectives. Moreover, OKR does not clearly address the
initiatives to be executed in order to achieve the KRs. GQM+Strategies describes a
process, including a Develop stage, which can be helpful when defining quantitative
KRs. Besides, GQM+Strategies gives directions on eliciting strategies to achieve goals
and, once again, can be helpful to define initiatives to achieve OKRs.

OKR and GQM+Strategies have some similarities (e.g., both are concerned with
defining measurable goals) and also differences (as discussed previously). In this study,
we combined both practices and, together with an IT director and five IT managers, we
could define OKRs and initiatives to achieve them. Figure 1 illustrates the process that
arose from the study, and we briefly explain it next. Although the process is linearly
presented, there can be interaction between the phases.

Stage 1: What do we want? – Define objectives aligned to business (or review if
they exist) being meaningful, significant, concrete, actionable, and inspirational [8].

Stage 2: What is behind this objective? – Identify measurable aspects to provide a
basis to turn qualitative objectives into measurable objectives. Explore abstract terms
like adjectives to understand what they mean for the organization by asking questions
such as “why,” “how,” “for what.” Gather rationale, context factors and assumptions
[2] behind each goal and find measurable aspects to be measured in key results [8].

Stage 3: Where do we want to go? – Create KRs for each objective using the
measurable aspects as basis. KRs should be quantitative, usually time-bound, verifiable
and realistic [8]. When building KRs current values for each measurable aspect are
used to establish baseline (where we are today) and challenging (where do we want to
go) but also realistic (where can we go) values defined as targets [8].

Stage 4: How are we going to get there? – Elicit strategies (i.e., projects, actions or
other initiatives) to achieve KRs [2]. Includes reviewing existent strategies to verify if

Fig. 1. Process to support defining and monitoring OKRs and strategies to achieve them.

108 B. Trinkenreich et al.

their deliverables contribute to OKRs achievement. Process analysis, involving root-
cause analysis and Pareto techniques, can be used to find obstacles to be addressed in
the strategies, and that can help prioritize them [10].

Stage 5: Let´s consolidate? – Elaborate a grid with OKRs and respective strategies
to detect and remove any conflicts that can prevent an OKR from being achieved.
Adjust the grid, if needed, and communicate to stakeholders. OKRs should be public
[8] but many times, strategies may not be. Define a monitoring process instrumentation
(e.g., emails, reports) and frequency in short cycles [8] to review OKRs results.

Stage 6: Are we getting there? – This stage is cyclic, as monitoring repeat following
the frequency defined by organization. OKRs results, projects’ deliverables, business
contextual information behind goals should be regularly monitored, preferably on a
short period [8]. Consolidate information, align with teams, communicate OKRs and
results to all organization, review what changed and create new OKRs if needed.

5 Discussion

The results of the participative case study have initial findings to show it is possible to
use GQM+Strategies and OKR together to support creating measurable goals, OKRs,
and initiatives for IT goals. When asking the IT director for feedback, he said “we were
stuck before your help starting with questions to demystify some terms used in goals.
From there, creating measurable goals was very practical and useful to clarify meaning
and make explicit how to measure it.” He mentioned the approach was agile enough to
provide expected results and clear enough to make the information explicit to the team.

IT goals were originally defined in a non-quantitative way, which was hard for IT
managers to think about measurable attributes for them and select, from all initiatives,
which ones could really deliver what was needed to achieve the goals. The culture of
creating measurable goals needs to be spread through all the organization. OKRs can
help with simple and actionable goals, constant monitoring, and agile changing for new
OKRs when needed. By evaluating the deliverables of each initiative, we found only a
few of them were truly strategic. The use of OKR and GQM+Strategies helped to make
clear the alignment between initiatives and OKRs, providing a link between the actions
performed by the teams and the goals the IT area wants to achieve. OKR literature
suggests when OKRs are transparent, teams are senior enough to take ownership and
get the work done [9]. During this study, we found a different scenario. Even for senior
professionals, details about what have to be done to achieve the KRs were necessary.
GQM+Strategies helped to satisfy this need. Aiming to make it easier to visualize the
resulting OKRs, we built a grid. The grid was inspired by the GQM+Strategies grid
proposed in [10]. Besides providing an overview of the defined OKRs and initiatives, it
allows finding conflicts between them, as a monitoring and communication tool.

The process we followed to define OKRs can inspire other organizations on how
measuring goals. Managers responsible for defining IT measurement processes can use
information about how we defined OKRs, how we reviewed initiatives to guarantee
alignment, then minimize difficulties during the definition of goals and initiatives and
reduce the risk of failing in goals achievement. Furthermore, the study results can also
be useful for researchers to identify practical issues to be addressed in future researches.

Combining GQM+Strategies and OKR - Preliminary Results 109

Regarding this study limitations, one of the biggest threats in this context is the
ability to generalize from the case-specific findings to different cases [12]. Thus, the
main threat to external validity in this study is about results’ generalization. In case-
based research, after getting results from specific case studies, generalization can be
established for similar cases. Participative case study is biased [11] and subjective as its
results rely on the researchers. The first author of this paper primarily conducted the
study collaborating with the practitioners. She has been working at the organization for
eight years. Thus, she does not provide an external view of the situation. To reduce this
threat, we involved other researchers as a steering group in discussing and reflecting on
the study and results. Besides, the first author had previous experience with GQM
+Strategies, which may have influenced its use along with the study.

6 Conclusions and Future Work

In this paper, we reported a preliminary experience of using GQM+Strategies and OKR
practices together to define measurable goals, OKRs, and initiatives for IT goals. GQM
+Strategies and OKR worked in a complimentary way, where OKR provided basic
concepts, simplicity, and agility to the process, while GQM+Strategies provided useful
knowledge to perform activities and define initiatives. We used an informal language to
avoid communication barriers between academy and industry members.

As a result of this initial study, we created a first version of a process with six stages
to define OKRs and initiatives to achieve them. We used provocative questions asWhat
is behind this goal? to guide a brainstorm between practitioners and help them define
measurable attributes for goals; Where do we want to go?, to incentivize practitioners
to think about targets; How are going to get there?, to review if existent initiatives were
able to achieve key results and elicit new ones; Let´s consolidate?, to group OKRs and
initiatives; and Are we getting there?, to monitor results and check if goals are achieved
by the elicited initiatives. This paper points out a direction for further studies to
evaluate whether the proposed process could help other software organizations.

The process and knowledge provided from using OKR and GQM+Strategies
practices together can be useful for practitioners to reuse or adapt the process, as well as
to be inspired by our experience to define their own OKRs and initiatives. Researchers,
in turn, can identify practical issues to be addressed in future research (e.g., the
knowledge gaps in OKR). We did not find any work reporting the use of OKR in the IT
domain combining OKR and GQM+Strategies. As future works, we intend to perform
new studies applying the created process to get new data about its use and improve it.

Acknowledgment. We thank the financial support by CNPq (423149/2016-4, 311494/2017-0,
461777/2014-2, 423149/2016-4), FAPERJ (E-201.670/2017).

110 B. Trinkenreich et al.

References

1. Forrester, E., Buteau, B., Shrum, S.: CMMI For Services, Guidelines for Superior Service.
CMMI-SVC, vol. 1.3, 2nd edn. Addison-Wesley, Boston (2010). SEI

2. Basili, V., et al.: Aligning Organizations Through Measurement. TFISSSE. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05047-8

3. Jantti, M., Lepmets, M.: Proactive management of IT operations to improve IT services.
J. Inf. Syst. Technol. Manag. 14(2), 191–218 (2017). https://doi.org/10.4301/s1807-
17752017000200004

4. Gacenga, F., Cater-Steel, A., Toleman, M.: An international analysis of IT service
management benefits and performance measurement. J. Glob. Inf. Technol. Manag. 13(4),
28–63 (2010)

5. Karpovsky, A., Galliers, R.D.: Aligning in practice: from current cases to a new agenda.
J. Inf. Technol. 30(2), 136–160 (2015). https://doi.org/10.1057/jit.2014.34

6. Coltman, T., Tallon, P., Sharma, R., Queiroz, M.: Strategic IT alignment: twenty-five years
on. J. Inf. Technol. 30, 91–100 (2015). https://doi.org/10.1057/jit.2014.35

7. Nivan, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment, and
Engagement with OKRs, p. 224. Wiley Corporate, Hoboken (2016)

8. Doerr, J.: Measure What Matters: How Google, Bono, and the Gates Foundation Rock the
World with OKRs, p. 31. Penguin Publishing Group, London (2018)

9. Wodtke, C.: Introduction to OKRs, p. 37. O’Reilly Media, Newton (2016)
10. Trinkenreich, B., Santos, G., Barcellos, M.P.: SINIS: a GQM+Strategies-based approach for

identifying goals, strategies and indicators for IT services. J. Inf. Softw. Technol. 100, 147–
164 (2018)

11. Baskerville, R.L.: Distinguishing action research from participative case studies. J. Syst. Inf.
Technol. 1(1), 24–43 (1997)

12. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci.
Comput. Program. 101, 136–152 (2015)

13. Henderson, J.C., Venkatraman, H.: Strategic alignment: leveraging information technology
for transforming organizations. IBM Syst. J. 38(2.3), 472–484 (1999)

Combining GQM+Strategies and OKR - Preliminary Results 111

http://dx.doi.org/10.1007/978-3-319-05047-8
http://dx.doi.org/10.4301/s1807-17752017000200004
http://dx.doi.org/10.4301/s1807-17752017000200004
http://dx.doi.org/10.1057/jit.2014.34
http://dx.doi.org/10.1057/jit.2014.35

Software Development Practices
and Frameworks Used in Spain and Costa
Rica: A Survey and Comparative Analysis

Ignacio Díaz-Oreiro1, David Chaves1, Brenda Aymerich1,
Julio C. Guzmán1, Gustavo López1(&), Marcela Genero2,

and Aurora Vizcaíno2

1 University of Costa Rica, San José, Costa Rica
{ignacio.diazoreiro,david.chavescampos,

brenda.aymerich,julio.guzman,

gustavo.lopez_h}@ucr.ac.cr
2 University of Castilla-La Mancha, Ciudad Real, Spain

{marcela.genero,aurora.vizcaino}@uclm.es

Abstract. Software development has been impacted by the arrival of agile
frameworks, especially in the last two decades. The HELENA Project (Hybrid
dEveLopmENt Approaches in software systems development) was developed to
identify the use of these frameworks in relation to more traditional ones. As part
of this project, a survey was carried out in 55 countries, including Spain and
Costa Rica. This paper presents the comparison of the results of these two
countries, particularly in relation to two topics: the degree of agility of the
activities of the software development life cycle and what are the most used
methods and frameworks in each country. The results show similarities in both
topics for the two countries, such as the fact that the most agile-oriented
activities are Implementation/Coding and Integration/Testing, or the widespread
use of agile frameworks with Scrum in the first place, followed by Iterative
Development and Kanban. There are, however, some differences, such as a
greater presence in Spain of scaling agile frameworks.

Keywords: Software development approach � HELENA project � Scrum �
Waterfall � Agile

1 Introduction

Software development evolves continuously and in the last 25 years it has been
impacted by the arrival of agile frameworks. However, despite the impact generated by
agile frameworks such as Scrum, the process of converting to agile has not been
unanimous through organizations in the software industry. Even within an organization
it is common to find combinations of agile and traditional methods and practices, what
has been called Hybrid approaches. To understand the current state of practice in the
use and combination of different software development approaches, a group of
researchers initiated an international research project called HELENA (Hybrid
dEveLopmENt Approaches in software systems development) [1, 2]. HELENA Project

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 112–119, 2019.
https://doi.org/10.1007/978-3-030-35333-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_8

had a first stage in which an evaluation tool was built on the use of different practices
and frameworks in software development. In a second stage, an online survey was
conducted that gathered information from 55 countries and almost 1,500 products or
projects.

The overall goal of this international study is to investigate the current state of
practice in software and systems development. This paper presents and compares the
results of two countries represented in this survey (i.e., Spain and Costa Rica).

With 505 000 Km2 and 47 million inhabitants, Spain is ten times larger and more
populated than Costa Rica. Sharing cultural correspondences and having a similar
number of responses, comparing the results of these two countries could provide
insights into the differences between a sizeable European country and a small Latin
American country.

Spain has become an important center of nearshore outsourcing for Europe due to
several factors: it is part of the European Union and the Schengen Agreement, it has a
significant number of IT and Telecommunications schools, the salaries are competitive
compared to the rest of Europeans countries and share a good part of the working hours
with these countries. On the other hand, Costa Rica has remained as an offshore and
nearshore software development center for almost two decades, mainly for the US
market. Subcontracting in Costa Rica is reinforced by proximity to the United States, a
shared central time zone and competitive salaries compared to the United States. Many
technology companies have operations in Costa Rica [3], among which are Amazon,
Deloitte, IBM, Hewlett Packard Enterprise, Intel and Microsoft. In addition, around 50
companies are dedicated exclusively to software development.

This paper reports the main findings of the comparison between Spain and Costa
Rica according to these key questions: (1) Which is the degree of agility in the activities
of the software development lifecycle? and (2) Which frameworks and methods are
used for software development?

2 Related Work

Teams of researchers have presented the results of the HELENA survey in their
respective countries [4–6]. However, given the global nature of the HELENA Project,
authors have also compared countries and regions. For example, Nakatumba-Nabende
et al. [7] compared the results of Sweden and Uganda, showing that respondents from
Uganda were mostly developers, while in Sweden, the most represented roles were
architect and project/team managers. The main finding of this research is that neither
country adheres to one development model but rather employ hybrid approaches. Scott
et al. [8] conduct the comparison between Estonia and Sweden. Regarding develop-
ment frameworks and methods, Estonian responses state a clear preference for agile
frameworks, with Scrum “always used” by 58% of the respondents. In Sweden,
although the use of Scrum is also frequent, only 8% indicate that it is always used, and
Kanban, Iterative Development, and the Classic Waterfall Process are used as often as
Scrum.

Software Development Practices and Frameworks 113

3 Results and Discussion

In both Spain and Costa Rica, the survey was conducted by academic teams of the
University of Castilla La Mancha and University of Costa Rica, respectively. The
online survey was forwarded to several software development companies and networks
interested in agile approaches. Hereafter, the results presented are extracted from the
responses 51 responses received in Costa Rica and the 50 responses obtained from
Spain. The individual results of the HELENA Survey for Costa Rica are presented in
[9]. Regarding the size of the companies, four categories were defined: small (fewer
than 50 employees), medium (between 50 and 250), large (between 250 and 2500) and
very large (more than 2500 employees). The distribution of companies in Costa Rica
and Spain are similar for the small (18% and 16% respectively) and medium (28% and
25% respectively) categories. However, large and very large companies differ signif-
icantly. In Costa Rica, 39% of the companies are large while in Spain only 12% are in
this category. Furthermore, 42% of Spanish companies are very large while only 20%
of Costa Rican companies fall into this category.

Additionally, as for the team geographical distribution of the teams, 27% of Costa
Rican companies carry out their projects in a single location, 22% distribute them
within the same country, 16% within the same continent and 35% globally. On the
other hand, in Spain, 24% of companies concentrate their software development in one
place, 48% distribute them throughout the country, only 8% regionally and 20%
globally. It is interesting to notice that Costa Rica works in a highly communicative and
cooperative way with other countries to develop software products. In Spain, 72% of
the projects are carried out locally, which is also conditioned by the size and population
of the country, which could be since Spain would have a larger group of software
builders available in the local environment.

With respect to the company business area, the answers were classified into five
categories: Software Development, System Development, Consulting, Research &
Development, and “Other”. Table 1 shows the distribution of companies by business
area and size both for Spain and Costa Rica.

In Costa Rica, large and very large companies operate mostly in Software Devel-
opment and in the “Other” category, being “Other” predominantly companies that
serve the financial sector. In Spain, on the other hand, the largest companies focus on
Software Development and Consulting. The most representative business area in both
countries is Software Development (around 40%). Consulting is another significant
business area (24% for Costa Rica and 34% in Spain).

Table 1. Company business area and size for Spain and Costa Rica.

Company
size

Costa Rica Spain

Software
Dev.

System
Dev.

Consulting R&D Other Total Software
Dev.

System
Dev.

Consulting R&D Other Total

Small 3 0 2 2 1 8 4 0 3 1 2 10

Medium 6 0 6 0 0 12 6 0 5 3 0 14

Large 8 1 2 0 9 20 3 0 2 0 1 6

Very large 2 3 2 1 3 11 9 1 7 2 1 20

Total 19 4 12 3 13 51 22 1 17 6 4 50

114 I. Díaz-Oreiro et al.

3.1 Which Is the Degree of Agility in the Activities of the Software
Development Lifecycle?

In the following sections we will present the findings of the HELENA survey along the
key questions presented above. This section focuses on the practices and frameworks
used in Spain and Costa Rica to develop software. In the survey we focused on the
level of agility of every stage of the software development lifecycle using SWEBOK
[10] as guide. Table 2 shows the distribution of these results. Some stages such as
Implementation/Coding, Integration/Testing, Change Management, and Maintenance
and Evolution tend to be agile.

Configuration Management is an interesting activity since in Costa Rica most
projects are conducted mainly traditional in this stage. In contrast, in Spain this stage is
more balanced between traditional and agile.

In Spain, three stages tend simultaneously towards Mainly Traditional and Mainly
Agile: Risk Management, Quality Management, and Transition and Operations. This
shows that some projects are conducted in a traditional manner and other are agile, but
with a similar weight to both sides. In Costa Rica this behavior is not observable. As it
was expected, activities that are conducted mainly or Fully Agile are the same for both
countries. These are: Implementation/Coding, and Integration/Testing, although Costa
Rica with slightly higher numbers in these two activities.

Regarding the profile of respondents, in Costa Rica 49% have the role of developer,
while only 32% of Spanish respondents are developers. On the other hand, 30% of
Spanish respondents are Project/Team managers, for only 6% of Costa Rican

Table 2. Degree of agility in each stage of the software development lifecycle. Each cell
represents the number of companies in that category.

Software Development Practices and Frameworks 115

respondents in this category. Years of experience also show differences between both
countries: 84% of Spanish respondents have 6 years or more of experience (26%
between 6 and 10 years and 58% with more than 10 years), while only 53% of Costa
Rican respondents have 6 years or more of experience (20% between 6 and 10 years
and 33% with more than 10). The largest group of Costa Rican respondents is formed
by people with between 3 and 5 years of experience (35%).

To delve in the effect of the company size on the degree of agility for different
stages, we analyzed how the participants rate their way of implementing the SWEBOK
stages. Figure 1 shows the result of this analysis for Costa Rica and Spain, using the
averaged ratings grouped by company size.

It can be seen that there are no significant divergences for the different company
sizes, with some exceptions in small companies: in Costa Rica Quality Management
tends to be more agile in small companies, while in Spain, Integration/Testing tends
towards “Traditional” slightly more than the rest of company sizes.

3.2 Which Frameworks and Methods Are Used for Software
Development?

The use of different frameworks and methods in software development is shown in
Fig. 2, which compares the results of both countries. Although the survey offered seven
possible answers for this question, the chart presents only 5 of them. The remaining
two (not representative) are indicated with percentages in the left side of the figure.

Fig. 1. Respondents rating on the implementation of activities for Spain and Costa Rica,
grouped by company size.

116 I. Díaz-Oreiro et al.

One of the main insights of the chart is the extended use of the agile framework
Scrum in both countries. The use of Scrum in Costa Rica is, however, more widespread
than in Spain, with 39% of respondents stating, “We often use it” and 41% “We
Always use the framework” (compared to 22% and 26% for Spain, respectively).
Another important fact is the balanced use in both countries of Iterative Development,
Kanban and Test-Driven Development, which are also agile paradigms. On the con-
trary, in the chart we can identify frameworks or practices such as Nexus and PRINCE,
which show some use in Spain and in Costa Rica are practically unknown. In the case
of PRINCE, these numbers may be due to it is a project management methodology
widely used in the United Kingdom, where many Spanish companies carry out soft-
ware projects. On the contrary, Costa Rican companies have little participation in that
market.

Fig. 2. Degree of use of frameworks and methods for Spain and Costa Rica

Software Development Practices and Frameworks 117

The classic waterfall process is still used in both countries, to a greater extent in
Costa Rica than in Spain, despite current trends towards agile frameworks. It is
important to note, however, that its use is much lower compared to software developed
through agile frameworks and practices.

Regarding scaling agile frameworks, Nexus, SAFe and LeSS are better known in
Spain than in Costa Rica. Accordingly, the use of these frameworks is practically non-
existent in Costa Rica. In Spain, although the use is somewhat greater, only Nexus is
used significantly: 8% of respondents answered “We often use it”, and 12% “We
always use the framework”.

4 Conclusions

Results of the second stage of the HELENA Project show interesting similarities and
differences between the usages of development frameworks, methods and practices
when comparing responses from Spain and Costa Rica. Regarding the geographical
distribution of companies, 72% of Spanish companies have their development centers
within Spain, while 51% of Costa Rican respondents work in companies with offices
distributed throughout the region or globally.

As for the business area, both countries are primarily involved in Software
Development. Additionally, Spain dedicates a good part of its industry to Consulting,
while in Costa Rica this component is surpassed by its involvement in the Financial
sector.

Analyzing the size of the companies, this factor does not seem to influence the trend
towards agile or traditional frameworks, both for Costa Rica and Spain. The most agile-
oriented software development activities are Implementation/Coding and Integration/
Testing for both countries, although with slightly higher numbers in Costa Rica.

Finally, in relation to the frameworks and practices used, it is important to mention
that Scrum is the most widely used in both countries. Iterative Development and
Kanban occupy the second position as most commonly used frameworks, both in Spain
and Costa Rica. Classic Waterfall still has a presence, especially in Costa Rica,
although in a reduced way. Regarding scaling agile frameworks, the survey identifies
uses of Nexus, SAFe and LeSS frameworks, with more presence in Spain than in Costa
Rica, where its use is still incipient.

As future work, we hope to broaden the analysis to include other features addressed
in the survey, as well as to continue collaborating with other research teams, comparing
the results of different countries that took part in the survey.

Acknowledgements. The research work presented in this paper has been developed within the
following projects financed by “Ministerio de Ciencia, Innovación y Universidades, y FEDER”:
ECLIPSE (RTI2018-094283-B-C31) and BIZDEVOPS-GLOBAL (RTI2018-098309-B-C31). It
was also partially supported by CITIC at the University of Costa Rica, Grant No. 834-B4-412.

118 I. Díaz-Oreiro et al.

References

1. Kuhrmann, M., Münch, J., Diebold, P., Linssen, O., Prause, C.R. On the use of hybrid
development approaches in software and systems development: construction and test of the
HELENA survey. In: Proceedings of the Annual Special Interest Group Meeting
Projektmanagement und Vorgehensmodelle (PVM). (Lecture Notes in Informatics), vol.
263, pp. 59–68 (2015)

2. Kuhrmann, M., et al.: Hybrid software and system development in practice: waterfall, scrum,
and beyond. In: Proceedings of the 2017 International Conference on Software and System
Process - ICSSP 2017, pp. 30–39. ACM Press, New York (2017)

3. CAMTIC: Camara de Tecnologias de Informacion y Comunicacion. https://www.camtic.org
4. Felderer, M., Winkler, D., Biffl, S.: Hybrid software and system development in practice:

initial results from Austria. In: Felderer, M., et al. (eds.) PROFES 2017. LNCS, vol. 10611,
pp. 435–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_33

5. Paez, N., Fontdevila, D., Oliveros, A.: HELENA study: initial observations of software
development practices in Argentina. In: Felderer, M., et al. (eds.) PROFES 2017. LNCS, vol.
10611, pp. 443–449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_34

6. Tell, P., Pfeiffer, R.-H., Schultz, U.P.: HELENA stage 2—Danish overview. In: Felderer,
M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 420–427. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_31

7. Nakatumba-Nabende, J., Kanagwa, B., Hebig, R., Heldal, R., Knauss, E.: Hybrid software
and systems development in practice: perspectives from Sweden and Uganda. In: Felderer,
M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 413–419. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_30

8. Scott, E., Pfahl, D., Hebig, R., Heldal, R., Knauss, E.: Initial results of the HELENA survey
conducted in Estonia with comparison to results from Sweden and worldwide. In: Felderer,
M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 404–412. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_29

9. Aymerich, B., Díaz-Oreiro, I., Guzmán, Julio C., López, G., Garbanzo, D.: Software
development practices in Costa Rica: a survey. In: Ahram, Tareq Z. (ed.) AHFE 2018. AISC,
vol. 787, pp. 122–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94229-2_13

10. IEEE Computer Society: About SWEBOK. https://www.computer.org/web/swebok

Software Development Practices and Frameworks 119

https://www.camtic.org
http://dx.doi.org/10.1007/978-3-319-69926-4_33
http://dx.doi.org/10.1007/978-3-319-69926-4_34
http://dx.doi.org/10.1007/978-3-319-69926-4_31
http://dx.doi.org/10.1007/978-3-319-69926-4_31
http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_29
http://dx.doi.org/10.1007/978-3-319-69926-4_29
http://dx.doi.org/10.1007/978-3-319-94229-2_13
https://www.computer.org/web/swebok

Does the Migration of Cross-Platform
Apps Towards the Android Platform

Matter? An Approach and a User Study

Maria Caulo1, Rita Francese2(B), Giuseppe Scanniello1, and Antonio Spera2

1 University of Basilicata, Potenza, Italy
{maria.caulo,giuseppe.scanniello}@unibas.it

2 University of Salerno, Fisciano, SA, Italy
francese@unisa.it, a.spera18@studenti.unisa.it

Abstract. We present an approach to migrate cross-platform apps
toward a native platform (i.e., Android). The approach is tailored to
Ionic, i.e., an open-source framework providing a mobile UI (User Inter-
face) toolkit for developing high-quality cross-platform apps. The validity
of our approach has been validated on an open-source app developed by
means of Ionic (i.e., Movies-app). In such a way, we had two versions of
the same app: one developed in Ionic (the original one) and the other
in Android (the migrated one). To investigate if there is a difference in
the user experience when using these two versions, we conducted a user
study. This user study also aimed at assessing the presence of possible dif-
ferences in the affective reactions of users when using these two versions
of Movies-app. The results suggest that the user experience is better
when users deal with the migrated app. Similar results were achieved
with respect to the affective reactions of users. We can then conclude
that the migration from Ionic towards Android matters.

Keywords: Android · Cross-platform · Ionic · Migration · Sentiment
analysis · User experience

1 Introduction

Migration means transferring an application to a new target environment hold-
ing the same features as the original application [5]. Migration is relevant to
consolidate past knowledge and to preserve past investments [7]. In addition,
the use of the migrated application should not negatively affect how the end-
user perceives it as compared with its original version. Therefore, the migration
is successful from the end-user perspective if she does not note any difference.

The development of apps based on cross-platform solutions (e.g., Titanium,
PhoneGap, and Ionic) are free from the operating system. That is, the devel-
oper writes the code of an app once and deploys it to the different (supported)
hardware/software platforms (e.g., iOS and Android). Among the cross-platform
solutions, Ionic is receiving great interest because it provides tools and services
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 120–136, 2019.
https://doi.org/10.1007/978-3-030-35333-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_9

Does the Migration of Cross-Platform App Towards the Android 121

to easily build Mobile UIs (User Interfaces) with a native look and feel. Ionic also
provides full access to native functionality of the device (behaving in this case
as a hybrid platform). On the other hand, native development means developing
the mobile app specifically for each hardware/software platform. For example,
Android apps have to follow a Model View Controller pattern closely tied to the
Android operating system architecture.

The results from an industrial survey [8] indicated that cross-platform devel-
opment is largely adopted because it is less risky than the native development.
Respondents in this survey also thought that a cross-platform (or hybrid) app
should be preferred when no much money can be invested in the native devel-
opment. The use of cross-platform frameworks is also a valuable means to the
rapid prototyping of apps to be run in different hardware/software platforms.
Once the value of these apps has been assessed with real users (e.g., through
beta-testing), these apps could be re-implemented or migrated towards native
platforms (e.g., Android or iOS). As an example, a Stack Overflow user asks
some suggestions on how to substitute an Ionic app with a native Android one
in the Google Play store, because he is “planning to start a startup and currently
he is not in a position to afford individual development for various platforms.”1

In this paper, we present an approach to migrate Apps developed with Ionic
towards Android platform. To assess the validity of this approach and its under-
lying process, we applied both of them on a real open-source app, i.e., Movies-
app.2 Finally, to assess if the migration from Ionic to Android is valuable from the
end-user perspective, we conducted a qualitative investigation with 18 users with
different experience and background. The main goal of this investigation was to
study affective reactions3 and user experience4 of the involved participants on
both the versions of Movies-app. In particular, we first assessed the difference (if
any) in the affective reactions of users when using Ionic and Android versions.
Affective reactions were measured using a lightweight yet powerful tool, Self-
Assessment Manikin (SAM) [4]. Later, we asked the participants in our study to
fill a questionnaire to assess user experience [17]. The general goal of the study
was to investigate whether affective reactions and user experience are affected
by the used version of the app. This is to say that in case the end-user does
not perceive any difference in terms of affective reactions and user experience
between the original version of the app and its migrated version the migration is
successful and then migration matters. It is even better if affective reactions and
user experience are more positive in the case of the migrated version of the app.

1 https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-
native-app-at-later-point-of-time.

2 https://github.com/okode/movies-app.
3 Affect is a concept used in psychology to describe the experience of feeling or emotion.
4 In the ISO 9241-210 [10], the user experience is defined as “a person’s perceptions

and responses that result from the use or anticipated use of a product, system or
service.”

https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://github.com/okode/movies-app

122 M. Caulo et al.

Fig. 1. Architecture of an Ionic app.

This paper provides the following main contributions:

– An approach to migrate Ionic apps towards the Android platform and its
validation on open-source app developed with Ionic;

– A user study to assess if the migration from Ionic towards the Android plat-
form matters.

In Sect. 2, we present related work and background information. We present
the migration approach and the results of its application on a real case in Sect. 3.
The design of the study to assess affective reactions and user experience is shown
in Sect. 4. In this section, we discuss the obtained results. We conclude the paper
in Sect. 5.

2 Background and Related Work

In the following of this section, we highlight some differences (at a high gran-
ularity level) between the architectures of Ionic and Android apps (depicted in
Figs. 1 and 2, respectively). We conclude presenting the migration of the apps.

2.1 Ionic App Architecture

An Ionic app is based on web technologies, such as HTML5 and CSS, and
developed on the top of Angular, a component-based platform for building mobile
and desktop web applications [3]. An Ionic app is structured in pages (screens
of the mobile app). Each page of the application is represented by an Angular
component. The content of a component is described in an HTML file named
template, the style in CSS and the behavior in Typescript, the development
language adopted by Angular, that is derived by Javascript and enhanced with
classes and a stronger type definition. The template of a component together
with HTML tags contains instructions for modifying the app HTML, the app
status and the DOM data, and tags related to other components or data binding.

Does the Migration of Cross-Platform App Towards the Android 123

Fig. 2. Architecture of an Android app.

The modular architecture of an Angular application is based on NgModules:
each application contains a root module called AppModule, and is constituted
by components and service providers. It may export functionality which may be
used by other NgModules and imports functionality offered by other NgModules,
as shown in the right-hand part of Fig. 1. In Angular, service providers are used to
share logic or data between components and for calls to server-side web services.
Ionic accesses to the native device features through the Cordova plugins, written
in the native language on the native platform.

2.2 Android App Architecture

Android apps architecture follows a Model-View-Controller pattern closely tied
to the Android operating system architecture. It is good practice in Android app
development to put in UI-based classes (Activity or Fragment) only the logic for
handling the User Interface, by maintaining the separation of concerns [1]. As
shown in Fig. 2, the architecture is composed of the following elements [9]:

– The V iew layer is responsible for interacting with the user and is performed
by Activity and Fragment which only configure the view. It shows LiveData
taken from the ViewModel.

– The V iewModel observes the Lifecycle state of Activities and Fragments (the
view), by maintaining consistency during configuration changes and other
Android life-cycle events. It gets LiveData from the Repository and makes
them available to be observed by the view.

124 M. Caulo et al.

– The Repository is a class responsible for getting data from different sources,
such as databases and web services. It handles all this data, in terms of
observable LiveData, and let them be available to the ViewModel, which can
monitor changes through the design pattern observer.

– Room is a persistence library on the top of SQLite providing more robust
database access and returning queries with observable LiveData.

2.3 Migration

One of the most followed migration approaches is the one proposed by Brodie
and Stonebraker, named “chicken little” [5]. It consists of an iterative migration
of separable functionality. We also follow this approach, by identifying which
aspects of the migration process may be automatized.

Klima and Selingerer [15] consider that many Android apps exist and that
the use of cross-platform development tools is suitable for app development from
scratch. To reuse existing Android apps, they propose an automated approach to
convert them into Web applications by using the Google Web Toolkit (GWT),
a Java to Javascript converter. For the functionality not supported by HTML5,
Android wrappers are created. No evaluation is provided and only the descrip-
tion of the converter is discussed. Also, Stehle and Riebisch [20] approach the
problem of porting a system from a single to multi-platform development plat-
form by proposing a transformation method. Both the apps on the two different
architectures evolve, by establishing traceability across the two versions. They
present three case studies of porting applications with different operating systems
to evaluate the extent of code conversion and structural equivalence achieved by
the application. Unlike previous papers, we perform a user study aiming at eval-
uating the presence of possible differences in the affective reactions and user
experience when using the original and the migrated app.

3 The Migration Approach

The proposed approach is conceived to migrate an app from the Ionic-Angular-
Cordova to the Android native technology. The migration follows an incremental
process, conducted by performing small steps, as shown in Fig. 3 by the UML
activity diagram with object-flow depicting the process. To assess and describe
the migration approach, we used an open-source application developed by using
Ionic4-Angular-Cordova technologies. Among the ones available on GitHub we
selected Movies-app, an application aiming at providing information on the most
popular movies. We opted for this app because its source files were available for
the download and because it is not very complex (although not obvious) and its
problem domain can be considered familiar.

Some screens of Movies-app are shown in Fig. 4. The app starts from the
screen in Fig. 4(a). It is possible to select three types of filters on the movies (i.e.
Populares, Top and Proximamente) by tapping on the tab buttons in the lower
part of the screen. Once selected a movie, it is possible to examine its detailed

Does the Migration of Cross-Platform App Towards the Android 125

Fig. 3. The migration process.

description (Fig. 4(b)) and get details on one of its actors. In the following we
examine in detail the various migration steps.

Reverse Engineering. In this phase, we analyze the functionality of the appli-
cation by executing it and by examining the project structure. We identify the
Ionic pages involved in the accomplishment of a given functionality and group
together in modules that functionality logically related. Each Ionic page is com-
posed of content formatting (html), style (SCSS) and behavior (TypeScript).
It also imports other components, directives, and providers (or services) which
are listed in the pagName.module.ts file available in the pageName folder. The
output of this phase is the Source Code Inventory document, which lists the app
modules and, for each of them, the related pages and services.

Migration Planning. Starting from the Source Code Inventory document,
we individuate a migration order of the various functionality and services. The
following three steps are performed for each page.

126 M. Caulo et al.

Fig. 4. Two screens of the Ionic application Movies-app (Fig. 4(a) and 4(b)) and a
migrated interface in Android (Fig. 4(c)).

Pre-processing. This phase provides details on the types and attributes of
each component included in the page. Information on the Ionic component is
collected, such as tags (e. g., ion − list and ion − alert), its position on the
screen, and the number of sub-components composing it. As a result of this
phase, a list of components and the related sub-components of the considered
page is provided (Component Description in Fig. 3).

GUI-Rengineering. The Ionic page whose layout and style are described by
its .html and .scss files, respectively, has to be mapped into an Android activity,
whose GUI is strictly dependent on the platform. Android layout is described in
XML, the style by Android styles and themes [2]. A page can be composed of
Ionic predefined sub-components (e.g., a list - ionlist - may represent its elements
by a ioncard), and contain information, such as < ioncardheader > and < ion-
cardcontent >. In Android, ionlist has to be mapped into a RecyclerV iew
widget of the Activity XML file. This shows the generic element of the list by
viewholderobjects, which are managed by an adapter that creates view holders
when needed5. The mapping has to be performed for each Ionic GUI component.
HTML and SCSS files may be automatically mapped in XML by a translator.
We test the GUI appearance on various devices or on the emulator (UI testing)
each time a new widget is added.

5 https://developer.android.com/guide/topics/ui/layout/recyclerview.

https://developer.android.com/guide/topics/ui/layout/recyclerview

Does the Migration of Cross-Platform App Towards the Android 127

Single page and component Code Reengineering. The application logic of an
Ionic app is written in TypeScript. Many TypeScript constructs are very similar
to the corresponding in Java. The main translation rules are the following [18]:

– Variable declaration. In TypeScript, developers only need to manage num-
bers, booleans, and strings. These variables have to be associated in Java to
more specific types, such as double, float, char, boolean and long. Concerning
arrays, their declaration in TypeScript differs from Java only in the order in
which the array and its datatype have to be written.

– Conditional Statements. No difference.
– Loops. Typescript loops have the same syntax as Java ones. Except for the

let Typescript syntax.
– Classes. Both Typescript and Java support classes. The syntax has some little

differences.
– Data binding. One of the advantages of Angular is that it provides an easy

way to bind data to the views. As an example, in Ionic we declare the vari-
able name person in the Typescript page and use it freely in its HTML
with the following syntax: {{name person}}. This binding approach is called
interpolation in Angular. In Android, we bind the XML view with Java using
its id: name person = findV iewById(R.id.name person detail);

– Methods/functions. Java methods and TypeScript functions have the same
meaning, but the syntax is different. As an example, in Typescrypt the word
function should be inserted in the name of the method.

– Ionic native plugin calls replacement by Android API. The Android Manifest
of the migrated version has to include the appropriate permissions to allow
use of the native functionality. The plugin call in the TypeScript class has to
be replaced by a Java call to the same code in Android.

There exist several approaches to automatically convert Java in TypeScript, but
at the moment no one is available to do the vice-versa. A quick approach may
consist in using a transpiler to translate TypeScript in Javascript and then tran-
spile it to Java. The resulting code may be difficult to read. Otherwise, a code
converter from TypeScript to Java has to be implemented. Since TypeScript is
continuously evolving, this solution requires continuous updating of the transla-
tor. We conduct Unit testing by using JUnit for validating the behavior of each
class of the app. Test cases available in Ionic may be reused as a guide.

Data-Reengineering. The Data Reengineering step is made independently
from page migration. In both systems, the app may store key/value pairs in the
local storage, on the device file system and SQLite is adopted as local DBMS.

Provider-Reengineering. Ionic providers (i.e., services) are mapped into Java
classes in Android.

Incremental Integration and Testing. Each page is progressively integrated
with the pages and providers of the same module. Test cases can be derived from
the Ionic app and used to exercise the target system in order to identify eventual
behavior differences. Once the Ionic application has been migrated, it has to be
customized for the various type of Android devices, with different screen sizes
and resolutions.

128 M. Caulo et al.

Table 1. Descriptive statistics for the Ionic Movies-app and its Android version.

diordnAcinoI

Screen Number 4 Screen Number 4
Typescript Class Number 27 Java Class Number 65

Typescript LOC 665 Java LOC 31748
SCSS file number 6 XML file number 75

SCSS LOC 611 XML LOC 7930
HTML file number 6

HTML LOC 611

3.1 Resulting Metrics

Some descriptive metrics on the source code of the original Ionic app and the
migrated one are reported in Table 1. LOC data revealed that Ionic code is
lighter than Android one, this is due to the fact that many tasks are performed
by Angular libraries.

4 User Study

To conduct our user study, we followed the guideline by Wohlin et al. [24] and
Juristo and Moreno [22]. We report the planning of the user study following the
template suggested by Jedlitschka et al. [11].

4.1 Goals

We investigated the following main Research Question (RQ):

– Does the migration of cross-platform Apps developed by means of Ionic
towards the Android platform matter?

To answer this RQ, we had to compare from the end-user point of view the
original version of an app (i.e., Movies-app) with that migrated to Android. To
this end, we considered two main perspectives: affective reactions of users (i.e.,
pleasure, arousal, dominance, and liking) and user experience. In particular,
we speculate that the migration from Ionic to Android matters if we observe
a difference in favor of the Android version of a given app (Movies-app) with
respect to the affective reactions and the user experience. Therefore, we detailed
our main RQ as follows:

– RQ1. Is there an effect (either positive or negative) on pleasure, arousal,
dominance, and liking when using the (Android) migrated version of an app
developed by means of Ionic?

– RQ2. Is there an effect (positive or negative) on the user experience when
using the (Android) migrated version of an app developed by means of Ionic?

If the effect is positive for both the RQs, we can conclude that the migration
of a cross-platform app towards Android matters.

Does the Migration of Cross-Platform App Towards the Android 129

4.2 Experimental Units

Initially, 19 people accepted to take part in the experimental study; however, 18
actually participated. The participants in the study had a different background:
12 people had a Bachelor Degree (10 in Computer Science and two in Math-
ematics); four people had a Master’s Degree (three in Computer Engineering
and one in Mathematics); one had a Ph.D. in Computer Science and one had a
Scientific High School Diploma. The average age of participants is 27. Except for
one of them that owned a smartphone with iOS, the others owned an Android
smartphone. On average, participants install two apps a month. Most partici-
pants complain of sudden crashes and lags of apps, and irreversible blocks of the
smartphone, as main annoyances during the use. This information was collected
through a pre-questionnaire (i.e., a Google form) we asked the participants to
fill in a few days before the actual study.

4.3 Experimental Study Material and Tasks

The experimental objects consisted of the two versions of Movies-app: the orig-
inal one and the migrated one. Movies-app is a real-world App small enough to
allow a good control over the participants while completing the study.

To gather affective reactions, we relied on SAM [4]. It is a questionnaire that
consists of a nine-point rating scale for each of the following dimensions: pleasure,
arousal, and dominance. The pleasure scale ranges from affective states associ-
ated with unhappiness/sadness to happiness/joyfulness. The arousal scale varies
from calm/bored to stimulated/excited. Finally, the dominance scale ranges from
submissive to dominant, i.e., from “without control” to “with control”. As Koel-
stra et al. [16] did, we included the liking dimension on top of the SAM dimen-
sions ones. Also, liking consists of a nine-point rating scale and varies from dislike
to like.

As for user experience, we relied on the 26 statements by Laugwitz et al. [17].
These authors defined these statements to evaluate the quality of interactive
products (e.g., software). Each statement is made of two adjectives that describe
some opposite qualities of products. According to their objectives, these state-
ments are grouped into the following six categories: Attractiveness, Perspicuity,
Efficiency, Dependability, Stimulation, and Novelty. The scale for each adjec-
tive ranges from 1 to 7. The original set of statements from the User Experience
Questionnaire6 was in German, and then it was translated in 20 other languages,
Italian included. In our experimental study, we administered the questions in the
Italian version provided by the authors.

As for the experimental tasks, we asked the participants to freely use both
the versions of the app according to the design described in Sect. 4.5. Right after
the use of each version of the app, we asked the participants to fill in the SAM
questionnaire and to respond to the 26 UEQ statements.

6 https://www.ueq-online.org.

https://www.ueq-online.org

130 M. Caulo et al.

Table 2. Experiment design

Order/Group Period

Period 1 Period 2

G1 Android Ionic

G2 Ionic Android

4.4 Hypotheses and Variables

We considered two independent variables: Technology and Order. The first indi-
cates the technology used to implement the app. Therefore, Technology is a
categorical variable with two values: Android and Ionic. The Order variable indi-
cates the order in which a participant used the version of the app (also known as
sequence in the literature). Similarly to Technology, Order is categorical and can
assume the following two values: First and Second. For example, First indicates
that the Android version has been used first and then the Ionic one. We analyzed
Order to study learning effect on affective reactions and user experience.

To measure affective reactions, we used four dependent variables (one for
each dimension of SAM). To measure user experience, we used six dependent
variables, one for each of the six categories of UEQ (e.g., Attractiveness). To
obtain a single value for each category we summed the scores of each statement
in that category. For example, the Attractiveness category, which is composed of
six statements, can assume values in between 6 (if all the statements are scored
1) and 42 (if all the statements are scored 7). This practice to aggregate scores
from single statements is widespread (e.g., [23]). To answer the defined RQs,
we formulated and tested the following parameterized null hypothesis.

– H0X : There is no statistically significant difference between the Android and
Ionic Apps with respect to X.

Where X is one of the considered dependent variables. Because we could
not postulate an effect of Technology in a specific direction, either positive or
negative, our alternative hypotheses are two-tailed.

4.5 Experimental Study Design

The design of our experimental study (see Table 2) was a factorial crossover
[21]. In this design, the number of periods (i.e., Order) and treatments (i.e.,
Technology) is the same, and the treatment applies to participants once and
only once [21]. The participants were divided into two groups, G1 and G2, both
made of nine members. The assignment to the groups was randomly performed.
Each participant used both the versions of the app, but participants in G1 firstly
used the Android version and then the Ionic one, while vice-versa was applied
to G2. The use of this design mitigated the effect of the app on the results.

Does the Migration of Cross-Platform App Towards the Android 131

4.6 Procedure

The study procedure included the following sequential steps.

1. We invited Ph.D. and Master’s students in Computer Science and Mathe-
matics at the University of Basilicata and students enrolled in the course of
Advanced Software Engineering of the Master Degree in Computer Engineer-
ing from the same University. We also invited people working in the Software
Engineering Laboratory at the University of Basilicata. They had to fill in
a pre-questionnaire to gather demographic information. This design choice
allowed us to have participants with heterogeneous backgrounds.

2. We randomly split the participants into two groups: G1 and G2.
3. The study session took place under controlled conditions in a research labo-

ratory. We avoided interactions among participants by exploiting one-to-one
sessions, namely each participant accomplished the study tasks under the
supervision of one of the authors (the first one). This author did not interact
with the participants to accomplish the tasks and applied the same proce-
dure/steps for each participant.

4. Each participant performed the first task and then filled in the SAM ques-
tionnaire (first) and UEQ (later).

5. Each participant performed the second task and then filled in the SAM ques-
tionnaire (first) and UEQ (later).

6. Finally, we collected for each participant some free comments about the over-
all experience, through voice recordings.

All the participants used the same smartphone7 in both the tasks. No other apps
were open in the background at the beginning of each experimental session.

4.7 Analysis Procedure

To test null hypothesis, we used the ANOVA Type Statistic (ATS) [6]. It is used
(e.g., in medicine) to analyze data from rating scales in factorial designs [12]. We
built ATS models as: X ∼ Technology + Order + Technology : Order. Where
the dependent variable is X and Technology and Order are the manipulated
ones. Technology:Order indicates the interaction between Technology and Order.
This model allows determining if Technology, Order, and Technology:Order had
statistically significant effects on the given dependent variable X. To verify if an
effect is statistically significant, we fixed α to 0.05. That is, we admit 5% chance
of a Type-I-error occurring [24]. If a p-value is less than 0.05, we deemed the
effect is statistically significant.

7 Umidigi A3, a Dual-Sim smartphone equipped with Android 8.1.0, 5.5” screen
with 720 × 1440 resolution points, 3300mAh capacity battery, 2GB RAM, 16GB
of expandable memory, MediaTek MT6739 processor.

132 M. Caulo et al.

Table 3. Summary of the results for affective reactions.

Dep. Var Indep. Var.

Technology Order Technology:Order

Pleasure 0.3496 0.9165 0.0140

Arousal 0.4011 0.8178 0.1519

Dominance 0.1454 0.1454 0.7665

Liking 0.0494 0.6376 0.0494

Table 4. Summary of the results for user experience.

Dep. Var. Indep. Var.

Technology Order Technology:Order

Attractiveness 0.0968 0.3683 0.2523

Perspicuity 0.4153 0.0851 0.8293

Efficiency 0.0004 0.3061 0.6581

Dependability 0.0610 0.0874 0.6849

Stimulation 0.2489 0.5606 0.1437

Novelty 0.2539 0.7532 0.0109

4.8 Results

RQ1. Android Vs Ionic with Respect to Affective Reactions. In Table 3,
we summarize the results of the statistical inference with respect to RQ1. We can
observe a statistically significant difference with respect to Liking with a medium
effect size (0.383). We quantified effect size by means of the Cliff’s delta.8

The median values for G1 are 8 for Android and 7 for Ionic, while the median
values for G2 are 5 for Ionic and 6 for Android. Therefore, we can assert that
the participants liked more the migrated version of Movies-app than its original
version for Ionic. As for Liking, we also observed a significant interaction between
the two independent variables. This interaction is significant also for Pleasure.
This means that there is a combined positive effect of Technology and Order.

RQ2. Android Vs Ionic with Respect to User Experience. In Table 4,
we summarize the results of the statistical inference with respect to RQ2. We
can observe a statistical difference with respect to Efficiency with a large effect
size (0.67). The median values for G1 are 23 for Android and 17 for Ionic, while
the median values for G2 are 18 for Ionic and 23 for Android. Therefore, we can
assert that the participant found the Android version of the app more efficient

8 We used this kind of effect size because it is conceived to be used with ordinal
variables [13]. It is: negligible if |δ| < 0.147, small if 0.147 ≤ |δ| < 0.33, medium if
0.33 ≤ |δ| < 0.474, or large if |δ| ≥ 0.474 [19].

Does the Migration of Cross-Platform App Towards the Android 133

than its original version for Ionic. We also observed a significant interaction
between the two independent variables for Novelty.

4.9 Further Analysis

To analyze data from the interviews, we used TAT (Thematic Analysis Tem-
plate) [14]. For space constraint, we do not provide details on how we applied
TAT. We report identified themes and excerpts of the interviews carried out at
the end of the experimental study with the participants.

Reactivity. The apps implemented with Android is more reactive than the other
and this makes it more enjoyable.

We can justify this pattern in the data because in Ionic the use of the browser
may cause prolonged app loading and a deteriorated responsiveness and there
may be performance issues when several callbacks are sent to the native code.

Fluidity. The scroll is not fluid when sliding the results of a query. This happens
for the app implemented in Ionic.

This theme can be considered related to the previous one. The highlighted
issue should depend on the resources to execute the Ionic version of the app.

User Interface, Contents, and Functionality. The two versions of the app
look quite the same, have the same functionality, and show the same contents.

This result might be in relation to the absence of a statistically significant
difference in three out of four dependent variables for affective reactions, and in
five out of six dependent variables for user experience.

4.10 Discussion

On the basis of the obtained results, it seems that the main research question
can be positively answered: the migration of cross-platform Apps developed by
means of Ionic towards the Android platform matters. According to our study,
end-users’ opinions are in favor of the Android version of the app in terms of
Liking and Efficiency, with respect to Technology. This is evidenced by a medium
effect size for Liking and a large effect size for Efficiency. Variables related to
how the two apps appear (e.g. Attractiveness includes couples of adjectives such
as: Annoying/Enjoyable, Good/Bad, Unlikable/Pleasing, Unpleasant/Pleasant,
Attractive/Unattractive, Friendly/Unfriendly) seem to measure no preferences
for any of the versions. We conjecture that Liking might be influenced by the
performance of the apps perceived by end-users (measured by Efficiency) and
this is supported by free comments collected. This might also imply that the
migration approach was carried out successfully, because such an approach did
not negatively affect the perceived performance, indeed, the Android version has
been reputed more efficient over the same experimental conditions. The Order
seems not to affect the users’ opinions in any of the two cases (SAM and UEQ),
while Technology and Order seem to interact each other in cases of Pleasure
(SAM), Liking (SAM) and Novelty (UEQ), in favor of the Android version.

134 M. Caulo et al.

4.11 Threats to Validity

We discuss the threats that could have affected the validity of the results in the
user study. We ranked these threats from the most to the least sensible for the
goal of our study (i.e., Internal Validity).

Internal Validity. A possible threat is voluntary participation in the study
(selection threat). To deal with threat of diffusion or treatments imitations, the
first author of this paper monitored participants and asked back material to
prevent them from exchanging information.

Construct Validity. Each of the investigated constructs was quantified by
means of one assessment at the end of the task, which can affect the results (i.e.,
participants tend to assess the affective state closer to when we provided them
the SAM). Although the participants were not informed about our RQs, they
might guess them and change their behavior accordingly (threat of hypotheses
guessing). To mitigate evaluation apprehension threat, we reassured participants
that their data were treated anonymously and in aggregate form. It is worth
mentioning that we asked the participants to sign a consent form to use their
data. We also acknowledge the presence of a restricted generalizability across
constructs. That is while having an impact on the affective states, the approach
can affect other relevant constructs which we did not observe (cognitive load).

Conclusion Validity. Threat of random heterogeneity of participants could be
present since we involved participants with a different background. Reliability of
measures is another threat to conclusion validity. To deal with it, we used well
known and widely used measures.

External Validity. The experimental objects might affect the external validity
of the results (i.e., threat of the interaction of setting and treatment). They could
be not representative of real-world tasks. The selected mobile device on which the
user study is performed was a mid-range device, because not all the real-world
users own the most performing devices.

5 Conclusion and Final Remarks

We presented an approach to migrate Ionic apps towards Android. The validity
of this approach has been assessed on an open-source app (i.e., Movies-app).
We also studied if the application of our approach matters from the end-user
perspective. To this end, we conducted an empirical investigation to study both
user experience and affective reactions of possible users. The main goal was
to identify differences when using both the versions of Movies-app: the Ionic
and the Android ones. The results suggest that a better user experience was
achieved when dealing with the Movies-app version implemented in Android.
Similar results were achieved with respect to the affective reactions of users.
Summarizing, it seems that the migration from Ionic towards Android matters.

Does the Migration of Cross-Platform App Towards the Android 135

References

1. Android Developers: Guide to app architecture. https://developer.android.com/
jetpack/docs/guide

2. Android Styles and Themes. https://developer.android.com/guide/topics/ui/look-
and-feel/themes

3. Angular. https://angular.io
4. Bradley, M.M., Lang, P.J.: Measuring emotion. The self-assessment manikin and

the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)
5. Brodie, M.L., Stonebraker, M.: Legacy Information Systems Migration: Gate-

ways, Interfaces, and the Incremental Approach. Morgan Kaufmann, San Francisco
(1995)

6. Brunner, E., Dette, H., Munk, A.: Box-type approximations in non parametric
factorial designs. J. Am. Stat. Assoc. 92, 1494–1502 (1997)

7. De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Developing legacy system
migration methods and tools for technology transfer Software. Pract. Exp. 38(13),
1333–1364 (2008)

8. Francese, R., Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Mobile app devel-
opment and management: results from a qualitative investigation. In: Proceedings
of the 4th IEEE/ACM International Conference on Mobile Software Engineering
and Systems, pp. 133–143. IEEE Press (2017)

9. Hossain, T.: Android Application Architecture. https://medium.com/oceanize-
geeks/android-application-architecture-189b4721c7c5

10. International Organization for Standardization: Ergonomics of human system
interaction - Part 210: Human-centered design for interactive systems (formerly
known as 13407). ISO FDIS 9241–210 (2009)

11. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Guide to Advanced Empirical Software
Engineering. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-
5. Ch. Reporting Experiments in Software Engineering

12. Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of
likert-type rating scales. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2391–2394. ACM, New York (2010)

13. Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Erlbaum, New York
(1996)

14. King, N.: Using templates in the thematic analysis of text. In: Cassell, C., Symon,
G. (eds.) Essential Guide to Qualitative Methods in Organizational Research, pp.
256–270. Sage, Thousand Oaks (2004)

15. Klima, P., Selinger, S.: Towards platform independence of mobile applications.
In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013.
LNCS, vol. 8112, pp. 442–449. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-53862-9 56

16. Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

17. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9 6

18. McKenzie, C.: What Java developers need to know about TypeScript
syntax. https://www.theserverside.com/tutorial/What-Java-developers-need-to-
know-about-TypeScript-syntax

https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/guide/topics/ui/look-and-feel/themes
https://developer.android.com/guide/topics/ui/look-and-feel/themes
https://angular.io
https://medium.com/oceanize-geeks/android-application-architecture-189b4721c7c5
https://medium.com/oceanize-geeks/android-application-architecture-189b4721c7c5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-3-642-53862-9_56
https://doi.org/10.1007/978-3-642-53862-9_56
https://doi.org/10.1007/978-3-540-89350-9_6
https://www.theserverside.com/tutorial/What-Java-developers-need-to-know-about-TypeScript-syntax
https://www.theserverside.com/tutorial/What-Java-developers-need-to-know-about-TypeScript-syntax

136 M. Caulo et al.

19. Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Appropriate statistics for
ordinal level data: should we really be using t-test and Cohens d for evaluat-
ing group differences on the NSSE and other surveys? In: Annual Meeting of the
Florida Association of Institutional Research, pp. 1–3 (2006)

20. Stehle, T., Riebisch, M.: A porting method for coordinated multiplatform evolu-
tion. J. Softw. Evol. Process 31(2), e2116 (2019)

21. Vegas, S., Apa, C., Juristo, N.: Crossover designs in software engineering experi-
ments: benefits and perils. IEEE Trans. Softw. Eng. 42(2), 120–135 (2016)

22. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Dordrecht (2001)

23. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures ofpositive and negative affect: the panas scales. J. Pers. Soc. Psychol. 54(6),
1063–1070 (1988)

24. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer Publishing Company, Incorporated,
Heidelberg (2012)

Software Knowledge Representation
to Understand Software Systems

Victoria Torres(&) , Miriam Gil , and Vicente Pelechano

Universitat Politècnica de València, València 46022, Spain
{vtorres,mgil,pele}@pros.upv.es

Abstract. A software development process involves numerous persons,
including customers, domain experts, software engineers, managers, evaluators
and certifiers. Together, they produce some software that satisfies its require-
ments and its quality criteria at a certain point in time. This software contains
faults and flaws of different levels of severity and at different phases of its
production (specification, design, etc.) so maintenance is needed in order to
correct it. Perfective and adaptive maintenance is also needed to cope with
changes in the environment or with new requirements, e.g. new functionalities.
In this work, we introduce the Persistent Knowledge Monitor (PKM), which is
being developed within the DECODER H2020 project for handling (i.e. storing,
retrieving, merging and checking for consistency) all kinds of knowledge and
information related to a software project. The PKM will be part of a platform
capable of taking advantage of all the artefacts available in a software ecosys-
tem, not only the source code, but also its version control system, abstract
specifications, informal documents or reports, etc. for representing the software
knowledge and improving the workflow of software developers.

Keywords: Persistent Knowledge Monitor � Software engineering �
Traceability

1 Introduction

Software maintenance and improvement are very costly and consuming tasks espe-
cially when there is an intense use of legacy code or third-party libraries, which usually
lack of documentation or when available, it is out-of-date from the current version of
the associated piece of software. However, properly performing these maintenance and
improvement tasks requires a deep understanding not just of the source code but also of
the critical information bound to the code and the process that led to its production.

A key aspect to achieve such deep understanding is to discover knowledge by
analyzing all the available artefacts of a given software project. Then, based on the

This work has been developed with the financial support of the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 824231 and the Spanish State
Research Agency under the project TIN2017-84094-R and co-financed with ERDF.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 137–144, 2019.
https://doi.org/10.1007/978-3-030-35333-9_10

http://orcid.org/0000-0002-2039-2174
http://orcid.org/0000-0002-2987-1825
http://orcid.org/0000-0003-1090-230X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_10

obtained knowledge, stakeholders can be provided with different views of the system at
different levels of abstraction that may be more appropriate to achieve the under-
standing of the underlying system. However, prior to the creation of such system views,
knowledge has to be properly represented according to a well-defined schema or meta-
model. Such meta-model must represent, in the most accurate way, all the elements that
conform to a software system and all the existing relationships between them.
Regarding these relationships, it is important to have a clear understanding at the most
fine-grain level, where specific sections or portions of a given artefact (e.g., class x
implementation in a java source file) may relate to a different one (e.g., class x defi-
nition in a uml class diagram).

In the literature we can find different meta-models targeted to represent the
knowledge that can be extracted from software artefacts. These include the Knowledge
Discovery Meta-model (KDM) [1] and Abstract Syntax Tree Metamodeling (ASTM)
[2] (specifications developed by the OMG ADM task force [3]), FAMIX [4], the
Pattern and Abstract-level Description Language (PADL) [5], or the OASIS Static
Analysis Results Interchange Format (SARIF) [6]. All these meta-models put their
focus on artefacts such as source code, models, and specifications to extract knowledge
from the software project. However, in addition to these artefacts, there are other less
formal sources that are not usually considered and that can be processed and analyzed
to get some extra knowledge about the software project being maintained or improved.
These include forum discussions, issue tracker items, reports, etc.

Therefore, taking as reference these meta-models, and considering these less formal
sources, in this work we present an overview of the meta-model of the Persistent
Knowledge Monitor (PKM), a central infrastructure to store, access, and trace all the
persistent data, information and knowledge related to a given software or ecosystem.
This PKM is being developed within the DECODER H2020 project1, whose major
objective is to provide powerful tools for developers to get thorough understanding of a
given piece of software.

The remainder of the paper is organized as follows. Section 2 identifies the type of
sources considered in DECODER to populate the PKM. Section 3 provides an over-
view over the existing literature found regarding meta-models representing software
artefacts. Then, Sect. 4 provides an overview over the PKM meta-model, describing its
main components and the relationships among them. Finally, Sect. 5 provides some
conclusions and outlines future work.

2 Knowledge Sources to Populate the PKM

One of the major functionalities of the PKM is storing the knowledge generated by the
DECODER toolset, toolset targeted to process/analyze the different software project
artefacts. Besides this storage functionality, the PKM should also provide the capa-
bilities to allow the DECODER toolset to query, update, and reason over the stored
knowledge. Specifically, the information that will be stored in the PKM includes:

1 https://www.decoder-project.eu/.

138 V. Torres et al.

https://www.decoder-project.eu/

• Some form of the abstract syntax tree (and concrete trees) related to the source code
and the libraries used.

• Some derived or normalized form of the code (after pre-processing, GIMPLE or
Generic/Tree internal representations provided by GCC, or CIL representation for
Frama-C [7]).

• Some generated or manually written annotations (e.g. in ACSL/ACSL++ for C or
C++ code, in JML for Java code).

• Natural language documentation or comments, related to some particular chunk of
source code or of a global nature.

• Historical information, extracted from version control systems and bugzillas.
• Information produced by static source code analysis, by optimization passes of

compilers, by natural language processing and machine learning techniques.
• Any other relevant information that contributes to enrich the system representation.

Examples of processing/analyzing activities performed by the DECODER toolset
are extracting features from source code, annotating code comments and issues with
entities, predicates, arguments, etc. Therefore, as Fig. 1 shows, the PKM is expected to
interact with several tools, some targeted to process different artefacts to generate
knowledge and populate the PKM and others to consume such knowledge and assist
stakeholders in their respective tasks within the process lifecycle.

Fig. 1. Interaction between the PKM and tools that generate and/or consume knowledge

Software Knowledge Representation to Understand Software Systems 139

3 Meta-Models for Software Knowledge Representation

The knowledge extraction process refers to one of the major tasks of the reverse
engineering, which was defined by Chikofsky and Cross II in [10] as “the process of
analyzing a subject system to identify the system’s components and their interrela-
tionships and create representations of the system in another form or at a higher level of
abstraction”. Big efforts have been made in the area of Model-Driven software mod-
ernization where several works have been proposed in order to create a common
repository structure for representing information about existing software assets. The
OMG’s Architecture Driven Modernization (ADM) initiative [3] defines a set of
standard meta-models which represent the information normally managed in mod-
ernization tasks. Specifically, the Knowledge-Discovery Metamodel (KDM) [1] pro-
vides the ability to document existing systems, discover reusable components in
existing software, support transformations to other languages and MDA, or enable
other potential transformations. KDM is partitioned into several packages, each one
representing different kinds of software artifacts as entities (e.g., code entities, data
entities, UI entities, environment entities). An implementation of this meta-model is
provided by MoDisco [11], an Eclipse-based framework that was developed to provide
support to the software modernization process. In addition, to better support source
code analysis activities, ADM also defined the Abstract Syntax Tree Metamodel
(ASTM) metamodel [2], to represent the Abstract Syntax Tree (AST) of any pro-
gramming language. This model defines a Generic ASTM (GASTM) with definitions
that apply to ASTs of most programing languages, and Specialized ASTM (SASTM)
with features specific to a single programming language. More recently, other meta-
models have been defined to support structured metrics (SSM) [8], or software patterns
(SPMS) [9]. Other meta-models focused specifically on the object-oriented languages
are FAMIX [4], which also allows representing procedural languages, and the Pattern
and Abstract-level Description Language (PADL) [5], which also focus on patterns,
allowing the description of motifs. Mainly conceived to detect software defects and
vulnerabilities, the OASIS Static Analysis Results Interchange Format (SARIF) [6]
defines a standard specification to capture the range of data produced by commonly
used static analysis tools.

In DECODER, for the definition of the PKM meta-model we will make
use/reference all those existing meta-models when possible. For example, GASTM and
FAMIX will be used to define the part of the PKM meta-model where the AST is kept.
However, in the PKM we consider other less formal sources of knowledge that are
poorly structured, incomplete, and sometimes incorrect. After a process of knowledge
extraction, this information will be stored in the PKM.

4 The PKM Meta-Model

The PKM provides the representation of a general and specific knowledge about the
artefacts of a software project. In order to manage the complexity of the PKM, it is
defined by a collection of meta-models according to the categories of the artefacts and a

140 V. Torres et al.

core package that defines the general knowledge of them. The defined packages are the
following (see Fig. 2):

• Core package: it defines the core part of the PKM representing the concept of
artefact and its related concepts such as the project use case in which the artefact
belongs to, the tools that can manage the artefacts (specification and management
tools), the development phases in which artefacts are used during the development
process, and the stakeholders that are involved.

• Abstract specification package: it defines the meta-model elements of the formal
specification describing, by means of pre, post and invariants, the behavior of an
associated source code. This abstract specification can be automatically generated or
manually written by means of annotations (e.g., in ACSL, ACSL++, JML, etc.).

• Source code package: it defines the part of the meta-model that refers to the arte-
facts that list human-readable instructions written by a programmer with the
objective of being executed in a computing device. A source code artefact belongs
to one programming language, it relates to a set of referenced libraries and with
history data extracted from version control systems and bugzillas.

• Report package: it defines the part of the meta-model that represents the artefacts
containing a structured content in natural language, related to some particular chunk
of source code or of a global nature.

• Model package: it defines the part of the meta-model that represents abstract rep-
resentations of a specific aspect from a given domain (e.g., a uml class model
describes the structure – concepts, properties of the concepts, relationships between
concepts- of a specific domain).

• Configuration package: it defines the meta-model that represents artefacts
describing, in plain text, the parameters that define or execute a specific software
program.

• Structured data package: it defines the meta-model that represents artefacts that
store data structures and that are usually used as interchange format.

• Image package: it defines the meta-model that describes binary representation of
visual information such as drawings, pictures, graphs, etc.

PKM Core package

Abstract
specificat ion

package

Source code
package

Report package Model package
Configurat ion

package
Structured data

package Image package

Extracted
information

package

Fig. 2. Organization of the PKM Packages

Software Knowledge Representation to Understand Software Systems 141

• Extracted information package: it defines the meta-model that represents infor-
mation produced by static source code analysis, by optimization passes of com-
pilers, by natural language processing or by machine learning techniques.

4.1 The PKM Core Package Overview

The PKM Core package, as shown in Fig. 3, is built around the artefact concept, which
is specialized into the different types of artefacts considered in DECODER use cases,
which are abstract specifications, source code, reports, models, configuration artefacts,
structured data, and images.

Artefacts are digital products or documents created during the software develop-
ment process. It can be presented in different formats (plain text, key-value structures,
markup documents), and levels of abstraction (high, medium, and low). Moreover,
artefacts can be related to other artefacts with the same (or similar) semantic intention
(e.g., a java file may be related to a uml diagram describing a class from a given
domain).

An artefact belongs to a project use case, which defines a set of artefacts of
different nature (source code, documents written in natural language, configuration
files, etc.) organized (or not) according to a logical structure (e.g., directories) and
provided (or not) as a compressed file. These artefacts are consumed or created during
the project development and maintenance process.

Fig. 3. PKM Core Metamodel Package

142 V. Torres et al.

Artefacts are managed by tools that are used by any stakeholder to analyze, trans-
form, refine, etc. them and produce new or modified artefacts. Tools can be categorized
into specification tools, which are tools that allow to create, modify, and refine artefacts,
and management tools, which are tools that assist/guide the stakeholder in the task of
analyzing, managing, evolving, and configuring a specific tool as well as tools that act as
back-ends to the previous tools categories to generate various kinds of reports.

Artefacts are related to development phases in which they are used during the
development process, i.e., requirements, design, implementation, testing, deployment,
maintenance. Finally, in each development phase, different stakeholders take part to
develop a specific task within the project. These stakeholders can be senior engineers,
developers, reviewers, maintainers, or assessors.

5 Conclusions and Future Work

As we have pointed out, the PKM has been built within the DECODER project with
the goal of store, access, and trace all the persistent data, information and knowledge
related to a given software project or ecosystem. This knowledge will be useful for the
different actors involved during the life span of a software, especially new persons, to
keep project information and knowledge in the most accessible and unambiguous way.
This living repository can be queried and enriched by the actors involved in the project,
in order to maintain consistency and keep the most updated and precise information
about it.

This work constitutes a first step in the formalization process of the PKM meta-
model, which will be in charge of gathering all the data, information and knowledge
that can be extracted from a given software project. As future work such meta-model
will be implemented as a database having in mind that the potential and diverse
processing tools that may interact with the PKM demands for a dynamic and flexible

Fig. 4. An overview of the development life cycle

Software Knowledge Representation to Understand Software Systems 143

data schema that could be modified according to the new interaction needs. Such
flexibility would allow extending the schema with new types based on the processing
results produced by new interacting tools. For this reason, we are planning to use JSON
as the interchange mechanism between tools and the PKM. Once complete and
implemented, the PKM will be validated empirically with four different use cases
proposed in the DECODER H2020 project. These refer to OS drivers provided by
SYSGO (https://www.sysgo.com/), the openCV library commonly used by Tree
Technology (http://www.treetk.com/es/index.html) in its developments, general pur-
pose Java code hosted in the OW2 (https://www.ow2.org) open-source software
community, and My-Thai-Star showcase application, developed by CAPGEMINI
(https://www.capgemini.com/es-es/service/agile-delivery-center-valencia/).

In addition, the knowledge gathered in the PKM should be also used along the
different stages of the software lifecycle to improve and assist stakeholders in their
respective tasks. Figure 4 provides an overview over the different roles involved in
DECODER as well as their interaction with the PKM. First, developers will feed the
PKM with the bulk code and documentation of the use cases where they are involved.
Second, reviewers will write correct properties in ACSL, ACSL++ (the extension of
ACSL for C++) or JML with invariants and behaviors implicitly connected to a model
based on abstract state machines. Finally, maintainers will do the work of reviewing
and taking decisions on how to resolve inconsistencies. An online traceability matrix
will be used to control the consistency of these elements and to help deciding when the
software becomes ready for manufacturing and for being reused.

References

1. Object Management Group, Inc.: Knowledge discovery meta- model (KDM) (2012). http://
www.omg.org/technology/kdm/index.htm

2. Architecture-Driven Modernization: Abstract Syntax Tree Metamodel (ASTM), OMG
document formal/2011-01-05, OMG, January 2011. http://www.omg.org/spec/ASTM

3. ADM initiative website. http://adm.omg.org. Accessed 5 July 2019
4. Tichelaar, S., Ducasse, S., Demeyer, S.: FAMIX and XMI. In: Proceedings Seventh

Working Conference on Reverse Engineering, Brisbane, Queensland, Australia, pp. 296–298
(2000). https://doi.org/10.1109/wcre.2000.891485

5. Guéhéneuc, Y.G.: PTIDEJ: promoting patterns with patterns. In: 1st ECOOP Workshop on
Building Systems using Patterns, pp. 1–9 (2005)

6. Static Analysis Results Interchange Format (SARIF). https://www.oasis-open.org/
committees/sarif. Accessed 9 July 2019

7. Frama-C software analyzer website. https://frama-c.com/. Accessed 9 July 2019
8. Structured Metrics Meta-model (SMM): OMG document formal/2016- 04-04, OMG, April

2016. http://www.omg.org/spec/SMM/
9. Structured Patterns Metamodel Standard (SPMS): OMG document ptc/16-03-13, OMG,

March 2016. http://wwwomg.org/spec/SPMS/1.1
10. Chikofsky, E.J., James, H.: Cross II: reverse engineering and design recovery: a taxonomy.

IEEE Softw. 7(1), 13–17 (1990)
11. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse

engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

144 V. Torres et al.

https://www.sysgo.com/
http://www.treetk.com/es/index.html
https://www.ow2.org
https://www.capgemini.com/es-es/service/agile-delivery-center-valencia/
http://www.omg.org/technology/kdm/index.htm
http://www.omg.org/technology/kdm/index.htm
http://www.omg.org/spec/ASTM
http://adm.omg.org
http://dx.doi.org/10.1109/wcre.2000.891485
https://www.oasis-open.org/committees/sarif
https://www.oasis-open.org/committees/sarif
https://frama-c.com/
http://www.omg.org/spec/SMM/
http://wwwomg.org/spec/SPMS/1.1

When NFR Templates Pay Back?
A Study on Evolution of Catalog

of NFR Templates

Sylwia Kopczyńska(B), Jerzy Nawrocki, and Miros�law Ochodek

Faculty of Computing, Poznan University of Technology, Poznań, Poland
{sylwia.kopczynska,jerzy.nawrocki,miroslaw.ochodek}@cs.put.poznan.pl

Abstract. [Context] Failures in management of non-functional require-
ments (NFRs) (e.g., incomplete or ambiguous NFRs) are frequently iden-
tified as one of the root causes of software failures. Recent studies confirm
that using a catalog of NFR templates for requirements elicitation pos-
itively impacts the quality of requirements. However, practitioners are
afraid of templates as the return on investment in this technique is still
unknown.

[Aim] Our aim was to investigate how the usefulness of catalog of
NFR templates and its maintenance costs change over time.

[Method] Using 41 industrial projects with 2,231 NFRs, we simulated
10,000 different random evolutions of a catalog of NFR templates. It
allowed us to examine the distribution of catalog value, maintenance
effort, catalog utilization over a sequence of projects (a counterpart of
elapsing time).

[Results] From the performed analysis it follows that after considering
about 40 projects we can expect catalog value of 75% or more and main-
tenance effort of 10% or less. Then one could expect about 400 templates
in the catalog, but only about 10% of them would be used by a single
project (on average).

[Conclusions] Usefulness and maintenance costs of catalog of NFR
templates depend on the number of projects used to develop it. A cata-
log of high usefulness and low maintenance effort need to be developed
from about 40 projects. Since high variability of studied projects, this
number in practice might be lower. From the perspective of a large or
medium software company it seems not a big problem.

Keywords: Non-functional requirements · Templates · Catalog ·
Empirical study · Simulation

1 Introduction

Non-functional requirements (NFRs) are those that state conditions under which
the functionality of a software product is useful (e.g., they describe how fast a

This work was partially supported by the Young Staff grant 09/91/SBAD/0683.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 145–160, 2019.
https://doi.org/10.1007/978-3-030-35333-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_11

146 S. Kopczyńska et al.

system shall work, the security rules, the environments in which the system is
expected to work).

NFRs are important not only in traditional approaches to manage software
projects, but also in agile ones, which has been confirmed in the recent studies,
e.g., by Kopczynska et al. [16] or by Alsaqaf et al. [3]. However, NFRs are often
neglected, especially those that are difficult to write or ostensibly obvious. It
is an important risk factor, as in many cases a project failure can be traced,
amongst others, to improper management of them (see e.g., [5,6,18,20]).

Several recent studies provide evidence that using a catalog of NFR templates
for requirements elicitation and specification results in requirements of higher
quality (e.g., [10,14,15,27]). Moreover, many experts recommend preserving the
best practices concerning requirements in the form of templates. According to
their experience, using templates improves consistency and testability of require-
ments, reduces ambiguity [4],[19], [30], makes elicitation and specification eas-
ier [30], and saves the effort of specification [22].

Using NFR templates seems simple. They are expressed in natural language
as statements with some gaps (parameters) to be filled in and optional parts to
select while formulating a requirement. During NFRs specification one can select
templates from a catalog and provide the values of the parameters they define,
which is called template-supported elicitation.

However, there exists a problem with applying templates in software projects.
We can hear the opinion of practitioners who are afraid of using templates (see
e.g., the study by Palomares et al. [21]). They perceive them as a complex
method and do not know what would be the return on investment. Thus, more
evidence is needed about benefits, costs, and effectiveness of the investment in
NFR templates.

We focused in the paper on how the characteristics of catalog change over
time. Since a catalog of NFR templates evolves, i.e., it is subject to change
resulting from the lessons learned from the past projects, it is practical to assume
that after each project some templates that have been found missing are added,
and others are modified. Dynamics of catalog characteristics is the process of
change of those characteristics over time, and we are interested in the following
research questions concerning the subject:

– RQ1. What is the dynamics of value of catalog of NFR templates for a
project (i.e., the percentage of NFRs it can help to derive)?
NOTE: Initially the catalog is small and will cover only a small fraction of NFRs,

so its value for an analyst is low. It is interesting to know how many projects are

needed to make it cover a reasonable fraction of the NFRs.

– RQ2. What is the dynamics of maintenance effort the catalog of NFR tem-
plates needs after a single project (i.e., the percentage of NFR templates that
require to be added or modified to incorporate the lessons learned)?
NOTE: The actual maintenance effort strongly depends on a person performing

the task. To get free of this dependency, the maintenance effort is expressed as the

percentage of templates that must be added or modified.

When NFR Templates Pay Back? A Study on Evolution 147

– RQ3. What is the dynamics of utilization of catalog of NFR templates (i.e.,
the percentage of NFR templates that get used in a single project to derive
NFRs)?
NOTE: The lower the utilization of the catalog the lower the speed of finding the

templates one really needs.

To answer the stated research questions, we decided to conduct an empirical
study. Using over 2,000 NFRs from 41 different industrial projects, we simulated
10,000 different random evolutions of a catalog of NFR templates. It allowed us to
examine the distribution of catalog value, maintenance effort, catalog utilization
over a sequence of projects (a counterpart of elapsing time). For the design of our
study see Sect. 4, and in Sect. 3 some definitions and terminology are provided.
The threats are discussed in Sect. 6, the results are reported in Sect. 5, while the
findings are summarized in Sect. 7.

2 Related Work

The works on NFR templates concern:

� Proposals of templates. The idea of using templates was proposed a long
time ago, e.g., in the famous book on Requirements Engineering from 1997 by
Somerville and Sawyer [29]. Since then, there have been proposed several types
of templates: (1) syntax templates that preserve a correct and common syntax
of a statement to express a requirement, e.g., Rupp’s [23], EARS [19]; (2) state-
ment templates that preserve small statements (parts) that can be combined
to build the full statement expressing a requirement, e.g., Denger et al. [8]; (3)
syntax and semantic templates that preserve a correct and common syntax of a
statement that can express a requirement and contain knowledge how to express
specific requirements, e.g., statements/words used to correctly state the maxi-
mum system response time, e.g., Hull et al. [12], Kopczynska et al. [14], and they
are also parts of the solutions proposed in the PABRE approach [26] and in the
approach by Withall [30]; (4) structure templates that preserve the attributes
that need to get assigned values to specify a requirement, frequently in the form
of a table, e.g., Volere Snow Card [28], use case template [2], Planguage [11].

� Reports on experience and research studies. From experience of some authors
we can learn that using templates improves consistency and testability of require-
ments, reduces ambiguity [4,19,30], makes elicitation and specification eas-
ier [29,30], and saves the effort of specification [22].

Worth attention are the empirical studies that deliver more specific obser-
vations. For example, Riaz et al. [27] conducted a series of experiments focused
on security requirements templates. They showed statistically significant results
regarding the increase of completeness, and better quality of NFRs elicited with
the use of the template-supported approach. Kopczynska et al. [15] conducted
an experiment in which they investigated templates concerning all ISO 25010
[13] characteristics. They also provided statistically significant results that using
catalog of NFR templates improves quality and completeness of requirements,

148 S. Kopczyńska et al.

but do not speed up the elicitation process. Then, Doerr et al. [9] investigated
the IESE NFR method that utilizes templates in a structured elicitation app-
roach, which resulted in the conclusion on the improvement of completeness
of NFRs. Eckart et al. [10] showed that well-grounded templates can improve
the completeness of performance requirements meant as the completeness of all
necessary information in a single requirement.
� Maintenance of catalog of NFR templates. According to our up-to-date knowl-
edge, there is only one study that tackled the problems concerning the mainte-
nance of a catalog of NFR templates. Kopczynska et al. [15] carried out an early
investigation of one evolution of their catalog. Although this study provides some
idea of how characteristics of catalog of NFR templates might change over time,
the results might be biased by the order in which the projects were analyzed.
In this paper, we fill the gap by investigating how usefulness and maintenance
effort change over time in multiple different random evolutions.

3 Terminology

In this section the definitions used further on are stated. Although they were
given in the paper by Kopczynska et al [15], we provide them here so the paper
is self-contained.

We consider an NFR template as a regular expression over literals and
parameters that allows to derive a sentence which constitutes an NFR for some
software product.

The process of direct deriviation (deriving for short) an NFR from a tem-
plate comprises the following steps: (1) Derive a sequence of literals and param-
eters from the regular expression, e.g., decide which literal best suits the current
context, decide on the multiplicity of a parameter, adjust sentence structure;
(2) Replace all the parameters with their actual values, e.g., provide concrete
numbers and names. Such definition of an NFR template allows the flexibility
of choosing the notation to document templates, e.g., VOLERE Snow Card [28],
QUPER’s approach [25], the NoRT notation [14]. The latter, which aims at sup-
porting the NFRs documentation in the form of natural language statements, is
used in the paper. An example of an NFR template would be:

(Initial | After reset | All | <type >) passwords shall be of length from <min. num-
ber> to <max. number> characters.

It consists of core which is stable during derivation (not taking into account
inflexion), parameters to be replaced with exact values (e.g., <min number>);
alternatives (options) to choose from (e.g., (Initial | After reset...).

Then, by a catalog of NFR templates (‘catalog’ for short), further denoted
as K, we understand a finite set of NFR templates. Its size (|K|) is defined as
the number of templates it contains. In the paper the considered catalogs are
organized into categories using the ISO 25010 standard [13].

While an organization executes a sequence of software development projects
P1, P2, . . ., its catalog evolves from K0 to K1, K2, More precisely, lessons

When NFR Templates Pay Back? A Study on Evolution 149

learned from each consecutive project Pi allow the owner to improve the tem-
plates transforming catalog from version Ki−1 to Ki. For the sake of simplic-
ity we assumed that each project is viewed as a finite set of its NFRs, i.e.,
Pi = {r1i , r

2
i , · · · rni

i }. Then, the process of considering these requirements, one
by one, and modifying or adding templates to the catalog whenever necessary
can be viewed as catalog maintenance. During the process we might meet the
following situations.

• Perfect match. If requirement rji (or its equivalent) can be directly derived
from template t contained in catalog Ki−1, no maintenance action is required.
One can say that there is a perfect match between requirement rji and tem-
plate t. Every such template will be included into new catalog Ki.

• Template extension and indirect derivation. It can happen that no template
in old catalog Ki−1 perfectly matches requirement rji . Then template needs
extension e.g., add some parameters and modify the static text or the options
of template t′ in such a way that there is a perfect match between rji and new
template t, and new template t is backward compatible with the old one. We
say then that requirement rji can be indirectly derived from template t.

• Missing template. The third situation is when requirement rji (or its equiva-
lent) cannot be directly or indirectly derived from any of the templates con-
tained in old catalog Ki−1. Then, the only solution is to add new template
to Ki.

To characterize the catalog maintenance, it seems useful to split the templates
of new catalog Ki into the following subsets:

– Perfecti: If template t belongs to Perfecti then t belongs also to old catalog
Ki−1 and in Pi there is at least one requirement rji such that there is perfect
match between rji and t. In this case the maintenance effort is negligible.

– Modifiedi: Each template t of the set is an extension of a template from old
catalog Ki−1, i.e., there is requirement r of project Pi that perfectly matches
t and there is no template t′ in old catalog Ki−1 such that r perfectly matches
t′.

– Addedi: If template t belongs to Addedi then there is requirement r in Pi such
that r perfectly matches t and there is no template t′ in old catalog Ki−1

that r could be directly or indirectly derived from t′.
– Sleepingi: It contains all the templates from old catalog Ki−1 which are not

used to directly or indirectly derive any requirement of project Pi. Those
templates are unnecessary for the current project, but they can prove use-
ful in the future. The maintenance effort associated with these templates is
negligible.

4 Method

To answer the research questions stated in Sect. 1 concerning the dynamics of
three characteristics of catalog of NFR templates, we investigated random cata-
log evolutions. In each evolution we simulated as the catalog is maintained based

150 S. Kopczyńska et al.

on the lessons learned from a random sequence (permutation) of the industrial
projects described in Sect. 4.1. (We considered a sequence of projects as a coun-
terpart of elapsing time.) The catalog was maintained according to the procedure
presented in Sect. 4.2. In our study, we analyzed 10,000 catalog evolutions as the
order of project might impact the dynamics of the characteristics of catalog of
NFR templates.

4.1 Projects

We collected and analyzed NFRs from 41 sources (see Table 1 for a brief descrip-
tion of the projects). 40 of them were software development projects—26 of which
were industry projects whose stakeholders shared the data with the authors
(denoted as Ind), and 15 came from the projects shared in the Open Science
teraPROMISE repository [7] (denoted as Pro). Additionally, we included one
literature position claimed to be based on industry projects [28]. The major-
ity of the projects aimed at developing web applications (Web), some of them
concerned desktop applications (Desktop), and one project – an integrated infor-
mation system (ZSI) with many web applications and web services. Altogether,
we collected 2,231 NFRs. They concerned the development of business applica-
tions (B), i.e., software supporting some business processes in different domains.

For each project, we analyzed all the statements, but some which were not
NFRs such as definitions of some terms, schedules of transitions, functional
requirements, etc. (see the full list in [1]) were excluded.

4.2 Catalog Evolutions

The initial version of the catalog (K0) was created based on the results of our pre-
vious study [14] and consisted of 83 templates. Together with the requirements,
they were uploaded into a web application that allowed their analysis according
to the following procedure. For each project Pi and for each requirement r ∈ Pi:

1. The contents of catalog Ki−1 was analyzed to find template t that could be
used to derive r (perfect match) and if such t was found, it was included into
the next version of the catalog, Ki.

2. If such a template was not found, Ki−1 was searched for a template t that
could be modified (extended) to new version t′ and t′ could be used to directly
derive r—then t′ was included into Ki.

3. Otherwise, a new template to catalog Ki was added.

All the sleeping templates of Ki−1 (i.e., not used, directly or indirectly, by
any r from Pi) were included in Ki. This procedure was first executed manually,
which we called initial evolution (see [15] for details). It allowed us to represent
each NFR template as a set of parts (core, parameters, alternatives) and each
NFR as composed of those parts. As a result, we could execute multiple evolu-
tions using the software application (see [1] for details) to minimize the influence
of the order of projects on the results.

When NFR Templates Pay Back? A Study on Evolution 151

Table 1. Description of the projects included in the study (“–” means that the data
was not available, B – Business type of application, M – Multiple types of application).

P
ro
je
ct

#
N
F
R
s

S
o
u
rc

e

A
rc
h
.

A
p
p
li
c
a
ti
o
n

T
y
p
e

D
o
m
a
in

P
ro
je
ct

#
N
F
R
s

S
o
u
rc

e

A
rc
h
.

A
p
p
li
c
a
ti
o
n

T
y
p
e

D
o
m
a
in

1 76 Lit Multiple M Multiple 22 139 Ind Web B Banking

2 55 Ind Web B Administration 23 31 Ind Web B Banking

3 36 Ind Desktop B Services 23 37 Ind Web B Banking

4 24 Ind Web B Administration 24 641 Ind ZSI B
Education
& Financial

5 100 Ind Web B Health Care 25 33 Ind Web B Pharmacy

6 10 Ind Desktop B Services 26 65 Ind Web B Pharmacy

7 48 Ind Desktop B Services 27 15 Pro – B Media

8 32 Ind Desktop B Services 28 24 Pro Mobile B Real Estate

9 33 Ind Web B Oil and Gas 29 25 Pro Web B Education

10 68 Ind Web B Financial 30 32 Pro Web B Trade

11 32 Ind Web B Banking 31 37 Pro Web B Insurance

12 41 Ind Web B Banking 32 47 Pro Web B Services

13 11 Ind Web B Education 33 11 Pro Desktop B Trade

14 60 Ind Web B Research 34 72 Pro Web B Entertainment

15 89 Ind Web B Banking 35 11 Pro – B Services

16 10 Ind Web B Banking 36 14 Pro Web B Entertainment

17 43 Ind Web B Banking 37 13 Pro Web B Communication

18 20 Ind Web B Banking 38 19 Pro – B
Software
& Hardware

19 108 Ind Web B Banking 39 19 Pro Web B Services

20 18 Ind Web B Banking 40 15 Pro Web B Sport

41 16 Pro Web B Financial

To analyze the dynamics of variables in multiple catalog evolutions, we use
box plots (e.g., Fig. 1). Each chart has a set of boxes each with a band inside the
box which depicts the median value. The lower and upper “hinges” of the boxes
correspond to the first and third quartiles, the whiskers extend from the hinge
to the highest and lowest value that is within 1.5*IQR of the hinge, where IQR
is the inter-quartile range (roughly speaking, the whiskers correspond to the 5th

and the 95th percentiles [24]).
Moreover, to study how the diversity of projects influences the results of

our analysis, we performed additional analyses. In each one, we excluded some
projects which we called pseudo-outliers. Pseudo-outliers are those projects in
the pool that use the highest number of unique (specific) NFR templates (in that
sense each real outlier is also a pseudo-outlier but not vice-versa). To determine
pseudo-outliers first, we ranked the projects from the most specific to the least

152 S. Kopczyńska et al.

specific by determining the number of unique NFR templates (used only by a
given project).

Base on this ranking (see Table 2) we generated 5 mutations of multiple
evolutions (each of size 10,000 as it was before). Each mutated multiple evolution
Evol i was base on 41 projects but first i projects from the ranking were replaced
by copies of randomly chosen other projects from the pool.

Table 2. The ranking used to identify pseudo-outliers.
P
ro

je
c
t

N
u
m
.

o
f

u
n
iq
u
e

te
m
p
la
te

s

R
a
n
k

N
u
m
.
o
f
e
x
c
lu
d
e
d

p
ro

je
c
ts

P
ro

je
c
t

N
u
m
.

o
f

u
n
iq
u
e

te
m
p
la
te

s

R
a
n
k

N
u
m
.
o
f
e
x
c
lu
d
e
d

p
ro

je
c
ts

6 40 2 3 27 2 14 –
20 19 2 3 7 1 19 –
22 17 2 3 9 1 12 –
2 15 3 5 12 1 8 –
11 15 3 5 16 1 10 –
25 13 4 7 17 1 18 –
15 11 4 7 23 1 16 –
1 10 5 9 28 1 15 –
4 10 5 9 32 1 15 –
24 8 6 11 34 1 18 –
5 7 9 11 37 1 17 –
10 6 7 – 41 1 12 –
13 4 6 – 19 0 20 –
18 4 8 – 21 0 20 –
39 4 10 – 29 0 20 –
31 3 14 – 30 0 20 –
33 3 9 – 36 1 20 –
35 3 7 – 38 0 20 –
8 2 11 – 40 0 13 –
14 2 16 – 42 0 20 –
26 2 13 –

5 Results

5.1 Dynamics of Catalog Value

Let us define Value of catalog Ki−1 as the percentage of NFRs of project Pi that
can be directly (perfect match) or indirectly (after extension of some templates)
derived from the templates of catalog Ki−1. Using the subsets Perfecti and

When NFR Templates Pay Back? A Study on Evolution 153

Modifiedi of new catalog Ki, one can define value of catalog Ki−1 in the following
way:

Value(i − 1) =
|Perfecti ∪ Modifiedi|

|Pi| ∗ 100% (1)

As mentioned earlier, project Pi is treated as a set of NFRs, thus |Pi|, i.e., its
cardinality, denotes the number of NFRs of that project.

In practical terms, one can treat catalog value as the degree to which the
catalog is useful as a prompt list for a given project.

Observation 1. After considering about 40 projects one can expect catalog value
of 75% or more.

Justification. The distribution of catalog value for multiple evolutions is depicted
in Fig. 1A as a box plot (a very brief explanation of the box plot representation
of data is presented in Sect. 4.2). From the chart, it is pretty clear that for the
considered set of 40 projects, independently of their order, one can expect 75%
NFRs to be “covered” by templates of the catalog. Moreover, we fitted simple
linear regression models for each evolution. We found significant regression equa-
tions with positive slopes—the mean value of slopes was 0.58, the median equal
to 0.57, and min. and max. equal to 0.27 and 1.01, respectively (the p-value was
smaller than 0.05). The intercept ranged from 60.00 to 80.00, with the mean
value of 71.25 and median value of 71.27. The results indicate the increasing
tendency in the data.

0

25

50

75

100

10 20 30 40
Projects

Va
lu

e
[%

]

A. Multiple simulations

0

25

50

75

100

50 60 70 80 90
Value [%]

Fr
eq

ue
nc

y(
Va

lu
e)

 [%
]

B. Frequency analysis

●

●

●

●

●

●●●●●

●

●

●

●

●
●●●●●

●

●

●

●

●
●●●●●

●

●

●

●

●
●●●●●

●

●

●

●

●
●●●

●●

●

●

●

●

●●●
●●●

0

25

50

75

100

50 60 70 80 90
Value [%]

Fr
eq

ue
nc

y(
Va

lu
e)

 [%
]

#Excluded
pseudo−outliers:

0
3

5
7

9
11

C. Pseudo−outliers analysis

Fig. 1. (A) Distribution of catalog value, (B) Analysis of frequency after considering
40 projects for catalog value, (C) Analysis of pseudo-outliers for catalog value.

Our observation is also supported by another analysis. Let Frequency(Value)
be a function describing the percentage of catalog evolutions for which catalog
value is not less than a given Value. The function is depicted in Fig. 1A. From the
chart presented in the figure, it follows that after considering all the 40 projects

154 S. Kopczyńska et al.

catalog value of at least 75% was achieved almost always. This chart also shows
what is the chance of obtaining other catalog values, e.g., the value of 80% or
more has been achieved in about 80% of cases (evolutions).

We have also examined the impact of pseudo-outliers on the catalog value,
i.e., on the Frequency function (see Sect. 4.2 for the procedure of identifying
pseudo-outliers). In Fig. 1C, there are several charts of the Frequency function
for a given catalog value. Each of them corresponds to a different number of
pseudo-outliers excluded from the original set of projects. The general conclusion
is that the smaller the number of pseudo-outliers (i.e., projects that importantly
differ from the rest of the portfolio of projects) the greater the chance of getting
higher catalog value. What is perhaps more interesting, up to the catalog value
of at least 75% the impact of pseudo-outliers is almost negligible. In other words,
after considering about 40 projects the catalog value of 75% is very probable,
even in the presence of pseudo-outlier projects.

5.2 Dynamics of Maintenance Effort

When considering maintenance of a catalog of NFR templates two operations
seem the most important and time consuming: (1) adding new templates to the
catalog and (2) modifying (extending) the existing ones. The former requires
effort more or less proportional to the cardinality of the set Added i (i.e., the num-
ber of added templates), and for the latter the required effort is proportional to
the cardinality of Modified i which represents the number of modified templates.
Thus, one can assume the following indicator of maintenance effort ME (i − 1):

ME(i − 1) =
|Addedi ∪ Modifiedi|

|Ki| ∗ 100% (2)

where Ki denotes a new version of the catalog.

Observation 2. After considering about 40 projects one can expect mainte-
nance effort, ME, to amount up to 10% of catalog size.

Justification. The distribution of ME for 10,000 random evolutions is presented
in Fig. 2A as a box plot (see Sect. 4.2 for a description of how to read this
box plot). From the figure, it follows that there is a decreasing tendency in the
data. The simple regression models were fitted to confirm the observation. We
found significant regression equations with the negative slopes with the mean
value of −0.45, median equal to −0.44, and min. and max. equal to −0.17 and
−0.69, respectively (the p-value was <0.05). The intercept ranged from 11.63 to
22.13, with the mean value of 16.95 and median value of 16.99. Moreover, from
the chart in Fig. 2B, it is pretty visible that for the considered set of projects,
independent of their order, one can expect that less than 10% of NFR templates
require updates during maintenance process after a project.

Observation 2 is also supported by frequency analysis. Let Frequency(ME)
be a function returning percentage of catalog evolutions for which maintenance

When NFR Templates Pay Back? A Study on Evolution 155

0

20

40

60

10 20 30 40
Projects

M
E

 [%
]

A. Multiple evolutions

0

25

50

75

100

5 10 15 20
ME [%]

Fr
eq

ue
nc

y
[%

]

B. Frequency analysis

●

●

●

●
● ● ● ● ● ●

●

●

● ●
● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

0

25

50

75

100

5 10 15 20
ME [%]

Fr
eq

ue
nc

y(
M

E
) [

%
]

#Excluded
pseudo−outliers

0
3

5
7

9
11

C. Pseudo−outliers analysis

Fig. 2. (A) Distribution of maintenance effort, (B) Analysis of frequency after consider-
ing 40 projects for maintenance effort, (C) Analysis of pseudo-outliers for maintenance
effort.

effort was ME or less. This function is depicted in Fig. 2B. From the chart, it fol-
lows that after considering all the projects, maintenance effort of 10% or less was
achieved in 97.7% of evolutions. The chart also presents the frequencies for other
values, e.g., one might expect that there is 78% chances that the maintenance
effort would be up to 5%.

We have also examined the impact of pseudo-outliers on the value of the Fre-
quency function (see Sect. 4.2 for the procedure of identifying pseudo-outliers).
In Fig. 2C, there are several charts of the Frequency function. Each of them
corresponds to a different number of pseudo-outliers excluded from the origi-
nal set of projects. The general conclusion is that the impact of pseudo-outliers
on maintenance effort is not very big and after considering about 40 projects
the maintenance effort of 10% or less is very probable, even in the presence of
pseudo-outlier projects.

5.3 Dynamics of Catalog Utilization

The simplest approach to NFRs elicitation in the presence of a catalog of NFR
templates is brute force, i.e., going from one template to another and checking if
a given template could be used to formulate an NFR for the project at hand. In
this context, the following question arises: what is the percentage of considered
templates that will be used to specify NFRs for a project Pi? We will refer to this
percentage as catalog utilization and its precise definition is presented below:

U(i − 1) =
|Perfecti ∪ Modifiedi|

|Ki−1| ∗ 100% (3)

where Ki−1 denotes the old (previous) version of the catalog.

Observation 3. After considering about 40 projects one can expect catalog uti-
lization, U, to be below 10%.

156 S. Kopczyńska et al.

Justification. The distribution of catalog utilization for multiple evolutions is pre-
sented in Fig. 3A as a box plot (see Sect. 4.2 for a description of how to read this
box plot). From the figure, it follows that the expected value of Utilization (median
value) is below 10% for the considered set of 41 projects, independent of their order
(average ca. 7%, median ca. 6%, minimum ca. 1%, maximum ca. 38%).

0

10

20

30

10 20 30 40
Projects

U
 in

 [%
]

A. Multiple evolutions

0

25

50

75

100

5 10 15 20
U[%]

Fr
eq

ue
nc

y
[%

]

B. Frequency analysis

0

25

50

75

100

5 10 15 20
U [%]

Fr
eq

ue
nc

y(
U

) [
%

]

#Excluded
pseudo−outliers

●●

●

●

●

●
●

● ●
● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

0 3 5 7 9 11

C. Pseudo−outliers analysis

Fig. 3. (A) Distribution of utilization, (B) Analysis of frequency after considering 40
projects for utilization, (C) Analysis of pseudo-outliers for utilization.

Observation 3 is also supported by frequency analysis. Let Frequency(U)
be a function describing percentage of the catalog evolutions for which catalog
utilization was less or equal U . The function is depicted in (Fig. 2B). From the
chart, it follows that after considering all the projects, catalog utilization of
10% or less was achieved in 93.7% of evolutions. The chart also presents the
frequencies for other values, e.g., the utilization of 20% or less was practically in
all the observed evolutions of the catalog.

We have also examined the impact of pseudo-outliers on the value of the Fre-
quency function (see Sect. 4.2 for the procedure of identifying pseudo-outliers).
In Fig. 2C, there are several charts of the Frequency function. Each of them cor-
responds to a different number of pseudo-outliers excluded from the original set
of projects. The general conclusion is that the smaller the number of pseudo-
outliers (i.e., the projects that differ from each other) the greater the chance of
getting higher utilization.

6 Threats

In the following paragraphs, we discussed the threats to the validity of the study
according to the guidelines by Wohlin et al. [31].

Conclusion validity
Reliability of Measures. To minimize the influence of inherent ambiguity of nat-
ural language that might have been introduced during the identification of the
need of improvement of the catalog, the detailed procedure and definitions were
created and discussed beforehand.

When NFR Templates Pay Back? A Study on Evolution 157

While conducting the initial catalog evolution as well as representing each
NFR template and NFR as sets of parts (core, parameters, options) for multiple
catalog evolutions we could have introduced some errors, e.g., while identifying
parts of templates or identifying which part of a given template is present in a
given requirement. Next, it shall be taken into account that in the multiple evo-
lutions we used computer programs to simulate multiple maintenance processes,
which might have contained some errors. To mitigate the threats concerning
the multiple evolutions we also conducted simulation using the coarse-grained
approach. The approach is based on the following question: Is it true that a
requirement r (from a considered project) can be derived from template t of the
final version of the catalog resulting from the initial evolution?. Thus, it is based
only on the relationships between templates and requirements identified in the
initial catalog simulation. In report available at website on NFR templates [1] we
compared the results obtained using both the approach described in the paper
and the coarse-grained approach. Based on these results, we argue, that our
observations should not be visibly affected by the mentioned threats.

Fishing. To minimize the threat that the experimenters would search for a spe-
cific result when analyzing the data, the researchers did not see any information
on a project, the order number of each requirement, and values of the investi-
gated variables.
Internal Validity
Selection. The minimum requirement towards all NFRs’ sets was that they con-
tain requirements from industrial projects and most likely developing web busi-
ness applications. Although we selected the source organizations by convenience,
they represent a quite broad range of possible cases. Additionally, the NFRs
obtained by the authors were combined with the publicly available sets [7].

Another threat relates to the homogeneity of projects (and NFRs). Since
they were taken from different organizations, the abstraction levels vary, which
might have boosted the size of the catalog, e.g., some people specify only that
the Web Content Accessibility Guidelines (WCAG) shall be satisfied, while the
others, instead, list concrete guidelines.

Construct Validity
Design Threat. The researchers did not participate in the projects for which they
analyzed NFRs. Although they do have more than 5 years of experience in RE,
focusing on NFRs, they might have misinterpreted some parts of requirements.

Moreover, the analyzed NFRs satisfy the definition of an NFR from [15], and
we decided to use NFR templates as defined in Sect. 3. Since one might use other
existing definition of an NFR, their results might vary from ours. Also using an
approach that requires from an NFR to be documented with more extensive
information, e.g., Gilb’s Planguage [11] (it suggests that a requirement shall
have a scale, measure or authority) might also drive to other results.
External validity
Interaction of Setting and Treatment. In our study, we mimicked the behavior of
an organization that maintains its catalog of templates over time. The catalog

158 S. Kopczyńska et al.

maintenance procedure was aligned with the known industry practices that show
the steps towards systematic requirements reuse executed in Rolls Royce [17].
Thus, we perceive the settings as realistic-enough to generalize the conclusions.

Although our goal was to provide analysis independent of the domain, type
of application, we evaluated only 41 sets of requirements. Therefore, we need
to accept the threat that the conclusions might be true only for the analyzed
domains and types of applications.

7 Conclusions

Non-functional requirements (NFRs) are important not only when a software
product is developed using traditional but also agile approaches. Since, failures
in the management of NFRs, such as incomplete, ambiguous NFRs, etc., are
one of the root causes of failures in transitions of software products, elicitation
methods and techniques that help to overcome these issues are needed. However,
first, to apply any elicitation method, knowledge of benefits and costs associated
with using it must be known.

In this paper, we focused on the elicitation of NFRs using a catalog of NFR
templates. We investigated the issues of usefulness and maintenance cost that
are important from the perspective of the maintenance of such catalog measured
with catalog value, maintenance effort, and catalog utilization by a single project.
The study is based on 41 industrial projects with 2,231 NFRs (26 industry
projects whose stakeholders shared the data with us and 15 projects shared in
the Open Science tera-PROMISE repository [7]; Sect. 4 contains all the details).
To analyze the maintenance process, i.e., how catalog of NFR templates changes
using lessons learned from the previous project, we simulated 10,000 different
random evolutions of a catalog of NFR templates.

Here are the observations that follow from our study:

� (Observation 1.) After considering about 40 projects one can expect catalog
value of 75% or more.

� (Observation 2.) After considering about 40 projects one can expect main-
tenance effort (measured in number of updates) amounting up to 10% of
catalog size.

� (Observation 3.) After considering about 40 projects one can expect catalog
utilization to be below 10%.

The observations confirmed our initial investigation based on a single manual
evolution of a catalog and improved the generalizability of study [15].

It seems reasonable to assume that a catalog of NFR templates of catalog
value at the level of 75% (or more) and maintenance effort at the level of 10%
(or less) is attractive from the point of view of practitioners. As these values were
achieved in the study after about 40 projects this number of projects becomes a
kind of break-even point in which the investment in catalog development highly
pays back. It is worth to take into account that the projects were quite het-
erogeneous (e.g., they come from different organizations, describe systems from

When NFR Templates Pay Back? A Study on Evolution 159

different domains). However, if an organization works on much more homoge-
neous projects (e.g., it implements only e-commerce systems) it would require
fewer projects to achieve the benefits at the mentioned level.

From the perspective of a large software company, the requirement of con-
ducting about 40 projects seems not a big deal; it might be even achieved within
a year. For micro or small companies having such number of projects might be
more difficult. Then, it might prove valuable to share a catalog of NFR templates
between several companies, e.g., within a consortium or while cooperation with
a research institution.

Catalog utilization below 10% seems low from the perspective of elicitors,
especially in the context of catalogs containing about 400 templates. From our
study it follows that after considering about 40 projects it is quite probable that
the number of templates useful for a particular project will be 20 or even less.
It resembles looking for a needle in a haystack. Thus, a method of searching for
NFR templates faster than brute force executed manually would be valuable.

Acknowledgments. We would like to thank the companies that shared their data
with us especially ATREM S.A., Consdata Sp. z o.o., Currency One S.A., IT Depart-
ment of Poznan City Hall, Roche Sp. z o.o., TALEX S.A.

References

1. Website of NoRTs. http://norts.cs.put.poznan.pl
2. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases.

Addison-Wesley, Boston (2002)
3. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the

context of large-scale distributed agile: an empirical study. Inf. Softw. Technol.
110, 39–55 (2019)

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From Contract Drafting to Software
Specification: Linguistic Sources of Ambiguity. A Handbook. Ver 1.0. https://cs.
uwaterloo.ca/∼dberry/handbook/ambiguityHandbook.pdf. Accessed 07 Sept 2015

5. Boehm, B., In, H.: Identifying quality-requirement conflicts. IEEE Softw. 13(2),
25–35 (1996)

6. Breitman, K.K., Leite, J.C.S., Finkelstein, A.: The world sa stage: a survey on
requirements engineering using a real-life case study. J. Braz. Comput. Soc. 6(1),
13–37 (1999)

7. Cleland-Huang, J., Mazrouee, S., Liguo, H., Port, D.: Open-Science teraPROMISE
repository. http://openscience.us/repo/requirements/other-requirements/nfr.
(2010). Accessed 26 June 2017

8. Denger, C., Berry, D.M., Kamsties, E.: Higher quality requirements specifications
through natural language patterns. In: IEEE International Conference on Software:
Science, Technology and Engineering, pp. 80–90 (2003)

9. Doerr, J., Paech, B., Koehler, M.: Requirements engineering process improvement
based on an information model. In: 2004 Proceedings of 12th IEEE International
Requirements Engineering Conference, pp. 70–79. IEEE (2004)

10. Eckhardt, J., Vogelsang, A., Femmer, H., Mager, P.: Challenging incompleteness
of performance requirements by sentence patterns. In: International Requirements
Engineering Conference (RE), pp. 46–55. IEEE (2016)

http://norts.cs.put.poznan.pl
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://openscience.us/repo/requirements/other-requirements/nfr

160 S. Kopczyńska et al.

11. Gilb, T.: Competitive Engineering: A Handbook for Systems and Software Engi-
neering Management Using Planguage. Butterworth-Heinemann, Oxford (2005)

12. Hull, E., Jackson, K., Dick, J.: Requirements Engineering (2005)
13. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. Technical report, ISO/IEC (2010)

14. Kopczynska, S., Nawrocki, J.: Using non-functional requirements templates for
elicitation: a case study. In: IEEE International Workshop Requirements Patterns
(2014)

15. Kopczynska, S., Nawrocki, J., Ochodek, M.: An empirical study on catalog of
non-functional requirement templates: Usefulness Maintenance Issues. Inf. Softw.
Technol. 103, 75–91 (2018)

16. Kopczyńska, S., Ochodek, M., Nawrocki, J.: On importance of non-functional
requirements in agile software projects—a survey. In: Jarzabek, S., Poniszewska-
Marańda, A., Madeyski, L. (eds.) Integrating Research and Practice in Software
Engineering. SCI, vol. 851, pp. 145–158. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-26574-8 11

17. Lam, W., McDermid, T., Vickers, A.: Ten steps towards systematic requirements
reuse. In: Intenational Symposium on Requirements Engineering, pp. 6–15. IEEE
(1997)

18. Lindstrom, D.R.: Five ways to destroy a development project. IEEE Softw. 10(5),
55–58 (1993)

19. Mavin, A., Wilkinson, P.: Big Ears (The Return of “Easy Approach to Require-
ments Engineering”). In: Requirements Engineering Conference, pp. 277–282
(2010)

20. Nuseibeh, B.: Ariane 5: who dunnit? IEEE Softw. 14(3), 15–16 (1997)
21. Palomares, C., Quer, C., Franch, X.: Requirements reuse and requirement patterns:

a state of the practice survey. Empirical Softw. Eng. 22, 1–44 (2015)
22. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer, Heidelberg (2010)
23. Pohl, K., Rupp, C.: Requirements Engineering Fundamentals. Rocky Nook, San

Rafael (2011)
24. R Documentation: Box Plots. www.rdocumentation.org/packages/graphics/

versions/3.5.1/topics/boxplot. Accessed 28th Sept 2018
25. Regnell, B., Svensson, R.B., Olsson, T.: Supporting roadmapping of quality require-

ments. IEEE Softw. 25(2), 42–47 (2008)
26. Renault, S., Méndez Bonilla, Ó., Franch Gutiérrez, J., Quer Bosor, M.C., et al.:

A pattern-based method for building requirements documents in call-for-tender
processes. IJCSA 6(5), 175–202 (2009)

27. Riaz, M., et al.: Identifying the implied: findings from three differentiated repli-
cations on the use of security requirements templates. Empirical Softw. Eng. 22,
2127–2178 (2016)

28. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right, 3rd edn. Addison-Wesley, Boston (2012)

29. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide.
Wiley, Hoboken (1997)

30. Withall, S.: Software Requirement Patterns (Developer Best Practices). Microsoft
Press, Redmond (2007)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-030-26574-8_11
www.rdocumentation.org/packages/graphics/versions/3.5.1/topics/boxplot
www.rdocumentation.org/packages/graphics/versions/3.5.1/topics/boxplot
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Improving Quality of Data Exchange
Files. An Industrial Case Study

Günter Fleck1, Michael Moser2(B), and Josef Pichler2

1 Siemens Transformers Austria, 8160 Weiz, Austria
guenter.fleck@siemens.com

2 Software Competence Center Hagenberg, 4232 Hagenberg, Austria
{michael.moser,josef.pichler}@scch.at

Abstract. In the development of electrical machines users run a batch
of command line programs by providing text-based data exchange files as
input. The required structure and content of these files is often only infor-
mally documented and implicitly enforced by programs. Therefore, users
are forced to execute programs without prior syntactic and semantic ver-
ification. To improve the quality of data exchange files, users need editor
support that allows syntactic and semantic verification using grammar-
based analyzers. In order to reduce the effort for creating grammars,
we use grammar recovery which analyzes software artifacts and makes
the retrieved knowledge visible as a language grammar. The assess-
ment and completion of the extracted grammar requires both knowl-
edge in software-language engineering and in the application domain.
This paper examines whether the integration of grammar recovery with
domain-specific languages is suitable for creating editor support for data
exchange files. In particular, we are interested in whether we can recover
(1) a grammar and validation rules from documentation and a corpus of
example files. Furthermore, we are interested in whether (2) a domain-
specific language (DSL) allows domain experts to provide missing details
and evolve grammars. To answer these questions, we conducted an indus-
trial case study on three different types of data exchange files. Results
show that about 45% of the grammar rules could be recovered automat-
ically and that the completion of the extracted grammars by end-users
is a promising means to provide correct and maintainable grammars for
data exchange files.

Keywords: Software evolution · Data quality · Grammar recovery ·
Domain-specific languages

1 Introduction

IT systems of various domains are traditionally designed following a batch archi-
tecture. Single programs in a batch fetch input data, process the provided data
and produce output data processed in turn by a subsequent program. In the

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 161–175, 2019.
https://doi.org/10.1007/978-3-030-35333-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_12

162 G. Fleck et al.

field of engineering software, we frequently encounter human-readable, semi-
structured data exchange files which are utilized as input for command-line-based
engineering tools. Human-readable text files using a non-standardized, propri-
etary file format have been introduced to facilitate both writing and reading
program input and output using common text editors and to avoid dependen-
cies to specific data formats or tools. The flexibility with respect to editing text
files goes along with the disadvantage that no validation on input files is done
prior program execution and even minor lexical or syntactical errors cause the
program to stop abnormally without delivering results. In the context of engi-
neering software, this is all the more problematic as engineers have to analyze,
extend, and manually forward the data output from an engineering tool as input
to other command line-based engineering tools.

To tackle these problems, engineers require tool support with adequate lex-
ical, syntactic, and semantic validation of text files for writing and reading
input/output files. As required tool support must be based on formal language
specifications such as context-tree grammars, one key question is how we can
efficiently create context-free grammars which correctly specify the structure
of existing data exchange files with respect to individual batch programs. Pre-
vious experiments [5] revealed that substantial parts of the required grammar
can be automatically inferred by means of a Minimal Adequate Teacher (MAT)
[2] method together with specific preprocessing. However, the inferred grammar
required refactoring towards a suitable and most important maintainable basis
for the desired editor support. Since this is not feasible for the targeted indus-
trial setting, we investigate whether a combination of grammar recovery [9] and
end-user driven development [8] using a domain-specific language (DSL) [13] is
suitable for data exchange files. Grammar recovery addresses the problem of
reconstructing a grammar by recovering language structure from existing soft-
ware artefacts. It is not only successfully applied to recover grammars of legacy
programming languages but as well of modern languages [10] or semi-formally
specified data structures [14].

In this paper, we investigate whether a development approach can be applied
that engages end-users and software developers not familiar with language engi-
neering in the creation and maintenance of editor support for data exchange files.
In particular we are interested in the following two research questions (RQs):

RQ1: Can we automatically recover grammars and semantic validation from
documentation and a corpus of data exchange files?

RQ2: Can we present the extracted grammars and validation rules in a
domain-specific representation so that domain experts are in the position to
assess and complete grammars?

To answer these questions we conducted an industrial case study on three
different sets of data exchange files at Siemens AG Austria. The remainder of
this paper is organized as follows. In Sect. 2 we present the industrial context,
in particular the characteristics and commonalities of data exchange files used
in engineering software. Section 3 gives and overview of our approach and selec-
tively shows recovery by example. In Sect. 4 we present the industrial case study

Improving Quality of Data Exchange Files 163

1 TEXT Input for winding calculation

2 NORM IEEE

3 ACEQ 1 80

4 BAST S 6 B 64.7 14.7

5 CLAC 15*12.0 13*3.0

6 COOL 10 3.4 12

7 BEGIN_WINDING HV

8 DISC 6*[6 A 6 B B 6]

9 DISC 6*[3 A 3 2*B B 3]

10 LOSS [12.0 15.0 15.0] [12 * 1.5]

11 TEXT ins -ax ins -rad ins(both sided)

12 WIRE A 14.5 20.65 1.1 7 6 1.6 0.01 2

13 WIRE B 16.5 17.7 1.3 7 7 1.32

14 END_WINDING

Listing 1.1. Example data exchange file of engineering software.

and discuss results therefrom. Section 5 lists related approaches and Sect. 6 lists
threats to validity. Section 7 concludes this paper.

2 Industrial Context

Siemens AG Austria, Transformers Weiz is a manufacturer of large power trans-
formers. To calculate the thermal, geometrical, mechanical, and electrical proper-
ties of a power transformer, 50 software programs are developed and maintained
at a single subsidiary. These engineering tools are generally available as com-
mand line tools and used by the company’s engineering departments around the
world. In the course of software modernization efforts, Siemens AG - Austria
identified data exchange between engineering software to be of high potential
for improving the quality of engineering software. Engineers calculate designs of
a power transformer by running a batch of engineering tools. Data output by one
engineering tool is typically extended and manually forwarded as input to other
engineers tools. This process is not fixed, neither in the order in which engineer-
ing tools are executed nor from which sources (e.g. other engineering tools or real
measurement data) input data are obtained. Data exchange is largely based on
semi-structured files using a non-standardized, proprietary file format. Engineers
create and evaluate data files using text editors. Therefore, input of engineering
software cannot be validated prior program execution. Consequently, even minor
lexical and syntactic errors cause software programs to terminate without deliv-
ering the desired results. Moreover, error reporting is highly program-specific
and tracing error messages from program output to data files is a challenge for
engineers. To uplift usability of engineering software, it was decided to develop
editor support with adequate lexical, syntactic and semantic validation. A basic
prerequisite for the development of state-of-the editing support is the availabil-
ity of language grammars, which facilitate the generation of adequate parsing

164 G. Fleck et al.

infrastructure. However, as the creation, maintenance and evolution of language
grammars is seen as a substantial effort, Siemens AG - Austria seeks to find ways
to automate this process.

Data Exchange Files. Files for data exchange are generally referred to as Key-
word files. All 50 engineering tools support variants of this format. A concise
definition of the format does not exist. Developers of engineering software share
a common understanding of the basics of the format and adapt it to their needs.
Each engineering software provides its own implementation for reading and writ-
ing Keyword files. Listing 1.1 shows content of a Keyword file. Keyword is
a row based file format. Rows start with a keyword identifier followed by the
content part of an entry. Keyword identifiers are not fixed, vary across different
applications, and typically consist of 4 letters. The content part holds values of
type character, string, numeric or list. Numeric values are specified as integer or
real values. List of values are generally specified using square brackets ([]) as
shown in lines 8 and 9. However, this is not always necessary, as the keyword
CLAC in line 5 shows. Moreover, custom data encoding is used to provide input
in a compact way. These encodings come in different styles and are highly pro-
gram specific. An instruction which is recognized across most applications is the
expansion operator (*) as used in lines 5, 8, 9, and 10. The operator expands
the expression on the right side by the number on the left side. The operator
can be applied to numeric values, words, or lists. Depending on the keyword
the number of values per keyword is either fixed, bound by a minimum and
maximum number of values, or unbound as in the case of a list of values. Key-
word entries can be logically grouped within section. Section are opened with
a BEGIN <identifier> line and closed by an END <identifier> line as shown
in lines 7 and 14. The same identifiers for keywords and groups of keywords
may appear in data exchange files of different engineering tools, usage however
is most likely to differ.

3 Approach

Our approach to create editor support for data exchange files is based on two
cornerstones. First, we automatically create parsing infrastructure from a lan-
guage model recovered from existing documentation and a corpus of example
files. Second, the extracted language model is assessed and completed by domain
experts, i.e. developers and power users of engineering software, using a textual
DSL. Figure 1 shows an overview of our approach. In short the process to create
and evolve editor support can be described as follows: (1) Recovery of an initial
language model from existing documentation. (2) Analysis of example input files
and update of the language model. (3) Generation of a context-free attributed
grammar, that is the foundation for (4) the generation of parsing infrastructure.
The parsing components are automatically deployed within a generic editor for
keyword files. (5) Iterative, end-user driven adaption, refinement and evolution of
the extracted language model using a DSL. End-users modify the language model

Improving Quality of Data Exchange Files 165

Engineering
So�ware.exe

Keyword File Meta-Model

ALLG 1 23
CLAC 2*15
WIRE A 1.3

5) End-User
Programming

1) Recover from
Documentation

HTML
<table id>

…

LLanguage
Model

DSL
Keyword ALLG {

InnerDiameter {
Name = “Inner ..
Unit = “mm”
Type = float

}
2) Recover from
Example Corpus

3) Generate
Code/Grammar

Grammar
ATG

Coco\R

csc.exe

Parser Valida�on

4) Compile
Deployable

Parsing
DLL

File
Editor.

exe
evolves uses / analyses

Fig. 1. Process to recover and maintain editor support

and generate updated versions of parsing components by executing step three
(i.e. regenerating production rules) and four (automatic generation and deploy-
ment of parsing infrastructure) of the presented process. Subsequent sections
provide details on prerequisites and technical details for our implementation.

3.1 Prerequisites and Foundations

A prerequisite to create editor support for a specific engineering software is to
collect existing documentation for data exchange files and collect example files.
Moreover, understanding basic concepts of the keyword file format is founda-
tional to our approach. We use that understanding to provide a generic meta-
model for capturing the essential concepts of keyword files. For the sake of brevity
we omit full details, however major abstractions are a Keyword having a set of
Properties reflecting the possible values of a line in a keyword file. Properties are
described by name, data type, unit, description, and whether they are required
or not. Supported data types are string, char, integer, float, and list.
For list types we distinguish several sub-types reflecting element data type, e.g.
string or float, and structural patterns like the usage of expansion separators as
shown in Listing 1.1. Moreover, we capture the usage of keywords within named
sections as a Keyword Group.

3.2 Recovery from Documentation

Documentation for input files is provided as a set of HTML documents and
has a similar structure across different engineering software. This is for two
reasons. First, department wide efforts to improve software quality led to a
standardization of software documentation. Second, creation of documentation
is typically done by clone-and-own of existing documentation. We exploit the
structural similarity between software documentation to extract grammar and

166 G. Fleck et al.

semantic validation rules from documentation. To identify descriptions of key-
words within documentation the extraction mechanism searches for table ele-
ments in HTML sources. Simple heuristics are applied to answer whether tables
contain keyword descriptions. Heuristics evaluate if (1) id attribute contains a
known identifier (e.g. legend), (2) column headers contain labels such as name,
unit, or description or synonyms thereof, or (3) table structure and content hint
documentation of keywords, for example, through the usage of units or geomet-
rical vocabulary like diameter, length, or width. For each keyword description
found, we extract name and general description of the keyword. Properties of
a keyword are extracted from table rows. For each keyword property we try to
extract index, name, description and unit. These attributes are either explicitly
stated within separate table columns or extracted from text within a general
description column. The thereby created keyword definitions are added to the
language model. Language models recovered from documentation are expected
to be incomplete, out-of-date, or missing at all. Therefore subsequent analysis
steps (e.g. the recovery from an example corpus) must not rely on the existence
of a language model.

3.3 Recovery from Example Corpus

To parse a corpus of data exchange files we implemented a generic parsing strat-
egy for keyword files. The strategy exploits common properties of the keyword
file format. Properties common to all input files of different engineering software
are, (1) line-based, (2) keyword identifier starts a line, (3) usage of begin and
end identifiers to mark a group of keywords, and (4) specification of keyword
properties by a space delimited list of values. Recovery from example corpus
contributes the following elements to the language model: (1) keywords not con-
tained within documentation, (2) keyword groups, (3) usage of keywords within
keyword groups, and (4) data type information. During the recovery process each
file in the corpus is analyzed line by line. Occurrences of keyword entries within
keyword groups are collected and used to model multiplicity constraints on key-
words. Moreover, for any keyword occurrence data types of keyword properties
are derived and updated from the comma separated list of input values. We apply
a pattern-based approach for the detection of list types. Patterns match expan-
sion separators (i.e. *) and structural patterns within a sequence of input values.
To update type information for existing keyword properties we apply a set of
update rules, which direct this process. E.g. integer data types must not over-
ride a previously detected float data type, or a detected list type must override
base data types. In general we rate correctness of data recovered from example
files better than correctness of data recovered from documentation. Therefore,
contradictory results (e.g. number of keyword parameters) are resolved in favor
of the recovery from example data exchange files.

Improving Quality of Data Exchange Files 167

1 WIREEntry <Entry entry > = ("WIRE"

2 CharProperty <out fcr > (. entry.Add(fcr); .)

3 NumeriProperty <out fdo > (. entry.Add(fdo); .)

4 NumberProperty <out fdo > (. entry.Add(fdo); .)

5 NumberProperty <out fdo > (. entry.Add(fdo); .)

6 NumberProperty <out fdo > (. entry.Add(fdo); .)

7 NumberProperty <out fdo > (. entry.Add(fdo); .)

8 NumberProperty <out fdo > (. entry.Add(fdo); .)

9 [NumberProperty <out fdo > (. entry.Add(fdo); .)

10 [IntProperty <out fun > (. entry.Add(fun);.)]]).

Listing 1.2. Grammar for the keyword WIRE in Coco/R input format.

3.4 Generation of Parsing Infrastructure

The recovered language model is input for the generation process. The generation
process creates production rules of a context-free grammar and code to validate
semantic correctness of keyword file data. To create an executable syntax ana-
lyzer for a given language model we utilize the compiler Coco/R1. Hence, the
grammar definition to be generated from a language model must conform to the
input format of Coco/R. We use .net T4 text templates to generate the gram-
mar definition. Templates contain a frame which already contains definitions of
generic tokens and production rules. For each keyword and keyword group the
generator adds new production rules. Listing 1.2 shows the production rule gen-
erated for the WIRE keyword. The token “WIRE” is expected to be followed by a
character value, 6 number values (i.e. float or integer), an optional 7th number
value and an optional 8th integer value. Using the generated grammar definition
as input, Coco/R generates C# source code for scanner and parser components.

Next to syntax validation our approach facilitates semantic validation of
keyword file data. From data constraints provided by end-users and the extracted
multiplicity model we generate C# code that validates minimum and maximum
occurrences of keywords within keyword groups and value ranges of numeric
keyword properties. Again, we use T4 to embed validation code within a template
holding the implementation frame of the validation component. As a last step,
we generate a plug-in component which provides convenient access to parsing
and validation facilities. All generated sources are compiled using csc.exe and
packaged and deployed as DLL component.

3.5 End-User Programming of Parser Component

The generated parsing infrastructure does not always handle syntax and seman-
tics of data exchange files correctly. This is due to missing or outdated docu-
mentation, an incomplete example corpus, and specifics in data exchange files
1 http://www.ssw.uni-linz.ac.at/Coco/.

http://www.ssw.uni-linz.ac.at/Coco/

168 G. Fleck et al.

1 Keyword WIRE {

2 WireIdentifier {

3 Name = "Wire identifier"

4 Description = "Wire identifier (e.g. A)"

5 Type = character

6 }

7 InsulatedAxialHeight {

8 Name = "Insulated Axial Height"

9 Description = "The axial height of..."

10 Type = float

11 Unit = "mm"

12 }

13 ...

Listing 1.3. Definition of WIRE keyword in textual DSL

not handled by our extraction mechanism. To keep our approach as general as
possible and overcome shortcomings we let developers of engineering software
assess and complete the automatically recovered language model, see step 5 in
Fig. 1. Developers are experts in the domain of power transformers and typically
have a formal education in physics or mathematics. However, domain experts
are by no means language engineers. Therefore, we present language models in a
textual DSL that abstracts from language engineering specifics (e.g. creation of
production rules, or building a semantic model). Listing 1.3 shows a DSL snippet
of the recovered language model for the WIRE keyword. The textual DSL presents
the model in a declarative style allowing engineers to modify the provided model.

To further improve usability we integrated an editor component for the pre-
sented DSL with a generic editor for keyword files. The editor displays results
of syntactic and semantic validation of an keyword file. Moreover, the editor
can be used to start recovery of a language model by selecting example corpus
and documentation artifacts. As Fig. 2 shows, the automatically recovered lan-
guage model is presented in the textual DSL and can be displayed alongside
with a keyword file. By this, engineers can edit a language model using the DSL,
regenerate and compile parsing infrastructure, dynamically load the generated
DLL components, and explore the new behavior of the parsing component by
example.

4 Evaluation

In this section we present the evaluation of our approach. To evaluate recov-
ery of input grammars for data exchange files used in engineering software we
conducted an industrial case study at Siemens AG Austria, Transformers Weiz.

Improving Quality of Data Exchange Files 169

Fig. 2. Editor for end-user driven language evolution

4.1 Case Study Design

The objective of this case study is to explore and analyze the application of
grammar recovery to data exchange files used at Siemens AG Austria. Moreover,
we want to answer if a domain-specific language is a suitable mean to correct and
complement the automatically extracted grammars. This case study is driven by
the following two research questions (RQs):

RQ1: Can we automatically recover language grammars from documentation
and a corpus of data exchange files? Moreover, to which extend is manual rework
required until a grammar suitable for building tool support exists?

RQ2: Can we present extracted grammars in a domain-specific representation
so that even domain experts are in the position to assess and complete grammars
without assistance from software language experts?

Units of Analysis. The units of analysis of this case study are three different
sets of data exchange files for engineering software P1, P2, and P3. Selection of
programs was mainly driven by a single engineering department. All engineering
software are actively used and evolved for more than 10 years. For each program
we collected an example corpus of data exchange files. Moreover, we collected
current versions of end-user documentation for all programs.

170 G. Fleck et al.

Table 1. Example Corpus and Results for Programs P1, P2, and P3.

Program P1 P2 P3

Keywords expected 39 26 10

Files in documentation 63 21 8

Files in example corpus 11 81 76

Keyword example in corpus 9562 16044 1715

Infrastructure generated Yes Yes Yes

Keywords succ. recovered 46.2% 42.3% 40.0%

E1: Missing properties 28.6% 33.3% 16.7%

E2: Optional properties 23.8% 6.7% 16.7%

E3: Invalid type info 47.6% 26.7% 0.0%

E4: Missing type info 80.9% 26.7% 33.3%

Manual changes/keyword 0.82 0.69 0.2

Data Collection. To answer RQ1 we applied steps 1 to 4 of our approach
as described in Sect. 3. The authors of this paper applied and evaluated recov-
ery of language grammars and generation of parsing infrastructure. We verified
the following: (1) on a coarse level we checked whether the generated parsing
components could be integrated with a generic editing component. This basi-
cally verifies that the generated production rules used by a parser generator,
i.e. CoCo/R, are correct and software integration is working. (2) On the level
of keywords we verified correctness of the recovered grammar by instructing
the generated parsing components to parse keywords found within the corpus
of data exchange files. Parsing errors indicated incorrect grammar recovery. (3)
To further classify errors the authors of this paper analyzed the causes of pars-
ing errors. By this a fine grained classification of errors in grammar rules could
be created. (4) Finally, to detect overly admissive grammar rules we manually
analyzed and evaluated production rules together with lead developers.

To answer RQ2 the lead developer of the components was asked to com-
plete and corrected invalid data using the declarative DSL integrated within the
generic keyword file editor as described in Sect. 3. The experiment was carried
out in collaboration with the authors of this paper.

4.2 Quantitative Analysis

Table 1 presents quantitative data on the three units of analysis. The number
of expected keywords was collected from latest versions of engineering software
and verified by lead engineers of software. Files in example corpus range from 11
to 81. Number of single keyword entries contained within all example files of a
corpus range from 1715 to 16044. Moreover, Table 1 presents quantitative result
for all three units. For all three programs a ready to use parsing infrastructure is
generated. Between 40% to 46.2% of keywords could be correctly recovered with-
out any manual completion and correction of grammars needed. The remaining

Improving Quality of Data Exchange Files 171

keywords contain errors which fall into four different error categories (i.e. E1-
E4). 16.7% to 28.6% of extracted keyword definitions miss specification of one
or more properties. Failing to recovery optionality of properties for a keyword
ranges from 6.7% to 23.8%. For P1 and P2 invalid recovery of type information
was the case in 47.6% and 26.7% of incorrectly recovered keywords. For 26.7% to
80.9% of incorrectly recovered keywords, type information is missing at all. To
quantify effort for completing incorrect grammar rules Table 1 lists the number
of changes experts provided manually. Manual changes range from 0.2 to 0.82
per keyword. The type of change depends on the type of error, e.g. missing prop-
erties were added or invalid type information was corrected. Changes to property
names, descriptions, and units were explicitly excluded from this evaluation.

4.3 Qualitative Analysis

RQ1: Can Automatic Grammar Recovery Be Applied and to Which
Extend Is Manual Rework Required? In general, we state that the pre-
sented approach for grammar recovery is applicable to data exchange files. As we
showed, for all three programs a ready to use parsing infrastructure is generated,
providing definitions for all expected keywords of the analyzed systems. Roughly
40% of recovered grammar rules can be integrated with editing support as is and
do not require manual completion or corrections. However, still the majority of
keyword definitions could not be successfully recovered. Missing property spec-
ifications are mainly due to invalid or outdated documentation (E1). Failing
to recover property specification from documentation leads to wrong assump-
tions during recovery from corpus data. To correctly recover optionality (E2) of
properties from software artefacts, a sufficiently rich and diverse set of example
data is needed. Our data sets failed to provide this diversity. A large part of
errors refers to invalid (E3) or missing type information (E4). Again, missing
type information can be traced back to incomplete example data. If a property
is recovered from documentation, outdated or not, and example data fails to
provide examples, our type inference mechanism cannot deliver results. Invalid
type information is mostly due to inefficiencies and generalizations of our type
inference. Especially structural patterns, e.g. line 4 in Listing 1.1, require specific
information for a single keyword.

RQ2: End-User Driven Grammar Completion. For answering RQ2 we
asked a lead developer to correct and complete the automatically recovered gram-
mars. The expert iterativley updated the language grammar until the grammar
could successfully parse all examples within the corpus. Completion of gram-
mars was carried out under supervision of the authors of this paper. Effort to
complete and correct generated production rules was in all three cases between
1 to 4 h.

Feedback from domain experts revealed that the declarative presentation of
keyword definitions helped to read and update specifications. Moreover, domain
experts noted that editing grammar definitions in a DSL alongside with a running

172 G. Fleck et al.

example helped to understand concepts of the DSL. However, to further improve
acceptance the concrete syntax of the DSL should be redesigned together with
end-users.

In summary, we can state that semi-automatic recovery of grammar from
data exchange files is feasible. Using multiple sources as input for grammar
recovery, i.e. documentation and a corpus of examples files, is found beneficial
for our case. In all three cases the grammar of at least 40% of keywords could be
automatically recovered. Still, roughly 60% of keywords require manual adaption
and correction. This seems rather low when compared to results of approaches
in grammar inferences like [2]. However, approaches which fully automatically
infer grammars often yield overly complex grammars with many production
rules, which are therefore hard to understand and maintain [5]. In comparison,
production rules generated by our approach closely match the structure of a
keyword and therefore can be easily assessed and completed by domain experts.

5 Related Work

Improvement of data exchange, e.g. through standardization of exchange for-
mats, is the goal of many industrial initiatives. Recent advances in the automa-
tion industry resulted in approaches like AutomatationML2 or OPC UA3. For
instance, AutomationML supports standardized data exchange in the engineering
process of production systems [12]. Obviously, in the presented case the support
of these standardized formats would require changes to engineering tools, which
is not desirable. Moreover, data exchange files as used in the presented indus-
trial context are analyzed, extended and manually forwarded by engineers as
command line input of another engineering tool.

Reverse engineering structure of input formats from examples is a well stud-
ied topic in research. [1,3,6], or [11] are only some examples to that. Fisher et
al. [6] for example present a system that automatically infers the structure of an
ad-hoc data source. The system creates format specifications in a data descrip-
tion language (PADS). From PADS descriptions a compiler generates .h and .c
files that together implement the data structures and operations to manipulate
declared types.

A grammar recovery approach used to recover grammar specifications of
online wikis is presented by [14]. Steps are reported to semi-automatically extract
a grammar from a community maintained semi-formal grammar definition using
different notations. Recovery of schema information from XML files is a topic
which is related to our use case. However, syntactic structure is far more stable
than in the presented case. [1] presents an inference approach to recreate XML-
schema definitions from examples. An alternative approach to grammar creation
from examples is the development of grammars by programming-by-example.
In [11] an programming-by-example environment is present that supports the

2 https://www.automationml.org.
3 http://www.opcfoundation.org.

https://www.automationml.org
http://www.opcfoundation.org

Improving Quality of Data Exchange Files 173

synthesis of parsers and lexers from examples. This clearly lowers the threshold
to grammar development, however would still be to high for our case.

6 Threats to Validity

A threat to internal validity is the selection of software systems for which gram-
mar of data exchange files is recovered. Selection was mainly driven by a single
engineering department. Obviously, this bears the risk that structure and con-
tent of data exchange files are more similar than compared to data exchange
files used in software from other engineering departments. We tried to mitigate
this risk by scanning structure of data exchange files from various other software
systems, however an in-depth analysis like presented in our industrial case study
is missing. Moreover, manual review of production rules bears the risk of being
incomplete or erroneous.

Evaluation of the presented DSL bears several risks. Studies on best practices
for DSL development [4] show that usability evaluations should be executed at
early design stages and involvement of end-users is recommended for the develop-
ment of a DSL. Evaluation of the presented DSL by end-users was only performed
during the course of this case study and no feedback has been incorporated into
language design. Experts to complete grammars using the DSL comprised users
which were involved during initial discussion of the approach. Therefore, biased
feedback of end-users is a risk.

7 Conclusion

In this paper we present our approach to improve quality of data exchange files
used in engineering software. To support the manual creation of data exchange
files, high quality editor support needs to provide syntactic verification by means
of language grammars. To lower effort for the creation of grammars of data
exchange file formats, we propose to create parsing infrastructure by a combi-
nation of semi-automatic grammar recovery [9] and end-user driven completion
of grammars.

Obviously, our approach is largely influenced by concepts and ideas of gram-
mar recovery [9]. In the presented industrial context, grammar recovery seems
promising for several reasons. First, the effort to manually create grammars
would overburden affected engineering departments. Moreover, software devel-
opers responsible for targeted programs are no experts in language engineer-
ing, and therefore the threshold to build infrastructure to parse end verify data
exchange files by means of context-free grammars seemed too high.

However, from previous experiments [5] we have learned that we need to
include software developers in the process of grammar creation. Approaches
which fully automatically infer grammars from existing software artefacts (e.g.
data, source code, documentation) exist, however often yield complex grammars,
which are hard to understand and maintain. In the presented industrial context
this was a show stopper for these approaches. To facilitate the maintenance and

174 G. Fleck et al.

evolution of grammars, we enable domain experts with no language engineer-
ing skills to actively contribute in the assessment and completion of recovered
grammars by means of a DSL.

The presented approach recovers grammars and validation code from a corpus
of example files and end-user documentation. Other sources information on the
structure of data-exchange files were not considered. For instance, the engineer-
ing tools itself could be used as a source for grammar recovery. As shown in [7] a
combination of static and dynamic analysis can be used to recover understand-
ing of legacy source code. For the presented context this would mean to analyze
fortran implementations of parsing components used in engineering tools.

The main reason to conduct this case study was to answer whether semi-
automatic grammar recovery could substantially lower the effort for gram-
mar creation and maintenance in the presented industrial context. Grammars
extracted from documentation and example input data are sufficiently rich and
correct to let domain experts assess and complete grammars. From the presented
cases and feedback from stakeholders in Siemens AG Austria we conclude, that
the approach is suitable to be rolled out to other engineering software. will be fur-
ther improved by including static analysis of source code, e.g. to derive property
types, within our automatic extraction process. Most importantly, we want to
pick up feedback from end-users to redesign concrete representation of the DSL
and include long-term evaluation of usage within the provided infrastructure.

Acknowledgment. The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry for
Digital and Economic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH.

References

1. Chidlovskii, B.: Schema extraction from XML data: a grammatical inference
approach. In: KRDB 2001 Workshop (Knowledge Representation and Databases
(2001)

2. Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI),
vol. 6339, pp. 24–37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15488-1 4

3. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS 2008, pp. 391–402. ACM,
New York (2008). https://doi.org/10.1145/1455770.1455820

4. Czech, G., Moser, M., Pichler, J.: A systematic mapping study on best practices for
domain-specific modeling. Softw. Qual. J. (2019). https://doi.org/10.1007/s11219-
019-09466-1

5. Exler, M., Moser, M., Pichler, J., Fleck, G., Dorninger, B.: Grammatical inference
from data exchange files: an experiment on engineering software. In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 557–561, March 2018. https://doi.org/10.1109/SANER.2018.
8330259

https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1145/1455770.1455820
https://doi.org/10.1007/s11219-019-09466-1
https://doi.org/10.1007/s11219-019-09466-1
https://doi.org/10.1109/SANER.2018.8330259
https://doi.org/10.1109/SANER.2018.8330259

Improving Quality of Data Exchange Files 175

6. Fisher, K., Gruber, R.: Pads: a domain-specific language for processing ad hoc
data. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2005, pp. 295–304. ACM, New York
(2005). https://doi.org/10.1145/1065010.1065046

7. Kirchmayr, W., Moser, M., Nocke, L., Pichler, J., Tober, R.: Integration of static
and dynamic code analysis for understanding legacy source code. In: 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
543–552, October 2016. https://doi.org/10.1109/ICSME.2016.70

8. Ko, A.J., et al.: The state of the art in end-user software engineering. ACM Com-
put. Surv. 43(3), 21:1–21:44 (2011). https://doi.org/10.1145/1922649.1922658

9. Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract. Exp.
31(15), 1395–1448 (2001). https://doi.org/10.1002/spe.423

10. Lämmel, R., Zaytsev, V.: Recovering grammar relationships for the java language
specification. CoRR abs/1008.4188 (2010). http://arxiv.org/abs/1008.4188

11. Leung, A., Lerner, S.: Parsimony: An IDE for example-guided synthesis of lexers
and parsers. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, pp. 815–825. IEEE Press, Piscataway
(2017)

12. Lüder, A., Schmidt, N., Drath, R.: Standardized information exchange within pro-
duction system engineering. In: Biffl, S., Lüder, A., Gerhard, D. (eds.) Multi-
Disciplinary Engineering for Cyber-Physical Production Systems, pp. 235–257.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9 10

13. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005). https://doi.org/10.1145/
1118890.1118892

14. Zaytsev, V.: Mediawiki grammar recovery. CoRR abs/1107.4661 (2011). http://
arxiv.org/abs/1107.4661

https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1109/ICSME.2016.70
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1002/spe.423
http://arxiv.org/abs/1008.4188
https://doi.org/10.1007/978-3-319-56345-9_10
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
http://arxiv.org/abs/1107.4661
http://arxiv.org/abs/1107.4661

Containers in Software Development:
A Systematic Mapping Study

Mikael Koskinen1(&) , Tommi Mikkonen2 ,
and Pekka Abrahamsson1

1 Faculty of Information Technology, University of Jyväskylä,
Jyväskylä, Finland

mikael.koskinen@student.jyu.fi,

pekka.abrahamsson@jyu.fi
2 Department of Computer Science, University of Helsinki, Helsinki, Finland

tommi.mikkonen@helsinki.fi

Abstract. Over the past decade, continuous software development has become
a common place in the field of software engineering. Containers like Docker are
a lightweight solution that developers can use to deploy and manage applica-
tions. Containers are used to build both component-based architectures and
microservice architectures. Still, practitioners often view containers only as way
to lower resource requirements compared to virtual machines. In this paper, we
conducted a systematic mapping study to find information on what is known of
how containers are used in software development. 56 primary studies were
selected into this paper and they were categorized and mapped to identify the
gaps in the current research. Based on the results containers are most often
discussed in the context of cloud computing, performance and DevOps. We find
that what is currently missing is more deeply focused research.

Keywords: Containers � Software engineering � Systematic mapping studies

1 Introduction

Over the past decade, continuous software development has become a common place in
the field of software engineering. New toolchains have emerged to manage the com-
plexity in continuous deployment activity. Containers are a lightweight solution that
developers can use to deploy and manage applications [1]. Containers are often seen as
a more light-weight alternative to Virtual Machines (VMs) [2]. Virtual Machines
include the operating system where containers don’t, allowing the containers to provide
system resource usage advantages when compared against VMs [3].

The usefulness of containers is not limited to them being a more lightweight
version of Virtual Machines. One interesting feature of the containers is that they
provide portability [1] and thus modularity, making them suitable for working as
software components [4] or as autonomous microservices [5]. When software systems
grow, they encounter three problems:

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 176–191, 2019.
https://doi.org/10.1007/978-3-030-35333-9_13

http://orcid.org/0000-0003-2880-2809
http://orcid.org/0000-0002-8540-9918
http://orcid.org/0000-0002-4360-2226
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_13

1. Maintaining the software becomes harder
2. Adding new features to the system slows down
3. The resource requirements for the software grow

One option to address these problems is to make systems modular [6]. In modular
systems software is split into smaller modules and the full software systems are built by
combining different modules [7]. Component-based software architecture and
microservice architecture allow developers to build more modular software [7, 8]. In
component-based architecture systems are created by connecting different software
components [9]. Components are required when the system is compiled, and they are
loaded when the system starts. Because of this, component-based systems don’t help
with the growing resource requirements, but it makes maintaining the software easier.

Similar to components, microservices are autonomous services that together fulfill a
business requirement [5]. Also, like component-based architecture, each microservice
is required for the system to be fully functional. Since containers are not compiled as
part of the software system, they could be used as way to build plug-in based archi-
tecture where containers-based plugins could provide new functionality into existing
software and they could be added and removed runtime [10–12]. Based on our
observation, containers are used to build both component-based architectures and
microservice architectures [1, 5]. Still, containers are often viewed as way to lower
resource requirements compared to Virtual Machines [3].

As using containers in software development is a new research area, the need for a
systematic mapping study is crucial in order to summarize the progress so far and
identify the gaps and requirements for future studies. In this paper we present a sys-
tematic mapping study of how containers are used in software development. In this
research, we conducted a systematic mapping study to find information for the key
question: What is currently known of how containers are used in software devel-
opment. This paper is the first part of a larger study. The aim of this study is to learn if
containers are used mainly as a lightweight replacement for the virtual machines or if
their portability and low resource usage is used to build container-based software
components. Next parts of this study will include a multi-vocal study [13] and a case-
study [14].

The rest of this paper is structured as follows. Section 2 introduces the research
methodology. Section 3 presents our key results. Section 4 provides discussion based
on the results. Section 5 presents threats to validity of this research. Section 6 draws
conclusions.

2 Research Methodology

Systematic Mapping Study (SMS) [15] is used in this paper to identify the gaps in the
literature and identify where new or better primary studies are needed for using con-
tainers. This paper follows systematic mapping guidelines provided by [15–18].

The process of systematic mapping study can be split into multiple phases:

1. Defining the research questions
2. Conducting search

Containers in Software Development: A Systematic Mapping Study 177

3. Study selection (Screening the papers)
4. Defining the classification scheme
5. Data extraction
6. Systematic mapping of the data using the classification scheme

The following Fig. 1 illustrates the process of this systematic mapping study:

The following sections are used to describe SMS from this study’s perspective.

2.1 Definition of Research Questions

First task was the definition of research question (RQ). The research questions are listed
in Table 1.

2.2 Conduct Search

After defining the research questions relevant search terms and data sources were
defined.

Fig. 1. Systematic mapping study process

Table 1. Research questions

RQ
number

Question Motivation

RQ 1 How Containers are used in Software
Development?

The question allows us to get the what is
known of how containers are used in
software development. What
technologies are used and what software
development problems are containers
used to tackle

RQ 1.1 Are containers used to modularize
software system, either through
component-based architecture or
through microservices architecture?

Based on our observation, containers
could be used to architecture software
systems. Still, the practitioners mostly
seem to discuss containers as a
technology for handling software’s
infrastructure

RQ 1.2 Are containers used to provide
plugin-support for software systems?

Based on our observation, containers
could be used to extend existing plugin-
architecture based software systems

178 M. Koskinen et al.

Search Terms. Without correct search terms correct literature and research cannot be
found. Table 2 lists the search terms used in this study. The following steps were used
to create the search terms, as defined in [19]:

• Derive major terms from the questions by identifying the population, intervention
and outcome.

• Identify alternative spellings and synonyms for major terms.
• Check the keywords in any relevant papers we already have.
• Use the Boolean OR to incorporate alternative spellings and synonyms.
• Use the Boolean AND to link the major terms from population, intervention, and

outcome.

Data Sources and Search Criteria. For this research only formal data sources were
considered. These included papers and journals from the four digital libraries:
IEEEXplorer, ScienceDirect, SpringerLink and ACM Digital Library. The reason for
selecting these sources is that they are important sources of computer science related
research. Search terms were matched against title, keywords and abstract.

The search was performed between 22th of May and 5th of June in 2019. In total
3504 results were found. Results were exported into bibtex-format and loaded into
reference manager (Table 3).

Study Selection. After finding the initial results, the next phase of the SMS was study
selection. The main goal of the study selection is to find select relevant studies that
properly address the research questions. As displayed in Table 4, in this study 5
inclusion criteria and 7 exclusion criteria were used.

Table 2. Search terms

“container” OR “containers” OR “docker” OR “Kubernetes”
AND
“software engineering” OR “software design”

Table 3. Results before study selection process

Library Results

IEEEXplorer 120
ScienceDirect 1095
SpringerLink 889
ACM Digital Library 1400

Containers in Software Development: A Systematic Mapping Study 179

Of the 3504 results, 60 were removed as duplicates. Two-step selection process was
used to filter out the irrelevant studies for this paper. First of each study the title was
reviewed using inclusion and exclusion criteria. Each excluded study was marked as
such. After this step, 3308 studies were filtered out and the second step was applied to
the remaining 136 studies. In this step of each study abstract was skimmed through. In
this second step, 80 studies were excluded.

In total, 56 studies [20–75] were selected as the primary studies of this paper.

Classification Schema. The selected primary studies and the research questions were
used to create the classification scheme for this study. Based on a qualitative assess-
ment, research classification approach from [76] was used to classify the papers. The
classifications are listed in more detail in Table 5.

Data Extraction. After using the primary studies and the research questions to create
the classification schema, relevant data was extracted from the studies based on the
classification schema. Title, author (first), year of publication, keywords, abstract and
research type were extracted from each paper.

Table 4. Study selection criteria

Inclusion criteria Exclusion criteria

• Studies that are presented as full
paper

• Studies that focus on using modern
containers in software development

• Studies that compare containers and
virtualization

• Studies that are related to Docker
• Studies that are related to Kubernetes

• Studies that are duplicate
• Studies that are presented as short paper
• Studies that do not provide abstract
• Studies that are not peer-reviewed
• Studies that are not written in English
• Studies that are not related to the software
engineering

• Studies that are not related to modern Docker-
style containers. For example, articles related to
Java containers or Inversion of Control Containers

Table 5. Research type facet adapted from [76]

Research type Description

Evaluation
research

Type of paper which investigates a problem in practice

Solution
proposal

A paper which presents a solution for a problem. Benefits of the solution
are described

Validation
research

Paper which investigates the properties of a solution that has not yet been
implemented

Experience
report

Paper based on work done in practice. Describes what and how something
has been done personally by the author

Opinion Paper based on the opinion of the author. Opinion articles do not rely on
research methodology

180 M. Koskinen et al.

3 Results

In this section the results are presented found in this mapping study are presented. Of
the initial amount of 3504 papers, 56 were selected as the primary papers for this study.

Papers were mapped into the classification schema presented earlier in this study.
The results presented in Fig. 3 of this mapping indicate that solution proposal is the
most common paper when containers are discussed.

Experience reports and evaluation research complete the top 3 of research types.
Also, few validation research and opinion papers were found. Next, results are vali-
dated against the research questions.

Fig. 2. Articles by year

Fig. 3. Paper research types

Containers in Software Development: A Systematic Mapping Study 181

3.1 RQ 1 How Are Containers Used in Software Development?

First research question was set to assess how containers are used in software devel-
opment. The initial opinion of this study was that containers are often used as a
lightweight alternative to virtual machines.

Keywords were extracted from each article’s title and abstract. These keywords
were then grouped together into different categories which were identified by gener-
alizing the keywords. Table 6 presents the list of generalized categories. Each study
belongs to one or more categories.

Based on the results, containers are most often discussed in relation to cloud
computing, performance and devops (Fig. 4). More than 50% of the papers discussed
containers in context of cloud computing. Performance related aspects and devops
discussed in 45% of the papers. Most of the papers do not focus on a single category.
Instead, only 13 papers belong to a single category as shown in Table 7.

Table 6. Categories

Focus Keywords

Software
components

Modules, Packages, Artifacts, Bundle, Component

Cloud
computing

Cloud, PaaS, SaaS, Cloud Infrastructure, Cloud environment, Cloud
platforms

DevOps DevOps, CI, CD
Performance Scalability, I/O, CPU, Scaling, Replication, resources, GPU, Resource

contention, performance
Security Security, Password, Secure
Microservices Microservice-architecture, Microservices, Micro-service
Legacy software Modernization, Legacy
Orchestration Orchestration, Docker Swarm, Kubernetes
Testing Testing, Benchmark, Software Quality
IoT IoT, Internet of Things
Plugin Plugins, Addon, Extensions
Virtualization Virtualization, Virtual Machine, VM

Table 7. Number of categories and number of papers

of categories # of papers

2 14
3 14
1 13
4 8
6 4
5 3

182 M. Koskinen et al.

If we look at specific technologies (Fig. 5) and companies discussed in the papers,
we can see that Docker dominates the field. More than 57% of articles mention Docker
in their abstract or in their title.

Fig. 4. Articles by categories

Fig. 5. Articles by container technology or organization

Containers in Software Development: A Systematic Mapping Study 183

3.2 RQ 1.1 Are Containers Used to Modularize Software System, Either
Through Component-Based Architecture or Through Microservices
Architecture?

The motivation of the first sub research question was to find out if containers are
discussed in relation of software architecture. 16 of the 56 papers discuss containers
from software component’s point of view. Also, microservices are discussed in 15
papers (Fig. 4). This clearly indicates that containers used to modularize software
system, either through component-based architecture or through microservices
architecture.

3.3 RQ 1.2 Are Containers Used to Provide Plugin-Support for Software
Systems?

The motivation of the second sub research question was based on our observation that
containers could be used to extend existing plugin-architecture based software systems.
Even though 20% of the articles mentioned software components, we didn’t find any
indications that containers are used to create plugin-based software architecture.

4 Discussion

The implications of this systematic mapping study are described in the following sub
sections.

4.1 Research in Using Containers in Software Development

Results indicate that the number of container related articles is growing (Fig. 2). 70%
of the studies have been released between 2017 and 2019. There are multiple indicators
that research on using containers in software development is a new research area:

1. First primary study found for this research is from 2010.
2. Number of research papers is rapidly growing.
3. Current research often covers multiple software development categories instead of

focusing into a single category.
4. Research papers often start by describing what software containers are. This is an

indication that the technology is seen as new by researchers and an introduction to
the technology is required.

5. Most of the research focuses on a single container technology, Docker.

In summary it can be said that containers are a new research area. The amount of
research has been growing steadily and there’s no indication that in 2019 research
related to containers is going to slow down (Fig. 6).

184 M. Koskinen et al.

4.2 More Focused Research

Only 13 of the selected 56 primary studies focus their research on one category. 52% of
the primary studies are related to three or more categories. It’s clear that there is room
for more focused research. Many of the categories are large topics and instead of
research covering multiple large categories, research could focus on a single category
like container security, container performance and using containers for devops.

4.3 Potential Research Avenues

As seen in Fig. 4, cloud computing, devops and performance related discussion are
most common in current container research. There are multiple gaps or less-researched
categories which provide potential research avenues:

• Container security
• Legacy applications and containers
• Container-based plugin technologies

Solution proposals, experience reports and evaluation research are currently the
most popular research types. Together they make 88% of the primary studies selected
for this research. This may indicate that containers are currently used to solve existing
problems related to software development. The lack of validation research supports this
as validation research could be used to test new ideas.

Figure 5 shows that Docker is the dominant technology used in research. Even
though there are studies like [74] which compare Docker to other container tech-
nologies, there’s room for more research. Best practices-based papers are helpful for
the industry: they help those organization who are already using containers and those
who are just starting to use them. Only [35] provides best practices of using containers.

Fig. 6. Trends of using containers in software development

Containers in Software Development: A Systematic Mapping Study 185

5 Threats to Validity

In this section the threats of validity of this research are discussed. Also selected
mitigation strategies are discussed. Three potential threats of validity were identified:

Search. This study is based on the search results provided by research databases and
their search engines. Because of this, the results are subject to the limitations of the
search engines. We mitigated this by using four different research databases.

The keywords selected for this study are subject to search term bias. Two different
container related technologies were named in the search terms and this may have
affected search results, causing these two technologies to be more prevalent in the
search results. Search term bias was mitigated by including generic search terms.

Identification of the Primary Studies. The selected inclusion and exclusion criteria
listed in Table 4 may have affected the identification of the primary studies. For
example, only papers written in English were selected. Also, not all the studies related
to containers in software development are available from the used research databases.
Risk of excluding primary studies was mitigated by using multiple research databases.

Data Extraction. Categories in chapter 7 were selected by the researcher after key-
words were extracted. Researcher acknowledges that if there are errors in keyword
extraction, this may invalidate the categorization of the keywords. To mitigate the
keyword extraction and categorization, keywords were extracted multiple times and the
selected categories were identified only after keyword extraction.

6 Conclusion

This paper is a part of larger study. The aim of the study is to learn if containers are
used mainly as a lightweight replacement for the virtual machines or if their portability
and low resource usage is used to build container-based software components. In this
paper a systematic mapping was performed to examine what is known of how con-
tainers are used in software development. The next part of this research is a multi-vocal
study. The research will conclude with a case study.

Four research databases were used to locate 3504 papers of which 56 were selected
as the primary studies. The results indicate that cloud computing, devops and perfor-
mance are the driving forces of container related discussion. Of the 56 primary studies
52% discussed cloud computing, 48% performance and 45% devops. Docker is cur-
rently the leading technology in container-based software development. 57% of the
papers mentioned Docker in their title or in their abstract. Other container related
technologies were mentioned at most in 7% of the papers.

As an answer to RQ 1.1, 55% of the primary studies mentioned software com-
ponents or microservices. This clearly indicates that containers are used to modularize
software system, either through component-based architecture or through microservices
architecture. As the examination of RQ 1.2 indicated, no papers discussing the usage of
containers for plugin-based architectures were found.

186 M. Koskinen et al.

The findings of this paper indicate that using containers in software development is
a new research area. Most of the studies don’t focus on a single software development
category. Instead, they often present introduction on what containers are, clearly
indicating that software containers are seen as a new technology. Also, best practices-
based research is not yet widely available.

References

1. Paraiso, F., Challita, S., Al-Dhuraibi, Y., et al.: Model-driven management of docker
containers, pp. 718–725. IEEE (2016)

2. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs Containerization to support PaaS,
pp. 610–614. IEEE Computer Society, Washington, DC (2014)

3. Hoenisch, P., Weber, I., Schulte, S., Zhu, L., Fekete, A.: Four-fold auto-scaling on a
contemporary deployment platform using docker containers. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 316–323. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0_20

4. Lau, K.-K., Wang, Z.: Software Component Models. TSE 33(10), 709–724 (2007). https://
doi.org/10.1109/TSE.2007.70726

5. Jaramillo, D., Nguyen, D.V., Smart, R.: Leveraging microservices architecture by using
Docker technology, pp. 1–5. IEEE (2016)

6. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and comments
on program comprehension, pp. 215–223. IEEE Press, Piscataway (1981)

7. Card, D.N., Page, G.T., McGarry, F.E.: Criteria for software modularization, pp. 372–377.
IEEE Computer Society Press, Los Alamitos (1985)

8. Völter, M.: Pluggable component – a pattern for interactive system configuration
9. Crnkovic, I.: Component-based software engineering? New challenges in software

development (2003)
10. Birsan, D.: On plug-ins and extensible architectures. Queue 3(2), 40–46 (2005). https://doi.

org/10.1145/1053331.1053345
11. Mayer, J., Melzer, I., Schweiggert, F.: Lightweight plug-in-based application development.

In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 87–102.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-5_9

12. Marquardt, K.: Patterns for Plug-Ins. In: EuroPLoP (1999)
13. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and

conducting multivocal literature reviews in software engineering. Inf. Softw. Technol. 106,
101–121 (2019). https://doi.org/10.1016/j.infsof.2018.09.006

14. Eisenhardt, K.: Building theory from case study research. Acad. Manag. Rev. 14, 532–550
(1989). https://doi.org/10.2307/258557

15. Petersen, K., Feldt, R., Mujtaba, S., et al.: Systematic mapping studies in software
engineering, pp. 68–77. BCS Learning & Development Ltd., Swindon (2008)

16. Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical report EBSE-2007-01 (2007)

17. Kitchenham, B., Charters, S.: Systematic reviews (2009). https://www.york.ac.uk/crd/
guidance/

18. Kitchenham, B., Brereton, P.: Using mapping studies in software engineering. Inf. Softw.
Technol. 55(12), 2049–2075 (2013). https://doi.org/10.1016/j.infsof.2013.07.010

Containers in Software Development: A Systematic Mapping Study 187

http://dx.doi.org/10.1007/978-3-662-48616-0_20
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1145/1053331.1053345
http://dx.doi.org/10.1145/1053331.1053345
http://dx.doi.org/10.1007/3-540-36557-5_9
http://dx.doi.org/10.1016/j.infsof.2018.09.006
http://dx.doi.org/10.2307/258557
https://www.york.ac.uk/crd/guidance/
https://www.york.ac.uk/crd/guidance/
http://dx.doi.org/10.1016/j.infsof.2013.07.010

19. Kitchenham, B.A., Mendes, E., Travassos, G.H.: Cross versus within-company cost
estimation studies: a systematic review. TSE 33(5), 316–329 (2007). https://doi.org/10.1109/
TSE.2007.1001

20. Stillwell, M., Coutinho, J.G.F.: A DevOps approach to integration of software components
in an EU research project. In: Proceedings of the 1st International Workshop on Quality-
Aware DevOps, pp. 1–6. ACM, New York (2015)

21. Tuo, F., Bai, Y., Long, S., et al.: A new model of docker-based E-learning in Hadoop. In:
Proceedings of the 2018 International Conference on Distance Education and Learning -
ICDEL 2018, pp. 22–31. ACM Press, New York (2018)

22. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based technologies
for the cloud. Future Gener. Comput. Syst. 68, 175–182 (2017). https://doi.org/10.1016/j.
future.2016.08.025

23. Telschig, K., Schonberger, A., Knapp, A.: A real-time container architecture for dependable
distributed embedded applications. In: 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE), pp. 1367–1374. IEEE (2018)

24. Syed, M.H., Fernandez, E.B.: A reference architecture for the container ecosystem. In:
Proceedings of the 13th International Conference on Availability, Reliability and Security,
pp. 1–6. ACM, New York (2018)

25. Rahman, M., Chen, Z., Gao, J.: A service framework for parallel test execution on a
developer’s local development workstation. In: Proceedings - 9th IEEE International
Symposium on Service-Oriented System Engineering, IEEE SOSE 2015, vol. 30, pp. 153–
160 (2015)

26. Kratzke, N.: About the complexity to transfer cloud applications at runtime and how
container platforms can contribute? In: Ferguson, D., Muñoz, V.M., Cardoso, J., Helfert, M.,
Pahl, C. (eds.) CLOSER 2017. CCIS, vol. 864, pp. 19–45. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94959-8_2

27. Song, M., Zhang, C., Haihong, E.: An auto scaling system for API gateway based on
Kubernetes. In: 2018 IEEE 9th International Conference on Software Engineering and
Service Science (ICSESS), pp. 109–112 (2018)

28. Cito, J., Schermann, G., Wittern, J.E., et al.: An empirical analysis of the docker container
ecosystem on GitHub. In: IEEE International Working Conference on Mining Software
Repositories, pp. 323–333. IEEE Press, Piscataway (2017)

29. Zhang, Y., Yin, G., Wang, T., et al.: An insight into the impact of dockerfile evolutionary
trajectories on quality and latency. In: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1, pp. 138–143. IEEE (2018)

30. Naughton, T., Sorrillo, L., Simpson, A., Imam, N.: Balancing performance and portability
with containers in HPC: an OpenSHMEM example. In: Gorentla Venkata, M., Imam, N.,
Pophale, S. (eds.) OpenSHMEM 2017. LNCS, vol. 10679, pp. 130–142. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73814-7_9

31. Naik, N.: Building a virtual system of systems using docker swarm in multiple clouds. In:
ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings Papers,
pp. 1–3 (2016)

32. Shah, J., Dubaria, D.: Building modern clouds: using Docker, Kubernetes & Google cloud
platform. In: 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), p. 184. IEEE (2019)

33. Klinaku, F., Frank, M., Becker, S.: CAUS: an elasticity controller for a containerized
microservice. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pp. 93–98. ACM, New York (2018)

188 M. Koskinen et al.

http://dx.doi.org/10.1109/TSE.2007.1001
http://dx.doi.org/10.1109/TSE.2007.1001
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1007/978-3-319-94959-8_2
http://dx.doi.org/10.1007/978-3-319-94959-8_2
http://dx.doi.org/10.1007/978-3-319-73814-7_9

34. Kehrer, S., Riebandt, F., Blochinger, W.: Container-based module isolation for cloud
services. In: 2019 IEEE International Conference on Service-Oriented System Engineering
(SOSE), pp. 177–186 (2019)

35. Berger, C., Nguyen, B., Benderius, O.: Containerized development and microservices for
self-driving vehicles: experiences & best practices. In: Proceedings - 2017 IEEE
International Conference on Software Architecture Workshops, ICSAW 2017: Side Track
Proceedings, pp. 7–12 (2017)

36. Sharma, P., Chaufournier, L., Shenoy, P., et al.: Containers and virtual machines at scale: a
comparative study. In: Proceedings of the 17th International Middleware Conference, pp. 1–
13. ACM, New York (2016)

37. Révész, Á., Pataki, N.: Continuous A/B testing in containers. In: Proceedings of the 2019
2nd International Conference on Geoinformatics and Data Analysis - ICGDA 2019, pp. 11–
14. ACM, New York (2009)

38. Barna, C., Khazaei, H., Fokaefs, M., et al.: Delivering elastic containerized cloud
applications to enable DevOps. In: Proceedings of the 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 65–75. IEEE Press,
Piscataway (2017)

39. Bahadori, K., Vardanega, T.: DevOps meets dynamic orchestration. In: Bruel, J.-M.,
Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 142–154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-06019-0_11

40. Dhakate, S., Godbole, A.: Distributed cloud monitoring using Docker as next generation
container virtualization technology. In: 2015 Annual IEEE India Conference (INDICON),
pp. 1–5 (2015)

41. Naik, N.: Docker container-based big data processing system in multiple clouds for
everyone. In: 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 -
Proceedings, pp. 1–7 (2017)

42. Martin, A., Raponi, S., Combe, T., et al.: Docker ecosystem – vulnerability analysis.
Comput. Commun. 122, 30–43 (2018). https://doi.org/10.1016/j.comcom.2018.03.011

43. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines for
container deployment. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pp. 5–10. ACM, New York (2017)

44. Fokaefs, M., Barna, C., Veleda, R., et al.: Enabling DevOps for containerized data-intensive
applications: an exploratory study. In: Proceedings of the 26th Annual International
Conference on Computer Science and Software Engineering, pp. 138–148. IBM Corp,
Riverton (2016)

45. Santos, E.A., McLean, C., Solinas, C., et al.: How does docker affect energy consumption?
Evaluating workloads in and out of Docker containers. J. Syst. Softw. 146, 14–25 (2018).
https://doi.org/10.1016/j.jss.2018.07.077

46. Zhu, H., Bayley, I.: If Docker is the answer, what is the question?. In: 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pp. 152–163. IEEE (2018)

47. Casalicchio, E., Perciballi, V.: Measuring Docker performance: what a mess!!!. In:
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineer-
ing Companion, pp. 11–16. ACM, New York (2017)

48. Guo, D., Wang, W., Zeng, G., et al.: Microservices architecture based cloudware
deployment platform for service computing. In: Proceedings - 2016 IEEE Symposium on
Service-Oriented System Engineering, SOSE 2016, pp. 358–364 (2016)

49. Shadija, D., Rezai, M., Hill, R.: Microservices: granularity vs. performance. In: Companion
Proceedings of the 10th International Conference on Utility and Cloud Computing, pp. 215–
220. ACM, New York (2017)

Containers in Software Development: A Systematic Mapping Study 189

http://dx.doi.org/10.1007/978-3-030-06019-0_11
http://dx.doi.org/10.1016/j.comcom.2018.03.011
http://dx.doi.org/10.1016/j.jss.2018.07.077

50. Naik, N.: Migrating from virtualization to dockerization in the cloud: simulation and
evaluation of distributed systems. In: Proceedings - 2016 IEEE 10th International
Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Environments, MESOCA 2016, pp. 1–8 (2016)

51. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using
microservices: an experience report. In: Leitner, P. (ed.) Advances in Service-Oriented and
Cloud Computing. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33313-7_15

52. Xu, T., Marinov, D.: Mining container image repositories for software configuration and
beyond. In: Proceedings of the 40th International Conference on Software Engineering: New
Ideas and Emerging Results, pp. 49–52. ACM, New York (2018)

53. Ferrer, A.J., Pérez, D.G., González, R.S.: Multi-cloud platform-as-a-service model,
functionalities and approaches. Procedia Comput. Sci. 97, 63–72 (2016)

54. Zhang, Y., Vasilescu, B., Wang, H., et al.: One size does not fit all: an empirical study of
containerized continuous deployment workflows. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 295–306. ACM, New York (2018)

55. Yarygina, T., Bagge, A.H.: Overcoming security challenges in microservice architectures.
In: 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 11–20.
IEEE (2018)

56. Lv, K., Zhao, Z., Rao, R., et al.: PCCTE: a portable component conformance test
environment based on container cloud for avionics software development. In: 2016
International Conference on Progress in Informatics and Computing (PIC), pp. 664–668
(2016)

57. Wang, B., Song, Y., Cui, X., et al.: Performance comparison between hypervisor- and
container-based virtualizations for cloud users. In: 2017 4th International Conference on
Systems and Informatics (ICSAI), pp. 684–689. IEEE (2017)

58. Heinrich, R., van Hoorn, A., Knoche, H., et al.: Performance engineering for microservices:
research challenges and directions. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion, pp. 223–226. ACM, New York (2017)

59. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice
applications. In: Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, pp. 25–32. ACM, New York (2019)

60. Siami Namin, A., Sridharan, M., Tomar, P.: Predicting multi-core performance: a case study
using solaris containers. In: Proceedings of the 3rd International Workshop on Multicore
Software Engineering, pp. 18–25. ACM, New York (2010)

61. Hassan, F., Rodriguez, R., Wang, X.: RUDSEA: recommending updates of dockerfiles via
software environment analysis. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 796–801. ACM, New York (2018)

62. Gogouvitis, S.V., Mueller, H., Premnadh, S., et al.: Seamless computing in industrial
systems using container orchestration. Future Gener. Comput. Syst. (2018). https://doi.org/
10.1016/j.future.2018.07.033

63. Goldschmidt, T., Hauck-Stattelmann, S.: Software containers for industrial control. In:
Proceedings - 42nd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2016, pp. 258–265 (2016)

64. Yin, K., Chen, W., Zhou, J., et al.: STAR: a specialized tagging approach for Docker
repositories. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC),
pp. 426–435. IEEE (2018)

190 M. Koskinen et al.

http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1016/j.future.2018.07.033
http://dx.doi.org/10.1016/j.future.2018.07.033

65. Benni, B., Mosser, S., Collet, P., et al.: Supporting micro-services deployment in a safer
way: a static analysis and automated rewriting approach. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pp. 1706–1715. ACM, New York (2018)

66. Ye, F., Jing, Z., Huang, Q., et al.: The research of a lightweight distributed crawling system.
In: 2018 IEEE 16th International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 200–204. IEEE (2018)

67. Oh, J., Kim, S., Kim, Y.: Toward an adaptive fair GPU sharing scheme in container-based
clusters. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), pp. 79–85 (2018)

68. López, M.R., Spillner, J.: Towards quantifiable boundaries for elastic horizontal scaling of
microservices. In: Companion Proceedings of the10th International Conference on Utility
and Cloud Computing, pp. 35–40. ACM, New York (2017)

69. Morris, D., Voutsinas, S., Hambly, N.C., et al.: Use of Docker for deployment and testing of
astronomy software. Astron. Comput. 20, 105–119 (2017). https://doi.org/10.1016/j.ascom.
2017.07.004

70. Punjabi, R., Bajaj, R.: User stories to user reality: a DevOps approach for the cloud. In: 2016
IEEE International Conference on Recent Trends in Electronics, Information Communica-
tion Technology (RTEICT), pp. 658–662 (2016)

71. Senington, R., Pataki, B., Wang, X.V.: Using Docker for factory system software
management: experience report. Procedia CIRP 72, 659–664 (2018). https://doi.org/10.1016/
j.procir.2018.03.173

72. Knoche, H., Eichelberger, H.: Using the Raspberry Pi and Docker for replicable performance
experiments: experience paper. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, pp. 305–316. ACM, New York (2018)

73. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a
performance evaluation. IEEE Access 5, 8835–8850 (2017). https://doi.org/10.1109/
ACCESS.2017.2704444

74. Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization techniques compared: performance,
resource, and power usage overheads in clouds. In: Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, pp. 145–156. ACM, New York
(2018)

75. Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In: 2016
IEEE International Symposium on Workload Characterization (IISWC), pp. 1–10. IEEE
(2016)

76. Wieringa, R., Maiden, N., Mead, N., et al.: Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requir. Eng. 11(1), 102–107 (2005)

Containers in Software Development: A Systematic Mapping Study 191

http://dx.doi.org/10.1016/j.ascom.2017.07.004
http://dx.doi.org/10.1016/j.ascom.2017.07.004
http://dx.doi.org/10.1016/j.procir.2018.03.173
http://dx.doi.org/10.1016/j.procir.2018.03.173
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1109/ACCESS.2017.2704444

Technical Debt

Empirical Analysis of Hidden Technical
Debt Patterns in Machine

Learning Software

Mohannad Alahdab1,2(B) and Gül Çalıklı3(B)

1 Chalmers University of Technology, Gothenburg, Sweden
mohannad@student.chalmers.se

2 Cybercom Group, Gothenburg, Sweden
3 Chalmers | University of Gothenburg, Gothenburg, Sweden

gul.calikli@gu.se

Abstract. [Context/Background] Machine Learning (ML) software
has special ability for increasing technical debt due to ML-specific issues
besides having all the problems of regular code. The term “Hidden Tech-
nical Debt” (HTD) was coined by Sculley et al. to address maintainability
issues in ML software as an analogy to technical debt in traditional soft-
ware. [Goal] The aim of this paper is to empirically analyse how HTD
patterns emerge during the early development phase of ML software,
namely the prototyping phase. [Method] Therefore, we conducted a
case study with subject systems as ML models planned to be integrated
into the software system owned by Västtrafik, the public transportation
agency in the west area of Sweden. [Results] During our case study,
we could detect HTD patterns, which have the potential to emerge in
ML prototypes, except for “Legacy Features”, “Correlated features”, and
“Plain Old Data Type Smell”. [Conclusion] Preliminary results indicate
that emergence of significant amount of HTD patterns can occur dur-
ing prototyping phase. However, generalizability of our results require
analyses of further ML systems from various domains.

Keywords: Machine learning · Software maintainability · Hidden
Technical Debt

1 Introduction

Machine Learning (ML) applications have become integral part of software prod-
ucts including recommender systems (e.g., Netflix [2], LinkedIn [3]) and speech
recognition systems (e.g., Apple Siri). Social media platforms such as Facebook
develop ML applications for ranking posts in the news feed, speech recognition,
text translation as well as real-time photo and video classification [4]. Since
ML algorithms are not only being implemented in research labs, it has become
obvious that it is not enough only to focus on prediction performance while
developing ML software [5].
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 195–202, 2019.
https://doi.org/10.1007/978-3-030-35333-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_14

196 M. Alahdab and G. Çalıklı

Since ML software also follows a lifecycle as traditional software does, the
emergence of ML software, also brings maintainability challenges. Maintainabil-
ity of traditional software products is still a challenge, and technical debt is an
obstacle in the way of maintainability. However, existing practices, tools, and
techniques to tackle technical debt are not adequate to overcome the challenges
of ML software maintenance. This is due to the fact that implementation of
ML algorithms is quite different compared to how traditional software is imple-
mented. Traditional software mostly consists of a set of commands that are
implemented by the developer so that the computer can follow and execute
these instructions. On the other hand, ML systems learn what to do from data
input to ML algorithms. ML allows the developer to work fast and the results
can be delivered quickly, but in the long run, it becomes a challenge to maintain
ML software. Sculley et al. [1] coined the term “Hidden Technical Debt” (HTD)
to address challenges in the maintainability of ML software as an analogy to
the concept of technical debt in traditional software. If those HTD patterns are
detected in later stages of ML software development, it might be quite costly
and infeasible to remove them in order to ensure maintainability. Therefore, early
detection of HTD patterns in ML software systems is crucial.

The purpose of this paper is to empirically analyse HTD patterns during
prototyping phase. Empirical analysis of HTD patterns in ML prototypes pro-
vides information to develop methods to detect and remove them. Therefore, we
conducted a case study with subject systems being ML prototypes for empty
parking lots prediction to be integrated into the system owned by Västtrafik. In
the framework proposed by Sculley et al. [1] there are also HTD patterns that
emerge in the final deployed ML system. However, in this paper, we focus on
HTD patterns with the potential to emerge during prototyping phase (Through-
out the paper, we call such HTD patterns “prototype-level HTD patterns). To
summarize, this paper aims to answer the following research question:

RQ1: Which (prototype level) HTD patterns emerge during prototyping
phase?

During the case study, we were able to detect all prototype-level HTD pat-
terns except for “Legacy Features”, “Correlated Features”, and “Plain Old Data
Type Smell”. Our results indicate that majority of these HTD patterns can
emerge even in less complex ML models that are built with small data size and
number of features.

As model complexity, number of features and data size increases, emergence
of these HTD prototypes become more likely, making maintainability issues in
ML software products inevitable. Therefore, detection of these HTD patterns as
early as possible in ML software development lifecycle (i.e., prototyping stage)
is crucial. However, our case study was conducted for a specific case. Therefore,
our results are preliminary and need to be supplemented by analyses of further
ML systems as well as conducting workshops and interviews with practitioners.

The rest of the paper is organised as follows: Sect. 2 mentions related work.
Research methodology is described in Sect. 3 and obtained results are explained
in Sect. 4. Finally, Sect. 5 concludes and mentions future work.

Empirical Analysis of Hidden Technical Debt Patterns in ML Software 197

2 Related Work

As a result of the experience gained through development and deployment of
online advertising systems, D. Sculley and his colleagues at Google came up
with “Hidden Technical Debt” (HTD) framework [1], to address maintainability
issues of ML software. Definition of the HTD patterns that are the focus of
this paper can be found in our online repository1 and also in the original paper
by Sculley et al. [1]. Referring to HTD patterns identified by Sculley et al. [1],
Agarwal et al. [6] proposed a solution to reduce “direct feedback loops”, which
is a HTD pattern that often occurs when the deployed ML software might bias
users’ feedback to the software itself. This in turn, directly affects the selection
of users’ data for future training of that ML software [1]. The solution proposed
by the authors is a complete loop for effective contextual learning consisting of
the phases of deployment, exploring, logging and learning.

Breck et al. [7] indicate that testing and monitoring are crucial in order to
detect and reduce HTD patterns. In order to quantify production readiness of
ML systems and reduce HTD, authors present an ML Test Score rubric based on
a set of actionable tests. There is also emerging research in testing Deep Learning
(DL) systems reducing “prediction bias”, which is a HTD pattern emerging due
to behavioural changes in data. One such study is generating test cases based on
a proposed a metric (i.e., Surprise Adequacy metric) that measures the distance
between the behaviour of the DL model for a test input and behaviour of that
model for inputs that belong to the training set [8].

3 Methodology

During the case study, we analysed prototype-level HTD patterns in ML models
that were developed for Västtrafik in order to predict empty parking lots. ML
models were already developed by the first author approximately two months
before this research study was initiated. Moreover, while developing ML mod-
els, he did not have any knowledge about HTD patterns or how they affect
ML software maintainability. The first author has 8 years of experience in soft-
ware development and he is employed by Cybercom Group, an IT consultancy
company. Västtrafik had outsourced the development of empty parking lot pre-
diction prototypes to Cybercom Group. The prototypes will later be turned into
production code to be deployed as integral part of Västtrafik applications.

Data analysed during this case study consists of artefacts such as ML models
developed, source codes written to pre-process input data and the input data
itself that is used to train and test ML models. Training/testing data contains
about 6 million events that took place between years 2014–2017. Time difference
between consecutive events is 15 min, and each event corresponds to a line in
the dataset that is represented by a set of features values. Information about
the features is given in Table 1. In order to make the features selection effective,
the first author organized the features into feature sets. For instance, features
1 https://github.com/gulcalikli/ProfesShortPaper.

https://github.com/gulcalikli/ProfesShortPaper

198 M. Alahdab and G. Çalıklı

“Weather Temperature” and “Weather Situation” both belong to set A, while
features “Day after holiday” and “Day before holiday” belong to set G. Also,
day and time for each event are separate features and belong to the feature set
H. Each of the remaining features are assigned to a separate feature set.

Table 1. List features used in development of ML prototypes

Set Feature name Range Categorical

A Weather Temperature [−15,30] No

Weather Situation [1,30] Yes

B Day type [0,1,2,3] Yes

C % of free spaces during previous day [0,100] No

D % of free spaces during previous week [0,100] No

E % of free spaces during previous 2 weeks [0,100] No

F % of free spaces during the last 12 h [0,100] No

G Day after holiday [0,1] Yes

Day before holiday [0,1] Yes

H Day name for each event Monday..Friday] Yes

Time for each event [00:00 .. 23:59] Yes

In order to develop ML models, the first author employed boosted decision
tree regression, and forest decision regression, which are among the best per-
forming algorithms for empty parking lot prediction [9] . Sequential Forward
Selection (SFS) feature selection technique was used adding one more feature
set at a time, and this resulted in 16 prototypes, in total. Data corresponding to
years 2014–2016 and year 2017 were used for training and testing models, respec-
tively. Prediction performance of each prototype is shown in Table 2. In order to
develop prototypes of the ML software, as ML framework, the first author used
Microsoft Azure Machine Learning, which is a cloud-based service for predictive
analytics. During the case study, we also used the same ML framework, in order
to develop extra ML models to investigate existence of some HTD patterns. In
the near future, few ML intensive systems will implement ML algorithms from
scratch. Instead, for such systems training will take place in the cloud using
main API and libraries. Most companies do not have enough human resources
with skills required to design and implement ML algorithms. Therefore, there
is a need to provide developers with APIs that allow them to embed ML func-
tionalities into software applications. Moreover, ML systems in the cloud are
cheap to operate in terms of hardware and software. Hence, using a service such
as Microsoft Azure Machine Learning rather than implementing the ML algo-
rithms from scratch is a feature in the design and implementation of this case
study.

Empirical Analysis of Hidden Technical Debt Patterns in ML Software 199

Table 2. Prediction performance results for ML models developed by employing two
different regression algorithms with SFS feature selection technique (MAE: Mean Abso-
lute Error; RMSE: Root Mean Square Error; R2: Coefficient of Determination)

Features set Boosted decision tree Decision forest

MAE RMSE R2 MAE RMSE R2

A 27.80 37.60 −0.090 27.90 40.57 −0.270

A,B 25.50 35.20 0.004 26.60 38.60 −0.150

A,B,C 11.70 20.20 0.680 15.10 24.20 0.550

A,B,C,D 9.67 16.50 0.780 10.45 17.27 0.770

A,B,C,D,E 9.89 16.40 0.790 9.70 16.21 0.800

A,B,C,D,E,F 9.40 15.90 0.800 10.35 17.17 0.770

A,B,C,D,E,F,G 8.89 15.20 0.820 9.23 15.60 0.810

A,B,C,D,E,F,G,H 6.38 11.38 0.900 6.23 12.05 0.880

4 Preliminary Results

This section aims to answer RQ1 by explaining HTD patterns that are discovered
in the ML models we developed, together with the data analysis techniques
we employed to discover those HTD patterns. Table 2 shows prediction results
for the ML models that are trained by incrementing number of features one
feature set at a time according to Sequential Forward Selection (SFS) feature
selection technique [10] for both boosted decision tree regression and decision
forest regression algorithms.

We observed entanglement in the ML models we developed in the form of
addition and removal of features leading to changes in models’ prediction per-
formance. As it can be seen from Table 2, adding features B, C, D and F results
in a significant increase in prediction performance. Similarly, removing features
A, E, G, and H also improves prediction performance. We also developed extra
ML models using only features B, C, D and F resulting in a prediction perfor-
mance of RMSE = 14.4, R2 = 0.84 and RMSE = 13.08, R2 = 0.88 for decision
forest and boosted decision tree regression algortihms, respectively. Hence, using
only features B, C, D and F as input features would be enough and adding the
remaining features is complicating the model without any significant contribu-
tion to the prediction performance. Since the feature bundle consisting of E,
G, and H had no significant effect on the accuracy performance value or the
error percentages, they are bundled features. Moreover, feature A, and each
of the features in the bundled features E, G and H are individually ε−features.
We could not observe any legacy or correlated features. Figure 1 shows ML
prototyping by using all features for “Boosted Decision Tree Regression” and
“Decision Forest Regression” algorithms. In Fig. 1, only “Boosted Decision Tree
Regression” and “Decision Forest Regression” are ML-related modules. Remain-
ing modules, which are marked in Fig. 1, (e.g., Python script, modules to retrieve
data from database and to split data into training/test sets) are all glue code.

200 M. Alahdab and G. Çalıklı

Moreover, all modules make up a pipeline jungle (i.e., output of one mod-
ule is an input to other module(s).). In Fig. 1, there are modules branching out
from the module “Edit Metadata” that are marked in the figure by enclosing
them with a dotted rectangular frame. This group of modules correspond to
the experimentation to develop ML models with all features sets. Although not
shown in Fig. 1, there were similar groups of modules branching out from the
“Edit Metadata” module. Each of these groups of modules, which correspond
to one of the experimentations whose result is listed in Table 2, were the dead
experimental code paths and they were pruned from the experimentation set
resulting in the pipeline jungle shown in Fig. 1.

Regarding abstraction debt, going through the documentations we could
not come across to any design level abstraction making “feature engineering”,
“model definition” and “model training and evaluation” self-contained stages.
On the contrary, these stages are quite coupled such that decision made in one
stage affects the others. For this reason, it requires knowledge and expertise
about the inner-workings of these stages. As mentioned in Sect. 3, first author
had to consult an ML expert for the creation of features using domain knowledge
of data and deciding on ML algorithms to be used with iterations of trial and
error.

Fig. 1. ML model developed using all features resulting in pipeline jungles, and glue
code in the ML model

We could not observe plain old data type HTD pattern, since Azure ML
Studio has a drag and drop user interface and it does not allow the user to
access the source code for ML algorithms. Therefore, we cannot state whether
this HTD pattern exists in our prototypes or not. On the other hand, we were
able to detect multiple language smell, since while building ML models, three

Empirical Analysis of Hidden Technical Debt Patterns in ML Software 201

programming languages were used, which are SQL, Python, and R. Multilan-
guage use is usually inevitable during software development. However, multi-
language use without assessment of project’s language needs is not an ideal SE
practice. While developing the ML prototypes analysed in the case study, first
author had not made any assessment of language needs based on required func-
tionalities taking into account the whole software system. However, Västtrafik
applications are implemented in Java and JavaScript. Hence, this might lead to
difficulties in the integration testing of final software system, unless this HTD
pattern is reduced during production stage before deployment of ML software.
During prototype development, first author tuned hyperparameters to improve
prediction performance. However, this did not result in any improvement, but
led to configuration debt.

In order to investigate emergence of prediction bias in subject systems of
case study, we developed extra ML models in two iterations. First, we trained
and tested models using datasets belonging to years 2014 and 2015, respectively.
Later, models were trained and tested using datasets belonging to years 2014–
2015 and 2016, respectively. We compared prediction performance of these mod-
els with the corresponding subject systems (i.e., models trained and tested with
data belonging to years 2014–2016 and 2017, respectively). As training dataset
size increases covering events that belong to a longer time period, Root Mean
Square Error (RMSE) decreases from 12.55 to 10.48, then increases to 11.25, for
the ML model developed using all features and employing boosted decision tree
regression algorithm. Similarly, RMSE decreases from 13.26 to 10.95 and then
increases to 12.05 when forest decision regression algorithm is employed. Increase
in RMSE as training data size covers a longer time period is due to change in the
data behaviour over time. Data testing debt was observed in the data used to
train and test ML models. For instance, data contained entries with total number
of empty places exceeding parking capacity. In order to detect such irregularities
and remove noise from data, we converted empty parking count into percentages
and set 100% as the maximum value. Also, we implemented an initial data statis-
tics to investigate the data behaviour before starting actual data pre-processing
and developing ML models. Understanding the concept of HTD, investigating
patterns in ML models and realising how HTD patterns affect maintainability
of resulting ML software, required time, effort and thorough discussions among
authors.. It was challenging to link the effects of decisions made to develop ML
algorithms on the resulting ML software that is to be deployed. Since ML mod-
els were developed by a single person, we could observe cultural debt up to
some extent. Observation of cultural debt requires analysis of communication and
interaction among members of teams consisting of ML experts, software/systems
engineers working on the development of ML software.

5 Conclusions and Future Work

In order to explore the emergence of HTD patterns in ML prototypes, we con-
ducted a case study. During our case study, we examined HTD patterns in ML

202 M. Alahdab and G. Çalıklı

models that were developed to predict empty parking lots for Västtrafik. We
were able to detect all prototype-level HTD patterns except for plain old data
type smell, and legacy and correlated features. Our preliminary results indicate
that significant amount of HTD patterns can emerge during prototyping phase
even in less complex ML models that are trained using small data size and num-
ber of features. In commercial ML applications, data size and number of features
used for training purposes can get quite large, and ML algorithms employed can
be quite complex (e.g., deep learning) making them more prone to emergence
of HTD patterns. Therefore, removal/management of HTD patterns as early
as possible in Software Development Life Cycle (SDLC) is crucial in order to
improve ML software maintainability. As future work, firstly we would like to
analyze additional ML software prototypes from various domains. We also would
like to run workshops and interviews with practitioners to share our findings and
get their feedback. In the long run, we will also conduct further case studies to
investigate propagation of HTD patterns to further phases of SDLC as well as
investigating their existence in deployed ML software.

References

1. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Proceed-
ings of NIPS 2015, pp. 2503–2511. MIT Press, Montreal (2015)

2. Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, busi-
ness value, and innovation. ACM Trans. Manag. Inf. Syst. 6(4), 13:1–13:19 (2016)

3. Kenthapadi, K., Le, B., Venkataraman, G.: Personalized job recommendation sys-
tem at LinkedIn: practical challenges and lessons learned. In: Proceedings of 11th
ACM Conference on Recommender Systems, Como, Italy, pp. 346–347 (2017)

4. Hazelwood, K., et al.: Applied machine learning at facebook: a datacenter infras-
tructure perspective. In: IEEE International Symposium on High Performance
Computer Architecture Proceedings, pp. 620–629, Vienna, Austria (2018)

5. Martinez-Plumed, F., et al.: Accounting for the neglected dimensions of AI progress
(2018). https://arxiv.org/abs/1806.00610

6. Agarwal, A., et al.: Making contextual decisions with low technical debt (2017).
https://arxiv.org/abs/1806

7. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ML test score: a rubric
for ML production readiness and technical debt reduction. In: BigData 2018, pp.
1123–1133. IEEE, Boston (2017)

8. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning testing using surprise adequacy.
In: ICSE 2019, pp. 303–314. IEEE, Montreal (2019)

9. Balzer, P.: Prediction of car park occupancy. http://mechlab-engineering.de/2015/
03/vorhersage-derparkhausbelegung-mit-offenen-daten/. Accessed May 2019

10. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining.
Springer, New York (1998). https://doi.org/10.1007/978-1-4615-5689-3

https://arxiv.org/abs/1806.00610
https://arxiv.org/abs/1806
http://mechlab-engineering.de/2015/03/vorhersage-derparkhausbelegung-mit-offenen-daten/
http://mechlab-engineering.de/2015/03/vorhersage-derparkhausbelegung-mit-offenen-daten/
https://doi.org/10.1007/978-1-4615-5689-3

Constraining the Implementation
Through Architectural Security Rules:

An Expert Study

Stefanie Jasser(B)

University of Hamburg, 22527 Hamburg, Germany
jasser@informatik.uni-hamburg.de

Abstract. Today, security is still considered to late in the process of
software engineering. Architectural rules for security can support soft-
ware architects and developers in consciously taking security into account
during design and implementation phase. They allow to monitor a soft-
ware system’s security level. As a step towards monitoring and control-
ling the erosion of an architecture’s security specifications we present a
set of rules derived from well-known security building blocks such as pat-
terns along with our identification process. Through these rules we aim to
support architects in monitoring the implementation’s conformance with
security measures and, hence, in building secure software systems. The
architectural security rules we identified are evaluated through expert
interviews with industrial software engineers.

Keywords: Software architecture · Security by design · Secure
architecture · Security constraints · Architectural constraints ·
Architecture erosion · Architecture violations

1 Introduction

Developing a secure software system is a very challenging task. However, soft-
ware architects and developers usually are not well-educated in designing and
implementing a software system with respect to security. Instead they often have
only superficial knowledge about software security.

Most authors only consider two types of weaknesses in software systems::
security (design) flaws and security (implementation) bugs [1,18]. Security design
flaws are caused on the architecture level. They often have wide impact on a
system: security design flaws do not necessarily break security mechanisms but
allow attackers to bypass security mechanisms. It is challenging to identify and
remedy security design flaws by reason of their wide impact [29]. According to [5]
avoiding security flaws significantly reduces the number and impact of successful
attacks. In contrast, security bugs are weaknesses that are caused at the source
code level. These weaknesses are easier to identify and refactor as their impact
is restricted locally.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 203–219, 2019.
https://doi.org/10.1007/978-3-030-35333-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_15

204 S. Jasser

The authors who only consider security design flaws and security bugs assume
that a secure architecture is implemented correctly, i.e. no flaw-like weaknesses
but only security bugs are introduced during implementation phase. However,
experience shows that the implementation usually diverges from the intended
architecture. The specified architecture reflects the software architect’s intention:
we call it the “intended architecture” or “should-be architecture”. It comprises
the architect’s decisions on security measures. These measures comprise rules
that constrain the software system’s implementation, i.e. software developers
must follow them in order to avoid vulnerabilities. Hence, we consider violations
of architectural security measures as a separate software weakness category. Vio-
lations may have a comparably wide impact on the system and may be identified
as difficultly as security design flaws. To specify these architectural security rules
explicitly would complement the architectural model.

Intended Contributions. In this paper, we give insight on architectural secu-
rity measures and their impact on the implementation. The architectural secu-
rity rules we found can be provided in a public catalogue. The rules contribute
towards methods for security enforcement and, hence, systematic development
of secure software systems.

We also enable architects to expand the rule set by adapting rules or spec-
ifying additional rules using the process we describe in Sect. 2. This process
encapsulates best practices and questions that we gathered during our analysis.

Additionally, we conducted semi-structured expert interviews to assess archi-
tectural rules in general and in detail as well as the identification process we used.
We further asked the participants about the idea of a public rule catalogue.
Besides evaluation of our architectural security rules, the interview results we
present in Sect. 4 contribute to the knowledge on the state of practice.

1.1 Background

Architectural security rules help develop secure software systems. They constrain
the implementation, build security awareness and guide developers in writing
secure code that actually adheres to the architecture’s security measures.

Architecture-Centric Security Analysis of Software. The field of architec-
tural security rules and security conformance checking is related to architecture-
centric security analysis techniques. On the architecture level threat modelling is
the most commonly used security analysis technique. The analysis is done man-
ually mostly [32]. Besides the well-known STRIDE [17] there are others such
as the approach proposed by Berger et al. [6], a tool-supported architectural
risk analysis. Another well-known security modelling and analysis approach is
UMLsec [20]. Despite it can be used on the architecture level, UMLsec is not
explicitly designed for it. This often leads to highly complex specifications.

Security Testing. Architectural security rules are related to security test-
ing approaches as they are a step ahead towards security conformance check-
ing. However, architectural security rules are high-level constraints affecting the

Constraining the Implementation Through Architectural Security Rules 205

implementation. They allow for hybrid enforcement of security principles by
preventive and reactive measures.

Dynamic security conformance analysis is similar to some security testing
approaches. Though, in difference to testing conformance analysis is not limited
to dynamic analysis and a small number of executions: Hybrid approaches allow
to combine the advantages of static and dynamic analysis.

2 Identifying Common Architectural Security Rules

A software architecture defines architectural rules that constrain the software
system’s implementation. This definition may be implicit or explicit. Architec-
tural rules are well known in order to improve a systems maintainability. Most
of these rules are dependency rules like “‘The Data Layer must not access the
Application Layer.”’ in a 3-Tier architecture.

A software architecture should comprise fundamental security measures such
as authentication and authorization concepts which affect the whole system.
These measures define architectural security rules. Architectural security rules
are hardly considered in software engineering, today.

An important goal of this paper is to identify common architectural rules for
security. As such common rules are hardly known today, we need to determine
suitable sources of knowledge to derive such rules from. We use these sources of
knowledge to identify architectural security rules, subsequently.

Database. Sources of common architectural security rules may be diverse: such
rules may be derived from existing software systems, libraries, frameworks, best
practices and other sources of knowledge. As architectural security rules are
rarely specified today, existing software system’s are inappropriate to start with.
Additionally, rules derived from a limited number of existing software systems
may not be valid in general but are system-specific. Unlike specific software
architectures, security best practices such as architecture tactics and patterns
are specified for reusability: They encapsulate security expert’s knowledge and
proven security solutions. We analysed architecture patterns and tactics to iden-
tify popular security rules that are valid for multiple software systems.

To complement the sources we analysed frequent security design flaws [5].
Security design flaws are fundamental security defects that have wide impact and
cause weaknesses in multiple parts of a software system. We identify architectural
security rules that aim to avoid the introduction of weaknesses. Prohibition rules
facilitate the adherence to software security principles.

Identification Process. During our analysis we iteratively found questions
that frequently helped identifying architectural security rules. We grouped these
questions based on the aspects of a knowledge source they focus on1.

1 All guiding questions are available as supplementary material: https://
github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-
PROFES Study Supplementary A.pdf.

https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-PROFES_Study_Supplementary_A.pdf
https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-PROFES_Study_Supplementary_A.pdf
https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-PROFES_Study_Supplementary_A.pdf

206 S. Jasser

Questions 1–4 are of a general nature. They help to identify involved architec-
tural elements, dependencies and assumptions made by a security design pattern
or flaw.

The second group of questions focus on authentication and authorization
mechanisms. These rules are important as the identity and rights of entities form
a basis for most software security functionality. Most of the analysed building
blocks specify some assumptions on the authentication and authorization mech-
anisms they rely on: they specify at least the time when the authentication or
authorization must be validated. However, some sources did not mention authen-
tication or authorization functionality neither implicitly nor explicitly.

The questions 7–9 deal with the system’s control flow. Control flow diver-
gences are of particular importance as they may indicate abnormal or at least
unplanned system behaviour.

The fourth group of questions examine the system’s information flow. They
investigate sensitive or untrustworthy information handled in a knowledge
source. Such information could be user input, personal or mission critical such as
confidential supplier contract conditions, product concepts or salary information

The guiding questions often lead to relevant architectural security rules.
Hence, software architects should pay particular attention to the subjects, the
rules put into focus. Architectural security rules support software engineers in
developing a secure system. However, it is important to specify rules on what
must not happen or exist in addition to what may or must happen or exist.

The provided questions help software architects to identify additional archi-
tectural security rules that they want to enforce, e.g. project-specific rules.
Sources for project-specific architectural security rules usually are an organiza-
tion’s security policy, industry guidelines or requirement specification documents
that deal with security requirements.

Assert Architectural Relevance. Architectural security rules ensure that
the software architecture is correctly implemented. However, architects should
concentrate on security rules that actually are architecturally relevant: If
architecture-level security rules are mixed up with code-level security rules, the
overall number of rules may overcharge software engineers. To identify architec-
turally relevant rules, we use the work of Eden and Kazman [9]: Eden and Kaz-
man present two criteria to distinguish between the architecture and implemen-
tation level. The first criterion deals with a specification’s intension/extension.
According to the authors, an intensional specification has “infinitely-many possi-
ble instances”. All other specifications are extensional. For instance, the rule “No
SecurityLogEntry can be updated or deleted after it has-been stored” based on
the sandbox design pattern is intensional. In contrast, the specification “The
class MailController must not implement cryptographic algorithms itself” is
extensional. The second criterion deals with a specification’s non-locality/locality.
A non-local specification potentially affects all or at least several parts of a sys-
tem. Formally, a specification φ is local if the fact that φ is satisfied in some
design model m implies that it is satisfied by every design model that subsumes
m. Architecture-level specifications are both, intensional and non-local. Speci-

Constraining the Implementation Through Architectural Security Rules 207

fications on the implementation-level are extensional and local. Consequently,
architects should apply the following two questions to all rules identified before:

– Does the rule have a local or a non-local impact?
– Does the rule have an intensional or extensional specification?

3 A Catalogue of Architectural Security Rules

Using the guiding questions we analysed security design patterns and security
design flaws. Overall we derived more about 150 common architectural security
rules. Table 1 presents a selected subset of these architectural security rules.

Most architectural rules used in the context of maintainability today are
dependency rules. For security, we also found other rule types such as Rule 1
which describes the expected system behaviour using temporal relations and
Rule 2 which constrains the information flow. Behavioural rules are important
for security purposes as they describe how the system shall operate and react to
events.

In order to provide the common architectural security rules for multiple soft-
ware architects we designed a public catalogue. This catalogue supports software
engineers in implementing their software system securely. It may also help to
improve software engineer’s awareness for software security and security mea-
sures.

In [12] the Authors present the DecisionBuddy: this tool supports software
architects in making decisions during software development. We plan to extend
this tool with our catalogue.

We plan to integrate both functionalities: we enable software architects to
describe projects including all decisions regarding a software system. For each
decision, related common architectural security rules are provided by the tool.
For instance, if an architect decides to introduce a logging library the tool sug-
gests to apply rules on secure logging behaviour to the project: for instance,
log files should not include sensitive data such as implementation details. Other
rules are proposed for all systems as every system should adhere to them. Many
of these rules are based on security design principles or security design flaws.

Categorizing Architectural Security Rules. As a catalogue contains several
solutions by nature we need to assist software architects in finding appropriate
ones. Rules should be related to their sources: e.g. the rules 8 and 9 should
be related to the checkpoint pattern: when an architect decides to apply this
pattern to a project, he is supported with relevant architectural security rules to
monitor the implementation. Ideally, the catalogue provides an API or at least
a download function for the related rules.

However, we also analysed sources that are applied implicitly to a project:
e.g. security design flaws such as “Authorize after you authenticate” [18]. As
software systems should adhere to these common rules, too, we need additional
categorization.

208 S. Jasser

Table 1. Examples of common architectural security rules.

No. Architectural security rule

1 Every exception must be sanitized before it is returned to the client

2 A sanitized Exception message must not include sensitive business information
or implementation details

3 The validity of successful authentication is limited, i.e. there has to be a
timeout in case the user does not actively log off

4 The user never accesses the session object

5 Every component must log all security-relevant events

6 Every security-relevant log message must be secured

7 A user can only see operations that he/she is authorized for. (limited access
strategy)

8 There is at least one checkpoint initialised for both tasks: authentication and
authorization

9 Every Checkpoint must provide a validation interface

10 Directly after a successful authentication, the user’s authorization is validated

11 Every outbound message is sent from a central point of the system

12 Every outbound message is intercepted before it is sent

13 Messages must not be logged in debug- or info-mode in an operational
environment

14 The system must not provide functionality to decrypt secured log messages

15 No common building blocks are used that have known security issues (level
“critical” or “high”)

16 Building blocks must not send outbound messages (e.g. to the producer)

17 Before a sensitive datum crosses a trust boundary the datums permission and
the initiators rights are validated

18 All sensitive data is encrypted before storing it

19 No two instances of a microservice is deployed on the same (physical or
logical) machine

20 Every validation mechanism should be based on a whitelisting approach. It
may be tightened using a blacklisting approach afterwards

21 The control flow must not start within the sandbox

22 No user can have conflicting rights

During our analysis we found that architectural rules for security can be
structural as well as behavioural or related to a system’s data flow. These
attributes build another categorization for our rules.

Constraining the Implementation Through Architectural Security Rules 209

4 Evaluation

To evaluate our architectural security rules’ relevance and usability in practice
we conducted some semi-structured interviews. We further used the interviews
to assess practicability of our process of finding architectural security rules.

4.1 Study Design

Participant Selection. As we aimed to receive constructive feedback only expe-
rienced software developers and software architects were interviewed. The expe-
rience in software architecture and development ranged from for 3 years up to
more than 25 years. Today, all of them work in Germany, however they are
multinationally software engineers with software development experience from
diverse countries such as the US, Brazil, Argentina, UK, Austria. Most intervie-
wees work in agile mode with their project teams that have 3–150 team members
overall. Table 2 gives an overview of all participants.

Table 2. Interview participants and their characteristics.

Domain Role(s) Experience Team size

A* Enterprise Software engineer 5–10 years 15–25

B Logistics/enterprise Software engineer 5–10 years 15–25

C* Consultant/enterprise Software architect 15–20 years 10–15

D Banking/enterprise Software architect 5–10 years 5–10

E Logistics/enterprise Software architect 5–10 years 25–50

F Insurance/enterprise Software engineer <5 years <5

G* Enterprise Software architect 5–10 years 10–15

H Enterprise Software architect 5–10 years 100–150

I Consultant/enterprise Software engineer >25 years 5–10

J* Enterprise Software architect 10–15 years 10–15

K* Consultant/enterprise Software architect >25 years 50–75

L Consultant/enterprise Software engineer 5–10 years 15–25

*Is a software security expert (e.g. software engineering consultant with a focus
on security)

Interview Guide and Process. We used an interview guide that helped us
in focussing on the relevant issues2. The interview guide comprised four parts:
First, we investigated the participant’s background and experience. We used
this information to identify potential relations of answers to used technologies,

2 https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-
PROFES Study Supplementary B.pdf.

https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-PROFES_Study_Supplementary_B.pdf
https://github.com/Granasteja/Supplementary/blob/master/PROFES-2019/2019-PROFES_Study_Supplementary_B.pdf

210 S. Jasser

company sizes or domains. The second part deals with the examination of archi-
tectural security rules in practice as well as the assessment of the common rules
we identified. The third part was about the identification process. It is asked,
if it was adequate and if it may support software architects to identify project
specific rules. The last part assess the idea of a public catalogue that provides
architectural security rules. It mainly examines, if a catalogue would be helpful
in general and what features the participants need or appreciate for such a cat-
alogue. For this part, we use a paper prototype to get more detailed feedback.
To ensure the interview guide’s understandability it was tested twice.

All interviews took 1 to 2 h. The interviews were conducted either per phone,
Skype or personally. We recorded them to focus on the interview.

Data Analysis. We qualitatively analysed the transcribed interviews using open
coding. Such codes usually are short phrases or single words that summarize an
issue in a essence-capturing way [30]. To allow reusing the codes, we generalized
them after finishing the first transcript. E.g. the statements “[architectural secu-
rity] rules make it easier to implement security functionality correctly” (Partic-
ipant D) and “[architectural security rules] reduce the gap between architecture
design and implementation” (Participant A) both correspond to the open code
abstraction gap.

4.2 Study Results

Architectural Security Rules in General. We evaluated architectural secu-
rity rules separately from the catalogue idea: we aimed to examine the industrial
use of such rules today as well as the utility of the rules we found before. To
assess the rules’ utility we presented 37 architectural security rules during the
interview. The rules were selected with a view to exemplify different rule types.

Nine out of twelve participants do not consider security before testing phase.
Six of them report, that they “do no security testing or analysis [of their software
systems] at all” (Participant I) except testing the authorization policy implemen-
tation. Thus, they do not consider security during software architecture design
and found it “challenging to think about security rules” (Participant F) that
could be specified for their software systems without examples. Nevertheless, all
participants would appreciate an improvement of this state of industrial prac-
tice: common architectural security rules encapsulate security expert’s knowledge
and “reduce the gap between architecture design and implementation.” This helps
software architects and engineers in implementing a secure software system. In
terms of this objective, flaw-based rules are of particular interest because they
hold true for most systems (Participants A, C, D, E, G, H, K). The respondents
agree with the effect of improved security awareness that is achieved by explicitly
specifying architectural security rules (Participants A–K).

The participants A, D, E, G–L (9 out of 12) mentioned lack of resources
to cover the high effort needed when enforce architectural security rules man-
ually: security reviews should be conducted by software security experts for
reliability reasons. However, such experts are rare and expensive today. The

Constraining the Implementation Through Architectural Security Rules 211

participants favour a tool-supported solution that indicates potential violations
and, thus, narrows the manual review scope. This would further improve the
effort/benefit ratio of architectural security rules: “By identifying potential vio-
lations of architectural security rules a [conformance checking] tool can reduce the
manual workload as the review may be restricted to these violations.” (Partici-
pant G) As violations diverge from designed security measures they are potential
vulnerabilities. The participants A, B, D, H, J, K consider it essential to find
such violations as they “may cause fundamental vulnerabilities” (Participant J).

The respondents further agreed that they consider a major initial effort rea-
sonable. However, only A, G and J indicated maximum values between 3 and
5 days for setup. However, the maintenance of the architectural security rules
should be efficient (Participants B–E, I).

During the interview, the participants mentioned a number of potential
impediments to the use of architectural security rules. The following list con-
tains impediments that were stated by at least two participants:

– Intensity of labour for manual security reviews (Participant A, D, E, G–L)
– Lack of security skills may impede the identification and definition of relevant

architectural security rules (Participant A, B, D, F, I)
– Insufficient security requirements specification (e.g. vague or incomplete)

(Participant D, E, G, K)
– Abstract rules are hard to apply to a concrete software project (Participant

C, G, J, K)

4.3 Finding Architectural Security Rules

The second issue we assessed in our interviews is the process we used to identify
architectural security rules.

First, the participants were asked about the used sources of architectural
security rules. The participants stated the common security building blocks,
security design flaws and principles “reasonable as there is a lack of well speci-
fied security measures in most software architectures today. [...] patterns provide
good solutions for recurring security problems” (Participant K). All participants
agreed on this.

Eight out of twelve called the questions in principle “appropriate to guide
[software architects] in identifying further architectural security rules” (Partici-
pant D, analogously participants A, B, C, F, H, I, K). This particularly holds
true for inexperienced software architects as the question groups’ subjects sup-
port them in focussing on frequent security issues. They consider the instruction
to explicitly search for the absence of structures, data or behaviour in addi-
tion to structures, data or behaviour that must or can occur particularly helpful
(Participants B, E, I). However, all participants considered project-specific archi-
tectural security rules rare: most of them expected project-specific refinement or
customization more probable (e.g. defining system specifically sensitive data or
trust levels) (Participants C, D, E, G, H, J, K). Besides this, they found the ques-
tions useful to extend and supplement the set of common architectural security
rules we identified (e.g. by analysing additional sources of security rules).

212 S. Jasser

Five participants have a lot of experience in software security from several
projects (e.g. as consultants or specialists, see Table 2). Some of them suggested
to add another question regarding the malicious or risky events that may occur
(Participants J, K).

The Catalogue of Architectural Security Rules. We used rapid prototyp-
ing to assess the benefit of a catalogue of common architectural security rules.
Ten out of twelve participants consider the catalogue helpful. Yet, they refer
to the assessment of architectural rules in general (see above). The catalogue
idea “would benefit from a [conformance checking] tool” (Participant A), that
can directly access the catalogue: it could search for appropriate architectural
security rules and download them from the catalogue. The rules then can be
used to conduct a conformance check.

We provided some filter options based on the rules’ categorization. Most
participants called them supportive They were considered useful be most partic-
ipants when searching for relevant architectural security rules for their projects.
The participants D, I and L suggested to add additional information on the rule
context (e.g. privacy, authentication and authorization etc.) or related threats
(e.g. using the STRIDE categories).

5 Discussion and Future Work

5.1 Findings on Architectural Security Rules

We found many common architectural security rules that can be applied to mul-
tiple software systems. They are common as they origin from well-tried secu-
rity building blocks such as security tactics and patterns and further common
security knowledge sources like security design flaws. We assess the latter more
important as they indicate violations of fundamental security principles. Rules
derived from security design flaws affect most software systems.

We derived three types of architectural security rules: structural, behavioural
and data-flow related rules. Through further analysis and the interviews we
conducted we found that rules on the system’s security relevant behaviour are
particularly important to enforce a secure system. This is due to the vulnerability
of insecure system behaviour which can be observed and exploited. In contrast,
structural violations may indicate wrong system behaviour but their security
impact is more ambiguous.

The interviewees verified that there is still a lack of security knowledge and
awareness in industrial daily software engineering routine today. This applies in
particular to architecture decisions and measures for security and their enforce-
ment. According to the participants architectural security rules may help to
close this abstraction gap: they increase the software architects’ and developers’
security awareness.

We presented a subset of our architectural security rules to the interviewed
industrial experts. They called the rules sensible and useful for security software
systems. Participants B, D, E, F, H, I, L mentioned, that the rules give them hints

Constraining the Implementation Through Architectural Security Rules 213

on security-relevant aspects on the architecture and the code level they should
pay attention to: “I did not consider log messages from the security perspective
yet as they are protected through access control. However, I got some remarks
from these rules which information should be secured in log messages and what
can be done to do that” (Participant B).

A catalogue supports architects in handling architectural security rules by
providing search functionality to identify rules that apply for a projects current
architecture (e. g. using information on architectural decisions made available
from the DecisionBuddy [12]).

5.2 Towards Monitoring Architectural Security Measures

Today, the rule enforcement is done manually, i. e. by security code reviews.
Due to high effort, we complement our rules with a tool-supported conformance
checking approach. It supports architects in enforcing their intended security
measures and provides valuable feedback to software developers in the early
software development in case the approach is integrated in the daily work.

Formalizing Architectural Rules. To realize tool-support, we extended the
CNL approach of Schröder et al. [33] with language support for temporal rela-
tions (extended CNL, eCNL) [19]. The CNL and, hence, the eCNL is designed
for comprehensibility, expressiveness and flexibility of the architecture concept
and rule specification. We use this eCNL to formally specify the architectural
security rules. Temporal relations are needed to define the behavioural rules we
identified above: e.g. 3 (see Table 1) could be described as: For each security
session that is valid at a time tn there will be a future state tm (m > n) in
which the session will be expired. Using the eCNL this rule could be specified
as follows:

Every SecuritySession that (is-valid at the Time tn) must be a
SecuritySession that (is-invalid in the future).

As another example the following eCNL rule represents rule no. 18 formally:
Every SensitiveData must be encrypted before it is stored.

Identifying Violations. We use a dynamic analysis approach to gather infor-
mation on the system’s actual security architecture: This approach records the
system’s actual security-related behaviour. A knowledge database is build from
this information. Subsequently, we query this knowledge base for violations of
architectural security rules. To enable such queries for rule violation, we need to
map the extracted information on the actual implementation to the architectural
security rule’s concepts. Today, this mapping is done implicitly by the dynamic
data extractor or knowledge base builder, respectively.

Currently, we refine our dynamic analysis approach by adding hybrid anal-
ysis techniques and analyzing additional source artefacts. Using hybrid analysis
techniques enables a more focussed use of overhead causing dynamic analysis,
e.g. by limitation to suspicious objects or system parts. Complementary static

214 S. Jasser

analysis further allows to identify worst case scenarios by considering all poten-
tial execution paths. In the wake of this, we aim to improve the architecture-
to-code-mapping, i.e. the mapping of the intended security architecture that is
represented by our rules and architecture concepts to the actual security archi-
tecture that is represented by the knowledge base.

Controlling Security Erosion. Following the well-known concept “architec-
ture erosion” as in [16,27] we term a system’s total violations of architectural
security rules “security erosion”. This security erosion should not only be mon-
itored but also controlled. Controlling security erosion comprises two general
measures: first, to fix violations of the architectural security rules subsequently
to an analysis regarding their actual security impact. Second, appropriate mea-
sures should be taken to avoid growing security erosion. In the future, we will
intensify our work on an systematic approach for remedy vulnerabilities and
improve a system’s security level.

Threats to Validity. For the evaluation of qualitative research methods well-
established criteria exist, e.g. dependability, transferability and confirmability
[11]. There are different ways to address these criteria: confirmability may be
addressed by gathering feedback on research results. We did this by discussing
our architectural security rules, the identification process and the catalogue idea
with industrial experts. We addressed the dependability/auditability by making
our process clear. Like most qualitative studies, our evaluation has a limited
sample. We argue that this is acceptable as we aimed to gather feedback from
experienced software engineers. To improve transferability, we interviewed indus-
trial experts from different domains and companies.

Yet, the interviews may have been biased by the architectural security rules
that we pre-selected for evaluation. We respond to this by consciously choosing
different types of architectural security rules. Furthermore, we designed the ques-
tionnaire and supplementary material with two researchers and we conducted a
trial interview with another software engineer.

In case of the catalogue idea, usability issues may have prejudiced the inter-
viewee’s opinions. We addressed this by using paper prototypes: such prototypes
help users to concentrate on functional aspects and overlook minor usability
issues.

6 Related Work

Architectural Rules. Architectural rules are well-established in the context
of software maintainability, today [1,8,10,13,37]. Mostly, they define dependen-
cies between components that are either allowed or prohibited. Help monitor-
ing the conformance of a system’s implementation to common design principles
like Modularity, Separation of Concerns and Information Hiding. However, such
architectural rules do not constrain a system’s behaviour, state or data flow.

In [34] the authors interviewed industrial software architects in order to iden-
tify new architectural rules that are relevant to the participants and are different

Constraining the Implementation Through Architectural Security Rules 215

to the usual dependency rules. Schröder et al. mainly asked for maintainability
rules and did not find security rules.

Behavioural rules are considered rarely in existing research: Rapide [21] is an
early approach that allows to constrain dependency rules considering the pre-
cise circumstances of an interaction through operational invariants. The authors
defined some security related rules [22]. However, the rules are not architectural
rules due to the intension and non-locality criteria. Despite most rules defined
by Caracciolo are structural, he also defined some behaviour related rules [8].
Yet, the few security related rules mentioned in that work are extensional and,
hence, not architectural. Abi-Antoun and Barnes specified some code-level and
architecture-level rules for security in [2]. However, the authors only define struc-
tural rules based on component-connector concepts, e.g.: “KeyManager should
not connect to Engine Wrapper.” Few rules that are related to information flow
are hard coded based on the STRIDE approach proposed in [17].

Architecture Conformance. Most conformance checking approaches are
static and only consider structural dependency rules [26]. They use reflexion
models [25], source code query languages (e.g. .QL [24]), structure matrices [31]
and design tests [7]. Behavioural conformance checking is done rarely today.

In [1] the SECORIA approach is proposed. It allows to anticipate the struc-
tural runtime architecture through static analysis and manual code instrumenta-
tion. Conformance checks are performed on this predicted structure. The authors
do not consider explicit architectural rules: Instead they compare the imple-
mentation’s runtime structure to a high-level architecture diagram. In [3] the
authors extend the reflexion models for tool-supported threat analysis based
on the STRIDE approach. However, the threat analysis does not validate the
implementation’s adherence to the security measures taken in the design.

Mirakhorli et al. propose an approach to identify architecturally relevant
source code using information retrieval and architectural tactics [23]. The authors
use this technique to inform software engineers when they modify this code.

Sources for Architectural Security Rules. Security building blocks provide
good security solutions to software engineers that are no security experts. Archi-
tecture tactics and patterns are well-known kinds of building blocks. Multiple
sources for security patterns exist today, common sources are [14,15,28,35,36,38,
39]. Other papers review existing patterns, e.g. [4]. In addition to these building
blocks there are other types such as reference architectures that describe security
best practices, too (e.g. [22]).

However, there are further rules for architectural security rules. Examples are
common security design flaws such as [5], i.e. frequently introduced weaknesses
on the design level. They may be seen as building blocks in a broader sense.

7 Conclusion

We have provided common architectural security rules in this paper. Such com-
mon rules can be applied to most software systems and help to enforce security

216 S. Jasser

measures taken for these systems. The process we used for rule identification was
iteratively improved during our work. This process is described in Sect. 2. We
further proposed and evaluated the idea of a catalogue of architectural security
rules to make them available to the public. Although, we already developed a first
conformance checking approach, we concentrate on the use and practicability of
common architecture security rules in this paper.

Through the conducted interviews we found that common architectural secu-
rity rules would help architects to enforce and monitor security measures they
took. Hence, they facilitate a secure software system. According to the experts,
a catalogue would provide further support to the architects as many of them
have only superficial knowledge on software security. Through the interviews we
verified that architectural security rules may also increase software architect’s
and developers’ awareness for security in the early phases of software develop-
ment. The architectural security rules reduce the abstraction gap between the
architectural level measures and their code level implementation.

In the future we will increase the benefit of architectural security rules by
extending our work on security conformance checking including the extended
CNL approach. We will extend it to a hybrid conformance checking to combine
the advantages of static and dynamic analysis. Additionally, we work on a sys-
tematic approach to secure systems that violate security measures or principles.

References

1. Abi-Antoun, M.: Static extraction and conformance checking of the runtime
architecture of object-oriented systems. In: Harris, G.E. (ed.) Companion to the
23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-
guages and Applications, p. 911. ACM, New York (2008). https://doi.org/10.1145/
1449814.1449904

2. Abi-Antoun, M., Barnes, J.M.: Analyzing security architectures. In: Pecheur, C.,
Andrews, J., Di Nitto, E. (eds.) 25th IEEE/ACM International Conference on
Automated Software Engineering, pp. 3–12. ACM (2010). https://doi.org/10.1145/
1858996.1859001

3. Abi-Antoun, M., Wang, D., Torr, P.: Checking threat modeling data flow dia-
grams for implementation conformance and security. In: Stirewalt, K., Egyed, A.,
Fischer, B. (eds.) Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering: ASE, pp. 393–396. IEEE Computer Society
and ACM, New York and Los Alamitos (2007). https://doi.org/10.1145/1321631.
1321692

4. Anand, P., Ryoo, J., Kazman, R.: Vulnerability-based security pattern categoriza-
tion in search of missing patterns. In: 2014 Ninth International Conference on
Availability, Reliability and Security, pp. 476–483. IEEE (2014). https://doi.org/
10.1109/ARES.2014.71

5. Arce, I., et al.: Avoiding the top 10 software security design flaws (2014). https://
www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

6. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from
extended data flow diagrams. In: Caballero, J., Bodden, E., Athanasopoulos, E.
(eds.) ESSoS 2016. LNCS, vol. 9639, pp. 56–71. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-30806-7 4

https://doi.org/10.1145/1449814.1449904
https://doi.org/10.1145/1449814.1449904
https://doi.org/10.1145/1858996.1859001
https://doi.org/10.1145/1858996.1859001
https://doi.org/10.1145/1321631.1321692
https://doi.org/10.1145/1321631.1321692
https://doi.org/10.1109/ARES.2014.71
https://doi.org/10.1109/ARES.2014.71
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1007/978-3-319-30806-7_4

Constraining the Implementation Through Architectural Security Rules 217

7. Brunet, J., Serey, D., Figueiredo, J.: Structural conformance checking with design
tests: an evaluation of usability and scalability. In: 2011 27th IEEE International
Conference on Software Maintenance (ICSM), pp. 143–152. IEEE, Piscataway
(2011). https://doi.org/10.1109/ICSM.2011.6080781

8. Caracciolo, A.: A unified approach to architecture conformance checking. Dis-
sertation, Universität Bern, Bern, März 2016. http://scg.unibe.ch/archive/phd/
caracciolo-phd.pdf

9. Eden, A.H., Kazman, R.: Architecture, design, implementation. In: Proceedings of
the 25th International Conference on Software Engineering, ICSE 2003, pp. 149–
159. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.
cfm?id=776816.776835

10. Eichberg, M., Kloppenburg, S., Klose, K., Mezini, M.: Defining and continuous
checking of structural program dependencies. In: Schäfer, W. (ed.) Companion of
the 30th International Conference on Software Engineering, p. 391. ACM, New
York (2008). https://doi.org/10.1145/1368088.1368142

11. Gasson, S.: Rigor in grounded theory research. In: Whitman, M., Woszczynski, A.
(eds.) The Handbook of Information Systems Research, pp. 79–102. IGI Global
(2004). https://doi.org/10.4018/978-1-59140-144-5.ch006

12. Gerdes, S., Soliman, M., Riebisch, M.: Decision buddy: tool support for constraint-
based design decisions during system evolution. In: Proceedings of the 1st Interna-
tional Workshop on Future of Software Architecture Design Assistants: FoSADA,
pp. 13–18. ACM Association for Computing Machinery (2015). https://doi.org/
10.1145/1924421.1924451

13. Gurgel, A., et al.: Blending and reusing rules for architectural degradation preven-
tion. In: Binder, W., Peternier, A., Ernst, E., Hirschfeld, R. (eds.) MODULARITY
2014, pp. 61–72. ACM Association for Computing Machinery, New York (2014).
https://doi.org/10.1145/2577080.2577087

14. Hafiz, M.: Security pattern catalog (2016). http://www.munawarhafiz.com/
securitypatterncatalog/

15. Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An analysis of the security
patterns landscape. In: 2007 Third International Workshop on Software Engineer-
ing for Secure Systems, pp. 3–9. IEEE, Piscataway (2007). https://doi.org/10.
1109/SESS.2007.4

16. Hochstein, L., Lindvall, M.: Combating architectural degeneration: a survey. Inf.
Softw. Technol. 47(10), 643–656 (2005). https://doi.org/10.1016/j.infsof.2004.11.
005

17. Howard, M., Lipner, S.: The security development lifecycle: SDL, a process for
developing demonstrably more secure software. Microsoft Secure Software Devel-
opment Series, Microsoft Press, Redmond, Washington (2006). http://site.ebrary.
com/lib/alltitles/docDetail.action?docID=10762138

18. Jackson Higgins, K.: 10 common software security design flaws.pdf (2014). http://
www.darkreading.com/application-security/10-common-software-security-design-
flaws/d/d-id/1306776

19. Jasser, S.: Security conformance checking for the detection of vulnerabilities. In:
Proceedings of the 20th International Conference on Product-Focused Software
Process Improvement, submitted (2019)

20. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

https://doi.org/10.1109/ICSM.2011.6080781
http://scg.unibe.ch/archive/phd/caracciolo-phd.pdf
http://scg.unibe.ch/archive/phd/caracciolo-phd.pdf
http://dl.acm.org/citation.cfm?id=776816.776835
http://dl.acm.org/citation.cfm?id=776816.776835
https://doi.org/10.1145/1368088.1368142
https://doi.org/10.4018/978-1-59140-144-5.ch006
https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1145/2577080.2577087
http://www.munawarhafiz.com/securitypatterncatalog/
http://www.munawarhafiz.com/securitypatterncatalog/
https://doi.org/10.1109/SESS.2007.4
https://doi.org/10.1109/SESS.2007.4
https://doi.org/10.1016/j.infsof.2004.11.005
https://doi.org/10.1016/j.infsof.2004.11.005
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10762138
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10762138
http://www.darkreading.com/application-security/10-common-software-security-design-flaws/d/d-id/1306776
http://www.darkreading.com/application-security/10-common-software-security-design-flaws/d/d-id/1306776
http://www.darkreading.com/application-security/10-common-software-security-design-flaws/d/d-id/1306776
https://doi.org/10.1007/3-540-45800-X_32

218 S. Jasser

21. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and analysis of system architecture using rapide. IEEE Trans. Softw.
Eng. 21(4), 336–354 (1995). https://doi.org/10.1109/32.385971

22. Meldal, S., Luckham, D.C.: Defining a security reference architecture. http://i.
stanford.edu/pub/cstr/reports/csl/tr/97/728/CSL-TR-97-728.pdf

23. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Softw. Eng. 42(3), 205–220 (2016). https://doi.
org/10.1109/TSE.2015.2479217

24. Moor, O.d., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco, N.,
Sereni, D., Tibble, J.: Keynote address: .QL for source code analysis. In: Korel, B.
(ed.) 2007 Seventh IEEE International Working Conference on Source Code Anal-
ysis and Manipulation, pp. 3–16. IEEE Computer Society, Los Alamitos (2007).
https://doi.org/10.1109/SCAM.2007.31

25. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: bridging the
gap between design and implementation. IEEE Trans. Softw. Eng. 27(4), 364–380
(2001)

26. Passos, L., Terra, R., Valente, M.T., Diniz, R., das Chagas Mendonca, N., et al.:
Static architecture-conformance checking an illustrative overview. IEEE Softw.
27(5), 82–89 (2010)

27. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng, Not. 17(4), 40–52 (1992). https://doi.org/10.1145/141874.
141884

28. Rosado, D.G., Gutierrez, C., Fernandez-Medina, E., Piattini, M.: A study of secu-
rity architectural patterns. In: Proceedings of the 1st International Conference on
Availability, Reliability and Security: ARES, pp. 358–365. IEEE Computer Society,
Los Alamitos (2006). https://doi.org/10.1109/ARES.2006.18

29. Sachitano, A., Chapman, R.O., Hamilton, J.A.: Security in software architecture:
a case study. In: From the Fifth Annual IEEE SMC Information Assurance Work-
shop, pp. 370–376. IEEE Computer Society (2004). https://doi.org/10.1109/IAW.
2004.1437841

30. Saldaña, J.: The Coding Manual for Qualitative Researchers, 2nd edn. SAGE Pub-
lications, Los Angeles (2013)

31. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to man-
age complex software architecture. In: Johnson, R. (ed.) Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, p. 167. ACM, New York (2005). https://doi.org/10.
1145/1094811.1094824

32. Schaad, A., Borozdin, M.: Tam2: automated threat analysis. In: Proceedings of
the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–
30 March 2012, pp. 1103–1108 (2012). https://doi.org/10.1145/2245276.2231950

33. Schröder, S., Riebisch, M.: An ontology-based approach for documenting and vali-
dating architecture rules. In: Proceedings of the 12th European Conference on Soft-
ware Architecture, pp. 52:1–52:7 (2018). https://doi.org/10.1145/3241403.3241457

34. Schröder, S., Riebisch, M., Soliman, M.: Architecture enforcement concerns and
activities - an expert study. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA
2016. LNCS, vol. 9839, pp. 247–262. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48992-6 19

35. Schumacher, M.: Security Patterns: Integrating Security and Systems Engi-
neering. Wiley Series in Software Design Patterns. Wiley, Chichester, Eng-
land and Hoboken (2006), http://search.ebscohost.com/login.aspx?direct=true&
scope=site&db=nlebk&db=nlabk&AN=159644

https://doi.org/10.1109/32.385971
http://i.stanford.edu/pub/cstr/reports/csl/tr/97/728/CSL-TR-97-728.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/97/728/CSL-TR-97-728.pdf
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/SCAM.2007.31
https://doi.org/10.1145/141874.141884
https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/ARES.2006.18
https://doi.org/10.1109/IAW.2004.1437841
https://doi.org/10.1109/IAW.2004.1437841
https://doi.org/10.1145/1094811.1094824
https://doi.org/10.1145/1094811.1094824
https://doi.org/10.1145/2245276.2231950
https://doi.org/10.1145/3241403.3241457
https://doi.org/10.1007/978-3-319-48992-6_19
https://doi.org/10.1007/978-3-319-48992-6_19
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=159644
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=159644

Constraining the Implementation Through Architectural Security Rules 219

36. Serrano, D., Maña, A., Sotirious, A.D.: Towards precise security patterns. In: Tjoa,
A.M., Wagner, R.R. (eds.) Proceedings of the 19th International Conference on
Database and Expert Systems Applications: DEXA, pp. 287–291. IEEE Computer
Society, Los Alamitos (2008). https://doi.org/10.1109/DEXA.2008.36

37. de Silva, L.: Towards controlling software architecture erosion through runtime
conformance monitoring. Dissertation, University of St. Andrews, St. Andrews
(2014)

38. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security.
In: 4th Pattern Languages of Programming Conference (1997)

39. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey on security patterns. Prog.
Inform. 5(5), 35–47 (2008). https://doi.org/10.2201/NiiPi.2008.5.5

https://doi.org/10.1109/DEXA.2008.36
https://doi.org/10.2201/NiiPi.2008.5.5

Technical Debt and Waste
in Non-functional Requirements

Documentation: An Exploratory Study

Gabriela Robiolo1(B), Ezequiel Scott2, Santiago Matalonga3,
and Michael Felderer4

1 LIDTUA (CIC), Facultad de Ingenieŕıa, Universidad Austral,
Buenos Aires, Argentina

grobiolo@austral.edu.ar
2 Institute of Computer Science, Tartu Unviersity, Tartu, Estonia

ezequiel.scott@ut.ee
3 School of Computing, Engineering and Physical Sciences,

University of the West of Scotland, Paisley, UK
santiago.matalonga@uws.ac.uk

4 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

Abstract. Background: To adequately attend to non-functional require-
ments (NFRs), they must be documented; otherwise, developers would
not know about their existence. However, the documentation of NFRs
may be subject to Technical Debt and Waste, as any other software
artefact. Aims: The goal is to explore indicators of potential Technical
Debt and Waste in NFRs documentation. Method: Based on a subset
of data acquired from the most recent NaPiRE (Naming the Pain in
Requirements Engineering) survey, we calculate, for a standard set of
NFR types, how often respondents state they document a specific type
of NFR when they also state that it is important. This allows us to
quantify the occurrence of potential Technical Debt and Waste. Results:
Based on 398 survey responses, four NFR types (Maintainability, Reli-
ability, Usability, and Performance) are labelled as important but they
are not documented by more than 22% of the respondents. We interpret
that these NFR types have a higher risk of Technical Debt than other
NFR types. Regarding Waste, 15% of the respondents state they docu-
ment NFRs related to Security and they do not consider it important.
Conclusions: There is a clear indication that there is a risk of Technical
Debt for a fixed set of NFRs since there is a lack of documentation of
important NFRs. The potential risk of incurring Waste is also present
but to a lesser extent.

Keywords: Non functional requirements · Technical Debt · Waste

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 220–235, 2019.
https://doi.org/10.1007/978-3-030-35333-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_16

Technical Debt and Waste in Non-functional Requirements Documentation 221

1 Introduction

Non-functional requirements (NFRs) are of high importance for the success of
a software project [8]. Nevertheless, there exists evidence that NFRs tend to
come second class to functional requirements [7,8]. We see this as a pervasive
problem, regardless of the methodology that the development process follows.
Quality management models and standards like ISO 9001:2015 [14] and CMMI
[6] require that functional and non-functional requirements are documented as
way of conveying their importance. These software development models and stan-
dards take a “do as you say, say as you do” approach where documentation and
upfront planning is used to mitigate the risk of not delivering the software prod-
uct within the constraints of the project. In fact, the ISO/IEC/IEEE 29148:2018
standard for software and systems requirements engineering [16], prescribes that
both functional and non-functional requirements have to be documented.

Agile software engineering highlights the need of “continuous attention to
technical excellence” [2]. Agile software engineering methods mainly rely on
immediate feedback and postulate the sufficient availability of knowledgeable
software developers to mitigate potential quality risks. Unfortunately, agile val-
ues and principles often seem to be adopted näıvely [11], i.e., equating agile with
avoiding documentation [25].

The starting point of the research presented in this paper is the assump-
tion that in order to be able to adequately handle NFRs, they must be doc-
umented – otherwise developers would not know about their precise nature or
even their existence. Based on a subset of data acquired from the most recent
NaPiRE (Naming the Pain in Requirenments Engineering) survey conducted
in 2018 [19], we calculate for the NFR types Compatibility, Maintainability,
Performance, Portability, Reliability, Safety, Security, and Usability how often
respondents state they document a specific type of NFR when they also state
that this type of NFR is important. We address the following research questions:

RQ1: Can we identify Technical Debt and Waste in requirements documenta-
tion from the responses in the NaPiRE questionnaire? To understand the cur-
rent status of Technical Debt and Waste in the context of NaPiRE, we calculate
the occurrence of potential Technical Debt (i.e., NFR not documented although
labeled as important) and the occurrence of potential Waste (i.e., NFR docu-
mented although labeled as not important) with regard to the different NFR
types (i.e. Compatibility, Maintainability, Performance, Portability, Reliability,
Safety, Security, and Usability).

RQ2: How does the practitioners’ context influence the occurrence of Technical
Debt and Waste in requirements documentation? The system type, the project
size, and the type of development process are usually the first variables to be con-
sidered in exploratory studies. We explored the practitioners’ responses related
to these variables in order to understand how they influence the occurrence of
Technical Debt and Waste in the context of NaPiRE.

Our results show a clear indication of Technical Debt in several NFRs, with
Maintainability, Reliability, Usability, and Performance being the NFRs with

222 G. Robiolo et al.

the highest frequency of occurrence of potential Technical Debt. Furthermore,
when breaking down the analysis by the type of development process, the devel-
opment processes at the extremes of the spectrum (i.e., purely plan-driven or
purely agile) alter the indication of the Technical Debt pattern. Furthermore,
our results show that there is less risk of incurring in Waste. Less than 15% of the
respondents stated that they document NFR which they do not consider impor-
tant. With Security being the NFR with the highest frequency of respondents
at about 15%.

2 Background

In this section, we introduce the Naming the Pain in Requirenments
Engineering (NaPiRE) initiative1 and present an overview on research about
NFRs.

2.1 The NaPiRE Project

The objective of the NaPiRE project is to establish a comprehensive theory of
requirements engineering (RE) practice and to provide empirical evidence to
practitioners that helps them address the challenges of requirements engineer-
ing in their projects. These objectives shall be achieved by collecting empirical
data in surveys conducted world-wide and in repeating cycles. At the time of
writing this paper, three rounds of the NaPiRE survey have been carried out.
The first survey round was conducted in Germany and the Netherlands in 2012
[21]. The second round, conducted in the years 2014 and 2015, was extended
to ten countries [20]. The third round of the survey was conducted in 2018 and
collected data from 42 countries. The research presented in this paper is based
on the data collected in the third round. Since the NaPiRE survey instrument
has evolved since 2014/2015, a direct comparison between past analysis results
and currently ongoing analyses is not always possible. This holds especially for
the topic of non-functional requirements covered in this paper, which is the first
one published on data from the third run.

The previous installments of the NaPiRe survey have been successful in
sparking complementing research into several viewpoint of requirements engi-
neering. For instance, to compare requirements engineering practices across geo-
graphical regions [17,22] or by development method [28,29]. We argue that,
although NaPiRE data has been extensively analyzed, it has so far not been
analyzed with regards to practitioners’ perceptions about handling NFRs.

2.2 Published Research on Non-Functional Requirements

This section presents an overview of past directions in non-functional require-
ments (NFR) research with a focus on survey research in the context of software
industry.
1 NaPiRE web site – http://napire.org.

http://napire.org

Technical Debt and Waste in Non-functional Requirements Documentation 223

Borg et al. [5] presented a case study on how NFRs are dealt with in two
software development organisations. The authors interviewed 14 software devel-
opers in two organisations. Their results show that, in both contexts, functional
requirements take precedence over non-functional requirements.

Berntsson Svensson et al. [4] investigated the challenges for managing NFRs
in embedded systems. They interviewed ten practitioners from five software com-
panies. Their results show a widespread variation in how the respondents dealt
with NFR, they also suggest a relationship between a lack of documentation
of NFR and a dismissal of NFR during the project lifecycle. Behutiye et al.
[3] investigated how software development teams using agile projects deal with
non-functional requirements. The authors interviewed practitioners in four com-
panies developing software with agile methodologies. Each company followed a
different practices when documenting NFR (including not documenting them
and relying on tacit knowledge).

Ameller et al. [1] looked at how software architects deal with non-functional
requirements. Their results highlight a lack of common vocabulary among soft-
ware architects to convey NFR, the two most important NFR types were per-
formance and usability, and that NFRs are often not documented, and when
documented, the documentation was usually imprecise and was rarely main-
tained. Also, Proot et al. [23] presented a survey about the perceived impor-
tance of non-functional requirements among software architects. Their results
suggest that architects consider NFRs important to the success of their software
projects.

De la Vara et al. [26] present a questionnaire-based survey capturing the
more important NFRs from the point of view of practitioners. 31 practition-
ers from 25 organizations were selected within the industrial collaboration net-
work of the authors. The top five NFRs identified are Usability, Maintainability,
Performance, Reliability, and Flexibility. Haigh et al. [10] empirically examined
the requirements for software quality held by different groups involved in the
development process. She conducted a survey of more than 300 current and
recently graduated students of one of the leading Executive MBA programs in
the United States, asking them to rate the importance of each of 13 widely-cited
attributes related to software quality. The results showed the following ranking of
NFRs: Accuracy, Correctness, Robustness, Usability, Integrity, Maintainability,
Interoperability, Augmentability, Efficiency, Testability, Flexibility, Portability,
Reusability.

In summary, we conclude that the topic of NFRs has been extensively
researched but there is few evidence of how the NFRs are documented. Fur-
thermore, the specific relationship between importance level and degree of doc-
umentation has not yet been investigated.

3 Research Method

Before describing the research method we first present our understanding of
relevant concepts and assumptions about our research. Secondly, we introduce

224 G. Robiolo et al.

the terminology used in this paper. Then, we present our research questions.
Finally, we describe the data extraction and analysis procedure that we followed
in order to answer those research questions.

3.1 Concepts and Assumptions

According to the software product quality standard ISO 25010:2011 [15], a non-
functional requirement is a “requirement that specifies criteria that can be used
to judge the operation of a software system” [15]. The same standard defines
a model for the evaluation of quality in use and product quality of a software
system. Within this quality model, the product quality attributes (also known as
quality characteristics) are defined. A quality attribute is a specification of the
stakeholders’ needs (Functional Suitability, Performance Efficiency, Compatibil-
ity, Usability, Reliability, Security, Maintainability, Portability). We argue that
both terms, NFR and product quality attribute, are related and often used inter-
changeably in industry, even though this is not correct according to the precise
definitions of these terms. Upon careful consideration, in particular looking at
how the NaPiRE survey instrument framed the questions related to NFRs, in
this work we interpret NFRs to be all requirements that do not specify a func-
tional behaviour. Furthermore, we do not differentiate between NFR and prod-
uct quality attribute. We claim that (1) the NaPiRE questionnaire has not made
this distinction evident, (2) most practitioners would not care for the subtleties
of this differentiation, and (3) interchangeable use of terms is pervasive among
practitioners and researchers [3,7,23]. In order to be consistent with the survey
instrument used in the NaPiRE survey, in this paper, we use the term “quality
attribute” instead of “NFR” when we present our research questions and the
results of our analyses.

This research is driven by our assumption that, in agreement with [16], both
functional and non-functional requirements have to be documented. In the con-
text of software quality assurance, which is defined in ANSI/IEEE Standard 729–
1983 [12], the confidence of the established technical requirements is achieved by
checking the software and the documentation and verifying their consistency.

Therefore, the ideal situation is that when a quality attribute is considered as
important for the development project, then it must be documented. To better
convey this understanding we refer to the Technical Debt metaphor. Technical
Debt, as defined by [24], is “a metaphor for immature, incomplete, or inadequate
artefacts in the software development lifecycle that cause higher costs and lower
quality in the long run. These artefacts remaining in a system affect subsequent
development and maintenance activities, and so can be seen as a type of debt
that the system developers owe the system.” Also, Li et al. [18] pointed out that
documentation of Technical Debt refers to insufficient, incomplete, or outdated
documentation in any aspect of software development. That is, when practition-
ers perceive a quality attribute as important but fail to document requirements
associated to the quality attribute, we will interpret this as an indication of the
incurred Technical Debt. We differentiate from [9], which defines Technical Debt

Technical Debt and Waste in Non-functional Requirements Documentation 225

in requirements as the distance between the implementation and the actual state
of the world.

We follow similar reasoning on the other end of the spectrum but we rely
on the concept of Waste in Lean development. In Lean development, Waste is
defined as anything that does not add value [13]. In the domain of software
development, the types of Waste can be interpreted as: extra features, wait-
ing, task switching, extra processes, partially done work, movement, defects,
or unused employee creativity [30]. Therefore, when practitioners are investing
effort in documenting requirements for artifacts (quality attributes) that they do
not consider important, we are interpreting that such an effort could be better
placed elsewhere in the development process, and understand it as a source of
Waste.

In the most recent round of the NaPiRE survey, practitioners were asked
about their perception of importance regarding a set of pre-defined quality
attributes in the context of the project they were currently working on. In addi-
tion, they were asked whether they document quality attributes. The specific
questions related to these aspects and their possible responses are shown in
Table 1. Question Q1 asks for the level of importance of each NFR type and Q2
for its degree of documentation. Questions Q3, Q4, and Q5 request the context

Table 1. NaPiRE questionnaire items used for the analysis

ID Questionnaire item Possible responses Variables

Q1 Are there quality attributes
which are of particularly high
importance for your
development project? If yes,
which one(s)?

Compatibility,
Maintainability, Performance,
Portability, Reliability,
Safety, Security, Usability

v 6-v 13

Q2 Which classes of
non-functional requirements
do you explicitly consider in
your requirements
documentation?

Compatibility,
Maintainability, Performance,
Portability, Reliability,
Safety, Security, Usability

v 97-v 102,
v 303, v 103

Q3 How many people are
involved in your project?

Free text v 3

Q4 Please select the class of
systems or services you work
on in the context of your
project

Software-intensive embedded
systems (SIES), Business
information systems (BIS),
Hybrid of both
software-intensive embedded
systems and business
information systems (HYB)

v 4

Q5 How would you personally
characterize your way of
working in your project?

Agile, Rather agile, Hybrid,
Rather plan-driven,
Plan-driven

v 24

226 G. Robiolo et al.

factors project size, system type, and development process type, respectively. By
combining the answers to Q1 and Q2, we can investigate if practitioners are fol-
lowing the requirements documentation recommendation for quality attributes
in a specific context determined by Q3, Q4, and Q5.

Table 2 conveys our perception of the possible scenarios. In the ideal world,
practitioners do not incur in Technical Debt (Important and Not Documented),
nor do they Waste effort in documenting requirements which they do not con-
sider important (Not Important and Not Documented (NI ND)). However, our
experience leads us to expect that, practitioners are restricted by the context of
their development projects and they are bound to incur in Technical Debt and
Waste. In this research, we will look for evidence of this understanding in the
responses to the NaPiRE 2018 survey.

Table 2. Perception of importance and availability of documentation quadrant.

Documentation available

Perception of
importance

Important and Documented (I D)
Expected situation

Important and Not Documented
(I ND)
An Indication of Technical

Not Important and Documented
(NI D)
An Indication of Waste

Not Important and Not Documented
(NI ND)
Expected Situation

3.2 Research Questions

As mentioned in Sect. 3.1, we argue that if a quality attribute is perceived impor-
tant, then it should be documented. We have, therefore, divided our analysis into
the following research questions:

RQ1: Can we identify Technical Debt and Waste in requirements documentation
(as interpreted in Sect. 3.1) from the responses in the NaPiRE questionnaire?
This question expresses our overarching objective of understanding the juxtapo-
sition between the perception of the importance of a quality attribute and if it
has been documented. The question is framed in the Technical Debt metaphor,
as it conveys our understanding that: “If a quality attribute is considered impor-
tant, then it should be documented”. Any deviation in this direction should be
interpreted as a project decision that, for whatever reason, lead the practition-
ers into not documenting a quality attribute they consider important (i.e., an
expression of Technical Debt). Likewise, “if a quality attribute is not considered
important, then it need not be documented”. Any deviation in this direction we
consider as an indication of Waste, as the effort invested in documenting the
quality attribute, could have been better spent elsewhere in the development
lifecycle. RQ1 is divided into:

Technical Debt and Waste in Non-functional Requirements Documentation 227

RQ1.1: For which quality attributes do the practitioners’ responses indicate
Technical Debt? Through this sub-question, we will explore practitioners’
responses to the NaPiRE 2018 dataset an identify the quality attributes in which
a deviation is present of a quality attribute is perceived important and yet, it is
not documented (referred in the analysis as I ND).

RQ1.2: For which quality attributes do the practitioners’ responses indicate
Waste? Through this sub-question, we will explore the practitioners’ responses
to the NaPiRE 2018 dataset and identify the quality attributes in which a devi-
ation is present of a quality attribute that is not perceived as important and yet,
it has been documented (referred in the analysis as NI D).

RQ2: How does the practitioners’ context influence the occurrence of Technical
Debt and Waste in requirements documentation? This second research question
conveys our pre-conception that practitioners fail to document some quality
attributes that they consider important. RQ2 is divided into:

RQ2.1: How does the system type influence the occurrence of Technical Debt
and Waste? This question conveys our pre-conception that the type of system
can have an influence on the perceived importance of a quality attribute, and
therefore on the occurrence of Technical Debt or Waste.

RQ2.2: How does the project size influence the occurrence of Technical Debt and
Waste? This question conveys our pre-conception that the size of the software
project can have an influence on the perception of importance or the documen-
tation needs of a quality attribute.

RQ2.3: How does the type of development process influence the occurrence of
Technical Debt and Waste?. This question conveys our pre-conception that the
development process type might have an influence on the perception of impor-
tance or the documentation needs of a quality attribute.

3.3 Data Extraction and Analysis Procedure

We base our analysis on the NaPiRE 2018 dataset and, thus, have access to the
corresponding raw data as well as the pre-processed codification of the question-
naire and answers. Table 1 presents the variables included in this research.

A total of 488 responses are recorded for the NaPiRE 2018 instance of the
survey. All recorded responses are complete for variables v 6 to v 13 (perceived
importance of quality attributes, see Table 1) whereas only 455 responses are
complete for variables v 97 to v 102, v 303, v 103 (documentation of require-
ments for quality attributes, see Table 1). We removed 57 responses for incom-
pleteness in other variables of interest. Therefore, the total number of responses
considered for this research is 398. Table 3 presents the distribution of responses
in the aforementioned categories by the type of quality attribute.

The distribution of the contextual project information that will be analyzed
for RQ2 is shown in Table 4. It is worth mentioning that we applied a pre-
processing step to variable v 3 since it represents a free-text response. We used

228 G. Robiolo et al.

Table 3. Distribution of responses by quality attribute

Quality attribute Technical Debt (I ND) Waste (NI D) I D NI ND

Compatibility 70 (17.59%) 46 (11.56%) 99 (24.87%) 183 (45.98%)

Maintainability 123 (30.9%) 27 (6.78%) 105 (26.38%) 143 (35.93%)

Performance 90 (22.61%) 47 (11.81%) 143 (35.93%) 118 (29.65%)

Portability 46 (11.56%) 39 (9.8%) 31 (7.79%) 282 (70.85%)

Reliability 122 (30.65%) 31 (7.79%) 117 (29.4%) 128 (32.16%)

Safety 68 (17.09%) 31 (7.79%) 39 (9.8%) 260 (65.33%)

Security 80 (20.1%) 59 (14.82%) 125 (31.41%) 134 (33.67%)

Usability 97 (24.37%) 35 (8.79%) 158 (39.7%) 108 (27.14%)

Mean 87.0 (21.86%) 39.375 (9.89%) 102.125 (25.66%) 169.5 (42.59%)

the results from the variable coding made by the collaborators of the NaPiRE
initiative during their data analysis phase. For the purpose of analysing this
variable, we grouped the responses into equal-sized buckets that represent small-
sized (v 3 < 7), medium-sized (7 ≤ v 3 < 15) and large-sized projects (v 3 ≥ 15).

Table 4. Number of responses by variable under study. Mean and standard deviation
are reported for the percentages of responses indicating Technical Debt and Waste,
calculated across all the quality attributes.

Variable Value Responses Technical Debt (I ND) Waste (NI D)

Process type Agile 63 26.59± 8.60 7.54± 2.91

Hybrid 135 20.28± 6.07 9.81± 2.85

Plan-driven 37 22.30± 9.88 8.78± 4.51

Rather agile 95 23.16± 9.87 10.26± 4.96

Rather plan-driven 68 18.57± 6.29 12.32± 4.30

Project size L 123 20.93± 5.84 9.96± 3.00

M 136 20.50± 6.59 11.49± 3.79

S 139 24.01± 8.34 8.27± 2.49

System class BIS 202 22.40± 8.87 9.65± 4.23

HYB 101 23.14± 5.50 8.91± 2.80

SIES 95 19.34± 5.39 11.45± 2.42

4 Results

This section shows the results of our analysis organized by the research questions.

RQ1: Can we identify Technical Debt and Waste (as interpreted in Sect. 3.1)
from the responses in the NaPiRE questionnaire? To answer RQ1, we cross-
reference the responses to the perceived importance of quality attributes (v 6 to

Technical Debt and Waste in Non-functional Requirements Documentation 229

v 13) with the availability of documentation (v 97 to v 102, v 303, and v 103).
Important and not documented (I ND) requirements indicate Technical Debt,
whereas not important and documented (NI D) requirements indicate Waste
(see Table 2).

RQ1.1: For which quality attributes do the practitioners’ responses indicate
Technical Debt? Table 3 shows the occurrence of Technical Debt for each quality
attribute. The percentage of responses showing Technical Debt (I ND) ranges
from 12% to 31%. The average percentage of responses related to Technical Debt
over all quality attribute types is 22%. The quality attributes which are most
likely to incur in Technical Debt are Reliability (31%), Maintainability (31%),
Usability (24%), and Performance (23%).

RQ1.2: For which quality attributes do the practitioners’ responses indicate
Waste? Table 3 shows that waste also occurs in all quality attributes (albeit
at a smaller response rate). The percentage of responses showing Waste (NI D)
ranges from 7% to 15%. The quality attributes which exhibit higher Waste are
Security (15%), Performance (12%), and Compatibility (12%).

RQ2: How does the practitioners context influence the occurrence of Technical
Debt and Waste? To answer RQ2, we blocked the response data by the variables
type of system, project size, and development process type to investigate their
influence on the occurrence of Technical Debt and Waste. Figure 1 shows the
percentage of responses by quality attribute that indicate Technical Debt for each
of the variables under study. Similarly, Fig. 2 shows the percentage of responses
related to Waste.

RQ2.1: How does the system type influence the occurrence of Technical Debt and
Waste? When broken down by the system type (see Fig. 1(a)) we can observe
that Reliability is the most prone to Technical Debt in all types of systems.
On the other end, Portability, is not prone to Technical Debt in the system
types under analysis. The HYB type of system is type of system where the aver-
age percentage of responses indicating Technical Debt is the highest (23%) (see
Table 4). Four quality attributes surpass the average percentage of responses for
all the quality attributes (22%), namely Usability (25%), Reliability (31%), Per-
formance (27%), and Maintainability (29%). Security (23%) can be considered
a borderline case. The percentage of BIS showing Technical Debt ranges from
9% to 37% with highest values for Maintainability (37%), Reliability (32%),
and Usability (26%). From Fig. 1(a) we can see that BIS systems three qual-
ity attributes surpass the average percentage of responses for all the quality
attributes (22%), namely Usability (26%), Reliability (32%), and Maintainabil-
ity (37%). This system type also shows the highest percentages for Maintain-
ability (37%) and Reliability (32%). Finally, SIES systems show percentages of
Technical Debt ranging from 12% to 28%, and four quality attributes surpass
the average percentage of responses (19%), namely, Reliability (28%), Perfor-
mance (22%), Security (21%), and Usability (21%). Maintainability (20%) can
be considered as a borderline case.

230 G. Robiolo et al.

Fig. 1. Percentage of responses indicating Technical Debt by system type, project size,
and process type.

Regarding Waste, the average percentage of responses for all the quality
attributes is 10%, 9%, and 11% for BIS, HYB, and SIES type of systems (see
Table 4). When broken down by the system type (see left-side of Fig. 2(a)), the
highest percentages of responses are related to the Security of BISs (18%) and
the Compatibility of SIES (16%). At the other end, the lowest percentage is
related to the Maintainability of HYB systems (4%).

RQ2.2: How does project size influence the occurrence of Technical Debt and
Waste? Figure 1(b) shows the Technical Debt for each quality attribute blocked
by project size (S, M, L). Similarly, Fig. 2(b) shows the Waste. The average
percentages of responses indicating Technical Debt is 24%, 20%, and 21% for
projects of size S, M, and L, respectively (see Table 4).

Maintainability, and Reliability are the quality attributes which show the
highest percentages of Technical Debt (regardless of project size). On the other
end, Portability is the quality attribute with the lowest Technical Debt regardless
of project size. Small projects incur in Technical Debt having percentages ranging
from 13% to 35%. This kind of projects particularly shows high percentages
related to Reliability (35%) and Maintainability (35%). As for medium-sized
projects, the percentages range from 10% to 30%. In large-sized projects, the
percentages of Technical Debt range from 12% to 28%.

Regarding Waste, the average percentages of responses indicating Waste is
8%, 11%, and 10% for projects of size S, M, and L, respectively (see Table 4).
The percentages range from 5% to 12% for small-sized projects, from 7% to
17% for medium-sized projects, and from 7% to 16% for large-sized projects.
In particular, the data points for Security and Safety seem to indicate that the
number of responses showing Waste becomes larger as the project size increases.

RQ2.3: How does type of development process influence the occurrence of Tech-
nical Debt and Waste? Figure 1(c) shows the percentages of Technical Debt
for every quality attribute organized by development process types. Similarly,

Technical Debt and Waste in Non-functional Requirements Documentation 231

Fig. 2. Percentage of responses indicating Waste by System type, Project size, and
Process type.

Fig. 2(c) shows the percentages related to Waste. Three quality attributes exhibit
the highest percentages of Technical Debt regardless of the type of development
process, namely Maintainability, Reliability, and Usability. On the other hand,
Portability is the only quality attribute without Technical Debt for any type of
development process.

Regarding Waste, the percentage responses indicating Waste related to Secu-
rity is the highest. In addition, the percentage seems to increase as the projects
become more plan-driven. The development process characterised as Rather
plan-driven shows the highest overall exposure to Waste.

5 Discussion

In this section we first discuss the results achieved regarding the relation between
NFRs with Technical Debt and Waste, respectively. In addition, we discuss pos-
sible threats to validity of our study.

Observations Related to NFR and Technical Debt. Our results show that
the majority of the participants of the survey stated that they document NFRs
when they are important and they don’t document NFRs when they are not
important. This is what we had hypothesized. However, we observed that there
is a substantial subset of respondents who stated that they don’t document (some
of the) important NFRs. This is what we interpret as being at risk of Technical
Debt. Certain types of NFRs were particularly prone to this phenomenon, i.e.,
Reliability, Maintainability, Usability, and Performance. We can only speculate
what would drive practitioners into this behaviour. For example, either these
NFR types are difficult to document, knowledge on how to properly document
NFRs is missing, or no appropriate tool is available. Furthermore, reasons might
vary by NFR type. For example with Maintainability, it can be argued that is
left to good coding practices (i.e., avoiding code smells and focusing on refactor-
ing). This phenomenon might also be true for other NFR types, i.e., there exist

232 G. Robiolo et al.

standard procedures or standard requirements that always hold and do not have
to be explicitly stated in each individual project. When respondents answered
the NaPiRE questionnaire, they might only have thought about project-specific
documentation of NFRs.

Observations Related to NFRs and Waste. We also observed the occur-
rence of Waste, i.e., cases where respondents stated they document NFRs
although they are not considered important. However, the observed Waste was
consistently smaller than the Technical Debt (for the same quality attribute).
Furthermore, when looking at the percentages observed for Waste, the propor-
tion of Waste increases as project size increases: 5–11% for small-sized projects,
7–17% for medium-sized projects, and 7–16% for large-sized projects. This might
be a signal that - consistent with common expectation - for larger projects the
risk of Waste is higher than for small projects with respect to NFRs. Surpris-
ingly, and probably against common expectation, our analyses do not give any
indication that projects using rather agile or purely agile processes produce less
Waste than projects using plan-driven development approaches.

Threats to Validity. We consider threats to construct, internal, external and
conclusion validity according to Wohlin et al. [31] as well as measures to mitigate
them.

This research is grounded on the NaPiRE 2018 survey, therefore we inherit
some of the decisions taken during the development of the survey instrument.
Of particular importance to the research presented in this paper is the fact that
the NaPiRE 2018 survey does not differentiate between quality attribute and
NFR. Both concepts are confounded in the questions on which we based our
analysis. As a research team we have discussed this issue in depth and decided
to accept this threat as it is in line with our shared understanding that (1) we
cannot revert this decision; (2) we share the understanding that practitioners
would probably not differentiate between both (and even for those who do, we
can probably not guarantee a shared understanding). The latter argument is in
line with the results of Eckardt et al. [8] (already mentioned in Sect. 3.1) that
there is a large variety in the understanding of what is quality and what are
NFRs. Continuing with inherited threats, external validity of our results highly
depends on the profile of participants in the NaPiRE survey. The survey received
overall 488 responses from all over the world and we have shown in a previous
paper [27] that there are no significant differences in the NaPiRE data with
respect to different cultural regions. Furthermore, we analyzed the data also
with respect to the system type, the project size and the type of development
process. We therefore think that threats to external validity are low.

An important construct validity injected by the approach described in this
work relates to how the metaphor of Technical Debt and the concept of Waste
were introduced into the analysis of the data set. First of all, the NaPiRE survey
makes no reference to these concepts. Secondly, there is a subtle but present gap
between the formulation of the questions and our interpretation. It can be argued
that “which quality attribute is of particular high importance?” (as asked in the
survey) is not the same as asking “List all quality attributes that are important”.

Technical Debt and Waste in Non-functional Requirements Documentation 233

Regarding internal validity, a limitation that we always have with survey
research is that surveys can only reveal perceptions of the respondents that
might not fully represent reality. However, the analysis stems from the well-
validated NaPiRE questionnaire (see Sect. 2.1), which has continuously been
improved based on piloting and the first two runs. Furthermore, we tried to be
explicit in our decision about our data cleaning criteria (see Sect. 3.3) to be able
to perform a thorough analysis.

6 Conclusion

This paper explored the relationship between the level of importance and the
degree of documentation for the NFR types Compatibility, Maintainability, Per-
formance, Portability, Reliability, Safety, Security, and Usability. The analysis is
based on the data collected during the most recent run of the NAPiRE survey. To
analyze this relationship, we refer to the Technical Debt and Waste metaphors.
To the best of our knowledge, this is the first publication in which these two
concepts were explored in the context of NFRs. The starting point of our analy-
sis was the assumption that important NFRs must be documented. If a project
breaks this rule, then we interpret it as a possible source of Technical Debt.
Likewise, we postulated that not important NFRs should not be documented. If
a project breaks this rule, then we interpret it as a possible source of Waste.

Our analyses indicate that for four types of NFR (Maintainability, Reliabil-
ity, Usability, and Performance) more than 22% of the survey respondents who
labelled the respective NFR type as important said that they did not document
it. We interpret this as an indication that these NFR types have a higher risk
of Technical Debt than other NFR types. Our analysis also indicates that the
risk of Waste is less evident than the Risk of Technical Debt. Regarding Waste,
NFR relating to Security exhibit the highest (about 15%) number of respondents
that say that they do not consider Security important, but do document related
requirements. For the remaining NFR under analysis, the respondents indicate
that the problem of Waste is much less evident (when compared to Technical
Debt). Additional analyses indicate that our results are not sensitive to the type
of system class, the project size, or the type of development process.

Overall, we conclude that, for specific NFR types (i.e., Maintainability, Reli-
ability, Usability, and Performance), there is a clear indication that lack of docu-
mentation of important NFRs occurs regularly, pointing to the risk of Technical
Debt. Regarding Waste, with the exception of Security, we conclude that the
manifestation of Waste is not as clear as the manifestation of Technical Debt.
We discussed several potential reasons for the occurrence of this phenomenon.
However, investigating the true causes of Technical Debt and Waste requires
more empirical research, which we consider as future work.

Acknowledgments. The authors would like to thank all practitioners who took the
time to respond to the NaPiRE survey as well as all colleagues involved in the NaPiRE
project. The authors further acknowledge Dietmar Pfahl’s contribution to research

234 G. Robiolo et al.

process described in this paper. Ezequiel Scott is supported by the Estonian Center of
Excellence in ICT research (EXCITE), ERF project TK148 “IT Tippkeskus EXCITE”.
Gabriela Robiolo is supported by Universidad Austral.

References

1. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider
non-functional requirements: An exploratory study. In: 2012 Proceedings of the
20th IEEE International Requirements Engineering Conference, RE 2012, Chicago,
USA (2012)

2. Beck, K., et al.: Manifesto for agile software development (2001)
3. Behutiye, W., Karhapää, P., Costal, D., Oivo, M., Franch, X.: Non-functional

requirements documentation in agile software development: challenges and solu-
tion proposal. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 515–522.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 41

4. Berntsson Svensson, R., Gorschek, T., Regnell, B.: Quality requirements in prac-
tice: an interview study in requirements engineering for embedded systems. In:
Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 218–232.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02050-6 19

5. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of require-
ments engineering: an investigation in real-world treatment of non-functional
requirements. In: Third Conference on Software Engineering Research and Practice
in Sweden (SERPS 2003), Lund (2003)

6. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration
and Product Improvement. Addison-Wesley, Upper Saddle River (2007)

7. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4 19

8. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional” requirements
really non-functional? In: Proceedings of the 38th International Conference on
Software Engineering - ICSE 2016, pp. 832–842. ACM Press, New York (2016)

9. Ernst, N.A.: On the role of requirements in understanding and managing technical
debt. In: Proceedings of the Third International Workshop on Managing Technical
Debt, Piscataway, NJ, USA, pp. 61–64 (2012)

10. Haigh, M.: Software quality, non-functional software requirements and it-business
alignment. Softw. Qual. J. 18, 361–385 (2010)

11. Hoda, R., Noble, J.: Becoming agile: a grounded theory of agile transitions in
practice. In: Proceedings - 2017 IEEE/ACM 39th International Conference on
Software Engineering, ICSE 2017 (2017)

12. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, pp. 1–84, December 1990

13. Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P.: Exploring the sources of waste
in Kanban software development projects. In: 2010 36th EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 376–381 (2010)

14. ISO: ISO 9001:2015. Quality Management Systems - Requirements (2015)
15. ISO/IEC Standard: ISO/IEC 25010:2011 Systems and software engineering - sys-

tems and software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models (2011)

https://doi.org/10.1007/978-3-319-69926-4_41
https://doi.org/10.1007/978-3-642-02050-6_19
https://doi.org/10.1007/978-3-642-02463-4_19

Technical Debt and Waste in Non-functional Requirements Documentation 235

16. ISO/IEC/IEEE: ISO/IEC/IEEE 29148:2018 Systems and software engineering
- life cycle processes - requirements engineering. Technical report, International
Standards Organization (2018)

17. Kalinowski, M., et al.: Preventing incomplete/hidden requirements: reflections on
survey data from Austria and Brazil. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2016. LNBIP, vol. 238, pp. 63–78. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-27033-3 5

18. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

19. Méndez Fernández, D.: Supporting requirements-engineering research that indus-
try needs: the NaPiRE initiative. IEEE Softw. 35(1), 112–116 (2018)

20. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir.
Softw. Eng. 22(5), 2298–2338 (2017)

21. Fernández, D.M., Wagner, S.: Naming the pain in requirements engineering: design
of a global family of surveys and first results from Germany. In: EASE - 17th
International Conference on Evaluation and Assessment in Software Engineering,
Porto de Galinhas (2013)

22. Fernández, D.M., et al.: Naming the pain in requirements engineering: comparing
practices in Brazil and Germany. IEEE Softw. 32(5), 16–23 (2015)

23. Poort, E.R., Martens, N., van de Weerd, I., van Vliet, H.: How architects see non-
functional requirements: beware of modifiability. In: Regnell, B., Damian, D. (eds.)
REFSQ 2012. LNCS, vol. 7195, pp. 37–51. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28714-5 4

24. Seaman, C., Guo, Y.: Chapter 2 - measuring and monitoring technical debt. Adv.
Comput. 82, 25–46 (2011)

25. Stettina, C.J., Heijstek, W.: Necessary and neglected? An empirical study of inter-
nal documentation in agile software development teams. In: Proceedings of the
29th ACM International Conference on Design of Communication (SIGDOC 2011),
Pisa, Italy, 3–5 October 2011 (2011)

26. de la Vara, J.L., Wnuk, K., Berntsson Svensson, R., Sanchez, J., Regnell, B.: An
empirical study on the importance of quality requirements in industry. In: Pro-
ceedings of 23rd International Conference on Software Engineering and Knowledge
Engineering, New York, NY, USA, pp. 311–317 (2010)

27. Wagner, S., et al.: Status quo in requirements engineering: a theory and a global
family of surveys. ACM Trans. Softw. Eng. Methodol. (TOSEM) 28(2), 9:1–9:48
(2019)

28. Wagner, S., Méndez Fernández, D., Felderer, M., Kalinowski, M.: Requirements
engineering practice and problems in agile projects; results from an international
survey. In: 2017 Iberoamerican Conference on Software Engineering (CiBSE 2017)
(2017)

29. Wagner, S., Méndez-Fernández, D., Kalinowski, M., Felderer, M.: Agile require-
ments engineering in practice: status quo and critical problems. CLEI Electron. J.
21(1) (2018). https://doi.org/10.19153/cleiej.21.1.6

30. Wang, X., Conboy, K., Cawley, O.: “Leagile” software development: an experience
report analysis of the application of lean approaches in agile software development.
J. Syst. Softw. 85, 1287–1299 (2012)

31. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-27033-3_5
https://doi.org/10.1007/978-3-319-27033-3_5
https://doi.org/10.1007/978-3-642-28714-5_4
https://doi.org/10.1007/978-3-642-28714-5_4
https://doi.org/10.19153/cleiej.21.1.6
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Technical Debt in Costa Rica: An InsighTD
Survey Replication

Alexia Pacheco1(&), Gabriela Marín-Raventós1,2,
and Gustavo López2

1 Computer Science Graduate Program (PPCI), University of Costa Rica (UCR),
San José, Costa Rica

{alexia.pacheco,gabriela.marin}@ucr.ac.cr
2 Research Center for Communication and Information Technologies (CITIC),

University of Costa Rica (UCR), San José, Costa Rica
gustavo.lopez_h@ucr.ac.cr

Abstract. InsighTD is a globally distributed family of industrial surveys on
causes and effects of Technical Debt (TD). We are currently analyzing the data
gathered from the independent replication of the questionnaire in Costa Rica. In
total, 156 professionals from the Costa Rican software industry answered the
survey. Initial results indicate that there is a broad familiarity with the concept of
TD. For the examples reported, it seems that the type of TD were product of
situations that could have been prevented. TD was monitored for slightly more
than half of cases, and TD was not paid in most cases. In future articles, we will
report causes and the effects of TD in Costa Rica.

Keywords: Technical debt � Survey � Family of surveys

1 Introduction

Technical debt is a current and critical issue in the software development industry [1,
2]. Many studies have focused on technical debt management [3–5]. In 2016, Dagstuhl
Seminar 16162 - Managing Technical Debt in Software Engineering was held, whose
goal was to establish a common understanding of key concepts of technical debt. At
that seminar, a definition for technical debt was proposed: “In software-intensive
systems, technical debt is a collection of design or implementation constructs that are
expedient in the short term, but set up a technical context that can make future changes
more costly or impossible. Technical debt presents an actual and contingent liability
whose impact is limited to internal system qualities, primarily maintainability and
evolvability” [6].

This research is part of an international study to investigate the causes and impli-
cations of technical debt called InsighTD [7]. This study is a globally distributed family
of industrial surveys on TD to understand TD from the practitioners’ perspective.
InsighTD goal is to investigate the state of practice and industry trends in the TD area
including: the status quo, the causes that lead to TD occurrence, the effects of its
existence, how these problems manifest themselves in the software development

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 236–243, 2019.
https://doi.org/10.1007/978-3-030-35333-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_17

process, and how software development teams react when they are aware of the
presence of debt items in their projects. [8].

In this paper, we present the first results of InsighTD survey replication in Costa
Rica. In total, 156 professionals from Costa Rican Software Industry answered the
online survey. We are completing the survey analysis. Here, we describe a charac-
terization of the professionals who answered the survey, organizations where they
work, and the projects gave as an example. Furthermore, we present initial results about
familiarity with TD concept and team reactions when they know that there is technical
debt. Several participant roles and levels of experience are represented. Furthermore,
organizations of different sizes are also represented. Also, projects of different process
models, team size, age, and size are represented.

This paper is structured as follows. Section 2 discusses related work. Section 3
presents the methods for the study. Sections 4 include the results. Section 5 discusses
the results. Finally, Sect. 6 presents the conclusion of the paper.

2 Related Work

The research about technical debt is broad since it is a significant concern in the
software engineering industry. There are several secondary studies about technical
debt. The first tertiary study on technical debt is presented by Rios et al. [1].
Authors systematically identified 13 secondary studies dated from 2012 to March
2018. Using this compilation, they developed a taxonomy of technical debt types. Also,
they identified a list of situations in which debt items can be found in software projects.
Furthermore, they organized a map about the state of the art of activities, strategies, and
tools to support TD management.

Managing technical debt requires to recognize its leading causes because one way
to reducing the problems is trying to prevent them. However, the available evidence is
still limited [8]. To address the lack of empirical evidence, a group of researchers
conceived InsighTD Survey – Investigating causes and implications of TD. InsighTD is
a globally distributed family of industrial surveys on TD. It will provide valuable
insights into the main causes and effects of TD across many countries around the world.
While writing this paper, researchers from twelve countries (Brazil, Chile, Colombia,
Costa Rica, Finland, India, Italy, Netherlands, Norway, Saudi Arabia, Serbia, and
United States) have already joined to this project.

The first execution of InsighTD was for the Brazilian software industry. Rio, N
et al. published the results of InsighTD in Brazil [8]. For this case, 107 practitioners
answered the questionnaire. Authors report that there is a broad familiarity with the
concept of TD in Brazil. In addition, authors indicate that deadlines, inappropriate
planning, lack of knowledge, and lack of a well-defined process are among the top 10
cited and most likely causes. On the other side, authors mention low quality, delivery
delay, low maintainability, rework, and financial loss are among the top 10 most
commonly cited and impactful effects of TD [8].

Technical Debt in Costa Rica: An InsighTD Survey Replication 237

3 Methods

The initial results of the InsighTD survey performed in Costa Rica are presented in this
paper. An online survey was conducted using Google Docs. We applied non-
probability sampling, specifically purposive sampling and snowball sampling. To invite
the professionals involved in software development, we contacted the Computer Sci-
ence and Informatics Professional Association of Costa Rica, and they sent an invi-
tation by email to their members. Additionally, we sent an email to the personal
contacts of the research group of the University of Costa Rica to invite them to take the
survey and asked them to invite their partners to take the survey.

InsighTD is designed to answer the four research questions presented in Table 1
[8]. The questionnaire has 28 questions, and it is available in the instruments section of
the website td-survey.com. Researchers from InsighTD Costa Rica team and InsighTD
Colombia team translated to Spanish the questionnaire to apply in Costa Rica. Fully
bilingual Computer Science professionals evaluated the translated instrument for
readability.

4 Results

This section presents the initial results of InsighTD survey in Costa Rica. First, we will
describe the demographics of the participants. Later we will describe the results in
Costa Rica about familiarity with TD Concept (RQ1) and the reaction of development
teams when they are aware of TD (RQ4). Regarding the causes (RQ2) and effects
(RQ3) of TD, we are still processing the answers to the corresponding survey
questions.

4.1 Demographics

The questionnaire was online from February 26th until April 12th, 2019. One hundred
fifty-six professionals from the Costa Rican software industry answered the survey.
Eight participants who answered the poll were not working in Costa Rica at the time.
Therefore, they were excluded from the final dataset. Hence our analysis is based on
148 answers.

Diverse types of expertise were found (Table 2). Most participants work as
developers, followed by managers, testers, requirements analysts, process analysts, and
software architects. In relation with the level of experience in their role, the participants

Table 1. Research questions

RQ1 Are software professionals familiar with the concept of TD?
RQ2 What causes lead software development teams to incur TD?
RQ3 What effects does TD have on software projects?
RQ4 How do software development teams react when they are aware of the presence of

debt items in their projects?

238 A. Pacheco et al.

indicated that they are competent (49%), followed by proficient (26%), beginners
(14%), experts (8%) and novice (3%).

Likewise, organizations of different sizes were represented (Fig. 1). They are dis-
tributed among small (21%), mid (47%) and large size (32%). Most of the participants
(mode) work in organizations of 51–250 employees and more than 2000 employees.
The median size is 251–500 employees. Consequently, participants tend to work in
larger organizations; however, all company sizes are represented.

Participants were asked to choose a project and characterize it according to the
development process model and team size. Most of the projects were described as agile
(45%), followed by hybrid (41%), and the traditional cascade model was the least
common (15%). Project teams usually consists of 5 to 9 persons (38%), followed by
teams of less than five members (28%), teams of 10–20 employees (17%), teams of 21–
30 employees (5%) and teams of more than 30 employees (11%). The median is teams

Table 2. Participant roles

Role # %

Developer 91 61%
Project Leader/Program Manager 22 15%
Tester Manager/Tester 9 6%
Requirements Analyst 7 5%
Process Analyst 6 4%
Software Architect 6 4%
DBA/Data Analysis 4 3%
Business Analyst 2 1%
Consultant 1 1%

Fig. 1. Organization’s size measured by number of employees

Technical Debt in Costa Rica: An InsighTD Survey Replication 239

of 5 to 9 persons. Therefore, participants tend to work in smaller teams, but all team
sizes are represented.

Furthermore, participants were asked to characterize the system according to their
size and age. The most common system age was 2–5 years (32%), followed by 1–2
years (21%), less one year (20%), 5–10 years (16%) and more than ten years (11%).

Finally, the system size was usually between10 K LOC and 1 million SLOC.
However, there are representations of smaller (<10 KLOC – 15%) and more extensive
system (>10 MLOC – 8%).

Thus, the collected data seems to be a good representation of Costa Rican software
industry diversity, grasping (a) several participants’ roles and levels of experience,
(b) organization of different sizes, and (c) projects of different process models, team
size, age, and size.

4.2 Familiarity with TD Concept

Initially, the survey asks how familiar with the concept of TD the participant is. Most
participants (67%) are somewhat familiar with the concept (Fig. 2, left side). The third
part of the participants answered that they have never heard the term (33%). In the
questionnaire, subsequently, all participants were requested to define TD in their words.
The idea must grasp what they understand by TD. Later, TD definition adapted from
McConnell [9] was presented. Next, participants were asked about how close the
definition of technical debt they gave is to McConnell’s. Most participants (74%)
answered that their definition was very close or close to McConnells’ definition (Fig. 2,
right side). Only a fifth of the participants (20%) indicated that they had no prior
knowledge.

Comparing the results about how familiar with the concept of TD the participant is
and how close the definition of technical debt they gave is to McConnell’s (Fig. 2),
participants indicated that they had never heard the term.

Fig. 2. Participants’ familiarity with TD concept

240 A. Pacheco et al.

Also, participants were asked to give an example of TD that had a significant
impact on their chosen project.

Next, they were asked about why they chose that TD example. The four most cited
reasons are most remembered (25%), very common (17%), lot of rework (11%) and
recent work (10%). Later, participants were asked about how representative their
example of TD was in terms of their occurrence frequency. Participant’s answers are
distributed among happens sometimes (49%), often occurs (40%), and a unique situ-
ation (11%).

The results suggest that the cases of technical debt grasped through the survey are
real and recurring. Therefore, the results on the causes and effects of TD that we will
obtain from our study, there will be built on empirical evidence that reflects real and
recurring technical debt problems in software projects.

4.3 Reaction of Development Teams When They Are Aware of TD

In order to grasp the reactions of development teams when they are aware of TD,
participants were asked about if it would be possible to prevent the type of debt of the
event that they cited previously. Most participants (91%) answered yes. These results
suggest that participants recalled mainly projects where TD is possible to prevent.

Next, continuing with questions about the example, they were asked if the technical
debt was monitored and if the technical debt was paid. In Fig. 3, the distribution of
participants answers are shown in four quadrants. Those quadrants are obtained from
crossing possible answers of the following questions: was the debt item monitored?
(x-axis), and was the debt item paid off (y-axis)? Most participants (36%) indicates that
their technical debt item was neither monitored nor paid. Most participants (36%)
indicates that their technical debt item was neither monitored nor paid. Followed by
those who indicated that their technical debt item was monitored and paid (28%).
Further, there are cases where although the debt was monitored, it has not been paid.
Also, there are cases (10%) where the debt was not monitored, but still it was paid.

Fig. 3. Four quadrant matrix showing technical debt monitoring and payment.

Technical Debt in Costa Rica: An InsighTD Survey Replication 241

When analyzing separately the answers to questions shown in Fig. 3, we found that
almost half of participants (46%) indicated that technical debt was not monitored, and
most participants (62%) answered that technical debt was not paid off. These results
suggest that there are cases where the debt was identified, but it was not well managed.

5 Discussion

The collected data seems to be a good representation of Costa Rican software industry
diversity. We found (a) several participant roles and levels of experience, (b) organi-
zation of different sizes, and (c) projects of different age and size, team size, and
process models.

The main finding so far related to the question Are software professionals familiar
with the concept of TD? is that there is a broad familiarity with TD concept. However,
only a quarter of the participants involved in projects where they attempted to manage
TD actively. This fact suggests the topic is recognizable in Costa Rica software
industry, although, there is low adoption of technical debt management practices.
Additionally, some participants recognized TD concept despite not handled the term for
it. This is evidenced when we compare the results shown in Fig. 2. If we compare these
findings with those reported in [8] about InsighTD Brasil, we observe that in both
countries, the TD concept is known by the software industry. However, the term is not
yet widely used.

Regarding the research question: How do software development teams react when
they are aware of the presence of debt items in their projects? the types of reactions are
diverse. We find the presence of the four possible combinations concerning the activity
of monitoring and pay off the debt. In most cases, TD item was neither monitored nor
pay off. In a little less than a third of the cases, they did monitor and pay off the TD
item. Also, there are cases where TD item was either monitored or pay. These results
complement the finding of the first research question, in the sense that there is still low
adoption of technical debt management as work practice. For this research question, it
is not possible to compare our results with the situation in Brasil. Their results about it
have not been published yet.

Moreover, a vast majority of participants (90%) considered that their technical debt
type could be prevented. Thus, educating professionals on technical debt management
practices for contributing to TD prevention seems to make sense.

6 Conclusion

Technical debt is a real and current problem in the software industry. Understanding its
causes and effects are essential to evaluate actions to prevent and manage it properly.
InsighTD is a globally distributed family of industrial surveys on causes and effects of
Technical Debt (TD). We applied the survey in Costa Rica and gathered 156 answers.
In this paper, we presented the initial results. We focused on familiarity with TD
concept and team reactions when they know that there is technical debt. However, we

242 A. Pacheco et al.

also present a characterization of participants, companies where they work, and their
selected project for the examples.

The survey database for Costa Rica contains 148 responses and constitutes a rea-
sonable basis for analysis because contain (a) several participants’ roles and levels of
experience, (b) organization of different sizes, and (c) projects of different process
models, team size, age, and size.

Initial results suggest that there is a broad familiarity with the concept of TD. The
types of TD of the examples reported were product of situations that could have been
prevented. Furthermore, TD was monitored for slightly more than half of cases, and
TD was not paid in most cases.

We will continue analyzing data to obtain the causes and effects in Costa Rica. We
will share those results with Costa Rican Software Industry professionals and InsighTD
project team. Also, the results from our investigation will be an input for our ongoing
investigation about technical debt visualization to improve communication between
stakeholders in decision making related to the software development process.

Future work includes the analysis of InsighTD results in other countries compared
with Costa Rica to assess common causes and effect of TD and to identify possible
specific causes and effect for Costa Rica context.

Acknowledgments. We want to thank all the participants of the survey and the researches from
Costa Rica team promoting this international initiative (InsighTD).

References

1. Rios, N., de Mendonça Neto, M.G., Spínola, R.O.: A tertiary study on technical debt: types,
management strategies, research trends, and base information for practitioners. Inf. Softw.
Technol. 102, 117–145 (2018)

2. Besker, T., Martini, A., Bosch, J.: Time to pay up technical debt from a software quality
perspective. In: Proceedings of the 2017 20th Ibero-American Conference on Software
Engineering, pp. 235–248. CibSE, Argentina (2017)

3. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

4. Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.:
Identification and management of technical debt: a systematic mapping study. Inf. Softw.
Technol. 70, 100–121 (2016)

5. Becker, C., Betz, S., Mccord, C.: Trade-off decisions across time in technical debt
management: a systematic literature review. In: Proceedings of the 2018 International
Conference on Technical Debt, pp. 85–94. ACM, Gothenburg (2018)

6. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in software
engineering. Dagstuhl Rep. 6(4), 110–138 (2016)

7. InsighTD Project. http://td-survey.com/. Accessed 05 Aug 2019
8. Rios, N., Spinola, R., Mendonça, M., Seaman, C.: The most common causes and effects of

technical debt: first results from a global family of industrial surveys. In: Proceedings of
Empirical Software Engineering and Measurement (ESEM). ACM, Oulu (2018)

9. McConnell, S.: Managing technical debt. In: Best Practices White Papers. Construx Software,
Washington, United States (2008)

Technical Debt in Costa Rica: An InsighTD Survey Replication 243

http://td-survey.com/

Estimations

Exploring Preference of Chronological
and Relevancy Filtering in Effort

Estimation

Sousuke Amasaki(B)

Okayama Prefectural University, 111 Kuboki, Soja, Okayama, Japan
amasaki@cse.oka-pu.ac.jp

Abstract. BACKGROUND: Effort estimation models are often built
based on history data from past projects in an organization. Filtering
techniques have been proposed for improving the estimation accuracy.
Chronological filtering relies on the time proximity among project data
and ignores much old data. Relevancy filtering utilizes the proximity of
characteristics among project data and ignores dissimilar data. Their
interaction is interesting because one would be able to make more accu-
rate estimates if a positive synergistic effect exists.

AIMS: To examine whether the chronological filtering and the rel-
evancy filtering can contribute to improving the estimation accuracy
together.

METHOD: moving windows approaches as chronological filtering and
a nearest neighbor approach as relevancy filtering are applied to a single-
company ISBSG data.

RESULTS: we observed a negative synergistic effect. Each of the fil-
tering approaches brought better effort estimates than using the whole
history data. However, their combination may cause worse effort esti-
mates than using the whole history data.

CONCLUSIONS: Practitioners should care about a negative syner-
gistic effect when combining the chronological filtering and the relevancy
filtering.

Keywords: Effort estimation · Moving windows · Relevancy filtering

1 Introduction

Effort estimation is still a challenging activity for software development projects.
Practitioners have suffered from overruns and cancellations caused by overesti-
mation and underestimation. As the estimation accuracy is an essential aspect of
effort estimation, not a few researchers have focused on developing practices for
accurate estimation. Model-based effort estimation is one of the popular topics
in software effort estimation research.

Effort estimation models are often built based on history data from past
projects in an organization. A reason for inaccurate estimation is the dissimilarity
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 247–262, 2019.
https://doi.org/10.1007/978-3-030-35333-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_18&domain=pdf
http://orcid.org/0000-0001-8763-3457
https://doi.org/10.1007/978-3-030-35333-9_18

248 S. Amasaki

between the history data and a target project data. One cause of the inaccuracy
is that a part of the history data is too old and no longer a representative of the
organization. Another cause is that a target project is of a new domain for the
organization and the history data may have different characteristics.

A promising solution for the causes is filtering techniques that only keep a
useful part of the history data. Chronological filtering relies on the time prox-
imity among project data and ignores much old data. For example, Lokan and
Mendes [13] proposed moving windows that filtered out old data. It does not
look in any characteristics and is expected to catch changes not appeared on
metrics. In contrast, relevancy filtering utilizes the proximity of characteristics
among project data and ignores dissimilar data. A study [17] is an example that
a k-nearest neighbor approach was used as a relevancy filtering.

As different techniques worked well for improving estimation accuracy, a
question arises whether the chronological filtering and the relevancy filtering
can contribute to better effort estimation together. Furthermore, if a positive
synergistic effect exists beyond the mere summation of the filtering techniques,
practitioners using one filter technique should adopt another one.

In this paper, we explore the effects of chronological filtering and relevancy
filtering with a single-company ISBSG data, which was often used for evaluating
the moving windows, for answering the following research questions:

RQ1: Does the chronological filtering improve the estimate accuracy?
RQ2: Does the relevancy filtering improve the estimate accuracy?
RQ3: Does the combination of chronological filtering and the relevancy filtering
improve the estimate accuracy?

RQ1 and RQ2 were set ahead of RQ3 for the following reason though some
past studies have already answered to them with the same project data. It was
shown that different effort estimation techniques could cause different effects
(e.g., [3,4]) when using filter approaches. The fact implies that filtering tech-
niques do not necessarily improve estimation accuracy when one uses different
effort estimation techniques. In this study, we adopted two simple effort estima-
tion techniques, namely, average and median, to remove the effects and to focus
on the effects of the filtering approaches. It may lead to a different conclusion to
the past studies that used the same project data. We thus need to confirm the
effects of filtering techniques again even if we used the same project data.

2 Related Work

2.1 Chronological Filtering

Although research in software effort estimation models has a long history, rel-
atively few studies have taken into consideration the chronological order of
projects. Therefore, chronological filtering has not been studied well compared
with other topics in effort estimation.

To our knowledge, Kitchenham et al. [8] were first to suggest the use of
chronological filtering. They built four linear regression models with four subsets,

Exploring Preference of Chronological and Relevancy Filtering 249

each of which comprised projects from different ranges of time duration. As the
coefficients of the models were different from each other, they allowed to drop
out older project data. Lokan and Mendes [13] were the first to study the effect
of using moving windows in detail. They used linear regression (LR) models
and a single-company dataset from the ISBSG repository. Training sets were
defined to be the N most recently completed projects. They found that the use
of a window could affect accuracy significantly; predictive accuracy was better
with larger windows; some window sizes were particularly effective. Amasaki and
Lokan also investigated the effect of using moving windows with Estimation by
Analogy [1] and CART [2]. They found that moving windows could improve the
estimation accuracy, but the effect was different than with LR.

Recent studies also showed the effect and its extent could be affected by
windowing policies [14] and software organizations [15]. Lokan and Mendes [14]
investigated the effect on accuracy when using moving windows of various ranges
of time duration to form training sets on which to base effort estimates. They
also showed that the use of windows based on duration could affect the accuracy
of estimates, but to a lesser extent than windows based on a fixed number of
projects [15].

2.2 Relevancy Filtering

Relevancy filtering is considered as a type of transfer learning approaches. While
many filtering approaches have been proposed for cross-project defect predic-
tion (e.g., [7]), a few studies on cross-company effort estimation have evaluated
the effects of relevancy filtering approaches.

Turhan and Mendes [17] applied brings a so-called NN-filter [18] to cross-
company effort estimation of web projects. They showed that an estimation
model based on raw cross-company data was worse than that based on within-
company data but was improved as comparable one by using the NN-filter. Koca-
guneli et al. [9–11] also introduced a transfer learning approach called TEAK
for improving cross-company effort estimation. They applied it to transfer old
project to a new project and found that TEAK was effective not only for cross-
company effort estimation but also for cross-time effort estimation [12].

NN-filter is based on a nearest neighbor algorithm. In that sense, a study
by Amasaki and Lokan [1] can be considered as an evaluation study of the
combination of the relevancy filtering and the chronological filtering. In that
study, the combination worked well to improve estimation accuracy for a narrow
range of window sizes. While that study used a wrapper approach for feature
selection and logarithmic transformation in addition to the nearest neighbor
algorithm, our study aims to explore the effects of the combination without
such complicated factors. For that purpose, we adopted two simple estimation
techniques that were not adopted in [1], described in the next section.

250 S. Amasaki

3 Methodology

3.1 Effort Estimation Techniques

Many effort estimation techniques have been proposed so far. Those often became
complicated and have many parameters to be tuned for achieving higher estima-
tion accuracy. Even a simple nearest neighbor algorithm (known as estimation
by analogy in software effort estimation research) brings several options other
than the number of neighbors [11].

As we aim to explore the effects of the chronological filtering and the rele-
vancy filtering, we decided to use simple approaches, namely, a median and an
average of a training set. An average uses the whole training set and is sensitive
to the distribution of the training set. A median uses one effort value and is
robust the change of distribution. These contrasting characteristics contributed
to explore the effects of filtering approaches.

3.2 Chronological Filtering

This study adopted fixed-size moving windows [13] and fixed-duration moving
windows [15]. In estimation, the latest N finished projects were selected by the
fixed-size moving windows. The latest projects finished within N months were
selected by the fixed-duration moving windows. As N influence on the effective-
ness of moving windows, we explored various values as well as past studies.

3.3 Relevancy Filtering

This study used a nearest neighbor algorithm as a relevancy filtering approach.
It is also called NN-filter [18]. NN-filter finds k nearest neighbors of a target
project from history data based on unweighted Euclidean distance. Each feature
of project data was normalized with min-max normalization before the distance
calculation. As the synergistic effect could be observed with effective filtering,
the relevancy filtering had to be configured as effective enough. If the relevancy
filtering works well, increasing k would lead to worse estimation. We roughly
confirmed it with k = 3 and k = 1/3 of training data and adopted k = 3,
which is the smallest number which can make average and median estimations
estimate distinct efforts. It could not be the best but was more effective enough
than larger ks. Detailed analyses should be conducted in future work.

3.4 Dataset Description

This study used the single-company subset of the ISBSG dataset that was ana-
lyzed in [1,2,4,13–15]. This data set is sourced from Release 10 of the ISBSG
Repository. Release 10 contains data for 4106 projects; however, not all projects
provided the chronological data we needed (i.e. known duration and completion
date, from which we could calculate start date), and those that did varied in
data quality and definitions. To form a data set in which all projects provided

Exploring Preference of Chronological and Relevancy Filtering 251

the necessary data for size, effort and chronology, defined size and effort simi-
larly, and had high quality data, we selected projects according to the following
criteria:

– The projects are rated by ISBSG as having high data quality (A or B).
– Implementation date and overall project elapsed time are known.
– Size is measured in IFPUG 4.0 or later (because size measured with an older

version is not directly comparable with size measured with IFPUG version
4.0 or later). We also removed projects that measured size with an unspecified
version of function points, and whose completion pre-dated IFPUG version
4.0.

– The size in unadjusted function points is known.
– Development team effort (resource level 1) is known. Our analysis used only

the development team’s effort as well as the past studies for maximizing
comparability of results.

– Normalized effort and recorded effort are equal. This should mean that the
reported effort is the actual effort across the whole life cycle.

– The projects are not web projects. (This is because there is evidence that
web projects are different enough in nature to other projects that they should
not be analyzed together [16]; further, Function Points do not capture some
features affecting the effort required for web applications [6].)

In the remaining set of 909 projects, 231 were all from the same organization
and 678 were from other organizations. We only selected the 231 projects from
the single organization, as we considered that the use of single-company data
was more suitable to answer our research questions than using cross-company
data. Preliminary analysis showed that three projects were extremely influential
and invariably removed from model building, so they were removed from the set.
The final set contained 228 projects.

We do not know the identity of the organization that developed these
projects.

Release 10 of the ISBSG database provides data on numerous variables; how-
ever, this number was reduced to a small set that we have found in past anal-
yses with this dataset to have an impact on effort, and which did not suffer
from a large number of missing data values. The remaining variables were size
(measured in unadjusted function points), effort (hours), and four categorical
variables: development type (new development, re-development, enhancement),
primary language type (3GL, 4GL), platform (mainframe, midrange, PC, multi-
platform), and industry sector (banking, insurance, manufacturing, other).

Table 1 shows summary statistics for size (measured in unadjusted func-
tion points), effort, and project delivery rate(PDR). PDR is calculated as effort
divided by size; high project delivery rates indicate low productivity. In [13], the
authors examined the project delivery rate and found it changes across time.
This finding supports the use of a window.

The projects were developed for a variety of industry sectors, where insur-
ance, banking and manufacturing were the most common. Start dates range
from 1994 to 2002, although only 9 started before 1998. 3GLs are used by 86%

252 S. Amasaki

Table 1. Summary statistics for ratio-scaled variables in data from single ISBSG
organization

Variable Min Mean Median Max StDev

Size 10 496 266 6294 699

Effort 62 4553 2408 57749 6212

PDR 0.53 16.47 8.75 387.10 31.42

of projects; mainframes account for 40%, and multi-platform for 55%; these
percentages for language and platform vary little from year to year. There is
a trend over time towards more enhancement projects and fewer new develop-
ments. Enhancement projects tend to be smaller than new development, so there
is a corresponding trend towards lower size and effort.

3.5 Experiment Procedure

As the chronological filtering relies on the time proximity, our experiment needs
to assume a situation that a development organization needs to respond to con-
tinuously coming new projects. The size of windows influences on where our
experiment starts. As same as the past studies, our experiment with a specific
window size was conducted as follows:

1. Sort all projects by starting date.
2. For a given window size N , find the earliest project p0 for which at least N +1

projects were completed prior to the start of p0 (projects from p0 onwards are
the ones whose training set is affected by using a window, so they form the
set of evaluation projects for this window size. For example, with a window
of 20 projects, at least 21 projects must have finished for the window to differ
from the growing portfolio.)

3. For every project pi in chronological sequence, starting from p0, form esti-
mates using moving windows and the growing portfolio (all completed
projects).

– For the growing approach (i.e., without moving windows), the training
set is all projects that finished before pi started.

– For fixed-size moving windows, the training set is the N most recent
projects that finished before pi started. If multiple projects finished on
the same date, all of them are included.

– For fixed-duration moving windows, the training set is the most recent
projects whose whole life cycle had fallen within a window of D months
prior to the start of pi.

4. Estimate an effort of a target project based on past project data.
– For relevancy filtering, the training set is a subset selected by a nearest

neighbor.
– Without relevancy filtering, the training set is all projects from the pre-

vious step.
5. Evaluate the estimation results.

Exploring Preference of Chronological and Relevancy Filtering 253

Note that the growing portfolio means using the whole history data without any
filtering approaches.

We explored window sizes from 20 to 120 projects for the size-based moving
windows and from 12 to 84 months for the duration-based moving windows as
well as the past study [3].

3.6 Performance Measures

The accuracy statistics that we used to evaluate the effort estimation models
are based on the difference between estimated effort and actual effort. We used
Mean Absolute Error (MAE), which is widely used to evaluate the accuracy of
effort estimation models, as it is an unbiased measure that favours neither under-
nor over-estimates.

We concentrate first on the statistical significance of differences in accuracy
that arise from using the filtering approaches. To test for statistically significant
differences between accuracy measures, we use the two-sided Wilcoxon signed-
rank test (wilcoxon function of the scipy package for Python) and set the
statistical significance level at α = 0.05. The setting of this study is a typical
multiple testing, and the p-values of the tests must be controlled. Bonferroni
correction is a popular method for this purpose. However, the adoption of this
simple correction results in the lack of statistical power, especially for not large
effects. We thus controlled the false discovery rate (FDR) of multiple testing
[5] with the “multipletests” function of the statsmodels package in Python.
FDR is a ratio of the number of falsely rejected null hypotheses to the number
of rejected null hypotheses.

4 Results and Discussion

4.1 Effects of Chronological Filtering

Tables 2 and 3 show the effect on MAE of using moving windows, compared to
always using the growing portfolio, using evaluation windows of different sizes1.
As the past studies did not examine the effect of moving windows with simple
average and median estimations, we followed the same comparison procedure
based on the growing portfolio. The first column of Tables 2(a) and 3(a) and
shows window sizes. The second column shows the total number of projects
used as testing projects with the corresponding window size. The third and
fourth columns show accuracy measures for the growing portfolio and the mov-
ing windows, for the corresponding window sizes. The number of testing projects
depends on window size, and the measures resulted in different values among
window sizes even for the growing portfolio. The fifth column shows the differ-
ence in percentages. The sixth column shows the p-value from statistical tests
on accuracy measures between the growing portfolio and the moving windows.
1 The tables only show results for every tenth window size, due to space limitations.

Graphs show results for all window sizes.

254 S. Amasaki

The last column shows the effect size compared to using the growing portfolio.
Positive values mean a preference for the growing portfolio. Tables 2(b) and 3(b)
omitted the fist and the second columns as those are the same as the results
with the mean estimation.

Table 2. Residuals with different fixed-size windows

(a) Average Estimation

.ffEtseTwodniW
Size Prjs. GP MW Diff.(%) p-val. Size

20 201 4322 4118 –4.72 0.14 –0.07
30 178 4105 3631 –11.57 0.00 –0.18
40 165 4125 3780 –8.34 0.00 –0.13
50 153 4221 3747 –11.24 0.00 –0.17
60 136 4118 3538 –14.07 0.00 –0.23
70 126 3946 3420 –13.31 0.00 –0.25
80 126 3946 3638 –7.79 0.00 –0.15
90 111 3975 3635 –8.57 0.00 –0.16

100 88 3789 3364 –11.21 0.00 –0.20
110 75 3593 3133 –12.80 0.00 –0.23
120 71 3520 3217 –8.63 0.00 –0.15

(b) Median Estimation

Eff.
GP MW Diff.(%) p-val. Size

3196 3341 4.54 0.19 0.04
3033 2998 –1.16 0.47 –0.01
2948 2992 1.48 0.55 0.01
2944 2937 –0.25 0.88 –0.00
2885 2885 0.01 0.98 0.00
2617 2566 –1.92 0.38 –0.02
2617 2574 –1.65 0.23 –0.02
2616 2570 –1.77 0.45 –0.02
2599 2486 –4.33 0.01 –0.04
2236 2103 –5.93 0.00 –0.06
2242 2158 –3.73 0.00 –0.04

Figure 1 has 4 plots showing the difference in mean absolute error against
window sizes. The x-axis of each figure is the size of the window, and the y-
axis is the subtraction of the accuracy measure value with the growing approach
from that with the moving windows at the given x-value. The moving windows
is advantageous where the line is below 0. Circle points mean a statistically
significant difference, with the moving windows being better than the grow-
ing portfolio. Square points mean a statistically significant difference, with the
moving windows being worse than the growing portfolio. At these points, the
corresponding FDR-controlled p-value is below α = 0.05.

Regarding the fixed-size moving windows, Figs. 1(a) and (b) and Table 2
reveal the effect of using moving windows, compared to always using the growing
portfolio as follows:

– With average estimation, the difference in MAE is almost always statistically
significant regardless of window sizes.

– With median estimation, the line gets going down around 60 projects and
implies the preference of the fixed moving windows. However, the difference
is not statistically significant for all window sizes.

– The average estimation was worse in the estimation accuracy than the
median estimation regardless of using fixed-size moving windows, as shown
in Tables 2(a) and (b).

Exploring Preference of Chronological and Relevancy Filtering 255

Table 3. Residuals with different fixed-duration windows

(a) Average Estimation

.ffEtseTwodniW
Months Prjs. GP MW Diff.(%) p-val. Size

12 165 4125 3368 –18.35 0.00 –0.28
18 193 4224 3766 –10.85 0.00 –0.17
24 201 4322 4116 –4.77 0.00 –0.08
30 202 4313 4252 –1.41 0.14 –0.02
36 206 4319 4284 –0.80 0.45 –0.01
42 206 4319 4387 1.59 0.39 0.03
48 206 4319 4409 2.09 0.05 0.03
54 206 4319 4444 2.91 0.00 0.05
60 198 4332 4438 2.45 0.00 0.04
66 184 4167 4234 1.61 0.00 0.03
72 153 4221 4274 1.25 0.00 0.02
78 126 3946 3980 0.87 0.00 0.02
84 80 3750 3769 0.50 0.00 0.01

(b) Median Estimation

Eff.
GP MW Diff.(%) p-val. Size

2948 2808 –4.75 0.07 –0.04
3121 3081 –1.27 0.60 –0.01
3196 3116 –2.50 0.02 –0.02
3197 3183 –0.45 0.52 –0.00
3188 3160 –0.87 0.02 –0.01
3188 3211 0.73 0.16 0.01
3188 3217 0.93 0.09 0.01
3188 3214 0.83 0.00 0.01
3214 3238 0.75 0.00 0.01
3130 3136 0.20 0.03 0.00
2944 2938 –0.22 0.18 –0.00
2617 2603 –0.51 0.00 –0.01
2442 2429 –0.54 0.00 –0.01

Fig. 1. The difference of accuracy measures between growing portfolio and moving-
windows

256 S. Amasaki

Regarding the fixed-duration moving windows, Figs. 1(c) and (d), Table 3
reveal the effect of using moving windows, compared to always using the growing
portfolio as follows:
– With average estimation, the difference in MAE is statistically significant

before 30 months and implies the preference of fixed-duration moving win-
dows. Then, the line gets going up over 0 and supports the growing portfolio.
The differences are often statistically significant.

– With median estimation, the line looks similar to the one of the average
estimation but modest. It gets going up and supports the growing portfolio
around 60 months and then supports the fixed-duration moving windows
around 80 months. The differences are statistically significant around there
but the degree is trivial.

– The average estimation was worse than the median estimation regardless of
using fixed-size moving windows.

From those observations, it seems that fixed-size and fixed-duration moving
windows could extract a better subset for effort estimation if one uses the average
estimation. In contrast, the median estimation could not gain significant benefits
from the moving windows. A possible reason is that the median estimation is not
sensitive to the change of training set distribution. It uses only a single project for
effort estimation. The average estimation uses all training projects and is inclined
to be sensitive to the change of distribution. The worse performance of the
average estimation seems due to a well-known tendency that effort distribution
is skewed.

In summary, a better subset can be obtained by moving windows and helps
estimates by simple averaging to be more accurate. In contrast, a simple median
is too robust to obtain benefits from distribution change. However, the median
gave more accurate estimates. The answer to RQ1 is thus that the moving win-
dows could improve significantly the estimation accuracy with some window
sizes if one uses the average estimation. For the median estimation, the change
of distribution was not sufficient.

4.2 Effects of Relevancy Filtering

Tables 4 and 5 show the effect on MAE of using the relevancy filtering approach,
compared to always using the growing portfolio. For easy comparison to the
previous results, the results are summarised using the same fixed-size window
sizes and fixed-duration windows as well as Tables 2 and 3. The difference is
in the third and fourth columns that show accuracy measures for the growing
portfolio and the nearest neighbor, for the corresponding window sizes.

Figures in Fig. 2 plot the difference in mean absolute error against window
sizes. The x-axis of each figure is the size of the window, and the y-axis is the
subtraction of the accuracy measure value with the growing approach from that
with the nearest neighbor at the given x-value.

Regarding the nearest neighbor filtering with k = 3 summarized with fixed-
size windows, Figs. 2(a) and (b) and Table 4 reveal the effect of using relevancy
filtering, compared to always using the growing portfolio as follows:

Exploring Preference of Chronological and Relevancy Filtering 257

Table 4. Residuals with different k-nearest neighbor (k = 3) summarized with fixed-size
windows

(a) Average Estimation

.ffEtseTwodniW
Size Prjs. GP KNN Diff.(%) p-val. Size

20 201 4322 3098 –28.32 0.0 –0.45
30 178 4105 2872 –30.04 0.0 –0.46
40 165 4125 2738 –33.61 0.0 –0.51
50 153 4221 2762 –34.56 0.0 –0.53
60 136 4118 2668 –35.21 0.0 –0.57
70 126 3946 2551 –35.33 0.0 –0.67
80 126 3946 2551 –35.33 0.0 –0.67
90 111 3975 2653 –33.26 0.0 –0.63

100 88 3789 2632 –30.54 0.0 –0.53
110 75 3593 2365 –34.18 0.0 –0.63
120 71 3520 2352 –33.19 0.0 –0.59

(b) Median Estimation

Eff.
GP KNN Diff.(%) p-val. Size

3196 3117 –2.47 0.20 –0.02
3033 2815 –7.18 0.11 –0.06
2948 2682 –9.04 0.07 –0.08
2944 2663 –9.56 0.07 –0.08
2885 2563 –11.15 0.07 –0.10
2617 2395 –8.46 0.16 –0.09
2617 2395 –8.46 0.16 –0.09
2616 2476 –5.35 0.25 –0.05
2599 2517 –3.14 0.47 –0.03
2236 2293 2.54 0.63 0.03
2242 2322 3.59 0.74 0.04

Table 5. Residuals with different k-nearest neighbor (k = 3) summarized with fixed-
duration windows

(a) Average Estimation

.ffEtseTwodniW
Size Prjs. GP KNN Diff.(%) p-val. Size

12 165 4125 2738 –33.61 0.0 –0.51
18 193 4224 3006 –28.84 0.0 –0.46
24 201 4322 3098 –28.32 0.0 –0.45
30 202 4313 3093 –28.28 0.0 –0.45
36 206 4319 3129 –27.54 0.0 –0.44
42 206 4319 3129 –27.54 0.0 –0.44
48 206 4319 3129 –27.54 0.0 –0.44
54 206 4319 3129 –27.54 0.0 –0.44
60 198 4332 3109 –28.23 0.0 –0.44
66 184 4167 2945 –29.33 0.0 –0.46
72 153 4221 2762 –34.56 0.0 –0.53
78 126 3946 2551 –35.33 0.0 –0.67
84 80 3750 2622 –30.08 0.0 –0.54

(b) Median Estimation

Eff.
GP KNN Diff.(%) p-val. Size

2948 2682 –9.04 0.07 –0.08
3121 2991 –4.14 0.15 –0.04
3196 3117 –2.47 0.20 –0.02
3197 3114 –2.61 0.18 –0.02
3188 3132 –1.74 0.27 –0.02
3188 3132 –1.74 0.27 –0.02
3188 3132 –1.74 0.27 –0.02
3188 3132 –1.74 0.27 –0.02
3214 3133 –2.54 0.19 –0.02
3130 2910 –7.02 0.09 –0.06
2944 2663 –9.56 0.07 –0.08
2617 2395 –8.46 0.16 –0.09
2442 2522 3.29 0.69 0.03

– With average estimation, the difference in MAE is almost always statistically
significant.

– With median estimation, the line almost always stays below 0 and implies
the preference of the nearest neighbor filtering. However, the difference is not
statistically significant for all window sizes.

– The average estimation was almost always worse than the median estimation
as shown in Tables 4(a) and (b).

258 S. Amasaki

Fig. 2. The difference of accuracy measures between growing portfolio and nearest
neighbor filtering

Regarding the nearest neighbor filtering with k = 3 summarized with fixed-
duration windows, Figs. 2(c) and (d) and Table 5 reveal the effect of using rele-
vancy filtering, compared to always using the growing portfolio as follows:

– With average estimation, the difference in MAE is almost always statistically
significant and implies the preference of the nearest neighbor filtering.

– With median estimation, the line always stays below 0. There is no clear
difference.

– The average estimation was worse than the median estimation.

From those observations, it seems that the nearest neighbor approach could
extract a better subset for effort estimation if one uses the average estimation.
Although the median estimation could gain benefits from the nearest neighbor
approach, the effect was not significant. As same as the chronological filtering,
a possible reason for the ineffectiveness for the median estimation is that the
median estimation is not sensitive to the change of training set distribution. It
is surprising that the median estimation with a small number of similar projects
is not so better than that with all projects.

The answer to RQ2 is thus that the nearest neighbor algorithm could improve
the estimation accuracy significantly if one uses the average estimation. The
median estimation could only gain small benefits.

Exploring Preference of Chronological and Relevancy Filtering 259

Table 6. Residuals with different fixed-size windows & KNN (k = 3)

(a) Average Estimation

.ffEtseTwodniW
Size Prjs. GP CB Diff. (%) p-val. Size

20 201 4322 3739 –13.48 0.00 –0.21
30 178 4105 3153 –23.19 0.00 –0.36
40 165 4125 3156 –23.48 0.00 –0.36
50 153 4221 3040 –27.98 0.00 –0.43
60 136 4118 2752 –33.17 0.00 –0.53
70 126 3946 2462 –37.59 0.00 –0.71
80 126 3946 2614 –33.75 0.00 –0.64
90 111 3975 2803 –29.50 0.00 –0.56

100 88 3789 2980 –21.36 0.00 –0.37
110 75 3593 2730 –24.02 0.00 –0.44
120 71 3520 2760 –21.59 0.01 –0.38

(b) Median Estimation

Eff.
GP CB Diff.(%) p-val. Size

3196 3819 19.49 0.03 0.17
3033 3094 2.01 0.79 0.02
2948 3065 3.94 0.90 0.03
2944 3072 4.33 0.89 0.04
2885 2731 –5.34 0.32 –0.05
2617 2482 –5.13 0.34 –0.05
2617 2581 –1.35 0.61 –0.01
2616 2709 3.55 0.98 0.04
2599 2955 13.72 0.46 0.13
2236 2797 25.13 0.29 0.26
2242 2929 30.66 0.34 0.31

Table 7. Residuals with different fixed-duration windows & KNN (k = 3)

(a) Average Estimation

.ffEtseTwodniW
Months Prjs. GP CB Diff.(%) p-val. Size

12 165 4125 3200 –22.40 0.0 –0.34
18 193 4224 3166 –25.04 0.0 –0.40
24 201 4322 3074 –28.88 0.0 –0.46
30 202 4313 3153 –26.89 0.0 –0.42
36 206 4319 3231 –25.18 0.0 –0.40
42 206 4319 3124 –27.67 0.0 –0.44
48 206 4319 3144 –27.20 0.0 –0.43
54 206 4319 3150 –27.06 0.0 –0.43
60 198 4332 3117 –28.03 0.0 –0.44
66 184 4167 2924 –29.83 0.0 –0.47
72 153 4221 2737 –35.16 0.0 –0.54
78 126 3946 2517 –36.21 0.0 –0.69
84 80 3750 2622 –30.08 0.0 –0.54

(b) Median Estimation

Eff.
GP CB Diff.(%) p-val. Size

2948 3127 6.06 0.80 0.05
3121 3171 1.60 0.66 0.01
3196 3140 –1.76 0.38 –0.02
3197 3219 0.67 0.40 0.01
3188 3168 –0.62 0.52 –0.01
3188 3040 –4.65 0.29 –0.04
3188 3112 –2.37 0.32 –0.02
3188 3143 –1.42 0.31 –0.01
3214 3117 –3.03 0.16 –0.03
3130 2888 –7.72 0.06 –0.07
2944 2632 –10.62 0.04 –0.09
2617 2354 –10.03 0.10 –0.10
2442 2522 3.29 0.69 0.03

4.3 Effects of Chronological and Relevancy Filtering

Tables 6 and 7 show the effect on MAE of using the chronological filtering and
the relevancy filtering together, compared to always using the growing portfolio,
using evaluation windows of different sizes. Figures in Fig. 3 plot the difference
in mean absolute error against window sizes. Note that the combination selected
k = 3 projects after applying the chronological filtering.

260 S. Amasaki

Fig. 3. The difference of accuracy measures between growing portfolio and combination
of moving windows and nearest neighbor (k = 3)

Regarding the fixed-size moving windows, Figs. 3(a) and (b) and Table 6
reveal the effect of using the combination of filtering, compared to always using
the growing portfolio as follows:

– With average estimation, the difference in MAE is almost always statistically
significant regardless of window sizes.

– With median estimation, the line rarely gets going down below 0 and implies
the preference of the growing portfolio. The difference is not statistically
significant for all window sizes.

– The average estimation was competitive to the median estimation when using
the combination as shown in Tables 6(a) and (b).

Regarding the fixed-duration moving windows, Figs. 3(c) and (d) and Table 7
reveal the effect of using the combination of filtering, compared to always using
the growing portfolio as follows:

– With average estimation, the difference in MAE is almost always statistically
significant regardless of window sizes.

Exploring Preference of Chronological and Relevancy Filtering 261

– With median estimation, the line gets going down below 0 around 35 month
and stays there before 80 months. The figure supports the combination around
80 months. However, the differences are not statistically significant.

– The average estimation was a bit worse than the median estimation regardless
of using the combination.

From those observations, it seems that the combination could extract a better
subset for effort estimation if one uses the average estimation. In contrast, the
median estimation could not gain significant benefits from the combination.

From Figs. 1(d) and 2(d), we can see that the effects of fixed-duration win-
dows and the nearest neighbor were compromised. The statistically significant
window sizes in Fig. 1(d) were diminished. That is, there was no positive syner-
gistic effect. In contrast, we can see that the growing portfolio got more advanta-
geous in Fig. 3(b) in comparison to Figs. 1(b) and 2(b). That is, the combination
caused a negative synergistic effect.

The answer to RQ3 is that the combination of chronological and relevancy
filtering made the performance worse than the independent application if one
uses the fixed-size windows as a chronological filtering. Even if one uses the
fixed-duration windows, no positive synergistic effect occurs.

5 Conclusion

We explored the effects of chronological filtering and relevancy filtering for effort
estimation. We confirmed the moving windows and the k-nearest neighbor could
extract a better subset. However, only the average estimation got statistically
significant benefits from the subset. Furthermore, the combination of the chrono-
logical filtering and the relevancy filtering did not cause a positive synergistic
effect. Rather, the combination may cause a negative synergistic effect. We thus
recommend not to combine them.

We also observed that the median estimation was better than the average
estimation probably for skewed effort distribution. The observation does not
necessarily imply that the filtering was insufficient because the change in dis-
tributions of feature variables was not reflected to effort estimation process by
such as feature selection. Further investigation considering the change is in future
work. As relevancy filtering is a type of transfer learning, it is also interesting to
examine a combined effect between other transfer learning approaches and the
moving windows. We could not describe why the combination technique could
not work. Additional experiments with other data sets will help to reason and
validate the present results.

Acknowledgment. This work was supported by JSPS KAKENHI Grant #18K11246.

References

1. Amasaki, S., Lokan, C.: The effects of moving windows to software estimation:
comparative study on linear regression and estimation by analogy. In: Proceedings
of IWSM-MENSURA 2012, pp. 23–32. IEEE (2012)

262 S. Amasaki

2. Amasaki, S., Lokan, C.: The effect of moving windows on software effort estimation:
comparative study with CART. In: Proceedings of IWESEP 2014, pp. 1–6. IEEE
(2014)

3. Amasaki, S., Lokan, C.: A replication of comparative study of moving windows
on linear regression and estimation by analogy. In: Proceedings of PROMISE, pp.
1–10. ACM Press (2015)

4. Amasaki, S., Lokan, C.: Evaluation of moving window policies with CART. In:
Proceedings of IWESEP 2016, pp. 24–29. IEEE (2016)

5. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple
testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

6. Ferrucci, F., Gravino, C., Martino, S.D.: A case study using web objects and cosmic
for effort estimation of web applications. In: Proceedings of SEAA, pp. 441–448.
IEEE Computer Society (2008)

7. Herbold, S.: CrossPare: a tool for benchmarking cross-project defect predictions. In:
Proceedings of 30th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW), pp. 90–95. IEEE (2016)

8. Kitchenham, B., Lawrence Pfleeger, S., McColl, B., Eagan, S.: An empirical study
of maintenance and development estimation accuracy. J. Syst. Softw. 64(1), 57–77
(2002)

9. Kocaguneli, E., Gay, G., Menzies, T., Yang, Y., Keung, J.W.: When to use data
from other projects for effort estimation. In: Proceedings of ASE, pp. 321–324.
ACM (2010)

10. Kocaguneli, E., Menzies, T.: How to find relevant data for effort estimation? In:
Proceedings of ESEM, pp. 255–264. IEEE, September 2011

11. Kocaguneli, E., Menzies, T., Bener, A.B., Keung, J.W.: Exploiting the essential
assumptions of analogy-based effort estimation. IEEE Trans. Softw. Eng. 38(2),
425–438 (2012)

12. Kocaguneli, E., Menzies, T., Mendes, E.: Transfer learning in effort estimation.
Emp. Softw. Eng. 20(3), 813–843 (2015)

13. Lokan, C., Mendes, E.: Applying moving windows to software effort estimation.
In: Proceedings of ESEM 2009, pp. 111–122 (2009)

14. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction. In: Proceedings of APSEC 2012, pp. 818–827
(2012)

15. Lokan, C., Mendes, E.: Investigating the use of duration-based moving windows to
improve software effort prediction: a replicated study. Inf. Softw. Technol. 56(9),
1063–1075 (2014)

16. Mendes, E., Mosley, N. (eds.): Web Engineering. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-28218-1

17. Turhan, B., Mendes, E.: A comparison of cross-versus single-company effort pre-
diction models for web projects. In: Proceedings of SEAA, pp. 285–292. IEEE
(2014)

18. Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of cross-
company and within-company data for defect prediction. Emp. Softw. Eng. 14(5),
540–578 (2009)

https://doi.org/10.1007/3-540-28218-1

Automated Functional Size Measurement:
A Multiple Case Study in the Industry

Christian Quesada-López1(B), Alexandra Mart́ınez1, Marcelo Jenkins1,
Luis Carlos Salas1,2, and Juan Carlos Gómez2

1 Universidad de Costa Rica, San José, Costa Rica
{cristian.quesadalopez,alexandra.martinez,marcelo.jenkins}@ucr.ac.cr

2 Grupo Asesor en Informática, San José, Costa Rica
{lsalas,jgomez}@grupoasesor.net

Abstract. Automating functional size measurement (FSM) for software
applications that use specific development frameworks is a challenge for
the industry. Although FSM automation brings benefits such as sav-
ings in time and costs, and better measure reliability, it is difficult to
implement. In this paper, we present a multi-case study that evaluates
the accuracy of an automated procedure for software size estimation
in the context of a software development company. This procedure is
implemented by a tool called FastWorks FPA, which obtains the IFPUG
FPA function point estimation of software applications modeled in the
company’s FastWorks framework. We describe the measurement process
used by the tool, and discuss the results of the case studies. The accuracy
(magnitude of relative error) of the measurements computed by the tool
ranged between 3.9% and 12.9%, based on the total unadjusted function
points. These results provide evidence for the feasibility of automating
the counting process, as the tool’s estimated functional size reasonably
approximates the result of specialists’ manual counting.

Keywords: Functional size measurement · Functional size
estimation · IFPUG FPA · Empirical study

1 Introduction

Functional size measurement (FSM) has demonstrated its usefulness in different
software development phases [26]. The accuracy of FSM is critical in software
project management, being one of the key inputs for effort and cost estimation
models [13]. However, FSM highly depends on the knowledge of the measurer,
thus requiring a significant level of expertise. A widely used FSM method is
IFPUG FPA [18]. This method considers product functionality from the user’s
perspective, and it is independent from the technology used to implement it.

Having accurate software size estimation for its applications is a challeng-
ing task for any software organization [10]. Differences in measuring may occur
because FSM inherently entails subjectivity in the application of some method
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 263–279, 2019.
https://doi.org/10.1007/978-3-030-35333-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_19

264 C. Quesada-López et al.

rules [10], and some decisions are left to the measurers. This might result in
variations of size estimates by different counters on the same application [35].
Moreover, FSM methods are still considered time consuming and expensive [21].

To take advantage of the benefits of FSM, it is necessary to provide solu-
tions that generate measurements faster, with less human subjectivity [15,28],
and with an acceptable degree of variation in accuracy [15,34]. To address these
issues, a number of studies on FSM automation have been conducted in recent
years [28,35], yielding benefits such as savings in time and costs, and better
reliability and repeatability of measures [15]. To ensure the consistency and
repeatability, the FSM automation must be performed from the consistent inter-
pretation of measurement rules [25]. Automating functional size measurement
for software applications that use specific development frameworks is a challenge
for industry [10]. Any organizations that wants to introduce function points (FP)
for estimating size and determine development effort, must collect a data base-
line to allow for benchmarking, and the construction of effort estimation models
based on historical data [10].

We have investigated automatic estimation of IFPUG FPA functional size for
software models expressed in the FastWorks (FW) framework in collaboration
with University of Costa Rica and Grupo Asesor IT Services Group [29,30]. FW
is a development framework that has been developed and maintained internally
by this software organization. We presented the FSM procedure and its automa-
tion with the measurement prototype tool [29], and empirically validated the
functional size estimation results through a case of study in industry [30].

In this paper, we examine the automated function point estimation procedure
implemented in FastWorks (FW) by sizing the models of six software applica-
tions independently developed by a software architect of the organization. We
conducted a multi-case study to evaluate the accuracy of the measurements
obtained by the prototype tool. The process of measurement is described, and
the differences between the unadjusted function points (UFP) obtained by the
tool and those obtained by a specialist are examined. This includes an analysis
of the differences in identification and sizing basic functional components (BFC)
used in the IFPUG method.

The remainder of the paper is organized as follows. Section 2 presents an
overview of FSM. Section 3 presents the related work. Section 4 briefly describes
the measurement tool. Section 5 presents the case studies and the results. Finally,
Sect. 6 outlines the conclusions.

2 Background

Albrecht presented the first Functional Size Measurement (FSM) method to size
software from the user point of view, quantifying the functional requirements [5].
FSM is the process of measuring functional size, its concepts and principles for
application are defined in the ISO/IEC 14143-1 standard [17]. There are five
standardized methods for FSM based on functional user requirements: COSMIC-
FFP (ISO/IEC 19761), IFPUG FPA (ISO/IEC 20926), MkII (ISO/IEC 20968),

Automated Functional Size Measurement: A Multiple Case Study 265

NESMA (ISO/ IEC 24570) y FiSMA (ISO/IEC 29881). FSM enables a software
project to be measured at the early phases, based on the requirements and
facilitates the benchmarking of different projects [13].

The International Function Point Users Group (IFPUG) refined Albrecht’s
proposal and presented the FPA counting practice manual. IFPUG FPA mea-
surement method classifies user requirements using a set of basic functional
components (BFC) called transactional (TF) and data functions (DF). Data
functions (DF) are classified into internal logic files (ILF) and external inter-
face files (EIF). Transactional functions (TF) are classified into external inputs
(EI), external outputs (EO), and external inquires (EQ). Functions are then
counted according to a defined complexity criteria based on the data element
types (DET), the file types referenced by a transaction (FTR), and the record
element types (RET) within a data group. The measurement process in FPA
involves the identification and count of these BFC types: EI, EO, EQ, ILF,
and EIF, in order to obtain the unadjusted function points (UFP). Historically,
IFPUG FPA has been the most popular FSM method [12].

A functional size measurement (FSM) method is a logical sequence of oper-
ations that are described generally [1,3]. A FSM procedure on the other hand,
provides a set of operations, described specifically, to obtain a measurement
according to one or more measuring principles and to a given FSM method.
A FSM procedure requires the identification of a number of elements and the
correct application of several rules to ensure that the measurement results meet
the quality criteria [1,3].

A FSM procedure follow the steps of the process model for FSM methods
proposed by Abran [3]. This process model is divided in three stages: (1) the
design of the measurement procedure, (2) the application of the procedure, and
(3) the exploitation of the results. In the first step, the concept to be measured,
the FSM method and the procedure rules are defined. This includes the defini-
tion of the objectives, the characterization of the concept, the selection of the
metamodel and the definition of the mapping and counting rules. In the second
step, the FSM procedure is applied to the software artifacts. This includes the
artifacts gathering, the construction of the functional model and the application
of the rules. In the third step, the measurement results are presented and used,
for example, in estimation models. The verification activities are carried out for
each of the 3 stages to ensure a sufficient degree of reliability of the procedure.

The measurement procedure conducted and evaluated in this study was
implemented following these stages of the process model for FSM methods [3].

3 Related Work

Research on automation of FSM has increased in recent years [28]. Several studies
have analyzed different aspects of the automation of FSM [25,28]. These studies
aim to automate the counting of the functional size from different software arti-
facts such as the requirements specification, the design models, the source code,
or the test cases, among others [25,28]. To systematically obtain the functional

266 C. Quesada-López et al.

size, these works defined mapping rules between the concepts that describe the
artifacts and the components of the selected FSM method [33].

Uemura et al. [36] proposed a FPA measurement rules for design specifi-
cations based on UML. They developed a function point measurement tool to
count design models on Rational Rose and evaluated its applicability. Kusumoto
et al. [19] examined the possibility of measuring FP from source code automati-
cally for object-oriented programs written in Java. The function point measure-
ment tool was applied to practical Java programs and the difference between the
FP values obtained by the tool and those of an FP measurement specialist were
compared. Edagawa et al. [10] proposed a procedure to automatically measure
the functional size based on IFPUG FPA. This approach count the data and
transactional functions from the screen transitions and database accesses of web
applications.

Lamma et al. [20] presented a tool for measuring IFPUG FPA from entity
relationship and data flow diagrams. The FP counting rules were translated
into systematic rules expressing the properties of the ER–DFD and the results
were evaluated. Abrahao and Pastor [1] proposed a FSM procedure and tool to
calculate the IFPUG FPA size from object oriented models based on IFPUG
FPA and the Object-Oriented Hypermedia method (OO-H). Abrahão et al. [2]
defined a measurement procedure for the OO-H Web applications based on COS-
MIC FFP. They presented the mapping and measurement rules to automatically
derive functional size. Živkovič et al. [38] automated the software size estimation
based on function points using UML models. The mapping rules was formally
described to enable the automation. Besides, they defined a formal representa-
tion of functional size measurement methods [16]. Lavazza et al. [22] proposed
a technique for building FPA-oriented UML models to measure function points.
The technique was validated in a controlled experiment and a set of pilot appli-
cations.

Maŕın et al. [23] analyzed FSM proposals and tools to provide a guide for
practitioners and researchers. They detailed procedures based on COSMIC FFP
using conceptual models as input artifacts. They concluded that the formaliza-
tion of the models are essential. Mapping rules between the COSMIC concepts
and model concepts should be clearly defined and accuracy verification should be
conducted. Barkallah et al. [6] propose a framework on how to apply COSMIC
FFP using UML models.

Akca and Tarhan [4] proposed a measurement library to measure COSMIC
FFP in Java business applications at runtime. In [14], Tarhan presented a FSM
prototype tool using java source on runtime and functional execution traces.
Finally, They proposed a set of requirements that need to be considered for
FSM automation tools [35].

In 2014, the Object Management Group [15] proposed the Automated Func-
tion Points specification to count function points based on IFPUG FPA. The
specification is used to measure transaction oriented applications with persistent
data. The approach differs from IFPUG FPA when subjective judgments have
to be replaced by the rules needed for automation.

Automated Functional Size Measurement: A Multiple Case Study 267

Özkan [24] proposed a FSM approach for three tier object architecture and
a measurement prototype tool based on COSMIC. Ungan et al. [37] presented a
COSMIC functional measurement automation tool ScopeMaster. The tool auto-
matically generates a size estimation from textual requirements and provides
detailed reports on measurement details. De Vito et al. [9] designed and auto-
mated the COSMIC measurement based on UML models. To assess the mea-
surement procedure they carried out two case studies and compared the results
provided by the tool with the ones obtained by experts applying the COSMIC
method.

In this study, we evaluated a FP size measurement tool for the FastWorks
framework [29,30]. The FSM procedure and prototype tool were implemented
mostly based on [10,15,16,20,35]. Our measurement tool attempts to measure
the UFP from the FastWorks model based on the IFPUG FPA method.

4 Measurement Prototype Tool

In this section, we overview the measurement process and prototype tool that
were described in detail in our previous work [29,30].

FastWorks (FW) is the development framework of the organization in which
this study was conducted. This organization own framework has been used to
develop Microsoft.NET information systems for the governmental sector for 15
years. FW allows the automatic generation of software from the model of the
application. It provides a graphical environment that supports the modeling of
transactional systems, generating a standardized architecture for the different
modules and their functionalities, and thus increasing the productivity of the
development process.

Figure 1 shows the FW “Model Specifier” component and the “Generator”
component. The modeling process is performed in the “Model Specifier”. This
component provides a set of work spaces to perform the model specification
based on the user functional requirements. The “Generator” component is used
to produce the source code based on the model.

In the “Model Specifier” the following elements and their relationships are
modeled to represent a software application: (1) Module: represents the applica-
tion. It has one or more windows and a main window is defined for each module.
(2) Window: is a screen in the module that contains one or more frames with
interaction between them. (3) Frame: has one or more sentences that manage
the data and one or more controls, actions and events. It is classified as a list
that only contains a table control or as a form that contains multiple controls.
(4) Database: describes the persistent entities of the application. (5) Statement:
is a programming statement for data management (i.e. SQL statements). A
statement could be linked to a frame or an action and resolve calls to CRUDL
operations, stored procedures, functions and views based on and linked to the
database. (6) Control: allows the input or output of data in a frame. A control
may contain other controls and may have one or more related events associated.
(7) Action: allows to perform the execution of transactions in a frame using one

268 C. Quesada-López et al.

Fig. 1. Measurement prototype tool [29,30].

or more statements and also could perform operations with other controls. (8)
Event: allows to perform the execution of transactions in response to the user
events and also could perform operations with other controls. (9) Hierarchy:
allows the organization of parent windows. Finally, (10) Context: represents the
global information of the application environment. For example, a parent window
could write a set of values and child windows could read these values.

The framework model comprises all the software application end-user func-
tionalities. From the model, the application is automatically generated. In our
case, the model is used not only to generate the source code, but also to produce
the information for the construction of the functional model used as input in the
FSM procedure. The functional model in FastWorks contains all the information
required to estimate the functional size of the final application.

“FastWorks FPA” (FW-FPA) automatically estimates the IFPUG FPA size
from the model of the target application. FW-FPA was implemented as part
of the framework using the .Net platform and the MS ScriptDom assemblies
to parse the transactions. The Neo4j API was used to manage the graph rep-
resentation and to calculate the functional size. Figure 2 depicts the FW-FPA
prototype tool components and the measurement process. The prototype tool
includes the following components [29,30]:

Generator: this component generates an XML interface file from the FW model
that details all required information for the construction of the functional
model. The interface file is generated from the instantiated objects of the
application and implements a set of features for the automation of the identi-
fication of trigger events handling, functional processes, persistent data, and
type of access from functional processes to persistent data. The instrumenta-
tion libraries allow the user events tracking and the database analysis.

Constructor: this component constructs the functional model (event, data and
transactional model) based on the information provided for the interface file.

Automated Functional Size Measurement: A Multiple Case Study 269

It simulates the execution of transactions and generates the graph that repre-
sents the functional model of the application. While the execution of transac-
tions is simulated, the traces are processed and the meta-model components
are mapped between the FW components and the measurement procedure
components.

Measurer: this component (a) enables the mapping between the IFPUG FPA
and the concepts of the functional model of the measurement procedure, (b)
identifies unique, cohesive and independently functions and data groups, and
(c) calculates the functional size according to the mapping and counting rules
for each functional process. It enables viewing and editing the FSM mapping
and recalculating the results.

Reporter: this component shows the details of the FSM results. It details all
the stages of the process and the breakdown of the measurements keeping
traceability with the application model and presents a visualization of the
functional model. The results provided by this component allows to apply
the accuracy verification protocol.

Our measurement procedure define the functional meta-model required and
the rules to map this model with the IFPUG FPA meta-model [29,30]. The
functional meta-model used in the procedure is instantiated based on the identi-
fication of the set of elements from the application modeled in FW. The elements
of the meta-model needed to be identified are the following: (1) Application: rep-
resents the target application to measure that could have one or more controls.
(2) Control: is a user interface component such as: screens, buttons, edit text,
data grids, containers and others. The user executes functionality with events
associated to the controls. (3) Event: allows the execution of end user func-
tionality. It could be classified as a navigation or as a function. (4) Function:
represents a functional process and could be classified as transaction or data
entity. (5) Transaction: represent a unique, cohesive and independently func-
tion based on database operations. It access data entities and could be classified
as read or write. (6) Data entity: represents a table or a group of tables in
the database representing a logical group. (7) Data element: represents a data
attribute or database column. It could be classified as a data or as a calculated.
(8) Database: represent any database or persistent data used by the application
(internal or external).

The FSM procedure was implemented following the process model for FSM
methods proposed in [3]. To measure a software application, the following four
steps are conducted:

(S1) Generating the functional model elements: Based on the application modeled
in the framework, the information for the construction of the functional model
is extracted. This process extract and convert the required elements of the
application model in the elements of the functional meta-model.

(S2) Constructing the functional model: Based on the extracted elements in S1,
the functional model is automatically generated. The construction of the func-
tional model is made simulating the execution of the end-user functionality.

270 C. Quesada-López et al.

Fig. 2. The measurement process.

First, an event model is constructed based on the application, control, event
and function elements. After that, a data model is constructed based on the
database, data entity and data element elements and finally, with the execu-
tion of functional transactions between the event and data model, the trans-
actional model is constructed adding the transaction elements where access to
persistent data exists. The event, data and transactional models conforms the
functional model. This functional model is represented as a graph (directed,
labeled and weighted) that denotes the functionality of the application. The
functional graph is composed of eight types of nodes, one for each meta-model
element. The edges represent the relationship between each node showing the
functional processes.

(S3) The mapping phase: Based on the functional model, each element is mapped
to the IFPUG FPA meta-model. First, the data function (DF) candidates are
identified and classified. This includes the identification of the logical groups
based on the relationships between the data entities and how the transactions
access these data entities. In addition, the classification of each data entity
as an internal logic file (ILF) or an external interface file (EIF) is performed
based on the type of access in the transactions (read/write). Finally, the iden-
tification of technical entities is completed checking if the data entity and its
data elements are not reached by the user interface. Second, the transactional
function (TF) candidates are identified and classified. Each TF is extracted
from the function nodes. A function could be composed by a set of trans-
actions that are executed simultaneously. The classification of each function
as an external input (EI), external output (EO) or external inquiry (EQ) is
performed based on the type of access of the functions (read/write) based on

Automated Functional Size Measurement: A Multiple Case Study 271

the transactions. This includes the identification of calculated data elements
to distinguish be-tween EO and EQ functions. Finally, based on the classifi-
cation of the DF and TF, data element types (DET), record element types
(RET) and file types referenced (FTR) are identified. Due space limitations
the specific mapping rules are not detailed.

(S4) The measurement phase: Based on the classification of IFPUG FPA ele-
ments, the complexity of each TF and DF is determined and each function
is weighted. Finally, the counting of the unadjusted function points (UFP) is
calculated. This step is based on the counting rules specified in the IFPUG
FPA counting practice manual. Adjusted function points are not considered.

The accuracy verification protocol [27] was used to calibrate the measure-
ment procedures and the automated measurement tool. After that, the protocol
allowed the validation of the measurement results. The verification process was
conducted in three main phases: (P1) Overall FP comparison: the overall mea-
surement results for the counting process are compared against the “true value”.
(P2) Accuracy detailed comparison: the measurement results for each step in the
process is checked and the BFC are compared against the “true value”. This
phase identify the place where a difference in the counting process is presented.
Each step in this phase represents a deep analysis of the measurement process.
At the end of this phase, any assignable cause responsible for an error is isolated,
linked, and reported based on the P3. (P3) Error identification and recovery: the
reason for a difference is identified. An inspection on the quality of requirements,
input artifacts, and process is conducted to identify where the error comes from
and the differences are recorded and reported.

5 Case Studies

To assess the FastWorks FPA tool, a multi-case study was conducted to evaluate
the accuracy of an automated software size measurement procedure. The struc-
ture of the report follows the guidelines for empirical studies proposed in [32].

5.1 Planning

We used the FastWorks FPA tool to automatically estimate the size of six soft-
ware applications modeled in FW. We then compared those estimations against
those obtained by a specialist using the requirement specification documents.
Our objective was to evaluate the accuracy of an automated measurement pro-
cedure that uses the FastWorks FPA tool. The case studies were performed to
answer the following research questions:

RQ1. Are the overall results measured by the tool similar to the ones measured
by the specialist using the requirements specifications?

RQ2. Are the basic functional (BFC) results measured by the tool similar to
the ones measured using the requirements specifications?

272 C. Quesada-López et al.

Systems Under Measurement. The target applications were independently
modeled in FastWorks by a software architect of the organization. The first tar-
get application is the Contoso University System (CoU, 164 UFP) [29,30]. The
second application is the Project Management System (PMS, 152 UFP) [1]. The
third application is the Point of Sale Software (PoS, 35 UFP). The fourth appli-
cation is the Registration System (REG, 146 UFP) [7,8]. The fifth application
is the Warehouse Management System (WMS, 118 UFP) [11]. Finally, the sixth
application is the Employee Management System (EMS, 95 UFP) [13]. The appli-
cations were modeled based on the requirements specification document written
using the IEEE Recommended Practice for Software Requirements Specifications
standard. The requirements were described in terms of functionality. All applica-
tions are transactional systems that mostly performs create, read, update, delete,
and list (CRUDL), and assignment, search and filter operations. Additionally,
these applications implement more complex functionalities that involves reports
and business processes associated with each problem domain. All applications
could be coded in ASP.NET C# code and use relational databases. The measure-
ments of the target applications have been reported in previous measurement
studies.

Instrumentation. The experimental instruments were prepared in advance and
the whole experimental package was based on the used in previous studies [27,29–
31]. For each application, a software requirement specification was prepared and
validated, and the functional size was manually validated by two specialists based
on previous counts [1,7,8,11,13,29,30]. The applications were modeled in FW
and then their functional size was estimated by the FastWorks FPA tool. The
results were processed and compared in a standardized results sheet against the
“true value”. Verification of the measurement accuracy was done in different
phases applying the verification protocol [27].

Threats to Validity. The six software applications are small but their require-
ment specifications are regular examples of current practices used in industry.
The effect of the artifacts can influence the study outcomes. Since we applied
the tool to only six applications, the accuracy might depend on the character-
istics of these applications. The applications were selected by convenience and
were not a random selection. The size of the applications ranged from 35 to 164
UFPs and results could not be generalized to other domains or larger applica-
tions. Two researchers collected and validated the IFPUG FPA functional sizes
used as a “true values”, but they are not certified as function point specialists.
However, they have more than 10 years of experience in measurement, and the
applications had been previously measured and reported in similar studies. The
results can only be generalized to the development framework used in this soft-
ware organization and the functional models described in this study. The FSM
procedure was calibrated according to the modeling standards of the organiza-
tion, the development framework, and its unique characteristics. The scope of
the count is limited to the functional model generated for the system modeled

Automated Functional Size Measurement: A Multiple Case Study 273

Table 1. Results of functional size measurement.

Proj App Count UFP(Qty) DF TF

ILF EIF Total EI EO EQ Total

P1 CoU Manual 164 (37) 35 (5) 0 (0) 35 (5) 58 (15) 21 (4) 50 (13) 129 (32)

Tool 155 (35) 35 (5) 0 (0) 35 (5) 61 (15) 9 (2) 50 (13) 120 (30)

P2 PMS Manual 152 (40) 28 (4) 0 (0) 28 (4) 90 (27) 10 (2) 24 (7) 124 (36)

Tool 146 (38) 28 (4) 0 (0) 28 (4) 86 (26) 10 (2) 22 (6) 118 (34)

P3 PoS Manual 35 (9) 7 (1) 5 (1) 12 (2) 4 (1) 0 (0) 19 (6) 23 (7)

Tool 31 (7) 7 (1) 5 (1) 12 (2) 6 (1) 7 (2) 6 (2) 19 (5)

P4 REG Manual 146 (35) 28 (4) 20 (4) 48 (8) 60 (14) 12 (6) 26 (7) 98 (27)

Tool 135 (27) 28 (4) 10 (2) 38 (6) 64 (14) 10 (2) 23 (5) 97 (21)

P5 WMS Manual 118 (27) 21 (3) 20 (4) 41 (7) 34 (9) 14 (3) 29 (8) 77 (20)

Tool 113 (27) 21 (3) 20 (4) 41 (7) 31 (9) 0 (0) 41 (11) 72 (20)

P6 EMS Manual 95 (22) 21 (3) 5 (1) 26 (4) 38 (10) 19 (4) 12 (4) 69 (18)

Tool 100 (22) 21 (3) 5 (1) 26 (4) 41 (10) 19 (4) 14 (4) 74 (18)

in this specific framework, that is a non-public framework. The way a system is
modeled in the framework could impact the measurement outcome. Although the
development teams obeyed their standards for modelling, the several decisions
on the implementation of the database model can influence the identification of
some logical groups, this affecting the final count.

5.2 Analysis of Results

Results of size measurement for each application are shown in Table 1. This table
contains the project (Proj), the application (App), the type of count (manual or
automated by the tool), the measurement results in unadjusted function points
(UFP) together with the quantity of functions (Qty), as well as the functional
size and functions from each basic functional component (BFC): data (DF) and
transactional (TF) functions, internal logic files (ILF), external interface files
(EIF), external inputs (EI), external outputs (EO), and external inquires (EQ).

Table 2 shows the accuracy results per application. For each project (Proj)
and its associated application (App), we show four metrics: the magnitude of
relative error (MRE), the magnitude of error relative (MER), the balanced rel-
ative error (BRE), and the differences in results (Diff). These results are given
for total UFP and for each basic functional component.

Measurements estimated by the tool yielded an accuracy (in terms of MRE)
between 3.9% and 12.9%, based on the total UFP. For Contoso University Sys-
tem (CoU, 164 UFP), the accuracy (MRE) was 5.5%, for Project Management
System (PMS, 152 UFP), the accuracy was 3.9%, for Point of Sale Software (PoS,
35 UFP), it was 11.4%, for Registration System (REG, 146 UFP), an accuracy
of 7.5% was attained, for Warehouse Management System (WMS, 118 UFP), the
accuracy was 4.2%, and finally, for the Employee Management System (EMS,
95 UFP), it was 5.3%. These results indicate that, in the context of FastWorks,

274 C. Quesada-López et al.

Table 2. Results of accuracy.

Proj App Metric UFP DF TF

ILF EIF Total EI EO EQ Total

P1 CoU MRE 5.5% 0.0% – 0.0% 5.2% 57.1% 0.0% 7.0%

MER 5.8% 0.0% – 0.0% 4.9% 133.3% 0.0% 7.5%

BRE 5.8% 0.0% – 0.0% 5.2% 133.3% 0.0% 7.5%

Diff −9 0 0 0 3 −12 0 −9

P2 PMS MRE 3.9% 0.0% – 0.0% 4.4% 0.0% 8.3% 4.8%

MER 4.1% 0.0% – 0.0% 4.7% 0.0% 9.1% 5.1%

BRE 4.1% 0.0% – 0.0% 4.7% 0.0% 9.1% 5.1%

Diff −6 0 0 0 −4 0 −2 −6

P3 PoS MRE 11.4% 0.0% 0.0% 0.0% 50.0% – 68.4% 17.4%

MER 12.9% 0.0% 0.0% 0.0% 33.3% 100.0% 216.7% 21.1%

BRE 12.9% 0.0% 0.0% 0.0% 50.0% – 216.7% 21.1%

Diff −4 0 0 0 2 7 −13 −4

P4 REG MRE 7.5% 0.0% 50.0% 20.8% 6.7% 16.7% 11.5% 1.0%

MER 8.1% 0.0% 100.0% 26.3% 6.3% 20.0% 13.0% 1.0%

BRE 8.1% 0.0% 100.0% 26.3% 6.7% 20.0% 13.0% 1.0%

Diff −11 0 −10 −10 4 −2 −3 −1

P5 WMS MRE 4.2% 0.0% 0.0% 0.0% 8.8% 100.0% 41.4% 6.5%

MER 4.4% 0.0% 0.0% 0.0% 9.7% – 29.3% 6.9%

BRE 4.4% 0.0% 0.0% 0.0% 9.7% – 41.4% 6.9%

Diff −5 0 0 0 −3 −14 12 −5

P6 EMS MRE 5.3% 0.0% 0.0% 0.0% 7.9% 0.0% 16.7% 7.2%

MER 5.0% 0.0% 0.0% 0.0% 7.3% 0.0% 14.3% 6.8%

BRE 5.3% 0.0% 0.0% 0.0% 7.9% 0.0% 16.7% 7.2%

Diff 5 0 0 0 3 0 2 5

the functional size estimated by the tool could reasonably approximate manual
counting performed by specialists.

The accuracy of the total function points count for IFPUG FPA could be
considered acceptable in industry (±10%). However, given a ±30% variance,
the accuracy of some BFCs (EIF, EO, EQ) was not sufficiently low in some
applications. As reported in previous studies [10,30], the total function point
count could be relatively accurate, although some classifications of BFCs failed.
For this reason, both the total FP count and the BFC count should be tested
and analyzed. In our case, it is necessary to calibrate the EO and EQ component
mapping rules to ensure accuracy of measurement results.

Table 3 shows the aggregated accuracy results across all six applications.
We present the mean, median, min and max of the magnitude of the relative

Automated Functional Size Measurement: A Multiple Case Study 275

Table 3. Summary of aggregated accuracy results.

Metric UFP DF TF

ILF EIF Total EI EO EQ Total

MRE Mean 6.3% 0.0% 12.5% 3.5% 13.8% 34.8% 24.4% 7.3%

Median 5.4% 0.0% 0.0% 0.0% 7.3% 16.7% 14.1% 6.7%

Min 3.9% 0.0% 0.0% 0.0% 4.4% 0.0% 0.0% 1.0%

Max 11.4% 0.0% 50.0% 20.8% 50.0% 100.0% 68.4% 17.4%

MER Mean 6.7% 0.0% 25.0% 4.4% 11.0% 50.7% 47.1% 8.1%

Median 5.4% 0.0% 0.0% 0.0% 6.8% 20.0% 13.7% 6.9%

Min 4.1% 0.0% 0.0% 0.0% 4.7% 0.0% 9.1% 1.0%

Max 12.9% 0.0% 100.0% 26.3% 33.3% 133.3% 216.7% 21.1%

BRE Mean 6.8% 0.0% 25.0% 4.4% 14.0% 38.3% 49.5% 8.1%

Median 5.5% 0.0% 0.0% 0.0% 7.3% 10.0% 14.9% 7.1%

Min 4.1% 0.0% 0.0% 0.0% 4.7% 0.0% 0.0% 1.0%

Max 12.9% 0.0% 100.0% 26.3% 50.0% 133.3% 216.7% 21.1%

Diff Mean −5 0 −2 −2 1 −4 −1 −3

Median −6 0 0 0 3 −1 −1 −5

Min −11 0 −10 −10 −4 −14 −13 −9

Max 5 0 0 0 4 7 12 5

error (MRE), the magnitude of error relative (MER), the balanced relative error
(BRE), and the absolute difference (Diff). The variation is presented for the
total function points count (UFP), and each basic functional component (BFC).

The results show an accuracy (mean of MRE) of 6.3% based on the total
UFP. This is an acceptable variation in industry. In total, the accuracy (mean
of MRE) for transactional functions (TF) was 7.3%, data functions (DF) was
3.5%, internal logic files (ILF) was 0.0%, external interface files (EIF) was 12.5%,
external inputs (EI) was 13.8%, and external outputs (EO) and external inquires
(EQ) 34.8% and 24.4%. The EO and EQ balanced each other and the accuracy
for TF was 7.3%. Considering a ±30% variance, the accuracy of the BFCs are
promising for the organization. However, the accuracy at the BFC level must be
improved in order to achieve strength results.

In summary, the measurement results obtained by the tool present some
deviations from the ones calculated manually. Although the total number of
UFPs (RQ1) can be measured with an acceptable level of accuracy, this is not
possible for the UFP counts for all the BFCs (RQ2). Hence, the classification
and counting of each BFC should be improved.

276 C. Quesada-López et al.

5.3 Discussion

Hereinafter, we discuss the reasons for deviations in measurement results, iden-
tifying and analyzing the main causes (factors of influence) of such deviations.
The case studies confirmed our previous results and added new findings as well.

The FastWorks FPA tool extracted most of the transactional functions,
although some function classifications were confounded between EOs and EQs.
The difference was presented by the mapping rules that identify EO elements
when it finds calculated fields implemented in the data accesses of the trans-
actions. The requirements identified as EQ corresponded to reports that the
development framework (FW) implemented without the need to add calculated
fields.

Differences identified in some requirements were caused by the identification
of extra DET, RET and FTR elements. This differences were caused by tech-
nical implementations in the FW that add attributes to the database entities
for integrity control. In the calibration process, some data tables and technical
columns were identified that are not part of the user’s requirements. In some
cases, functionality was duplicated from other requirements. The analysis of
the functional model allows the identification of these elements to calibrate the
results. We considered these cases as duplicated functionality, but also reported
them to the professional for consideration during the decision making processes.

Finally, FW implements some default functionality to the final user and
this should be taken into account. Moreover, some functions classified as EQ
were not identified because the default implementation of the FW coupled some
requirements and provided, for example, filter options without access to the data
functions.

6 Conclusion

In this paper, we evaluated the automated function point estimation tool Fast-
Works FPA. Six software applications were automatically counted by this tool.
Such applications were independently modeled by a software architect from the
organization.

The results show that the values of the automatic and manual measurement
were convergent. The accuracy (mean of MRE) was 6.3% based on the total
unadjusted function points (UFP). Functional size measurements were obtained
with an acceptable level of accuracy that might allow the organization to imple-
ment a metrics program based on the functional size.

In the near future, we plan to conduct more experimentation with software
applications of higher complexity, to aggregate evidence on the tool’s perfor-
mance. To that aim, we would like to use the tool with the organizational port-
folio of applications and validate the measurement results. Also, we would like to
analyze in detail the classification of functions, since eliminating some of those
will greatly enhance the counting results. In addition, we will carry out studies
to analyze the possibility of obtaining IFPUG FPA and COSMIC FFP countings
from early models using the framework.

Automated Functional Size Measurement: A Multiple Case Study 277

Acknowledgments. This work was partially supported by the University of Costa
Rica No. 834-B8-A27. We thank the Empirical Software Engineering Group at UCR.

References

1. Abrahao, S.: On the functional size measurement of object-oriented conceptual
schemas: design and evaluation issues. Universidad Politecnica de Valencia (2004)

2. Abrahão, S., DeMarco, L., Ferrucci, F., Gomez, J., Gravino, C., Sarro, F.: Defini-
tion and evaluation of a cosmic measurement procedure for sizing web applications
in a model-driven development environment. Inf. Softw. Technol. 104, 144–161
(2018)

3. Abran, A.: Software Metrics and Software Metrology. Wiley, Hoboken (2010)
4. Akca, A., Tarhan, A.: Run-time measurement of cosmic functional size for java

business applications: is it worth the cost? In: IWSM-MENSURA, pp. 54–59. IEEE
(2013)

5. Albrecht, A.: Measuring application development productivity. In: Joint Share,
Guide, and IBM Application Development Symposium (1979)

6. Barkallah, S., Gherbi, A., Abran, A.: COSMIC functional size measurement using
UML models. In: Kim, T., et al. (eds.) ASEA 2011. CCIS, vol. 257, pp. 137–146.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27207-3 14

7. Bundschuh, M., Dekkers, C.: The IT Measurement Compendium: Estimating and
Benchmarking Success with Functional Size Measurement. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68188-5

8. COSMIC: The COSMIC Functional Size Measurement Method Versión 4.0.1
Course Registration (C-REG) System Case Study. Version 2.0. COSMIC (2015)

9. De Vito, G., Ferrucci, F., Gravino, C.: Design and automation of a COSMIC mea-
surement procedure based on UML models. Softw. Syst. Model. (2019). https://
doi.org/10.1007/s10270-019-00731-2

10. Edagawa, T., Akaike, T., Higo, Y., Kusumoto, S., Hanabusa, S., Shibamoto, T.:
Function point measurement from web application source code based on screen
transitions and database accesses. J. Syst. Softw. 84(6), 976–984 (2011). https://
doi.org/10.1016/j.jss.2011.01.029

11. Fetcke, T.: The warehouse software portfolio: a case study in functional size mea-
surement. Citeseer (1999)

12. Fingerman, S.: Practical software project estimation; a toolkit for estimating soft-
ware development effort & duration. Sci-Tech News 65(1), 28 (2011)

13. Garmus, D., Herron, D.: Function Point Analysis: Measurement Practices for Suc-
cessful Software Projects. Addison-Wesley Publishing Inc., Boston (2001)

14. Gonultas, R., Tarhan, A.: Run-time calculation of COSMIC functional size via
automatic installment of measurement code into Java business applications. In:
2015 41st Euromicro Conference on Software Engineering and Advanced Applica-
tions, pp. 112–118. IEEE (2015). https://doi.org/10.1109/SEAA.2015.30

15. Group, O.M.: Automated Function Points (AFP) Version 1.0, OMG Document
Number: formal/2014-01-03. OMG (2014). http://www.omg.org/spec/AFP

16. Heričko, M., Rozman, I., Živkovič, A.: A formal representation of functional size
measurement methods. J. Syst. Softw. 79(9), 1341–1358 (2006)

17. ISO: Information Technology, Software Measurement, Functional Size Measure-
ment: Definition of Concepts. ISO/IEC (2007)

18. ISO: ISO/IEC 20926:2009 Software and systems engineering - Software measure-
ment - IFPUG functional size measurement methods. ISO/IEC (2009)

https://doi.org/10.1007/978-3-642-27207-3_14
https://doi.org/10.1007/978-3-540-68188-5
https://doi.org/10.1007/s10270-019-00731-2
https://doi.org/10.1007/s10270-019-00731-2
https://doi.org/10.1016/j.jss.2011.01.029
https://doi.org/10.1016/j.jss.2011.01.029
https://doi.org/10.1109/SEAA.2015.30
http://www.omg.org/spec/AFP

278 C. Quesada-López et al.

19. Kusumoto, S., Imagawa, M., Inoue, K., Morimoto, S., Matsusita, K., Tsuda, M.:
Function point measurement from java programs. In: Proceedings of the 24th Inter-
national Conference on Software Engineering, ICSE 2002, Orlando, Florida, pp.
576–582. ACM, New York (2002). https://doi.org/10.1145/581339.581412

20. Lamma, E., Mello, P., Riguzzi, F.: A system for measuring function points from
an ER-DFD specification. Comput. J. 47(3), 358–372 (2004)

21. Lavazza, L.: Automated function points: critical evaluation and discussion. In: 2015
IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics,
pp. 35–43. IEEE (2015). https://doi.org/10.1109/WETSoM.2015.13

22. Lavazza, L.A., del Bianco, V., Garavaglia, C.: Model-based functional size mea-
surement. In: Proceedings of the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2008, Kaiserslautern,
Germany, pp. 100–109. ACM, New York (2008). https://doi.org/10.1145/1414004.
1414021

23. Maŕın, B., Giachetti, G., Pastor, O.: Measurement of functional size in con-
ceptual models: a survey of measurement procedures based on COSMIC. In:
Dumke, R.R., Braungarten, R., Büren, G., Abran, A., Cuadrado-Gallego, J.J.
(eds.) IWSM/Mensura/MetriKon -2008. LNCS, vol. 5338, pp. 170–183. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89403-2 15

24. Özkan, B.: Automated functional size measurement for three-tier object relational
mapping architectures. Coll. Econ. Anal. Ann. (43), 51–68 (2017). https://ideas.
repec.org/a/sgh/annals/i43y2017p51-68.html

25. Özkan, B., Demirörs, O.: Formalization studies in functional size measurement. In:
Modern Software Engineering Concepts and Practices: Advanced Approaches, pp.
242–262. IGI Global (2011)

26. Özkan, B., Demirors, O.: On the seven misconceptions about functional size mea-
surement. In: IWSM-MENSURA, pp. 45–52. IEEE (2016)

27. Quesada-López, C., Jenkins, M.: Applying a verification protocol to evaluate the
accuracy of functional size measurement procedures: an empirical approach. In:
Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS,
vol. 9459, pp. 243–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26844-6 18

28. Quesada-López, C., Jenkins, M.: Procedimientos de medición del tamaño funcional:
un mapeo sistemático de literatura. In: Ibero-American Conference on Software
Engineering, pp. 141–154 (2017)

29. Quesada-López, C., Jenkins, M., Salas, L.C., Gómez, J.C.: Fastworks FPA: Una
herramienta para automatizar la medición del tamaño funcional. In: Simposio
Argentino de Ingenieŕıa de Software, pp. 48–57. Sociedad de Informática (2017)

30. Quesada-López, C., Jenkins, M., Salas, L.C., Gómez, J.C.: Towards an auto-
mated functional size measurement procedure: an industrial case study. In: IWSM-
MENSURA, pp. 138–144. ACM (2017)

31. Quesada-López, C., Madrigal-Sánchez, D., Jenkins, M.: An empirical evaluation of
automated function points. In: Ibero-American Conference on Software Engineer-
ing, pp. 151–165 (2016)

32. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case study research in software
engineering. In: Guidelines and Examples. Wiley Online Library (2012)

33. Sag, M., Tarhan, A.: Measuring cosmic software size from functional execution
traces of Java business applications. In: IWSM-MENSURA, pp. 272–281. IEEE
(2014)

https://doi.org/10.1145/581339.581412
https://doi.org/10.1109/WETSoM.2015.13
https://doi.org/10.1145/1414004.1414021
https://doi.org/10.1145/1414004.1414021
https://doi.org/10.1007/978-3-540-89403-2_15
https://ideas.repec.org/a/sgh/annals/i43y2017p51-68.html
https://ideas.repec.org/a/sgh/annals/i43y2017p51-68.html
https://doi.org/10.1007/978-3-319-26844-6_18
https://doi.org/10.1007/978-3-319-26844-6_18

Automated Functional Size Measurement: A Multiple Case Study 279

34. Soubra, H., Abran, A., Ramdane-Cherif, A.: Verifying the accuracy of automa-
tion tools for the measurement of software with COSMIC-ISO 19761 including an
AUTOSAR-based example and a case study. In: IWSM-MENSURA, pp. 23–31.
IEEE (2014)

35. Tarhan, A., Özkan, B., İçöz, G.: A proposal on requirements for cosmic FSM
automation from source code. In: IWSM-MENSURA, pp. 195–200. IEEE (2016)

36. Uemura, T., Kusumoto, S., Inoue, K.: Function point measurement tool for UML
design specification. In: International Software Metrics Symposium, pp. 62–69.
IEEE (1999)

37. Ungan, E., Hammond, C., Abran, A.: Automated cosmic measurement and require-
ment quality improvement through scopemaster R© tool. In: IWSM-MENSURA
(2018)

38. Živkovič, A., Rozman, I., Heričko, M.: Automated software size estimation based
on function points using uml models. Inf. Softw. Technol. 47(13), 881–890 (2005)

Can Expert Opinion Improve Effort
Predictions When Exploiting

Cross-Company Datasets? - A Case
Study in a Small/Medium Company

Filomena Ferrucci and Carmine Gravino(B)

University of Salerno, Fisciano, Italy
{fferrucci,gravino}@unisa.it

Abstract. Many studies have shown that the accuracy of the predic-
tions obtained by estimation models built considering data collected by
other companies (cross-company models) can be significantly worse than
those of estimation models built employing a dataset collected by the
single company (within-company models). This is due to the different
characteristics among cross-company and within-company datasets. In
this paper, we propose an approach based on the opinion of the experts
that could help in the context of small/medium company that do not
have data available from past developed projects. In particular, experts
are in charge of selecting data from public cross-company datasets look-
ing at the information about employed software development process
and software technologies. The proposed strategy is based on the use
of a Delphi approach to reach consensus among experts. To assess the
strategy, we performed an empirical study considering a dataset from
the PROMISE repository that includes information on the functional
size expressed in terms of COSMIC for building the cross-company esti-
mation model. We selected this dataset since COSMIC is the method
used to size the applications by the company that provided the within-
company dataset employed as test set to assess the accuracy of the built
cross-company model. We compared the accuracy of the obtained pre-
dictions with those of the cross-company model built without selecting
the observations. The results are promising since the effort predictions
obtained with the proposed strategy are significantly better than those
obtained with the model built on the whole cross-company dataset.

Keywords: Effort estimation · Cross-company estimation models ·
Expert opinion · Delphi approach

1 Introduction

Effort estimation is a key management activity which goes on throughout a
software project being fundamental for accurate project (re)planning and for
allocating resources adequately [6,46]. Thus, the competitiveness of a software
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 280–295, 2019.
https://doi.org/10.1007/978-3-030-35333-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_20

Can Expert Opinion Improve Effort Predictions 281

company heavily depends on the ability of its project managers to accurately
predict in advance the effort required to develop software system. Several tech-
niques, which rely on a more formal approach, have been proposed to support
project managers in estimating software development effort. These include the
application of some algorithms to a number of factors that influence the devel-
opment cost, such as the size, to produce an estimate or a prediction model
providing the estimation in an objective way.

The paper focuses on the problem of having an effort prediction model in
the context of small/medium software companies that do not have data to build
their own models [39]. In this scenario companies can approach the problem
by employing estimation models obtained by considering data collected by other
companies (cross-company models) and obtained from publicly available dataset
(e.g., PROMISE [1]). However, many studies have shown that the accuracy of
the obtained predictions can be significantly worse than those of estimation
models built employing datasets collected by the company from past projects
(within-company models) [10,16,22,26,27,32,33]. This is due to the different
characteristics of the software developed by the single company or due to specific
development context. Some approaches have suggested to prune data from pub-
licly available datasets, however, they require datasets with many observations
and the availability of some data of the single company as well as sophisticated
learning strategies [37,38].

In this paper, we propose an approach based on the opinion of the experts
that could help in the context of small/medium company that do not have data
available from past developed projects. In particular, company experts are in
charge of selecting data looking at the information available in the public dataset
about employed software development process and software technologies (e.g.,
programming languages). The proposed strategy is based on the use of a Delphi
approach to reach consensus among experts involved in the selection and the
use of an estimation technique to build the estimation model using the selected
data.

To assess the strategy, we performed an empirical study considering a dataset
from the PROMISE repository that includes information on the functional size
expressed in terms of COSMIC and other information on the development pro-
cess to be exploited for building the cross-company estimation model. This
dataset was obtained by extracting information from ISBSG repository [2]. We
selected this dataset since COSMIC is the method used to size the applications
by the company that provided us the test set we used to assess the accuracy of
the built cross-company estimation models. As for the estimation technique we
used simple linear regression since the company involved in our study was inter-
ested in estimating the effort by exploiting only the functional size information
as independent variable. Furthermore, simple linear regression can be considered
one of the most widely used estimation technique in studies similar to ours [18].

In the following we name the strategy based on expert opinion used to select
data as CCexpert, while the approach based on the use of the information con-
tained in a publicly available dataset is named CCoriginal. To assess the accuracy

282 F. Ferrucci and C. Gravino

of CCexpert, we compared the effort predictions obtained using it with those
achieved exploiting the cross-company model built without selecting the obser-
vations.

To this aim, we defined the following research questions:

RQ: Are the effort predictions obtained with CCexpert better than those
achieved with CCoriginal?

Structure of the Paper. Background on the use of cross-company effort esti-
mation models is presented in Sect. 2. In Sect. 3 we provide a description of the
design of the performed study, while the results are presented and discussed in
Sect. 4. Section 5 concludes the paper with final remarks.

2 Background and Related Work

In the last 20 years several studies have been performed to assess the useful-
ness of cross-company effort estimation models [5,12,13,21,43], many of them
in the context of Web effort estimation which are discussed in [8,37]. Further-
more, some literature reviews have also highlighted main results of those studies
and discussed differences, e.g., [16,18,31]. Many of the studies found that cross-
company estimation models provided results significantly worse than those of
within-company estimation models [10,16,22,26,27,32,33]. The reasons high-
lighted by the performed studies are mainly related to the differences between
the data in the cross-company dataset and the data in the within-company
dataset. Indeed, software project data of a company can differ significantly from
data of different companies, due to differences in the adopted processes and prac-
tices [26,27]. Thus, researchers highlighted that cross-company datasets should
be analyzed and partitioned in order to select the observations that could match
within-company development practices and ensure a random sample representa-
tive of a well-defined population [33].

To addresses the above issues some recent studies proposed strategies to select
the cross-company dataset more similar to the within-company dataset. Some
of these proposals exploited widely used machine learning approaches, such as
analogy-based technique [19] and Nearest cc filtering (NN-filtering) with step-
wise regression [10,47] to select observations to be used for the cross-company
effort estimation models. The results of the performed studies revealed that
for the majority of the cross-company models built predictions achieved were
comparable with those obtained with within-company models. However, in some
cases predictions worse than those achieved with the simple baseline based on
the median of previous project efforts were obtained.

Other two studies [38] and [37] analyzed the use of a framework to build
cross-company models to be exploited by a single company. The framework is
based on a learning task that aims to highlight relationship between the single
company and the companies whose data forms the cross-company dataset. In
particular, the selection of the cross-company models is done by exploiting a

Can Expert Opinion Improve Effort Predictions 283

limited number of within-company training examples. The first study validated
the proposed framework exploiting data from traditional software projects [38],
while the second study investigated the framework using data from Web software
projects [37].

Differently, in this paper, we propose an approach based on the opinion of
the experts that could help in the context of small/medium company that do
not have data available from past developed projects. In particular, company
experts are in charge of selecting data looking at the information available in
the public datasets about employed software development process and software
technologies (e.g., programming languages).

In the literature several studies have shown that effort predictions based only
on the opinion of experts usually fail (see e.g., the review reported in [14]). How-
ever, there are some studies that have proposed to exploit opinions of experts in
combination with model-based effort prediction strategies to improve. In particu-
lar, Mendes et al. proposed the use of Bayesian Networks to construct an expert-
based Web effort model [35]. The performed study showed that the involved Web
Company can benefit since the built model allowing the representation of uncer-
tainty (which is inherent in effort estimation) outperformed expert-based esti-
mates. Furthermore, other previous studies investigated Web effort estimation
models that explicitly consider uncertainty, which is inherent to effort estima-
tion, applying Bayesian Networks [24,28,29]. The analyses were based on data
about 150 projects from the Tukutuku dataset to built Hybrid Bayesian Network
models (structure expert-driven and probabilities data driven) [35]. The results
were encouraging since the Hybrid Bayesian Network models provided results
better than baselines, such as mean- and median-based effort, and widely used
estimation techniques, such as multivariate regression, classification and regres-
sion trees. These analyses were successively extended by considering further data
from the Tukutuku dataset and both Hybrid and data-driven different Bayesian
Network models [30,34].

In our approach we involved experts in the selection of the data, about
employed software development process and software technologies (e.g., pro-
gramming languages), to be included in the cross-company dataset and not in
the selection of the effort estimation techniques/models.

3 Study Design

The goal of this study is to investigate whether the use of expert opinions for
selecting data from a cross-company dataset to be employed for building cross-
company estimation models can improve the accuracy of the obtained predic-
tions.

In the following we describe the employed datasets, data selection strategy,
estimation technique, validation method, and evaluation criteria and discuss
threats to validity of the study.

284 F. Ferrucci and C. Gravino

3.1 Datasets

In this section we first describe the dataset from PROMISE repository used to
build the cross-company effort estimation models (i.e., the training set). Then, we
present the within-company dataset used to validate the obtained cross-company
models (i.e., the test set).

Training Set. The dataset employed to build the cross-company models was
selected from the PROMISE repository. For each observation it includes informa-
tion on the functional size expressed in terms of COSMIC and other information
on the development process that are exploited for building the cross-company
estimation model. It was obtained by extracting information from ISBSG repos-
itory [2]. We selected this dataset since COSMIC is the method used to size the
applications by the company that provided us the test set we used to assess the
accuracy of the built cross company models.

Table 1 shows some summary statistics related to the applications included
in the cross-company dataset. The variables are EFF, i.e., the actual effort
expressed in terms of person-hours, and CFP, expressed in terms of number
of COSMIC Function Points. Obs indicates the number of observations in the
dataset, while Min, Max, Mean, Median, and Std. Dev. denote the minimum,
maximum, mean, median, and standard deviation of the considered variables
(i.e., Var). Other information about this dataset are provided in Sect. 3.2 where
we describe the selection of the cross-company dataset.

Test Set. Data to validate the built cross-company models was provided by
an Italian small/medium-sized software company, whose core business is the
development of enterprise information systems, mainly for local and central
government. Among its clients, there are health organizations, research cen-
ters, industries, and other public institutions. The company is specialized in
the design, development, and management of solutions for Web portals, enter-
prise intranet/extranet applications (such as Content Management Systems, e-
commerce, work-flow managers, etc.), and Geographical Information Systems. It
is certified ISO 9001:2000, and it is also a certified partner of Microsoft, Oracle,
and ESRI.

The dataset includes information on 25 applications, such as e-government,
e-banking, Web portals, and Intranet applications. All the projects were devel-
oped with SUN J2EE or Microsoft .NET technologies. Oracle has been the most
commonly adopted DBMS, but also SQL Server, and MySQL were employed
in some of these projects. As for the collection of the information, the software
company used timesheets to keep track of the development effort. In particular,
each team member annotated the information about his/her development effort
on each project every day, and weekly each project manager stored the sum
of the efforts for the team. To collect all the significant information to calcu-
late the values of the size measure in terms of COSMIC, a template is filled in
by the project managers and the functional size is determined by the company
measurers.

Can Expert Opinion Improve Effort Predictions 285

The summary statistics related to the 25 applications employed in our study1

are shown in Table 2.

Table 1. Descriptive statistics of training set

Var Obs Min Max Mean Median Std. Dev.

EFF 42 40 47493 5671.6 2937 9552.55

CFP 42 2 2003 340.05 104.5 508.23

Table 2. Descriptive statistics of test set

Var Obs Min Max Mean Median Std. Dev.

EFF 25 782 4537 2577 2686 988.14

CFP 25 163 1090 602.04 611 268.47

3.2 Data Selection Strategy

To select observations, i.e., projects, from the cross-company dataset that have
characteristics more close to the ones developed by the single company involved
in our study, we exploited the Delphi method, which allowed us to bring together
the opinions of the company experts. The Delphi method is a structured commu-
nication technique, originally developed as a systematic, interactive forecasting
method which relies on a panel of experts. The experts answer questions in two
or more rounds. After each round, an anonymous summary of all judgments is
provided by a facilitator. Then, experts are encouraged to revise their previous
answers taking into account the opinions of the other participants involved. The
process can be stopped according to a predefined stop criterion (e.g., achieve-
ment of consensus, stability of results). Delphi is based on the principle that
forecasts (or decisions) from a structured group of individuals are more accurate
than those from unstructured groups [41].

3.3 Estimation Technique

To build the cross-company prediction models we have employed as an estimation
technique the simple linear regression, which is a model-based approach widely
and successfully employed in the industrial context and in several researches to
estimate development effort (see e.g., [3,9,16,23,25,36]).
1 Raw data cannot be revealed because of a Non Disclosure Agreement with the soft-

ware company.

286 F. Ferrucci and C. Gravino

Simple linear regression allows us to build estimation models to explain the
relationship between the independent variable, denoting the employed size mea-
sure (i.e., CFP), and the dependent variable, representing the development effort
(EFF). Thus, simple linear regression allows us to obtain models of this type:

EFF = a + b × CFP (1)

where b is the coefficient that represents the amount the variable EFF changes
when the variable CFP changes 1 unit, and a is the intercept. Once such a
model is obtained, given a new software project for which an effort estimation
is required, the project manager has to size it using the same unit of measure
of the model, and to use this value in the regression equation to get the effort
prediction.

3.4 Validation Method

To validate the obtained cross-company effort estimation models we have
exploited two different datasets. The estimation models have been built by
exploiting a first dataset (from PROMISE repository) that contains informa-
tion from projects developed by different software companies in the past. A
second dataset that contains information from software projects developed by a
company in our research network has been used to validate the built estimation
models.

3.5 Evaluation Criteria

We decided to employ Mean of the absolute residuals (MAR) obtained for the
25 observations in the test set as evaluation criteria [46]. Furthermore, to answer
our research question we applied the Wilcoxon test [7] on the distribution of
the 25 absolute residuals obtained with CCexpert and the distributions of the
25 absolute residuals achieved with CCoriginal. For all the statistical tests per-
formed in our analysis, we decided to accept a probability of 5% of committing
a Type-I-Error, as is customary in Software Engineering empirical studies [49].

To have also an indication of the practical/managerial significance of the
results, we verified the effect size. Effect size is a simple way of quantifying the
standardized difference between two groups [15]. In particular, we employed the
Vargha and Delaney’s A12 statistics as non-parametric effect size measure [48].
According to Vargha and Delaney, a difference between two populations can be
classified in small, medium, and large as in Table 3. An effect size less than or
equals to 0.56 can be considered negligible.

3.6 Threats to Validity

The results of our empirical study could be affected by some threats, that should
be taken into account in future investigations [17,50].

Can Expert Opinion Improve Effort Predictions 287

Table 3. Effect size classification

Effect size A12 statistics

Negligible Less than or equals to 0.56

Small Greater than 0.56

Medium Greater than 0.64

Large Greater than 0.71

The measurement and the collection of the information included in our
datasets could affect the construct validity. As reported above, we employed a
publicly available dataset included in the PROMISE repository [1]. It has been
extracted from ISBSG repository, thus it respects all the criteria established by
the ISBSG proponents. As an example, the selected observations are all scored
as A and B regarding the data quality variable [2]. As for the dataset used as
test set, it was obtained from small/medium software company in our network.
The collection of the effort is done using timesheets: each team member anno-
tated the information about his/her development effort on each project every
day, and weekly each project manager stored the sum of the efforts for the team.
The significant information to calculate the value of the size measure in terms of
COSMIC is obtained from questionnaire filled-in by the project managers. The
company measurers determine the functional size of the projects on the base of
the information collected. One of the authors analyzed the filled templates and
the analysis and design documents, in order to cross-check the provided informa-
tion. The same author calculated the values of the size measure to cross-check
the work done by the company measurers.

As for the employed within-company dataset, we are aware that we consid-
ered one dataset to test the approach and more tests should be exploited to
generalize the results.

Concerning the conclusion validity, we carefully applied the statistical tests
performed by verifying all the required assumptions.

A evaluation criteria we decided to use a single measure, widely used in
studies similar to ours (e.g., [20,45,46]), i.e., Mean of the absolute residuals. Of
course we are aware that other measures could be used (e.g., Median of absolute
residuals). We did not use summary measures like MMRE and Pred(25), since
their use has been strongly discouraged in recent simulation studies, showing
that MMRE wrongly prefers a model that consistently underestimates [40].

As for the threats regarding reliability validity, all the information exploited
in our study to select the observations in the training set (used to build the effort
estimation model) are available on the web, i.e., PROMISE repository.

288 F. Ferrucci and C. Gravino

4 Results and Discussion

We first present the results about the data selection strategy introduced in
Sect. 3.2, then we describe the construction of the cross-company effort pre-
diction models and discuss the accuracy of the obtained predictions.

4.1 Cross-Company Dataset Selection

As for the selection of the cross-company dataset, three managers of the selected
company were involved int the application of the Delphi method described in
Sect. 3.2. They were selected by the company taking into account their experience
in managing software development process and their knowledge about software
measures/metrics to summarize software process/products.

We applied the Delphi method two times. The first time we asked experts to
decide what variables of the selected PROMISE dataset should be considered to
select observations for the construction of the cross-company estimation model.
As suggested by the method, we applied two rounds. In the first round they
were asked to select which variables among those specified in the cross-company
dataset have to be considered for the selection of the observations. Then, in
the second round one of the authors acted as facilitator and summarized the
selected variables and asked again to experts to express their opinions. Table 4
shows the variables selected by the experts after the first round among those
available in the cross-company dataset2. At the end of the second round they
decided to consider four variables: (1) Primary Programming Language (PPL);
(2) Language1; (3) DBS1; OS1; (4) Architecture; and (5) OS1.

The second time, using the same procedure of two rounds they selected the
observations shown in Table 5 looking at the variables selected above3. These
observations were selected since the values of the selected variables are close
to the ones that characterize the projects that usually the company develop.
Indeed, the company employs SUN J2EE or Microsoft .NET technologies for
the software development. Furthermore, Oracle has been the most commonly
adopted DBMS. However, also SQL Server and MySQL are employed.

From the summary of the facilitator, we can observe that many observations
were not considered since they do not included information about Architecture
and DBS1 (e.g., such as observations: 3199, 27927, 27913, 3133, 24302, 27917,
31448, 31240, 31451, 30879, 30719, 27547, 27537, 29893, 31512, 28129, 30611).
Similarly, observations not specifying the value for Language1 were not consid-
ered. Even if observation 28020 was characterized by Java as PPL, Client server
as Architecture, and Oracle as DBS1 it was not included due to the value of
Language1. Observation 29834 was not selected since the values of PPL and
Language1 are COBOL and Owner script, respectively. Similarly for observa-
tions 30333 and 32064 since the values for those variables are COBOL and
2 See the PROMISE repository web site for the description of all the variables: https://

terapromise.csc.ncsu.edu/repo/effort/isbsg/isbsg10/isbsg-attribute-info.txt.
3 See the PROMISE repository web site to see the remaining observations: http://

openscience.us/repo/effort/isbsg/cosmic.html.

https://terapromise.csc.ncsu.edu/repo/effort/isbsg/isbsg10/isbsg-attribute-info.txt
https://terapromise.csc.ncsu.edu/repo/effort/isbsg/isbsg10/isbsg-attribute-info.txt
http://openscience.us/repo/effort/isbsg/cosmic.html
http://openscience.us/repo/effort/isbsg/cosmic.html

Can Expert Opinion Improve Effort Predictions 289

Table 4. First application of the Delphi method: variables selected by experts after
the first round

Var Description

IS A derived field which attempts to summarize Organization Type of
the project

PPL The primary language used for the development: JAVA, C++,
PL/1, Cobol etc.

Language1 The primary technology programming language used to build or
enhance (the software, i.e., that used for most of the build effort)

OS1 The primary technology operating system used to build or enhance
the software (i.e., that used for most of the build effort)

Architecture A derived attribute for the project to indicate if the application is:
Stand alone, Multi-tier, Client server, Multi-tier with web public
interface

DBS1 The primary technology database used to build or enhance the
software (i.e. that used for most of the build effort), otherwise (if
known) it is whether the project used a DBMS

VB.NET and COBOL and ASP.NET C#, respectively. Observation 27934 has
no value for DBS1, while Language1 is equal to RPG3. So, it was not consid-
ered. Other observations were not selected due to the value of Architecture (e.g.,
25271), Language1 and DBS1 (e.g., 27553), or they miss the value of DBS1 (e.g.,
28884).

It is important to mention that this second application of Delphi method to
select the observations could be automated in the future, for example exploiting
similarity measures and machine learning approaches. This could help to reduce
the effort of the experts involved in the process and to avoid having strong
dependency on expert intuition.

4.2 Model Construction and Validation

To build the cross-company effort prediction model using the data presented in
Table 1 we first verified the linear regression assumptions, i.e., the existence of a
linear relationship between the independent variable and the dependent variable
(linearity), the constant variance of the error terms for all the values of the inde-
pendent variable (homoscedasticity), the normal distribution of the error terms
(normality), and the statistical independence of the errors, in particular, no cor-
relation between consecutive errors (independence). To this aim, we performed
statistical analyses, of course considering 95% confidence level. Both Pearson’s
correlation test (statistic = 0.182 with p-value > 0.05) [11] and the Spearman’
rho test (statistic = 0.234 with p-value > 0.05) [7] revealed that the EFF (i.e.,
dependent variable) and CFP (i.e., independent variable) are not correlated since
the statistics is not close to 1 or (−1). The homoscedasticity assumption was ver-
ified by performing the Breush-Pagan Test [4]. The Shapiro test [42] revealed

290 F. Ferrucci and C. Gravino

Table 5. Second application of the Delphi method: observations selected by experts

obs CFP EFF PPL Language1 OS1 Architecture DBS1

29331 210 204 Java C++ Java UNIX Windows NT Multi-tier Oracle

25081 237 600 C++ Java Windows Multi-tier with

web public

interface

MySQL

29471 61 669 Java Java Linux Multi-tier with

web public

interface

MySQL

30658 5 784 ABAP Java Windows Multi-tier with

web public

interface

MySQL

31895 82 903 C# Java Windows XP Client server SQL Server

27505 118 1488 Script

Language

Java Linux Multi-tier with

web public

interface

MySQL

29311 643 4224 Java Java Windows 2000 Client server Oracle

29310 441 47493 ASP.Net Java 2EE Windows XP Client server Oracle

that the two distributions of EFF and CFP as well as the distribution of residuals
(i.e., error terms) are not normal since a p-value less than 0.05 was obtained (i.e.,
the normality of the distribution was the null hypothesis). The Durbin-Watson
test revealed that the residuals for consecutive errors are not so uncorrelated
since the obtained statistic was less than 2. Taking into account the results of
the performed analysis to verify linear regression assumptions, we decided to
apply a log transformation to the variables [27].

The equation of the regression model obtained considering Log(CFP) as inde-
pendent variable and Log(EFF) as dependent variable is (named CCoriginal):

Log(EFF) = 6.604 + 0.228 ∗ Log(CFP) (2)

and when it is transformed back to the original raw data scale we obtain:

EFF = 738 ∗ CFP 0.228 (3)

Similarly, we obtained the regression model for the cross-company dataset
resulted from the data selection strategy described in Sect. 3.2 (named CCex-
pert):

EFF = 161 ∗ CFP 0.456 (4)

To evaluate the prediction accuracy of CCoriginal and CCexpert and answer
to research questions RQ, we performed the validation as described in Sect. 3.4
employing the single-company dataset summarized in Table 2. The results of the
validation in terms of MAR values are reported in Table 6, while Fig. 1 shows the
boxplots of absolute residuals achieved with the two effort prediction models.

From Table 6 we can observe that the MAR value achieved with CCexpert is
more than 1.5 times lower than the one obtained with CCoriginal, thus highlight-
ing much better results for CCexpert. Furthermore, the result of the performed

Can Expert Opinion Improve Effort Predictions 291

CCExpert CCoriginal

0
50

0
10

00
15

00

Fig. 1. Absolute residuals

Wilcoxon test revealed that the estimations obtained with CCexpert are sig-
nificantly better than those obtained with CCoriginal (p-value < 0.001) with a
small effect size (0.64).

Thus, we can positively answer our research question:

The effort predictions obtained with CCexpert are better than those
achieved with CCoriginal

4.3 Main Findings

From the results presented above we can conclude that the proposed strategy
based on the opinion of experts for selecting cross-company dataset has provided
interesting results for the software company involved in our study.

The main take away for researchers is that the identification of a strategy to
select from publicly available data the information useful to build good effort esti-
mation models can be crucial. Of course, the proposed strategy can be improved
by automating the selection of variables. This could be a direction for the future
work.

As for the point of view of practitioners, our study has shown that by employ-
ing a widely recognized approach (i.e., Delphi) can allow to improve significantly
the effort predictions, with a minimal effort, in a context of small/medium com-
pany which does not have data available from past developed projects. To con-
solidate the contribution highlighted for practitioners, we think some aspects

292 F. Ferrucci and C. Gravino

require further investigation. Indeed, from the decision taken by the experts
in the selection of independent variables (i.e., predictors) we noted that factors
such as the application area of the projects, the size of the available development
group, or performance and security requirements were not considered. Thus, it
could be interesting verify these decisions in other (similar) contexts.

Table 6. Results in terms of Mean of Absolute Residuals (MAR)

Model MAR

CCoriginal 701

CCexpert 467

5 Conclusion

We have proposed an approach based on the opinion of the experts (provided
through the Delphi method) to build cross-company effort prediction models.
In particular, experts are in charge of selecting data from public cross-company
datasets looking at the information about employed software development pro-
cess and software technologies, before to apply an estimation technique to build
the prediction models. This strategy could help in the context of small/medium
company which does not have data available from past developed projects. The
performed empirical study, involving a software company that exploits COS-
MIC as functional size measurement method, has provided encouraging results.
Indeed, the effort predictions obtained with the proposed strategy are signif-
icantly better than those obtained with the model built on the whole cross-
company dataset.

As future work, we have planned to replicate this study with other publicly
datasets and with other companies of our research network, with the aim of
consolidate and improve the findings of the present study. We also intend to
further assess the proposed strategy considering different estimation techniques,
e.g., when software companies are interested to build prediction models based on
several independent variables. Indeed, in the presented study we employed only a
functional size measure, i.e., COSMIC, since the company measured the projects
made available for the study with this measure. Also, sensitivity analysis could
be used to test for the effect of including or excluding observations/values. More-
over, as mentioned above, we could automate the selection of the observations to
be included in the cross-company dataset for the construction of the estimation
model, after the selection of the variables through the Delphi approach. To this
aim, similarity measures and machine learning approaches could be exploited.
The application of search-based strategy could also be considered [44]. Finally,
it could be interesting to verify the managers’ opinions of the cost-benefit of the
approach, by performing a qualitative research study.

Can Expert Opinion Improve Effort Predictions 293

References

1. The promise repository of empirical software engineering data (2015)
2. ISBSG: www.isbsg.org (2017)
3. Abualkishik, A.Z., et al.: A study on the statistical convertibility of IFPUG func-

tion point, COSMIC function point and simple function point. Inf. Softw. Technol.
86, 1–19 (2017)

4. Breush, T., Pagan, A.: A simple test for heteroscedasticity and random coefficient
variation. Econometrica 47, 1287–1294 (1992)

5. Briand, L., El Emam, K., Surmann, D., Wiekzorek, I., Maxwell, K.: An assessment
and comparison of common software cost estimation modeling techniques. In: Pro-
ceedings of International Conference on Software Engineering, pp. 313–322. IEEE
Press (1999)

6. Briand, L.C., Wieczorek, I.: Software resource estimation. In: Encyclopedia of Soft-
ware Engineering, pp. 1160–1196 (2002)

7. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Hoboken (1998)
8. Corazza, A., Martino, S.D., Ferrucci, F., Gravino, C., Mendes, E.: Investigating

the use of support vector regression for web effort estimation. Empirical Softw.
Eng. 16(2), 211–243 (2011)

9. Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E.: Comparing size measures
for predicting web application development effort: a case study. In: Proceedings
of Empirical Software Engineering and Measurement, pp. 324–333. IEEE Press
(2007)

10. Ferrucci, F., Mendes, E., Sarro, F.: Web effort estimation: the value of cross-
company data set compared to single-company data set. In: Proceedings of the
8th International Conference on Predictive Models in Software Engineering, pp.
29–38 (2012)

11. Freund, J.: Mathematical Statistics. Prentice-Hall, Upper Saddle River (1992)
12. Jeffery, R., Ruhe, M., Wieczorek, I.: A comparative study of two software devel-

opment cost modeling techniques using multi-organizational and company-specific
data. Inf. Softw. Technol. 42, 1009–1016 (2000)

13. Jeffery, R., Ruhe, M., Wieczorek, I.: Using public domain metrics to estimate soft-
ware development effort. In: Proceedings of International Software Metrics Sym-
posium, pp. 16–27. IEEE Press (2001)

14. JøRgensen, M.: A review of studies on expert estimation of software development
effort. J. Syst. Softw. 70(1–2), 37–60 (2004)

15. Kampenes, V., Dyba, T., Hannay, J., Sjoberg, I.: A systematic review of effect
size in software engineering experiments. Inf. Softw. Technol. 4(11–12), 1073–1086
(2007)

16. Kitchenham, B., Mendes, E., Travassos, G.: Cross versus within-company cost
estimation studies: a systematic review. IEEE Trans. Softw. Eng. 33(5), 316–329
(2007)

17. Kitchenham, B., Pickard, L., Pfleeger, S.: Case studies for method and tool evalu-
ation. IEEE Softw. 12(4), 52–62 (1995)

18. Kitchenham, B., Mendes, E., Travassos, G.H.: A systematic review of cross- vs.
within- company cost estimation studies. In: Proceedings of the 10th International
Conference on Evaluation and Assessment in Software Engineering, EASE 2006,
pp. 81–90. BCS Learning & Development Ltd., Swindon (2006)

19. Kocaguneli, E., Menzies, T., Mendes, E.: Transfer learning in effort estimation.
Empirical Softw. Eng. 20(3), 813–843 (2015)

http://www.isbsg.org/

294 F. Ferrucci and C. Gravino

20. Langdon, W.B., Dolado, J., Sarro, F., Harman, M.: Exact mean absolute error of
baseline predictor, MARP0. Inf. Softw. Technol. 73, 16–18 (2016)

21. Lefley, M., Shepperd, M.J.: Using genetic programming to improve software effort
estimation based on general data sets. In: Cantú-Paz, E., et al. (eds.) GECCO
2003. LNCS, vol. 2724, pp. 2477–2487. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-45110-2 151

22. Lokan, C., Mendes, E.: Cross-company and single-company effort models using
the ISBSG database: a further replicated study. In: Proceedings of International
Symposium on Empirical Software Engineering, pp. 75–84. IEEE Press (2006)

23. Martino, S.D., Ferrucci, F., Gravino, C., Sarro, F.: Web effort estimation: function
point analysis vs. COSMIC. Inf. Softw. Technol. 72, 90–109 (2016)

24. Mendes, E.: Predicting web development effort using a Bayesian network. In: Pro-
ceedings of Evaluation and Assessment in Software Engineering, pp. 83–93. IEEE
Press (2007)

25. Mendes, E., Counsell, S., Mosley, N.: Comparison of Web size measures for pre-
dicting Web design and authoring effort. IEE Proc.-Softw. 149(3), 86–92 (2002)

26. Mendes, E., Di Martino, S., Ferrucci, F., Gravino, C.: Effort estimation: how valu-
able is it for a Web company to use a cross-company data set, compared to using
its own single-company data Set? In: Proceedings of the 6th International World
Wide Web Conference, pp. 83–93. ACM Press (2007)

27. Mendes, E., Kitchenham, B.: Further comparison of cross-company and within-
company effort estimation models for web applications. In: Proceedings of Inter-
national Software Metrics Symposium, pp. 348–357. IEEE Press (2004)

28. Mendes, E.: A comparison of techniques for web effort estimation. In: Proceed-
ings of the First International Symposium on Empirical Software Engineering and
Measurement, ESEM 2007, Madrid, Spain, 20–21 September 2007, pp. 334–343
(2007)

29. Mendes, E.: The use of a bayesian network for web effort estimation. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 90–104.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73597-7 8

30. Mendes, E.: The use of Bayesian networks for web effort estimation: further inves-
tigation. In: Proceedings of International Conference on Web Engineering, pp.
203–216 (2008)

31. Mendes, E., Kalinowski, M., Martins, D., Ferrucci, F., Sarro, F.: Cross- vs. within-
company cost estimation studies revisited: an extended systematic review. In: Pro-
ceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE 2014, pp. 12:1–12:10. ACM, New York (2014)

32. Mendes, E., Lokan, C.: Investigating the use of chronological splitting to compare
software cross-company and single-company effort predictions: a replicated study.
In: Proceedings of the 13th International Conference on Evaluation and Assessment
in Software Engineering, EASE 2009 (2009)

33. Mendes, E., Martino, S.D., Ferrucci, F., Gravino, C.: Cross-company vs. single-
company web effort models using the Tukutuku database: an extended study. J.
Syst. Softw. 81(5), 673–690 (2008)

34. Mendes, E., Mosley, N.: Bayesian network models for web effort prediction: a com-
parative study. IEEE Trans. Softw. Eng. 34(6), 723–737 (2008)

35. Mendes, E., Pollino, C.A., Mosley, N.: Building an expert-based web effort estima-
tion model using Bayesian networks. In: 13th International Conference on Eval-
uation and Assessment in Software Engineering, EASE 2009, 20–21 April 2009.
Durham University, UK (2009)

https://doi.org/10.1007/3-540-45110-2_151
https://doi.org/10.1007/3-540-45110-2_151
https://doi.org/10.1007/978-3-540-73597-7_8

Can Expert Opinion Improve Effort Predictions 295

36. Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting best practices for effort esti-
mation. IEEE Trans. Softw. Eng. 32(11), 883–895 (2006)

37. Minku, L., Sarro, F., Mendes, E., Ferrucci, F.: How to make best use of cross-
company data for web effort estimation? In: 2015 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM), pp. 1–10
(2015)

38. Minku, L.L., Yao, X.: How to make best use of cross-company data in software
effort estimation? In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 446–456. ACM (2014)

39. Minku, L.L., Yao, X.: Which models of the past are relevant to the present? A
software effort estimation approach to exploiting useful past models. Autom. Softw.
Eng. 24(3), 499–542 (2017)

40. Myrtveit, I., Stensrud, E.: Validity and reliability of evaluation procedures in com-
parative studies of effort prediction models. Empirical Softw. Eng. 17(1–2), 23–33
(2012)

41. Rowe, G., Wright, G.: Expert opinions in forecasting: the role of the Delphi tech-
nique. In: Armstrong, J.S. (ed.) Principles of Forecasting. ISOR, vol. 30, pp. 125–
144. Springer, Boston (2001). https://doi.org/10.1007/978-0-306-47630-3 7

42. Royston, P.: An extension of Shapiro and Wilk’s W test for normality to large
samples. Appl. Stat. 31(2), 115–124 (1982)

43. Ruhe, M., Wieczorek, I.: How valuable is company-specific data compared to multi-
company data for software cost estimation? In: Proceedings of the International
Software Metrics Symposium, pp. 237–246. IEEE Press (2002)

44. Sarro, F., Ferrucci, F., Gravino, C.: Single and multi objective genetic programming
for software development effort estimation. In: Proceedings of the ACM Symposium
on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, pp.
1221–1226 (2012)

45. Sarro, F., Petrozziello, A.: Linear programming as a baseline for software effort
estimation. ACM Trans. Softw. Eng. Methodol. 27(3), 12:1–12:28 (2018)

46. Shepperd, M.J., MacDonell, S.G.: Evaluating prediction systems in software
project estimation. Inf. Softw. Technol. 54(8), 820–827 (2012)

47. Turhan, B., Mendes, E.: A comparison of cross-versus single-company effort predic-
tion models for web projects. In: 40th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, EUROMICRO-SEAA 2014, Verona, Italy, 27–
29 August 2014, pp. 285–292 (2014)

48. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

49. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experi-
mentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)

50. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks (1984)

https://doi.org/10.1007/978-0-306-47630-3_7

Continuous Delivery

Excellence in Exploratory Testing: Success
Factors in Large-Scale Industry Projects

Torvald Mårtensson1(&) , Antonio Martini2 , Daniel Ståhl3 ,
and Jan Bosch4

1 Saab AB, Linköping, Sweden
torvald.martensson@saabgroup.com

2 University of Oslo, Oslo, Norway
antonima@ifi.uio.no

3 Ericsson AB, Linköping, Sweden
daniel.stahl@ericsson.com

4 Chalmers University of Technology, Gothenburg, Sweden
jan@janbosch.com

Abstract. Based on interviews with 20 interviewees from four case study
companies, this paper presents a list of key factors that enable efficient and
effective exploratory testing of large-scale software systems. The nine factors are
grouped into four themes: “The testers’ knowledge, experience and personality”,
“Purpose and scope”, “Ways of working” and “Recording and reporting”.
According to the interviewees, exploratory testing is a more creative way to
work for the testers, and was therefore considered to make better use of the
testers. Exploratory testing was also described as a good way to test system-wide
and to test large-scale systems, especially exploratory testing with an end-user
perspective. The identified key factors were confirmed by a series of follow-up
interviews with the 20 interviewees and a cross-company workshop with 14
participants. This strengthens the generalizability of the findings, supporting that
the list of key factors can be applied to projects in a large segment of the
software industry. This paper also presents the results from a systematic liter-
ature review including 129 publications related to exploratory testing. No
publication were found that summarizes the key factors that enable efficient and
effective exploratory testing, which supports the novelty of the findings.

Keywords: Continuous delivery � Continuous integration � Exploratory
testing � Large-scale systems � Software testing

1 Introduction

Exploratory testing is described in different ways in published books and research
papers. Gregory and Crispin [1] describe the test technique with the following words:
“Exploratory testers do not enter into a test session with predefined, expected results.
Instead, they compare the behavior of the system against what they might expect, based
on experience, heuristics, and perhaps oracles. The difference is subtle, but meaning-
ful.” The test technique is focused on learning, shown in for example Hendrickson’s [2]
definition of exploratory testing: “Simultaneously designing and executing tests to

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 299–314, 2019.
https://doi.org/10.1007/978-3-030-35333-9_21

http://orcid.org/0000-0003-1438-0182
http://orcid.org/0000-0002-0669-8687
http://orcid.org/0000-0003-1675-6884
http://orcid.org/0000-0003-2854-722X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_21

learn about the system, using your insights from the last experiment to inform the
next.”

Hendrickson [2] splits the domain of testing into two complementing test forms:
exploring and checking. In a similar way, Gregory and Crispin [1] describe how
exploratory testing and automated testing complement each other: “Exploratory testing
and automation aren’t mutually exclusive but rather work in conjunction. Automation
handles the day-to-day repetitive regression testing (checking), which enables the
exploratory testers to test all the things the team didn’t think about before coding.”

In our previous work [3] we have developed a test method for exploratory testing of
large-scale systems. From a study based on both quantities and qualitative data, we
showed that exploratory testing plays a role in the continuous integration and delivery
pipeline for a large-scale software system (with automated testing and exploratory
testing complementing one another). Quantitative data collected in the study showed
that the exploratory test teams in the case study produced more problem reports than
other test teams, proving exploratory testing as being an efficient test technique.

Since our previous study on exploratory testing [3], we have identified a growing
interest in exploratory testing from several of the companies we as researchers work
with, and an interest to improve how the test technique is used in the companies. Based
on this, the topic of this research paper is to answer the following research question:
What are the key factors that enable efficient and effective exploratory testing of large-
scale software systems?

The contribution of this paper is three-fold: First, it presents an extensive literature
review, which summarizes published work related to exploratory testing. Second, the
paper provides interview results from four case study companies, showing how
exploratory testing is used in large-scale industry projects. Third, it presents a list of
key factors that can enable efficient and effective exploratory testing of large-scale
software systems.

The remainder of this paper is organized as follows: In the next section, we present
the research method. This is followed in Sect. 3 by a study of related literature. In
Sect. 4 we present the analysis of the interview results (the list of key factors), followed
by a summary of the follow-up interviews and the cross-company workshop in Sect. 5.
Threats to validity are discussed in Sect. 6. The paper is then concluded in Sect. 7.

2 Research Method

An overview of the research method is presented in Fig. 1. The study started with a
systematic literature review, in order to look for answers to the research question
(presented in Sect. 1) in published literature. A review protocol was created, containing
the question driving the review, and the inclusion and exclusion criteria (presented in
Sect. 3.1). The review was conducted according to the stages for a systematic literature
review as presented by Kitchenham [4].

In parallel, a series of interviews were conducted with 20 interviewees from four
case study companies (which we will refer to as Company A, Company B, Company C
and Company D). The interviews were conducted as semi-structured interviews, using
an interview guide with pre-defined specific questions. The purpose of the first series of

300 T. Mårtensson et al.

interviews was to identify the key factors that enable efficient and effective exploratory
testing of large-scale software systems. The interview results were analyzed based on
thematic coding analysis as described by Robson and McCartan [5]. The interview
responses were coded and collated into themes, resulting in a thematic map with four
main themes that in turn consist of several sub-themes: a list of key factors which can
enable efficient and effective exploratory testing.

This was followed by follow-up interviews with the same 20 individuals as the first
series of interviews (to collect feedback in order to strengthen the validity of the
identified key factors in all four case study companies). In order to achieve method and
data triangulation [6], the follow-up interviews was complemented with a cross-com-
pany workshop with 14 participants representing all four case study companies (dis-
cussing the results from the two series of interviews). The purpose of the follow-up
interviews and the cross-company workshop was to confirm that the interpretation of
the first series of interviews was correct, as well as looking for negative cases. The final
step of the study consisted of analysis and conclusions, including a summary of threats
to validity.

The case study companies involved in the study (Company A, Company B,
Company C and Company D) are all multi-national organizations with more than 2,000
employees. All companies develop large-scale and complex software systems for
products which also include a significant amount of mechanical and electronic systems.
The case study companies operate in the following industry segments:

• Company A: Aeronautical systems
• Company B: Cars and services for cars
• Company C: Transport solutions for commercial use
• Company D: Video surveillance cameras and systems.

3 Reviewing Literature

3.1 Criteria for the Systematic Literature Review

In order to look for solutions related to the research question (as described in Sect. 1) in
related work, a systematic literature review [4] was conducted. The question driving the
review was “How are key factors that enable efficient and effective exploratory testing
of large-scale software systems described in literature?” The inclusion criterion and the
exclusion criterion for the review are shown in Table 1.

Fig. 1. An overview of the research method.

Excellence in Exploratory Testing: Success Factors 301

Our previous work [3] includes a similar systematic literature review, covering 52
publications. For the literature review in this study we expanded the search scope,
which yielded 129 publications. After removing duplicates and conference proceedings
summaries, the abstract of the remaining 122 publications were reviewed manually.
Publications not related to development of software systems were excluded, i.e.
removing publications related to archeology, chemistry et cetera. As a final stage,
publications for which we could not find any available full-text were excluded from the
literature review.

Characteristics and content of the remaining 65 research papers were then docu-
mented in a consistent manner in a data extraction protocol: for each paper a summary
of how the paper was related to the research question, and representative keywords and
quotes (sorted into categories which emerged during the process). The process was
conducted iteratively to increase the quality of the analysis. Finally, the results from the
review were collated and summarized.

3.2 Results from the Literature Review

An overview of the publications found in the systematic literature review is presented
in Table 2. The review of the 65 publications retrieved from the search revealed that
nine of the publications were not directly related to exploratory testing (only men-
tioning exploratory testing in passing while discussing other test techniques).

Ten of the publications are comparing exploratory testing and other test techniques,
typically comparing exploratory testing and scripted testing (also referred to as test case
based testing, specification based testing or confirmatory testing). The comparisons
were based on literature reviews, true experiments, and case studies from industry
projects. The papers describe or touch upon the strengths and weaknesses of
exploratory testing (e.g. Shah et al. [7]), but do generally not define key factors for
efficient or effective exploratory testing. One paper touch upon the subject: Thangiah
and Basri [8] state that “exploratory testing is a testing approach that allows you to
apply your ability and skill as a tester in a powerful way”.

Twenty publications propose new methods that in different ways involve or include
a reference to exploratory testing. Eleven of those publications present new methods or
approaches, which combine exploratory testing and another test technique [9–19].

Table 1. Inclusion and exclusion criteria for the literature review.

Inclusion criterion Yield
Publications matching the Scopus search string TITLE-ABS-KEY
("exploratory testing")on October 27, 2018

129

Exclusion criterion Remaining
Excluding duplicates and conference proceedings summaries 122
Excluding publications not related to development of software systems 71
Excluding publications with no available full-text 65

302 T. Mårtensson et al.

These methods try to combine the flexibility of exploratory testing with the structure
provided by scripted test cases. As one example, Frajtak et al. [11] describe that the
testers can use “their skills and intuition to explore the system”, but “it is hard to
measure the effectiveness of the [exploratory] testing”. As a solution, Frajtak et al.
proposing a technique where recording of the (exploratory) testers actions are used to
create test case scenarios. Ghazi et al. [20] provide a different kind of structure, aiming
to support practitioners in the design of test charters through checklists. Sviridova et al.
[21] discuss effectiveness of exploratory testing and propose to use scenarios. The level
of freedom in exploratory testing is discussed by Ghazi et al. [22], presenting a scale for
the degree of exploration and defining five levels. Raappana et al. [23] report the
effectiveness of a test method called “team exploratory testing”, which is defined as a
way to perform session-based exploratory testing in teams. One of the papers is our
previous work [3], presenting a test method for exploratory testing of large-scale
systems (as described in Sect. 1). Finally, Shah et al. [24] take a somewhat different
approach, describing exploratory testing as a source of technical debt, and propose (as a
solution to this problem) that exploratory testing should be combined with other testing
approaches.

Seven of the publications present different types of tools, developed to increase the
efficiency in exploratory testing. However, three of the papers does not include any
validation of the presented tool. The remaining four papers describe tools developed to
visualize how the executed testing covers the system under test [25, 26], visualize code
changes in the system under test [27], and refine system models based on recorded
testing activities [28].

Nine publications describe in different ways how exploratory testing is used by the
testers. Four of those publications [29–32] focus on the tester’s knowledge and
experience: Itkonen et al. [31] discuss how testers recognize failures based on their
personal knowledge without detailed test case descriptions (“domain knowledge,
system knowledge, and general software engineering knowledge”). Gebizli and Sozer
[29] present results from a study showing that both educational background and
experience level has “significant impact” on the efficiency and effectiveness of
exploratory testing. In contrast to that, two papers [33, 34] focus on the tester’s per-
sonality: Shoaib et al. [34] simply conclude that “people having extrovert personality
types are good exploratory testers”. Pfahl et al. [33] analyzes the results from an online
survey, and finds that exploratory testing “is as an approach that supports creativity

Table 2. An overview of the publications found in the systematic literature review.

Topic of the publications Number of papers

Not relevant 9
Comparing exploratory testing and other test techniques 10
Methods 20
Tools 7
How exploratory testing is used 9
Reporting experiences 10
Summary 65

Excellence in Exploratory Testing: Success Factors 303

during testing and that is effective and efficient”. Tuomikoski and Tervonen [35]
embrace both approaches, stating that “the effectiveness of exploratory testing is
strongly based on individual test engineer’s skills and ability to analyze system and its
behavior” but also that “exploratory testing doesn’t fit for everyone, and really requires
experienced test engineers”.

Finally, ten papers report experiences from exploratory testing in industry, but
without presenting any documented quantitative or qualitative data. Pichler and Ramler
[36] present experiences from development of mobile devices, and find that “tool
support enhances the capability of human testers”. Kumar and Wallace [37] describe
that for the exploratory tester, it is “easy to get lost in a thicket of well-intentioned
heuristics”, and proposes the use of “problem frames” as a solution for this problem.

In summary, we found no publication with a complete summary of key factors that
enable efficient and effective exploratory testing. Instead, published work tend to focus
on one aspect, leaving out areas that other authors consider to be the core issues.

4 Identifying the Key Factors

4.1 Background Information

Twenty individuals participated in the interviews, with an average of 13 years of
experience of industry software development (spanning from 4 to 46 years). All
interviewees had experiences from exploratory testing as testers, and in some cases also
as test leaders. Some of the interviewees were working in development teams, which
incrementally developed new functions or systems (working only part-time as testers).
Some of the interviewees had dedicated roles as testers in independent test teams
(continuously testing the software updates coming from the development teams).

Interviewees from all four case study companies described that exploratory testing
was used for two purposes in their organization: to find bugs during development of
new functions and systems, and for testing of the complete system. The interviewees
described that exploratory testing was used primarily for new functions, whereas
automated testing and manual scripted testing was used primarily for regression tests.

The interviewees had a very positive attitude towards exploratory testing,
responding 4 or 5 (on a Likert scale from 1 to 5) when they were asked to rate the value
of exploratory testing as a test technique for large-scale software systems. The inter-
viewees were then asked to describe strengths and weaknesses with exploratory testing.
Generally, the interviewees described that exploratory testing is a good way to find
problems fast and efficient. Exploratory testing is also a more creative way to work for
the testers, and was therefore considered to make better use of the testers. Exploratory
testing was also described as a good way to test system-wide and to test large-scale
systems, especially exploratory testing with an end-user perspective. The interviewees
also described a few weaknesses with exploratory testing: Some interviewees described
that they believed that exploratory testing was more difficult for new testers. Another
viewpoint was that it could be more difficult to describe what you have tested, com-
pared to if you follow a scripted test case.

304 T. Mårtensson et al.

4.2 Key Factors for Efficient and Effective Exploratory Testing

The main question of the first series of interviews was: “What are the key factors that
you think enable efficient and effective exploratory testing of large-scale software
systems?” The responses for this question included a large amount of statements and
comments. Extracts from the interview responses were coded and collated into themes.
A thematic network were constructed [5], resulting in a thematic map with four main
themes, which in turn consist of several sub-themes: a list of key factors which can
enable efficient and effective exploratory testing.

The four main themes and their sub-themes are shown in Table 3, together with
information about how many interviewees provided statements that supported each
theme and sub-theme.

All 20 interviewees talked about the importance of the testers’ knowledge, expe-
rience and personality. In order to test the system, the testers must know how the
system is built, and the correct behavior of the system. One interviewee asked for
“testers with different types of experiences”. Another voice asked for “good system
knowledge”. One interviewee described that the tester must have “test confidence”,

Table 3. Key factors which can enable efficient and effective exploratory testing, and the
number of interviewees providing statements that supported each theme and sub-theme.

Interviewees

The testers’ knowledge, experience and personality
- The testers know how the system is built, and the correct behavior of the
system
- The testers know how the product is used by the end-user (or the end user is
represented in the test team)
- The testers are curious and want to learn about the system

20
14

12

16
Purpose and scope
- A well-defined purpose and scope for the tests (system functions ready to be
tested) which the testers can transform into e.g. scenarios or focus areas
- Regression testing secure basic stability and integrity in the system (before
exploratory testing)

18
10

11

Ways of working
- An established way of working, including e.g. planning meetings,
preparations, test strategies and heuristics (a balance between structure and
freedom)
- Testers with different experiences and competences work together as a team,
helping each other with new ideas and knowledge about different parts of the
system

14
10

12

Recording and reporting
- Test environments that support debugging and recording
- A well-defined way to report the test results, including a description of areas
covered by the tests and a list of identified problems

17
10
12

Excellence in Exploratory Testing: Success Factors 305

meaning that as a tester you should “trust your instinct that this is wrong”. The testers
must also know how the product is used by the end-user (or the end user should be
represented in the test team). To quote one of the interviewees: “If you have the end-
user perspective, then you know if a problem is a problem”. One interviewee even
stated that “you should always have the end-user perspective”. The testers must also be
curious and want to learn about the system. This means that even if the tester has good
system knowledge, he/she still wants to learn more. The interviewees described that
this calls for certain types of personalities, e.g. “the right personality, to be interested in
new perspectives, curiosity, imagination”. Some of the interviewees also described this
as an interest in tracking down the problems in the system, e.g. “someone who want to
find the bugs – curious and creative people”.

As many as 18 interviewees did in different ways talk about the purpose and scope
of the tests. This includes a well-defined purpose and scope for the tests (system
functions ready to be tested) which the testers can transform into e.g. scenarios or focus
areas. One interviewee described that “you should have a list of functions that should
be tested”. Several interviewees clarified that this should not be interpreted as that
exploratory testing only could be used at a final stage of a project, and that this also
affect development planning: “Test when the function is ready, and not too early. You
must build the function in steps so it can be tested.” Another interviewee had a similar
comment: “Do exploratory testing early, but test complete functions”. A related area is
regression testing to secure basic stability and integrity in the system (before
exploratory testing). Efficient regression testing finds problems in legacy functions
(introduced due to dependencies between functions or systems). If this works well,
skilled exploratory testers will not waste their time investigating and reporting prob-
lems with legacy functions, but can instead focus on testing the new functions. As one
of interviewees put it: “Simple problems should be identified and corrected from
automated testing”. In the same way, the testers’ time is not wasted at trouble-shooting
problems that has already been analyzed. To quote one of the interviewees: “what is the
status of the product, what are the known errors or problems”).

Ways of working were discussed by 14 of the 20 interviewees. The interviewees
requested an established way of working, including planning meetings, preparations,
test strategies and heuristics (a balance between structure and freedom). The statements
from the interviewees were quite general, e.g. “some kind of structure for the testing”.
However, the interviewees also emphasized that this structure should never be at the
same detailed level as manual test-case-based testing, described e.g. by one of the
interviewees as to “find the balance between freedom and traceability”. One intervie-
wee stated that “You must have fun – play around with things”. The interviewees
particularly emphasized advantages from that testers with different experiences and
competences work together as a team, helping each other with new ideas and
knowledge about different parts of the system. Some interviewees asked for that the
testers should do the testing together (“test together with colleagues”). Others focused
on that testers should help each other with new ideas, preparations et cetera (“a
structure for how testers should support each other”). Generally, the interviewees asked
for individuals with different knowledge and experience (“a team with a mix of
individuals”).

306 T. Mårtensson et al.

Seventeen of the 20 interviewees talked about recording and reporting. The
interviewees described test environments that support debugging and recording as a
prerequisite for efficient testing, in order to provide detailed data about the identified
problems. The interviewees also asked for recording in order to document the testing.
Quoting one of the interviewees: “An efficient way of documenting what you do”. The
interviewees also asked for a well-defined way to report the test results, including a
description of areas covered by the tests and a list of identified problems. Reporting
should not be limited to only problem reports, as it is also important to describe which
areas of the product that has been tested. This is important in order to avoid that testers
(or test teams) spend time testing the same things, and to secure that the purpose and
scope of the testing is fully covered. As one of the interviewees phrased it: “You must
document in a good way what you have done, otherwise you might miss important
areas”. There were different opinions about how the results from the testing should be
reported. One interviewee explained that test results should be visualized, i.e. not only
described in text. Another interviewee argued that the best way is to “involve the
people interested in the test in the test”.

In summary, we find that the thematic coding analysis of the interview results
resulted in nine factors, all supported by statements or comments from at least ten of
the interviewees. The nine factors were arranged in four groups, each group supported
by between fourteen and twenty interviewees.

5 Confirming the Key Factors

5.1 Follow-up Interviews

In order to strengthen the validity of the findings from the first series of interviews, a
second series of interviews was conducted. The list of key factors (presented in
Table 3) were presented to the interviewees. The interviewees were then asked to rate
the importance of each factor on a Likert scale from 1 (“not important”) to 5 (“very
important”). This means that the interviewees did not only provide feedback on the
interpretation of their own responses, but were also providing feedback on the input
from 19 other interviewees from four companies.

The interviewees generally confirmed the list of factors, rating the importance of
each factor as 4 or 5. The interviewees often added comments like “All factors seem to
be very important” or “All factor are relevant and good – they describe prerequisites for
good testing”. The interviewees were also asked to explain if they had not for example
talked about e.g. test environments in the first interview, but now rated this factor as
very important. Generally, the interviewees explained this with e.g. “the things I did not
talk about [at the first interview] was what I took for granted” or similar comments.
Four interviewees commented on the factor “established way of working”, and the
importance of balance between structure and freedom, e.g. “How much planning is
this? It must be some, but not too much. I rate this as 2 on a scale from 1 to 5 if it means
too much planning.”

Three interviewees commented on that the factors seem to be correlated, e.g. to
work together as a team is less important if every single tester covers all types

Excellence in Exploratory Testing: Success Factors 307

experiences and competences. One interviewee rated five of the factors as 2 or 3, and
suggested changes such as “I want to include the term domain knowledge in this
factor”. However, the same interviewee concluded with “the list is great, but it can be
better”.

We find that the second series of interviews confirm the results from the first series
of interviews, showing that the key factors presented in Table 3 in a good way reflect
the interviewees’ positions and viewpoints.

5.2 Cross-Company Workshop

To complement the second series of interviews, a cross-company workshop was
organized with participants from all four case study companies. Fourteen individuals
participated in the workshop, five of them with roles as manager, test leader or test
specialist. Four of the participants at the workshop had also been participating as
interviewees in the two series of interviews. At the workshop, two of the researchers
presented the results from the literature review and the two series of interviews. The
workshop participants discussed the presented key factors (from Table 3) but had only
minor comments regarding the factors (e.g. “to talk to the developers is probably better
than just to write a problem report”).

The researchers also presented a summary of differences between the case study
companies: All factors were supported by comments or statements from interviewees
from all case study companies, except for the factor “A well-defined purpose and scope
for the tests” (coming from three of the four companies). However, workshop partic-
ipants from the fourth company commented that “We work with purpose and scope.
This is important.” Another difference between the companies identified in the first
series of interviews was that “Work together as a team” was implemented differently in
the case study companies: In two of the companies the testers worked together in the
test facilities. In the other two companies the testers tested separately, but worked
together and supported each other as a team in other ways.

The workshop participants were asked to rate their current situation with regards to
each factor. This revealed differences between the companies, and encouraged dis-
cussions related to some of the factors, e.g.:

• Should the exploratory test teams cover all types of end-users (such as e.g. a service
technician), or focus only on the primary user (e.g. the driver of the car)?

• How are stability and integrity best maintained in the system – with e.g. 100% code
coverage on component level, or a mix of component tests and system tests?

• What does reporting actually mean – does it include to follow up that the infor-
mation has actually been received by the R&D department?

Participants representing all four case study companies showed interest in a con-
tinued study, with the purpose to construct a method or a model based on the identified
nine key factors. The method/model could then be used to evaluate the current situation
in an organization, and provide input to improvement initiatives related to exploratory
testing. The workshop participants discussed if such a model could include the
stakeholders who can enable solutions for the different key factors. It then became
evident that the workshop participants had quite different opinions, also among

308 T. Mårtensson et al.

participants from the same company. As it seems, it is difficult to identify one single
role who can enable a factor. Instead, many roles are involved, or it could be difficult to
identify any relevant role or part of the organization.

The workshop participants also discussed how the key factors are correlated, e.g. if
the testers have the right knowledge, experience and personality (the first three factors),
they probably need less support from an established way of working (the sixth factor).
Generally, almost all of the identified connections pointed towards the first two key
factors (related to the testers’ knowledge and experience). We interpret this as that
factors related to “the right people” should be considered to be more important than
factors related to “the right structure”.

Finally, the workshop participants discussed how exploratory testing is related to
Agile methodologies. The individuals participating at the workshop expressed very
different opinions. One voice had the opinion that exploratory testing harmonize well
with Agile development (“exploratory testing is enabling Agile”). Another individual
had a somewhat opposite opinion (“Agile is killing exploratory testing”) based on that
Agile methodologies often tend to focus on automated testing.

We find that the cross-company workshop confirmed the findings from the two
series of interviews, and that the identified key factors are valid for all four case study
companies. The interest from the workshop participants in the construction of an
actionable method or model based on the nine key factors shows that the results from
the study are considered to be useful in practice. One workshop participant concluded
the workshop with the words “It was a good thing to see the nine factors, and to see that
also other companies find these things to be important. This makes it easier for us to
change things back home”.

6 Threats to Validity

6.1 Threats to Construct Validity

One must always consider that a different set of questions and a different context for the
interviews can lead to a different focus in the interviewees’ responses. In order to
handle threats against construct validity, the interview guide was designed with open-
ended questions. In this paper, we also present background material for both the
interviewees and the case study companies in order to provide as much information as
possible about the context and enable reproducibility of the study.

It is conceivable that the interviewees’ perception of the key factors for effective
and efficient exploratory testing is affected by the current situation in the case study
companies (e.g. which type of questions or topics that are currently in focus in each
company). Therefore, it is plausible that the exact description of the key factors should
have been different if the study had included other case study companies. However, all
factors are based on comments and statements from at least 10 of the 20 interviewees,
and are considered to be valid for all four case study companies (based on the follow-
up interviews and the cross-company workshop). Due to this, we argue that this threat
to construct validity should be seen as acceptable.

Excellence in Exploratory Testing: Success Factors 309

Another threat to construct validity is researcher bias during the interpretation of the
interview results. This threat was mitigated with member checking (the follow-up
interviews) and a focus group (the cross-company workshop), following the guidelines
from Robson and McCartan [5] who consider this to be “a very valuable means of
guarding against researcher bias” and a good way to “amplify and understand the
findings”.

6.2 Threats to Internal Validity

Of the 12 threats to internal validity listed by Cook, Campbell and Day [38], we
consider Selection, Ambiguity about causal direction and Compensatory rivalry rele-
vant to this work:

• Selection: All interviewees and workshop participants were purposively sampled
(selected as good informants with appropriate roles in the companies) in line with
the guidelines for qualitative data appropriateness given by Robson and McCartan
[5]. Based on the rationale of these samplings and supported by Robson and
McCartan who consider this type of sampling superior for this type of study in order
to secure appropriateness, we consider this threat to be mitigated.

• Ambiguity about causal direction: While we in this study in some cases discuss
relationships, we are very careful about making statements regarding causation.
Statements that include cause and effect are collected from the interview results, and
not introduced in the interpretation of the data.

• Compensatory rivalry: When performing interviews and comparing scores or per-
formance, the threat of compensatory rivalry must always be considered. The
questions in our interviews were deliberately designed to be value neutral for the
participants, and not judging performance or skills of the interviewee or the inter-
viewee’s organization. Generally, the questions were also designed to be opened-
ended to avoid any type of bias and ensure answers that were open and accurate.
However, our experiences from previous work is that we found the interviewees
more prone to self-criticism than to self-praise.

6.3 Threats to External Validity

The list of key factors was confirmed by series of follow-up interviews and a cross-
company workshop with participants from the same case study companies as the first
series of interviews. Due to this, it is conceivable that the findings from this study are
only valid for these companies, or for companies that operate in the same industry
segments (presented in Sect. 2).

The follow-up interviews and the workshop showed that the list of key factors is
valid for all four case study companies. Because of the diverse nature of these four
companies, the case study companies represent a good cross-section of the industry (as
described in Sect. 2). Based on this, it is reasonable to expect that the identified key
factors that can enable efficient and effective exploratory testing are also relevant to a
large segment of the software industry at large (analytic generalization). However, we

310 T. Mårtensson et al.

consider external validation in other case study companies (preferably in different
industry segments) to be a natural suggestion for further work.

7 Conclusion

In this paper, we have presented interview results from 20 interviewees with an
experience of 4–46 years (on average more than 13 years). The interviewees come from
four case study companies, all developing large-scale software systems. The intervie-
wees described that exploratory testing was used for two purposes in their organization:
to find bugs during development of new functions and systems, and for testing of the
complete system. Exploratory testing was used primarily for new functions, whereas
automated testing and manual scripted testing was used primarily for regression tests.

The interviewees had generally good experiences from using exploratory testing.
According to the interviewees, exploratory testing is a more creative way to work for
the testers, and was therefore considered to make better use of the testers. Exploratory
testing was also described as a good way to test system-wide and to test large-scale
systems, especially exploratory testing with an end-user perspective.

Based on the analysis of the interview results (presented in Sect. 4) we identified
nine key factors, grouped in four themes, which can enable efficient and effective
exploratory testing of large-scale software systems:

• The testers’ knowledge, experience and personality:
– The testers know how the system is built, and the correct behavior of the system
– The testers know how the product is used by the end-user (or the end user is

represented in the test team)
– The testers are curious and want to learn about the system

• Purpose and scope:
– A well-defined purpose and scope for the tests (system functions ready to be

tested) which the testers can transform into e.g. scenarios or focus areas
– Regression testing secure basic stability and integrity in the system (before

exploratory testing)
• Ways of working:

– An established way of working, including e.g. planning meetings, preparations,
test strategies and heuristics (a balance between structure and freedom)

– Testers with different experiences and competences work together as a team,
helping each other with new ideas and knowledge about different parts of the
system

• Recording and reporting:
– Test environments that support debugging and recording
– A well-defined way to report the test results, including a description of areas

covered by the tests and a list of identified problems.

The list of key factors was confirmed by a series of follow-up interviews with the
20 interviewees (presented in Sect. 5.1) and a cross-company workshop with 14 par-
ticipants (presented in Sect. 5.2). The follow-up interviews and the workshop also
showed that the list of key factors is valid for all four case study companies. As the four

Excellence in Exploratory Testing: Success Factors 311

case study companies operate in different industry segments, it is reasonable to expect
that the identified key factors that enable efficient and effective exploratory testing can
be applied to projects in a large segment of the software industry.

The systematic literature review (presented in Sect. 3) identified 129 publications
related to exploratory testing, with 65 publications related to exploratory testing of
software systems. No publication were found that summarizes key factors that enable
efficient and effective exploratory testing, which supports the novelty of the findings
presented in this paper.

7.1 Further Work

As the study reported in this paper does not include any external validation, this comes
as a natural suggestion for further work (as described in Sect. 6.3). The external val-
idation is preferably conducted in case study companies that operate in other industry
segments than the companies in the primary study.

Further work could also include construction of a method or a model, which can
help companies to improve how exploratory testing is used in the companies (as
suggested in Sect. 5.2).

Another topic for further work is to analyze the relation (described in Sect. 5.2)
between exploratory testing and Agile methodologies: is it so that “exploratory testing
is enabling Agile” or is it “Agile is killing exploratory testing”?

References

1. Gregory, J., Crispin, L.: More agile Testing. Addison Wesley, Boston (2015)
2. Hendrickson, E.: Explore It!, The Pragmatic Bookshelf (2013)
3. Mårtensson, T., Ståhl, D., Bosch, J.: Exploratory testing of large-scale systems – testing in

the continuous integration and delivery pipeline. In: Felderer, M., Méndez Fernández, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611,
pp. 368–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_26

4. Kitchenham, B.: Procedures for performing systematic reviews. Keele UK Keele Univ. 33
(2004), 1–26 (2004)

5. Robson, C., McCartan, K.: Real World Research, 4th edn. Wiley, Hoboken (2016)
6. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)
7. Shah, S.M.A., Gencel, C., Alvi, U.S., Petersen, K.: Towards a hybrid testing process

unifying exploratory testing and scripted testing. J. Softw. Evol. Process 26(2), 220–250
(2014)

8. Thangiah, M., Basri, S.: A preliminary analysis of various testing techniques in Agile
development - a systematic literature review. In: 3rd International Conference on Computer
and Information Sciences, ICCOINS 2016, pp. 600–605 (2016)

9. Basri, S., Dominic, D.D., Murugan, T., Almomani, M.A.: A proposed framework using
exploratory testing to improve software quality in SME’s. Advances in Intell. Syst. Comput.
843, 1113–1122 (2019)

10. Calpur, M.C., Arca, S., Calpur, T.C., Yilmaz, C.: Model dressing for automated exploratory
testing. In: IEEE International Conference on Software Quality, Reliability and Security
Companion, QRS-C 2017, pp. 577–578 (2017)

312 T. Mårtensson et al.

http://dx.doi.org/10.1007/978-3-319-69926-4_26

11. Frajtak, K., Bures, M., Jelinek, I.: Model-based testing and exploratory testing: is synergy
possible? In: 6th International Conference on IT Convergence and Security, ICITCS 2016
(2016)

12. Gebizli, C.S., Sozer, H.: Improving models for model-based testing based on exploratory
testing. In: 38th Annual International Computers, Software and Applications Conference
Workshops, COMPSACW 2014, pp. 656–661 (2014)

13. Hellmann, T.D., Maurer, F.: Rule-based exploratory testing of graphical user interfaces. In:
2011 Agile Conference, Agile 2011, pp. 107–116 (2011)

14. Hudson, J., Denzinger, J.: Risk management for self-adapting self-organizing emergent
multi-agent systems performing dynamic task fulfillment. Auton. Agents Multi-Agent Syst.
29(5), 973–1022 (2015)

15. Kim, D.-K., Lee, L.-S.: Reverse engineering from exploratory testing to specification-based
testing. Int. J. Softw. Eng. Appl. 8(11), 197–208 (2014)

16. Kuhn, A.: On extracting unit tests from interactive live programming sessions. In:
International Conference on Software Engineering, pp. 1241–1244 (2013)

17. Mihindukulasooriya, N., Rizzo, G., Troncy, R., Corcho, O., García-Castro, R.: A two-fold
quality assurance approach for dynamic knowledge bases: the 3cixty use case. In: CEUR
Workshop Proceedings (2016)

18. Rashmi, N., Suma, V.: Defect detection efficiency of the combined approach. In: Satapathy,
S., Avadhani, P., Udgata, S., Lakshminarayana, S. (eds.) ICT and Critical Infrastructure:
Proceedings of the 48th Annual Convention of Computer Society of India - Volume II.
AISC, vol. 249, pp. 485–490. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
03095-1_51

19. Schaefer, C.J., Do, H.: Model-based exploratory testing: a controlled experiment. In: 7th
International Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2014, pp. 284–293 (2014)

20. Ghazi, A.N., Garigapati, R.P., Petersen, K.: Checklists to support test charter design in
exploratory testing. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP,
vol. 283, pp. 251–258. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_
17

21. Sviridova, T., Stakhova, D., Marikutsa, U.: Exploratory testing: management solution. In:
12th International Conference: The Experience of Designing and Application of CAD
Systems in Microelectronics, CADSM 2013, p. 361 (2013)

22. Ghazi, A.N., Petersen, K., Bjarnason, E., Runeson, P.: Levels of exploration in exploratory
testing: from freestyle to fully scripted. IEEE Access 6, 26416–26423 (2018)

23. Raappana, P., Saukkoriipi, S., Tervonen, I., Mäntylä, M.V.: The effect of team exploratory
testing - experience report from F-Secure. In: International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2016, pp. 295–304 (2016)

24. Shah, S.M.A., Torchiano, M., Vetrò, A., Morisio, M.: Exploratory testing as a source of
technical debt. IT Prof. 16(3), 44–51 (2014)

25. Bures, M., Frajtak, K., Ahmed, B.S.: Tapir: automation support of exploratory testing using
model reconstruction of the system under test. IEEE Trans. Reliab. 67(2), 557–580 (2018)

26. Frajtak, K., Bures, M., Jelinek, I.: Exploratory testing supported by automated reengineering
of model of the system under test. Cluster Comput. 20(1), 855–865 (2017)

27. Reis, J., Mota, A.: Aiding exploratory testing with pruned GUI models. Inf. Process. Lett.
133, 49–55 (2018)

28. Gebizli, C.Ş., Sözer, H.: Automated refinement of models for model-based testing using
exploratory testing. Softw. Qual. J. 25(3), 979–1005 (2017)

Excellence in Exploratory Testing: Success Factors 313

http://dx.doi.org/10.1007/978-3-319-03095-1_51
http://dx.doi.org/10.1007/978-3-319-03095-1_51
http://dx.doi.org/10.1007/978-3-319-57633-6_17
http://dx.doi.org/10.1007/978-3-319-57633-6_17

29. Gebizli, C.S., Sözer, H.: Impact of education and experience level on the effectiveness of
exploratory testing: an industrial case study. In: 10th IEEE International Conference on
Software Testing, Verification and Validation Workshops, ICSTW 2017, pp. 23–28 (2017)

30. Itkonen, J., Mäntylä, M.V., Lassenius, C.: How do testers do it? An exploratory study on
manual testing practices. In: 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM 2009, pp. 494–497 (2009)

31. Itkonen, J., Mäntylä, M.V., Lassenius, C.: The role of the tester’s knowledge in exploratory
software testing. IEEE Trans. Softw. Eng. 39(5), 707–724 (2013)

32. Micallef, M., Porter, C., Borg, A.: Do exploratory testers need formal training? An
investigation using HCI techniques. In: International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2016, pp. 305–314 (2016)

33. Pfahl, D., Yin, H., Mäntylä, M.V., Münch, J.: How is exploratory testing used? A state-of-
the-practice survey. In: International Symposium on Empirical Software Engineering and
Measurement (2014)

34. Shoaib, L., Nadeem, A., Akbar, A.: An empirical evaluation of the influence of human
personality on exploratory software testing. In: 13th International Multitopic Conference,
INMIC 2009 (2009)

35. Tuomikoski, J., Tervonen, I.: Absorbing software testing into the scrum method. In:
Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32,
pp. 199–215. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02152-7_16

36. Pichler, J., Ramler, R.: How to test the intangible properties of graphical user interfaces? In:
1st International Conference on Software Testing, Verification and Validation, ICST 2008,
pp. 494–497 (2008)

37. Kumar, S., Wallace, C.: Guidance for exploratory testing through problem frames. In:
Software Engineering Education Conference, pp. 284–288 (2013)

38. Cook, T.D., Campbell, D.T., Day, A.: Quasi-Experimentation: Design & Analysis Issues for
Field Settings, vol. 351. Houghton Mifflin, Boston (1979)

314 T. Mårtensson et al.

http://dx.doi.org/10.1007/978-3-642-02152-7_16

Comparison Framework for Team-Based
Communication Channels

Camila Costa Silva , Fabian Gilson(B) , and Matthias Galster

University of Canterbury, Christchurch, New Zealand
camila.costasilva@pg.canterbury.ac.nz,

{fabian.gilson,matthias.galster}@canterbury.ac.nz

Abstract. Communication via instant messaging (e.g., Slack) supports
collaboration between software developers. It enables discussions and
knowledge sharing within small groups, companies and physically dis-
tributed teams. In this paper, we introduce a comparison framework
aiming at the evaluation of team-based communication channels for (a)
practitioners interested in using or improving communication channels
as part of their project and team communication, and (b) researchers
interested in utilising team communication channels to answer research
questions (e.g., to analyse developer communication in mining studies).
The framework includes criteria derived from other empirical works on
developer communication and experience reports related to development
tools. We illustrate the framework by analysing four communication tools
(Microsoft Teams, Slack, Gitter, Spectrum).

Keywords: Collaborative software development · Developer
communication · Instant messaging · Social media

1 Introduction

Social media support software development [13]. For example, distributed teams
or individual developers can share knowledge and discuss design decisions in
online developer communities (e.g., Stack Overflow). In particular, instant mes-
saging (IM) using tools such as Slack improves team communication [17]. For
example, Zahedi et al. found that IM-based communication support formal plan-
ning (with chat history stored for latter reference) [16]. Also, IM-based com-
munication is more suitable for ad-hoc and urgent communication in teams
than emails [16] and help clarify misunderstandings and collaboratively solve
problems [3]. Finally, IM communication helps team members collectively store
and retrieve knowledge [4], for example, about technical details of a product
under development [2]. IM communication can be project-specific (e.g., develop-
ers who communicate in a private Slack channel) or topic-specific and relevant
to a broader audience (e.g., a public Gitter group discussing Python problems).

Previous research has explored the use of social media like Stack Overflow
to share and discuss problems and solutions [11], and Slack for discussions in
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 315–322, 2019.
https://doi.org/10.1007/978-3-030-35333-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_22&domain=pdf
http://orcid.org/0000-0002-3690-1711
http://orcid.org/0000-0002-1465-3315
http://orcid.org/0000-0003-3491-1833
https://doi.org/10.1007/978-3-030-35333-9_22

316 C. Costa Silva et al.

communities of practice [6]. In this paper, we present a comparison framework
for IM-based communication channels. The framework supports (1) practition-
ers who may want to identify the most suitable tool for their own purpose (e.g.,
to use in their project or team), and (2) researchers studying developer com-
munication interested in comparing tools to find the one most suitable for their
research (e.g., for mining studies). Practitioners and researchers may also want
to understand differences between tools and extend or develop new tools.

2 Framework

The framework (see Table 1) needs to be general enough to characterise a wide
range of communication channels, but including too many criteria would limit
its usefulness. Therefore, criteria are based on needs and challenges described
in the literature [12], needs expressed by practitioners [3,11], issues identified
in empirical studies [4,14,16] as well as their relevance for the practical use of
a communication channel (e.g., pricing, access to conversation data). Addition-
ally, we draw upon comparison frameworks proposed in other domains (such as
product line engineering [8,9]) and integrate criteria from previously published
evaluation frameworks [1].

Table 1. Comparison framework

Type Criteria Description

Popularity
Year of release
of users
of public groups

Describe how known and widely used
tools and their groups are.

Openness
Service plans
Group types
Group visibility

Ability to access tools through different
service plans; group types can be topic-
specific or project-specific; visibility can
be private or public.

Administration
User profile
Permission type

Functions and resources to manage users,
their profiles and access rights.

Interaction
features

Interaction group/space
Interaction format
Message format
Conversation
Notifications/mentions
Search capability

Spaces for interactions (public/private)
and their format (e.g., rich text, file
sharing, videoconferencing); mechanisms
for direct interactions and notifications
between users; search capabilities (e.g.,
history and file search).

Interoperability
External apps
Client platforms

How tools interact with external
resources and how tools can be accessed
(e.g., via the web, mobile and desktop
apps).

API APIs documentation
Description of APIs to extract data from
groups, chat rooms and messages and/or
build analysis tools or extensions.

Comparison Framework for Team-Based Communication Channels 317

The framework is rather qualitative and “descriptive” in nature and does
not include numerical evaluation criteria. While a quantitative evaluation would
allow visual representations, assigning numerical values to criteria such as pop-
ularity seems rather arbitrary and subjective, and would provide only limited
insights (e.g., number of users might be misleading as a sole measure for popu-
larity if many users are inactive).

3 Case Study

We used the proposed framework in a case study [10] to compare four team
communication tools. As cases, we selected Microsoft Teams (MS-Teams)1 and
Slack2 because (at the time of writing this paper) they are the most popular tools
for team communication [5,7]. We included Gitter3 since it is frequently used by
software developers [13]. We selected Spectrum4 as alternative to Slack suggested
in a Slack discussion. To collect data, the authors reviewed documentation of
the tools available online and tested their features following the framework.

Popularity. In Table 2 we compare tools based on popularity.

Table 2. Popularity

Criteria MS-Teams Slack Gitter Spectrum

Year of release 2017 2013 2014 2017
of users ≈13,000,000 ≈10,000,000 ≈800,000 Unknown
of public groups Unknown ≈2,000 ≈90,000 ≈5,000

MS-Teams is the latest of the four tools. It has gradually been replacing
“Office365 classrooms” and “Skype for Business” and is used by more than
500,000 organisations [15]. Slack is the oldest tool and currently used by 85,000
organisations [7]. Slack has no public groups (see below), but users can request
access to groups they want to join5. Gitter was released to assist GitHub users
and was acquired by Gitlab in 2017 but kept its GitHub integration. Spectrum’s
number of users is unknown.

Openness. In Table 3 we compare tools based on openness. MS-Teams offers
different service plans, i.e. attached to their Office365 ecosystem on top of
a free plan. Slack has three plans for teams (free, standard and plus) and an
enterprise grid (i.e. a local instance with enhanced privacy and security). Spec-
trum used to be a paid service, but became free when joining GitHub. Regarding
group types and group visibility, groups in MS-Teams are organisation-wide
and invitation-only. As MS-Teams, Slack distinguishes organisation-wide and
1 https://products.office.com/en-us/microsoft-teams.
2 https://slack.com/.
3 https://gitter.im/.
4 https://spectrum.chat/.
5 See e.g., https://slofile.com/ and https://standuply.com/.

https://products.office.com/en-us/microsoft-teams
https://slack.com/
https://gitter.im/
https://spectrum.chat/
https://slofile.com/
https://standuply.com/

318 C. Costa Silva et al.

Table 3. Openness

Criteria MS-Teams Slack Gitter Spectrum

Service plans Free + 4 paid Free + 3 paid Free Free
Group types Project Project/topic Project/topic Project/topic
Group visibility Orga./Private Orga./Private Public/Private Public/Private

invitation-only groups, but links to topic-related groups can be found on blogs
or open sources repositories making groups on Slack both project and topic-
specific. Gitter offers public or private groups that may be linked to private
GitHub repositories and therefore offers project- and topic-specific groups. An
open group may be restrained to GitHub users only. Spectrum offers both open
and private as well as project- and topic-specific groups.

Administration. Registered users can customise their profile in all tools except
Gitter by adding a picture (one per group in Slack) and a bio or status mes-
sage. Spectrum and Gitter are tightly connected to Github accounts, MS-Teams
requires a Microsoft account and Slack an email address only. All tools offer
basic administrative features at least to create, delete, invite members to and
ban members from groups. Slack and MS-Teams provide more advanced fea-
tures with the ability to give (partial) admin permissions to members, e.g., to
add/ban users, create/delete chat rooms or connect third party components.

Interaction Features. In Table 4 we compare interaction features of tools.

Table 4. Interaction features

Criteria MS-Teams Slack Gitter Spectrum

Interact. group Team Workspace Community Community
Interact. space Channel Channel Room Channel
Private space Yes Yes Yes Yes
Interact. format Text,audio,video Text,audio,video Text Text
Message format Rich text Markdown Markdown Markdown
File posting All types All types All types Images
Conversation Threaded Threaded Unthreaded Threaded
Notif./mentions Yes Yes Yes Yes
Search capability Content + files Content + files Content + users Content

In MS-Teams, interaction groups are organised as “teams”, in Slack as
“workspaces”, and as “communities” in Gitter and Spectrum. In MS-Teams,
Slack and Spectrum, interaction spaces are called “channels”, while in Gitter
they are called “rooms”.

In MS-Teams, Slack and Spectrum, public chat rooms are accessible to all
users inside a group, but users can create private interaction spaces (private
chat rooms and direct messages). In Gitter, users can join each room of a com-
munity independently. Both MS-Teams and Slack offer the possibility to invite

Comparison Framework for Team-Based Communication Channels 319

guests into rooms. In Slack, a room can be shared with another Slack group to
create a communication bridge between two organisations (paid plan).

Tools offer various interaction formats and message formats. MS-Teams
offers a rich text editor with an optional subject and compulsory content. Mes-
sages may be formatted as “announcements” with dedicated icons and for-
matting options. In Spectrum, conversations always contain a subject and an
optional content whereas in Slack and Gitter messages are simple text notes
with no title. Slack, Gitter and Spectrum use a Markdown syntax to format
messages. MS-Teams is the only tool that supports (video) calls in its free plan,
while Slack requires a paid plan. Additionally, regarding file posting, any kind
of files are supported in MS-Teams, Slack and Gitter but only images in Spec-
trum.

All tools but Gitter use “threaded” conversations, i.e. each message can
have multiple replies that are indented under their parent message. However,
replies cannot have their own replies, limiting the indentation to one single level.
At the opposite, Gitter conversations are linear.

All tools support notifications and mentions to let other members know
about: (a) answers to a conversation they were part of or (b) when referrals are
made (e.g., a user A calls out user B).

All four tools offer a keyword-based search capability to retrieve messages,
files (MS-Teams and Slack) or other users (all but Spectrum). MS-Teams and
Slack allow to search through mentions. Slack has the most powerful search
allowing structured queries (e.g., based on dates).

Interoperability. In Table 5 we compare interoperability features of tools.

Table 5. Interoperability

Criteria MS-Teams Slack Gitter Spectrum

External apps Yes-unlimited Yes-limited Yes No

Client platforms
Win/Mac
Android/iOS

Win/Mac/Linux
Android/iOS

Win/Mac/Linux
Android/iOS

Mac

Regarding external apps, MS-Teams has been designed to be part of the
Office365 ecosystem and may interface with Office tools (paid plan). As Slack, it
offers connectors to many software development tools such as Trello, Bitbucket or
GitHub, but unlike Slack, all of these connectors are free without any limitations.
Gitter is highly coupled to GitLab and offers connectors to Trello, Bitbucket and
GitHub, but supports fewer connectors than Slack and MS-Teams. Spectrum can
connect to an existing Slack group and import its members and chat rooms, but
has no connectors to any additional third-party applications. In addition to web-
based user interfaces offered by all tools, supported platforms of clients for
Slack and Gitter include Windows, Mac and Linux as well as Android and iOS
mobile apps. MS-Teams offers clients for all aforementioned platforms except
Linux. Spectrum only offers a client for Mac.

320 C. Costa Silva et al.

API. Apart from Spectrum, all tools offer APIs to retrieve messages or activity-
related data from existing rooms through a REST API. They also offer more
powerful hooks to integrate custom apps into groups or chat rooms (such as
bots). MS-teams and Slack offer software development kits for Javascript/nodejs
and C#/.NET (Microsoft only). However, Slack restricts more advanced moni-
toring and analysis API endpoints to their paid plans. No tool provides “out-of-
the-box” statistics or analyses of messages in depth, for example, to summarise
main findings about a project (e.g., to “brief” users who join a channel).

4 Discussion

Summary of Findings. Following our comparison framework, MS-Teams
appears to be the most complete and flexible tool even with its free plan. Slack
closely follows MS-Teams, but requires a paid plan for audio/video features and
limits the number of third-party plugins. Gitter specifically focuses on the soft-
ware development community and integrating development tools, whereas the
ecosystems of Slack and MS-Teams are more diverse. Another notable distinc-
tion is that Gitter is the only tool that still uses linear rather than threaded
discussions in individual chat rooms. To that regard, MS-Teams and Slack are
the most powerful tools since they support rich text formatting and any file
types in messages. Lastly, all tools but Spectrum offer built-in connectors to
additional apps (e.g., agile software development tools or source code reposito-
ries), the ability to programmatically interact with chat rooms, to create custom
apps and offer client software for a wide range of operating systems.

Applicability of Framework. Regarding the developed framework, we believe
all criteria are potentially useful for both researchers studying developer commu-
nities and practitioners. This framework provides a foundation for a systematic
comparison of team communication channels and helps understand the differ-
ences between those channels. The following criteria may be of particular interest
to researchers who study developer communication:

– Popularity: This criterion offers a big picture of the impact of a team com-
munication channel within a community and gives credibility to data gathered
from that channel. It also helps understand how a communication tool evolves
over time and how functionality impacts the number of users.

– Interaction features: Message threads and user mentions inside a group
may give insights about the team dynamics in that group, e.g., how often
direct call-outs are made amongst members, the nature of these mentions or
if there are any blaming issues in a particular group.

– API: Since researchers are often interested in mining data in an automated
way, knowing about resources of a team communication tool API will help
them understand how feasible it is to collect data from a channel.

Comparison Framework for Team-Based Communication Channels 321

For practitioners, the potentially most helpful criteria are:

– Openness: Practitioners care about the cost when choosing a team-based
communication tool and how organisation members can easily be added.

– Administration and interaction features: It is important to manage the
resources of a communication tool, understand what type of content can be
shared and how such content can be retrieved. For instance, depending on
the complexity of a project, practitioners will need features to ban or apply
restrictions to users’ access or define shared spaces between projects.

– Interoperability: It may be critical to integrate a team-based communica-
tion channel with other existing tools to keep a centralised source of knowl-
edge inside an organisation or project (e.g., interfaces to project management
software or collaborative document repositories).

– API: Like researchers, practitioners would need a communication tool that
offers the ability to plug in custom data mining or monitoring features from
external resources (e.g., to add a chat bot to trigger a software development
pipeline or record tasks into a project board).

Threats to Validity. Our work is subject to various validity threats:

– Construct validity: When selecting the tools under review, we applied a
series of selection criteria that may have influenced to what extent our frame-
work fits the needs for such a comparison. However we do not claim that our
framework includes an exhaustive list of criteria. Rather, we expect it to be
modified and extended in the future.

– Internal validity: The influence of our personal experiences with IM-based
tools may have played a role in defining the comparison criteria. However, we
carefully analysed (meta) empirical studies and experience reports in order
to consolidate previously identified principles into the proposed framework.

– External validity: The case study is limited to four team-based commu-
nication channels and the extent to which those tools are representative is
unknown. However, according to latest available statistics, at least MS-Teams
and Slack are widely used in the software development community.

5 Conclusions

We introduced a comparison framework for team-based communication chan-
nels that we applied in a case study involving four instant messaging tools. We
identified a series of evaluation criteria from the literature covering aspects like
the popularity of the tool, its features, the types of interactions and its interop-
erability. We do not claim that this framework is exhaustive but believe it offers
a structured evaluation scheme for researchers and practitioners to assess the
suitability of a particular messaging tool or identify missing features.

To expand the framework and to identify additional criteria, we could follow
a design science approach to integrate practical problems relevant to developers
and knowledge questions investigated by researchers to support developers.

322 C. Costa Silva et al.

References

1. Albrecht, C.C.: A comparison of distributed groupware implementation environ-
ments. In: Hawaii International Conference on System Sciences (HICSS), pp. 1–9.
IEEE (2003)

2. Alkadhi, R., Laţa, T., Guzman, E., Bruegge, B.: Rationale in development chat
messages: an exploratory study. In: International Conference on Mining Software
Repositories (MSR), pp. 436–446. IEEE (2017)

3. Forsgren, E., Byström, K.: Multiple social media in the workplace: contradictions
and congruencies. Inf. Syst. J. 28(3), 442–464 (2018)

4. Kotlarsky, J., van Fenema, P.C., Willcocks, L.P.: Developing a knowledge-based
perspective on coordination: the case of global software projects. Inf. Manag. 45(2),
96–108 (2008)

5. Lardinois, F.: Microsoft says teams now has 13M daily active users. https://
techcrunch.com/2019/07/11/microsoft-says-its-slack-competitor-teams-now-has-
13-million-daily-active-users/. Accessed 23 July 2019

6. Lin, B., Zagalsky, A., Storey, M., Serebrenik, A.: Why developers are slacking
off: understanding how software teams use slack. In: Conference on Computer
Supported Cooperative Work and Social Computing (CSCW), pp. 333–336. ACM
(2016)

7. Matney, L.: Slack now has more than 10 million daily active users. https://
techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-
users/. Accessed 23 July 2019

8. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A comparison
framework for runtime monitoring approaches. J. Syst. Softw. 125, 309–321 (2017)

9. Rieger, C., Majchrzak, T.A.: Towards the definitive evaluation framework for cross-
platform app development approaches. J. Syst. Softw. 153, 175–199 (2019)

10. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

11. Squire, M.: Should we move to stack overflow? Measuring the utility of social
media for developer support. In: International Conference on Software Engineering
(ICSE), pp. 219–228. IEEE (2015)

12. Storey, M., Zagalsky, A., Filho, F.F., Singer, L., German, D.M.: How social and
communication channels shape and challenge a participatory culture in software
development. IEEE Trans. Softw. Eng. 43(2), 185–204 (2017)

13. Storey, M.A., Singer, L., Cleary, B., Figueira Filho, F., Zagalsky, A.: The
(R)evolution of social media in software engineering. In: Future of Software Engi-
neering at ICSE (FOSE), pp. 100–116. ACM (2014)

14. Storey, M.A., Treude, C., van Deursen, A., Cheng, L.T.: The impact of social media
on software engineering practices and tools. In: Workshop on Future of Software
Engineering Research (FoSER), pp. 359–364. ACM (2010)

15. Wright, L.: Microsoft teams wins enterprise connect best in show award and
delivers new experiences for the intelligent workplace, March 2019. https://
www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-
experiences-intelligent-workplace/. Accessed 29 July 2019

16. Zahedi, M., Shahin, M., Babar, M.A.: A systematic review of knowledge sharing
challenges and practices in global software development. Int. J. Inf. Manag. 36(6),
995–1019 (2016)

17. Zhang, S., Köbler, F., Tremaine, M., Milewski, A.: Instant messaging in global
software teams. Int. J. e-Collab. 6(3), 43–63 (2010)

https://techcrunch.com/2019/07/11/microsoft-says-its-slack-competitor-teams-now-has-13-million-daily-active-users/
https://techcrunch.com/2019/07/11/microsoft-says-its-slack-competitor-teams-now-has-13-million-daily-active-users/
https://techcrunch.com/2019/07/11/microsoft-says-its-slack-competitor-teams-now-has-13-million-daily-active-users/
https://techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-users/
https://techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-users/
https://techcrunch.com/2019/01/29/slack-now-has-more-than-10-million-daily-active-users/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-experiences-intelligent-workplace/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-experiences-intelligent-workplace/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/03/19/microsoft-teams-experiences-intelligent-workplace/

DevOps in Practice – A Preliminary Analysis
of Two Multinational Companies

Jessica Díaz1(&) , Jorge E. Perez1 , Agustín Yague1 ,
Andrea Villegas1,2, and Antonio de Antona3

1 Universidad Politécnica de Madrid, 28031 Madrid, Spain
{yesica.diaz,jorgeenrique.perez,

agustin.yague}@upm.es, a.villegas@alumnos.upm.es
2 Sistemas Avanzados de Tecnología, S. A. (SATEC), 28023 Madrid, Spain

3 Everis Spain S.L., Madrid, Spain

Abstract. DevOps is a cultural movement that aims the collaboration of all the
stakeholders involved in the development, deployment and operation of soft-
ware to deliver a quality product or service in the shortest possible time. DevOps
is relatively recent, and companies have developed their DevOps practices
largely from scratch. Our research aims to conduct an analysis on practicing
DevOps in +20 software-intensive companies to provide patterns of DevOps
practices and identify their benefits and barriers. This paper presents the pre-
liminary analysis of an exploratory case study based on the interviews to rele-
vant stakeholders of two (multinational) companies. The results show the
benefits (software delivery performance) and barriers that these companies are
dealing with, as well as DevOps team topology they approached during their
DevOps transformation. This study aims to help practitioners and researchers to
better understand DevOps transformations and the contexts where the practices
worked. This, hopefully, will contribute to strengthening the evidence regarding
DevOps and supporting practitioners in making better informed decisions about
the return of investment when adopting DevOps.

Keywords: DevOps � Empirical software engineering � Exploratory case study

1 Introduction

In the recent digital history, it is possible to verify that success is not always achieved
by the product that is better built, more usable, or of better quality, but by the one that
appears first and meets a certain need. This is why the software industry tries to be
more agile, more tolerant to change, more adaptable to new needs, and above all, tries
to shorten development time from request to implementation. Companies that can
release software early and frequently have a higher capability to innovate and compete
in the market. Innovative companies, such as Google, Amazon, Netflix, LinkedIn,
Facebook, and Spotify, initiated an organizational transformation that aimed fast speed
in releases and quick response time to customer demands. DevOps is an organizational
transformation that had its origin at the 2008 Agile conference in Toronto, where
Debois highlighted the need of resolving the conflict between developer teams and

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 323–330, 2019.
https://doi.org/10.1007/978-3-030-35333-9_23

http://orcid.org/0000-0001-6738-9370
http://orcid.org/0000-0003-3349-6017
http://orcid.org/0000-0002-4761-0901
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_23

operation teams when they have to collaborate to provide this quick response time to
customer demands [1]. Later, at the O’Reilly Velocity Conference, two Flickr
employees delivered a seminal talk known as “10+ Deploys per Day: Dev and Ops
Cooperation at Flickr” which can be considered the starting point to extend agile
beyond development [2]. Today an entire industry has been created around DevOps
tools whose objective is to automate best practices, such as continuous delivery and
continuous deployment, that promote fast and frequent delivery of new and changing
features while ensuring quality and non-disruption of the production environment and
customers [3].

But beyond all that, DevOps is a cultural movement that aims the collaboration
among all the stakeholders involved in the development, deployment and operation of
software to deliver a high-quality product or service in the shortest possible time.
DevOps breaks down organizational silos and “stresses empathy and cross-functional
collaboration within and between teams—especially development and IT operations—
in order to operate resilient systems and accelerate delivery of changes” [4]. It is a
simple concept, but its adoption by organizations is enormously complicated because
of great differences in the way in which DevOps promotes to work and the traditional
way in which most software companies have been working for decades. DevOps is
founded on the Lean principles and shares its values, such as process optimization,
search for continuous improvement, and the enhancement of customer satisfaction.

However, DevOps is relatively recent, and little is known about best practices and
the real value and barriers associated with DevOps in industry. Companies have
developed their DevOps practices largely from scratch—by training employees on the
fly. Google, Amazon, Netflix, LinkedIn, Facebook, and Spotify are some examples of
successful companies whose DevOps practices have been reported and disclosed in IT
books, blogs and events. These provide a valuable information for companies, how-
ever, for most of them, it is quite difficult to match these leader companies and adopt
the practices they disclose. In addition, failures are not described. Some annually
reports about the state of DevOps, such as the report made by DORA (DevOps
Research & Assessment association) [5] and the report made by Puppet and Splunk [6],
analyze data of survey questionnaires over 30,000 technical professional worldwide,
respectively. The first one identifies a set of software delivery performance profiles
(elite, high, medium and low performance) and relates DevOps practices with these
profiles. The second one identifies 5 stages of DevOps evolution (aka. the DevOps
evolutionary model) and establishes the practices that define and/or contribute to
success in that stage. These reports also provide a valuable information for companies
as they provide a global picture; however, the wide range of participant companies and
the great variability among participants make difficult, for a company, to find the right
way for a DevOps transformation based on similarities (e.g. IT department size,
business, scope, DevOps Teams size, DevOps strategy, etc.) with other companies.
Erich et al. [7] and Lwakatare et al. [8] also performed exploratory studies on six
companies and one company, respectively, providing a key baseline for future studies
with a broader scope until achieving the saturation for qualitative studies.

Our research aims to conduct an analysis on practicing DevOps in +20 software-
intensive companies to provide patterns of DevOps practices and identify their benefits
and barriers. This paper presents the preliminary analysis of an exploratory case study

324 J. Díaz et al.

based on the interviews to relevant stakeholders of two (multinational) companies.
DevOps embodies a vast and diverse set of practices, from which some patterns can be
generalized under certain conditions, depending on the environment [9]. The analysis
of these two case studies may help researchers and professionals to understand the
barriers and benefits (specifically, delivery software performance) when two companies
of the software industry made a DevOps transformation, how these companies dealt
with the transformation (specifically, DevOps team topology), and finally, it may help
others to make better informed decisions based on this know-how. There are some
decisions that can lead to the failure of an organization, and many others to success, so
that the only way to be sure of being on the right way is to follow one that has been
successfully proven on numerous occasions.

2 Exploratory Case Study

The research methodology has been previously described, discussed, and improved at
the Fostering More Industry-Academic Research in XP (FIAREX) workshop, part of
XP 2018 conference [10]. We have followed the guidelines for conducting case study
research in software engineering proposed by Runeson and Höst [11]. We have
established a chain of evidence by following a strict process that consists of the
preparation of a questionnaire and interviews, performance and recording, transcrip-
tion, coding, and analysis. To qualitatively analyze the data, we have used the thematic
analysis approach [12, 13], which is one of the most used synthesis methods that
consists of coding, grouping, interconnecting and obtaining patterns. The last two
activities were also supported using the clustering technique, which divides samples in
groups called clusters based on their similarity. The visualization of these clusters
helped us to better interpret and relate the qualitative data.

2.1 Data Collection and Instruments

The interviews were conducted face-to-face by two researchers. The interview consists
of 100 questions and takes about 2.5 h. The questions were collected from the existing
literature conducting survey studies on DevOps state [5, 6, 14], exploratory studies [7,
8], as well as from meetings with experts in some international and national workshops
(e.g. at the FIAREX workshop part of the XP conference [10] and a local industrial
workshop organized by the authors1) and national events (e.g. DevOps Spain2 and
itSMF events3). The interview is structured to collect professional information from
interviewees, organizations, DevOps adoption processes, DevOps teams’ topology,
culture related practices, team related practices, collaboration related practices, sharing
related practices, automation related practices, measurement and monitoring related

1 (Spanish) Workshop on DevOps located at Universidad Politécnica de Madrid, Spain, https://www.
youtube.com/watch?time_continue=6&v=rDHv3dK_Am8, last accessed 2019/08/01.

2 https://www.devops-spain.com/, last accessed 2019/08/01.
3 https://www.itsmf.es/index.php?option=com_content&view=article&id=3133:2018-10-11-00-30-
06&catid=79:noticias&Itemid=401, last accessed 2019/08/01.

DevOps in Practice – A Preliminary Analysis of Two Multinational Companies 325

https://www.youtube.com/watch%3ftime_continue%3d6%26v%3drDHv3dK_Am8
https://www.youtube.com/watch%3ftime_continue%3d6%26v%3drDHv3dK_Am8
https://www.devops-spain.com/
https://www.itsmf.es/index.php%3foption%3dcom_content%26view%3darticle%26id%3d3133:2018-10-11-00-30-06%26catid%3d79:noticias%26Itemid%3d401
https://www.itsmf.es/index.php%3foption%3dcom_content%26view%3darticle%26id%3d3133:2018-10-11-00-30-06%26catid%3d79:noticias%26Itemid%3d401

practices, barriers, and results. This questionnaire includes a set of short, open, and
semi-open questions in which the interviewee can choose one or more options, explain
their selections, or add a new answer. Both options and questions have been refined as
we gained more knowledge during the interviews, the workshops and the events. An
example is question 17 about the DevOps teams’ topology and its scope within the IT
department. It was initially an open question, but after 4–5 interviews we realized that
answers were too long and not clarified the topology, so we added some options based
on the DevOps Topologies collection of patterns by Skelton and Pai [15] and the
organizational structures used in DevOps journey by the State of DevOps Report [6].
After analyzing more interviews, we defined our own DevOps Teams patterns (see
Sect. 2.2).

The interview also asks for the deployment frequency, i.e., the number of deploys to
production of an application per unit of time; the lead time for changes, i.e., the time
from a change in the code to code is successfully running in production; and the time to
recovery, i.e., elapsed time to restore a service when an incident causes its unavail-
ability. These metrics were defined by DORA as indicators for defining a set of
software delivery performance profiles (elite, high, medium and low performance) [5].
We have adapted the scale that is used for these indicators to classify companies
according to the profiles by DORA for the scale that is shown is Table 1. This work is
required because, as mentioned before, this kind of reports analyzes massive data, and
the variability of these data is huge (e.g. the lead time goes from less than one hour to
six months, and the data we have managed for lead time none exceed one day).
Additionally, we limited the lead time for changes affecting to one line of code as we
think that asking for the lead time of a change in the code is ambiguous.

2.2 Subjects

This paper focuses on two companies (ID17 and ID18). In these interviews three
people were interviewed: a consultant from Everis with +6 years of experience and +4
years in DevOps that worked for ID17 and ID18, the director of the DevOps depart-
ment from organization ID17 with +12 years of experience and +6 years in DevOps,
and a Scrum master from organization ID18 with +15 years of experience and +2 years
in DevOps. Table 2 shows the description of these organizations. ID17 is a large
company whose structure is very departmental: DevOps department (22 people),
operation & cloud systems (12), operation and on-premise systems (15–20), security

Table 1. Software delivery performance indicators.

Software delivery
performance indicators

Elite High Medium Low

Deployment frequency On demand, multiple
deploys per day

One deploy
per day

One deploy per
week

Between once per week
and one per month

Lead time for changes Less than one hour Less than
one hour

Between one
hour and one day

Between one hour and
one day

Mean Time to
Recovery

Less than one hour Less than
one hour

Between one
hour and one day

Between one day and
one week

326 J. Díaz et al.

(12), architecture (20), quality assurance (10), service/help desk (22), a number of
development departments (4–50 people) composed by squads (4–9 people). Squads are
similar to Scrum teams, i.e. are the basic unit of development at Spotify, who coined
this concept4. It is necessary to highlight that these teams have also the appropriate
skills to release to production. This company also adopted the concept of chapter to
designate people having similar skills and working within the same general compe-
tency area in different squads. This company has a DevOps chapter, and Architecture
chapter, and QA chapter. ID 18, despite its small size, also has departmental structure,
with different departments for development, DevOps & Cloud, QA, and security.

3 Key Findings

RQ1. What problems do companies try to solve and what results try to achieve by
implementing DevOps? ID 17 disclosed that the organization size, the diversity of its
departments (development, operations, security, service, QA, architecture, etc.) as well
as the interaction between them, and the complexity of its processes, hampered
reducing time to market, and made this company less competitive. ID18 disclosed that
the organization devoted most of the time to maintaining legacy applications and when
this organization decided substitute the core legacy application with a new one, the
CEO decided to make a significant change in the methodology, interaction between
teams and the delivery and releasing processes to reduce time to market.

RQ2. What are the DevOps practices according to software practitioners? This paper
focuses on team related practices. Based on data collected from this study (+20
organizations), we have defined four patterns that describe the topology of DevOps
teams and their scope within the IT department (see Fig. 1):

(1) Interdepartmental DevOps teams’ pattern represents a close collaboration
between Dev teams and Ops teams although these teams belong to different
departments with different managers. Other authors called this pattern as Dev and
Ops Collaboration [15] although we have identified two modalities: a

Table 2. Organizations’ subject description.

ID Scope Organization
size

Business Creation year IT department
size

DevOps team
num & size

17 International Largea Telecommunications Between 2000
and 2010

500 1 Team (22
members)

18 International Large Real state Before 2000 30 1 Team (5
members)

aSpanish law 5/2015, on the promotion of business financing, states that a small company has a maximum of
49 workers and a turnover or total asset value of less than ten million euros; and medium-sized companies are
those with less than 250 workers and a turnover of less than fifty million euros or an asset of less than 43
million euros. Meanwhile, large companies are those that exceed these parameters.

4 https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf, last accessed 2019/08/01.

DevOps in Practice – A Preliminary Analysis of Two Multinational Companies 327

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

combination of DevOps and traditional teams/approaches (a bimodal approach for
different product/services) and only DevOps teams but maintaining the depart-
mental structure.

(2) Native DevOps teams pattern represents a close and efficient collaboration between
Dev teams and Ops teams (also QA, security, etc.). It is an approach mainly
adopted by start-up companies in which there is not separated roles for dev and
ops. Other authors called this pattern as Fully Shared Ops Responsibilities [15].

(3) DevOps as a Service is typical for companies without enough staff or experience,
or very departmental and large companies, which cannot initially afford a com-
plete DevOps transformation. This pattern provides an especial DevOps chapter
that facilitates and helps to spread awareness of DevOps practices. According to
other topologies this pattern is considered an antipattern DevOps Team Silo that
only has sense when the team is not permanent, lasting less than (say) 12 or 18
months [15]. If silos are broken, this pattern could be considered as DevOps
Advocacy Team [15]. According to our study, the DevOps service team usually
becomes a department with its own manager, however we did not observe the
creation of a new silo. Additionally, in our study no organization outsourced this
service (DevOps as an External Service).

(4) Ops as a Service represents those situations in which the traditional IT Operations
department assumes the DevOps competences mainly by automating infrastruc-
ture provision (and possibly other more processes) on which applications are
deployed and run. According to other topologies, this pattern could be Ops as
Infrastructure-as-a-Service (Platform) [15].

According to this classification, the organizations ID17 and ID18 implemented
DevOps as a Service and Ops as a service, respectively. In the organization ID 17, the
DevOps Service Team is a department composed by two squads. One of them auto-
mates processes and develops a DevOps platform for internal use, and the other one
acts as a chapter so that, its members work closely with the development departments,

Fig. 1. DevOps team topology.

328 J. Díaz et al.

evangelizing both DevOps practices and the use of its internal platform. In the orga-
nization ID 18, the traditional Ops (renamed as DevOps and Cloud department) pro-
vides services to other development departments. In this organization two models
coexist: DevOps principles and practices for new developments and traditional
approaches for core and legacy applications (bimodal approach).

RQ3. What were the achieved results of implementing DevOps? Table 3 shows the
data for the software delivery performance. According to these data and the benchmark
of Table 1, we can say that organization ID17 has achieved a medium performance
(medium deployment frequency, medium lead time, and low mean time to recovery)
and ID18 also achieved a medium performance (low deployment frequency, medium
lead time, and medium mean time to recovery).

RQ4. What barriers are encountered when implementing DevOps? ID17 disclosed
about the misalignment among departments and the inflexibility of communication
processes, whereas ID18 disclosed the complexity of standardizing and automating
processes.

4 Conclusions and Threats to Validity

This paper presented the preliminary results of analyzing two organizations through an
exploratory case study. The organizations were interviewed through a specific ques-
tionnaire to assess the state of DevOps. The data were systematically analyzed, and
metrics were customized to have a better profiling of companies. The results mainly
focused on analyzing the DevOps team topologies and the benefits when adopting
DevOps in terms of software delivery performance. The defined questionnaire for
interviews and the process defined to analyze these interviews provides a powerful tool
to get results about the DevOps topics under research. The complete case study aims to
tackle a significant number of software-intensive companies (+20) to give a detailed
analysis of problems, barriers, benefits and practices patterns when organizations start a
DevOps transformation, as well as of the relation between concepts (e.g. some practices
and their resulting benefits). These patterns could provide a set of good practices when
organizations decide to start DevOps transformation.

The main threat to validity is regarding with construct validity. Specifically, we
used the convenience sampling strategy, which is a non-probability/non-random

Table 3. Results of software delivery performance indicators.

ID Deployment frequency Lead time for changes Mean time to recovery

17 One deploy per week Between one hour and
one day

Between one day and one
week

18 One deploy per sprint (3
weeks)

Between one hour and
one day

Between one hour and one
day

DevOps in Practice – A Preliminary Analysis of Two Multinational Companies 329

sampling technique used to create sample as per ease of access to organizations and the
relevant stakeholders to the study. This could lead to organizations not fully reflecting
the target audience.

Acknowledgment. This work is supported by the project CROWDSAVING (TIN2016-79726-
C2-1-R).

References

1. Debois, P.: Agile infrastructure and operations: how infra-gile are you? In: Agile Conference
in Toronto (2008). http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.pdf. Acces-
sed 01 Mar 2018

2. Allspaw, J., Hammond, P.: 10+ deploys per day: dev and ops cooperation at Flickr. In:
O’Reilly Velocity Conference (2009)

3. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Relationship of DevOps to agile, lean and continuous
deployment. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer,M., Amasaki, S.,
Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 399–415. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49094-6_27

4. Dyck, A., Penners, R., Lichter, H.: Towards definitions for release engineering and DevOps.
In Proceedings of the IEEE/ACM 3rd International Workshop on Release Engineering
(2015)

5. DevOps Research and Assessment: Accelerate: State of DevOps 2018: Strategies for a New
Economy. https://devops-research.com. Accessed 01 Aug 2019

6. State of DevOps Report 2018. https://puppet.com/resources/whitepaper/state-of-devops-
report. Accessed 01 Aug 2019

7. Erich, F., Amrit, C., Daneva, M.: A qualitative study of DevOps usage in practice. J. Softw.
Evol. Process 29, e1885 (2017)

8. Lwakatare, L.E., Kuvaja, P., Oivo, M.: An exploratory study of DevOps - extending the
dimensions of DevOps with practices. In: Proceedings of the Eleventh International
Conference on Software Engineering Advances, pp. 91–99 (2016)

9. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100
(2016)

10. Díaz, J., Almaraz, R., Pérez, J., Garbajosa, J.: DevOps in practice: an exploratory case study.
In: Proceedings of the 19th International Conference on Agile Software Development:
Companion (XP 2018), p. 3, Article no. 1. ACM, New York (2018). https://doi.org/10.1145/
3234152.3234199

11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Emp. Softw. Eng. 14, 131–164 (2009)

12. Thomas, J., Harden, A.: Methods for the thematic synthesis of qualitative research in
systematic reviews. BMC Med. Res. Methodol. 8, 45 (2008)

13. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: 2011 International Symposium on Empirical Software Engineering and Measurement,
Banff, AB, pp. 275–284 (2011). https://doi.org/10.1109/esem.2011.36

14. Kim, G., Willis, J., Debois, P., Humble, J.: The DevOPS Handbook: How to Create World-
Class Agility, Reliability, and Security in Technology Organizations. It Revolution Press,
Portland (2016)

15. Skelton, M., Pai, M.: DevOps Topologies collection of patterns. https://web.devopstopolo
gies.com/. Accessed 01 Aug 2019

330 J. Díaz et al.

http://www.jedi.be/presentations/IEEE-Agile-Infrastructure.pdf
http://dx.doi.org/10.1007/978-3-319-49094-6_27
https://devops-research.com
https://puppet.com/resources/whitepaper/state-of-devops-report
https://puppet.com/resources/whitepaper/state-of-devops-report
http://dx.doi.org/10.1145/3234152.3234199
http://dx.doi.org/10.1145/3234152.3234199
http://dx.doi.org/10.1109/esem.2011.36
https://web.devopstopologies.com/
https://web.devopstopologies.com/

Implementing Ethics in AI: Initial Results
of an Industrial Multiple Case Study

Ville Vakkuri(&) , Kai-Kristian Kemell ,
and Pekka Abrahamsson

University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
{ville.vakkuri,kai-kristian.o.kemell,

pekka.abrahamsson}@jyu.fi

Abstract. Artificial intelligence (AI) is becoming increasingly widespread in
system development endeavors. As AI systems affect various stakeholders due
to their unique nature, the growing influence of these systems calls for ethical
considerations. Academic discussion and practical examples of autonomous
system failures have highlighted the need for implementing ethics in software
development. However, research on methods and tools for implementing ethics
into AI system design and development in practice is still lacking. This paper
begins to address this focal problem by providing elements needed for pro-
ducing a baseline for ethics in AI based software development. We do so by
means of an industrial multiple case study on AI systems development in the
healthcare sector. Using a research model based on extant, conceptual AI ethics
literature, we explore the current state of practice out on the field in the absence
of formal methods and tools for ethically aligned design.

Keywords: Artificial intelligence �AI ethics �AI development �Responsibility �
Accountability � Transparency � Behavioral software engineering

1 Introduction

The role of ethics in software systems development has dramatically changed following
the increasing influence of Autonomous Systems (AS) and Artificial Intelligence
(AI) systems. AI/AS systems necessitate ethical consideration due to their unique
nature. Whereas one can opt out of using conventional software systems, the very idea
of being an active user in the context of AI systems is blurred.

The harm potential of these systems, as well as actual real-life incidents of AI
system failures and misuse, have resulted in a growing demand for AI ethics as a part of
software engineering (SE) endeavors. AI ethics studies have argued that AI/AS engi-
neering should not be simply a technological or an engineering endeavor [1]. Specif-
ically, it is argued that developers should be aware of ethics in this context due to their
key role in the creation of the systems. Aside from discussion among the academia,
public voices have also expressed concern towards unethical AI systems following
various real-life incidents (e.g. unfair systems [2]).

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 331–338, 2019.
https://doi.org/10.1007/978-3-030-35333-9_24

http://orcid.org/0000-0002-1550-1110
http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0002-4360-2226
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_24

Despite the increasing activity on various fronts in relation to AI ethics, a notable
gap between the concerns voiced over AI ethics and SE practice in AI remains. It is
known that developers are not well-informed on ethics [3]. New ethical methods and
practices that take into account the behavioral and social aspects of SE are needed.
Thus, AI Ethics also needs to be approached from the field of behavioral software
engineering (e.g. [4]). Developers are known to prefer simple and practical methods, if
they utilize any at all [5], which makes the lack of methods in AI ethics an issue.
Without methods, it can be difficult for organizations to detect ethical issues during
design and development, which can become costly later on.

Extant studies on AI Ethics have largely been theoretical. To provide empirical data
into this on-going discussion on AI ethics, we have conducted a multiple case study on
AI system development in the healthcare sector in order to further our understanding on
the current state of practice. The exact research question tackled here is:

RQ: How are AI ethics taken into consideration in software engineering projects when
they are not formally considered?

2 Related Work

Much of the research on AI ethics has been conceptual and theoretical in nature. These
studies have e.g. focused on defining AI ethics in a practical manner through various
constructs in the form of values. For the time being, this discussion on defining AI
ethics has come to center around four values: transparency [6–8], accountability [6, 8],
responsibility [6, 8], and fairness (e.g. [2]), as we discuss in the next section.

Following various real-life incidents out on the field, AI ethics has also begun to
incite public discussion. This has caused various government, public, and private
organizations to react, primarily by producing their own demands and guidelines for
involving ethics into AI development. Countries such as Germany [9] have emphasized
the role of ethics in AI/AS, and the EU drafted its own AI ethics guidelines [10].
Industry organizations such as Google and IBM1 have also devised their own
guidelines.

Thus far, various attempts to bring this on-going academic discussion out on the
field have been primarily made in the form of guidelines and principles, with the most
notable ones being the IEEE guidelines for Ethically Aligned Design (EAD) [8].
However, past experiences have shown us that guidelines and principles in the field of
ICT ethics do not seem to be effective. For example, McNarama [3] argued based on
empirical data that the ACM ethical guidelines had ultimately had very little impact on
developers, who had not changed their ways of working at all. A recent version of the
EAD guidelines acknowledged that this is likely to also be the case in AI ethics.

1 Google: AI Principles: https://www.blog.google/technology/ai/ai-principles/. IBM: Everyday ethics
for AI: https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf.

332 V. Vakkuri et al.

https://www.blog.google/technology/ai/ai-principles/
https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf

3 Research Model

The field of AI ethics can be divided into three categories: (1) Ethics by Design
(integration of ethical reasoning capabilities as a part of system behavior e.g. ethical
robots); (2) Ethics in Design (the regulatory and engineering methods); and (3) Ethics
for Design: (codes of conduct, standards etc.) [11]. In this paper, we focus on the
ethically aligned development process (Fig. 1).

In addressing ethics as a part of the development of AI and AI-based systems,
various principles have been discussed in academic literature. For the time being, the
discussion has centered on four constructs: Transparency [6–8], Accountability [6, 8],
Responsibility [6], and Fairness (e.g. [2]). A recent EU report [10] also discussed
Trustworthiness as a value all systems should aim for, according to its authors. Out of
these four main principles, we consider accountability, responsibility, and transparency
(ART principles), as formulated by Dignum [6], a starting point for understanding the
involvement of ethics in ICT projects.

Transparency is defined in the ART principles of Dignum [6] as transparency of the
AI systems, algorithms and data used, their provenance and their dynamics. I.e. the
transparency refers to understanding how AI systems work by being able to inspect
them. Transparency can be argued currently to be the most important of these prin-
ciples or values in AI ethics. Turilli and Floridi [7] argue that transparency is the key
pro-ethical circumstance that makes it possible to implement AI ethics at all. It has also
been included into the EAD guidelines as one of the key ethical principles [8].

In the research framework of this study, transparency is considered on two levels:
(a) transparency of data and algorithms (line 1.a), as well as, (b) systems development
(line 1.b). The former refers to understanding the inner workings of the system in a
given situation, while the latter refers to understanding what decisions were made by
whom during development. As a pro-ethical circumstance, transparency makes it
possible to assess accountability and responsibility (line 1.c).

Accountability refers to determining who is accountable or liable for the decisions
made by the AI. Dignum [6] in their recent works defines accountability to be the
explanation and justification of one’s decisions and actions to the relevant stakeholders.
In the context of this research framework, accountability is used not only in the context
of systems, but also in a more general sense.

Transparency is required for accountability (line 1.c), as we must understand why
the system acts in a certain fashion, as well as who made what decisions during

Fig. 1. Research framework

Implementing Ethics in AI 333

development in order to establish accountability. Whereas accountability can be con-
sidered to be externally motivated, closely related but separate construct responsibility
is internally motivated. The concept of accountability holds a key role in aiming to
prevent misuse of AI and in supporting wellbeing through AI [8].

Dignum [6] defines responsibility in their ART principles as a chain of responsi-
bility that links the actions of the systems to all the decisions made by the stakeholders.
We consider it to be the least accurately defined part of the ART model, and thus have
taken a more comprehensive approach to it in our research framework. According to
the EAD guidelines, responsibility can be considered to be an attitude or a moral
obligation for acting responsibly [8]. A simplified way of approaching responsibility
would be for a developer to ask oneself e.g. “would I be fine with using my own
system?”. While accountability relates to the connection between one’s decisions and
the stakeholders of the system, responsibility is primarily internal.

4 Study Design

This study was carried out as a multiple case study featuring three different cases where
AI systems were developed for the needs of the healthcare sector. Each case was a
specific AI project in a case company. All three projects were development projects
focused on creating a prototype of an AI-based healthcare software solution. The
combination of AI solutions used were different in each case. NLP (natural language
processing) technologies played major role in cases B and C.

The interviews were conducted as semi-structured, qualitative interviews, using a
strategy prepared according to the guidelines of Galletta [12]. The interviews were
conducted face-to-face and the audio was recorded. The records were then transcribed
for the purpose of data analysis. In the transcripts, the cases and respondents were
given individual references shown in Table 1. The interviews were conducted in
Finland, using the Finnish language. The interview questions in their entirety can be
found in an external resource2. We focused on the developer and project point of view
by primarily interviewing developers and project managers.

Table 1. Case information

Case Case description Respondents [Reference]

A Statistical tool for detecting social
marginalization

Data Analyst [R1], Consultant [R2],
Project Coordinator [R3]

B Speech recognition and NLP based
tool for diagnostics

Developer [R4], Developer [R5], Project
Manager [R6]

C NLP based tool for indoor navigation Developer [R7], Developer [R8]

2 http://users.jyu.fi/*vimavakk/AIDevQuestionnaire.

334 V. Vakkuri et al.

http://users.jyu.fi/%7evimavakk/AIDevQuestionnaire

The data from the transcripts were analyzed in two phases. First, we followed a
grounded theory (Strauss and Corbin [13] and later Heath [14]) inspired approach. In
this phase, the transcripts were coded quote by quote and each quote was given a code
describing its contents. The same process was repeated for all eight interviews. In the
second phase, we utilized the commitment net model of Abrahamsson [15], as analysis
tool to further analyze and categorize the coded quotes from the first phase.

In using the commitment net model, we followed a similar method as in Vakkuri
et al. [16] and focused on the concerns and actions of the developers in relation to
software development. Each concern and any actions related to it were listed for each
respondent and compared across respondents and cases.

These findings were then compared to the constructs in our research framework in
order to evaluate what aspects of AI ethics were being implemented in the project. In
this evaluation, actions were emphasized due to the research question of this study. I.e.
we wanted to understand how they had implemented ethics in practice. In presenting
our results, we present our key findings as primary empirical conclusions, PECs.

5 Empirical Results

As the interviews progressed, the developers expressed some concerns towards various
ethical issues. However, these concerns were detached from their current work. Fur-
thermore, it was evident that in none of the cases had the hypothetical effects of the
system on the stakeholders been discussed. To give a practical example, a system
potentially affecting memory illness diagnoses (Case B) clearly has various effects on
its potential users when the test can be taken without supervision. Yet, the developers
of this system felt that their users would not be curious about the workings of the
system. They considered it sufficient if the responsibility was outsourced to the user
and it was underlined that the system does not make the formal diagnosis.

The developers also exhibited a narrow view of responsibility in relation to harm
potential. Only physical harm potential was considered relevant, and the developers felt
that none of their systems had such potential.

“Nobody wants to listen to ethics-related technical stuff. […] It’s not relevant to the users” (R5)

“What could it affect… the distribution of funds in a region, or it could result in a school taking
useless action… it does have its own risks, but no one is going to die because of it” (R1)

PEC1. Responsibility of developers and development is under-discussed.
In terms of transparency of algorithms and data, case A stood out with the team’s

mathematical knowledge. They utilized algorithms they were familiar with and which
they understood on an in-depth level. In cases B and C, the companies utilized third-
party components largely as black boxes. They did, however, have an in-depth
understanding of any components created by the team. Even though transparency of
algorithms and data was not present, case B developers acknowledged its potential
importance. However, it was not pursued in projects B and C due to not being a formal
requirement, as opposed to A where it was pursued due to being one.

Implementing Ethics in AI 335

“We have talked about the risks of decision-making support systems, but it doesn’t really affect
what we do” (R5)

PEC2. Developers recognize transparency as a goal, but it is not formally pursued.
Accountability was actively considered in relation to cybersecurity and data man-

agement, as well as error handling related to program code. The developers were aware
that they were in possession of sensitive data, and that they were accountable for taking
measures to keep it secure, as well as to abide to laws related to personal data handling.
To this end, cybersecurity was considered as a part of standard company protocol,
following established company practices.

“It’s really important how you handle any kind of data… that you preserve it correctly, among
researchers, and don’t hand it out to any government actors. […] I personally can’t see any way
to harm anyone with the data we have though.” (R2)

Developers’ concerns on error handling, underlined by one of the respondents
directly remarking “I aim to make error free software” (R1), also stood out. The
developers were concerned about engineering quality software in terms of it being error
free and considered it their professional responsibility to do so. The respondents could
discuss various practices they utilized to handle and prevent errors in the project.

PEC3. Developers feel accountable for error handling on programming level and have
the means to deal with it.

Through ethics were not taken into consideration on a project level, the individual
developers exhibited some concern towards socioethical issues arising from their
systems. While they were able to think of ways their system could negatively affect its
users or other stakeholders in its current state, they lacked ways to address these
concerns, as well as ways to conduct ethical analysis. Some extant SE practices such as
documentation and audits were discussed as ways to produce transparency, but ulti-
mately they offered little help in systematically implementing ethics.

PEC4. While the developers speculate potential socioethical impacts of the resulting
system, they do not have means to address them.

6 Discussion

On a general level, our findings further underline a gap between research and practice
in the area. Whereas research on AI ethics alongside various guidelines devised by
researchers and practitioners alike has discussed various ethical goals for AI systems,
these goals have not been widely adopted out on the field.

Extant literature has highlighted the importance of transparency of algorithms and
data [6, 8]. Without understanding how the system works, it is e.g. impossible to
establish why it malfunctioned in a certain situation in order to understand the causes of
an accident that resulted in material damages. Our findings point towards transparency
being largely ignored as a goal. Third-party components are utilized as black boxes,
and developers do not see this as a notable problem. In this sense, we consider PEC2 to
contradict existing literature. The lack of emphasis placed on transparency is interesting

336 V. Vakkuri et al.

from the point of view of feature traceability as well. For decades, understanding the
inner workings of a system was considered important in any SE endeavor [17]. In AI
SE, this long-standing goal of feature traceability seems to be waning.

The situation is similar for tackling potential misuse of the systems, error handling
during system operations, and handling unexpected system behavior. These goals are
included into the IEEE EAD guidelines [8]. Yet, none of the case companies took any
measures to address these potential issues. Error handling was simply considered on the
level of program code. To this end, though we discovered various examples of ethics
not being implemented, we also discovered that some existing and established SE
practices can be used to support the implementation of AI ethics. Documentation,
version control, and project management practices such as meeting transcripts produce
transparency of systems development by tracking actions and decision-making. Sim-
ilarly, software quality practices help in error handling in the context of AI ethics
(PEC3), although only on the level of program code.

The developers exhibited some ethical concerns towards the systems they were
developing (e.g. PEC2). Little is currently known about the state of practice out on the
field, although a recent version of the EAD guidelines speculated about a gap in the
area, which our findings support in relation to most aspects of AI ethics. Despite AI
ethics largely not being implemented, our findings point towards it partially being a
result of a lack of formal methods and tools to implement it (PEC4).

Thus, following this study, as well as a past case study [16], we suggest that future
research seek to tackle the lack of methods and tooling in the area. Though developers
may be concerned about ethical issues, they lack the means to address these concerns.
Methods can also raise awareness of ethics, motivating new concerns.

As for the limitations of the study, the outlined research model is heavily based on
ART principles of Dignum [6] and IEEE’s EAD [8]. This may exclude some parts of
the current AI ethics discussion (e.g. Fairness). However, the EAD can be seen as a
distilled version of the ongoing AI ethics discussion that includes the most important
parts of it. Finally, the sample size is quite small for making far reaching conclusions
but provides much needed empirical data on a very current topic.

7 Conclusions and Future Work

In this paper, we have sought to better understand the current state of practice in AI
ethics. Specifically, we studied the way AI ethics are implemented, if at all, when they
are not formally considered in a software engineering project. To this end, we con-
ducted a multiple case study featuring three case companies developing AI solutions
for the healthcare sector.

We discovered that some existing good practices exist for some aspects of AI
ethics. For example, current practices out on the field are already capable of producing
transparency of systems development. Moreover, the developers are aware of the
potential importance of ethics and exhibit some concerns towards ethical issues. Yet,
they lack the tools to address these concerns. As tackling ethics is not a formal
requirement in AI projects, these concerns go unaddressed for business reasons. In this
light, we consider the creation of methods and tools for implementing AI ethics

Implementing Ethics in AI 337

important. These will both help developers to implement AI ethics in practice as well as
raise their awareness of ethical issues by e.g. helping them understand harm potential of
AI systems.

References

1. Charisi, V., et al.: Towards moral autonomous systems. arXiv preprint arXiv:1703.04741
(2017)

2. Flores, A.W., Bechtel, K., Lowenkamp, C.T.: False positives, false negatives, and false
analyses: a rejoinder to “machine bias: there’s software used across the country to predict
future criminals, and it’s biased against blacks”. Fed. Probation 80(2), 38 (2016)

3. McNamara, A., Smith, J., Murphy-Hill, E.: Does ACM’S code of ethics change ethical
decision making in software development? In: Proceedings of the 2018 26th ACM
ESEC/FSE, ESEC/FSE 2018, pp. 729–733. ACM, New York (2018). https://doi.org/10.
1145/3236024.3264833

4. Lenberg, P., Feldt, R., Wallgren, L.G.: Behavioral software engineering: a definition and
systematic literature review. J. Syst. Softw. 107, 15–37 (2015). https://doi.org/10.1016/j.jss.
2015.04.084

5. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software practices at
Intel Shannon. EJIS 15(2), 200–213 (2006). https://doi.org/10.1057/palgrave.ejis.3000605

6. Dignum, V.: Responsible autonomy. arXiv preprint arXiv:1706.02513 (2017)
7. Turilli, M., Floridi, L.: The ethics of information transparency. Ethics Inf. Tecnol. 11(2),

105–112 (2009). https://doi.org/10.1007/s10676-009-9187-9
8. Ethically aligned design: a vision for prioritizing human wellbeing with autonomous and

intelligent systems, first edition (2019). https://standards.ieee.org/content/ieee-standards/en/
industryconnections/ec/autonomous-systems.html

9. Ethics Commission’s complete report on automated and connected driving (2017). https://
www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html

10. Ethics Guidelines for Trustworthy AI (2019). https://ec.europa.eu/digital-singlemaket/en/
news/ethics-guidelines-trustworthy-ai

11. Dignum, V.: Ethics in artificial intelligence: introduction to the special issue. Ethics Inf.
Technol. 20(1), 1–3 (2018). https://doi.org/10.1007/s10676-018-9450-z

12. Galletta, A.: Mastering the Semi-Structured Interview and Beyond: From Research Design
to Analysis and Publication, vol. 18. NYU Press, New York (2013)

13. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd edn. Sage Publications Inc., Thousand Oaks (1998)

14. Heath, H., Cowley, S.: Developing a grounded theory approach: a comparison of Glaser and
Strauss. Int. J. Nurs. Stud. 41(2), 141–150 (2004)

15. Abrahamsson, P.: Commitment nets in software process improvement. Ann. Softw. Eng.
14(1), 407–438 (2002). https://doi.org/10.1023/A:1020526329708

16. Vakkuri, V., Kemell, K., Kultanen, J., Siponen, M.T., Abrahamsson, P.: Ethically Aligned
Design of Autonomous Systems: industry viewpoint and an empirical study. arXiv preprint
arXiv:1906.07946 (2019)

17. Gotel, O., et al.: Traceability fundamentals. In: Cleland-Huang, J., Gotel, O., Zisman, A.
(eds.) Software and Systems Traceability, pp. 3–22. Springer, London (2012). https://doi.
org/10.1007/978-1-4471-2239-5_1

338 V. Vakkuri et al.

http://arxiv.org/abs/1703.04741
http://dx.doi.org/10.1145/3236024.3264833
http://dx.doi.org/10.1145/3236024.3264833
http://dx.doi.org/10.1016/j.jss.2015.04.084
http://dx.doi.org/10.1016/j.jss.2015.04.084
http://dx.doi.org/10.1057/palgrave.ejis.3000605
http://arxiv.org/abs/1706.02513
http://dx.doi.org/10.1007/s10676-009-9187-9
https://standards.ieee.org/content/ieee-standards/en/industryconnections/ec/autonomous-systems.html
https://standards.ieee.org/content/ieee-standards/en/industryconnections/ec/autonomous-systems.html
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html
https://ec.europa.eu/digital-singlemaket/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-singlemaket/en/news/ethics-guidelines-trustworthy-ai
http://dx.doi.org/10.1007/s10676-018-9450-z
http://dx.doi.org/10.1023/A:1020526329708
http://arxiv.org/abs/1906.07946
http://dx.doi.org/10.1007/978-1-4471-2239-5_1
http://dx.doi.org/10.1007/978-1-4471-2239-5_1

Agile

How Agile Is Hybrid Agile? An Analysis
of the HELENA Data

John Noll1(B) and Sarah Beecham2

1 University of Hertfordshire, Hatfield, England
j.noll@herts.ac.uk

2 Lero, the Irish Software Research Centre, University of Limerick, Limerick, Ireland
sarah.beecham@lero.ie

Abstract. Context: Many researchers advocate “tailoring” agile meth-
ods to suit a project’s or company’s specific environment and needs. This
includes combining agile methods with more traditional “plan driven”
practices.

Objective: This study aims to assess to what extent projects actu-
ally combine agile and traditional practices.

Method: Data from the HELENA survey of nearly 700 projects were
examined to assess how many projects combine agile methods and tra-
ditional methods, and also to what extent they used different software
development practices.

Results: The data show that, overall, two-thirds of the projects in the
survey combine agile and traditional methods to some extent. However,
projects that combine agile and traditional methods are significantly less
likely to use agile practices than projects that solely use agile methods.

Conclusions: We hypothesize that the mindset of an organization,
rather than technical necessity, determines whether a project will adopt
a hybrid vs. purely agile approach.

Keywords: Agile development methods · Empirical Software
engineering · Hybrid agile development

1 Introduction

Proponents of agile software development methods assert that to be “agile” a
project must follow the methodology. For example, Kent Beck claimed that, for
Extreme Programming to work, a project must adopt all twelve XP practices,
because they support and rely on each other [3].

But researchers and practitioners advocate tailoring agile methods to suit a
project’s or company’s specific environment and needs [4], and empirical evidence
has confirmed that projects do tailor methods in practice [7,11,12,16,20,22].
This may include combining agile methods with more traditional “plan driven”
approaches, as well as combining different agile methods.

But how frequently are agile and traditional methods combined into so-called
“hybrid” approaches? And, given that agile methods employ known, proven prac-
tices, but in an “agile” way [3,6,15], is there any difference in practice adoption
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 341–349, 2019.
https://doi.org/10.1007/978-3-030-35333-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_25

342 J. Noll and S. Beecham

between hybrid approaches and purely agile projects? This study aims to assess
to what extent projects actually combine agile and traditional methods and
practices.

To find out, we analyzed data from the HELENA survey [14] of nearly 700
projects, to assess how many projects using agile methods also used traditional
methods, and also to what extent projects that might be classified as “purely
agile1” or “hybrid” use different software development practices.

The analysis shows that nearly two-thirds of projects reported in the survey
combine agile and traditional methods to some degree, but 30% of projects never
use traditional methods (Table 1, column 1). Further, projects that often use
agile methods, but never use traditional methods, are significantly more likely
to use agile software development practices than projects that combine agile and
traditional methods. This suggests that hybrid projects replace agile practices
with traditional practices, rather than augument agile methods with traditional
practices. We hypothesize that this difference is due as much to an organization’s
“mindset” as to technical requirements.

The remainder of this paper is organized as follows: in Sect. 2 we introduce
the background to the problem, and define our research questions. Section 3
describes the method used. In Sect. 4 we present the results; Sect. 5 discusses
their implications and presents our conclusions.

2 Background

2.1 Agile and Traditional Development Approaches

Agile adoption in industry is growing year by year. According to the State of
Agile Report published in December 2018 [23], the top reasons for this are
to accelerate software delivery, enhance ability to manage changing priorities,
increase productivity, improve business/IT alignment, enhance software qual-
ity and enhance delivery predictability. The agile philosophy, as described in
the Agile Manifesto, centers around a set of iterative and incremental software
engineering practices [10]. However, the actual practices contained within this
set have evolved over time, and vary from project to project. They are even
said to be revolutionary [7]. In a recent survey, researchers identified 36 such
agile practices [14]. As coined by Bertrand Meyer [18], “every project I’ve seen
embraces a subset of the chosen method’s ideas, rejecting those that don’t fit
its culture or needs ...”. Also, according to Meyer [18], agile methods are not
a negation of what came before, and can be considered as another brick in the
software development wall. Conboy concurs [6], stating that although agile meth-
ods are not entirely new or that different to development methods used before,
the movement can be branded as an alternative to traditional development
methods [6].

1 “Purely agile” means a project often or always uses at least one agile method, but
never uses any traditional methods; see Sect. 4 for details.

How Agile Is Hybrid Agile? An Analysis of the HELENA Data 343

Kuhrmann et al. [12] argue that “hybrid approaches emerge naturally because
of the challenges accompanying a migration to agile,” suggesting that hybrid
approaches are driven by need rather than mindset. Marinho et al. [17] also
suggest that global development projects use a combination of agile and tradi-
tional methods because of the need to maintain a level of forward planning and
structure while benefitting from a flexible and collaborative approach offered by
agile practices. These views support Tell and colleagues’ recommendation that
research should focus on the practices used, rather than debate about what is
the ‘right’ method [22].

There are hints in the empirical research to suggest that this reliance on
traditional methods might be due to project size since large projects may require
more coordination and heavier methodologies than offered by agile methods [1,9].
Or possibly there is a perceived need for upfront precise and comprehensive
planning, and defining the architecture prior to testing and implementation,
that push project managers to hold onto traditional plan driven methods [19].
It appears that in practice, adapting the development approach to the context
demands a balance of methods and practices [2,4,24].

2.2 Research Questions

In light of these arguments, we seek to answer the following two research ques-
tions:

1. To what extent is a hybrid approach combining agile and traditional methods
used in practice? In this context, we define a method as an approach to
managing a software project that uses a set of software development practices
in a certain way; examples of methods are Scrum, Waterfall, and Feature
Driven Development (see Sect. 3 for a complete list of methods considered).

2. What practices are used by projects that employ such a hybrid approach? A
practice is a particular technique for developing software, such as pair pro-
gramming or model-driven development, that may be part of many different
methods (see Sect. 4 for the list of practices considered).

3 Method

In attempt to answer our research questions, we used the HELENA (‘Hybrid
dEveLopmENt Approaches in software systems development) data set that is
the result of a multi-year effort to investigate how real software projects combine
agile and traditional software development methods [14]. More details can be
found on the official website2.

2 HELENA Survey: https://helenastudy.wordpress.com/.

https://helenastudy.wordpress.com/

344 J. Noll and S. Beecham

HELENA used an online survey [5,21] to collect data from practitioners
about the development methods they use in their projects, and what practices
they use [13].

The survey comprises 38 questions divided into five parts: demographics (10
questions), process use (13 questions), process use and standards (5 questions),
experiences (2 questions) and closing (8 questions) [14]. The survey was dis-
tributed to personal contacts of the participating researchers, through posters
at conferences, and to mailing lists and social media; in total, the survey yielded
1,467 responses, of which 690 were complete [14]; the results presented in this
paper are based on the 690 complete responses.

3.1 Data Analysis

The analysis in this paper focuses on two aspects of the survey: what methods
are used by projects, and what practices are used. Following Kuhrmann and col-
leagues [13], methods were categorized as traditional, agile, or generic. Scrum,
Safe, Lean, LESS, Nexus, XP, Kanban, DevOps, ScrumBan, Crystal, DSDM
and Feature-driven development (FDD) were categorized as agile, while Water-
fall, Spiral Model, V-Model, RUP, PRINCE2 and SSADM were categorized as
traditional. Iterative development3, Domain-Drive Design (DDD), Model Driven
Architecture (MDA), Team Software Process (TSP), and Personal Software Pro-
cess (PSP), were classified as generic, since the approach does not fit into either
the agile or traditional category. Respondents were asked to rate the frequency
with their project applied each of these methods on a five point scale ranging
from never to rarely, sometimes, often, and always used. The HELENA sur-
vey also asked respondents to rate the frequency with which a project uses 36
development practices, on the same five point scale. When analyzing practice
use, we followed Tell and colleagues [22] approach and classified a practice as
“used” when respondents stated their projects used the practice rarely, some-
times, often, or always.

4 Results

Table 1 shows the frequency that projects use and combine agile and traditional
methods. The majority (458 of 690, or 66%) of projects combine agile and tradi-
tional development methods; these are shown in boldface in Table 1. Conversely,
171 projects (25%) often or always use at least one agile method, but never use
any traditional methods; these are shown in italics in Table 1. Finally, only 43
projects (6%) never use agile methods.

3 While Iterative development is a key feature of agile methods some traditional
approaches (RUP and the Spiral Model, for example) also incorporate iterations [15];
consequently, we followed Kuhrmann et al. [13] and classified iterative development
in the generic category.

How Agile Is Hybrid Agile? An Analysis of the HELENA Data 345

Table 1. Frequency of traditional and agile method combination.

Agile Traditional TOTAL

Never Rarely Sometimes Often Always

Never (21) 3% (1) 0% (3) 0% (10) 1% (8) 1% (43) 6%

Rarely (2) 0% (1) 0% (3) 0% (13) 2% (5) 1% (24) 3%

Sometimes (16) 2% (9) 1% (24) 3% (24) 3% (17) 2% (90) 13%

Often (55) 8% † (53) 8% (56) 8% (82) 12% (20) 3% (266) 39%

Always (116) 17% † (44) 6% (42) 6% (33) 5% (32) 5% (267) 39%

TOTAL (210) 30% (108) 16% (128) 19% (162) 23% (82) 12% (690) 100%

The TOTAL column indicates the total frequency with which projects perform agile
methods at the level shown; the TOTAL row indicates the total frequency with
which projects perform traditional methods at the level shown.
Entries in bold are classified “hybrid” while entries marked with a † are classified
“pure agile.”

We compared the frequency that purely agile projects use certain practices,
to hybrid projects that combine agile and traditional methods. We define a purely
agile project as one that respondents stated often or always uses at least one
agile method, but never uses any traditional method. We define a hybrid project
as one that respondents stated uses at least one agile method, and also uses at
least one traditional method, where “uses” means at least rarely. In Table 1,
purely agile projects are marked with a †, and hybrid projects are shown in
boldface type.

Comparing purely agile projects to hybrid projects, Table 2 shows the differ-
ence in the fraction (as %) of projects in each category that use a given practice,
and whether that difference (diff column) is significant according to the Chi-
square comparison of proportions. A practice was considered to be “used” if
respondents reported it was used more often than never (in other words, at
least rarely).

This table shows that there are several practices associated with agile meth-
ods [12] – refactoring, continuous integration, continuous deployment, collective
code ownership, definition of done and daily standups – that are performed by
a majority of Agile projects, but significantly fewer Hybrid projects. Also, pair
programming and test driven development (TDD) are performed significantly
more often by purely agile projects, although not by a majority.

Conversely, formal estimates and formal specification – that are classified as
traditional practices [12] – are performed by a minority of Hybrid projects, but
significantly less by Agile projects.

Only four practices – release planning, iteration planning, coding standards,
and end-to-end testing – are performed by a majority of projects at the same
frequency whether purely agile or hybrid.

346 J. Noll and S. Beecham

Table 2. Comparison of practices use by 171 Agile and 458 Hybrid projects.

practice

(n=36)

Agile

(n=171)

Hybrid

(n=458)

diff p value practice

(n=36)

Agile

(n=171)

Hybrid

(n=458)

diff p value

Retrospectives* 68% 48% 20 *** Onsite

customer*

20% 19% 1 0.8

Refactoring* 63% 43% 20 *** Iteration

planning*

58% 57% 1 0.8

Cont

integration*

75% 56% 19 *** Scrum-of-

scrums

19% 19% 0 1

Cont

deployment*

56% 38% 18 *** Coding stds 70% 71% −1 0.9

Auto unit test 67% 50% 17 *** Auto theorem

prv

2% 4% −2 0.3

Pair

programming*

30% 15% 15 *** Security

testing

25% 29% −4 0.4

Expert/team

estimates

56% 41% 15 *** Burn down

charts

37% 41% −4 0.5

Backlog mgt 75% 60% 15 *** End-to-end

testing

50% 55% −5 0.3

Limit WIP 44% 30% 14 ** Auto code gen 16% 21% −5 0.3

Collective code

own*

51% 37% 14 ** Model checking 4% 10% −6 *

Code review 73% 59% 14 ** Destructive

test

6% 12% −6 *

Velocity-based

plan

36% 23% 13 ** Design reviews 36% 43% −7 0.1

TDD* 33% 20% 13 *** Prototyping 33% 41% −8 0.1

Def of done* 62% 49% 13 ** Formal

estimates+

2% 13% −11 ***

Daily standup* 69% 56% 13 ** Use case

modeling

14% 30% −16 ***

Iter/sprint

reviews

69% 58% 11 * Arch spec 32% 49% −17 ***

User stories 63% 53% 10 * Formal spec+ 6% 24% −18 ***

Release

planning

69% 65% 4 0.4 Detail

design/spec

16% 34% −18 ***

Values marked ‘%’ the fraction of projects in the column that use the practice rarely, sometimes, often,

or always. The practices are sorted by the difference in fractions, where diff = Agile% − Hybrid%. The

statistical significance of the difference is indicated in the p value column, where ‘*’ is p value ≤.05, ‘**’

is p value ≤.01, and ‘***’ is p value ≤.001; p values >.05 are shown as their actual values.

Practices marked with ‘*’ in column 1 are classified as “agile”; marked with ‘+’ are classified as tradi-

tional [12].

5 Discussion and Conclusions

Our results show that a majority of projects in the HELENA survey combine
agile and traditional methods. This is consistent with other findings that show
companies tailor methods to suit their context [7,11,12,16,20,22].

However, our results also show that a substantial number of projects are able
to use only agile methods, without employing any traditional methods; this is
consistent with the views of agile method advocates such as Kent Beck [3].

Further, Table 2 shows that purely agile projects – those that use agile meth-
ods often or always, but never use traditional methods – use agile practices sig-
nificantly more often than hybrid projects. In addition, purely agile projects use
traditional practices significantly less often than hybrid projects. This suggests

How Agile Is Hybrid Agile? An Analysis of the HELENA Data 347

that hybrid projects replace agile practices with traditional practices, rather
than augment agile methods with traditional practices.

Tell and colleagues argue that agile methods have changed the mindset, but
not the practices, that projects adopt, stating that their results “reveal a small
core of practices used by practitioners regardless of the (hybrid) development
method selected [22].” While our analysis also shows there is a set of practices
– release planning, iteration planning, coding standards, and end-to-end testing
– that are likely to be used by a majority of projects in both categories, our
analysis also suggests that being “agile” is more than just adopting an agile
mindset and method; rather, those projects that state that they solely use agile
methods also report that they actually use agile practices as well.

Returning to our research questions:
RQ1: To what extent is a hybrid approach combining agile and traditional

methods used in practice? The answer to this question is, the majority (66%)
of projects in the HELENA survey combine agile and traditional methods (see
Sect. 4).

RQ2: What practices are used by projects that employ such a hybrid app-
roach? The answer to this question is somewhat more nuanced. All practices
queried in the HELENA survey are used by at least some hybrid projects; how-
ever, some practices are used more often than others. As shown in Table 2, agile
practices are used significantly less often by hybrid projects than by purely agile
projects, and certain traditional practices are used significantly more often by
hybrid projects than agile projects.

The HELENA survey did not provide extensive opportunities for respon-
dents to explain why they adopt methods and practices, so we cannot say defini-
tively why the adoption of practices is different between hybrid and purely agile
projects. However, Michal Doleẑel suggested a possible reason, which he called
“institutional logic” [8]: organizations with an agile “logic” will view agile meth-
ods, and practices, more favorably than organizations with a traditional “logic.”
As such, we propose the following hypotheses based on this notion:

H1: Organizations with an agile mindset are more likely to be purely agile, and
therefore adopt agile practices, regardless of technical drivers.
H2: Organizations with a traditional software development mindset are more
likely to adopt a hybrid approach, and therefore adopt traditional practices,
regardless of technical drivers.

Acknowledgments. This work was supported, in part, by Science Foundation Ireland
grants 10/CE/I1855 and 13/RC/2094 to Lero - the Irish Software Research Centre
(www.lero.ie).

References

1. Aitken, A., Ilango, V.: A comparative analysis of traditional software engineering
and agile software development. In: 2013 46th Hawaii International Conference on
System Sciences, pp. 4751–4760, January 2013

www.lero.ie

348 J. Noll and S. Beecham

2. Akbar, R., Safdar, S.: A short review of global software development (gsd) and lat-
est software development trends. In: 2015 International Conference on Computer,
Communications, and Control Technology (I4CT), pp. 314–317. IEEE (2015)

3. Beck, K., Gamma, E.: Extreme Programming Explained: Embrace Change. Addi-
son Wesley, Boston (2000)

4. Boehm, B., Turner, R.: Using risk to balance agile and plan-driven methods. Com-
puter 36(6), 57–66 (2003)

5. Ciolkowski, M., Laitenberger, O., Vegas, S., Biffl, S.: Practical experiences in the
design and conduct of surveys in empirical software engineering. In: Conradi, R.,
Wang, A.I. (eds.) Empirical Methods and Studies in Software Engineering. LNCS,
vol. 2765, pp. 104–128. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45143-3 7

6. Conboy, K.: Agility from first principles: reconstructing the concept of agility in
information systems development. Inf. Syst. Res. 20(3), 329–354 (2009)

7. Diebold, P., Zehler, T.: The right degree of agility in rich processes. Managing
Software Process Evolution, pp. 15–37. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-31545-4 2

8. Doležel, M.: Possibilities of applying institutional theory in the study of hybrid soft-
ware development concepts and practices. In: Kuhrmann, M., et al. (eds.) PROFES
2018. LNCS, vol. 11271, pp. 441–448. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03673-7 35

9. Dyba, T., Dingsoyr, T.: What do we know about agile software development? IEEE
Softw. 26(5), 6–9 (2009)

10. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)
11. Klünder, J., et al.: HELENA Study: reasons for combining agile and traditional

software development approaches in German companies. In: Felderer, M., Méndez
Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES
2017. LNCS, vol. 10611, pp. 428–434. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4 32

12. Kuhrmann, M., et al.: Hybrid software development approaches in practice: a Euro-
pean perspective. IEEE Softw. 36(4), 20–31 (2019)

13. Kuhrmann, M., et al.: Hybrid software and system development in practice: water-
fall, scrum, and beyond. In: Proceedings of the 2017 International Conference on
Software and System Process, pp. 30–39. ACM (2017)

14. Kuhrmann, M., Tell, P., Klünder, J., Hebig, R., Licorish, S., MacDonell, S.: Helena
stage 2 results. Technical report, HELENA consortium (11 2018)

15. Larman, C., Basili, V.R.: Iterative and incremental development: a brief history.
Computer 36(6), 47–56 (2003)

16. Marinho, M., Luna, A., Beecham, S.: Global Software development: practices for
cultural differences. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol.
11271, pp. 299–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03673-7 22

17. Marinho, M., Noll, J., Richardson, I., Beecham, S.: Plan-driven approaches are alive
and kicking in agile global software development. In: International Symposium on
Empirical Software Engineering and Measurement (ESEM). ACM/IEEE (2019)

18. Meyer, B.: Making sense of agile methods. IEEE Softw. 35(2), 91–94 (2018)
19. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile method-

ologies. Commun. ACM 48(5), 72–78 (2005)

https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1007/978-3-319-31545-4_2
https://doi.org/10.1007/978-3-319-31545-4_2
https://doi.org/10.1007/978-3-030-03673-7_35
https://doi.org/10.1007/978-3-030-03673-7_35
https://doi.org/10.1007/978-3-319-69926-4_32
https://doi.org/10.1007/978-3-319-69926-4_32
https://doi.org/10.1007/978-3-030-03673-7_22
https://doi.org/10.1007/978-3-030-03673-7_22

How Agile Is Hybrid Agile? An Analysis of the HELENA Data 349

20. Paez, N., Fontdevila, D., Oliveros, A.: HELENA study: initial observations of soft-
ware development practices in Argentina. In: Felderer, M., et al. (eds.) PROFES
2017. LNCS, vol. 10611, pp. 443–449. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4 34

21. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engi-
neering. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84800-044-5

22. Tell, P., et al.: What are hybrid development methods made of?: an evidence-based
characterization. In: Proceedings of the International Conference on Software and
System Processes, pp. 105–114. IEEE Press (2019)

23. VersionOne Inc: 13th Annual State of Agile Development Survey (2018). https://
www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/
473508. Accessed 5 August 2019. web page

24. Vinekar, V., Slinkman, C.W., Nerur, S.: Can agile and traditional systems devel-
opment approaches coexist? an ambidextrous view. Inf. Syst. Manag. 23(3), 31–42
(2006)

https://doi.org/10.1007/978-3-319-69926-4_34
https://doi.org/10.1007/978-3-319-69926-4_34
https://doi.org/10.1007/978-1-84800-044-5
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508

Challenges of Scaled Agile
for Safety-Critical Systems

Jan-Philipp Steghöfer(B) , Eric Knauss , Jennifer Horkoff ,
and Rebekka Wohlrab

Software Engineering Division,
Department of Computer Science and Engineering,

Chalmers | University of Gothenburg, Gothenburg, Sweden
{jan-philipp.steghofer,eric.knauss}@gu.se, {jenho,wohlrab}@chalmers.se

Abstract. Automotive companies increasingly adopt scaled agile meth-
ods to allow them to deal with their organisational and product com-
plexity. Suitable methods are needed to ensure safety when developing
automotive systems. On a small scale, R-Scrum and SafeScrum® are
two concrete suggestions for how to develop safety-critical systems using
agile methods. However, for large-scale environments, existing frame-
works like SAFe or LeSS do not support the development of safety-critical
systems out of the box. We, therefore, aim to understand which chal-
lenges exist when developing safety-critical systems within large-scale
agile industrial settings, in particular in the automotive domain. Based
on an analysis of R-Scrum and SafeScrum®, we conducted a focus group
with three experts from industry to collect challenges in their daily work.
We found challenges in the areas of living traceability, continuous compli-
ance, and organisational flexibility. Among others, organisations strug-
gle with defining a suitable traceability strategy, performing incremental
safety analysis, and with integrating safety practices into their scaled way
of working. Our results indicate a need to provide practical approaches
to integrate safety work into large-scale agile development and point
towards possible solutions, e.g., modular safety cases.

Keywords: Scaled agile · Safety-critical systems · Software processes ·
R-Scrum · SafeScrum

1 Introduction

In the automotive domain, several dozen development teams work together in
a highly coordinated fashion towards the delivery of a product. Systems and
software engineering need to be combined in these cases to deliver a final product
and the chosen process needs to scale across a large number of teams and different
engineering disciplines. To manage this complexity, many companies have started
adopting solutions such as the Scaled Agile Framework (SAFe)1 or Large-Scale
Scrum (LeSS)2. These agile frameworks also aim at reducing the time-to-market
1 https://www.scaledagileframework.com/.
2 https://less.works/less/framework/index.html.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 350–366, 2019.
https://doi.org/10.1007/978-3-030-35333-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_26&domain=pdf
http://orcid.org/0000-0003-1694-0972
http://orcid.org/0000-0002-6631-872X
http://orcid.org/0000-0002-2019-5277
http://orcid.org/0000-0002-5449-7900
https://www.scaledagileframework.com/
https://less.works/less/framework/index.html
https://doi.org/10.1007/978-3-030-35333-9_26

Challenges of Scaled Agile for Safety-Critical Systems 351

and propose solutions for the coordination between teams, exchange of artefacts,
and the prioritisation of work within an organisation.

However, these frameworks do not provide explicit support for the creation of
safety-critical systems and the risk management, safety analysis, and certification
activities associated with ensuring safety. On a small scale, R-Scrum [11] and
SafeScrum® [13] help organisations to combine the documentation needs and
the rigour required for safety-critical systems with agile development. However,
the existing approaches do not describe how to scale them beyond individual
teams. It is also not obvious how to tack on such activities, in particular since
safety is a cross-cutting concern which needs to be addressed on all levels of the
system. Preparing a release for certification in a big-bang approach, i.e., after
development has mostly finished, has also proven to be infeasible. Therefore,
safety should be considered continuously and integrated in the everyday work
of the engineers to produce all necessary artefacts and the required audit trail
in an ongoing fashion. Understanding how to do this in a practical setting is an
important first step towards extending agile frameworks like SAFe and LeSS.

In parallel with the advent of methods to scale agile, variations of agile
approaches that address safety-critical systems have been developed. Two well-
cited examples are R-Scrum [11] and SafeScrum® [13], but other, less compre-
hensive approaches exist. Kasauli et al. [15] provide an overview of the literature
in this area and identify a number of solution approaches to combine agile prac-
tices, mostly from Scrum and XP, with activities necessary for safety-critical sys-
tems such as risk management and hazard analysis. Other authors are addressing
specific domains (e.g., medical devices [23]) to provide experiences from practice.

However, a number of challenges remain in adapting the processes of large
organisations producing safety-critical systems to fulfil both the need for agility
and the required rigour for certification. This is a particular problem in the
automotive domain since the organisations involved in producing vehicles are
very large, distributed over many disciplines and physical locations, and have
established practices and tool-chains that are difficult to change [3,7]. This leads
us to the following research questions:

RQ1: Which common principles and practices can be derived from existing
approaches for agile development of safety-critical systems?

RQ2: Which practical challenges exist when applying these principles and prac-
tices in a large-scale industrial setting?

To answer RQ1, we analysed existing literature with a focus on R-Scrum
and SafeScrum®, as well as the overview presented in Kasauli et al. [15]. We
derived the common principles focus on traceability, safety as an ongoing set of
activities, shared responsibility of the team, as well as involvement of assessors
or auditors in ongoing development (see Sect. 3). We also identified that existing
approaches do not address scaling beyond a single team, have no provisions for
systems with mixed criticality, and lack concrete approaches for automation.

Based on these findings, we conducted a focus group to answer RQ2. We
presented the common principles to practitioners in the domain and elicited a

352 J.-P. Steghöfer et al.

number of challenges that occur in the automotive industry in practice when
agile methods are used to create safety-critical systems. These challenges can be
mapped to the areas of living traceability, continuous compliance, and organisa-
tional flexibility (see Sect. 4). There, we also compare the challenges to what is
known from the literature.

Thus, the main contribution of this paper is an overview of the unsolved,
practical challenges in combining agile methods with safety-critical systems
with a particular focus on large-scale development efforts in the automotive
domain. This will create the foundation for future work in which specific solu-
tion approaches to these challenges will be developed and evaluated.

2 Methodology

We base our findings in this paper on a focus group in which we discussed R-
Scrum and SafeScrum® with practitioners. To prepare this focus group, one
of the researchers extracted a list of commonalities and differences from the
published accounts of R-Scrum and SafeScrum® (e.g., [11,13]). This list was
discussed and refined with the other co-authors and contrasted with the find-
ings of Kasauli et al. [15]. It was decided to focus on the commonalities of the
approaches since they show the common underpinnings of how agile approaches
can be applied to safety-critical products. These results provide the answer to
RQ1 and are presented in Sect. 3.

The focus group included three industrial experts, all with several years of
experience in developing safety-critical systems in agile settings. These experts
are leaders in the field and are all involved in strategic projects transforming
their respective international organizations towards agile development. Two of
the practitioners are experts on process, methods, and tools from two different
automotive OEMs. One of them has a background in safety assurance and the
other in scaled agile and AUTOSAR-compliant tool chains. The third practi-
tioner is a senior software engineer in a medical device company with a back-
ground in agile in industrial, regulated environments. Although from a different
domain, this expert participated in the workshop due to their experience and
strong interest in scaled safety-critical agile methods. Including an expert from
another domain also allowed pinpointing which challenges are specific to auto-
motive.

As part of the focus group, we presented R-Scrum, SafeScrum®, and the
findings from [15] to the practitioners and gauged their reaction to them. Based
on this presentation, we invited the practitioners to share the challenges they
see with applying agile methods to safety-critical systems within the large-scale
development efforts in their organisations. The practitioners then brainstormed
and described their own experience and the challenges they encounter. The
researchers took extensive notes and collected the remarks on post-it notes.
When saturation was achieved, these post-it notes were roughly sorted into top-
ical areas by one of the researchers. These areas were then discussed in the group
and topics were moved between topical areas when necessary to jointly create a
clustering, thereby excluding or merging topics that were closely related.

Challenges of Scaled Agile for Safety-Critical Systems 353

After the conclusion of the focus group, the researchers ensured that agree-
ment was reached on all topics when they reconstructed the discussion and
recorded the findings based on their notes as well as the final clustering. They are
presented in Sect. 4. These results provide the answer to RQ2 and are presented
in Sect. 4. All results were member checked with the participants of the original
workshop, who corrected some details but confirmed the overall findings.

3 Existing Agile Approaches for Safety-Critical Systems

There are two agile approaches that cover the entire development lifecycle for
safety-critical systems in the literature: R-Scrum [11] and SafeScrum® [13].

R-Scrum is described by Brian Fitzgerald and colleagues from their obser-
vations at the company QUMAS which builds “compliance management solu-
tions”. The paper thus does not describe a method that has been designed by
researchers and evaluated in a company, but is rather a collection of the best
practices at QUMAS that have proven worthwhile over the years. There are no
studies to validate the usefulness of R-Scrum outside of QUMAS.

SafeScrum® in turn is a more designed process in which researchers and
practitioners created a version of Scrum to fit the needs of safety-critical projects
with a focus on IEC 61508:2010. The process (or rather “method framework”
as the authors call it) has been used in a number of case studies. It is well-
documented in a book [13] and a number of case studies (e.g., [20,25]) that
demonstrate its application and efficacy.

In addition to this, Kasauli et al. [15] describe the results of a systematic
mapping study and present an exhaustive list of relevant research about applying
agile methods to safety-critical systems. The authors also provide challenges and
solution candidates that have been reported in the literature which have been
validated in a workshop with industrial practitioners. These solution candidates
are, however, not embedded in a process or method framework.

A comparison of these sources shows that the proposed solutions for using
agile methods to develop safety-critical systems share a number of commonali-
ties:

Focus on traceability: Traceability is regarded as a foundation for the ability
to certify software. R-Scrum makes living traceability a cornerstone of the
method to provide “complete transparency into the development process at
any point in time” [11]. SafeScrum® also emphasises traceability, in particular
to fulfil the requirements of the IEC 61508:2010 standard, but also to enable
change impact analysis and to perform safety testing [13]. Kasauli et al. [15]
also report on two sources explicitly stating the need for traceability to ensure
requirements are met and to determine which tests need to be run.

Safety as an ongoing set of activities: In order to ensure that safety is taken
into consideration in all design decisions and in the daily programming and
validation work, it is integrated into the process tightly and activities involv-
ing safety are performed continuously rather than at discrete points in time

354 J.-P. Steghöfer et al.

(e.g., immediately before a release). R-Scrum aims to achieve continuous com-
pliance by including risk analysis in user story prioritisation and including
a quality control board that is involved in continuously checking the devel-
oped code as well as accompanying documentation and design documents. In
addition, quality assurance audits are included in each sprint and additional
“hardening sprints” can be scheduled before releases. SafeScrum® likewise
introduces safety into the sprint planning and the sprints themselves. An
“alongside engineering team” is responsible for these activities that include
updating the hazard log and safety cases, performing risk analysis and safety
validation, and ensuring that safety requirements are captured. Kasauli et
al. also mention suggestions from the literature to include safety consider-
ations in Scrum ceremonies such as daily stand-up meetings, setting up a
continuous integration tool-chain that includes safety builds, including rele-
vant documents such as hazard logs in code reviews, and perform continuous
risk management.

Shared responsibility of the team: Notably, all three sources suggest that
the development team itself is involved in the activities to ensure safety,
not a separate group of people. Even the “alongside engineering team” from
SafeScrum® should not be seen as a team separate from the developers,
but rather defines roles that can be fulfilled by the developers themselves.
The book states, however, that this “may involve others external to the
SafeScrum®team”. In any case, developers are never absolved from taking
responsibility for safety in the ongoing safety activities. They need to be able
to work with the risk analysis, update hazard logs and other artefacts, and
ensure in their design decisions that safety considerations are upheld. They
are also responsible for writing appropriate test cases for safety validation.
Kasauli et al. explicitly list literature that mentions collective code owner-
ship, experts in the team, and the necessity that team members are familiar
with safety standards in addition to the joint activities mentioned above.

Involvement of assessors or auditors in ongoing development: While not
taken up by Kasauli et al., both R-Scrum and SafeScrum® suggest to include
assessors or auditors for the final product in the development process. In the
case of R-Scrum at QUMAS, these audits are performed by the customers
and include the development process itself. This means that the organisa-
tion ensures that their process adheres to the standards set by the customers
which usually follow the established safety standards in turn. In SafeScrum®,
repeated safety audits are called for to ensure independent validation of the
created product and process. In case of both methods, an established, trace-
able audit trail facilitates these occasions greatly.

However, there is no notion of scaling beyond a single team. Neither R-Scrum
nor SafeScrum® provide guidance how work on safety should be divided between
collaborating teams or between a product and team level. They locate the respon-
sibility for safety of the product with the single development team (and the aux-
iliary “alongside engineering team”), but also assume that this team can control
the entire development lifecycle of the product. This is insufficient in situations

Challenges of Scaled Agile for Safety-Critical Systems 355

in which a complex organisational structure is used in which safety has to be
ensured across large number of teams working on the same product. While a dia-
gram describing the activities of the alongside engineering team in SafeScrum®

does contain the item “subcontractor” management, this issue is not taken up in
the rest of the book [13]. Likewise R-Scrum and the descriptions by Kasauli et
al. lack details of how to involve suppliers apart from including external actors
in planning and review meetings.

Furthermore, there is no notion of mixed criticality. Both R-Scrum and
SafeScrum® assume that the product in its entirety is safety-critical and that
all parts of the product thus need to be treated as safety-critical. In reality, how-
ever, products often consist of particular, safety-critical parts that are combined
with other, non-critical components. Applying the same process to both kinds of
assets can result in additional cost since the overhead necessary to ensure that
the safety-critical parts can be certified is unnecessary for the non-safety-critical
ones.

Finally, there are no guidelines on the automation of safety certification. In
practical settings, tool support is required to ensure that activities concerned
with safety can be embedded in the development process. This is particularly
true for complex software product lines, e.g., in the automotive industry: all
variants of a highly variable product need to be safe. Thus, safety cases need to be
applicable to all variants and can become shared assets or even contain variability
information themselves. Such scenarios require tool support and automation.

In summary, we extracted the following remaining issues that need to be
addressed in mature domains such as automotive from our analysis of R-Scrum
and SafeScrum® as well as the partial solutions reported by Kasauli et al.:

Scaling safe Scrum: combining the scalability of SAFe or LeSS with the safety
features of R-Scrum or SafeScrum® for multi-team projects;

Mixed criticality: safety-critical parts of products need to be developed with
more ceremony than parts that are not safety-critical;

Automation: automate generation of “proof of compliance” documentation
within complex Continuous Integration/Deployment (CI/CD) tool-chains.

4 Open Challenges According to Industry

Upon presenting and discussing the principles and practices of currently safety-
focused agile methods in our focus group, the focus group members brainstormed
the challenges they encounter in their organisations. We categorised these chal-
lenges into three different areas that need to be addressed for scaled agile for
safety-critical systems to become a reality in industry. The first two of these areas
overlap with the solution areas of current frameworks listed in Sect. 3. However,
we describe specific and detailed challenges for those and take an additional step
by introducing challenges on the organisational level.

The foundation: living traceability. As recognised in both R-Scrum and
SafeScrum®, traceability—and, in particular, the “living” version of it—is

356 J.-P. Steghöfer et al.

the foundation for an agile way of working with safety. The ability to connect
the individual artefacts in the development process to each other enables
the generation of the reports required by safety standards and facilitates
the construction of safety cases. This goes beyond the traceability between
requirements and test cases prescribed by safety standards, though: living
traceability means that developers actively and continuously create, main-
tain, and delete trace links while they go about their development work. The
resulting network of trace links not only supports safety, it also helps the
developers with change impact analysis, program comprehension, and identi-
fying technical debt.

The goal: continuous compliance. The goal for all organisations that have
been a part of this study as well as for those R-Scrum and SafeScrum® have
been applied to is to continuously produce the necessary safety arguments to
ensure that compliance can be proven at any point in the development pro-
cess. This is in contrast to the established way of working where the safety
arguments are produced in a big bang approach towards the end of the devel-
opment cycle or even immediately before an audit or certification. Continuous
compliance enables an organisation to show at any point in time that their
system complies to all necessary standards and has been developed following
a process able to produce a safe system.

The next step: organisational flexibility. Once continuous compliance is
achieved, the final stepping stone is to achieve flexibility in the organisation
to work within a safety-critical domain in a truly agile way. This flexibility
has to be achieved in three different areas: the ecosystems of components that
are being used and exchanged with suppliers, change management within the
organisation, and the way of working with critical artefacts.

4.1 Living Traceability

Continuously maintained traceability provides the foundation for scaled agile for
safety-critical systems. As one of the workshop participants put it: “There are
many motivators for traceability, but safety captures all of our needs”, meaning
that all needs for traceability from other areas of development are also present
when discussing the needs for traceability to ensure safety. Our participants
identified the following challenges in this area:

“Select the Right Direction for Traceability.” Establishing a traceability infor-
mation model (TIM) that supports safety analysis is a challenge. More fine-
grained artefacts (lower-level artefacts) should contain links that link to more
abstract artefacts (higher-level artefacts). One reason for this is variability: an
abstract, high-level artefact can be refined into several variants on the lower
level. Trace links from the high-level artefact to all variants are impractical,
so instead, each variant should link to the higher-level artefact. That makes
tool-support to collect the links crucial and needs to be captured in the TIM
which defines the structure and semantics of the trace links. A common misun-
derstanding of bidirectional traceability is that trace links must exist in both

Challenges of Scaled Agile for Safety-Critical Systems 357

directions—instead, tools must exist that can reconstruct one direction from the
other if necessary.

“Provide a Meaningful TIM for Safety-Critical Systems.” Defining a traceability
information model that supports the required semantics for safety-critical sys-
tems can pose a problem (see also next item). A suitable TIM needs to connect
all safety-related artefacts, such as requirements, safety cases, and tests, in order
to detect inconsistencies between them, to allow tracking their evolution, and to
show that all safety concerns have been addressed in the design, the architecture,
code, tests, and documentation. While the literature describes TIMs (e.g., Safe-
TIM [21]), it is unclear how they can be adapted to an organisation and if they
fit other needs for traceability (such as change impact analysis). In addition,
the evolution of artefacts needs to be sufficiently captured in the information in
order to track changes in both artefacts and the links and ensure consistency.

“What are Critical Decisions When Defining a TIM?” The chosen TIM (e.g.,
SafeTIM) has a huge impact on how the links can be used later on in the project.
At this point, there is no method for how to define a TIM to address the traceabil-
ity needs of an organisation. Traceability needs include the purpose of establish-
ing trace links (e.g., for change impact analysis or for program comprehension),
the process steps in which trace links should be established, maintained, and
used, and an alignment with the overall process goals. Since such a method is
missing, there is no clear understanding for which decisions are critical when
defining a TIM and which impact these decisions will have. This makes it diffi-
cult to foresee how well a TIM will be able to support the organisation in the
future. Taken together with the high cost and effort of evolving the TIM, this
makes organisations reluctant to commit to a specific TIM.

“Trace Between Safety Analysis Artefacts on the Same Level of Abstraction.”
The item definition according to ISO 26262 [14], the standard for functional
safety in the automotive domain, focuses on single vehicle functions with selected
use cases and functional requirements. The hazard analysis, i.e., the activity in
which the top-level safety requirements are defined, is based on this functional
description. However, the high-level functional requirements and their related
high-level safety requirements are defined as siblings in a hierarchy of require-
ments, without explicit trace links between them. In practice, however, safety-
oriented concerns of different functions are related to each other and safety goals
and requirements can impact the development of multiple functions. The lack of
traceability makes it difficult to evolve these aspects together. In order to more
easily create and maintain trace links between safety-related information, the
functional description should ideally be expressed in a formalised way and tool-
ing and concepts should allow relating cross-cutting aspects at any time during
the process.

“Trace to Review Status, Changes, and Decisions.” It is important to know
whether reviews have been passed to understand the current state of the system.

358 J.-P. Steghöfer et al.

Similar to tracing to test results, this enables engineers to see which aspects of
the overall safety argument for the system are covered and what is left to do.
Relevant changes that have an impact on these reviews and their status must
also be traced in order to understand when a review needs to be repeated. At
the same time, important decisions that impact safety need to be traceable,
e.g., as design rationales, to help engineers understand why the arguments were
constructed the way they are and how the underlying architecture impacts this
argument.

“Creating, Storing, and Accessing Baselines.” A baseline is a snapshot of all arte-
facts relevant at a specific point in time in the development process. Having many
different, interrelated artefacts with different lifecycles, worked on by different
teams at different locations, and stored in different systems [16] makes it difficult
to define and store a consistent snapshot and make it available, e.g., to auditors.

4.2 Continuous Compliance

Keeping safety-related artefacts up-to-date in a scaled agile setting requires
incremental safety analysis that spans all required product variants. There is
also a push towards certifying the manufacturer instead of the product itself.
The focus group revealed the following challenges:

“Support Delta Analysis.” Changes in the system should not necessitate a com-
plete reconstruction of the safety case. Instead, only the relevant parts should
be reassessed and the current safety case should only be updated to the extent
necessary. Consistent traceability is one cornerstone to solve this issue since it
allows to include safety cases in change impact analysis. On the other hand,
techniques used in safety analysis, such as formal hazard analysis techniques,
should to be able to handle incremental changes.

“Update Safety Case on Demand.” As stated above, the goal is to produce safety
arguments about deltas and thus only focus on changes and their impacts. This
would mean that safety analysis is near-continuous, triggered predominantly by
changes. However, even if the technical challenges of delta-analysis are solved, it
is currently unclear how often to create a new safety argument. Does the creation
of a new or updated safety case depend on the “size” of the delta? What is the
right balance between a desire for continual safety and the resources needed to
produce frequent safety arguments? How often is often enough?

“Safety Case Must Cover Variants.” Since automotive companies usually work
with software product lines, a safety case must cover all relevant variants of a sys-
tem. That means that regardless how the final system is assembled from different
re-usable assets, the safety case must hold. In practice, however, many feature
combinations are not relevant. Developers are not always aware of which combi-
nations are relevant, though, and sampling strategies are often unsystematic [19].
For continuous compliance, safety cases must at least cover those variants that

Challenges of Scaled Agile for Safety-Critical Systems 359

are used in production and must show systematically that these variants are
safe.

“Facilitate Pre-certification.” In the medical device domain, where standard
bodies govern and enforce the use of safety standards, such bodies have begun
to allow pre-certification, i.e., a certification of the organisation and their devel-
opment and quality assurance practices rather than the individual software in
an attempt to reduce the time to market.3 Such approaches help to avoid the
“big bang”, all-at-once certification process before releasing products, moving
certification steps earlier in the development lifecycle. They also make it easier
to push updates to existing software to the customer continuously.

4.3 (Organisational) Flexibility – Safe Ecosystem

One part of organisational flexibility for automotive OEMs is the ability to use
components from suppliers with as little effort as possible in a safe ecosystem.
Our participants identified the following challenges:

“Passing Safety Requirements to Suppliers.” The communication between an
OEM and a supplier about requirements for components at the moment is based
on the exchange of documents that contain both functional and safety require-
ments. The supplier transfers these requirements into a requirements manage-
ment tool and starts using them in the development and the construction of
the safety case. However, it is not uncommon that the OEM changes functional
and safety requirements. In that case, the supplier receives a new document and
has to manually update the requirements database, update the trace links, and
understand the impact on the current design [18]. Clearly defined software inter-
faces for the exchange of requirements would improve such updates. A common
exchange standard, e.g., similar to the ReqIF format [8], could be a first step.
A system that also supports versioning and diffing of such requirements would
further reduce the effort required for suppliers.

“Treat Components as Safety Blackboxes.” At the moment, safety-critical com-
ponents that an OEM buys from a supplier need to be fully transparent in terms
of design, safety requirements, and safety cases in order to be integrated into the
safety argument for the overall system. Such components can thus not be treated
as black boxes and the OEM has to invest considerable effort to integrate the
relevant artefacts. In the future, it is desirable that individual components have
a clearly defined safety contract [12], e.g., based on assumptions and guarantees,
that can be used to seamlessly integrate a component into the safety argument
of the overall system. While previous work on this topic exists, a standard for
the exchange, verification, and use of such contracts has yet to emerge.

3 See, e.g., https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCert
Program/ucm584020.htm.

https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/ucm584020.htm
https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/ucm584020.htm

360 J.-P. Steghöfer et al.

4.4 (Organisational) Flexibility – Change Management

Part of an agile way of working is the ability to react to changes quickly and
to adapt what is being built within a short period of time. This requires the
ability to also adapt the safety case as needed. The focus group mentioned two
challenges in this area:

“Support Local Decisions and Changes.” Since safety is an overarching con-
cern, decisions about safety and the construction of the safety case are often
centralised, e.g., in an architecture runway team. This limits the flexibility of
the individual teams to make decisions about implementation details and cre-
ates bottle necks in the certification process. Instead, local design decisions and
changes should be supported when making the safety case, e.g., by modularising
it and giving the individual teams the opportunity to update the safety case
locally while maintaining global consistency.

“How to Decide Which Changes Need a Change Request?” A change request
is a formal way to control the change process for product changes that have
an impact on other development teams, downstream artefacts and, in particu-
lar, the safety case. Since change requests require certain steps to be completed
and a high level of rigour to be applied, they are costly and should only be
used if necessary. However, this is difficult to determine for any given prod-
uct change. Organisations therefore err on the side of caution, producing more
change requests than necessary. If living traceability is established, however, it
should be possible for tools to provide decision support to semi-automatically
identify the impact of a change on other teams and the safety case and thus
reduce the number of change requests and, consequently, development cost and
time.

4.5 (Organisational) Flexibility – Way of Working

As a final building block towards flexibility, the way of working needs to address
a number of aspects on a fundamental level. Our participants identified the
following challenges in this area:

“Mixing Safety-Critical Components and Requirements with Less or Non-Safety
Critical Requirements.” It is common in the automotive domain that compo-
nents provide safety-critical functionality as well as functionality that is not
safety-critical. At the moment, these functionalities are treated differently based
on their Automotive Safety Integrity Level (ASIL) as defined in ISO 26262.
Functionality assigned “QM” is not safety-critical, ASIL A or B is safety-critical
and required some validation while ASIL C or D are highly safety-critical and
require rigorous validation. Ideally components with different ASIL should be
isolated via the architecture, but this can not always be guaranteed. Require-
ments management tools and practices currently do not allow a fine-grained
assignment of ASIL to components, e.g., on the level of features or even code

Challenges of Scaled Agile for Safety-Critical Systems 361

blocks. This in turn means that all functionality of a component is treated with
the same rigour, potentially using resources that could be applied elsewhere. As
mentioned in Sect. 3, mixed criticality is not directly supported by R-Scrum or
SafeScrum®.

“Reuse of Safety Requirements and Arguments.” In many cases, safety require-
ments can be reused across components and functionality. Since safety require-
ments are often linked to functional requirements, a reuse of the functional
requirement can lead to a reuse of the safety requirement. Ideally, parts of the
safety argument and the information used to construct them should also be
reused. This is particularly true for different variants of a system in a software
product line that have slight differences in functionality but are structurally and
behaviourally similar. However, an understanding of the changes needed to reuse
a safety argument in different circumstances as well as tool support to detect
inconsistencies in reused safety requirements and safety arguments is required.

“Coordination and Modularization.” Development processes in which several
hundred developers across different departments and potentially even organisa-
tions are involved require a high degree of coordination and modularisation. Since
safety is a cross-cutting concern, achieving safety in a complex system composed
of several subsystems is challenging. The modularisation and architectural iso-
lation of functionality mentioned above is a first step, but distributing the work
required to construct the safety argument is also necessary. A possible solution
is a modularized safety argument. That means that a compositional form of dis-
covering and including safety requirements [5] as well as constructing the safety
argument [24] is required as well as automated ways of checking the argument
for consistency (such as extensions of [2]). Such a modular approach will allow
different teams to work on isolated parts of the safety argument and compose the
individual parts into one encompassing subsystems and finally the entire system.
Such an approach resembles the idea of “safety blackboxes” (cf. Sect. 4.3) and
would also support the reuse of safety requirements and arguments.

5 Discussion

In this work, we have extracted common principles, practices and limitations
from the literature on safety-critical agile methods and compared this to the
experiences of three senior experts from industry, two of whom work in the
automotive domain. What we find is an extended and refined list of principles
and challenges as well as a number of solution candidates.

5.1 Challenges

In answering RQ1, we find that the literature emphasizes traceability, continu-
ous safety, shared responsibility, and ongoing auditor involvement. Our findings
echo the literature emphasis on traceability, but add specific details and chal-
lenges with implementing traceability in large-scale safety-focused agile (RQ2).

362 J.-P. Steghöfer et al.

The idea of “living traceability” as an ongoing set of activities that are part
of the daily work of the developers bears a strong resemblance to ubiquitous
traceability [4], an idea championed in the traceability literature. While chal-
lenges to traceability in the automotive domain have been described elsewhere
(see, e.g., [18]), this study adds additional challenges on a more technical level,
e.g., about creating baselines. These challenges are nonetheless important, since
their solution will decide about wide-spread adoption of traceability practices in
industry.

The focus on scaling is missing in the literature on agile processes for safety-
critical systems and current approaches that take scaling into account do not
cater to the needs of safety-critical systems [22]. To address safety in an agile way
of working, it should be possible to view traceability in both a bottom-up and
top-down way, TIMs should be specific for safety concepts and should come with
guidance for design, safety-related traceability should extend horizontally across
requirements, should include review statuses, and should account for baselines.

Our findings also confirm and expand on the area of continuous safety. On
this topic, we can also add specific technical challenges (RQ2). In particular,
safety should be analyzed on the delta of small changes with guidance provided
on the size of such deltas, safety cases should account for software variants, and
the possibility of pre-certification should be considered. This last point bears
similarity to the ongoing auditor involvement practice extracted from the lit-
erature. However, in general, the involvement of auditors was not emphasized,
as this practice is less relevant in the automotive domain. Our participant from
the medical device industry emphasised this aspect, however, as pre-certification
and the ongoing involvement of auditors in the development process can be a
key contributor to reduce the time to market in this domain.

While the literature emphasized shared safety responsibility, our workshop
findings placed more emphasis on organizational flexibility, including ecosystems,
change management, and ways of working. This is a direct result of the more
complex organisational structure present in the scaled agile environments our
practitioners work in. Again, these findings were broken down into more specific
challenges (RQ2). In the area of ecosystems, identified challenges centred on
passing safety information to suppliers, and receiving safety information from
components in a clear and easily understandable format.

From the change management perspective, decision making should be local
when possible, and decision making concerning invoking change requests should
be better supported. The former point most closely echoes the shared responsi-
bility emphasis from the literature, but puts it into the context of a hierarchi-
cal organisation in which responsibilities need to be distributed to development
teams and some decisions, e.g., about architecture, are made on a product-
level [9].

Practical challenges related to ways of working include dealing with a mix
of safety- and non-safety-critical components, reuse of safety requirements and
arguments, how to the level of abstraction of safety arguments, and how to man-

Challenges of Scaled Agile for Safety-Critical Systems 363

age coordination and modularization. These challenges are at a level of specificity
not found in the current literature.

5.2 Possible Solutions

Before consulting with our industrial partners, we noted that the literature on
safety-focused agile does not consider scale, mixed criticality, or automation.
Our industrial challenges confirmed the first two observations. Although many
of our identified challenges can lead to automation or benefit from it, this was
not identified as a direct challenge in practice. This might be due to the fact
that an increased degree of automation might be seen as one of the solutions for
these challenges. A tool-chain that supports living traceability, helps identify if
a safety case needs to be changed, and integrates variants into the handling of
safety arguments would be highly beneficial.

Another possible solution, in particular to the challenges associated with
continuous compliance, are techniques that allow the incremental update of the
safety case. Industry needs the ability to update small parts of the safety case
based on individual change requests to reduce the cost and time required for
changes and to allow integrating components from suppliers into the system
The need for such techniques has also been acknowledged in the defense indus-
try “as a means of reducing the impact and hence cost of re-certification of
changes to systems” [10]. While some work on incremental safety assessment
exists, it is either focused on describing formal refinement relations [17] or make
an argument for first modularising the safety case [26] before taking further steps
in this direction. The variability inherent to complex product lines, e.g., in the
automotive industry also needs to be taken into account.

The modularisation of the safety case also came up as a crucial building
block to address the challenges in our data. While a number of solutions have
been proposed for modular safety cases (see, e.g., [1,6,27]), they are not used
in practice by our participants, presumably since they are tightly coupled to an
underlying architecture [1] or prescribe a specific notation and toolset [6,27].
None of the approaches addresses the needs of a complex product line. Our
industrial partners require more generic guidelines that they can adapt to their
existing processes, architecture, and tool-chain instead.

6 Conclusion

In this paper, we summarise our findings of challenges of applying agile methods
to the development of safety-critical systems in large-scale industrial settings.
Based on a focus group, we identify a number of challenges in three areas and
compare them with what is known from the literature, in particular to R-Scrum
and SafeScrum®.

We have noted the lack of work combining large-scale agile practices with
safety-critical agile practices, even though such a combination is currently
required in many automotive organizations. Overall, our findings summarize

364 J.-P. Steghöfer et al.

the limitations with current safe agile practices, and list practical, grounded
challenges of using such methods in a large-scale context, with a focus on the
automotive domain. These challenges can be a foundation for future work and for
combining the rigorous approach to safety analysis and verification of R-Scrum
and SafeScrum® with the scaled agile practices of SAFe and LeSS. In particular,
a better understanding of establishing traceability throughout the development
lifecycle is needed. In addition, the ability to proof continuous compliance based
on updates of safety cases is a necessity. Finally, safe ecosystems, an integrated
change management approach, and a way of working based on reuse, coordina-
tion, and modularisation will ensure organisational flexibility.

We also identify candidates for solution approaches and point out related
work in the area. The exploration of traceability information models for safety-
critical applications is one such starting point, but currently suffers from limited
guidance on how to apply this in a practical setting. The ability to incrementally
update the safety cases based on small changes and the incorporation of vari-
ability in the safety analysis are further pre-requisites to achieve organisational
flexibility. Furthermore, a modularisation of the safety case would help organi-
sations in including externally sourced components and build incremental safety
arguments based on small change requests.

We hope that our findings spur future work in expanding and refining agile
methods: to support developing safety critical products at scale, and to consider
further challenges as reported by our industrial partners.

Acknowledgement. We thank all participants in our focus group for their insights
and their engagement. This work was supported by Software Center (www.software-
center.se).

References

1. Althammer, E., Schoitsch, E., Sonneck, G., Eriksson, H., Vinter, J.: Modular certi-
fication support – the DECOS concept of generic safety cases. In: 6th IEEE Inter-
national Conference on Industrial Informatics, pp. 258–263, July 2008. https://
doi.org/10.1109/INDIN.2008.4618105

2. Antonino, P.O., Trapp, M.: Improving consistency checks between safety concepts
and view based architecture design. In: PSAM12, Honolulu, Hawaii, USA 282
(2014)

3. Broy, M., Krüger, I.H., Pretschner, A., Salzmann, C.: Engineering automotive soft-
ware. Proc. IEEE 95(2), 356–373 (2007)

4. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: Proceedings of the on Future of
Software Engineering, pp. 55–69. ACM (2014)

5. Cleland-Huang, J., Vierhauser, M.: Discovering, analyzing, and managing safety
stories in agile projects. In: IEEE 26th International Requirements Engineering
Conference (RE), pp. 262–273, August 2018. https://doi.org/10.1109/RE.2018.
00034

6. Denney, E., Pai, G.: Towards a formal basis for modular safety cases. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 328–343.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24255-2 24

https://doi.org/10.1109/INDIN.2008.4618105
https://doi.org/10.1109/INDIN.2008.4618105
https://doi.org/10.1109/RE.2018.00034
https://doi.org/10.1109/RE.2018.00034
https://doi.org/10.1007/978-3-319-24255-2_24

Challenges of Scaled Agile for Safety-Critical Systems 365

7. Ebert, C., Favaro, J.: Automotive software. IEEE Softw. 34(3), 33–39 (2017).
https://doi.org/10.1109/MS.2017.82

8. Ebert, C., Jastram, M.: ReqIF: seamless requirements interchange format between
business partners. IEEE Softw. 29(5), 82–87 (2012)

9. Eckstein, J.: Architecture in large scale agile development. In: Dingsøyr, T., Moe,
N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP,
vol. 199, pp. 21–29. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14358-3 3

10. Fenn, J.L., Hawkins, R., Williams, P., Kelly, T., Banner, M., Oakshott, Y.: The
who, where, how, why and when of modular and incremental certification. In: IET
Conference Proceedings, pp. 135–140(5), January 2007

11. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to
regulated environments: an industry case study. In: International Conference on
Software Engineering, ICSE 2013, pp. 863–872. IEEE Press, Piscataway (2013)

12. Gallina, B., Carlson, J., Hansson, H., et al.: Using safety contracts to guide the
integration of reusable safety elements within ISO 26262. In: 21st Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 129–138. IEEE
(2015)

13. Hanssen, G.K., St̊alhane, T., Myklebust, T.: SafeScrum®-Agile Development of
Safety-Critical Software. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99334-8

14. International Organization for Standardization: Road vehicles - functional safety.
ISO 26262:2011, November 2011

15. Kasauli, R., Knauss, E., Kanagwa, B., Nilsson, A., Calikli, G.: Safety-critical sys-
tems and agile development: a mapping study. In: 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 470–477, August
2018

16. Knauss, E., Pelliccione, P., Heldal, R., Ågren, M., Hellman, S., Maniette, D.: Con-
tinuous integration beyond the team: a tooling perspective on challenges in the
automotive industry. In: 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 43. ACM (2016)

17. Lisagor, O., Bozzano, M., Bretschneider, M., Kelly, T.: Incremental safety assess-
ment: enabling the comparison of safety analysis results. In: 28th International
System Safety Conference (ISSC) (2010)

18. Maro, S., Steghöfer, J.P., Staron, M.: Software traceability in the automotive
domain: challenges and solutions. JSS 141, 85–110 (2018)

19. Mukelabai, M., Nešic, D., Maro, S., Berger, T., Steghöfer, J.P.: Tackling combi-
natorial explosion: a study of industrial needs and practices for analyzing highly
configurable systems. In: 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2018)

20. Myklebust, T., St̊alhane, T., Lyngby, N.: An agile development process for petro-
chemical safety conformant software. In: 2016 Annual Reliability and Maintain-
ability Symposium (RAMS), pp. 1–6. IEEE (2016)

21. Nair, S., de la Vara, J.L., Melzi, A., Tagliaferri, G., de-la-Beaujardiere, L., Bel-
monte, F.: Safety evidence traceability: problem analysis and model. In: Salinesi,
C., van de Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 309–324. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05843-6 23

22. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the
scaled agile framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

https://doi.org/10.1109/MS.2017.82
https://doi.org/10.1007/978-3-319-14358-3_3
https://doi.org/10.1007/978-3-319-14358-3_3
https://doi.org/10.1007/978-3-319-99334-8
https://doi.org/10.1007/978-3-319-99334-8
https://doi.org/10.1007/978-3-319-05843-6_23
https://doi.org/10.1007/978-3-030-03673-7_24

366 J.-P. Steghöfer et al.

23. Schooenderwoert, N.V., Shoemaker, B.: Agile Methods for Safety-Critical Systems:
A Primer Using Medical Device Examples. CreateSpace Independent Publishing
Platform, Scotts Valley (2018)

24. Sharvia, S., Papadopoulos, Y.: Integrated application of compositional and
behavioural safety analysis. In: Zamojski, W., Kacprzyk, J., Mazurkiewicz, J., Sug-
ier, J., Walkowiak, T. (eds.) Dependable Computer Systems. AINSC, vol. 97, pp.
179–192. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21393-
9 14

25. St̊alhane, T., Myklebust, T., Hanssen, G.: The application of safe scrum to IEC
61508 certifiable software. In: 11th International Probabilistic Safety Assessment
and Management Conference and the Annual European Safety and Reliability
Conference, pp. 6052–6061 (2012)

26. Wilson, A., Preyssler, T.: Incremental certification and integrated modular avion-
ics. IEEE Aerosp. Electron. Syst. Mag. 24(11), 10–15 (2009)

27. Zimmer, B., Bürklen, S., Knoop, M., Höfflinger, J., Trapp, M.: Vertical safety
interfaces – improving the efficiency of modular certification. In: Flammini, F.,
Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 29–42.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 3

https://doi.org/10.1007/978-3-642-21393-9_14
https://doi.org/10.1007/978-3-642-21393-9_14
https://doi.org/10.1007/978-3-642-24270-0_3

On the Benefits of Corporate Hackathons
for Software Ecosystems – A Systematic

Mapping Study

George Valença1(&), Nycolas Lacerda1, Maria Eduarda Rebelo1,
Carina Alves2, and Cleidson R. B. de Souza3

1 Departamento de Computação, Universidade Federal Rural de Pernambuco,
Recife, Pernambuco, Brazil

{george.valenca,eduarda.rebelo}@ufrpe.br,

nycolas.lacerda@ufrpe.com
2 Centro de Informática, Universidade Federal de Pernambuco, Recife,

Pernambuco, Brazil
cfa@cin.ufpe.br

3 Faculdade de Computação, Universidade Federal do Pará, Belém, Pará, Brazil
cleidson.desouza@acm.org

Abstract. Software companies have increasingly organised hackathons since
the early 2010s. These time-bounded, intensive, collaborative and solution-
oriented events enable companies to generate several ideas, some of which can
be used to evolve their products and services. Hackathons are means to gather
feedback from outside to innovate. Companies also follow such open innovation
trend by raising software ecosystems via a platformisation process. They create
platforms so that third parties can develop new software solutions and in doing
so extend the current product portfolio. In this scenario, a hackathon can be seen
as a strategy to support ecosystem evolution. Therefore, we decided to conduct a
systematic mapping study to investigate the benefits that hackathons can provide
to software ecosystems. This paper presents our analysis of twenty-seven papers
on corporate hackathons in the software industry. As main findings, we (i) de-
scribe a set of fourteen social, technical and business benefits; as well as
(ii) discuss how companies can leverage ecosystem health by conducting
hackathons. We address the scarcity of research around the outcomes of cor-
porate hackathons. Besides, we conclude that hackathons are alternative modes
of production and innovation, which can catalyse a software ecosystem.

Keywords: Corporate hackathons � Open innovation � Software ecosystems �
Systematic mapping study

1 Introduction

The phenomenon of platformisation has altered the dynamics of the IT industry in the
last decade. The software ecosystem paradigm created a new business environment in
which third parties can develop their products or services by relying on a platform [19].
The ecosystem company, who also owns the platform, leverages these products or

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 367–382, 2019.
https://doi.org/10.1007/978-3-030-35333-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_27

services to increase its revenues. Hence, companies span traditional boundaries via a
fertile open innovation approach that creates a shift towards a distributed process of
product innovation and development [10]. Such value co-creation initiative is based on
knowledge and resources from outside the company, the third parties. One way to
attract such parties is through hackathons [7]. A hackathon is a time-bounded event in
which people come together to collaboratively build, and potentially launch, a new
solution to solve a particular problem built on top of new or existing technology [16].

Corporate or industrial hackathons have become widespread due to their potential
to foster innovation by disseminating new technologies and fostering collaboration.
Large companies such as Facebook and Google, as well as small ones, run multiple
smaller internal and external hackathons yearly [12]. Internal hackathons promote
creative thinking of employees, who are stimulated to think of new projects, reflect on
the challenges faced by the company and present new ideas. In external hackathons (i.e.
opened to participants that are not formally or directly related to the company), the
focus of the company is to obtain novel ideas from people that are not acquainted with
the context and routine of the business. Hence, the company gains new insights on how
to solve problems, expand its product line, and gather new developers to work on its
ecosystem.

The increasing interest of companies to conduct hackathons reveals that such events
hold great chances to generate commercial advantage, enabling an ecosystem to evolve
[12]. However, reports about the benefits of hackathons are still scarce and spread in
different venues [4]. Moreover, the literature largely focuses on civic and educational
hackathons, causing the need for studies addressing corporate hackathons [1, 14, 17].
This scenario motivated us to conduct a systematic mapping study on the benefits of
corporate hackathons for software ecosystems. This method offers a coarse-grained
view of the type of reports and results that have been published in a given research field
by categorising and often representing them as a visual map [13]. As main findings, we
describe 14 social, technical and business benefits, which emerged from the analysis of
27 primary studies. We also discuss these benefits from the perspective of ecosystem
health [8] to denote their contribution to productivity, robustness and niche creation.
Hence, we lay the foundations for a systematic understanding of corporate hackathons.

The rest of this paper is structured as follows. Section 2 describes relevant concepts
on software ecosystems and hackathons. In Sect. 3, we describe the protocol of the
systematic mapping study. Section 4 details our results in a general manner, with
demographic data, and more specifically by answering our research question. Finally,
we discuss our findings in Sect. 5 and present final considerations in Sect. 6.

2 Theoretical Background

2.1 Software Ecosystems

Software companies have increasingly appreciated the movement from single to
multiple-products in a platform approach [10]. In a platform business model, compa-
nies open their platforms for third parties/potential partners to integrate their specific
solutions and/or develop new ones [2]. We can understand a software ecosystem as a

368 G. Valença et al.

set of businesses functioning as a unit and interacting with a shared market for software
and services, together with the relationships among them [6]. In this setting, companies
invest in innovative business models to co-create value for the ecosystem and promote
knowledge sharing among the community of participants. Well-known examples of
ecosystems are Google’s Android, Microsoft’s Dynamics CRM, and Apple’s iOS.

Software ecosystems can be understood over three dimensions [18]. The social
dimension encompasses the actors participating in the ecosystem with their respective
roles, relationships, skills, motivations, among other factors that regulate the interac-
tions within the network. The technical dimension is mainly concerned with the
software platform, which is a software-based system that provides core features shared
by a portfolio of products or services that interoperate with each other. These solutions
can be extended via boundary resources, such as application programming interfaces
(APIs) and software development toolkits (SDKs) [10]. This dimension also comprises
product management and development processes that discipline how solutions are
collaboratively planned, evolved and released to customers. Finally, the business
dimension deals with the strategies to capture value and generate revenue for ecosystem
participants. It involves the platform business model, with definitions about entry
barriers, intellectual property rights; in addition to innovation directions.

Broadly speaking, we can divide the ecosystem in two main groups of actors.
Those in charge of controlling and those subsumed to the current rules. A company
called keystone [9] governs the evolution of the ecosystem by defining rules of access
to the platform and orchestrating the creation of new solutions (e.g. apps). In parallel, a
group of complementors can co-create value on top of such platform by combining
their solutions to address market needs for additional features or services.

The overall health of a software ecosystem depends on the actions and decisions
taken by each participant. We can assess it via three key measures [5]. Productivity is
the ability of the ecosystem to transform inputs into products and services, which may
happen by increasing the number of applications in an app store. Robustness means the
capacity of the ecosystem to deal with interferences and pressure from competitors. It
comprises the number of participants in the ecosystem, as well as their active contri-
bution and survival rate. Finally, niche creation involves the business opportunities that
the ecosystem can provide to its participants. It lies on increasing the number of players
that use the platform, producing valuable resources and creating new market niches.
Thereby, by assessing these aspects, we can establish strategies that will enable all
ecosystem participants to co-evolve, i.e. a win-win approach [8].

2.2 Corporate Hackathons

The notion of hackathon appeared in the 2000s as a collaborative software method that
relies on the crowd to solve problems [12]. It is commonly seen in teaching (educa-
tional hackathon) and government (civic hackathons) initiatives. In the first case, IT
courses introduce hackathons as a contest for graduating students to solve real-life
issues in a challenging and fun scenario. They must intensively collaborate with each
other, think of innovative solutions and develop specific skills [14]. In the second case,
public organisations promote such competitions to create value from open data [17].

On the Benefits of Corporate Hackathons for Software Ecosystems 369

In their turn, corporate hackathons are industry-oriented events, focused on busi-
ness activities. Tech companies from all sizes have increasingly integrated hackathons
into their software development work to support product test and evolution. The col-
laborative practices of hackathons generate new ideas, early prototypes, and even
business plan development, thereby promoting innovation [12]. Such hackathons can
be broadly divided in two subtypes: internal and external.

Internal hackathons promote creative thinking of employees who are stimulated to
think of new projects, reflect on the challenges faced by the company, and present new
ideas. Nolte et al. [11] present an example of an internal industrial hackathon at
Microsoft and discusses what happened to some projects after the event took place.
Meanwhile, external hackathons are open to participants that are not formally or
directly related to the company. In this case, the focus of the company is to gather novel
ideas from outsiders, who can provide insights on how to solve the company’s prob-
lems and/or expand its product line. Furthermore, an external hackathon is an oppor-
tunity for a company to present its products to developers, who can extend its products
using the company’s APIs. In short, hackathons also allow a company to gather new
developers for its ecosystem. Raatikainen [15] present an example of an external
hackathon from F-Secure, a company who developed a cloud-based ecosystem. Big
players such as Facebook and Google run multiple internal and external hackathons
each year [12].

3 Research Method

3.1 Research Question

Our interest on the interplay of hackathons and software ecosystems resulted from our
observation that IT companies were increasingly investing in these time-bounded
events. Although hackathons can be employed as recruitment events to promote
specific technologies, we speculated that companies might also be employing them to
foster innovation and evolve their product portfolios. Based on such assumption, we
decided to perform a mapping study on corporate hackathons.

Our study aimed at answering the following research question (RQ): what benefits
hackathons can provide to software ecosystems? Through this RQ, we could examine
the perceived benefits of a hackathon for a software ecosystem, considering the per-
spective of keystones (i.e. those responsible for ecosystem coordination) and com-
plementors (i.e. players who create extensions and new solutions in the ecosystem).

3.2 Data Collection

We started the search process by analysing seminal papers on hackathons to get a
better understanding of the main concepts encompassed by this topic. The relevance of
this step lies in the lack of agreement among researchers regarding terms and notions to
adopt while addressing this phenomenon [7]. To start the automatic search process, we
created an initial search string and performed trial searches on databases such as
Google Scholar and IEEEXplore. This string involved the term ‘ecosystem’, which

370 G. Valença et al.

restricted our results, given that many authors discuss the idea of hackathons within
ecosystems but not necessarily combine these terms. Hence, we adopted the following
expression with a more open structure that could provide us with a wider and richer set
of results: (hackathon OR hackfest OR code camp OR hack day OR codefest).

We performed the automatic searches between 08/03/19 and 17/03/2019. This
procedure involved four digital libraries: ACM Digital Library (DL), IEEEXplore,
Science Direct, and Wiley Interscience. These are specific and complementary engines,
which index multiple events and journals. Hence, they enabled a broad search cover-
age. The search procedure explored three fields of the papers (title, abstract and key-
words) and considered a timeframe of 20 years. The reasoning for such period of time
lies in the origin of the term ‘hackathon’, which appeared in 1999 at an event held in
California, which gathered developers to work on legal issues related to software [12].

The automatic search procedure provided us with 2769 papers. We remark that
75% of the papers (2084) stemmed from ACM DL. Such high number of results is
caused by two main reasons: (i) this engine has computer programming as a pillar,
causing the term ‘code’ to gain multiple hits, and (ii) it creates variations for each term
(e.g. ‘code’ also became ‘coding’). Both facts introduced multiple out-of-scope papers.
Then, we performed an initial filter via the following inclusion (ICi) and exclusion
criteria (ECi):

• IC1: papers describing industrial or corporate IT hackathons (internal or external).
• EC1: papers discussing other forms of hackathons (e.g. civic, educational or con-

ference hackathons) or corporate hackathons outside IT/software development field.
• EC2: papers not written in English.
• EC3: grey literature (including theses and books) and papers available as posters.

To apply the former criteria, we read the title and abstract of the papers. As a result,
we maintained a subset of 27 papers. We also considered this list to conduct a manual
snowballing search. We started this step with a backwards search, analysing the list of
references of the each paper. Then, a forward search focused on verifying the papers
that cite each item of our list. The resultant list of the snowballing search encompassed
22 papers. By combining these two lists, we generated a set of 49 papers.

3.3 Data Analysis

After aggregating the list of 49 papers, we started the extraction process by creating a
spreadsheet with general demographic information about the papers (first set) in
addition to specific information related to the research questions (second set). The first
set involved papers’ ID, title, author(s), year, publication (i.e. event or journal name)
name and type, and paper type. The last information item involved the six main types
of study proposed by Wieringa et al. [20]: evaluation research, proposal of solution,
validation research, philosophical paper, opinion paper, and personal experience paper.

The extraction process involved a full reading of the papers, generating a deeper
understanding of their content. Three researchers conducted this process and excluded
additional 22 papers in light of our criteria, resulting in a final list of 27 primary studies
(cf. Appendix). We represent the complete process in Fig. 1 as follows.

On the Benefits of Corporate Hackathons for Software Ecosystems 371

The final phase of our mapping study consisted of an analysis process. We gathered
all information regarding each extraction item in a separate file to create specific syn-
theses by using thematic analysis guidelines. This method aims at analysing and clas-
sifying data, which is categorised in derived themes [3]. It enabled us to identify the 14
different benefits of hackathons and to further combine them in three different cate-
gories. Such conceptual grouping also supported simple counts, from the distribution of
papers per year to the number of evidence/papers that cite a given benefit. Hence, it
helped us to organise the dataset in rich detail, preparing it for our interpretation.

4 Results

4.1 Overview of Existing Research on Corporate Hackathons

The distribution of the primary studies per year is presented in Fig. 2. The set of 27
papers range from 2007 to 2019. It is noteworthy that there seems to be a growing
interest in investigating corporate hackathons: 37% (10) of the papers were published
between 2018 and 2019. In particular, our results could reveal even more the current
focus on corporate hackathons if our search had covered the whole year of 2019. Most
of these papers (17; 63%) were presented in events (e.g. conferences, workshops). In
addition, the set of journals papers (10; 37%) within our list were published between
2015 and 2019, which enables us to speculate that research on this topic is getting more
attention from researchers.

Regarding the type of papers, almost all primary studies (25; 93%) were evalua-
tion papers. These papers described one or more hackathons investigated in practice
(either as their focus or briefly in the text). The other two primary studies consisted of a
philosophical paper (S5) and a validation paper (S25). This result denotes the current
focus of researchers to describe the hackathon phenomenon, which may anticipate new
proposals of solutions or philosophical discussions.

Finally, we could observe that a relevant part of the authors (39; 43%) belong to
industry. They work on software companies such as IBM (S12), Microsoft (S1, S13)

Fig. 1. Search process results.

372 G. Valença et al.

and F-Secure (S9), which reveals the important role that hackathons current play in
industry setting. From the perspective of academia, James D. Herbsleb, Marko Komssi
and Mikko Raatikainen are frequent authors, with three papers each.

4.2 Research Question Analysis

Our thematic analysis of the 27 primary studies provided a rich set of benefits of
hackathons for software ecosystems. Only two papers did not present inputs to answer
the RQ (S6, S27). We classified the 14 resultant elements (Fig. 3) as social (SBX),
technical (TBX) and business (BBX) benefits, representing the dimensions of an
ecosystem [8].

Fig. 2. Distribution of primary studies per year, from 2007 to 2019.

Fig. 3. Technical, business and social benefits of corporate hackathons for software ecosystems.

On the Benefits of Corporate Hackathons for Software Ecosystems 373

Social Benefits. The social dimension of an ecosystem involves the collaboration
within the different actors of an ecosystem.

Promoting knowledge sharing and opportunities for learning (SB1) is the most
frequent reported social benefit (14 papers; 52%). Corporate hackathons provide par-
ticipants with a low-risk environment in which they can (i) learn or try something new, as
well as (ii) teach what they do and how they do it (S9, S11, S13). Therefore, hackathons
foster shared learning in two manners (S8, S16). First, through their dynamics, which
involves face-to-face discussions and overall interactions (S4), ground-breaking tech-
nology and challenges to be solved and participants that often come excited to learn
something new and useful (S10). Second, through a common initial phase in which
participants receive technical training or independently explore (e.g. by reading tutorials
or asking mentors) software tools, APIs, programming languages, techniques and arte-
facts to adopt in their projects (S3, S7, S9). Participants also earn or exercise soft skills,
such as team collaboration, leadership and presentation abilities (S1, S12, S13).

In internal hackathons, employees can develop a shared understanding via infor-
mation exchange among different team members (S16). In their turn, external hacka-
thons enable companies to communicate and obtain ideas and experiences from people
with different backgrounds. From an ecosystem view, hackathons create a knowledge
flow in a privileged and structured way between third parties and a keystone (S22,
S23). Therefore, these events establish a process of knowledge transfer (S16, S17) and
recognition, since participants also prove their skills (S8).

Another relevant social benefit is promoting interactions among participants
(SB2), which we observed in 13 papers (48%). Once companies organise a hackathon,
they bring people together and provide opportunities for network expansion (S1, S24).
Participants get the opportunity to interact in a different context and establish new and
deeper relationships (S16). The dynamics of hackathons also favours informal con-
versations among attendees, and sustains cooperation even after the event (S3). Par-
ticipants recognise the advantage of interacting with diverse people that may hold
varying types of knowledge from different fields of expertise (S10, S18).

In internal hackathons, the intensive work during the event is a seed for more
efficient collaboration and stronger team bond in future projects (S9). External hacka-
thons generate an additional benefit. They enable co-creation of novel solutions and new
connections among companies involved, i.e. those organising, supporting or partici-
pating (e.g. start-ups, SMEs, external developers adopting or experimenting the API)
(S13, S20). Participants gain visibility and meet new partners and suppliers through their
common interests (S23). For instance, S11 cited a company that plans to invite tech
partners to join its hackathon. We detail this context of community evolution in SB4.

In general, in the context of ecosystems, hackathons can foster longer collabora-
tions after the event (S13). Smaller companies perceive hackathons as a chance to join
an ecosystem by interacting with bigger players – who can shop for ready-made
solutions from start-up firms, for instance (S8). They may also partner with similar
firms: S11 reported on the continued collaboration between two companies to further
develop the hackathon idea, while S12 analysed the emergence of ecosystems formed
by start-ups (S12). For the ecosystem to flourish, it is paramount that the keystone
understands the hackathon as a strategy to share a larger portion of conception and
development (S23).

374 G. Valença et al.

The primary studies also reinforced that hackathons are means of promoting cul-
tural change (SB3) (9 papers, 33%). They are eye-opening events (S23) that foster
innovative thinking (S5) and entrepreneurial spirit towards new business opportunities
(S10, S11). Participants not only gain new skills, but also start to embrace a solution-
oriented and self-directed mind-set (S11). In light of that, a growing number of busi-
nesses are adopting hackathons as innovation contests that can introduce a result-driven
innovation culture (S2, S17). Internally, hackathons can transform corporate culture
(S20) by introducing (i) an agile and flexible way of working (S4), (ii) freedom to
create new solutions based on participants own ideas (S10) and (iii) a more open
culture that allows everyone to see opportunities outside their current positions, even in
other areas (S23).

Hackathon also lead software development towards agile and integrated processes.
For instance, in internal hackathons, teams from different areas work together for a
common goal (S23). Moreover, hackathons promote continuous development and
integration for solutions to be created in a short timeframe (S2). Such principles are a
path to turn passive users into active participants in a software ecosystem (S21).

Another frequent social benefit of hackathons mentioned in the studied papers is
attracting new partners (SB4) (8 papers, 30%). Most students in a corporate hackathon
are getting their first contact with the IT industry. The positive and motivating envi-
ronment of the event may turn them into new hackathon mentors, or active contributors
and users of the platform (S3, S12). For instance, S18 reported on hackathon teams that
expressed their interest to continue working on their projects until completion. They
intended to add further refinements and features to the platform, which was the centre
of the hackathon (S4). In particular, participants may act as evangelists once they seek
visibility for their projects or for the ecosystem itself (S17). In a hackathon reported by
S3, students created blogs to promote their projects and posted links to their source-
code in mailing lists. Therefore, hackathons entail ecosystem growth by building a
(i) community of users and experts, as well as (ii) strategic business-to-business net-
works (S8, S11, S24). The event can shape or define the ecosystem by evolving its
community with new complementors, partners and suppliers (S23). These actors will
contribute for product development and improvement via open innovation and co-
creation (S4).

An additional benefit of a corporate hackathon is the possibility of recruiting
talents/seeking new employees (SB5) (3 papers, 11%). The literature revealed that
recruitment is not usual in hackathons. However, players organising the event may
perceive it as a good opportunity to attract skilled workers (S8, S24). S23 reported on a
company that used the hackathon to recruit developers for their subsidiary. Hackathons
usually bring IT passionate and skilled people closer to companies (S24). Participants
may look for (new) positions in the companies involved in the event or within their
ecosystems (e.g. to nurture the network with new solutions by acting as complementors).

Final benefits from a social perspective involve leveraging participants’ motivation
(SB6) (2 papers, 7%) and strengthening the collaboration with academia (SB7)
(2 papers, 7%). The first one reveals that hackathons reinforce a positive and moti-
vating work environment (S1) with challenges that foster a “sense of achievement”
(S24). The second one denotes that universities may not simply act as co-organisers or
places to locate the event (S8). For instance, in S11, a company organised a hackathon

On the Benefits of Corporate Hackathons for Software Ecosystems 375

to collaborate with students of business, well-being, and game development, i.e., the
company collaborated with a university of applied science.

Technical Benefits. In the technical dimension of an ecosystem, we explore the solu-
tions provided by participants, generally built and integrated via a common platform.

Most of the primary studies denote that hackathons are initiatives for innovating
the software product/platform (TB1) (22 papers, 81%). The premise of a corporate
(external) hackathon is to enhance software development by using the point of view of
external professionals (S23). Hence, companies can identify new business opportuni-
ties due to new product or service ideas raised by such outside world (S17). Hacka-
thons favour innovation by acting as time-based contests that accelerate development,
using agile software practices, new ways of collaborating, in addition to multiple social
and technological resources (S21). They gather people from diverse backgrounds, who
hold a “can-do” and “hands-on” mind-set to solve focused challenges (S2, S4, S18).
With varied and interdisciplinary stakeholders in the same location, hackathons enable
some sort of requirements elicitation, discussion and refinement (S8, S16). The cre-
ative, real-world grounding, and semi-structured process of a hackathon fosters self-
disruption by helping participants to “think outside the box” (S7, S16, S24).

Hackathons frontload and speed up the innovation process, comprising their whole
flow, from identifying and assessing relevant problems to unexpected solutions and
their (often partial) implementation (S4, S5, S11, S20, S23, S24). This process can be
based on a platform or product, with organisers supplying participants with a public
database or SDK, for instance. As an example, S25 analysed a hackathon around an
ecosystem, in which Microsoft and Samsung provided tools and SDKs for augmented
reality and Internet-of-Things for attendees to combine them with a media API.

Hackathon participants deliver different forms of innovation to improve a com-
pany’s platform or portfolio. Outcomes range from fresh ideas to proofs-of-concept and
(early) prototypes (to be integrated into existing products) or even Minimum Viable
Products (MVPs) (S3, S12, S13). Companies may also collect suggestions for new
business models or feedback on current ideas and/or products (S4, S10, S19, S23, S24).

S17 argues the organising company can also see hackathon participants as cus-
tomers, understanding how and why they use its products or services (S17). S1 and S11
reported on promising ideas that can receive funding for further development in the
form of projects and even become future products. In S9, attendees reported several
issues and improvement requirements for a 3rd party API. They also used the API to
develop working prototypes. S4 and S12 described hackathons in which the winning
team was supposed to refine and finish the application after the event, in order to make
it available in an “app store”. In S23, the hackathon organiser archived ideas and
concepts that were not be implemented during the event to explore them based on
markets and available resources. In S26, the hackathon enabled participants to watch,
via social media, as their ideas speed from mind to market.

An additional result of hackathons is product documentation. Organising compa-
nies can benefit from synopses for the resulting solutions, as well as descriptions in
terms of how to use these solutions (S3, S18). For instance, S3 reported on a hackathon
in which participants created extensive documentation (including use cases) of the tools
in use and for those developed during the event.

376 G. Valença et al.

Hackathons are also means of promoting the software platform (TB2) (5 papers;
19%). Platform owners can expose an API as the underlying technology upon which
new solutions will be created. In particular, partner companies supporting the event gain
the same advantage. Both keystone and its partners often prepare the participants by
explaining their platforms in detail. Since most participants of hackathons are profes-
sional users of SDKs and APIs, companies may perceive them as a valuable group of
influencers (S25). It means hackathons are useful to reach out to talented third-party
developers and market the platforms, which can then be adopted as a basis for future
development, therefore evolving the ecosystem (S11). In S10, organisers described a
SDK, focused on the APIs, which participants were required to use at the hackathon. In a
similar fashion, in the case presented by S12, students had basic training on Bluemix, the
cloud platform as a service from IBM. In another hackathon at IBM, globally distributed
researchers and engineers interacted with the “API ecosystem” (S15). Finally, in S25,
we identified a case in which a VR start-up sent an enthusiastic representative to the
hackathon to demonstrate their platform in a short breakout session.

The innovating ideas and preliminary applications developed by the teams during
the event prove to be a catalyst in assessing the software platform (TB3) (4 papers;
15%) by providing feedback about the platform’s technical details (e.g. bottlenecks,
bugs) and/or design (S9, S10). In S9, the key contributions concerned higher-level
design decisions and understanding of the developers’ experience. A similar result was
reported by S22, which described that enablers and obstacles to third-party develop-
ment were perceived during a hackathon: a security feature proved to be challenging to
use, which caused developers to adopt workarounds and change their initial idea (S22).
In S14, a keystone analysed the acceptance of a new platform feature, which proved to
be popular during the event: all teams used it for app development.

Business Benefits. The business dimension of ecosystems involves the strategies (e.g.
business and revenue model), vision and customer base, among other elements.

From a business perspective, the most relevant benefit is improving company and
product image (BB1) (6 papers; 22%). Promoting hackathons will position the
organisers (the company itself, its partners, the university hosting the event, etc.) in the
trending scope (S12). This suggests these parties are enablers of innovation (S4),
maintaining “their cool profile”, stated S25. Corporate and product brand promotion
steams from good publicity in local media, for instance (S8, S11, S20). Another
important and natural marketing channel lies in participants, who can raise the visibility
of the platform owner by telling about their experience to their peers (S25).

We also observed corporate hackathons as initiatives of promoting the creation of
new start-ups/companies (BB2) (3 papers; 11%). This means hackathons can act as an
incubation of start-ups (S21, S25). Although participants focus on problem solving and
product development, the instruments (e.g. agile practices, list of challenges, etc.) and
conditions (e.g. creative thinking, performance under pressure, etc.) experienced in a
hackathon naturally shape a start-up or intra/entrepreneurial spirit (S11).

Finally, hackathons are forms of raising the flow of resources (BB3) (1 paper; 4%)
within the ecosystem. According to S4, in these events, it is possible to find new
investors for the company, product or platform (S4). Moreover, the several solutions
developed during a hackathon are also leveraging intellectual property (BB4) (1 paper;

On the Benefits of Corporate Hackathons for Software Ecosystems 377

4%). Participants and the companies themselves can benefit from IP development (S20),
depending on hackathon terms (e.g. joint ownership, assignment agreement, etc.).

We can conclude that, from a technical perspective, hackathons can accelerate the
early phases of the development of new creative solutions, ultimately contributing to
the creation a new codebase (S3, S4, S5, S7). In a social perspective, hackathons are
means to change companies’ culture toward a more rapid, responsive, and innovative
direction (S11). Finally, from a business perspective, keystones can bring direct value
to ecosystems by leveraging hackathons to advance their technologies (S9, S10).

5 Discussion

Our analysis revealed that social aspects prevail among the reported benefits that
companies may gain by conducting a hackathon. The social benefits was the greater (7
benefits; 50% of the total) and the most frequent (51 text excerpts/citations) set among
the primary studies. A corporate hackathon enables participants (either employees or
outsiders) to learn or expand their technical expertise (SB1), which is particularly
important for a software ecosystem. This is necessary for a software developer to
become fluent in the technical requirements necessary to create third party solutions in
the ecosystem. Hackathons also bring new knowledge inside the company. The
stimulating and highly participative environment of corporate hackathons stimulates
the creation of new ideas and the analysis of the problem from different viewpoints.
Hence, hackathons support innovative efforts. They are fruitful scenarios to raise
ecosystem productivity, as the company can transform its current technology (ac-
companied by “materials of innovation” such as an API) into new solutions (e.g. new
third-party apps, services), at lower costs and in a faster pace [5].

Companies must also observe hackathons as means to gradually rely on a wide
network of partners and individuals. The event demands participants to interact during
solution development, which may also occur in breakout sessions and other moments for
networking (SB2). The company should structure the event to guarantee such collabo-
ration among participants, who may become part of the ecosystem (SB4). Therefore, it is
possible to argue that hackathons contribute to the robustness of the existing ecosystem
by extending its “social ecosystem” and promoting its connectedness [9, 18].

From the perspective of technical benefits, hackathons pave the way for companies
to promote their platforms, showing they can be used to solve varied issues (TB2). By
using such platforms, hackathon teams may lead to important innovations for the
ecosystem. We observed that these teams could post their solutions in the app store
once they had a MVP (TB1). Participants then generate an increase in ecosystem
productivity. Besides, once perceiving the usefulness of the technology made available
in the software platform, hackathon teams can act as evangelists and attract new players
to the software ecosystem. In short, hackathons support ecosystem robustness.

Hackathons also establish an efficient and effective way of holistically testing the
ecosystem (TB3). In other words, hackathon participants can assess the software
platform by identifying bugs and providing feedback on the ease of third-party
application development. In this way, they provide future directions for the develop-
ment of the software platform, and consequently of the ecosystem, from the perspective

378 G. Valença et al.

of complementors. For instance, they allow platform owners to verify to what extent
the requirements for applications are fulfilled. In doing so, participants contribute to
ecosystem productivity, as a result from overall improvements in the shared platform.

Finally, among business benefits, we noticed that hackathons can be an effective
publicity campaign. They help positioning the product or company brand (BB1), which
can expand to a larger public. Thereby, it will also support an increase in the com-
munity of users and complementors of the software ecosystem, raising its robustness.
Furthermore, corporate hackathons promote the emergence of new start-ups/companies
(BB2), thereby, allowing niche creation in software ecosystems.

As mentioned in Sect. 2.1, it is important to understand and monitor the health of a
software ecosystem. According to our literature review, hackathons provide benefits
that allow the three health measures (i.e. productivity, robustness and niche creation) to
increase. However, ecosystem health is influenced by other factors, such as consistent
and lasting partnerships, platform security, product quality and customer care [17].
Therefore, hackathons alone are not enough to guarantee the sustainability of a soft-
ware ecosystem. This raises an interesting research question for future work about the
extent to which hackathons contribute to software ecosystem health.

6 Conclusion

Our systematic mapping study suggested that hackathons majorly bring social benefits
for an ecosystem by promoting knowledge sharing and learning opportunities,
enhancing collaboration among ecosystem participants and growing the community.
We drew on ecosystem health elements to discuss what software companies can gain
while promoting these events. We revealed the extent to which hackathons can act as a
method to leverage a software ecosystem. Therefore, we help practitioners to better
understand the context of hackathons and gain insights on how to adopt them as a
collaborative and exploratory method for innovation.

In addition, we contribute to the literature on open innovation by shedding light on
factors not previously described by authors. Related literature on hackathons have
mostly focused on events leaded by government organisations. The recent systematic
reviews conducted by Attard et al. [1] and Safarov et al. [17] analysed hackathons on
open government data. These journal papers focus on civic hackathons, which rein-
forces the relevance of a mapping study that addresses a complementary view on the
topic. Our findings improve the theoretical conversation about corporate hackathons
and provide relevant inputs to approach the topic in future studies.

As a possible construct validity of our method, we acknowledge the risk of having
neglected some search terms that could have led us to new results. To address this issue,
we calibrated the search string by including terms identified in well-recognised literature
(i.e. relevant papers on hackathons from well-known/renowned events or journals). We
also tried to encompass specific or commercial terms coined by hackathons promoted by
big companies. Besides, we guaranteed that two researchers performed each phase of the
search process. Thereby, we established a continuous validation strategy, which
involved discussions between the researchers. To cope with conclusion validity, we
carefully organised the extraction files, creating different versions of our analysis to
enable an audit trial by checking how we generated a given finding.

On the Benefits of Corporate Hackathons for Software Ecosystems 379

We found a large emphasis on descriptive studies about corporate hackathons.
Hence, we see a current need for future research specifically in two areas:

• Techniques or methods to support corporate hackathons. To contribute towards
this research avenue, we aim to conduct ethnographic studies of hackathons in IT
industry to derive (i) facilitators/enablers and barriers/challenges and (ii) lessons
learned. Our goal is to elaborate a set of recommendations for organising hacka-
thons, highlighting their interrelation with the software engineering process. For
instance, exploring how these events enable an initial requirements phase, as we
reported while discussing the technical benefits of hackathons.

• Theories and conceptual models on corporate hackathons. We seek to address
this need by deepening our analysis of the benefits to interrelate them. For instance,
can a social benefit (e.g. attracting new partners [SB4]) promote a given technical
benefit (e.g. raising the flow of resources [BB3])? Then, we will continue examining
the primary papers to map and combine additional aspects of hackathons, such as
place of occurrence, main goals and steps. This will enable us to identify possible
patterns, e.g. a corporate hackathon performed at a university tends to focus on
brand positioning and enables an effective recruitment process. To discuss these
findings, we shall perform an expert review with organisers of hackathons.

Acknowledgements. This project was financially supported by the Brazilian National Research
Council (CNPq), processes [430905/2018-1], [420801/2016-2] and [311256/2018-0].

Appendix

ID Paper information

S1 Nolte, A., et al. You Hacked and Now What? Exploring Outcomes of a Corporate
Hackathon. ACM on Human-Computer Interaction. 2018

S2 Alkema, P. J., et al. Agile and hackathons: a case study of emergent practices at the
FNB codefest. South African Institute of Computer Scientists and Information
Technologists. ACM, 2017

S3 Trainer, E. H., et al. Community code engagements: summer of code & hackathons for
community building in scientific software. Int’l Conf. on Sup. Group Work. 2014

S4 Frey, F. J. and Luks, M. The innovation-driven hackathon: one means for accelerating
innovation. European Conf. on Pattern Languages of Programs. 2016

S5 Grace, L. Deciphering Hackathons and Game Jams through Play. Int’l Conf. on Game
Jams, Hackathons, and Game Creation Events. 2016

S6 Izvalov, A., et al. Comparison of game creation and engineering hackathons on the
global and local levels. Int’l Conf. on Game Jams, Hackathons, and Game Creation
Events. 2017

S7 Thomer, A. K., et al. Co-designing scientific software: Hackathons for participatory
interface design. CHI Conf. Extended Abstracts on Human Factors in Computing
Systems. 2016

(continued)

380 G. Valença et al.

(continued)

ID Paper information

S8 Porras, J., et al. Hackathons in software engineering education: lessons learned from a
decade of events. I’l Workshop on Software Eng. Education for Millennials. 2018

S9 Raatikainen, M., et al. Industrial experiences of organizing a hackathon to assess a
device-centric cloud ecosystem. Annual Computer Soft. and Applications Conf. 2013

S10 Rosell, B., et al. Unleashing innovation through internal hackathons. Innovations in
Technology Conference. 2014

S11 Komssi, M., et al. What are hackathons for? IEEE Software 32 (5). 2015
S12 Avalos, M., et al. Hackathons, semesterathons, and summerathons as vehicles to

develop smart city local talent that via their innovations promote synergy between
industry, academia, government and citizens. Int’l Smart Cities Conf. 2017

S13 Pe-Than, E., et al. Designing Corporate Hackathons With a Purpose: The Future of
Software Development. IEEE Software 36 (1). 2019

S14 Tsukada, M., et al. Software defined media: Virtualization of audio-visual services.
Int’l Conf. on Communications. 2017

S15 Wittern, E., et al. A graph-based data model for API ecosystem insights. Int’l Conf. on
Web Services. 2014

S16 Saravi, S., et al. A Systems Engineering Hackathon – A Methodology Involving
Multiple Stakeholders to Progress Conceptual Design of a Complex Engineered
Product. IEEE Access 6. 2018

S17 Kan, S., et al. Customer Experience Transformation in the Aviation Industry: Business
Strategy Realization through Design Thinking, Innovation Management, and HPT.
Performance Improvement 58 (1). 2019

S18 Busby, B. and Lesko, A. M. Closing gaps between open software and public data in a
hackathon setting: user-centered software prototyping. F1000Research 5. 2016

S19 Helander, M., et al. Looking for great ideas: Analyzing the innovation jam. Workshop
on Web Mining and Social Network Analysis. 2007

S20 Flores, M., et al. How can hackathons accelerate corporate innovation?. Int’l Conf. on
Advances in Production Management Systems. 2018

S21 Lindtner, S., et al. Emerging sites of HCI innovation: hackerspaces, hardware startups
& incubators. Conf. on Human Factors in Computing Systems. 2014

S22 Dal Bianco, V., et al. The role of platform boundary resources in software ecosystems:
A case study. Conf. on Software Architecture. 2014

S23 Herala, Antti, et al. Strategy for Data: Open it or Hack it?. Journal of Theoretical and
Applied Electronic Commerce Research 14 (2). 2019

S24 Granados, C. and Pareja-Eastaway, M. How do collaborative practices contribute to
innovation in large organisations? The case of hackathons. Innovation. 2019

S25 Zukin, S. and Papadantonakis, M. Hackathons as Co-optation ritual: Socializing
workers and institutionalizing innovation in the “new” economy. Precarious work.
2017

S26 Alänge, S. and Steiber, A. Three operational models for ambidexterity in large
corporations. Triple Helix 5 (1). 2018

S27 Menon, K., et al. Industrial internet platforms: A conceptual evaluation from a product
lifecycle management perspective. Journal of Eng. Manufacture 233 (5). 2018

On the Benefits of Corporate Hackathons for Software Ecosystems 381

References

1. Attard, J.: A systematic review of open government data initiatives. Gov. Inf. Q. 32(4), 399–
418 (2015)

2. Che, M., Perry, D.E.: Architectural design decisions in open software development: a
transition to software ecosystems. In: Australian Software Engineering Conference, pp. 58–
61 (2014)

3. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: IEEE International Symposium on Empirical Software Engineering and Measurement,
pp. 275–284 (2011)

4. Herala, A.: Strategy for data: open it or hack it? J. Theor. Appl. Electron. Commer. Res.
14(2), 33–46 (2019)

5. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3), 68–81 (2004)
6. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research agenda for

software ecosystems. In: 31st International Conference on Software Engineering, pp. 187–
190 (2009)

7. Komssi, M., et al.: What are hackathons for? IEEE Softw. 32(5), 60–67 (2015)
8. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems – a conceptual

framework proposal. In: International Workshop on Software Ecosystems, pp. 33–44 (2013)
9. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review. J. Syst.

Softw. 86(5), 1294–1306 (2013)
10. Nambisan, S., Siegel, D., Kenney, M.: On open innovation, platforms, and entrepreneur-

ship. Strateg. Entrep. J. 12(3), 354–368 (2018)
11. Nolte, A., et al.: You hacked and now what? - Exploring outcomes of a corporate Hackathon.

In: PACMHCI 2(CSCW), pp. 1–23 (2018)
12. Pe-Than, E., et al.: Designing corporate Hackathons with a purpose: the future of software

development. IEEE Softw. 36(1), 15–22 (2019)
13. Petersen, K., et al.: Systematic mapping studies in software engineering. In: International

Conference on Evaluation and Assessment in Software Engineering, pp. 68–77 (2008)
14. Porras, J., et al.: Hackathons in software engineering education: lessons learned from a

decade of events. In: 2nd International Workshop on Software Engineering Education for
Millennials, pp. 40–47 (2018)

15. Raatikainen, M. et al.: Industrial experiences of organizing a hackathon to assess a device-
centric cloud ecosystem. In: IEEE Annual Computer Software and Applications Conference,
pp. 790–799 (2013)

16. Rosell, B., Kumar, S., Shepherd, J.: Unleashing innovation through internal Hackathons. In:
IEEE Innovations in Technology Conference, pp. 1–8 (2014)

17. Safarov, I.: Utilization of open government data: a systematic literature review of types,
conditions, effects and users. Inf. Polity 22(1), 1–24 (2017)

18. Soussi, L.: Health vulnerabilities in software ecosystems: five cases of dying platforms. MS
thesis. Utrech University (2018)

19. Valença, G., Alves, C.: A theory of power in emerging software ecosystems formed by
small-to-medium enterprises. J. Syst. Softw. 13, 76–104 (2017)

20. Wieringa, R.: Requirements engineering paper classification and evaluation criteria: a
proposal and a discussion. Requir. Eng. 11(1), 102–107 (2006)

382 G. Valença et al.

Agile in the Era of Digitalization: A Finnish
Survey Study

Petri Kettunen1(&) , Maarit Laanti2, Fabian Fagerholm1,3 ,
and Tommi Mikkonen1

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
{petri.kettunen,fabian.fagerholm,

tommi.mikkonen}@helsinki.fi
2 Nitor Delta, Helsinki, Finland
maarit.laanti@nitor.com

3 Blekinge University of Technology, Karlskrona, Sweden
fabian.fagerholm@bth.se

Abstract. Agile software development has been applied since the early 2000s.
It is now mainstream industrial practice in information and communication
technology (ICT) companies and IT organizations. However, recently increasing
and even disruptive digitalization has brought new drivers and needs for agility
both in software organizations as well as in traditional companies, which are
becoming more and more software-intensive. Following that line of develop-
ments, based on our recent survey conducted in Finland in 2018, in this paper
we explore the current state of the affairs with respect to how different orga-
nizations currently address agility and agile development in both IT and non-
software industrial sectors. The results show that operative goals (productivity,
quality) are considered the most important ones to achieve by agile means.
Scrum, Kanban and DevOps are the most frequently reported methods, and
SAFe is the dominant scaling model. Lead time metrics are the most typically
followed measurements. The operative goals as well as responsiveness are also
the most highly ranked future aims. The impacts of digitalization are considered
substantial but agile developments are seen to address them well. As a con-
clusion of this survey study, there is no “one agile way” for all. Different
organizations seem to emphasize multiple aspects of agility when they develop,
adapt and even transform themselves. Yet, also many commonalities were
indicated.

Keywords: Agile software development � Enterprise agility � Transformation �
Digitalization � Survey

1 Introduction

Agile methods and practices are nowadays mainstream in software development
organizations. Agile practices and ways of working are also increasingly applied in
other functional areas and operations of large companies in different industry sectors.
Moreover, modern software-intensive companies facing digitalization are transforming
to become agile enterprises with business agility [1].

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 383–398, 2019.
https://doi.org/10.1007/978-3-030-35333-9_28

http://orcid.org/0000-0002-2928-5885
http://orcid.org/0000-0002-7298-3021
http://orcid.org/0000-0002-8540-9918
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_28

When agile software development methods and practices are extended and scaled
up to enterprise levels, new competences and organizational capabilities beyond soft-
ware engineering are required. It is thus important for each particular organization be
able to understand their specific needs and agile means in order to achieve the goals of
agility in their cases [2, 3].

There is a need for more empirical research to understand the current state of the
agile practice in order to advance relevant software engineering research [4]. In this
paper, we present current results about agility in mostly large organizations based on
our recent survey study done in Finland. Various agile surveys have been conducted
earlier, but current factors like disruptive digitalization may bring agile software
development and business agility more topical for different organizations [5–7].
Compared to previous studies, we are interested not only in measuring how widely
agile methods are currently applied in industrial practice but we want also to under-
stand why and how different companies want to be(come) agile and how agility will
possibly be evolving in the future in different software-intensive industries.

Previously, we have published selected results of the survey focusing on questions
about Scaled Agile Framework (SAFe) adoption and agile transformation [8, 9]. This
continuation paper examines primarily different questions of the survey data.

The rest of this paper is organized as follows. Section 2 charters the research
background and Sect. 3 describes the survey design. In Sect. 4 designated results of the
survey data are presented followed by comparative discussion in Sect. 5. In Sect. 6 we
conclude with pointers to planned further work.

2 Background

2.1 Current State of Practice and Trends

Agile software development (ASD) has been practiced in industry – also in Finland –

for two decades now since the publication of the Agile Manifesto in the early 2000s.
Since then agile development has evolved considerably [10].

One of the main development trends since the early days is that ASD has expanded
from small colocated team setups to large-scale and distributed settings. Scaling
frameworks – particularly Scaled Agile Framework (SAFe) – have been developed to
assist in large-scale agile. However, many challenges are still faced [11–13].

Furthermore, agile has been expanded beyond software development to other busi-
ness processes and organizational functions. Such agile transformations in organizations
are conducted to achieve enterprise-level agility particularly in large, established com-
panies [5, 6]. Notably, agile adoptions are not just something that took place in the early
era of ASD (2001–2010) but they are also currently ongoing in many organizations [14].

ASD methods and practices are nowadays applied also in hardware and systems
engineering functions in product development organizations. That requires adapting the
lightweight agile ways of working with the inherent constraints and requirements of
complex systems development in the specific domains (e.g., automotive) [15, 16].

In all, since the early days 2000s both the technical and the business environments
of software organizations and companies in different industry sectors and domains have

384 P. Kettunen et al.

changed considerably – sometimes even radically. Digitalization is nowadays a
potential impact factor in many industry sectors, not limiting to the ICT sector alone.

Those are the underlying motivations for our empirical research. What agile soft-
ware development has previously been may not reflect fully the actual state today and
trends in the foreseeable future [4, 10].

2.2 Research Streams

In addition to the progressed state of the practice (Sect. 2.1), agile software develop-
ment related research has advanced in many avenues both conceptually and empirically
although it may have been lagging behind practice [4]. In general, agility is not specific
to software development, and agile enterprises have been considered much before the
Agile Manifesto in 2001 – particularly in manufacturing industries [17]. Some seminal
works to ground and define information systems development (ISD) agility concep-
tually have been published [18]. Harmonized and consistent understanding of what
constitutes agility in software systems development would make it possible to define
comparable measures for rigorous empirical agile research [19, 20]. However, even the
agile terminology is still not fully settled and different terms are sometimes used
interchangeably for the same concepts in research literature [13].

Current popular agile research themes include large-scale agile software develop-
ment and organizational transformations for enterprise agile [4, 13, 21]. DevOps is one
of the recent topics.

At the enterprise level recent research is advancing towards strategic agility and,
ultimately, to agile software enterprises [7]. Like agile practice, agile research is
gradually expanding beyond software to address strategic enterprise agility in software
organizations and software-intensive companies. That research stream is our overar-
ching and guiding motivation with the intention to contribute empirical evidence with
this survey study. In essence, we are continuing here our agile research work started in
early 2000s [2, 22].

Overall, we do recognize that our research themes are broad and partially multi-
disciplinary. In particular, there are additional foundational reference areas such as
management and organization sciences addressing organizational transformations and
digitalization in industries. It is not possible to cover such broad topics in here, but we
consider them important for framing and comprehending agile development and agility
in software-intensive company contexts with various contingencies [1].

2.3 Prior and Related Studies

Considering prior and related survey works, probably one of the most internationally
known ones is the annual State of Agile survey by VersionOne Inc. [14]. It covers agile
adoption, benefits of adopting agile, agile methods and practices used, success metrics
of agile initiatives/agile transformations and agile projects, and scaling agile.

The European HELENA study initiated in 2016 has surveyed software systems
development organizations for their agile development methods and practices with
respect to their different combinations (hybrid approaches) in different industry

Agile in the Era of Digitalization: A Finnish Survey Study 385

domains [23]. It also explores the reasons for implementing hybrid development
approaches and the ways they are formed in practice.

In Finland, a particular scientific survey study was done in 2012 [24]. It explored
the usage of agile and lean methods, practices and principles, the goals for agile and
lean adoptions, their challenges and limiting factors, and the perceived improvement
effects of adoptions. Also the future plans were enquired. Furthermore, the Finnish
Software Industry Survey examined agility in 2014 [25]. The results indicated differ-
ences in agility (e.g., flexibility) in different types and sizes of software organizations.

We have been experiencing industrial agile practice and changes in Finland during
the period 2012–2018 (i.e., since the study in [24] and our survey). However, we are
not aware of comparable longitudinal research about agile evolution in Finland.

3 Research Design

On the whole, the purpose of our survey research was to examine the current state of
agile development and enterprise agility in Finland. We are interested in measuring
how widely agile methods and practices are currently applied in industrial practice and
how that is evolving. Moreover, we want to understand why different companies want
to change – even transform – with agile means and how beneficial and successful their
particular changes have been. Digitalization is one of our intriguing context factors.
The target population was intentionally not limited to software companies since we
were also interested in non-software companies (i.e., companies in other industries than
IT) currently facing digitalization and becoming more software-intensive as “software
houses”. We aimed to investigate not only the current whereabouts but also the future
intentions of the companies.

The survey questionnaire was composed by starting from our selected main
research themes of interests. The questionnaire structure comprised the following
primary sections: Company’s state of agile, Agile company transformation, Agile
future of the company.

The specific questions were compiled on the one hand by referring to prior surveys
for comparison purposes (e.g., [24, 26]) and by deriving from our industrial experi-
ences and our prior works (e.g., [2, 22]) on the other hand. The draft questionnaire was
first piloted both in our industrial and academic organizations. The final version con-
sisted of total of 50 questions (including background information items). Certain
questions were only applicable depending on their preceding selector questions (e.g.,
whether SAFe is in use or not). The questions were stated both in Finnish and in
English. Table 1 presents the question items selected for analysis in this paper.

For data collection, the survey was implemented as a web-based online question-
naire with the Finnish/English language choice. We considered several potential dis-
tribution channels in order to reach a wide, representative sample population. However,
due to pragmatic constraints we decided to use convenience sampling. The question-
naire was distributed with one Finnish consulting company mailing list mass postings to
over 600 people collected from people interested in the company’s offering of software
consultancy and agile transformation services, and with social media. It was open for
responding for 4 weeks in Nov–Dec 2018. We received 118 finished responses.

386 P. Kettunen et al.

4 Results

Due to the space constraints, we cannot cover all the questions of our survey in here. In
order to investigate the research themes of agility and agile development changes, in
this paper we focus on the question items shown in Table 1.

4.1 Background Information

The majority (75%) of our respondents in this sample were in large organizations: 44
reported that their organization is very large (more than 5000 persons) and also 44 large
(more than 250 persons; In Finland companies with < 250 employees are SMEs).

The respondents were also asked to designate the industry/business sector of their
companies. The survey question listed 23 answering choices (denoted here as C1–C23)
and an open choice field. Our respondents represented more than 15 different domains
with ICT sector being the most frequent one as shown in Table 2. However, notably,
taking together the majority of the respondents reported their companies to be in other
sectors than the ICT.

Table 1. Questionnaire main sections and selected question items

Company’s state of agile
– What agile methods and models are there in use in Your company?
– What particular (agile) measurements does the company follow up?
Agile company transformation
– Why does Your company want to become more agile?
– Where is the current overall focus of agility in Your company?
Agile future of the company
– What goals does the company attempt to achieve by agile means?
– How much does digitalization impact the agile development of Your company?
Background information (organization and respondent)
– What is the primary sector (line of business) of Your company?
– What is your primary role in Your organization?

Table 2. What is the primary sector (line of business) of Your company?

(top 5) (multi choice not allowed) n (N = 115, ‘No answer’
choice N/A = 0)

% (out of
N)

C1 ICT sector (including consulting),
information technology

38 33

C2 Financial sector (banking, insurance) 27 23
C4 Telecom services 13 11
C17 Traffic, logistics 8 7
C3 Retail sector 4 3

Agile in the Era of Digitalization: A Finnish Survey Study 387

The questionnaire included also a few question items concerning the respondent’s
whereabouts and viewpoints of the company. Because our overall aim is to understand
agility in software development organizations and companies as a whole, it is illumi-
nating to have such contextual background information for analysis. Table 3 shows that
our sample includes respondents with diverse roles. However, most of the respondents
are directly involved with software development.

4.2 Company’s State of Agile

To begin with, one of the first questions of the questionnaire was about the agile
methods and models usage in companies. The question presented 13 choices and an
open field as shown in Table 4. Notably the choices included typical software methods
(e.g., Scrum, XP) but also more organizational ones including scaling agile.

The majority of the respondents reported that Scrum, Kanban and DevOps are
widely used. Also Lean methods appeared to be commonplace. Considering the agile
scaling methods, Scaled Agile Framework (SAFe) was reported by more than half of
our respondents while Large Scale Scrum (LeSS) and Disciplined Agile Delivery
(DAD) are clearly less frequently used. In-house scaled agile models are not extremely
unusual. We have earlier published more detailed results of the SAFe adoption else-
where [9].

Table 3. What is your primary role in Your organization?

(top 10) (multi choice not allowed) n (N = 117,
N/A = 2)

% (out of
N)

Software development or supporting it (including project
management)

38 32

Software process development, organizational
development (coach)

20 17

Architecture and technology development 11 9
Software development management (R&D) 10 9
Product management 8 7
Business management 6 5
Business process development 4 3
Sales, marketing, customer relationships or equal 4 3
Information/Knowledge management 3 3
Personnel management (HR and supervising excluding top
management)

2 2

388 P. Kettunen et al.

In addition to the agile method and model usage, we enquired also what particular
measurements and metrics the companies use. The question was fully open with no
prescribed choices given except ‘No metrics’. Table 5 presents the different mea-
surements that the respondents indicated. Note that some respondents reported many.
Because of the open answering form, the responses (some of them were in Finnish) are
here coded and grouped as qualitative data.

Development process operational measurements (lead time, cycle time; outcomes)
appear to be the most typically followed internal attributes. However, also some
external customer-related measurements (value, NPS) seem to be in place.

Table 4. What agile methods and models are there in use in Your company (multi choice)? (All
methods and models which Your company uses in software development at least partially)

Choice n (N = 116, N/A = 3) % (out of N)

Scrum 101 89
Kanban 97 86
DevOps 73 65
Scaled Agile Framework (SAFe) 71 63
Lean methods 66 58
Agile portfolio management 20 18
In-house scaled agile development model (what kind) 16 14
Agile rolling budgeting (or no budgeting at all) 14 12
Extreme Programming (XP) 13 12
Spotify model 11 10
Large Scale Scrum (LeSS) 7 6
Agile Modelling 7 6
Disciplined Agile Delivery (DAD) 1 1
Other 1 1

Table 5. What particular (agile) measurements does the company follow up?

(open choice) n (N = 114,
N/A = 22)

% (out of
N)

Key measurements (what): 46 40
– Lead time (features, epics, issues), cycle time, release
cycle

29

– Value 9
– Defects 6
– Outcomes, releases, deployments 4
– Velocity 4
– Automation (test, release) 4
– Employee experience, “happy-or-not” 4
– Predictability 3
– NPS, customer experience 3
–MISC. (several nominations, other than the ones above) <3
No metrics 47 41

Agile in the Era of Digitalization: A Finnish Survey Study 389

4.3 Agile Company Transformation

In this survey, we were especially interested in discovering how extensively companies
have performed agile adoptions and even company-wide agile transformations. The
questionnaire included one specific question about when there has been executed or
planned agile transformation in the company most recently and another question of
how the company is/has been executing agile transformation. We have presented those
results earlier elsewhere [8].

In this paper, we address the fundamental question for what reasons and purposes
companies need and want to be or become more agile. Table 6 shows the responses for
that question. There were 15 choices listed and an open choice field. Operative pro-
ductivity and quality were reported most often, but overall there was a lot of variance in
the reasons for agile adoption. That is, companies have many reasons for being or
becoming (more) agile. We return to this in Sect. 4.4 (Table 10).

Table 6. Why does Your company want to become more agile (multi choice)?

Choice n (N = 86,
N/A = 2)

% (out of
N)

(4) Productivity and quality (operative) 62 72
(3) Responsiveness to customer/market changes (new features) 56 65
(8) Job satisfaction 46 53
(12) Fast/continuous organizational learning in rapidly changing
operating environments

44 51

(2) Competitive and desirable products (new product
development)

41 48

(9) Project manageability 41 48
(6) Customer experience 38 44
(11) Strategic and organizational flexibility 38 44
(5) Customer satisfaction 37 43
(1) New business (product and service innovation) 28 33
(7) User experience (UX) 27 31
(15) Employer brand 25 29
(10) Continuous budgeting, resourcing 18 21
(14) Company image 18 21
(13) Customers require/wish (agile development) 13 15
(16) Other 3 3

390 P. Kettunen et al.

Table 7 brings a comparative view of the relative importance of different reasons in
different industry sectors (top 3, c.f., Table 2). The productivity and quality (choice 4)
is ranked high in all the ICT (C1), financial (C2) and telecom service (C4) sectors,
followed by responsiveness (choice 3). There appears to be some emphasis on also
customer-related reasons (choices 5, 6) and employees (choice 8). Competitive and
desirable products are also important reasons (choice 2). However, no statistical sig-
nificance in those industry sectors can be conjectured here.

In addition to asking for the specific reasons for being or becoming agile, we
inquired also more broadly, where the companies put currently weight on their agility
in general. The question item listed 7 choices including ‘No particular focusing’ and an
open choice field. Note that we did not give any prescribed definition of ‘agility’.
Table 8 shows that the respondents indicated operative goals most frequently. Both
organizational and technological means are utilized.

Table 9 gives an industry-specific (top 3, c.f., Table 2) view of the agility
emphasis. The ICT sector (C1) appears to put noticeable weight also on strategic goals
while in the financial sector companies (C2) the overall agility of the company seems to
be important. Again, no statistical significance in those sectors can be conjectured here.

Table 7. Why does Your company want to become more agile (multi choice)?
– BY INDUSTRY SECTOR (see Tables 2 and 6 for the choices)

Industry sector Rank
#1 #2 #3 #4 #5

C1 ICT sector (including consulting), information
technology

(4) (3) (8) (2) (9),
(12)

C2 Financial sector (banking, insurance) (3),
(4),
(8)

(6) (5)

C4 Telecom services (4) (3) (9) (1),
(2),
(5),
(12)

Table 8. Where is the current overall focus of agility in Your company (multi choice)?
(Evaluate the goals and means of the company from your point of view in your opinion)

Choice n (N = 86,
N/A = 2)

% (out of
N)

(2) Operative goals (e.g., internal efficiency) 44 51
(4) Organizational means (e.g., self-organizing teams) 41 48
(5) Scaling agile development 35 41
(3) Technological means (e.g., improved work methods) 34 40
(6) Overall agility of the company 27 31
(1) Strategic goals (e.g., speed advantage in the business
sector)

20 23

(8) No particular focusing 4 5
(7) Other 2 2

Agile in the Era of Digitalization: A Finnish Survey Study 391

4.4 Agile Future of the Company

In addition to probing the current state of agile and agility in companies, we are also
interested in understanding their pictures of futures and the developmental scenario
paths. For that, we asked the respondents to portray the time period 2018–2020 from
their company’s point of view.

Table 10 presents the responses of what the respondents see important that their
companies attempt to achieve by agile means. The question item listed 13 different
choices and an open choice. The basic agile goals of productivity, quality and
responsiveness are the most indicated ones. However, there appear to be a wide range
of other aims to attain covering both external customer-facing items (e.g., customer
experience) and internal organizational ones (e.g., job satisfaction).

Table 9. Where is the current overall focus of agility in Your company (multi choice)?
– BY INDUSTRY SECTOR (see Tables 2 and 8 for the choices)

Industry sector Rank
#1 #2 #3 #4 #5

C1 ICT sector (including consulting), information
technology

(2) (3),
(4)

(1) (5)

C2 Financial sector (banking, insurance) (6) (2),
(4)

(3),
(5)

C4 Telecom services (5) (2) (3) (1) (6)

Table 10. What goals does the company attempt to achieve by agile means (multi choice)?
(Appraise the 3 most important ones (weight, urgency))

Choice n (N = 111,
N/A = 4)

% (out
of N)

Responsiveness to customer/market changes (new features) 55 50
Productivity and quality (operative) 55 50
Competitive and desirable products (new product
development)

28 25

Customer experience 27 24
Job satisfaction 27 24
Project manageability 26 23
Fast/continuous organizational learning in rapidly changing
operating environments

23 21

Customer satisfaction 21 19
Strategic and organizational flexibility 18 16
New business (product and service innovation) 12 11
User experience (UX) 11 10
Continuous budgeting, resourcing 3 3
Company image 3 3
Other 0 0

392 P. Kettunen et al.

Finally, addressing directly the factor of digitalization, we asked the respondents to
evaluate the impacts of digitalization and how effectively their agile development fit
with them. The answering form was a 2-dimensional grid like depicted in Fig. 1. In
addition, there was an open field for specifying particular factors of digitalization. Note
that we did not give any prescribed definition of ‘digitalization’.

The distribution in Fig. 1 shows that, overall, the respondents consider both the
impacts of digitalization and the matching of agile developments in their companies
substantial. For the particular digitalization impact factors AI, robotics (automation)
and IoT were identified most frequently as presented in Table 11. Because of the open
answering form, the responses (some of them were in Finnish) are here coded and
grouped as qualitative data.

Table 11. What factors of digitalization (e.g., artificial intelligence, IoT) affect in particular?
– (N = 58)

(open comment) n % (out of N)

AI 25 44
Automation, robotics, RPA 20 34
IoT, IIoT 18 32
Data 10 18
VR, AR, XR 5 9
Analytics 4 7
ML 4 7
5G 4 7
Blockchain 4 7
MISC. (several nominations, other than the ones above) <4

Fig. 1. How much does digitalization impact the agile development of Your company? (Net
impact of the different factors and the corresponding usefulness of agile development)
– (N = 111, N/A = 20)

Agile in the Era of Digitalization: A Finnish Survey Study 393

5 Discussion

5.1 Comparative Analysis

Goals. Overall, the respondents indicated a wide range of targets for their companies
to pursuit by becoming more agile (see Table 6). Not surprisingly, operative goals
(productivity, quality) were the most often reported ones but also customer-facing goals
(responsiveness to customer/market changes and competitive, desirable products) were
ranked high which aligns with the agile value of satisfying customers. Those ones are
also emphasized as the future targets (Table 10). Notably also internal goals of job
satisfaction and organizational learning were reported to be important ones (Table 6).
However, overall there appear to be no profound differences in Tables 6 and 10. This
could be investigated further in different industry sectors (e.g., the choice Customer
experience). One explanatory factor may also be how different respondents have
interpreted the terms “more agile” and “agile means” and perceived the timeframe
(“become”, “future of the company”) in these questions.

Comparing and contrasting with related prior research, Rodríguez et al. reported that
the most important goals in agile and lean adoption are to increase productivity,
improve product and service quality and to reduce development cycle times and time-
to-market [24]. Those results are similar to our ones, operative productivity and quality
being the top in Table 6. VersionOne found that the most important reasons for
adopting agile are to accelerate software delivery, enhance ability to manage changing
priorities and to increase productivity [14, 26]. Those ones are also close to our results
in Table 6.

Measurements and Metrics. Interestingly enough, a substantial share (41%) of our
respondents indicated that the company follows up no particular metrics (see Table 5).
It could be due to the particular phases of the agile transformations in the companies
with no specific metrics selected yet. It could possibly also depend on the formulation
of the question – agile measurements and metrics could mean different things in
different roles (Table 3) and company contexts. This is an area of a further study.

Comparing the current focus of agility in companies and the key metrics, there
appear to be an alignment with operative goals being the main focus area (Table 8) and
lead time metrics being the most frequently used measurements (Table 5). Further-
more, operative productivity and responsiveness were reported most often as the
company agile targets (Table 6) which also aligns with the lead time and outcome
metrics being the key ones in Table 5.

In the prior related research, Rodríguez et al. does not cover any particular metrics
[24]. However, their results include the perceived effects of adoption of agile and lean
including for instance accelerated time-to-market/cycle time. We could expect those
organizations to somehow measure that. In our results (Table 5) lead time, cycle time
and velocity are related metrics.

VersionOne reports how success is measured with agile initiatives and with agile
projects [26]. For the latter, customer/user satisfaction is indicated most. In our results,
NPS and customer experience had only few occurrences.

394 P. Kettunen et al.

Velocity and Effort estimates were found to be the most highly influential metrics
reported in industrial agile studies included in one systematic literature review
(SLR) [27]. In our results, velocity was not ranked high and effort estimates did not
appear. The potential reason could be that these are rather team level metrics, and agile
development has evolved to be a subject for the whole company. Lead time was the
most often cited metric in our study while in contrast it was not ranked especially high
in the abovementioned SLR.

Innovation. Facilitating innovation is one of the principal underlying goals of agile
development methods, and empirical research evidence has been called for [19]. In our
survey, the following question item choices address innovation in particular (see
Tables 1, 6, 7 and 10):

– Why does Your company want to become more agile?
– What goals does the company attempt to achieve by agile means?

• New business (product and service innovation)
• Competitive and desirable products (new product development)

Interestingly, the goal ‘Competitive and desirable products (new product develop-
ment)’ is ranked relatively high while the higher-level goal ‘New business (product and
service innovation)’ appears to be less important (see Tables 6 and 10).

Future of Agile. Agile software development has been practiced for the past two
decades. During that time, there have been considerable evolution and expansion from
small colocated teams to large-scale agile and agile enterprise transformations. Some of
the most current and future trends foreseen are to join agile software development with
new emerging technologies including AI, IoT, Big data and AR/VR [10]. Table 11 in
our results indicate similar factors.

5.2 Implications

Managerial Implications. Following our findings and the analysis in Sect. 5.1, we
suggest the following recommendations for practitioners of agile software production
and for organizational agility development:

• Goals and means: Each organization should consider both the ends (agility) and the
means (agile development) strategically and systemically in their specific business
context. Each company should know why and how to change (Table 7).

• Measurements and metrics: The key measurements (Table 5) to follow should
match with the agile goals to be attained (Table 10). The metrics should be defined
unambiguously across the organization (e.g., “value” [28]).

• Innovation: Is there an overemphasis of (short-term) operative goals? Could fast/
continuous organizational learning be leveraged more for competitive and desirable
products (new product development) and new business (product and service inno-
vation) – c.f., Table 10? Each company should realize not only operative agility but
also enterprise (business) agility strategically and manage accordingly [1].

Agile in the Era of Digitalization: A Finnish Survey Study 395

• Future of agile: Each company should continuously realize possible impacts of
digitalization – which may be even disruptive – in its business domain(s) and
industry sector (Table 11). The selected agile means should be fitting (Fig. 1).

Theoretical Implications. Our survey instrument can be elaborated with theoretical
viewpoints of agility:

• Certain different questions (currently 50 items in the questionnaire) could be ana-
lyzed in combinations in order to form higher-level understanding of their potential
relationships in different organizations. For instance, the goals (Tables 6 and 10)
and measurements (Table 5) could conceptually be linked together. We had such an
initial conceptual research model underlying the current questionnaire design.

• Considering the focus areas of agility (Table 8), the results could be viewed from
different perspectives such project/process perspective vs. product perspective vs.
organizational perspective. That could be used to profile agility in different orga-
nizations. We have earlier designed a provisional agility profiler instrument and now
this survey questionnaire could possibly be coupled with that [2]. In addition, we
have earlier proposed an agile transformation model, which could also be joined [3].

• In general, digitalization may bring both internal (e.g., automation) and external
(e.g., user experience) impacts to different software-intensive organizations in dif-
ferent industry sectors. Understanding the whole in different companies needs
holistic frames and models in order to be able to align the strategic ends and to assess
how the selected agile means contribute in the specific contexts (c.f., Table 11).

5.3 Threats to Validity and Limitations

Considering the comparability and generalization, we acknowledge that a construct
validity concern in our questionnaire is whether all the respondents have interpreted
and conceived all the terms in the survey questionnaire in the same way (e.g., ‘agile
transformation’). However, also for instance Rodríguez et al. did not limit the usage of
agile with specific definitions [24]. A similar exploratory strategy by not giving preset
terminology definitions has been used also for instance in the HELENA survey [23].
We do not consider internal validity to be a significant concern since the purpose of the
survey is primarily exploratory rather than explanatory. We have thus been cautious not
draw decisive conclusions in this study. External validity is limited by the background
information collected (see Sect. 4.1). Research comparisons with industrial surveys
(e.g., VersionOne [14]) should take possible biases into account.

The design of our web-tool based questionnaire was such that the respondents could
skip questions. This produced a considerable amount of partially filled responses – not
every respondent replied to all questions. In this paper, our inclusion criteria has been to
take into account only finished respondents.

Due to the company-specific call-out (Sect. 3), sampling bias is a threat. With the
social media distribution, the response rate is unspecified. A general limitation is that
we did not ask the respondents to identify their organizations. Consequently, we cannot
tell the number of different responding companies. Rodríguez et al. acknowledged the
same constraint [24]. Due to those restrictions we refrain from evaluating how

396 P. Kettunen et al.

representative our respondent sample is with respect to all Finnish industries and
companies. However, the respondents represented several domains (see Table 2).

6 Conclusions

In this paper we have presented and analyzed selected results of the survey study, that
we have recently (2018) conducted in Finland. We examined how different software
organizations currently perform agile software development, how they consider orga-
nizational agility and how they change. Digitalization in different industry sectors was
one of our interest factors. The research results indicate that usual operative goals
(productivity, quality) and responsiveness are the most important targets to attain by
agile means. However, companies pay attention also to higher-level organizational
goals and transformational aims for their agility.

Our current survey data opens up room for further research. There are several
questions (50 altogether in the questionnaire) which were not covered in this paper.
They deserve further analysis. One potential approach could be to use the industry
sector (Table 2) and company size as the context variables, and to calculate possible
correlations. In addition, more cross-tabulations could be done (c.f., Tables 7 and 9).
One of our research hypotheses is that when the company management is committed
and actively participating, the enterprise-level agile transformation becomes strategic
and leads to determined, measured and sustainable effects (c.f., Table 8).

Furthermore, our future work plans include replicating the survey in other Nordic
countries and annually in Finland. That would make it possible to conduct further
comparative analysis and ascertain longer-term trends and evolutions – considering
especially such factors as digital transformations in different industrial domains.

References

1. Kettunen, P., Laanti, M.: Future software organizations – agile goals and roles. Eur.
J. Futures Res. 5, 16 (2017)

2. Kettunen, P.: Systematizing software-development agility: toward an enterprise capability
improvement framework. J. Enterp. Transform. 2(2), 81–104 (2012)

3. Laanti, M.: Agile transformation model for large software development organizations. In:
Tonelli, R., (ed.) Proceedings of the XP2017 Scientific Workshops, Article No. 19. ACM,
New York (2017)

4. Mishra, A., Garbajosa, J., Wang, X., Bosch, J., Abrahamsson, P.: Future directions in Agile
research: alignment and divergence between research and practice. J. Softw. Evol. Proc. 29,
e1884 (2017)

5. Ronzon, T., Buck, J., Eckstein, J.: Making companies nimble – from software agility to
business agility. IEEE Softw. 36(1), 79–85 (2019)

6. Prikladnicki, R., Lassenius, C., Carver, J.C.: Trends in agile: perspectives from the
practitioners. IEEE Softw. 33(6), 20–22 (2016)

7. Prikladnicki, R., Lassenius, C., Carver, J.C.: Trends in agile: from operational to strategic
agility. IEEE Softw. 36(1), 95–97 (2019)

Agile in the Era of Digitalization: A Finnish Survey Study 397

8. Kettunen, P., Laanti, M., Fagerholm, F., Mikkonen, T., Männistö, T.: Finnish enterprise
agile transformations: a survey study. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 97–
104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_12

9. Laanti, M., Kettunen, P.: SAFe adoptions in Finland: a survey research. In: Hoda, R. (ed.)
XP 2019. LNBIP, vol. 364, pp. 81–87. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30126-2_10

10. Hoda, R., Salleh, N., Grundy, J.: The rise and evolution of agile software development. IEEE
Softw. 35(5), 58–63 (2018)

11. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34(6), 98–103 (2017)
12. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: practices, challenges,

and success factors. J. Softw. Evol. Proc. 30, e1954 (2018)
13. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile

transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)
14. Version One 13th Annual State of Agile Report. https://stateofagile.versionone.com.

Accessed 21 May 2019
15. Knauss, E.: The missing requirements perspective in large-scale agile system development.

IEEE Softw. 36(3), 9–13 (2019)
16. Prikladnicki, R., Lassenius, C., Carver, J.C.: Trends in agile updated: perspectives from the

practitioners. IEEE Softw. 35(1), 109–111 (2018)
17. Goldman, S.L., Nagel, R.N., Preiss, K.: Agile Competitors and Virtual Organizations:

Strategies for Enriching the Customer. Van Nostrand Reinhold, New York (1995)
18. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information

systems development. Inf. Syst. Res. 20(3), 329–354 (2009)
19. Abrahamsson, P., Conboy, K., Wang, X.: ‘Lots done, more to do’: the current state of agile

systems development research. Eur. J. Inf. Syst. 18, 281–284 (2009)
20. Dingsøyr, T., Dybå, T., Abrahamsson, P.: A preliminary roadmap for empirical research on

agile software development. In: Melnik, G., Kruchten, P., Poppendieck, M. (eds.)
Proceedings of the Agile 2008 Conference, pp. 83–94. IEEE, Los Alamistos (2008)

21. Moe, N.B., Dingsøyr, T.: Emerging research themes and updated research agenda for large-
scale agile development: a summary of the 5th international workshop at XP2017. In:
Tonelli, R., (ed.) Proceedings of the XP2017 Scientific Workshops, Article No. 14. ACM,
New York (2017)

22. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional methods
at Nokia: a survey of opinions on agile transformation. Inf. Softw. Technol. 53(3), 276–290
(2011)

23. Kuhrmann, M., et al.: Hybrid software development approaches in practice: a European
perspective. IEEE Softw. 36(4), 20–31 (2019)

24. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in finnish
software industry. In: Runeson, P., Höst, M., Mendes, E., Andrews, A., Harrison, R. (eds.)
ESEM 2012 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 139–148. ACM, New York (2012)

25. Finnish Software Industry Survey. http://www.softwareindustrysurvey.fi/focus-on-
flexibility-agility-in-software-development/. Accessed 10 Mar 2019

26. Version One 12th Annual State of Agile Report. https://stateofagile.versionone.com.
Accessed 10 Mar 2019

27. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in agile and lean software
development – a systematic literature review of industrial studies. Inf. Softw. Technol. 62,
143–163 (2015)

28. Alahyari, H., Berntsson Svensson, R., Gorschek, T.: A study of value in agile software
development organizations. J. Syst. Softw. 125, 271–288 (2017)

398 P. Kettunen et al.

http://dx.doi.org/10.1007/978-3-030-30126-2_12
http://dx.doi.org/10.1007/978-3-030-30126-2_10
http://dx.doi.org/10.1007/978-3-030-30126-2_10
https://stateofagile.versionone.com
http://www.softwareindustrysurvey.fi/focus-on-flexibility-agility-in-software-development/
http://www.softwareindustrysurvey.fi/focus-on-flexibility-agility-in-software-development/
https://stateofagile.versionone.com

Project Management

What’s Hot in Product Roadmapping?
Key Practices and Success Factors

Jürgen Münch1(&), Stefan Trieflinger1(&), and Dominic Lang2(&)

1 Reutlingen University, Alteburgstraße 150, 72768 Reutlingen, Germany
{juergen.muench,

stefan.trieflinger}@reutlingen-university.de
2 Department of IT Coordination, Robert Bosch GmbH,

71636 Ludwigsburg, Germany
dominic.lang2@bosch.com

Abstract. Context: Organizations are increasingly challenged by dynamic and
technical market environments. Traditional product roadmapping practices such
as detailed and fixed long-term planning typically fail in such environments.
Therefore, companies are actively seeking ways to improve their product
roadmapping approach. Goal: This paper aims at identifying problems and
challenges with respect to product roadmapping. In addition, it aims at under-
standing how companies succeed in improving their roadmapping practices in
their respective company contexts. The study focuses on mid-sized and large
companies developing software-intensive products in dynamic and technical
market environments. Method:We conducted semi-structured expert interviews
with 15 experts from 13 German companies and conducted a thematic data
analysis. Results: The analysis showed that a significant number of companies
is still struggling with traditional feature-based product-roadmapping and
opinion-based prioritization of features. The most promising areas for
improvement are stating the outcomes a company is trying to achieve and
making them part of the roadmap, sharing or co-developing the roadmap with
stakeholders, and the establishing discovery activities.

Keywords: Product management � Product strategy � Product roadmap �
Roadmapping � Product discovery � Agile transformation � Product design �
Innovation

1 Introduction

For each company it is essential to provide a strategic direction, in which the product
offering will be developed over time in order to achieve the corporate vision. In
general, the purpose of a roadmap is to provide essential understanding, proximity,
direction and some degree of certainty regarding the planning of a journey [1]. In
companies, roadmaps are strategic tools, which can take various forms such as product
roadmaps, technology roadmaps, industry roadmaps or science roadmaps [2]. From the
point of view of product management, a product roadmap describes how an organi-
zation intends to achieve a product vision. It should focus on the value it aims to deliver
to its customers and the organization itself in order to rally support and coordinate

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 401–416, 2019.
https://doi.org/10.1007/978-3-030-35333-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_29

effort among stakeholders [3]. Currently, the product roadmaps of many organizations
cover long time horizons and concrete products, features or services together with
precise release dates [4]. These so-called feature-based roadmaps are created to inform
stakeholders or customers about the point in time a product, feature or service is
expected for market launch [5]. This approach worked well in market environments
that are predicable, stable and reliable. However, through increasing market dynamics,
rapidly evolving technologies and shifting user expectations, coupled with the adoption
of lean and agile practices it becomes almost impossible to predict which product,
feature or services will satisfy the need of the customer and the organization. Thus,
companies are increasingly struggling with their ability to plan their product portfolio
and it seems that the traditional process of product roadmap creation does not fulfill its
purpose anymore [3, 5].

This article aims at identifying the state-of-the-practice of mid-sized and large
German companies with respect to current product roadmapping practices. This
includes challenges and success factors regarding the product roadmapping process.
The outline of the paper is as follows: Sect. 2 sketches related work. Section 3 presents
the study approach including the research questions, the applied research method, the
execution of the study as well as the discussion of validity. The results of the study are
discussed in Sect. 4. Finally, the main findings are summarized, and further research is
outlined.

2 Related Work

Roadmapping is known as a flexible technique for exploring and communicating the
dynamic linkage between markets, products and technologies over time [6, 7].
Groenveld defines roadmapping as a process that contributes to the integration of
business and technology by displaying the interaction between products and tech-
nologies over time and taking into consideration short- and long-term product and
technology aspects [8]. The practice of roadmapping typically involves social mech-
anisms as this process connects people of different functions and allows them to share
different information and perspectives [1, 9]. According to Groenveld roadmapping
must be seen as an ongoing process and differs from one company to another [8].
Several studies exist that focus on analyzing challenges with respect to roadmapping.
Example studies are:

DeGregorio interviewed 500 companies in order to identify the key problems
regarding product roadmapping. The author pointed out that the information and the
knowledge in order to create the roadmap is often missing or incorrect. Typical
examples are, that the information is nonexistent, hidden in documents or that roadmap
elements are not tied to actual product plans and product requirements. Furthermore,
the author mentioned that more problems exist, and the findings are just the tip of the
iceberg [10].

402 J. Münch et al.

Komssi et al. conducted an action research study and identified the following
problems with respect to roadmapping [11]: (1) trouble with linking business strategy
to solution planning; (2) a feature-driven mindset, i.e., the discussion about long-term
planning focuses too much on low-level components; (3) the difficulty to understand
the customer needs in order to develop services. Overall the author recommends that
companies have to link their strategy and release planning and improve their
roadmapping practice.

Pora et al. identified challenges and categorized them into the three categories
“people”, “process”, and “data” [12]. The challenges in the category “people” are the
commitment of the management and the selection of the right key players in order to
create a roadmap. The category “process” consists of the six challenges: (1) initializa-
tion of the roadmapping process; (2) choosing and customizing the appropriate
roadmapping approach; (3) facilitation of workshops to generate and share the
knowledge required for the roadmapping process; (4) alignment of organizational KPIs
with roadmapping; (5) current rules and work procedures in an organisation do not
support a rapidly changing business environment; (6) the prediction of future events
based on limited availability of data. Challenges in the category “data” consist of
(1) prediction of future events due to limited availability of data on new and emerging
technologies or market forces; (2) frequent updates to reflect changes; (3) disruptive
changes are irrelevant for ongoing roadmaps.

Most of the existing studies are not focussing on companies developing software-
intensive products in dynamic technical and market environments. This is the focus of
the study presented in this article. An exception is the study by Pora et al. [12]. Pora
et al. conducted a case study in a similar context. However, only four companies were
investigated in this study and thus further research is necessary. Moreover, the study
presented in this article focuses on German companies.

3 Study Approach

Based on the study goals, the following research questions were defined:

RQ1: What approaches, procedures and methods for creating and updating a product
roadmap are currently applied at companies developing software-intensive pro ducts in
dynamic and technical market environments?
RQ2: What challenges are associated with product roadmapping?
RQ3: What are the success factors of product roadmapping?

It should be mentioned that RQ1 is intentionally defined for a broader scope than the
one covered in this study in order to consider also future research. The precise version
of RQ1 that is addressed in this article is: “what approaches, procedures and methods
for creating and updating a product roadmap are currently applied at the 13 case
companies?”.

What’s Hot in Product Roadmapping? 403

In order to achieve our objective a qualitative study design was chosen as the study
aims at identifying new insights. Therefore, the experience, opinions and views of
experts needed to be obtained. The qualitative interview study was preferred over a
quantitative method. Fink identifies several opportunities, in which a qualitative
method is appropriate. The following four aspects are relevant regarding this study:
(1) the study is focused on investigating the knowledge and opinions of experts in a
particular field; (2) the study intends to collect information through interviews with
own words rather than with using predefined choices; (3) there is not enough prior
information of the study subject to enable either the use of standardized measures of the
construction or a formal questionnaire; (4) the sample size is limited due to access or
resource constraints [13]. Semi-structured individual expert interviews with industry
practitioners were used to collect data since it provides a mixture of open-ended and
specific questions and is flexible enough to allow unforeseen types of information [14].
Moreover, semi-structured expert interviews allow interviewees to share their own
opinion by using free speech, but at the same time provide a similar structure for all
interviews, which makes results comparable and patterns visible [15]. In order to focus
and structure the interviews and to ensure thematic comparability, an interview guide
was developed (the complete interview guide is available on Figshare [16]). The
interview guide aims at assuring that important aspects are not ignored. For preparation
purposes the interview guide was sent to the interviewees in advance. An evaluation of
the interview guide was conducted with four experts with different roles at the Robert
Bosch Smart Home GmbH in the context of a pilot study [5].

Study Execution
We recruited 15 experts from 13 companies, which operate in a dynamic and uncertain
market environment. We selected the interviews based on their experience regarding
product roadmapping. The search for suitable participants and the subsequent estab-
lishment of contact was conducted via a social business platform in order to find
appropriate business contacts. We conducted preliminary discussions with each
potential participant to ensure that the selected interviewees are suitable for our
research. Table 1 gives an overview of the participants who voluntarily participated in
this study. The column “Experience” refers to the amount of years in which the person
was involved in roadmapping activities. The range spanning of experience was
between 2 and 17 years with an average of 7 years.

The interviews took place from February to April 2019. Two interviews were con-
ducted face-to-face in the office of the case company, while 13 interviews were con-
ducted via phone. All interviews were led by the same researcher. The average length
of the interviews was 38 min, with the range spanning between 32 and 57 min. All
interviews were conducted in German language. The audio was recorded for accurate
data analysis. We analyzed the data by creating transcriptions word by word, high-
lighting main responses and interpreting and extracting keywords and key quotes.

404 J. Münch et al.

Validity
Different frameworks exist for assessing the validity and trustworthiness of qualitative
studies. We use the framework proposed by Yin [17] as the basis for the discussion of
the validity of our study. Internal validity is not discussed since causal relationships
were not examined in the present study. Construct validity: As a means for estab-
lishing construct validity the goal and the purpose of the interviews were explained to
the interviewees before the interviews. In addition, the way of data collection through
semi-structured interviews allowed for asking clarifying questions and avoiding
misunderstandings. External validity: The external validity is restricted due to the
limited number of participants and because the results are derived from German
companies that operate in an uncertain and dynamic market environment (e.g., smart
home). Thus, the results are not directly transferable to other industry sectors. Relia-
bility: The reliability was supported by providing an interview guide that is publicly
available. The analysis has been conducted in a systematic and repeatable way.
Therefore, a replication of the study and a reduction of researcher bias is supported.

Table 1. Participants of the expert interviews

Interviewee Position Experience Company size by no. of
employees

Interviewee 1 Product manager 4 years Small
Interviewee 2 Product manger 9 years Medium
Interviewee 3 Innovation manager 3 years Large
Interviewee 4 Product manager 10 years Large
Interviewee 5 Product manager 2 years Medium
Interviewee 6 Product manager 7.5 years Medium
Interviewee 7 Product manager 7 years Medium
Interviewee 8 Head of product

management
6 years Large

Interviewee 9 Head of product
management

8 years Medium

Interviewee
10

Head of product
management

17 years Medium

Interviewee
11

Head of product
management

7 years Medium

Interviewee
12

Head of product
management

5 years Small

Interviewee
13

Head of product
management

11 years Medium

Interviewee
14

Head of product
management

6 years Medium

Interviewee
15

Head of product
management

8 years Medium

What’s Hot in Product Roadmapping? 405

4 Results

4.1 Product Roadmapping Practices

In order to answer RQ1 we analyzed the information from interviews and figured out
that despite there are a lot of common practices, the companies have a quite individual
approach to roadmapping. In order to compare the different practices, we used an
existing schema for describing the nine main dimensions of product roadmapping
approaches [18]. In the following, the results are described along these dimensions:

Roadmap Items: First of all, we analyze which items (i.e., which kind of information
artifacts) have been found in the roadmaps. Typical examples for roadmap items are
outputs (i.e., products, features, deliverables), goals/outcomes, topics (i.e., generic
subject), or themes (i.e., high-level user need, or system need). The study shows that
seven out of 13 companies are using products or features without goals. The roadmap
of two companies includes goals such as “increase the number of payed users of our
digital service” or “Increase the value of in-app purchases by 15%.” The roadmap of
two companies contains topics such as “development of a solution in the area of smart
home”. Two companies are using themes such as “feeling safe at home” or “check your
home, wherever you are” as roadmap items. Only few companies actively use goals or
outcomes in the roadmap. For instance, one head of product stated that their “roadmap
includes goals because the management or the customer considers a feature as a
commitment. However, the roadmap is a living document that can frequently change at
any time” (head of product management). Another product manager mentioned that
outcomes are more suitable as a basis to create product roadmaps: “When we talk about
goals or visions, we don’t want to mix them up with solutions. That means that we […]
aim at delivering value for the business and for the customers. Therefore, we
emphasize outcomes over outputs on our roadmap.” (product manager).

Adequacy of Item Detailing Based on the Timeline: The adequacy of the item
detailing answers the question how detailed the items are planned with respect to short-
, mid-, and long-term timeframes. This dimension is important because in dynamic
environments with high uncertainty it often does not make sense to have a fine-grained
planning of all the details in the long-term timeframe. The analysis of the interviews
shows that companies whose roadmap contains only features or products without goals
or outcomes typically use a detailed planning over a long-time horizon. This means that
all features and all respective tasks for developing those features are planned and
worked out in detail for short-, mid-, and long-term. Companies that are using goals as
part of their roadmap have different levels of planning detail for different timeframes.
This means, that the planning of items is more detailed the closer they are in time. One
participant said: “I would never plan the roadmap in detail for one year. In this case,
the high level of market dynamic would lead to a lot of effort in order to adjust the
roadmap. My planning is only for short-term items in detail, the mid- and long-term
consists only of topics or ideas. In general, only as detailed as necessary.” (head of
product management). This indicates that roadmaps are likely to fail when their level of
detailing is not adequate. Another participant mentioned that “due to the dynamic and
uncertain market environment, detailed planned roadmaps over a long time-horizon

406 J. Münch et al.

make no sense as the predicted planning will not be achieved. Therefore, our roadmap
contains a detailed planning for the short-term, the mid-term includes so-called can-
didate features, which are under evaluation and the long-term roadmap involves only
ideas or high-level topics.” (product manager).

Reliability: The reliability can be seen as the trustworthiness of a roadmap and its
ability to provide direction for an organization and its teams. This very much depends
on the amount and frequency of changes and the way how changes are done. Five
companies reported that their roadmaps are subject to frequent ad hoc adjustments.
Within two companies the adjustments of the product roadmap are done in regular
review cycles: “The roadmap is usually changed after our quarterly planning meet-
ings, in which we analyze the current market situation.” (product manager) Six
companies change their roadmap through a systematic change management and
adjustments are done reactively: “A typical situation for an adjustment is that we must
react to a market launch of an innovative product of a competitor. In such a case the
product owner proposes how the change should be conducted and coordinates this
change with the management.” (product manager). The analysis shows that frequent
ad hoc changes of the roadmap occur in such companies where products are planned in
detail over a long-time horizon. These problems decrease the acceptance of a roadmap
and it is likely that “each product owner has, in addition to the official roadmap, a
separate backlog. This is sorted by priority, relevance, return on invest, outcome and
so on.” (product manager). The analysis shows that roadmaps containing goals, topics
or outcomes are more likely to be subject to systematic adjustments and less subject to
ad hoc changes. These systematic adjustments increase the reliability of roadmaps,
which can be seen as a prerequisite for their successful usage.

Confidence: The confidence describes the ability of a feature in the roadmap with
regards to the fulfillment of the expected goals/outcomes at acceptable cost. In con-
sequence, the confidence should significantly affect the probability that a feature is
decided to be implemented. One participant mentioned that “the product management
has the task to ensure that every product contributes to our goals and vision.” (product
manager). Another participant said: “Before we include a product in the roadmap, we
have a strategic meeting which includes the validation of the contribution a product
delivers in order to achieve our goals.” (product manager). 12 out of 13 companies
consider the impacts of roadmap items on goals. This is done mainly based on
assumptions and estimates and rarely on empirical facts. One participant mentioned
that they try to evaluate the cost and impact of features through expert interviews. He
mentioned that “regarding features where [they] are not sure about the costs and
value creation for customers, [they] conduct interviews with experts.” (product
manager). One company is using advanced product discovery methods in order to
validate the impacts of products or features upfront. Thereby it increases the confidence
that the product or feature will have the expected effect after implementation and
delivery.

Discovery: The dimension discovery describes the ability of a company to identify
and validate items on the roadmap before implementation. In six companies no product
discovery is conducted at all. Four companies assess features based on expert

What’s Hot in Product Roadmapping? 407

knowledge without further validation. A participant said: “I think product discovery is
not relevant for a service platform. In our processes the product manager determines
which product will be put onto the roadmap” (head of product management) Another
interviewee mentioned: “We don´t talk with the customer, but the product managers
estimate whether the product will be successful in the market. Very often I hear: ‘The
product is innovative; I think the customer will buy it.’” (head of product manage-
ment). Two companies decide about product roadmap items based on customer
requests. One interviewee explained: “We have the service or sales team, which the
customers can contact in the case of questions, problems and wishes. I interview these
people in regular time intervals in order to identify the wishes of our customers.” (head
of product management). Seven companies are conducting some kind of discovery
activities by involving the customer more actively. One participant, for instance,
mentioned: “We organize workshops in which we invite a selection of users to par-
ticipate. The purpose of such workshops is identifying what pain points the customers
have, how the customers are solving their problems today and what kind of solution we
must provide, that leads to a change of customer behavior.” (head of product man-
agement) Another participant explained: “We invite potential customers to visit us and
test our prototypes for new product ideas. While testing we observe the customers and
conduct an interview with each person after the observation. The result of the
observation and the feedback is used in order to improve our prototypes.” (product
manager).

Prioritization: This dimension addresses how roadmap items are prioritized and
which factors are taken into consideration. Nine companies prioritize the roadmap
items mainly based on expert opinions. One company conducts the prioritization of the
roadmap items based on the capability to deliver: “I prioritize the features mainly
according to “quick wins”, as they can be quickly implemented and deliver quickly a
value to our business. Furthermore, I discuss the prioritization with the engineering
and adjust it if necessary.” (head of product management) Three companies conduct
the prioritization based on a process with the focus on delivering value to customer and
the business. One approach is “[…] to answer the question: Which items deliver the
most value to the company? Therefore, a team consisting of me, the product manager,
the product owner and the head of engineering conducts the evaluation process. We
choose these different participants as they consider the items from different views. In
more detail, the product manager is responsible for all products and evaluates that all
products contribute to achieve our goals, the product owner manages the requirements
to build each product and the head of engineering is responsible for the technical
implementation of the products. Within the evaluation we score each item with points
from one to four according to the following criteria: ‘development effort’, ‘costs’,
‘value for the customer’, ‘feasibility’, ‘market relevance’ and ‘strategic alignment’.
After the evaluation, the total score of each item is calculated and compared with the
other items. The higher the total number of points, the higher is the value of the item in
the context of the company’s vision and thus also the prioritization within the road-
map.” (product manager). Another participant reported about their approach: “We
developed a metric using the following criteria: customer and market value and
positioning in relation to our competition and profitability. On the basis of these

408 J. Münch et al.

criteria we calculate the value of each item and this determines the prioritization.”
(product manager). Estimation procedures are often applied. In the words of one
participant: “In order to conduct the prioritization we estimate the following criteria:
What is the business value of the outcome? How high is the effort and which uncer-
tainty factors are existing? We put these three criteria into relation and prioritize the
items accordingly.” (head of product management). The analysis of the interviews
showed that prioritization procedures foster the creation of customer value and an
optimized resource allocation. However, the prioritization is usually based on sub-
jective estimations or expert opinions and not on empirical facts.

Extent of Alignment: This dimension specifies the width and depth of alignment of
the roadmap, i.e., how good the stakeholder coverage is and how deep they are
involved and how well they understand their respective roles. When talking about
alignment, most of the analysed companies understand the benefits of stakeholder
alignment and referred to the number of roadmaps that they are using. Nine companies
are using several roadmaps that cover different views, e.g., the engineering or the sales
view. One participant reported: “Each department that delivers services to the cus-
tomer has its own product roadmap and there is another roadmap for the management
that contains all products.” (product manager). Four companies are using only one
roadmap that is used as orientation for all departments and teams and one of them is
having “a central roadmap that everybody knows. Based on this roadmap, every
department is aligning its tasks and measures.” (head of product management).

Ownership and Responsibility: Ownership refers to the question “Who owns the
roadmap and is accountable, i.e., signs off and approves the roadmap?” Responsibility
refers to the question “Who is responsible for the definition of the roadmap and the
conduction of the product roadmapping process?” This dimension can influence the
success of the whole roadmapping process. One interviewee mentioned: “After the
development of the roadmap […] usually the head of product management presents the
roadmap to the management and based on the opinion of the management adjustments
take place. After the management has approved the roadmap it will be communicated
across the company as well as to customers or stakeholders.” (product manager).
Overall, the approach that the management approves the roadmap and releases budget
for further activities regarding the roadmap items is applied by each company partic-
ipating in the study. In each company, product management creates, maintains, and
manages the product roadmap.

4.2 Challenges

The uncertain and dynamic market environment poses different challenges: “Currently
we have to deal with many uncertainties and permanent changes of requirements.”
(product manager). Furthermore, there are internal processes and stakeholders that lead
to unforeseen changes of the roadmap: “Due to the rapid changes of the market it
happens that a department has the feeling that it is no longer valuable for the company.
Therefore, it wants to show, that it is still important. And suddenly, a new product pops

What’s Hot in Product Roadmapping? 409

up with the demand to introduce it into the market. Usually this leads to a shifting of
capacity and leads to the circumstances that other planned and approved products are
not delivered on time.” (head of product management). Rapid market changes require
the ability to face and manage uncertainties. However, many companies lack a process
that is able to cope with uncertainty: “Our current process is designed for the entry and
change of requirements once or twice a year, and this is not often enough.” (product
manager).

The roadmap of seven companies covers a long time-horizon. Thus “[..] one
challenge is to provide a reliable roadmap over a long time period [although] there
are a lot of uncertain variables […]. As result we have to frequently update our
roadmap.” (product manager). This decreases the reliability of the roadmap and
employees consider the roadmap not as a trusted planning tool. Moreover, replanning
consumes a lot of capacity of the participating employees which could be used more
efficiently. In a nutshell: “As soon as a roadmap is planned in detail and in long-term,
it becomes difficult. For example, during development you learn a lot about the cus-
tomer and their needs. This means a shifting of the requirements and deadlines, which
leads to a constant adjustment of the roadmap.” (product manager).

The behaviors of the management, marketing, and sales also provide several
challenges. “One challenge are the members of the management of the various busi-
ness areas who know exactly which feature the customer needs.” (head of product
management). Typically, the management defines concrete features based on its own
opinion without validation. Moreover, management is often only willing to provide
budget for products and features it proposed itself. This often leads to the development
of product and features that are not or rarely used. In addition, management and sales
often see the roadmap as an obligation that all products or features are available at the
specified release dates, e.g., for a market launch. “The management or the sales
department think that the data in the roadmap is always correct and never changing.
However, the roadmap is a living document that frequently changes during a month.
The problem is if they communicate specific dates to the customer. This leads to long
discussions and disappointments […].” (head of product management). Moreover, the
prediction of the expected market launches of a product is also considered as a chal-
lenge. “The management or the stakeholders expect an exact information to which
point in time a product is ready to market launch. However, predictions over a long
time period are very difficult to make and in the most cases this information is wrong
[…].”. This leads to circumstances where the roadmap contains incorrect but binding
information. Typical consequences are missing deadlines, budget overruns, poor
quality or decreasing team motivation which in turn lead to disappointed customers and
stakeholders. The pressure to still fulfil the roadmap promises keeps the team from
doing the right things. Adding to that, another interviewee mentioned: “Often man-
agement has a precise idea how a roadmap must look like. I have observed that
product managers know that the current product roadmapping process doesn´t work,
but they are afraid to try out new methods.” (product manager). This triggers frus-
tration and leads to a culture in which the employees are trying to avoid mistakes.

410 J. Münch et al.

However, the interviews have shown that this case also occurs vice versa. “Our culture
is very experimental, and we always try to introduce new methods. This is often difficult
for [employees]. Because they are habitual to use a standard procedure.” (product
manager).

The interviews also revealed conflicts between the business and the engineering.
One participant mentioned, for instance, that “the engineering has no understanding
for the achievement of short-term business goals such as a quick and small product
launch in order to enter quickly into a market. The reason is that they would like to
deliver a complete functional product. On the other hand, the sales department has no
understanding for technological limitations. They have their requirements and expect
that the engineering department integrates these requirements without any delay. This
leads again and again to conflicts.” (head of product management). However, for sales
and marketing the reliability of the roadmap is an important topic in order to plan
activities such as campaigns. “If sales or marketing people look into the roadmap, the
data it contains has to be reliable, especially the information to which point in time a
product, feature or service will be available.” (product manager).

Another challenge is to identify and apply a method for prioritizing the items in the
roadmap. “We have developed a metric with different factors in order to determine the
prioritization for each product. Sometimes I get results and think: That can’t be cor-
rect. In my opinion the other product is more important in order to reach our goals.
Thus, the use of mathematical methods with respect to roadmapping is very limited.”
(head of product management). Besides that, there are also challenges to obtain the
information for the prioritization process. “In order to prioritize the requirements, I am
missing important information such as: By how much would the product increase our
margin? – or – which time is estimated to finish the product development? Such input
is often missing, and this makes it very difficult to prioritize all the requirements.”
(product manager).

Several challenges occur in the case of systems (such as an IoT system consisting
of several hardware components, sensors and an app). “A challenge is to identify the
dependencies of the products (which components are required at which point of time)
in an early phase and to document them in the roadmap. Furthermore, the different
components are delivered by different teams. For this reason, it is difficult to obtain the
current state of the implementation from each team in order to react to delays in an
early stage.” (product manager). This might, for instance, increase the risk of a
delayed market launch. A related challenge is to align the development of different
products that belong together: “Our organization is focused on the development of
individual products, not systems. This means, each department has its own roadmap. In
order to deliver all required products at the same time the challenge is to merge the
different information in one central roadmap.” (product manager).

Another challenge is to motivate all relevant stakeholders to be an active part of the
development of the product roadmap. It is difficult to integrate the relevant stakeholder
and employees in a way that they are aligned to the roadmap and collaborate. Table 2
gives an overview of the main challenges that were mentioned in these interviews.

What’s Hot in Product Roadmapping? 411

4.3 Success Factors

Several participants mentioned that it is important to customize new roadmapping
practices to their specific context (including higher-level processes, development
environment, organizational structures, roles). The usage of off-the-shelf approaches
without tailoring them to the company context is not seen as an appropriate way in
order to establish roadmapping practices successfully. One participant mentioned that
“[…] there is no standard process for roadmapping. It is important to test, evaluate
and adapt the product roadmapping process [..].” (head of product management).
Several participants also highlighted that the process of adapting a new roadmapping
approach is an incremental process that might take a longer time period and cannot be
done at one go.

Another important success factor that was mentioned by several participants is that
a roadmap should look differently for different timeframes. Different timeframes in the
roadmap should have different planning levels (e.g., more detailed planning for the
short term) and different types of items (e.g., planning of themes instead of features for
the long term). A participant said that “in a dynamic and uncertain market environment
it makes no sense to create a detailed roadmap for one year. In my opinion the suitable
period of time for a roadmap depends on the market in which a company operates.
Very important is the quality of the information provided in order to determine the
different roadmap items.” (product manager). These aspects significantly affect the
necessity for frequent changes of the roadmap and thereby influence the reliability of
the roadmap. Only if the time horizon, the level of detail, and the item type are
adequate to the timeframe, the need of changes is low, and they can be managed
systematically. This allows managers and employees to feel comfortable working with

Table 2. Challenges of product roadmapping

Product roadmapping – current challenges

Technologies and markets change rapidly
Feature-based-roadmaps need to be changed frequently
Frequent changes consume a lot of capacity and employees lose trust in the roadmap
The internal processes are not suitable to handle frequent changes of the roadmap
Need for differentiation with respect to short-, mid- and long-term timeframe is made
Roadmap contains unrealistic and incorrect information
Marketing and sales ask for accurate long-term predictions for release dates in order to plan
their activities (such as campaigns, industry events)
The roadmap owner prescribes roadmap features and overrules product management.
Relevant information for prioritizing the roadmap is missing
The management of dependencies is difficult
It is difficult to motivate stakeholders to actively participate in the roadmapping process
Management assesses its employees by how well they implement a feature-based roadmap
regarding time and scope
The employees do not trust in the roadmap, i.e., the roadmap is not reliable

412 J. Münch et al.

the roadmap and they can rely on it as an instrument which is providing orientation and
guidance.

Another major success factor that was mentioned is that clear strategic objectives
should be specified and communicated. A participant mentioned that “each product to
be developed should contribute to achieve our goals and vision. If this is not the case,
there are always ambiguities and misunderstandings that lead to frequent adjustments
of the roadmap.” (product manager). In this context it is essential to define a clear and
understandable vision and communicate it across the company. Furthermore, the
business and customer objectives should be derived from this vision. The contribution
of roadmap items to these objectives should be clearly expressed and evaluated. It
should be clear which value each feature on the roadmap delivers in order to contribute
to achieve the company’s goals. A clear vision and goals that contribute to that vision
also help to prioritize items on the roadmap.

Several participants mentioned that it is important for the success of a roadmap that
roadmap items are validated with respect to their underlying assumptions (such as “Is
there a customer need for that feature?”, “Is the problem to be solved important?”, “Are
there enough customers that have this problem?”, “Is it feasible to implement the
feature?”, “Does the feature have the expected outcome?”) before implementation. This
should be done on a continuous basis. A participant mentioned the following: “In the
past we saw again and again that we developed a product which had little demand
from the market. Therefore, we need a process that identifies the problems and needs of
the customer. It is not enough to talk with the key account manager about customers.
Moreover, periodical checks regarding the roadmap should be conducted in order to
review that the roadmap still correspond to current market conditions.” (head of
product management). A thorough validation of roadmap items before implementation
requires the integration of discovery activities in the product development process.

Involving all relevant stakeholders was also considered as a key success factor for
the roadmapping process. One interviewee mentioned that “[…] a clear process to
determine the items for the roadmap is necessary. This means a cross-functional
collaboration of the different stakeholders and departments (e.g., management and
discovery). It does not make sense that one person is responsible to fill the roadmap
based on his opinion. Moreover, meetings are also not suitable to talk about the topic
‘product roadmap’, because usually the time is too short. Rather the roadmap should
be discussed in the context of two or three full-day sessions.” (product manager). A
participant mentioned that you can see the success of alignment if “a stakeholder looks
at the roadmap and [] understands it immediately.” (product manager)

Different representations of the roadmap are an important factor for meeting the
requirements of the various stakeholder and for keeping the roadmap understandable.
A participant mentioned: “The management does not have the time to read all the
detailed information that is important for product management. For this reason, we
create a management summary in which only the most important information is
included.” (head of product management). Also, several interviewees mentioned the
quality of the communication and alignment as success factor: “In order for the
roadmapping process to work, it is essential that there is good communication among

What’s Hot in Product Roadmapping? 413

all stakeholders. For example, in order to manage the product roadmap a product
manager requires all information and must know all dependencies of the products.”
(product manager).

The right mindset of the organization is another key factor for success. A partici-
pant mentioned that “freedom and responsibility are very important for roadmapping
and product development processes. This means that employees should not be put
under pressure but receive the freedom to unfold.” (product manager). Top-level
management should be involved early in the product roadmapping process and should
give product management the necessary freedom to create and manage the product
roadmap. Furthermore, the decisions regarding the roadmap (e.g., prioritization of a
new item) should not be taken emotionally. One participant said: “Usually the idea
finder is very enthusiastic about the implementation of his idea. However, it might be
that the management or other colleagues have the opinion that the proposed product
does not fit into the overall strategic direction. This leads to many discussions on an
emotional level.” (product manager).

Last but not least, several interviewees mentioned the culture and values lived in a
company as success factors. Important for the success of a roadmap is a “management
that doesn’t expect a one-year roadmap and then measures the employees how well
this roadmap has been executed by the initial plan, but a management that has
understood that there is a dynamic and uncertain market, in which long-term planning
is almost impossible. Moreover, values such as openness, respect or honesty are
important for the roadmapping process, which leads to a good working atmosphere
and to more collaboration among different stakeholders.” (product manager). Table 3
gives an overview of the identified success factors.

Table 3. Success factors for product roadmapping

Product roadmapping – success factors

Management does not expect a detailed planned roadmap over a long time-horizon
The level of planning detail and the item types in the roadmap vary with different timeframes
Changes to the roadmap are clearly justified
The roadmap is aligned with the company vision and the product vision
The product vision and strategic objectives are clearly stated and communicated
The contribution of roadmap items to higher-level goals (up to the vision) is determined
The contribution of roadmap features with respect to their outcomes is validated before
implementation (especially for the short-term timeframe)
Product discovery methods are integrated into the roadmapping process
A clear process for prioritization and decision making is established based on high quality
information input
All relevant stakeholders are involved in the creation and evolution of the roadmap
Different consistent representations of the roadmap for different stakeholders exist
The organizational culture values openness, respect, and honesty

414 J. Münch et al.

5 Conclusion

The results of the study show that those companies that have already implemented
fairly mature product roadmapping practices are especially strong with respect to the
dimensions “roadmap items”, “adequacy of item detailing based on the timeline” and
roadmap “reliability”. This means, that they treat different timeframes differently with
respect to the detailing level and the type of items in the roadmap. Companies that
show a high level of product roadmapping maturity change or update their roadmaps in
a way that stakeholders trust these changes and can reliably use the roadmap for their
tasks. The study revealed that frequent ad hoc adjustments usually occur in organi-
zations where products or features are planned in detail over a long-time horizon. These
frequent adjustments of the roadmaps typically lead to a decrease in reliability and
trustworthiness of the product roadmap. Reliability and trust can be seen as indis-
pensable for the acceptance and successful usage of a roadmap. The study shows that
many of the participating companies see product discovery activities as a necessity to
identify and validate features. However, many of the companies participating in the
study currently have not yet integrated product discovery activities systematically in
their roadmapping process. The study also shows that the right prioritization fosters the
creation of customer value and an optimized resource allocation. The most promising
areas for improvement are stating outcomes a company is trying to achieve and making
them part of the roadmap, sharing or co-developing the roadmap with stakeholders, and
establishing discovery activities. Overall, many companies have already a good
understanding of success factors for roadmapping processes in dynamic environments.
However, they are currently struggling with overcoming key challenges. Further
research is planned to increase the external validity of the findings and to explore
possible ways to improve product roadmapping practices in different organizational
contexts. In detail the authors use the findings of this study to develop a maturity model
with which practitioners can assess their current product roadmapping practices. This
maturity model also aims at identifying potentials for a sustainable improvement of
their product roadmapping process.

Acknowledgements. We wish to thank the participants in the study for their time and
contributions.

References

1. Kostoff, R.N., Schaller, R.: Science and technology roadmaps. IEEE Trans. Eng. Manag.
48(2), 132–143 (2001)

2. Kameoka, A., Kuwahara, T., Li, M.: Integrated strategy development: an integrated
roadmapping approach. In: PICMET 2003: Portland International Conference on Manage-
ment of Engineering and Technology Management for Reshaping the World, Portland, OR,
USA, pp. 370–379 (2003)

3. Lombardo, C.T., McCarthy, B., Ryan, E., Conners, M.: Product Roadmaps Relaunched -
How to Set Direction While Embracing Uncertainty. O’Reilly Media Inc., Gravenstein
Highway North, Sebastopol (2017)

What’s Hot in Product Roadmapping? 415

4. Münch J., Trieflinger S., Lang, D.: Product roadmap – from vision to reality: a systematic
literature review. In: ICE/IEEE ITMC: International Conference on Engineering, Technol-
ogy and Innovation, Valbonne, France (2019)

5. Münch J., Trieflinger S., Lang, D.: Why feature based roadmaps fail in rapidly changing
markets: a qualitative survey. In: International workshop on Software-Intensive Business:
Start-Ups, Ecosystems and Platforms, Espoo, Finland, pp. 202–218 (2018)

6. Euiyoung, K., Beckman, S.L., Agogino, A.: Design roadmapping in an uncertain world:
implementing a customer-experience-focused strategy. Calif. Manag. Rev. 61(1), 43–70
(2018)

7. Phaal, R., Farrukh, C.J.P., David, R.: Technology roadmapping—A planning framework for
evolution and revolution. Technol. Forecast. Soc. Change 71(1–2), 5–26 (2004)

8. Groenveld, P.: Roadmapping integrates business and technology. Res.-Technol. Manag.
40(5), 48–55 (1997)

9. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements
engineering: long-term product planning by roadmapping. In: 13th IEEE International
Conference on Requirements Engineering, RE 2005, Paris, France, pp. 439–443 (2005)

10. DeGregorio, G.: Technology management via a set of dynamically linked roadmaps. In:
Proceedings of the 2000 IEEE Engineering Management Society, Albuquerque, NM, USA,
pp. 184–190 (2000)

11. Komssi, M., Kauppinen M., Töhönen H., Lehtola L., Davis, A.M.: Integrating analysis of
customers processes into roadmapping: the value-creation perspective. In: 2011 IEEE 19th
International Requirements Engineering Conference, Trento, Italy, pp. 57–66 (2011)

12. Pora, U., Thawesaengskulthai, N.: Data-driven roadmapping turning challenges into
opportunities. In: 2018 Portland International Conference on Management of Engineering
and Technology (PICMET), Honolulu, HI, USA, pp. 1–11 (2018)

13. Fink, A.: Analysis on Qualitative Surveys. In: Fink, A. (ed.) The Survey Handbook, pp. 61–
78. SAGE Publications, Thousand Oaks (2003)

14. Edwards, R., Holland, J.: What is Qualitative Interviewing?. Bloomsbury, London,
New York (2013)

15. Bryman, A., Bell, E.: Business Research Methods, 4th edn. Oxford University Press,
New York (2015)

16. Published on Figshare. https://figshare.com/s/2f872ac9997d6860640c. Accessed 14 June
2019

17. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE Publications Inc.,
London (2014)

18. Münch, J., Trieflinger, S., Lang D.: DEEP: the product roadmap maturity model. In:
Submitted to: International Workshop on Software-Intensive Business: Start-Ups, Ecosys-
tems and Platforms, Tallinn, Estonia (2019)

416 J. Münch et al.

https://figshare.com/s/2f872ac9997d6860640c

Integrating Data Protection
into the Software Life Cycle

Ralf Kneuper(B)

IUBH University of Applied Sciences—Distance Learning,
Kaiserplatz 1, 83435 Bad Reichenhall, Germany

r.kneuper@iubh-fernstudium.de

Abstract. Data protection has become increasingly important in recent
years, partly due to the EU General Data Protection Regulation (GDPR)
and similar legislations in other countries, but also because of various pri-
vacy scandals which led to bad press for the affected companies. Since
most of the processing of the relevant personal data is performed by
software, data protection needs to be addressed in the development of
software. This paper therefore investigates how to incorporate data pro-
tection in the software life cycle. Based on a simple default life cycle
model, the main questions to ask and issues to address in the various
phases are summarized. These questions and issues are independent of
the exact life cycle model used, whether plan-driven, agile or some hybrid,
and can therefore easily be mapped to some other model. Not surpris-
ingly, data protection mainly affects the analysis and design of software
systems (“privacy by design”) when the data to be processed and stored
as well as the form of processing and the protection mechanisms to be
used are defined. Nevertheless, to some extent the entire life cycle down
to withdrawal is affected.

Keywords: Data protection · Software life cycle · Data protection by
design · Privacy

1 Introduction

With the increasing amount of (personal) data collected and processed over the
last decades, rules limiting the collection and processing of personal data and
ensuring fair use have become increasingly important. This is reflected by the
fact that most countries today have some form of data protection legislation
defining what is considered adequate and fair, based on similar but not identical
concepts across the different countries.

One of the most widely known and arguably most important such data pro-
tection legislation is the General Data Protection Regulation (GDPR), which
came into effect in the European Union in May 2018. Although most of its
requirements are not really new, the GDPR has made it far more visible that
data protection needs to be taken into account when processing (personal) data,
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 417–432, 2019.
https://doi.org/10.1007/978-3-030-35333-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_30&domain=pdf
http://orcid.org/0000-0003-3225-5895
https://doi.org/10.1007/978-3-030-35333-9_30

418 R. Kneuper

to some extent by defining serious penalties for infringements. However, it is
important to not only look at how to satisfy legal requirements but also keep in
mind that—apart from the legal consequences—a data protection scandal in a
company may lose the trust of their customers, which eventually may hurt even
more.

To ensure that data protection is not just an after-thought but considered
from the start, the concept of Privacy by Design was developed by Cavoukian
when she was Information and Privacy Commissioner of Ontario [1,2]. Under the
name Data Protection by Design, this expectation of addressing data protection
from the start of creating a system is also included in the GDPR. Since most
of the relevant processing is performed by software, this is particularly relevant
in the development of software, and needs to be taken into account both in the
definition of software requirements and of the software processes used.

The current paper addresses the second of these aspects and analyses how
to integrate data protection by design and the resulting requirements into the
software processes and the software life cycle used. (A second paper discussing
the software requirements resulting from data protection is under preparation
by the author.)

Method Used. To identify the software process steps needed to incorporate
data protection by design, the following approach was used. First, a systematic
analysis of GDPR identified the relevant requirements, starting from the sum-
mary of the relevant parts of GDPR described below in Sect. 2. These require-
ments were translated into steps or questions to be answered in the software
process, which in turn were then assigned to the appropriate life cycle stage, see
Sect. 3.

Next, these results were validated by comparing them against relevant liter-
ature to check that all relevant requirements stated there are indeed included
in the appropriate life cycle stage, as described in Sect. 4. With few exceptions,
the literature on data protection only talks about the software processes and life
cycle on a very high level, if at all, and one of the goals of this paper is to bring
these documents together and provide more detail.

2 Data Protection and the General Data Protection
Regulation

To get started, the main concepts of data protection and of GDPR are intro-
duced. Note that the GDPR is used as an example data protection legislation
here, but other data protection legislations will lead to similar results.1

1 In some countries, such as the USA, the relevant legislation does not go under the
name of data protection but under the name of privacy, a very similar concept.

Integrating Data Protection into the Software Life Cycle 419

2.1 Basic Concepts of Data Protection

In spite of its name, data protection is not concerned with the protection of
(confidential or sensitive) data as such, but with the protection of individuals
against misuse or unfair use of their personal data. While for example the design
of a new product may be considered highly confidential, this is not covered by
data protection which only refers to personal data.2

According to GDPR, Art. 4(1), personal data are defined as “any information
relating to an identified or identifiable natural person”. (In other contexts, for
example ISO/IEC 29100:20113, the name “personally identifying information”
PII is used to describe the same concept.) Examples of such personal data range
from very simple data such as “person X has the email address Y”, via “the user
with IP address X has visited the website Y at time T”, or “the smartphone
of user X was at position P at time T”, to rather critical and confidential data
such as health data, for example “person X visited a hospital at time T and
was diagnosed to suffer from disease Y”. As can be seen, the level of protection
needed may vary considerably. Data protection in general starts from the pre-
miss that it should be up to the person concerned to decide whether and how
such information may be used, and not to the entity that happens to have this
information available for whatever reason.

The term “identifiable” leaves a lot of room for interpretation, and some
legislations other than the GDPR will for example not count an IP address as
personal data. Below, this will be reflected by the need to identify the personal
data processed in a certain context as part of analysis, where the result will not
only depend on the data themselves but also on the relevant legislation.

In addition to the personal data as defined in the previous paragraph, the
GDPR also introduces “special categories of personal data” which require a
higher level of protection and are defined as “personal data revealing racial or
ethnic origin, political opinions, religious or philosophical beliefs, or trade union
membership, and the processing of genetic data, biometric data for the purpose of
uniquely identifying a natural person, data concerning health or data concerning
a natural person’s sex life or sexual orientation” (Art. 9(1) GDPR).

There is an important difference between data protection and IT security:
IT security considers how to protect the organisation’s own data and other IT
assets. In data protection, the organisation needs to consider how to protect
information about other people, often outside the organisation, against threats
which may come from the organisation itself. This is the main reason why data
protection is required by law and not left to the organisations involved. Data
protection and IT security are both concerned with protecting information, but
against different types of threats, and IT security is an important tool necessary
(but not sufficient) for implementing data protection.

2 Since data protection is only concerned with personal data, when we talk about
“data” in the remainder of this paper this will always refer to personal data.

3 ISO/IEC 29100:2011 Information technology—Security techniques—Privacy frame-
work.

420 R. Kneuper

2.2 The General Data Protection Regulation (GDPR)

In May 2018, after a two-year transition period, the GDPR came into effect in
the European Union (EU), defining requirements on how to handle personal data
of EU citizens. This section will give a short summary of the GDPR as needed
to understand its implications on software processes.

The GDPR Roles. The GDPR defines three main roles involved in the pro-
cessing of personal data:

– The data subject (in ISO/IEC 29100:2011 called the “PII principal”) is the
(natural) person whose data are processed and who needs protection. Typical
examples include customers, employees, and visitors to a company website.

– The controller is the entity that decides on how data are processed within an
organisation, and therefore is responsible for this processing.

– The processor, finally, is the entity that performs the actual processing of
data, following the rules set by the controller.

The processor and controller may be the same entity, in which case GDPR
just talks about the controller, or they may be different entities, in which case a
contract between the two is required to ensure that the controller does actually
control the processing, and the processor processes the data as defined by the
controller.

Based on these roles, GDPR defines a number of requirements to be addressed
in any processing of personal data and therefore by any software that performs
such processing. In the following, these will be grouped as follows: first of all,
the GDPR defines general principles that need to be satisfied. Based on these
principles, the rights of the data subjects are specified. Additionally, there are
some further requirements which belong to neither of these groups.

The GDPR Principles. The following principles are defined by Art. 5 of
GDPR:

– Lawfulness, fairness and transparency : in particular, these principles state
that the processing of personal data is forbidden unless one of six lawfulness
conditions defined in Art. 6 GDPR is satisfied, such as consent by the data
subject or “processing is necessary for the purposes of the legitimate interests
pursued by the controller”.

– Purpose limitation requires that in general, personal data may only be used
for the purpose for which they were originally (and lawfully) collected.

– Data minimisation: the use of personal data is to be reduced to the minimal
extent necessary for its purpose. Storing personal data “just in case . . . ” is
forbidden, which can become a major challenge in the context of big data.

– Accuracy, i.e. the controller and/or processor need to ensure that the personal
data are accurate.

– Storage limitation is closely related to data minimisation and requires that
personal data are stored no longer than necessary.

Integrating Data Protection into the Software Life Cycle 421

– Integrity and confidentiality require that personal data are protected ade-
quately to ensure that only people that are entitled to do so can read or write
these data.

– Accountability, finally, requires that the controller does not just comply to
the above principles but is able to demonstrate this compliance.

The Rights of the Data Subject. In addition to the principles described
above, the GDPR defines a number of rights of the data subject. The main
important ones are:

– Right of transparent information (Art. 12 GDPR): data subjects are entitled
to information about the handling of personal data in a transparent and
easy-to-understand way.

– Right of information (Art. 13, 14 GDPR): data subjects have the right to be
informed about the processing of their personal data.

– Right of access (Art. 15 GDPR): data subjects have the right to ask for the
personal data stored about them, and the processing performed on these data.

– Right to rectification (Art. 16 GDPR): data subjects have the right to request
the correction of incorrect data stored about them.

– Right to erasure (also called the “right to be forgotten”; Art. 17 GDPR)
and right to restriction of processing (Art. 18 GDPR): data subjects have,
under certain conditions, the right to request that personal data about them
is deleted or—if for some reason this is not possible, for example because
the data need to be stored for legal reasons—that processing of these data is
restricted.

– Right to data portability (Art. 20 GDPR): data subjects have the right to
transfer data provided by them to a different processor, e.g. if they want to
move to a different provider for a certain service.

– Right to object (Art. 21 GDPR): data subjects have, under certain conditions,
the right to object to the processing of personal data about them. This is for
example relevant if they have given their consent to such processing earlier,
and now want to withdraw that consent.

These rights can be translated more or less directly into functional requirements
on the software system to be developed.

Other GDPR Requirements. The most important requirement asks for data
protection by design (Art. 25(1) GDPR), which does not state any explicit
requirements on the resulting product but points to the need to address the
principles and rights described above from the start of designing a process and
the software to support it. In spite of its name, data protection by design does
not only apply to the design phase of software development but to all phases
across the software life cycle, though with a focus on analysis and design.

Closely related is data protection by default (Art. 25(2) GDPR), stating that
systems must be configured such that privacy is the default and the user may
change these settings to explicitly allow less privacy, rather than vice versa.

422 R. Kneuper

The rules on automated decision-making and profiling set a limit to the usage
of software systems (Art. 22 GDPR). Although decision-making solely based on
automated processing is allowed, the individuals affected are entitled to obtain
human intervention in such decisions, for example decisions about whether or
not they are considered credit-worthy.

To help ensure the transparency of the data processing performed, “records
of processing activities” need to be kept, documenting the processing performed,
the data processed, the steps taken to protect these data etc. (Art. 30 GDPR).

If there is expected to be a high risk to the data subjects from a new tech-
nology or system, a data protection impact assessment (DPIA) needs to be
performed to assess the impact of this new technology or system and identify
measures to reduce this risk to an acceptable level. Performing the DPIA is
the responsibility of the controller, but the controller will often need help from
software development for this task.

3 Data Protection in the Software Life Cycle

In order to assign the different data protection tasks to the software life cycle,
the simple life cycle model shown in Fig. 1 is used as a starting point. This life
cycle model is not taken from any standard publication but a summary of the
phases that are commonly used in any such model. As a result, this is just one
of many possible such models, see [10] for a thorough discussion of software life
cycle models. However, the tasks described below are largely independent of the
life cycle model used, and could therefore aligned to different models without
problems, including iterative-incremental or agile approaches as described in
Sect. 3.9.

Analysis Design Implemen-
tation

Test &
Acceptance Transition

Operations
Change Control

Withdrawal

Fig. 1. A sample software life cycle

The life cycle used by the Norwegian data protection office Datatilsynet in
[4] uses very similar phases (though somewhat different names), but starts with
a phase “Training” that covers training of employees on the relevant regulatory
and mandatory requirements, the development methodology and the life cycle
and tools used for IT security. Since this training will usually be performed on
an organisational level, largely independent of any specific software project, and
therefore is not included here.

Even though IT security forms an important foundation for data protection,
the implications of IT security on the software processes are outside the scope of
this paper and therefore will not be covered here. (See [10, Sect. 3.11] for more
detail about this topic.)

Integrating Data Protection into the Software Life Cycle 423

3.1 Analysis (Requirements)

As is to be expected, the main task of analysis regarding data protection is to
clarify the general set-up, answering in particular the following questions:

1. Which data protection roles are involved in the processing? Who is the con-
troller, and are there any separate processors? Is there a single controller or
joint controllership, that is multiple controllers who are jointly responsible?

2. Who are the data subjects?
3. Which data protection legislation is applicable? If processing is to be per-

formed within the EU, this will be the GDPR, but there is likely to be
additional legislation such as a national data protection act, and/or some
industry-specific legislation. If data are to be processed or moved outside the
EU, other or additional national legislation will apply.

4. Which personal data are needed (not just considered useful) for the intended
functionality? Remember that the answer to this question not only depends
on the data needed but also on the relevant legislation and its interpretation
of the term “personal data”.
(a) Do the personal data processed include any special categories of personal

data (Art. 9 GDPR), or data of children (Art. 8 (2) GDPR)?
(b) Would it be possible to do without these data, at least some of them?
(c) If not, would it be possible to turn them into anonymous or at least

pseudonymous data?
(d) Are there any relevant meta-data to be processed, i.e. data about data?

E.g. even though the contents of a certain message may not be known,
date and time of the message or the identity of its sender and receiver
still describe personal data.

5. Which lawfulness condition according to Art. 6(1) GDPR is going to form
the legal basis for processing the personal data? What implications does this
lead to—which steps are allowed, required or forbidden?
(a) If consent is to be used as the legal basis: what is going to be covered

by this consent? What happens if a user does not give his consent, or
only partial consent, or withdraws it at a later stage? Consent is only
considered as a legal basis for data processing if it is genuinely voluntary,
implying that one also has to deal with the case that it is not given.

(b) If the legitimate interests are to be used as the legal basis: which interests
of the data subjects are relevant and need to be considered? What does
that imply for the design and implementation of the system? Where are
the limits of those legitimate interests?

(c) If relevant, the legal basis must also cover the special categories of personal
data and the personal data of children.

6. What need for protection and what risks result from the answers to the pre-
vious questions? What data protection damage could be caused by the soft-
ware system to be developed? The answer to these questions should take into
account both the usage as intended, and any possible misuse, for example by
an attacker who steals the data. Who can access the data—legitimately or

424 R. Kneuper

illegitimately? This could include own employees, external suppliers (proces-
sors), external attackers, and other third parties who happen to run across
the data by accident.

7. Which (functional or non-functional) software requirements resulting from
data protection are relevant and need to be considered? This includes func-
tions such as gathering, managing and applying consent by the data subject
where adequate, or the deletion of personal data once they are no longer
needed. In particular, the rights if the data subjects lead to many such soft-
ware requirements. An analysis of these is planned to be published in a sep-
arate paper by the author.

8. Based on the data protection roles identified in question 1, to what extent are
data going to be exchanged with third parties, for example by using cloud or
other third-party services?

9. Is the system under development expected to lead to a high risk for the data
subjects, which would imply that a DPIA needs to be performed?

The answers to these questions should be discussed with a data protection spe-
cialist, for example the Data Protection Officer of the controller organisation,
in order to ensure correct interpretation of the data protection concepts and
completeness of the data protection requirements.

3.2 Design (Architecture)

The main task in design regarding data protection is to define suitable tech-
nical and organisational measures (commonly known as TOMs) to adequately
implement the requirements identified in analysis. In particular, the following
questions need to be addressed:

1. What role do the data protection or GDPR principles play in the system
under development, and how can these principles be implemented? To achieve
this so-called Privacy-Enhancing Techniques (PETs) are usually used, such
as access restrictions, encryption and anonymisation [3]. Some of the most
important PETs will be discussed below.
Similarly, privacy (design) patterns can be used to design implementations of
these principles, see e.g. [5].

2. An aspect that is easily overlooked: what personal data are transferred to
third parties by the libraries, SDKs and other tools or services planned to be
used. This is closely related to question 8 in analysis, but while in analysis
the focus was on deliberate sharing of data with third parties, design also
has to identify the data sharing that is not needed to provide the intended
functionality but introduced by the tools used. See below for more detail.

3. Are there any existing frameworks or other information that should be taken
into account? In the case of web tracking, this includes for example the do-
not-track flag and the IAB GDPR Transparency & Consent Framework [8].

4. Finally, it should be checked whether the results of analysis regarding data
protection are still up-to-date, complete, and fully addressed by design.

Integrating Data Protection into the Software Life Cycle 425

Similar to the analysis phase, the results of the design phase should be discussed
and validated with the Data Protection Officer to ensure that the relevant data
protection requirements are interpreted correctly.

Managing and Complying to User Consent. An important type of legal
basis for processing personal data is consent by the user, i.e. by the data subject
concerned. Since this user consent must be genuinely voluntary, some users may
give it, some may only consent to certain types of processing, and some may not
consent at all. Software design therefore must be able to handle these different
cases, keeping track of consent given or refused, and comply to this consent by
only processing data if consent has been given (or processing is performed on a
different legal basis and the user has not objected to it).

Identification, Authentication and Authorization. Performing identifica-
tion (who is the user?), authentication (is he really the user he claims to be?)
and authorization (what rights does the user have?) is a standard task of IT
security which needs to be integrated into the design of almost any system, and
forms one basis for data protection. Data protection puts additional restrictions
on the authorization step, requiring restrictive handling of authorizations for the
processing of personal data.

Using Libraries, SDKs and Web Services. A major challenge may be the
selection of libraries, SDKs etc., in the following just summarised as “libraries”.
This mainly applies to the development of mobile apps and of services and plug-
ins for web applications, where it is quite common to use external libraries which
sometimes share data with their provider and other third parties, often without
the developer knowing about them [7,11].

Even if the library does not include any explicit functionality to share per-
sonal data, just calling it at run-time will, if no explicit steps are taken to prevent
this, usually pass at least the IP address of the user to the provider of the library.

To address these issues, the following steps are needed when using any third-
party libraries (or SDKs or other run-time services):

– Find out about any personal data passed on by the library to any third
parties.

– Check whether the library can be configured such as to prevent or at least
reduce this passing-on of data. Often, the libraries support suitable param-
eters, even though these may be well-hidden. According to the data protec-
tion principle “data protection by default”, the default library configuration
should be such that a high level of data protection is ensured, but in practice
this often is not the case, in particular when the library was developed outside
the EU.

– When a library is called at run-time, it may be possible to deploy this library
on one’s own server rather than call it from somewhere else.

426 R. Kneuper

– Analyse and decide whether the remaining passing-on of personal data is
acceptable and covered by the legal basis used for the processing. A new
analysis of the legal basis used may be needed, in particular if the “legitimate
interest” is used which requires a weighing of interests. In some cases, this
will lead to the decision that the legal basis is no longer adequate and the
functionality planned must be based on a different library, or reduced or even
withdrawn altogether.

– Document this decision incl. the reasoning used. Ensure that the users (data
subjects) are informed about any data still passed on.

The same is true when embedding information from other web sites such as
videos, fonts, or social media buttons. If no suitable steps are taken to prevent
this, at least the IP address of the user will be transferred to the provider, often
more.

So far, this discussion assumed that the developers under consideration use
the libraries. Of course, someone has to develop these libraries in the first place.
Developers creating libraries, SDKs etc. to be used by someone else also need
to address data protection and make life easy for their colleagues using their
libraries, e.g. by allowing a data protection-friendly configuration and making
this the default.

Encryption of Data. GDPR mentions encryption multiple times as a tool to
be used to protect data and ensure security (e.g. Art. 6(4)e, Art. 32(1)a), but
without any detailed statements about when and how to use it. In this context
it is important to remember that encrypted personal data are still personal data
that are subject to data protection, and encryption is just one step to protect
these data.

Encryption is a complex topic with many unexpected traps, and one should
not try to define one’s own encryption algorithm, actually not even implement
an existing algorithm oneself, but rather use standard libraries provided by spe-
cialist cryptographers.

An important question to consider in this context is how long the encrypted
data need to be kept confidential, since this affects the configuration of the
crypto-algorithms, in particular key lengths, and to some extent even the selec-
tion of the algorithms themselves.

Anonymity and Pseudonymity. A useful approach to protect personal data
is to anonymize them, or at least to work with pseudonyms, and both approaches
are therefore mentioned repeatedly in the GDPR as tools to protect data.

Legally speaking, there is a fundamental difference between anonymous and
pseudonymous data. With anonymous data, it is not possible to identify the indi-
viduals concerned. Therefore, anonymous data do not count as personal data,
and data protection requirements do not apply. With pseudonymous data, iden-
tification is still possible but requires additional information such as a mapping
table. This additional information must be stored separately and well-protected.

Integrating Data Protection into the Software Life Cycle 427

Pseudonymous data therefore still count as personal data which are subject to
data protection, but working with pseudonyms is a method to protect data which
may help to satisfy the data protection requirements.

In practice, it is often difficult to distinguish between anonymous and pseudo-
nymous data since, given enough additional information, it is always possible to
identify the individuals concerned. Also, there are different opinions about what
counts as “identification” in this context. For example, in Europe permanent
cookies are usually considered as identifiers since they allow to identify repeated
visits of the same individual, while in the USA these are usually considered as
anonymous data since in general it is not possible to identify the individual’s
name etc.

Apart from these legal aspects, ensuring that data are genuinely anonymous
is a complex technical task, and there are a number of well-known examples
where it turned out that “anonymous” data could in fact be de-anonymised. For
example, just knowing the ZIP or post code plus the birth date of a person may
seem anonymous but is, in many cases, sufficient to reduce the candidate indi-
viduals to a very small group of people, possibly just one. A common approach
to apply this knowledge is to join the “anonymous” data set, possibly containing
sensitive personal data, with a second data set which is publicly available but in
itself does not contain any sensitive data. The join can then be done via a joint
key, such as ZIP code plus birth date [16].

This and many other examples show that anonymisation of data is a difficult
task which requires much more than just leaving out the name of the person
involved. There is a number of approaches to systematically anonymise data,
such as k-anonymity [16] and differential privacy [6], which are however fairly
difficult to apply, at least for non-specialists. A less systematic approach, which
is in turn far easier to apply, is described in [12] in the context of health data.
Whenever data are to be anonymised, it is important to use such a thorough
approach and thus ensure that the results are indeed anonymous.

3.3 Implementation

The main task regarding data protection in the implementation phase is to ensure
that the analysis and design results are correctly incorporated into development.
Any revisions and extensions of the results of analysis and design need to take
into account the data protection issues discussed above, such as the decision to
use a certain SDK or embed any third-party services.

3.4 Test and Acceptance

The main data protection tasks in test and acceptance are to verify that the
requirements identified in analysis and design are indeed implemented in the
resulting system. Remember that this does not imply the use of a sequential pro-
cess model. Test and acceptance may also be performed iteratively, for example
as part of checking the “definition of done” after implementing individual user
stories, and/or as part of sprint reviews.

428 R. Kneuper

Using Production Data for Testing. Sometimes, organisations want to use
production data for test and acceptance, which provides particular challenges
regarding data protection and may only be performed under certain restrictive
conditions. As the name implies, production data are provided for some produc-
tion purpose, and usually not for testing. Using these data for testing therefore
implies a change of purpose, bringing up the principle of purpose limitation. Since
the new purpose still supports the original purpose, this in general is a minor
change and may still be legal, assuming the following conditions are satisfied.

First of all, any processing of personal data requires a lawfulness condition
according to Art. 6 GDPR to be satisfied. In the case of test acceptance, this is
usually the “legitimate interest” of the controller. In addition to the legitimate
interest itself, this lawfulness condition requires that the processing is necessary
rather than just useful for the purpose, in this case testing, and the interest of
the processor must be balanced against the interests of the data subjects:

– Necessity: as one typical example, using production data for testing may
be necessary in the case of testing complex data migration procedures, in
particular in a regulated environment where the organisation has to prove that
data migration is performed properly. Another example is the test whether
the software system can handle complex, possibly inconsistent, input data
such as contained in the production data. Of course, before any such tests
based on production data are performed the “normal” functional tests based
on artificial test data must have been completed successfully.
For functional testing, the use of production data in general is neither legal nor
useful, since for proper functional testing, one needs to know the expected
results for comparison with the actual results. In case of production data,
these will however not be available.
Even when the use of production data for testing is considered necessary, it
is important to limit the impact on the data subjects. This involves apply-
ing adequate IT security measures, in particular internally limiting access to
these test data, and protecting the data against outside attacks. As far as
reasonably possible without impacting the goals of the test, the data should
be anonymised or at least pseudonymised before using them for testing.

– Balance: in most cases, the data subjects will themselves have an interest
that the software used for processing their data is tested thoroughly, and
it remains to analyse the risks involved. Based on the IT security measures
taken, the risks involved for the data subjects must be considered to below.

The main alternative is consent by the data subject, which is more difficult to
handle, but needs to be acquired if the conditions for legitimate interest are not
fully satisfied. In particular, this applies to the processing of special categories of
personal data, such as health data, where the legitimate interest is not defined
as a lawfulness condition.

Integrating Data Protection into the Software Life Cycle 429

3.5 Transition

The transition from development to operations has to ensure that the data pro-
tection measures set up earlier are indeed implemented in operations, and rele-
vant documentation is set up. This involves in particular:

1. Train the users regarding the data protection functionality
2. Ensure that the processing is made transparent for the data subjects, for

example by documenting it in the relevant data protection declaration
3. Ensure that the processing is incorporated into the “records of processing

activities”
4. Ensure that data protection contracts are agreed with external suppliers (pro-

cessors)
5. Set up processes for incident response and handling of personal data breaches.

3.6 Operations

Ensure Data Security. The main data protection task to perform during
operations is to ensure adequate security of data, based on the concepts and
methods defined during the earlier phases of the software life cycle. To a large
extent, this security will address the entire IT infrastructure and not be limited
to the specific system under consideration.

Handle Personal Data Breaches. Even when all data protection measures
have been implemented correctly, problems may occur where individuals and
their data are not protected as expected, called a “personal data breach” in
GDPR. In this case, notification to the relevant supervisory authority may be
required within a narrow time frame of 72 h (Art. 33 GDPR), as well as infor-
mation of the data subjects affected (Art. 34 GDPR). Not a legal requirement
but possibly at least as important is the adequate handling of questions from the
press and the general public in case a breach has become public. It is therefore
important to set up a process beforehand so that data breaches can be handled
properly under pressure. At least all employees should know whom to inform
immediately should they encounter a personal data breach.

Data Collected in Operations. To some extent, operations itself collects and
processes personal data, mainly in various log files which, apart from many other
data, often also contain personal data. This may lead to a conflict of interests,
when from the IT security point of view, extensive logging of user activities
is expected, while at the same time data protection asks to keep logging to a
minimum. In this case, logging needs to be kept to the minimum required for
the purpose, and an analysis of the legitimate interests performed, similar to the
analysis described for testing with production data.

430 R. Kneuper

3.7 Change Control

Change control4 describes the systematic handling of changes and change
requests when the software under consideration is in productive use. Regard-
ing data protection, the relevant tasks to be performed are largely independent
of whether a certain change is performed during initial development or later,
when the system is already in operation. This leads to the following question for
any change performed:

– Does the change have any impact on the processing of personal data? This
may be a change of functionality, or a technical impact, for example using a
different SDK.
• If the change does have any such impact, this should be analysed in more

detail, based on the questions listed above for analysis and design.

3.8 Withdrawal

At the end of the software life cycle, software is withdrawn once it is no longer
needed. This phase requires less work regarding data protection than most of
the previous phases, but still a few questions need to be addressed:

1. Will the system’s personal data still be needed? Should they be migrated to
another system or deleted?

2. If the personal data are to be migrated, how are they protected on their way
to as well as within the new system?

3. In either case, how can the personal data be deleted securely in the old system,
including backup versions?

3.9 Agile Development

Independent of the life cycle model used, the questions above need to be answered
in any software development effort. An important challenge in agile development
is that many data protection requirements are non-functional requirements or
constraints, and therefore difficult to describe using standard agile methods such
as user stories. Techniques to resolve this challenge and adequately incorporate
data protection in agile development include:

1. As far as functional requirements are concerned, these should be described in
the standard format agreed, such as user stories.

2. Non-functional requirements and constraints need to be communicated clear-
ly within the team, and integrated into the quality assurance measures used,
such as the definition of ready (DoR) and the definition of done (DoD).
Furthermore, the DoR should include check items derived from the questions
and issues listed above for the early development phases, and be checked
whenever a functionality is transferred to the sprint backlog, including for
example

4 The term “change control” is used here, following the recent ITIL v4. Alternatively,
this process is often known under the name “change management”.

Integrating Data Protection into the Software Life Cycle 431

(a) Have the relevant roles (data subject, controller, processor) been identi-
fied?

(b) Have the personal data been identified which are to be processed?
(c) Are only those personal processed that are genuinely needed for the func-

tionality to be developed?
(d) Has the legal basis for processing been identified? What exactly is

included, what is not?
(e) . . .
Similarly, the DoD and/or the sprint review should include check items such
as
(a) Have the personal data been identified and documented which are to be

exchanged with other systems?
(b) Has the processing of personal data been documented, including the pur-

pose? Is that consistent with the identified legal basis?

4 Validation of Results

Since the GDPR requirements are expressed in a very different way compared to
software and software process requirements, there is no formal way to validate
the results in this paper. To ensure the correctness of the results, they are checked
against the text of the GDPR itself, supported by some legal commentaries such
as [9].

More difficult is the completeness of the results. To validate the completeness,
the results were compared against different publications that address the effects
of data protection and GDPR requirements on software development, in partic-
ular [3,4,13–15]. The results of these comparisons were directly integrated into
the results described above, so that the version reported here already includes
all requirements that had been identified as missing.

5 Conclusion

Data protection has become increasingly important in today’s economy, both
due to a number of data scandals that led to a loss of trust in the affected
companies, and, partly triggered by such scandals, due to data protection and
privacy legislation such as the GDPR. As indicated by the concept of “data
protection by design”, implementing data protection requires that this topic is
addressed from the start, including the development of any software used for the
processing of personal data. Different activities are needed at different times in
the software life cycle, mainly in the early development phases but—though to
a lesser extent—also in the later phases down to operations and eventually the
withdrawal of the software. It is therefore important to have a good understand-
ing of these necessary activities in order to incorporate them into the relevant
project plans, product backlogs or software process models as appropriate.

432 R. Kneuper

References

1. Cavoukian, A.: Privacy by design. The 7 foundational principles. Technical report,
Information and Privacy Commissioner of Ontario (2011). https://www.ipc.on.ca/
wp-content/uploads/Resources/7foundationalprinciples.pdf

2. Cavoukian, A., Taylor, S., Abrams, M.E.: Privacy by design: essential for organiza-
tional accountability and strong business practices. Ident. Inf. Soc. 3(2), 405–413
(2010). https://doi.org/10.1007/s12394-010-0053-z

3. Danezis, G., et al.: Privacy and data protection by design–from policy to engineer-
ing. Technical report, ENISA, December 2014. https://doi.org/10.2824/38623

4. Datatilsynet: Software development with data protection by design and by
default (2017). https://www.datatilsynet.no/en/about-privacy/virksomhetenes-
plikter/innebygd-personvern/data-protection-by-design-and-by-default/

5. Drozd, O.: Privacy pattern catalogue: a tool for integrating privacy principles of
ISO/IEC 29100 into the software development process. In: Aspinall, D., Camenisch,
J., Hansen, M., Fischer-Hübner, S., Raab, C. (eds.) Privacy and Identity 2015.
IAICT, vol. 476, pp. 129–140. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41763-9 9

6. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

7. Englehardt, S., Acar, G., Narayanan, A.: Website operators are in the dark about
privacy violations by third-party scripts, January 2018. https://freedom-to-tinker.
com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-
third-party-scripts/

8. Interactive Advertising Bureau (IAB Europe): IAB Europe and IAB Tech Lab
release cross-industry Transparency & Consent Framework for adoption, April
2018. https://www.iabeurope.eu/all-news/press-releases/iab-europe-and-iab-
tech-lab-release-cross-industry-transparency-consent-framework-for-adoption/

9. Kühlung, J., Buchner, B. (eds.): Datenschutz-Grundverordnung/BDSG. Kommen-
tar. C.H. Beck, 2. edn. (2018)

10. Kneuper, R.: Software Processes and Life Cycle Models. An Introduction to Mod-
elling, Using and Managing Agile, Plan-Driven and Hybrid Processes. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98845-0 3

11. Lindsey, N.: Popular Android apps are sharing personal data with Facebook with-
out user consent, January 2019. https://www.cpomagazine.com/data-privacy/
popular-android-apps-are-sharing-personal-data-with-facebook-without-user-
consent/

12. Office for Civil Rights (OCR): Guidance Regarding Methods for De-Identification
of Protected Health Information in Accordance with the Health Insurance Porta-
bility and Accountability Act (HIPAA) Privacy Rule (2012). https://www.hhs.
gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

13. Reid, G.: How to navigate the software development life cycle under the GDPR
(2017). https://iapp.org/news/a/how-to-navigate-the-software-development-life-
cycle-under-the-gdpr/. International Association of Privacy Professionals (IAPP)

14. Santala, A.: What should software engineers know about GDPR? (2017). https://
www.infoq.com/articles/gdpr-for-software-devs/

15. Simon, K., Moucha, C.: Sicherheit und Datenschutz im Lebenszyklus von Informa-
tionssystemen. DuD Datenschutz und Datensicherheit 43(2), 97–101 (2019)

16. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzy-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://doi.org/10.1007/s12394-010-0053-z
https://doi.org/10.2824/38623
https://www.datatilsynet.no/en/about-privacy/virksomhetenes-plikter/innebygd-personvern/data-protection-by-design-and-by-default/
https://www.datatilsynet.no/en/about-privacy/virksomhetenes-plikter/innebygd-personvern/data-protection-by-design-and-by-default/
https://doi.org/10.1007/978-3-319-41763-9_9
https://doi.org/10.1007/978-3-319-41763-9_9
https://doi.org/10.1007/978-3-540-79228-4_1
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://freedom-to-tinker.com/2018/01/12/website-operators-are-in-the-dark-about-privacy-violations-by-third-party-scripts/
https://www.iabeurope.eu/all-news/press-releases/iab-europe-and-iab-tech-lab-release-cross-industry-transparency-consent-framework-for-adoption/
https://www.iabeurope.eu/all-news/press-releases/iab-europe-and-iab-tech-lab-release-cross-industry-transparency-consent-framework-for-adoption/
https://doi.org/10.1007/978-3-319-98845-0_3
https://www.cpomagazine.com/data-privacy/popular-android-apps-are-sharing-personal-data-with-facebook-without-user-consent/
https://www.cpomagazine.com/data-privacy/popular-android-apps-are-sharing-personal-data-with-facebook-without-user-consent/
https://www.cpomagazine.com/data-privacy/popular-android-apps-are-sharing-personal-data-with-facebook-without-user-consent/
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://iapp.org/news/a/how-to-navigate-the-software-development-life-cycle-under-the-gdpr/
https://iapp.org/news/a/how-to-navigate-the-software-development-life-cycle-under-the-gdpr/
https://www.infoq.com/articles/gdpr-for-software-devs/
https://www.infoq.com/articles/gdpr-for-software-devs/

Revisiting the Product Configuration
Systems Development Procedure

for Scrum Compliance: An i* Driven
Process Fragment

Yves Wautelet1(B) , Sara Shafiee2 , and Samedi Heng3

1 KU Leuven, Leuven, Belgium
yves.wautelet@kuleuven.be

2 Danmarks Tekniske Universitet, Kongens Lyngby, Danmark
sashaf@dtu.dk

3 Université de Liège, Liège, Belgium
samedi.heng@uliege.be

Abstract. Product Configuration Systems (PCS) are software applica-
tions supporting the design of products tailored to the individual desider-
ata of customers. PCS development does not follow the same proce-
dure as traditional software: indeed, due to its nature, specific knowl-
edge needs to be collected, a set of custom engineering stages have
thus been built-up. Within these stages, special requirements represen-
tation and design artifacts are used notably to deal with features inter-
dependencies. More specifically, the Product Variant Master (PVM) has
been specifically created for PCS knowledge representation while Class-
Responsibility-Collaboration (CRC) cards and a UML Class Diagram
are often indispensable for PCS object-oriented design. PCS develop-
ment projects have gradually started to use agile methods like the Scrum.
This paper presents a process fragment for conducting PCS development
projects with Scrum; it overviews how the development team of a specific
organization adapted the agile process to the PCS context. This pro-
cess fragment has indeed been built on the basis of practitioners knowl-
edge collected through 5 qualitative interviews (inductive approach) and
exhaustively depict the activities performed by the team on PCS devel-
opment projects of various size and context. Because of the possibility to
represent social (role) dependencies, the fragment is visually represented
using an i* Strategic Rationale Diagram. The main contribution of the
paper is the fragment itself, it is intended to be dynamically used as an
initial guidance for PCS development teams willing to conduct projects
using Scrum; it can be tailored to any project/sprint and enriched at
will.

Keywords: Product Configuration Systems · Agile development ·
Scrum · DevOps · i-star · Feature dependencies

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 433–451, 2019.
https://doi.org/10.1007/978-3-030-35333-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_31&domain=pdf
http://orcid.org/0000-0002-6560-9787
http://orcid.org/0000-0001-9433-5060
http://orcid.org/0000-0002-6037-0914
https://doi.org/10.1007/978-3-030-35333-9_31

434 Y. Wautelet et al.

1 Introduction

A Product Configuration Systems (PCS) is a software-based system to sup-
port configuring a product at will (automatically or on the basis of user input)
to match the customers’ needs while satisfying technical constraints. Often the
amount of possible configurations is huge because it increases exponentially with
the number of configurable parameters. Also, constraints are often numerous and
complex to express requiring specific modeling artifacts. PCS enable companies
to propose alternatives to facilitate their sales and production processes by inte-
grating information about the product’s features, structures, constraints, costs
and prices. Using the PCS, the client can build the exact product he wishes and
by the same time make the first step in its production process. Widely used in
various industries, PCS can bring substantial benefits [12,13,26] such as shorter
lead times for generating quotations, fewer errors, increased ability to meet cus-
tomers’ requirements regarding product functionality, the use of fewer resources,
optimized product designs, less routine work and improved on-time delivery. A
PCS can for example be developed for configuring a car; the customer buying
a new car is then capable of selecting the type of body, the color, the type of
engine, etc. (Fig. 1).

Fig. 1. Car Product Configuration System (from [25]).

PCS being first and foremost software systems, their development have fol-
lowed the evolution in software development life cycles. At first they were devel-
oped using a (sequential) seven steps procedure (see [14]) executed in a waterfall
fashion. Later on, the procedure has been integrated in the Rational Unified Pro-
cess (RUP) [15] life cycle for iterative development. With the growing popularity
of Scrum, the question of using agile development within PCS development has
been raised. Several internal characteristics of PCS nevertheless induce that the
adoption of Scrum in such developments need to be handled with care. Scrum
essentially prioritizes sprints on the basis of the business value induced by the

Revisiting the PCS Development Procedure for Scrum Compliance 435

development of user stories [31]. The latter are filling the so-called Product Back-
log. Because of the high amount of dependencies among the configurable features
in the product supported by the PCS, sprints cannot be managed on the basis
of user stories exclusively. Indeed, more knowledge is required in order to ensure
that constraints are handled adequately; this has an impact on the prioritization
of developments. In other words, the constraints from the features’ dependencies
induce that the sprints’ content cannot be driven by value only. Also, because of
the complexity in the production process resulting from virtually infinite prod-
uct configuration choices, domain experts (among which production engineers)
constantly need to be consulted in the building and the validation of the PCS.
Also, documentation on the state of the PCS needs to be produced and kept
up-to-date to ensure all of the possible configurations are supported and non-
supported configurations are prescribed. Finally, short time release integration
deliver significant added value, especially when new configurations of the product
are made possible/available or existing configurations should be updated. Also,
when new configurations need to be tested on small customers groups, immedi-
ate (even if they are partial) deployments have proven to be of value (because
they allow to immediately attract customers and constitute life-sized evaluation
environment). For these reasons and because they often need to be integrated
in a broader software ecosystem, members of the operation team are involved in
the execution of each sprint. This is in line with the DevOps [2] approach.

The aim of the research is to depict how the Scrum process has been adopted
in a large organization specialized in the such developments. Due to the proven
benefits in general software development, the adoption of Scrum has been, into
the case organization, pushed by the top-management more than 3 years ago.
Through a set of interviews, we aimed to understand what are the current activ-
ities and practices performed into a PCS development project conducted with
Scrum. More specifically, we are interested in how the organization manages the
elements identified in the previous section. On the basis of the data collected
through interviews, we have built a process fragment. The latter is, with respect
to the case organization, exhaustive (it depicts all of the activities) but not exclu-
sive (not all of these activities are necessarily performed in each project and other
activities can be added if found relevant). The process fragment is expressed with
i* (i-star) [32] in order to highlight the social dependencies between the involved
roles. The process fragment itself constitutes main contribution of the paper and
can be used as a reference for PCS development professionals willing to conduct
projects using Scrum. We nevertheless do not consider it as a fixed scientific truth
but rather as a first reference that can be further used, tailored and validated
by other PCS development teams and/or cases.

2 Theoretical Background

2.1 PCS Projects Specifics

There are enough differences between general software development projects and
PCS ones for studying the impact of agile adoption in this specific field.

436 Y. Wautelet et al.

First of all, knowledge complexity and the possible extensions of PCS make
the project scoping determinant [24]. This is done by identifying the require-
ments, evaluating the time and budget, and prioritizing the different products
and functions. In PCS projects, goals and stakeholders’ requirements are mostly
determined in the first steps because of the complexity and dependencies found
in the product’s features, the range of involved stakeholders (from end-users
desiderata to production specialists determining the possible combinations), and
other functional and non-functional requirements.

Secondly, because of the differences in the nature of the knowledge to be
represented, PCS are formalized, combined, modeled and communicated differ-
ently than in general software development projects. The knowledge modeled in
PCS is indeed extensive and has to be continually validated by domain experts
and production specialists [25]. Strong communication between the PCS devel-
opment team and these experts is thus vital. Without proper validation, very
minor misunderstandings could lead to significant errors in the calculations and
outputs.

Thirdly, clear and comprehensive documentation of the developed PCS has
to be produced and needs to be understandable by all stakeholders in a non-
technical language [11]. Also, PCS often need to be integrated in a complex
software ecosystem; this requires propagation of related knowledge. In addi-
tion, frequent changes/updates in the supported product(s) requires continuous
updates and maintenance [6].

Because of the aforementioned elements, PCS require the development of
specific artifacts (see Sect. 2.2) furnishing the data/information required by the
PCS development team to perform its activities properly. The smooth integra-
tion of these artifacts into a Scrum-based project is addressed by the process
fragment.

2.2 Product Configuration Systems, the Traditional Center Product
Modeling Procedure

Hvam et al. [14] propose the Center Product Modeling (CPM) procedure for
PCS development; the latter consists of seven stages called phases in the initial
version to be executed in a waterfall fashion. These phases are to be mapped
into disciplines following the terminology of the RUP when integrated in the
latter life cycle1. Several extensions of CPM have been proposed (2001) (2003)
(2006) (2008) over the years. The different stages of the CPM framework include
(1) development of the specification processes, (2) analysis of the product range,
(3) object-oriented modeling, (4) object-oriented design, (5) programming of the
PCS, (6) plan for implementation, and finally (7) plan for maintenance and
further development. For each of the stages artifacts are defined in order to
represent/document relevant knowledge to fulfill the stage. Among those, we

1 The phases in RUP are indeed groups of iterations which are opposed to the stages
of [14] that constitute waterfall steps for the development (deployment and mainte-
nance of a PCS).

Revisiting the PCS Development Procedure for Scrum Compliance 437

are particularly interested in the Product Variant Master (PVM) and Class-
Responsibility-Collaboration (CRC) cards because these allow to represent con-
straints and dependencies in PCS knowledge representation.

The terminology used into the CPM framework is not entirely aligned with
the terminology commonly used in Software Engineering (SE). Indeed, what is
refereed to as Programming in [14] is what SE generally refers to as Implemen-
tation (i.e., the physical coding of the product using a programming language).
Similarly, what is refereed to as Implementation in [14] is known as Deployment
in SE. In the rest of this paper we adopt the terminology of general SE so that
we use Implementation for the coding of the solution; the Deployment stage is
outside the scope of the process fragment that we introduce in this paper so we
do not refer to it later on.

2.3 Artifacts Traditionally Required in Product Configuration
Systems Development Projects

The Product Variant Master. To obtain an overall view of the products in
the CPM framework, the product range is drawn up in a PVM to represent the
phenomenon model [14]. The PVM consists of two structures, which are the part-
of structure and the kind-of structure. The part-of structure represents the parts
that appear in the entire product family. The classes are defined as object classes
which include the name of the class, description, attributes and constraints. The
kind-of structure describes the different variants the individual parts can have.
Furthermore, the PVM contains a description of the most important connections
between parts, i.e., the rules for how parts are permitted to be combined. To
preserve the overview of the PVM, CRC cards are associated with the PVM to
describe the individual parts in more detail (see hereunder). The PVM represents
knowledge from different domains, which include customers, engineering and
part/production view [10]. The causal connection can then be drawn between the
views to identify complexity and non-value adding variety in the product range.
The PVM is very important for scoping the project. It indeed determines what
components are part of the PCS and what are not, the level of granularity and
the modularization. All of the theoretical possibilities of product customization
are not necessarily included due to complexity and economic reasons. Figure 2
shows an illustrative example of the PVM.

The Class Diagram. In the CPM framework, the UML class diagram [20] is
used to represent the information model. Its individual classes are defined from
the PVM using transformation rules. Aggregation and association structures are
used for relationships between objects. The aggregation structure corresponds
to the part-of structure in the PVM. The association structure is used if objects
are associated with each other. Multiplicities can be used with the aggregation
and association structures to represent the number of sub-parts needed to make
a super-part [14]. Generalization and package structures describe relationships

438 Y. Wautelet et al.

Fig. 2. Structure of the PVM regarding part-of and kind-of structure (adjusted from
[10]).

between classes. The generalization structure corresponds to the kind-of struc-
ture in the PVM. Forward engineering rules allow to generate a class diagram
directly from the PVM structure (see [14]).

Class-Responsibility-Collaboration Cards. The CRC cards, which are
associated with both the PVM and the class diagram, describe the classes in
more detail. The CRC card was first proposed as a way to teach object-oriented
thinking. Later, they were developed for use in PCS projects, where they describe
the individual object classes of the PVM and the class diagram in more details
[14]. In other words, the CRC card defines the class, including the class name
and its possible place in the hierarchy, together with a date and the name of the
person responsible for the class. Also, the class task (responsibility), the class
attributes and methods, and with which classes it collaborates (collaboration)
is given. Furthermore, a sketch of the product part represented by the class is
included. The purpose of the CRC cards is to document detailed knowledge about
the attributes and methods for the individual object classes and to describe the
classes’ mutual relationships. The CRC cards serve as documentation for both
domain experts and system developers.

3 Research Method and Process Fragment Validation

In order to gather specific knowledge on how PCS teams apply Scrum in practice
and build a process fragment, we proceeded through different stages.

First, the research team – composed of two specialists of the Scrum process
into general software development projects and one specialist into Scrum and
PCS development – made a preliminary brainstorming session to identify what
elements are typically needed in PCS development and potentially poorly sup-
ported by Scrum. A general presentation of Scrum was made, for each point,
the adequacy for PCS developments was discussed. This allowed to build-up a
series of questions. The first one asks for a very general description of all of the

Revisiting the PCS Development Procedure for Scrum Compliance 439

activities, the next ones result from the specifics discussed by the research team.
This leads to the following list of questions:

– Describe all the activities that you are doing during a typical sprint ;
– How do you gather domain knowledge? After initial start is it frequent to ask

for clarifications? Who is the interface to obtain these then?
– Do you systematically need an evaluation of the AS-IS situation? What is the

trigger to start with the modeling of the TO-BE situation?
– What are the models, tools to represent the (software/PCS) problem and solu-

tion?
– Do systematically need the PVM and CRC cards in addition to User Sto-

ries to depict the structure and functions of the PCS? Could User Stories be
sufficient? Could you avoid using User Stories in a Scrum project?

– Do you use a class diagram to model the (PCS) Object Oriented application?
What are your preferred sources of documentation (e.g., interviews, technical
documents, workflows, etc.) to build it?

– How do you proceed with the testing of the output in a sprint? How do you
select the end-users to be part of tests?

– How do you cascade/incorporate the feedback of users in the deliverable of the
next sprints?

– How do you prioritize the developments for the next sprint? How do you
manage the product’s features dependencies? Who sets the priorities and on
what basis?

– How do you manage the deployment of the PCS release? Is the release put
in production at the end of each sprint or is it included into a production
backlog?

Second, five qualitative interviews of members of a PCS development team
(working within a single organization) have been conducted. The interview pro-
cess involved people that have been playing all of the different roles of a Scrum
team in the studied organization. The latter team has more than ten years of
experience in PCS development with both the RUP and Scrum. In that company,
since the 3 last years, RUP has nevertheless been totally abandoned to exclu-
sively focus on Scrum. The interviews consisted in the open set of questions that
has been depicted above.

Third, the qualitative data collected during the interviews was analyzed
using concept-driven coding [7] leading to build a first version of the process
fragment. It required crossing all the information (and more specifically the
project management and engineering related concepts) retrieved from the inter-
views. When there were ambiguities, they were discussed with a member of
the research team that has been Scrum master in PCS projects for more than
6 years. The Scrum-based PCS development approach has been formalized using
the process fragment concepts of [23] and graphically represented in i* in the
same fashion as in [30]. The choice of i* has been made because it highlights the
social dependencies between the actors/roles but is not sequential. We indeed did
not want to document a sequence of activities in the process fragment because we
observed that there is a high variability in their sequence and/or parallelism from

440 Y. Wautelet et al.

project to project. This implicitly also shows the flexibility in the adoption of the
process fragment by a new development team. Multiple activities can indeed be
performed at the same time, some activities can be omitted, some others added
and the sequence can be chosen in function of the field requirements/constraints.
Workflow-based notations that are more directive in terms of sequence, do not
highlight social dependencies and are less tailorable/customizable and thus less
relevant; the i* notation better allows to deal with the variability in the activities’
execution and selection.

Fourth, the “candidate” version of the process fragment built in the former
stage has been presented to the practitioners involved in the interview stage
(acting as a focus group) within the context of a workshop. The latter was
meant to serve as an evaluation/validation for the “candidate” process fragment.
Concretely the process fragment and its notation were presented and explained
followed by a group discussion on the accuracy, correctness and completeness.
Their feedback/comments/ideas have been collected and the final version of the
process fragment has been built; this version is the one presented in this paper
(see Sect. 4). The activities included in the process fragment vary from project
to project and more specifically from sprint to sprint essentially in function of
the PCS’s complexity, size and the desiderata of the development team. This
final version is exhaustive meaning that it includes all of the possible activities
reported by the development team. It is meant to be tailored to each project
sprint. Activities can be selected dynamically in function of the scope and needs;
new activities can also be added if required/found relevant by the adopting team.
The process fragment is thus not prescriptive but rather customizable in function
of the sprint’s context.

4 The Software Process Fragment

Table 1 documents all of the process fragment elements defined in Seidita et al.
[23] that are instantiated onto our contribution.

To graphically represent the process fragment’s elements, we use an i* Strate-
gic Rationale (SR) diagram of Fig. 3. For clarity, we insist that, in a same project,
each of the Roles can be played by several individuals and a same individual
can also play different Roles. Moreover, the Scrum Master role is not part of the
process fragment because its responsibilities and activities are generic in Scrum;
we here focus on the aspects that are (PCS-)project related in the studied orga-
nization.

Specifically, because of the arrows present in the i* representation, the process
fragment may seem to be directed, sequential and highly structured. The arrows
nevertheless only represent dependencies between the involved roles and do not
prescribe the sequence of execution of activities. Similarly, it presents all of the
activities that have been reported as useful in the development of a PCS using
Scrum but not all of them necessarily need to be performed in a specific sprint
nor Scrum project. If used as a reference, the process fragment can be tailored
at will to each specific sprint into a project. We distinguish several types of
stakeholders having various goals and expectations, i.e.:

Revisiting the PCS Development Procedure for Scrum Compliance 441

Fig. 3. Process fragment for PCS development with Scrum: exhaustive view.

442 Y. Wautelet et al.

Table 1. Instantiation of our Process Fragment.

Element Definition (from [23]) Instantiation to our process

fragment

i* Representa-

tion

Design

Process

Design process from which the

fragment has been extracted

The Scrum Agile Method N/A

Phase A specification of the fragment

position in the design workflow.

Usually referring to a taxonomy

Determine Stakeholders’

Requirements, Process Analysis,

Product Analysis, Manage

Product Backlog, Object oriented

Analysis and Design, PCS

System Implementation, PCS

System Release Deployment,

Test

Goal

Goal The process-oriented objective of

the fragment

The integration of PCS

development in Scrum

N/A

Activity A portion of work assignable to a

performer (role)

Gather Knowledge, Build AS-IS

process flowchart and business

values, Define PCS, Plan

Release, Architecture and Design

Object-Oriented Application,

Implement PCS System and

Generate Output, Test

Integration of Release, Test

Release

Task

Work ProductThe resulting product of the work

done in the fragment; it can be

realized in different ways also

depending on the specific adopted

notation

Business Case, AS-IS

Flowcharts, TO-BE Flowcharts,

User Stories Set, Class-

Responsibility-Collaboration

Cards, Product Variant Master,

User Stories for Sprint, Class

Diagram, System architectural

design, PCS Software Executable

Release, Refined User Story Set

Resource

Role The stakeholder performing the

work in the process and

responsible of producing a work

product (or part of it)

Domain Expert, Product Owner,

Business Analyst, Requirements

Engineer, Software Designer,

Software Developer,

Infrastructure Engineer, System

Tester, User

Role

Description It is the textual and pictorial

description of the fragment; it

provides a bird-eye on the whole

process the fragments come from

and the fragment overview in

terms of tasks to be performed,

roles and work product kind to be

delivered

The i* Process Model of Fig. 3 A Strategic

Rationale

Diagram

Composition

Guideline

A set of guidelines for

assembling/composing the

fragments with others

The transformation of the PVM

to a class diagram as presented in

[14]. The transformation rules

from a PVM to a User Story Set

N/A

Revisiting the PCS Development Procedure for Scrum Compliance 443

– The Product Owner (PO) Role is a senior manager that is mainly in charge
of developing a vision of the PCS that needs to be built and propagate that
vision over the development team; it is a key stakeholder of the project.
He does not provide a detailed specification of the PCS but rather a coarse-
grained vision of how the PCS will be developed and integrated in the software
ecosystem. The first process fragment Activities are performed by this role.
These are performed in the context of the Determine Stakeholders’ Require-
ments Phase which is represented as an i* Goal in Fig. 3. A means-end
decomposition then allows to refine the i* Goal representing the Phase .
Indeed, to fulfill this i* Goal, the PO Role performs the Activity Gather
Knowledge. In itself, the latter Activity requires a set of other Activities
to be achieved (as shown through the decompositions in Fig. 3). These are
Define the Desired Output, Provide the Needed Databases and Identify Nice
to-have Requirements; the output of these Activities is compiled into the
Business Case Work Product). In addition, the PO Role also performs
activities in the context of the Manage Product Backlog Phase which is rep-
resented as an i* Goal. A means-end decomposition then allows to refine the
i* Goal representing the Phase . Indeed, to fulfill this i* Goal, the PO Role
performs the Activity Plan Release [21]. The latter Activity allows to select
a specific sub-set of User Stories (from the entire set of User Stories) to be
developed/prototyped within the next Sprint. This allows to build the User
Stories for Sprint Work Product used by the Software Designer Role to
fulfill the Architecture and Design Object-Oriented Application Activity ;

– The Domain Expert Role is played by all of the experts of the organizations’
business processes and/or product and is thus in charge of participating to
the Provide Domain Knowledge Activity fulfillment;

– The Business Analyst Role performs is activities in the context of the Pro-
cess Analysis Phase which is represented as an i* Goal in Fig. 3. A means-
end decomposition then allows to refine the i* Goal representing the Phase .
Indeed, to fulfill this i* Goal, the Business Analyst Role performs the Activ-
ity Build AS-IS process flowchart and business values. In itself, the lat-
ter Activity requires a set of other Activities to be achieved (as shown
through the decompositions in Fig. 3). These are Establish a proper under-
standing from the current technical and business process, and Measure the
business values; the output of these Activities is compiled into the AS-IS
Flowcharts Work Product). In the particular domain of PCS, we indeed
proceed through an evaluation of the AS-IS business processes before defin-
ing the PCS. This practice is adopted by agile teams as well;

– The Requirements Engineer Role performs activities in the context of the
Product Analysis Phase which is represented as an i* Goal in Fig. 3. A
means-end decomposition then allows to refine the i* Goal representing the
Phase . Indeed, to fulfill this i* Goal, the Requirements Engineer Role per-
forms the Activity Define PCS. In itself, the latter Activity requires two
Activities to be achieved. These are Build TO-BE process flowchart and
potential Scenarios and Build the Product Variant Master and CRC Cards.

444 Y. Wautelet et al.

Both Activities requires a set of other Activities to be achieved (as shown
through the decompositions in Fig. 3). More specifically:
• To achieve the Build TO-BE process flowchart and potential Scenarios
Activity , one need to perform the Activities Propose the future Sce-
narios, Asses the proposed Scenarios and related TO-BE processes, Iden-
tify missing requirements and Choose the best Scenario. This allows to
build the TO-BE Flowcharts Work Product later used by the Soft-
ware Designer Role to fulfill the Architecture and Design Object-Oriented
Application Activity ;

• To achieve the Build the Product Variant Master and CRC Cards Activ-
ity , one need to perform the Activities Establish the link between
products variables and components, Remove redundant requirements and
Ensure the consistency, dependency and hierarchy of User Stories. This
allows to build the CRC Cards as well as the PVM Work Products
used by the Software Designer Role to fulfill the Architecture and Design
Object-Oriented Application Activity .

Also the output of these Activities allow to build the User Story Set Work
Product later used by the PO Role to fulfill the User Story mapping Activ-
ity .

– The Software Designer Role is in charge of transforming the specifications
into a software architecture and design. He performs his activities in the
context of the Object-Oriented Analysis and Design Phase which is repre-
sented as an i* Goal in Fig. 3. A means-end decomposition then allows to
refine the i* Goal representing the Phase . Indeed, to fulfill this i* Goal,
the Software Designer Role performs the Activity Architecture and Design
Object-Oriented Application. The latter Activity allows to design the appli-
cation. In itself, the latter Activity requires a set of other Activities to be
achieved (as shown through the decompositions in Fig. 3). These are Define
User Interface, Build system architecture and Build the object-oriented design.
This allows to build the Class Diagram and the System architectural design
Work Products used by the Software Developer Role to fulfill the Imple-
ment PCS System and Generate Output Activity ;

– The Software Developer Role is in charge of transforming the software archi-
tecture and design into an executable PCS. He performs his activities in the
context of the PCS System Release Implementation Phase which is repre-
sented as an i* Goal in Fig. 3. A means-end decomposition then allows to
refine the i* Goal representing the Phase . Indeed, to fulfill this i* Goal, the
Software Developer Role performs the Activity Implement PCS System and
Generate Output. The latter Activity allows to build an executable release
ready to be tested. In itself, the latter Activity requires a set of other Activ-
ities to be achieved (as shown through the decompositions in Fig. 3). These
are Build the IT system and Coding of all the needed outputs. This allows
to build the PCS Software Executable Release Work Product used by the
System Tester Role to fulfill the Test Release Activity ;

– The Infrastructure Engineer Role is in charge of ensuring that the release of
the PCS built during the Sprint can be put in production through a smooth

Revisiting the PCS Development Procedure for Scrum Compliance 445

integration in the software infrastructure. He performs his activities in the
context of the PCS System Release Deployment Phase which is represented
as an i* Goal in Fig. 3. A means-end decomposition then allows to refine the
i* Goal representing the Phase . Indeed, to fulfill this i* Goal, the Infras-
tructure Engineer Role performs the Activity Test Integration of Release.
In itself, the latter Activity requires a set of other Activities to be achieved
(as shown through the decompositions in Fig. 3). These are Perform Infras-
tructure Compatibility Testing for New Release and Perform Load Testing for
New Release. This allows to build the PCS Software Executable Release Work
Product used by the System Tester Role to fulfill the Test Release Activity
and the Refined User Story Set Work Product used by the Requirements
Engineer Role to fulfill the Build TO-BE process flowchart and potential
Scenarios Activity ;

– The System Tester Role is in charge of testing the developed PCS release.
He performs his activities in the context of the Testing Phase which is rep-
resented as an i* Goal in Fig. 3. A means-end decomposition then allows to
refine the i* Goal representing the Phase . Indeed, to fulfill this i* Goal, the
System Tester Role performs the Activity Test Release. The latter Activ-
ity allows to evaluate the output of the Sprint; for this the System Tester
Role depends on the (end) User Role for fulfilling the Provide Feedback on
Software Release Activity . This allows to build the Refined User Story Set
Work Product used by the Requirements Engineer Role to fulfill the Define
PCS Activity . We here refer to refining the business processes and the PCS
analysis for the next Sprint;

– The (end) User Role uses the PCS and is thus in charge of participating to
the Feedback on the Software Release Activity fulfillment.

5 Discussion: Requirements Representation and Backlog
Management Within Scrum

Scrum traditionally manages its backlog on the basis of user stories. User sto-
ries written for the development of a PCS nevertheless requires to be accom-
panied with product structural details. To be able to create the configuration
solution space for a specific product, one needs to be aware of the whole prod-
uct architecture, the sequence (and importance) of the selection (which feature
impacts others and should be chosen first), the constraints on product compo-
nents (e.g., if the customer can order a car with 6 doors the whole product should
be adjustable), etc. Consequently, the user stories are most often completed with
a series of constraints. For example, the user story As an online customer, I want
to be able to choose the size of engine so that I can choose my preferred car capac-
ity, are accompanied with the scenario(s) Given motor size is valid, When it is
chosen from “2, 2.3, 2.5 liter”. Then the: (i) Selection 2 is not valid is car has
4 doors; (ii) Selection 2.5 is not valid if car is 2 doors. Since these constraints
are difficult to express fully and efficiently in (structured) natural language, the
PVM (with CRC cards) are used as a complementary documentation for the

446 Y. Wautelet et al.

development team. Systematically these need to be built for any complex PCS
development project and are consulted when filling the sprint backlog to ensure
the constraints and dependencies are respected. There is redundancy between
the constraints found with the user stories and the PVM; user stories serve for
quick reference and the PVM is used for formal support.

In practice, in a PCS development project, the user stories drive the sprint
backlog on the basis of their value but the the precedence constraints and depen-
dencies lead to form groups of US that need to be implemented in the same
release/sprint. In PCS, the prioritization of the user stories indeed depends on
the structure of the product itself as well as the technical constraints. The prod-
uct components which are the major variables controlling the solution space need
to be developed and positioned at the beginning of PCS project. Moreover, from
the technical perspective, the main attributes cannot be positioned after the
minor ones as they should be located in a higher level of abstraction to be able
to control the minor attributes range. For example, if we want to write the user
stories to develop a PCS for a car, first of all, we should know about the product
and which components have a higher priority; e.g., we cannot go to the details
of the leather in the interior design before determining the main elements of the
car. This has a significant impact on the management of the software process;
these precedence constraints are the main driver of the release delivery in every
Scrum-based PCS project.

Setting-up precedence/dependency constraints and ensuring they are
respected is currently done manually in the studied organization. Also, no tool
support is ensuring traceability between the user stories and the PVM requiring
substantial domain knowledge to consistently fill the product/sprint backlogs. A
Computer Aided Software Engineering (CASE) tool for backlog management is
under development; it ensures traceability and consistency between the so-called
user story view and PVM view. Based on the formal linkage between user sto-
ries and PVM parts, the tool automatically validates that all the constraints are
respected when a sprint backlog is filled.

6 Towards a Revised Process Pattern for Product
Configuration Systems Development and Threats
to Validity

As shown process in the fragment, PCS development practices with Scrum sub-
sequently evolved from the classical CPM procedure of [14]. Analysis practices
remain rather aligned with that framework; indeed, in our process fragment we
start with the Process Analysis including the evaluation of the situation AS-IS
and the Product Analysis that includes the evaluation of the TO-BE processes
and a first specification of the PCS. This remains aligned with the first and sec-
ond stages of the traditional PCS development framework. At design stage we
nevertheless have a significant difference with the latter framework. Our process
fragment indeed considers Object Oriented Analysis and Design in one stage.
The main reason that can be evoked here is that agile practices focus on fast

Revisiting the PCS Development Procedure for Scrum Compliance 447

development and do not advice to spend a lot of time on software architecture
and design but rather prescribes to re-factor the architecture later on in the
development if required. The Implementation stage of our process fragment cor-
responds to the Programming stage of the classical PCS development framework.
Also, no explicit project management is evoked in the framework from [14]; in
the proposed process fragment, the content of the Sprints are defined by the
PO in the Manage Product Backlog stage. Finally, for an optimal integration
of the PCS into the software ecosystem, practitioners include operators at the
implementation stage. This allows to include the deployment constraints into the
release development to ensure the PCS a smooth integration; this is a genuine
practice not present in the CPM procedure.

Even if we do not strictly speaking conduct an experiment nor ask specific
research questions so we do not draw formal conclusions (statistical or otherwise),
we include some threats to validity related to the data collection that might lead
to errors and hazards into the process fragment that we have presented.

With respect to the construct validity, the main threat is that interview
questions are not interpreted by interviewees the way intended by the interview-
ers. To manage this, we conducted several interviews with people playing or
having played each role. This allowed to collect multiple opinions on the same
question/aspect so that the reliability on what we have inferred increases. Sim-
ilarly, the process fragment has been validated with the interviewees in order to
reduce the impact of this particular treat.

As far as the internal validity is concerned, the major threat is that answers
from interviewees reflected their personal opinion(s) on how the organization
should behave rather than how it empirically behaves. Also, the interviewees’
roles have an influence on the knowledge he/she has on the asked questions. To
deal with this we also asked the same set of questions each relating to different
area of knowledge to each of the interviewees. This allowed to have the answer
of the specialists (the roles involved in specific activities we ask a question on)
as well as the ones of people that are not performing the activities but interact
with the people performing them. Consequently, we have a more credible global
picture of the organizational behavior.

The treat to external validity is that the results may not be generalizable
to other organizations than the one studied. This threat to validity should be
taken very seriously. We have presented the whole contribution as the results
of the modeling of a single organization having experience on multiple projects.
The process fragment has been made exhaustive meaning that it documents
a set of practices that can or cannot be adopted in a single project/sprint. It
should of course be further extended/validated on the basis of interviews in other
organizations but we aimed to have a first study here showing how a complex
PCS development is managed with Scrum into a mature organization.

7 Related Work

To the best of our knowledge, no scientific study reported on the use of Scrum
or any agile method in the context of PCS. Other studies have nevertheless been

448 Y. Wautelet et al.

made where other artifacts were used for software analysis in combination with
user stories because of domain specifics (e.g., [27,29]). PCS and Software Prod-
uct Line Engineering (SPLE) nevertheless do share common characteristics [17].
While PCS mainly support traditional engineering products (e.g., mechanical,
electronic, etc.), software product families and SPLE are used in the engineer-
ing of software variants. These approaches all target to design new variants for a
product family to meet customer requirements. To represent product knowledge,
SPLE mostly uses feature models [16], a tree-like graphical model comparable
to the PVM since it represents elements and their dependencies. Because of this
similarity and the impact of this similarity on the management of the software
development, we overview work relating SPLE and Agile Development (AD).

By definition, SPLE and AD can be seen as water and oil; as opposed to AD,
SPLE focuses on upfront design [4]. Several works have nevertheless been con-
ducted to combine SPLE and AD (e.g., [5,8,9,18,19]). In SPLE, two engineering
phases are existing, Domain Engineering (DE) relating the domain knowledge
and Application Engineering (AE) relating the customer needs; AD could be
applied in these two phases of SPLE. However, the adoption of AD in DE requires
more effort than in AE [4] because of the features dependencies (represented in
the features model and requiring upfront design). This issue can immediately be
related to the one of building the PVM in PCS.

O’Leary et al. (2012) [19] developed an Agile Process model for Product
Derivation (A-Pro-PD). The latter aims at minimizing upfront investments. It
combines the core assets of SPLE such as feature models, architecture models,
code artifacts with AD. PuLSE-I [3] proposes to adopt agile practices such as
planning games and incremental design into Product Derivation. Diaz et al.
(2014) [5] customize the Scrum process for SPLE. User stories are used for
describing software product-line features; they are prioritized on the basis of
business value and assigned to sprints. The research in [22] aims at aligning
SPLE artifacts from Kunbang [1] with AD artifacts from Agilefant [28]. More
specifically, they relate leaf features (not composed of other features) to a fea-
ture backlog itself composed of the product backlog. The feature backlog is thus
composed through elements on the lowest granularity level and recomposed into
the product backlog for iteration (sprint) management.

8 Conclusion

The specifics of PCS make them an interesting but complicated application
domain for a software development based on agile methods. PCS constitute
the primary interface with the customer so that they are user-centered systems
requiring feedback and validation to be aligned at best with their expectations. In
such a context, proceeding through sprints would turn out to be very beneficial.
PCS are nevertheless narrowly tight with the constraints inherent to the product
they allow to customize so that there is less latitude in their development than
in general software systems. Short releases immediately deployed allow testing
the impact of new configurations on some particular customer sets to collect
relevant sales data and efficiently support the production process.

Revisiting the PCS Development Procedure for Scrum Compliance 449

This paper’s main contribution is a process fragment for PCS development
using Scrum. The latter has been built on the basis of data gathered from a
PCS development team having substantial experience in such developments; it
has been made exhaustive to include all of the reported activities of the case orga-
nization and aligned with the knowledge, syntax and semantics of SE concepts
found in literature. This allowed to build a first reference of a process fragment
tailorable to any PCS development project and more particularly its sprints. As
such, it does not constitute a unique truth/pathway to be adopted/used faith-
fully but rather a guidance to be dynamically tailored for each project/sprint
in function of their specifics and the desiderata of the development team. It
nevertheless constitutes a consistent whole that can be used as a starting point
for PCS development teams willing to adopt Scrum, agile and some DevOps
practices in their projects. Finally, the process fragment has to evolve by (i)
the study of more settings where the application of an agile method has to deal
with software with much dependencies and technical constraints and (ii) by its
active application on case studies. More roles, activities, tasks and artifacts can
of course be added but the process fragment needs to remain easy to use in
order not to hamper the agility of the project. We point to the development of
a CASE tool to support activity selection to dynamically tailor it to a specific
project/sprint. This way variability in the roles, activities and work products
when adopting the fragment can be actively supported.

References

1. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: a domain ontology for mod-
elling variability in software product families. Adv. Eng. Inform. 21(1), 23–40
(2007)

2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

3. Carbon, R., Lindvall, M., Muthig, D., Costa, P.: Integrating product line engi-
neering and agile methods: flexible design up-front vs. incremental design. In: 1st
International Workshop on Agile Product Line Engineering (APLE 2006), Mary-
land, USA (2006)

4. Dı́az, J., Pérez, J., Alarcón, P.P., Garbajosa, J.: Agile product line engineering - a
systematic literature review. Softw. Pract. Exp. 41(8), 921–941 (2011)

5. Dı́az, J., Pérez, J., Garbajosa, J.: Agile product-line architecting in practice: a case
study in smart grids. Inf. Softw. Technol. 56(7), 727–748 (2014)

6. Friedrich, G., Jannach, D., Stumptner, M., Zanker, M.: Knowledge Engineering for
Configuration Systems. Elsevier, Amsterdam (2014)

7. Gibbs, G.R.: Thematic coding and categorizing. Anal. Qual. Data 703, 38–56
(2007)

8. Haidar, H., Kolp, M., Wautelet, Y.: An integrated requirements engineering frame-
work for agile software product lines. In: 13th International Conference on Software
Technologies, ICSOFT 2018, Porto, Portugal, 26–28 July 2018, pp. 124–149 (2018).
Revised Selected Papers

9. Hanssen, G.K., Fægri, T.E.: Process fusion: an industrial case study on agile soft-
ware product line engineering. J. Syst. Softw. 81(6), 843–854 (2008)

450 Y. Wautelet et al.

10. Harlou, U.: Developing product families based on architectures. Department of
Mechanical Engineering, Technical University of Denmark (2006)

11. Haug, A., Hvam, L.: The modelling techniques of a documentation system that
supports the development and maintenance of product configuration systems. Int.
J. Mass Cust. 2(1–2), 1–18 (2007)

12. Haug, A., Hvam, L., Mortensen, N.H.: The impact of product configurators on lead
times in engineering-oriented companies. AI EDAM 25(2), 197–206 (2011)

13. Hvam, L., Haug, A., Mortensen, N.H., Thuesen, C.: Observed benefits from product
configuration systems. Int. J. Ind. Eng. Theory Appl. Pract. 20(5–6), 1–6 (2013)

14. Hvam, L., Mortensen, N.H., Riis, J.: Product Customization. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71449-1

15. IBM: The Rational Unified Process, Version 7.0.1 (2007)
16. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, Software Engineering Institute (1990)

17. Männistö, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: 10th International Workshop on Software Configuration Man-
agement (SCM-10), Toronto, Canada, pp. 14–15 (2001)

18. Noor, M.A., Rabiser, R., Grünbacher, P.: Agile product line planning: a collabo-
rative approach and a case study. J. Syst. Softw. 81(6), 868–882 (2008)

19. O’Leary, P., McCaffery, F., Thiel, S., Richardson, I.: An agile process model for
product derivation in software product line engineering. J. Softw. Evol. Process
24(5), 561–571 (2012)

20. OMG: Omg unified modeling language (omg uml). version 2.5. Technical report
(2015)

21. Patton, J., Economy, P.: User Story Mapping: Discover the Whole Story, Build the
Right Product. O’Reilly Media Inc, Newton (2014)

22. Raatikainen, M., Rautiainen, K., Myllärniemi, V., Männistö, T.: Integrating prod-
uct family modeling with development management in agile methods. In: Proceed-
ings of the 1st International Workshop on Software Development Governance, pp.
17–20. ACM (2008)

23. Seidita, V., Cossentino, M., Chella, A.: A proposal of process fragment definition
and documentation. In: Cossentino, M., Kaisers, M., Tuyls, K., Weiss, G. (eds.)
EUMAS 2011. LNCS (LNAI), vol. 7541, pp. 221–237. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34799-3 15

24. Shafiee, S., Hvam, L., Bonev, M.: Scoping a product configuration project for
engineer-to-order companies. Int. J. Ind. Eng. Manag. 5(4), 207–220 (2014)

25. Shafiee, S., Hvam, L., Haug, A., Dam, M., Kristjánsdóttir, K.: The documentation
of product configuration systems: a framework and an IT solution. Adv. Eng.
Inform. 32, 163–175 (2017). https://doi.org/10.1016/j.aei.2017.02.004

26. Trentin, A., Perin, E., Forza, C.: Product configurator impact on product quality.
Int. J. Prod. Econ. 135(2), 850–859 (2012)

27. Trkman, M., Mendling, J., Trkman, P., Krisper, M.: Impact of the conceptual
model’s representation format on identifying and understanding user stories. Inf.
Softw. Technol. 116, 106169 (2019)

28. Vähäniitty, J.: Do small software companies need portfolio management, too. In:
2006 Proceedings of the 13th International Product Development Management
Conference, Milan, Italy, pp. 1471–1486, EIASM. Citeseer (2006)

29. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story
sets with the use case model. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS,

https://doi.org/10.1007/978-3-540-71449-1
https://doi.org/10.1007/978-3-642-34799-3_15
https://doi.org/10.1016/j.aei.2017.02.004

Revisiting the PCS Development Procedure for Scrum Compliance 451

vol. 9975, pp. 127–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47717-6 11

30. Wautelet, Y., Heng, S., Kiv, S., Kolp, M.: User-story driven development of multi-
agent systems: a process fragment for agile methods. Comput. Lang. Syst. Struct.
50, 159–176 (2017)

31. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 15

32. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. MIT Press, Cambridge (2011)

https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-07881-6_15

Microservices

Kuksa: A Cloud-Native Architecture
for Enabling Continuous Delivery

in the Automotive Domain

Ahmad Banijamali1(B) , Pooyan Jamshidi2 , Pasi Kuvaja1 ,
and Markku Oivo1

1 M3S Research Unit, ITEE Faculty, University of Oulu, Oulu, Finland
{ahmad.banijamali,pasi.kuvaja,markku.oivo}@oulu.fi

2 Computer Science and Engineering Department,
University of South Carolina, Columbia, USA

pjamshid@cse.sc.edu

Abstract. Connecting vehicles to cloud platforms has enabled innova-
tive business scenarios while raising new quality concerns, such as relia-
bility and scalability, which must be addressed by research. Cloud-native
architectures based on microservices are a recent approach to enable con-
tinuous delivery and to improve service reliability and scalability. We
propose an approach for restructuring cloud platform architectures in
the automotive domain into a microservices architecture. To this end,
we adopted and implemented microservices patterns from literature to
design the cloud-native automotive architecture and conducted a labora-
tory experiment to evaluate the reliability and scalability of microservices
in the context of a real-world project in the automotive domain called
Eclipse Kuksa. Findings indicated that the proposed architecture could
handle the continuous software delivery over-the-air by sending auto-
matic control messages to a vehicular setting. Different patterns enabled
us to make changes or interrupt services without extending the impact
to others. The results of this study provide evidences that microservices
are a potential design solution when dealing with service failures and
high payload on cloud-based services in the automotive domain.

Keywords: Microservices · Cloud-native architecture · Cloud
computing · Automotive

1 Introduction

In recent years, there has been an increased focus from industry and academia to
investigate cloud platform architectures that enable continuous software delivery
(CD) in vehicles [10]. Many industries have started to look for CD solutions as
they need to release quality software more frequently, better respond to auto-
motive market changes, avoid vehicle recalls, improve productivity, and increase
customer satisfaction [28]. For this purpose, vehicular software and information
resources are being virtualised and designed as services in the cloud [17]. Cloud
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 455–472, 2019.
https://doi.org/10.1007/978-3-030-35333-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_32&domain=pdf
http://orcid.org/0000-0002-6283-142X
http://orcid.org/0000-0002-9342-0703
http://orcid.org/0000-0002-1488-6928
http://orcid.org/0000-0002-1698-2323
https://doi.org/10.1007/978-3-030-35333-9_32

456 A. Banijamali et al.

platforms in the automotive domain (ACPs) provide the possibilities to exchange
data beyond vehicles [19], connect vehicles to other objects in the environment,
update automotive software using wireless communications systems (over-the-
air) [33], and enable many more business services in the cloud (Fig. 1).

Fig. 1. Cloud platforms in the automotive domain

Nevertheless, the migration of software delivery to ACPs has raised new
research challenges. For example, vehicle-to-cloud (V2C) data transmission
requires low latency and high reliability to satisfy the requirements of real-time
systems [21]. Scalability is another challenge that demands the decomposition of
functionalities and efficient data management [15]. Furthermore, the resiliency
configuration explains runtime behaviour and faulty components [15], and secu-
rity is a major requirement for protecting vehicles from malicious attacks [34].

In addition, as for the migration process towards distributed systems, such
as cloud-native architectures, many architecture designs fail as long as their goal
is to only replace the existing legacy architecture with a virtualised environment
in the cloud [3]. The reasons may include but are not limited to a lack of solid
business cases for cloud migration, neglecting adequate support teams, migrating
at once to the cloud, and not considering applications’ architecture refactoring
[4,5]. Consequently, the benefits from migration to the cloud platforms could be
trivial, as the failure can happen anytime [3].

Despite the importance of CD and the mentioned quality challenges in ACPs,
there has been insufficient focus from research that provides practical insights
into designing software architectures that address those quality concerns [6]. Due
to the impact of microservices on cloud-native architectures with respect to qual-
ity requirements, such as reliability, scalability, availability, and fault-tolerance
[4,5], microservices can be a potential solution for the existing challenges in
ACPs. In relation to this, the ultimate objective of our paper is to investi-
gate whether microservices can enable over-the-air (OTA) continuous delivery
in ACPs while improving reliability and scalability in this domain. We have pro-
posed a microservices architecture based on a real-world project in the auto-
motive domain called Eclipse Kuksa and conducted a laboratory experiment to
evaluate the architecture with respect to the mentioned quality attributes.

Kuksa: A Cloud-Native Architecture 457

The results of this study can benefit industrial practitioners and academic
researchers in the domains of automotive software engineering and cloud plat-
form design. The study is aimed at researchers who would like to gain insight
into the application of microservices in the domain of ACPs. From the practi-
tioners’ perspective, the findings provide experimental results for the reliability
and scalability of microservices in a real-world industrial case in the automotive
domain. The key contributions of the study are: (1) assessing the relative extent
to which cloud-native architecture can enable continuous delivery in the automo-
tive domain and (2) evaluating the role of microservices patterns in improving
the reliability and scalability of services in this context.

2 Background

2.1 Microservices

Monolithic architectures are usually successful when the whole system is small
and the number of functions is low [9]. Increasingly, the number of end users
requires more deployment in the cloud [9], as every time that we apply a change
to a small part of an application, we need to build and deploy the whole mono-
lithic system again [3]. Furthermore, scalability means scaling the whole applica-
tion rather than a part of the components that requires more resources [13]. As
a consequence, many companies, such as Netflix, Amazon, and Atlassian, have
migrated to more scalable and reliable architectures like microservices.

As for distributed systems, microservices are used to design fine-grained,
modular services that have different life cycles but work together [23]. Each ser-
vice deploys independently [2] using a potentially different deployment frame-
work typically in the cloud [25], scales independently [31], is tested individu-
ally, and accomplishes responsibilities independently [31] while communicating
through lightweight mechanisms, such as RESTful APIs [13]. The relevant archi-
tecture breaks down a system into services, each as a business capability [13].

Microservices promote a DevOps philosophy about separated small teams
working together to meet the objectives of a large mission-critical system [5].
On the other hand, DevOps provides the framework for developing, deploying,
and managing the microservices container ecosystem [11]. In this architecture, a
microservice is developed and maintained by one small team while coordination
among the teams is minimised [35]. It is noted that the largest size of the teams
usually follows Amazon’s notion of the “Two Pizza Team”, meaning not a large
group of people [13].

Despite all the advantages that microservices bring to the architecture
designs, they have several challenges that should carefully be addressed. For
example, replacing a monolithic architecture with a large number of inter-
connected microservices can increase latency and other performance issues [5].
Having a system that is currently being used in production, it is necessary to
make the migration incrementally [35] without data loss and interruption [5],
during which we need adequate frameworks and experience in how to proceed

458 A. Banijamali et al.

[35]. Eventually, inconsistencies among microservices is another relevant chal-
lenge [13].

2.2 Software Architectures of Automotive Cloud Platforms

Convergence of the internet of things and cloud computing has enabled innova-
tive business use cases, ecosystems, and players in the automotive domain [17].
ACPs’ application includes but is not limited to advanced vehicle connectivity,
infotainment applications, voice and video data streaming, fleet management
services, remote diagnostics and maintenance, and telematics services [14,18].

Due to the increasing number of connected vehicles, the security, reliabil-
ity, availability, robustness, and scalability of services are becoming new quality
requirements in ACPs [16]. The extent of architectures in ACPs ranges from
multi-layered architectures [7] to service-oriented architectures (SOA) [22,32].
Datta et al. [8] designed a framework for connected vehicles to offer consumer-
centric services and a uniform mechanism for describing and collecting vehicular
sensors’ data. The designed architecture applies technologies such as road side
units (RSUs) and machine-to-machine (M2M) gateways, including the fog com-
puting platform [8]. The authors argued that using fog computing technologies
can improve the fault tolerance, reliability, and scalability of the system [8]. Scal-
ability and interoperability have been addressed in another study [26] in a mod-
ular architecture built upon DevOps practices to enable vehicle-to-everything
(V2X) applications. The authors divided real-time applications for managing
traffic into small modules to validate the functionality of the architecture [26].

A scalable and fault-tolerant data-processing design for real-time traffic-
based routing was proposed by another study [27]. It argued that the designed
architecture can serve a wide range of workloads and use cases with low-latency
requirements [27]. Real-world scenarios of intelligent traffic system applications
demonstrated the need for scalable big data analysis, service encapsulation,
dynamic configuration, and optimisation strategies in this context [12]. Due to
the technological variety in ACPs, architecture designs must assure stakeholders
[5] that provisional services will meet the quality requirements at a specific level
of cost and risk that is enforced by service level agreements (SLAs) [24].

3 Research Questions and Method

This section describes the study’s objective, research questions, and research
method.

3.1 Objective and Research Questions

The main objective of our study was to evaluate whether microservices can
address CD in the context of ACPs and whether they can improve the reliability
and scalability of services in this context. The research questions (RQs) for this
study were as follows:

Kuksa: A Cloud-Native Architecture 459

– RQ1: Can the microservices architecture design enable over-the-air
continuous delivery from cloud platforms in the automotive domain?

– RQ2: How can the microservices architecture design improve the reli-
ability and scalability of services in cloud platforms in the automotive
domain?

3.2 Research Method

To design the target microservices architecture, we adopted a software architec-
ture from a real-world project in the context of ACPs called Eclipse Kuksa (see
Sect. 4). It was important to initiate the migration process based on an exist-
ing project to review how the new architecture design could improve reliability
and scalability in this domain. For the migration and refactoring process of the
current architecture of Eclipse Kuksa, we applied microservices patterns from
literature (e.g., [4]). Each refactoring represented a small and controlled change,
so it was possible to identify how the quality attributes changed. The codes are
available on GitHub1.

Recent research [29] has explained that although it is critical to evaluate the
requirements of a new software system to ensure system acceptance by users, real
context evaluations are often complex. Before operating newly designed systems
in real dynamic and complex environments, it is reasonable to assess them in
laboratory setting experiments [29]. Thus, to evaluate the designed microservices
architecture, we used laboratory experiments as the research method to answer
the RQs of this study.

To date, there are several domain-specific services designed in Eclipse Kuksa.
Among them, this study selected a service that is used for the purpose of motion
control. Previous studies [4,5,20,23,30] have proposed frameworks and parame-
ters in which architecture designers select microservices for migration, for exam-
ple, according to their value to end users (e.g., improved user experience regard-
ing the availability of services) or the project organisation (i.e., information
exchange scalability and resiliency support) [5]. We selected the motion control
service because of its value to end users and applicability in different scenar-
ios. Furthermore, it demonstrates how end users can send control commands
to vehicles from the cloud platform in Eclipse Kuksa using different user inter-
faces. It is a general service that can be part of many scenarios in this domain.
The primary business driver for this service is to demonstrate OTA updates and
messaging from the cloud to vehicles. This creates suitable grounds for future
studies, e.g., on driver behaviour optimisation, natural language processing in
vehicles, or OTA driver authentication.

Section 5 provides more details of our evaluation setting and the technology
stacks used in our experiment.

1 https://github.com/ahmadbanijamali/Rover-Control-Experiment.git.

https://github.com/ahmadbanijamali/Rover-Control-Experiment.git

460 A. Banijamali et al.

4 Eclipse Kuksa

The Eclipse Kuksa2 utilises open, vehicle-independent protocols, ensuring life-
time value for vehicles through upgradable applications. It addresses application
systems, software solutions, and services for the mass differentiation of vehicles.
The ecosystem of Eclipse Kuksa is comprised of three main platforms, including
the (1) in-vehicle platform, (2) cloud platform, and (3) an app IDE. The Eclipse
Kuksa is supported by a wide range of integrated open source software tech-
nologies and development environments, such as automotive grade Linux (AGL)
and Eclipse Paho for the in-vehicle platform and Eclipse-Hono, Eclipse Hawkbit,
Eclipse MosQuitto, Keycloak, and InfluxDB in the cloud back-end.

4.1 The Existing Architecture of Eclipse Kuksa

Figure 2 shows the components and services in the Eclipse Kuksa architecture.
The architecture only provides information about the necessary components and
services that we needed in our experiment in the scope of this paper. It neglects
other parts of Eclipse Kuksa ecosystem, such as device management and repre-
sentation, authentication and authorisation, and the app store.

Fig. 2. Software architecture of Eclipse Kuksa

Message Gateway. The Eclipse Kuksa cloud platform (EKCP) sends and receives
different types of messages from and to various sources, such as vehicles, devices,
and third-party services. In general, messages include “telemetry messages” that
depict data stemming from vehicles, devices, and sensors and “commands and

2 https://projects.eclipse.org/projects/iot.kuksa.

https://projects.eclipse.org/projects/iot.kuksa

Kuksa: A Cloud-Native Architecture 461

controls messages” that are dedicated to the vehicles and device management
components. The message gateway provides remote service interfaces for con-
necting vehicles and devices to the cloud back-end.

Data Storage and Management. An important part of the realisation of the
EKCP is the storage and management of vehicles’ and IoT devices’ data in the
appropriate database management system (DBMS). Although data management
is a central aspect of every cloud platform architecture, due to the wide range
of vehicles and devices connected to ACPs, it is necessary to establish a well-
defined data management system that can handle complexities related to big
data, consistency, performance, scalability, and security.

Visualisation and Big Data Analytics. The advances in the digitisation of the
automotive domain have created a large amount of heterogeneous data coming
from various sources. This has also yielded new requirements in terms of volume,
variety, and velocity that are commonly called big data. The EKCP includes
components and services to visualise and manage the big data in this domain.

Device Representation. To realise the distinct functionality of domain-specific
services, a digital representation is important. Digital twin offers the possibility
to access and alter the state of a vehicle’s functionality in a controlled manner.

Domain-Specific Services. The domain-specific services are developed according
to different use cases and business scenarios on top of the in-vehicle platform.
They can handle different functions and tasks in vehicles and beyond them.

In-Vehicle Platform. The communication protocols such as MQTT and LWM2M
have enabled sending different messages from vehicles to the cloud and vice versa.
The in-vehicle platform in Eclipse Kuksa includes an app runtime environment
that is connected to an in-vehicle gateway, enabling software delivery and deploy-
ment in vehicles.

4.2 The Proposed Microservices Architecture for the Eclipse Kuksa
Cloud Platform

Connected vehicles have high demands on the exchange of data between vehicles
and a variety of services in the cloud. Due to the importance of the domain-
specific services in ACPs, we selected a sample telemetry service that communi-
cates with vehicles through sending command and control messages to vehicles
(see Sect. 3.2). Figure 3 shows our proposal for the refactored architecture of
EKCP that is described in greater detail in this section.

The migration to a microservices architecture in EKCP is a step-by-step pro-
cess including new components and modules and modifying the existing compo-
nents (Fig. 4). We started the process by creating a better understanding of the
existing architecture (Sect. 4.1) and introducing the CD pipeline.

Configuration Server. According to previous research [4], we required two indi-
vidual and separate repositories as source code storage and software configura-
tions storage. The configuration server is a central place to support the exter-
nalised configuration and changes without rebuilding or restarting the services.

462 A. Banijamali et al.

Fig. 3. The microservices architecture in Eclipse Kuksa

Fig. 4. The migration process to a microservices architecture

The Spring cloud configuration server is a potential technology that stores each
microservice property based on the service-ID. The properties can be stored in
the cloud or in other repositories, such as in GitHub.

Containerisation. The next step before establishing an intelligent routing (edge
server) component was the containerisation of each service. This step is a part
of the CD pipeline for building the container image for each service. The Docker
and Docker Hub are the technology stacks used for this purpose.

Intelligent Routing (Edge Server). This is the layer right after the user interface
(UI). Edge server dynamically routes requests to the appropriate microservices.
Thus, it is possible here to monitor the service usage, as all requests pass this
layer. As an instance of the technology stack, Netflix provides Zuul as the front
door for all requests from devices and web sites to the back-end.

Service Discovery. Service instances dynamically find network locations of a
service provider, which is critical for the service’s auto-scaling and failures.

Kuksa: A Cloud-Native Architecture 463

Service Registry. In addition to service discovery, service registry registers and
de-registers service instances. It stores addresses of each service as the service
initiates and removes the addresses once it does not receive the heartbeat or the
service is terminated. Spring Eureka provides the technology stack for service
discovery and registry.

Load Balancer. A purpose for migrating to a microservices architecture is to
improve the scalability of each service based on the payload [5]. We used load
balancers to distribute the payload among multiple instances of our services.
Netflix Ribbon and Apache Zookeeper are examples of relevant technology stack.

Circuit Breaker. Once the number of consecutive failures in services crosses a
specific threshold (open state), we call the circuit breaker to either invoke a
response code or return the latest cached data from the service provider. Once
the timeout expires, the circuit breaker allows a limited number of test requests
to service providers, and, if they pass, it changes to a closed state. Hystrix and
NGINX are relevant technology stacks here.

Logging and Reporting. To control what is happening in microservices, accessing
the consolidated logs [5], implementing infrastructure-level metrics, and creat-
ing a holistic view of the system, we need to establish an efficient logging and
reporting functionality. The system is used for a variety of purposes, such as
monitoring the traffic and service usages, identifying the cause of errors, and
finding performance bottlenecks. Due to the wide scope, different technologies
(i.e., Hystrix, Grafana, Kibana, and fluentd) are used for specific purposes.

Continuous Delivery Pipeline. To establish a CD pipeline, we required con-
tinuous integration using following components. Jenkins was the solution used
as the continuous integration server to build and deploy the applications. Docker
was the tool that we used for the containerisation of applications and to isolate
them from each other. The Docker Hub, as the repository of Docker container
images, pulls images from Docker’s public registry instance. Figure 5 shows the
CD pipeline in EKCP.

Fig. 5. The continuous delivery pipeline

464 A. Banijamali et al.

5 Evaluation

5.1 Experimental Setting

To evaluate CD in the proposed architecture, we considered that our service sent
automatically-generated updates as specific calls to forty vehicles in a specific
region of the city. The calls were similar as they were demonstrating one released
update. The software delivery cycle that the calls sent to the vehicles was one
minute. In each call, we changed “next move direction” in the rover and the
designed architecture should continue the message delivery without interrup-
tion. We ran the experiment for a duration of one hour to record how different
microservices patterns behave in a CD environment in ACPs. We reviewed what
percentages of calls is sent successfully to the rover and provide a statistics of
successful and failed calls to show the CD performance in our design.

To review the scalability and reliability of the services in our designed archi-
tecture, we deployed three different scenarios. We aimed to measure metrics such
as service downtime, recovery time, and load sharing behaviours. We registered
four instances of Backserver service and one Client service (see Sect. 5) on a
Spring Eureka server. The experimental scenarios were as follows.

1. During the first 10 min, all services were up and running. Half of the Back-
server instances (two instances) shutdown automatically at 00:10 and re-
started simultaneously at 00:15.

2. All service instances from the Backserver shut down automatically at 00:20
and started gradually (one by one) every five minutes until they all came up
at 00:40.

3. All service instances from the Backserver went off at 00:45 and re-started
simultaneously at 00:50.

Figure 6 presents the experimental setting in this study, including the differ-
ent services, components, and technology stacks.

The Cloud Back-End. We developed the Backserver and Client services using
Spring Boot. All microservices were running on a computer with an Intel Core i7-
6600U CPU @2.6 GHz and 20 GB installed RAM. Eclipse Hono version 7.0 was
used as the message broker to connect the Backserver to the in-vehicle platform
via MQTT using a 4G connection. The Hono instance was placed on an Azure
Kubernetes service (AKS) cluster.

The Client service automatically triggered the delivery to the Backserver
instances. Each message delivered to the rover contained the “rover id”, “speed
control”, and “next move direction”. The Backserver was responsible for sending
the messages to the Hono instance and from there to the rover. The microservice
patterns and technologies used are shown in Table 1.

Kuksa: A Cloud-Native Architecture 465

Fig. 6. The experimental setting

Table 1. Microservice patterns and technologies used in this experiment

Pattern Technology Customised configuration

Intelligent routing Netflix Zuul serviceId: backserver, serviceId: Client

Load Balancing Netflix Ribbon Server list refresh interval: 2s

Circuit breaker Hystrix Sleep window: 5s, Request volume
threshold: 20, Error threshold: 50%

Configuration server Eureka –

Service registry Eureka eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false

Monitoring Hystrix dashboard –

The In-Vehicle Platform. To demonstrate the outcomes of the experiment,
we used a rover, which is an open source mobile robot. The rover includes a
Raspberry Pi 3 Model B (RPi3), a motor driver layer (Arduino), and a Rover-
Sense layer designed for in-vehicle communication demonstrations. A customised
software (called roverapp3) was designed that runs on a Linux-based embedded
single board computer (i.e., RPi3). The roverapp includes an API to handle
various functions in the rover, such as motion control.

In addition to the commands sent to the rover, the RoverSense layer sends
telemetry data from different sensors, such as infrared proximity sensors, ultra-
sonic sensors, temperature and humidity sensors, and an accelerometer to the
cloud. The roverapp creates the possibility of real-time video streaming to the
cloud platforms, such as Azure or AWS. It also allows the marker detection used
in platooning or autonomous driving scenarios.

3 https://app4mc-rover.github.io/rover-app/.

https://app4mc-rover.github.io/rover-app/

466 A. Banijamali et al.

The rover’s features’ applications and tooling use AGL as the operating sys-
tem, which runs on RPi3. The in-vehicle Kuksa layers, including a middleware
layer (containing Kuksa APIs and Eclipse Paho) and an application layer (con-
taining a runtime and sandbox environment), run on top of AGL. These two
layers enable functions such as communication to the cloud via MQTT and
third party applications’ implementation.

5.2 Results

This section is structured to address the research questions and includes the
aggregated results of our experiment.

RQ1. Can the Microservices Architecture Design Enable over-the-
air Continuous Delivery from Cloud Platforms in the Automotive
Domain? CD helps teams to produce applications in short cycles and ensures
that the software can be reliably released at any time. Figure 7 shows the service
registry dashboard in a Spring Eureka server. It shows that four instances of
the Backserver and one Client service were up and running at the time of the
experiment.

Fig. 7. Registered services for the designed architecture

Table 2 shows the aggregated results of the duration that each service instance
of the Backserver was up during our designed scenarios. In addition, it shows
statistical information on the service resiliency in our setting.

Kuksa: A Cloud-Native Architecture 467

Table 2. Experiment results using the designed microservices architecture

No. of running instances
in three scenarios

Time

Total duration of experiment 60min zero (shutdown all
instances)

10 min

one 5 min

Cycle time 1min two 10 min

three 5 min

four 30 min

Circuit breaker status No. Circuit breaker status No.

Success (execution completed with no
errors)

22 Failure (execution threw
an Exception)

24

Timeout (execution started, but did
not complete in the allowed time)

4 Short-Circuited 0

Quickest time to call Backserver when
came up

1 min

During our experiment, we could make changes (shutdown, re-start, and
update the code) in a service without affecting other services. According to our
experimental scenarios, Backserver instances set up and down multiple times,
even though it did not impact other available services. It was easy to make
changes on a service, e.g., updating the listening port or rover direction, without
interruption to other services.

Our findings indicated that although we had a number of failed calls and
timeout errors due to the following reason, the circuit breaker could prevent
cascading failures to other services. The Client service talked with the service
registry to receive the IP addresses of available Backserver instances and used
its load balancer to choose one of them. The Client service could not know
directly that a Backserver instance was no longer available. This is the job of the
service registry to continuously discover which Backserver instances are dead or
alive via heartbeat mechanisms. During our experiment, the Backserver instances
shutdown several times while the Client service could not get the list of the
remaining instances from the service registry in real-time. In this approach, the
service discovery logic tightly coupled with clients, in which it could improve
through other approaches, such as server-side service discovery.

Summary. The designed architecture preserved continuous software
delivery by automatic registering and de-registering service instances and
continuing OTA software delivery after each change.

468 A. Banijamali et al.

RQ2. How Can the Microservices Architecture Design Improve the
Reliability and Scalability of Services in Cloud Platforms in the Auto-
motive Domain? Table 3 shows a summary of the results of the total calls on
each Backserver instance. The Client service sent more calls on the Backserver
instances that were up for a longer time in our scenarios. In total, we had 990
successful calls distributed among four Backserver instances to control the rover
speed and movement direction.

Table 3. The number of calls on the Backserver instances

Total calls sent to rover 990

Service #1 455

Service #2 276

Service #3 153

Service #4 106

Figure 8 presents how the load balancing mechanism distributed the load
among the different instances. In addition, it shows the circuit breaker behaviour
regarding different errors to improve the reliability of the system.

Fig. 8. The number of calls on each service in three scenarios

The client-side strategy load balancing automatically distributed concurrent
calls to the available Backserver instances. The Netflix Ribbon load balancer
continuously rotated a list of Backserver instances that were attached to it (the

Kuksa: A Cloud-Native Architecture 469

Round Robin method). In addition, to manage failures that happened in a ser-
vice (e.g., timeout), Hystrix prevented cascading failures to other services, which
improved the fault tolerance of our system. Broken service instances automati-
cally recovered and registered themselves into the Eureka service registry, which
made the designed microservices recoverable.

Summary. Although failures often happen in services, load balancing
mechanisms were able to skip unhealthy instances.

6 Discussions

The objective of this research was to review whether the recent architectural
design styles, such as microservices, could address CD and DevOps in the auto-
motive domain. In an experimental setting, we evaluated how quality attributes
such as the scalability and reliability of services could be improved by microser-
vices patterns.

RQ1. Can the Microservices Architecture Design Enable Over-the-
air Continuous Delivery from Cloud Platforms in the Automotive
Domain? A previous study [6] noted that to maintain continuous software
delivery, it is necessary to address architectural challenges, such as the deploy-
ability and modifiability. Our findings showed that the proposed architecture
could improve the deployability of the system as there was no need to resolve
the conflicts between changes afterwards. Furthermore, we could deploy changes
in different services independently and quickly without any interruption in other
services.

We noticed that microservices created the possibility to make the changes
localised to one service while other services were not affected. We had lightweight
services that made any update in the codes easier. In safety-critical systems,
such as ACPs, it is vital that changes in a service or technology do not interrupt
other running services. Our findings showed that microservices could improve
the modifiability of the architecture. Although the designed architecture could
enable the CD in this domain by sending OTA messgaes to the rover, there were
several failed and timeout calls that should be optimised with respect to different
service level agreements.

RQ2. How Can the Microservices Architecture Design Improve the
Reliability and Scalability of Services in Cloud Platforms in the Auto-
motive Domain? Scalability is the property of a system that handles a growing
amount of requests by adding resources to the system. The Backserver instances
allowed us to support a good number of concurrent calls coming from the Client
to the rover. The Backserver was also stateless, which did not retain consumer
states. It enabled us to have autoscaling of the services when the load required.

470 A. Banijamali et al.

The load balancing mechanism in our system could also distribute the load auto-
matically among available service instances.

Our findings in this study showed how the fault-tolerant mechanisms, such
as the circuit breaker, could handle the resiliency and reliability in our proposed
architecture. We defined different thresholds such as the error threshold per-
centage and request volume threshold to force the circuit breaker to open and
prevent slow or failed calls from interrupting other services in our architecture,
which improved reliability of the architecture.

6.1 Threats to Validity

Construct validity, in our research, is concerned with using the right measures
in our experiment. To assess the reliability and scalability, we used the common
metrics that are widely applied in the literature (see [5,23]). Internal validity
concerns the relationship between the constructs and the proposed explanation.
Our implementation was run in three scenarios in a laboratory experimental
setting with specific and defined objectives. Although we established a controlled
environment, aspects related to the performance of Azure cloud platform or
4G network connection could not be customised or controlled. In addition, the
implementation and results were discussed and reviewed among the authors
of this study. In our experiment, we selected the technology stacks that are
commonly used by companies and the performance analysis of those technologies
are out of scope of this research.

External validity is related to the generalisability of the study. A previous
study [1] noted that it is not essential to satisfy all requirements by a given
benchmark candidate to be considered useful for empirical research. We applied
microservices patterns from scientific literature, established a controlled experi-
ment with three defined scenarios, and used a real-world project to evaluate the
behaviour of one single microservice in the designed architecture. Future studies
can replicate the experiment with multiple services in real continuous software
delivery environments in the automotive domain to evaluate generalisability of
the results. Reliability concerns the repeatability of the research procedure and
conclusions. We explained in detail the experimental setting and all publicly
available materials, which can be applied by future studies.

7 Conclusion

Automotive cloud platforms have received increasing attention from research
and industrial communities. To increase the reliability and scalability in ACPs
and enable continuous software delivery in the automotive domain, we proposed
a microservices architecture for a real-world project called Eclipse Kuksa and
ran an experiment to evaluate the designed architecture.

Our findings showed that the proposed architecture could handle CD through
improving the deployability, modifiability, and availability of the architecture.

Kuksa: A Cloud-Native Architecture 471

Our designed architecture could address quality issues, such as payload distribu-
tion among different instances and the resiliency of services. The research find-
ings showed that microservices are an interesting design alternative to address
quality concerns of future cloud platforms in the automotive domain.

References

1. Aderaldo, C.M., Mendonça, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering, pp. 8–13. IEEE (2017)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33, 42–52 (2016)

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

4. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. J. Softw.: Pract. Exp. 48, 2019–2042 (2018)

5. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

6. Chen, L.: Microservices: architecting for continuous delivery and DevOps. In:
IEEE International Conference on Software Architecture (ICSA), pp. 39–397. IEEE
(2018)

7. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibanez, J.A.: Internet of vehicles:
architecture, protocols, and security. Internet Things J. 5, 3701–3709 (2018)

8. Datta, S.K., Gyrard, A., Bonnet, C., Boudaoud, K.: oneM2M architecture based
user centric IoT application development. In: 3rd International Conference on
Future Internet of Things and Cloud, pp. 100–107. IEEE (2015)

9. Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: Microservices: migration of
a mission critical system. arXiv preprint arXiv:1704.04173 (2017)

10. Ebert, C., Favaro, J.: Automotive software. IEEE Softw. 34, 33–39 (2017)
11. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Softw. 33, 94–

100 (2016)
12. Fiosina, J., Fiosins, M., Müller, J.P.: Big data processing and mining for next

generation intelligent transportation systems. J. Teknologi 63, 21–38 (2013)
13. Fowler, M., Lewis, J.: Microservices. https://martinfowler.com/articles/

microservices.html
14. Google Cloud: Designing a Connected Vehicle Platform on Cloud IoT Core 2019-

05-07. https://cloud.google.com/solutions/designing-connected-vehicle-platform
15. Häberle, T., Charissis, L., Fehling, C., Nahm, J., Leymann, F.: The connected car

in the cloud: a platform for prototyping telematics services. IEEE Softw. 32, 11–17
(2015)

16. Haghighatkhah, A., Banijamali, A., Pakanen, O., Oivo, M., Kuvaja, P.: Automotive
software engineering: a systematic mapping study. J. Syst. Soft. 128, 25–55 (2017)

17. He, W., Yan, G., Da, X.L.: Developing vehicular data cloud services in the IoT
environment. IEEE Trans. Ind. Inf. 10, 1587–1595 (2014)

18. Jain, P.: Automotive Cloud Technology to Drive Industry’s New Business Mod-
els - 2019-05-07. http://shiftmobility.com/2017/06/automotive-cloud-technology-
drive-automotive-industrys-new-business-models

https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
http://arxiv.org/abs/1704.04173
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://cloud.google.com/solutions/designing-connected-vehicle-platform
http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-automotive-industrys-new-business-models
http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-automotive-industrys-new-business-models

472 A. Banijamali et al.

19. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53, 50–59 (2010)
20. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting

microservices from monolithic enterprise systems. arXiv:1605.03175 (2016)
21. Lu, N., Cheng, N., Zhang, N., Shen, X., Mark, J.W.: Connected vehicles: solutions

and challenges. Internet Things J. 1, 289–299 (2014)
22. Mietzner, R., Leymann, F., Unger, T.: Horizontal and vertical combination of

multi-tenancy patterns in service-oriented applications. Enterp. Inf. Syst. 5, 59–77
(2011)

23. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Newton (2015)

24. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architec-
tures. In: Proceedings of the International Workshop on Systems Development in
SOA Environments, p. 3 (2007)

25. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science, pp.
137–146 (2016)

26. Rufino, J., Alam, M., Ferreira, J.: Monitoring V2X applications using DevOps and
docker. In: International Smart Cities Conference, pp. 1–5 (2017)

27. Serrano, D., Baldassarre, T., Stroulia, E.: Real-time traffic-based routing, based on
open data and open-source software. In: 3rd World Forum on Internet of Things,
pp. 661–665 (2016)

28. Shavit, M., Gryc, A., Miucic, R.: Firmware update over the air (FOTA) for auto-
motive industry. SAE Technical (2007)

29. Stol, K., Fitzgerald, B.: The ABC of software engineering research. ACM Trans.
Softw. Eng. Methodol. 27, 11 (2018)

30. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a
systematic mapping study. In: Proceedings of the 8th International Conference on
Cloud Computing and Services Science, pp. 221–232 (2018)

31. Thönes, J.: Microservices. IEEE Softw. 32, 116–116 (2015)
32. Yang, M., Mahmood, M., Zhou, X., Shafaq, S., Zahid, L.: Design and implemen-

tation of cloud platform for intelligent logistics in the trend of intellectualization.
China Commun. 14, 180–191 (2017)

33. Zeller, M., Prehofer, C., Krefft, D., Weiss, G.: Towards runtime adaptation in
AUTOSAR. In: 5th Workshop on Adaptive and Reconfigurable Embedded Sys-
tems, vol. 10, pp. 17–20 (2013)

34. Zhang, T., Antunes, H., Aggarwal, S.: Defending connected vehicles against mal-
ware: challenges and a solution framework. Internet Things J. 1, 10–21 (2014)

35. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Softw.
33, 32–34 (2016)

http://arxiv.org/abs/1605.03175

Inputs from a Model-Based Approach
Towards the Specification of Microservices

Logical Architectures: An Experience Report

Nuno Santos1,2(&) , Helena Rodrigues1,2 , Nuno Ferreira2,3 ,
and Ricardo J. Machado1,2

1 CCG/ZGDV Institute, Guimarães, Portugal
nuno.santos@ccg.pt

2 ALGORITMI Center, School of Engineering,
Minho University, Guimarães, Portugal

3 i2S Insurance Knowledge S.A., Porto, Portugal

Abstract. Adopting microservices architectures (MSA) in software projects
include specific concerns on design, development and deployment. Projects
often struggle for taking decisions for properly bound the microservices, par-
tition databases, address communication and messaging, among others.
Proposing a model-driven approach allows abstracting microservices behavior
from the business domain. However, there is still lack of modeling methods
supporting architecture design alignment with business requirements that cover
microservices principles. In this paper, microservices logical architectures are
derived from functional requirements, which are modeled in SoaML diagrams.
This paper discusses design, data management, inter-service communication and
automatization based on the derived architecture diagram.

Keywords: Microservices � Modeling � Design � Data management �
Inter-service communication � Automatization � UML � SoaML

1 Introduction

Microservices architectures [1] (MSA) are an architectural style oriented towards
modularization, where the idea is to split the application into smaller, interconnected
services, running as a separate process that can be independently deployed, scaled and
tested [2]. The development of MSAs follow the following principles [1]: (i) “Model
around business concepts”; (ii) “Adopt a culture of automation”; (iii) “Hide internal
implementation details”; (iv) “Decentralize all the things”; (v) “Make services inde-
pendently deployable”; (vi) “Isolate failure”; and (vii) “Highly observable”.

Designing MSAs for a given business capability or domain, typically uses patterns
such as Domain-driven Design (DDD), single responsibility principle (SRP) or Con-
way’s Law. However, MSA design often faces challenges related to database partition,

This work was supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2019.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 473–488, 2019.
https://doi.org/10.1007/978-3-030-35333-9_33

http://orcid.org/0000-0002-8247-7253
http://orcid.org/0000-0002-8978-8804
http://orcid.org/0000-0003-3561-331X
http://orcid.org/0000-0002-3626-2569
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_33

the proper size of the microservice, communication and messaging, which are not
addressed systematically by those patterns. By applying a modeling method in the
process of designing a MSA, one may model the solution foresee issues on bounded
contexts for microservices, namely intra-service behavior, interfaces and data models
separation, and inter-service communication and messaging requirements [1].

Accordingly, this paper proposes an approach for designing a microservices-
oriented logical architecture (MSLA), i.e., a logical view [3] on the behavior of
microservices and relationships between microservices. This approach uses UML use
cases diagrams for domain modeling, which are further used as an input for designing a
MSLA in an automated way, by using an adaptation of the Four Step Rule Set (4SRS)
method [4]. Each of these functionally decomposed UML use cases give origin to one
or more components, which will then compose the microservices. The 4SRS method
assures the alignment of the designed architecture with the elicited user requirements.

It is the purpose of this paper to present an adaptation of this method in order to
support a proper architecture design compliant with the microservices architecture main
principles, the 4SRS–MSLA. Issues such as data consistency, security, communication,
deployment, and other patterns [5–8] have also been addressed and are presented in this
paper, although extensive discussion on such patterns here is out of scope. For rep-
resentation purposes, this approach adopts the service-oriented architecture modeling
language (SoaML). Additionally, based on the premise that a proper specification of
requirements benefits from multi-perspectives, the adapted method includes outputs for
different SoaML diagrams, like Service Participants, Capabilities, Service Architec-
tures, and Service Interfaces. Although there is not a common standard on modeling
MSAs [9], there seems to be a tendency to use languages oriented to describe service-
based architectures [10] (SoaML, SOMA, SOADL), but also UML for modeling ser-
vices and operations [11–13], or both [14].

This research bases itself in an industrial running example, the Unified Hub for
Smart Plants (UH4SP) [15], designed in the context of a funded project, where a UML
use cases model regarding the requirements are the input for deriving the project’s
MSLA, by using the 4SRS-MSLA method.

This paper is structured as follows: Sect. 2 presents related work; Sect. 3 introduces
the running example of the UH4SP project; Sect. 4 describes an approach for modeling
microservices in SoaML; Sect. 5 discusses design, development and deployment issues
from the modeled artifact; Sect. 6 describes the lessons learned from the experience
report; and Sect. 7 describes the conclusions and future work.

2 Related Work

Although a somewhat recent trend, microservice architectures adoption has arisen the
identification of patterns, from migration [16] to development and deployment of such
architectures [5–8], ranging from service design, orchestration/coordination, deploy-
ment, data distribution, among others. The ‘Decomposition’ pattern [5] is often used as
a starting point for designing microservices architectures, as it intends to assure that the
given service refers to a small scope of the system. A microservice scope may relate to
organization’s business capabilities, or to a business domain by applying the domain-

474 N. Santos et al.

driven design (DDD) [17] approach. Our approach also uses the DDD rationale to
structure boundaries within the requirements modeling, later considered as an input for
the microservices design.

Also, architecture design presents many challenges in what regards microservices
adoption [9]. Typically, implementation of these architectures starts by developing
services for a given business process [18], making use of simplified microservices
patterns [8]. In terms of microservices modeling and their granularity, DDD’s bounded
contexts, within requirements modeled using use cases, allow defining steps to derive a
domain model for a microservice [13]. Use cases are also considered as an input to
properly define microservice granularity in [7], namely based on their functional
decomposition [19]. Moreover, granularity is managed using models in [20]. Other
works focus in design patterns from databases [21, 22] or deployment-related [23].

Overall, designing MSAs continuously implies an iterative addition, modification
and elimination of services even after the implementation has ended. For that reason,
the architect must have a supportive approach for tracking changes in business needs to
the MSLA. The referred approaches allow specifying and modeling an MSA but do not
support alignment and traceability as the 4SRS-MSLA does. In this paper, the 4SRS-
MSLA contributes to architecting microservices and their granularity, and contributes
in defining associated data models and communications.

3 Running Example: The Unified Hub for Smart Plants
(UH4SP)

The UH4SP project aims developing a platform or integrating data from distributed
industrial unit plants, with focus in the cement domain, allowing the use of the data
acquired from IoT systems for enterprise-level production management and collabo-
rative processes between plants, suppliers, forwarders and clients. The project aimed at
developing new solutions regarding the control of trucks arrival/exit as well as the
load/unload activities, and for communicating with the plant’s ERP and the industrial
hardware. These solutions were validated within a proof of concept performed in an
ecosystem of industrial unit plants using production management systems developed
by Cachapuz Bilanciai Group, located in Braga, Portugal, as they were the leading
entity of the UH4SP project consortium.

The UH4SP project arose with the need of overcoming Cachapuz solution’s lim-
itations in adopting IIoT/I4.0 paradigm. Firstly, the current solution is deployed on-
premises. It has a considerable scaling and complexity, which made it not adequate and
flexible to enable the development and deployment of cloud services based on modules
and external access. The on-premises deployment is a difficulty for promoting a
corporate-level management, since in order to the industrial group manager to have an
integrated analysis of the group’s plants, he was only able to access the individual
plant’s ERP one at a time using a remote virtualized environment. The remote business
analysis was also impossible to perform in some contexts, namely within plant’s
located in poor Internet connectivity spaces. The current solution did not enable the

Inputs from a Model-Based Approach Towards the Specification 475

incorporation of remote technical interventions. Finally, the current solution was not
able to respond to a previous need of enabling third–party access (e.g., forwarders,
customers, suppliers) to the inclusion of collaborative tools in process execution and
analysis.

In short, the UH4SP project aimed developing:

• new functionalities for providing management of corporate-level production;
• tools for supporting new collaborative processes within the supply chain;
• a microservices architecture;
• production management services, that rely on previous synchronization of Cacha-

puz’s systems (at the industrial unit level).

4 From Business Needs to Microservices

Using a model-based approach for designing a service-oriented architecture allows
identifying some microservices elements, nevertheless much information is lost as
UML Use Cases relate to user requirements and these are far from the desired archi-
tecture elements. Thus, by using a software engineering method as the 4SRS method,
the derived information will now relate to the system requirements. Specification
refinement through model transformations [24] is an approach that promotes an
overview of the overall system for afterwards having a context to elicit the technical
requirements.

This section describes a model-based approach for microservices architecture
design, using requirements engineering approaches to design service-oriented archi-
tectures that respond to elicited requirements. This approach firstly uses typical gath-
ered user requirements, namely functionally decomposed UML Use Cases, which are
input for the 4SRS method that allows modeling a logical architecture diagram (using
UML Component notation). Afterwards, by identifying the domains present in the
architecture (DDD) we propose to refine sub-systems (regarding each domain) of the
architecture iteratively, in order to identify, model and specify a set of software services
in SoaML diagrams, such as Service Participants, Service Interface, Capabilities,
Service Data, Service Architecture, Service Contracts, among others, until all logical
architectural elements are supported by software services.

The 4SRS method takes as input a set of UML Use Cases describing the user
requirements and derives a software logical architecture using UML Components. The
logical architecture is then refined trough successive 4SRS iterations (by recurring to
tabular transformations), producing progressively more detailed requirements and
design specifications. An overview of the approach is depicted in Fig. 1.

476 N. Santos et al.

4.1 Setting Boundaries of Domains

The requirements engineering process followed an agile modeling process, “Agile
Modeling Process for Logical Architectures” (AMPLA) [25] that, based on successive
model derivation, namely referring to sequence, use case and components diagrams,
method allows to derivate just enough requirements/use cases into a candidate logical
architecture. In AMPLA, the requirements will be later refined and will emerge, in a
continuous architecting (CA) way, as the 4SRS method is regularly revisited alongside
the development Sprints. The use of 4SRS throughout the AMPLA process, first in the
scope of the candidate architecture, and afterwards in the scope of each refinement,
provides the traceability between components and the functional requirements,
allowing an agile response to changing requirements.

The project’s objectives are used as input for the high-level use case modeling
were: (1) to define an approach for a unified view at the corporate (group of units)
level; (2) to develop tools for third-party entities; (3) in-plant optimization; and
(4) system reliability. The requirements elicitation started by listing a set of stakeholder
expectations towards the product roadmap, encompassing the entire product but only
MVP features were detailed. The expectations list of the project included 25 expec-
tations, categorized by environment, architecture, functional and integration issues.
They relate to business needs that afterwards allowed depicting functional require-
ments, modeled in use cases (Fig. 2).

First V-Model

Use Cases Diagrams

(So ware) 4SRS

U2.1 AE2.1i

U2.2
AE2.1d
AE2.2d
AE2.2c

So ware System
Logical Architecture

Second V-Model

Use Cases Diagrams
(Refined)

(Services) 4SRS

U2.1 AE2.1i

U2.2
AE2.1d
AE2.2d
AE2.2c

Transi on Steps:
1 – Architecture
Par oning
2 – Use Case
Transforma on

Service-Oriented Logical
Architecture

Fig. 1. Recursive architectural model transformations for service design

Inputs from a Model-Based Approach Towards the Specification 477

The Use Case model was globally composed by 37 use cases after the decompo-
sition. Use case {UC.1} Manage business support was decomposed in five use cases,
use case {UC.2} Configure cloud service was decomposed in eight use cases, use case
{UC.3} Manage cloud interoperability and portability was decomposed in five use
cases, use case {UC.4} Manage cloud security and privacy was decomposed in three
use cases, use case {UC.5} Manage industrial units was decomposed in two use cases,
use case {UC.6} Manage local Platform was decomposed in five use cases, and use
case {UC.7} Performs business activities was decomposed in ten use cases. Almost the
entire model was detailed in one lower-level (e.g., {UC5.1}, {UC5.2}, etc.). Only the
cases of {UC.1} Manage business support, {UC.2} Configure cloud service and {UC.7}
Performs business activities included an additional decomposition, composed with
three use cases each, and are examples of bigger sized features of the MVP (based on
the quantity of low–level use cases). Use cases {UC.3} Manage cloud interoperability
and portability and {UC.4} Manage cloud security and privacy relate to features not
addressed in the MVP, hence were not object of further decomposition. The total of 37
use cases perceive the low effort in decomposing at this phase, taking into account the
large-scale nature of the project, namely the number of expectations (25) and that it is
to be implemented by five separate teams.

The UH4SP logical architecture had as input 37 use cases and, after executing
4SRS method, was derived with 77 architectural components that compose it. The
architecture is composed by five major packages, namely: {P1} Configurations –

related with system configurations; {P2} Monitoring – related with system monitoring
and services utilization measuring; {P3] Business management – related with logistic
operations and information consults; {P4} UH4SP integration – related with system
integration between IoT systems and the fog; {P5} UH4SP fog data – related with
temporarily stored data in fog databases, storing all industrial local data, which are then
synchronized to the cloud and available to authorized stakeholders.

This architecture was afterwards divided in a set of modules to be assigned to each
of the project’s teams (Fig. 3). The modularization exercise followed the DDD ratio-
nale, where the domains basically referred to main contributions that each team brings
to the consortium, namely IoT, cloud infrastructure, cloud applications and sensors.

Cloud Management

UH4SP

System
Administrator

Users

{U.C.1} Manage
business support

{U.C.3} Manage cloud
interoperability and

portability

{U.C.4}
Manage cloud

security and privacy

{U.C.2} Configure
cloud service

Service Management

«uses» {U.C.7} Performs
business ac vi es

{U.C.6} Manage
local Pla orm

{U.C.5} Manage
industrial units

Fig. 2. UH4SP first-level Use Cases

478 N. Santos et al.

The modularization depicted in Fig. 3 originated 5 modules/subsystems, each
assigned for ‘Team A’, ‘Team B’, ‘Team C’, ‘Team D’ and ‘Team E’. Each modu-
larization may be refined. These techniques redefine the system boundaries, which now
regards only the given module as a subsystem for design. This new subsystem now
originates a new Use Case model, which now includes more detail information about a
domain [26]. This Use Case model is afterwards used within a 4SRS–MSLA execution,
as described in next section.

Each module could have sub-domains, which was responsibility of the assigned
team to identify them. At this point, it was also important to identify dependencies and
flows between domains for performing aimed business processes. The modeling sup-
port for this exercise can be, e.g., sequence diagrams as in Fig. 4, where two
microservices regarding the sub-system - «Authentication» and « Authorization » -

Global UH4SP

{P1} Configura ons

{P2} Monitoring

{P1.1} Accounts

{P1.2} Services

{P1.3} Security

{P3} Business Mgmt (Global)

{P4.1} Integrator

{P5.1} DB

Local UH4SP

{P3} Business Mgmt (Local)

{P4.2} Integrator (Gateway)

{P5.2} DB

Driver
Guidance

Route
Simula on /
Op miza on

SLV

IoT

Cloud
Provider

IaaS

Remote
Check-in

Remote
Assistance

Team A
Team B
Team C
Team D
Team E

{C2.5.i}
Define
service

level
agreement
interface

{C6.5.i}
Generate

service
templates
interface

{C7.2.7
.i}

Regist
er

remote
operati

ons
{C7.2.1.i
} Abort
opera

ons
interfac

e

{C3.1.i}
Informa on

systems
integra on
interface

{C2.4.c}
En es

mapping
processor

{C7.1.2.c}
Informa on

access
configura on

processor

{C6.5.c}
Services
template

s
processo

r

{C6.3.i}
Perform
intervent

ions
interface

{C7.1.3.c}
Business

no fica on
s processor

{C5.2.i}
Configure

tasks
interface

{C6.2.i}
Schedule

interven o
ns

interface

{C6.4.i}
Users

training
interfac

e {C7.1.1.i}
Consults
Informa

on
interface

{C7.1.3.i}
Perform
business

no fica ons
interface{C7.2.2.i}

Consult
opera ons
interface

{C3.1.c}
Informa on

systems
integra on

{C3.2.c}
Synchronize

data processor

{C7.2.1.
c} Abort
opera

ons
process

or

{C1.1.1.i}
Create

user
interface

{C1.1.2.i}
Edit user
interface

{C1.1.3.i}
Disable

user
interface

{C1.2.i}
Configur
e users
profile

interface

{C2.1.1.i}
Install
service

interface

{C2.1.2.i}
Edit

service
interface

{C2.1.3.i}
Disable
service

interface

{C2.1.4.i}
Update
service

interface

{C4.1.i}
Backups
interface

{C4.2.i}
Configure

data access
interface

{C7.1.2.i}
Configur

e
informa
on access
interface {C2.1.1.c}

Services
deployment

processor

{C4.1.c}
Backups
generato

r

{C6.5.d}
Services
template

s data{C2.4.d}
En es

mapping
data

{C3.1.d}
Global

integra
on data

{C3.2.d}
Synchronize

d data
{C1.1.1.d

} User
data

{C2.3.d}
Measured

values data

{C4.1.d}
Backups

data

{C4.3.d}
Monitoring
and audits

data

{C7.1.2.d}
Informa on

access
configura ons

{C2.1.1.d
} Services

data

{C2.2.d}
Reports data

{C2.5.d}
Service level
aggrement

data

{C1.3.i}
Consult

users SLA
data

interface
{C.5.1.i}
Catalog
en es

interface

{C6.1.i}
Verify

interven on
or

maintenance
needs

interface

{C7.2.7.d
} Remote
opera o
ns data

{C2.3.i}
Measure
d values
interface

{C2.2.i}
Generate

cloud
services
reports

interface

{C4.3.i}
Monitor
ac vi es
interface

{C2.3.c}
Measure
services

u liza on

{C2.2.c}
Reports

generato
r

{C4.3.c}
Monitor
ac vi es

{C7.2.4.1.
d}

Sensors
integra
on data

{C7.2.4.2.d}
Mobile
devices

integra on
data

{C5.2.d}
Configured
tasks data

{C6.3.d}
Interven ons

and
maintenance

data{C7.1.3.d}

s data

{C7.2.5d} In-
plant

opera ons
data

{C6.6.i}
Update

simula on
models data

{C7.2.3.i}
No fica on
s interface

{C7.3.i}
Configure

Driver guidance
interface

{C7.2.4.1.c}
Sensors

integrator

{C7.2.4.2.c}
Mobile
devices

integrator
{C7.2.5.c} In-

plant
opera ons
processor

{C7.2.5.i} Register
in-plant

opera ons
interface

{C7.1.2.i}
Consults driver

guidance

{C7.2.4.3.d}
Systems

integra on
data

{C6.4.d}
Users

training
data

{C7.2.3.d}
No fica on

s data

{C7.3.d}
Driver

guidance
configura o

ns data
{C6.6.d}

Simula on
models data

{C7.2.4.3.c}
Systems

integrator

{C7.2.3.c}
No fica

ons
processo

r

{C7.3.c}
Driver

guidance
processo

r

Business
no fica on

Fig. 3. The modularization of the logical architecture

Inputs from a Model-Based Approach Towards the Specification 479

were identified within the scope of a given business process – in this case, a remote
business analysis. In fact, these diagrams are powerful tools for bordering the modules,
as well as validating (not just the modules but as well the whole) architecture. Addi-
tionally, defining the sequence flows also supported eliciting communication specifi-
cation between microservices (cf. Sect. 5.3).

4.2 Transforming Use Cases in Services

Resulting from the modularization, now each sub-system is refined independently. For
that purpose, new UML Use Cases are identified, regarding only the sub-system, in
order to refine the existing information. This section describes the steps that comprise
the 4SRS-MSLA method (Fig. 5), from where each UML component is initially
specified. Next, these components are identified and their behavior derived in
microservices (SoaML’s Service Participants), as also the channels and contracts
between them. The aim for using the 4SRS-MSLA is to have a logical view of the
microservices’ internal behavior and communications, so that all the elicited functional
requirements are met in the derived solution. The four steps of the 4SRS-MSLA are the
following:

Remote Equipment Analysis sequence diagram

Factory
IT manager

Get_authen(user, password)

Authen ca on web token

Get_authoriza on(consult equipment service, authen_token)

Authorized service

Team B Team C Team A

Fig. 4. Remote business analysis sequence diagram

480 N. Santos et al.

Step 1. Components Creation
The first step regards the creation of three components, where the 4SRS-MSLA method
associates, for each use case, a component for interface with users or systems (i-type), a
component for the data model (d-type), and a component for logic/control of the
microservice domain (c-type).

Step 2. Components Elimination
In the second step, components are submitted to elimination tasks. In previous versions
of the method, the redundancy identification often includes components that are
functionally similar but with different usage, which result in eliminating redundant
components but defining a wider representation for the retained component. This often
occurs within c- or i-types components. Nevertheless, the microservices principles
suggest that the microservice has only one specific purpose, hence one may suggest
that a component should be eliminated only if its purpose is exactly the same as of the
another one, and thus not eliminating any of them if their purpose is just similar.

Step 3. Component Packaging/Microservice Identification
The third step consists in grouping a set of components in packages, which further
compose higher-level microservices. In 4SRS-MSLA, packaging is based on the use
cases model obtained in the first-level refinement. Components, regardless of their
category (i-, d-, or c-type), are assigned to one package (higher-level microservice)
based on the process they relate to, or based on the non-leaf use case (that includes the
leaf) originally derived from. Such packaging assures that the DDD pattern is followed.

Step 4. Microservices Associations
The associations between components are then generalized in order to depict the
associations between microservices. In a microservices context, these associations
relate to service channels that exist in order to allow communication between
microservices to support a given business process or information flow. This view is

UML Use Cases
UML Components

4SRS-MSLA

«Par cipant» «Par cipant»

Iden fy
MS

«Par cipant»Derive MS
behavior

«Par cipant»

Derive MS
Channels and

Contracts

SoaML Par cipants

SoaML Par cipants + UML
Components

SoaML Par cipants + UML
Components

Fig. 5. Specifying microservices using 4SRS-MSLA

Inputs from a Model-Based Approach Towards the Specification 481

intended for identifying the need for such channels, regardless of the communication
Pattern adopted, i.e., messaging between services or use of middleware such as API
Gateways or lightweight message bus. Identifying such associations is based on
descriptions from use cases (dependencies between functionalities at user requirements
level), as well as from the components themselves, during the execution of step 2.

4.3 Service Modeling in SoaML

In this section, the inputs from the derived UML models by performing AMPLA and
the 4SRS-MSLA are used to model the SoaML diagrams and their components. The
modeling so far allows deriving the microservices’ internal behavior, their data models,
and the existing communications. These different concerns are included in different
SoaML diagrams, in form of transition rules. These rules are grouped in ‘Boundary’,
‘Data’ and ‘Communication’, as depicted in Table 1.

5 Microservices Design

5.1 Microservice Design

Each microservice identified within the 4SRS-MSLA method execution is represented
as a Service Participant. Thus, the set of Service Participants compose the microser-
vices architecture. The required invocations for the Participant (Fig. 6) were identified
based on the use case description, where the interactions with other use cases were
previously described. Additionally, the same interactions allowed identifying the need
for methods that call those services and the properties (data) within the Capabilities.

It is during Step 2 of the 4SRS-MSLA that it is defined the expected behavior of the
microservice. In order to align with typical composing layers of a microservice (UI,
API, Logic and database), this approach proposes maintaining a general purpose
description, but also the inclusion of HTTP verbs under which that component is called
(used for defining «request» ports), the invocation of HTTP verbs required to consume
services that are necessary in order to fulfill its purpose (used for defining «service»

Table 1. Transition from UML (within AMPLA) to SoaML

Rule Input from UML Output in SoaML

1. Boundary UML Packages Service Participants
2. Boundary UML Packages Service Architecture diagram
3. Boundary UML Components

(within Packages)
Service Capabilities (methods)

4. Boundary i-types Separate web apps from Service Participants
1. Data d-types Service Capabilities
1. Communication 4SRS (associations) Service Participants (Requests/Services and Ports)

Service Interfaces
2. Communication UML Sequences Service Interfaces

482 N. Santos et al.

ports), and the properties that compose the dedicated database of the microservice
(input for Service Data, but not discussed in this paper).

In Step 3 of the 4SRS-MSLA, it is common that i-type components that relate to
user interface (UI) actions are grouped together into one or more i–type components.
This occurs because these components are typically part of a web application rather
than a given consumed service.

5.2 Data Management

In Step 3 of the 4SRS-MSLA, D–types may also be grouped if the goal is to centralize
the data, as in the “shared database” pattern. Alternatively, they may be included in the
package from the higher-level microservice they relate to. This decision results in
including within the microservice d–type components that are responsible for the
related data access, which reflects an application of a “database per service”.

If the solution uses the shared database pattern, the MSLA is likely to have a
dedicated package for d-type components, which must be assured when performing
Step 3 of 4SRS, i.e., assigning a package to d-type components. This package is not
transformed into a microservice, but rather remains as a dedicated package (just like the
UI package for web apps). If the solution uses the database per service pattern, d–types
are assigned in Step 3 to a given service, i.e., any package except for the UI. Additional
patterns are then followed, like API Composition, Command Query Responsibility
Segregation (CQRS) – cf. Sect. 5.3 - and Saga. These patterns are out of the scope of
this paper, but will be discussed in future research.

5.3 Inter-service Communication

Defining inter-service communication is very complex during specifications, as some
informations about communication needs (parameters, formats, protocols, etc.) are not
always clear during specification tasks. This section proposes defining such commu-
nication needs, by using inputs that may come from the 4SRS-MSLA method exe-
cution as from the sequence diagrams exercise (cf. Sect. 4.1). In terms of modeling,

Fig. 6. Participant with ports, interfaces and capabilities (methods/properties)

Inputs from a Model-Based Approach Towards the Specification 483

SoaML diagrams able to be used are the ones such as Service Architecture, Service
Interface and Service Channels.

From the 4SRS-MSLA, in Step 4 defining microservices associations should follow
some constraints in order to prevent ineffective communication. Figure 7 represents the
associations and rules that this step has to follow for proper component association. On
the left side, are represented direct associations between components within the same
sub-domain (i.e., i-, c- and d-type components derived from the same use case), and, on
the right side, the associations derived from use case dependencies.

In terms of the required association rules: Scenario (a): On the left side, if the three
components are maintained, i-type should associate with c–type, and c-type associate
with d-type(s), assuring a proper intra-service flow. Scenarios (a), (b) and (c):
Associations with the ones exemplified on the right side, referring to inter-service
communications, should be always assigned between c-types. Scenario (d): No c-types
were maintained, so use case flow-related associations are between i- or d-types.
Scenario (e): only d-types were maintained, thus, in spite of being unusual scenario,
the association is defined. In this case, an analysis by the architect is required, since d-
types usually respond (in CRUD actions towards data) to another component’s call.

In order to implement API Composition, modeling refers to the microservice’s
response to a given process, which is derived from the associations from Step 4 and
depicted in Service Participant’s service ports. Additionally, identifying needs for
implementing CQRS refers to the dependencies between microservices, using the
Service Architecture (Fig. 8). It should be referred that both patterns are typically used
only in “database per service” settings.

«interface»
{C1.1.i} ….

«control»
{C1.1.c} ….

«data»
{C1.1.d} ….

«interface»
{C1.3.i} ….

«control»
{C1.3.c} ….

«data»
{C1.3.d} ….X

X
«control»
{C1.1.c} ….

«data»
{C1.1.d} ….

«interface»
{C1.3.i} ….

«control»
{C1.3.c} ….

«data»
{C1.3.d} ….X

X
«control»
{C1.1.c} ….

«data»
{C1.1.d} ….

«control»
{C1.3.c} ….

«data»
{C1.3.d} ….X

«interface»
{C1.1.c} ….

«data»
{C1.1.d} ….

«data»
{C1.3.d} ….X «data»

{C1.1.d} ….
«data»

{C1.3.d} ….

a) b) c)

d) e)

Same Use Case Use Case Flows Same Use Case Use Case Flows Same Use Case Use Case Flows

Same Use Case Use Case Flows Same Use Case Use Case Flows

Fig. 7. Defining associations between components

484 N. Santos et al.

The approach for a given communication pattern (API gateways, remote procedure
invocation, messaging or a domain-specific protocol, etc.) is not yet defined in MSLA,
rather it only defines the necessity of existence of a flow between microservices.
However, any design decisions on adopting a given pattern may be directly included in
the components specification, the ServiceChannels, or in Service Interface diagram
(Fig. 9).

For these interfaces, besides defining the parameters of the exchanged data, the
design decisions rely in whether the communication is synchronous or asynchronous.
This decision will then support the protocol for brokerage to be used (e.g., REST and
gRPC for synchronous, or MQTT, AMQP, OPC-UA or Kafka for asynchronous).

«ServicesArchitecture»
Plant IS Integrator

«Par cipant»
Fog Mgmt : Plant IS

Integrator

«IoT system»
Plant IS : System integrator

«ServiceInterface»
IoT System :Get Data

«consumer»

«ServiceInterface»
IoT System :Put Data

«provider» «provider»

«consumer»

«Microservice API»
System Integrator API«provider»

Fig. 8. Service Architecture

«ServiceInterface»
Get Data

Plant IS : System integratorFog Mmgt : Plant IS
Integrator

System
Integrator Get Data

«ServiceInterface»
Put Data

Plant IS : System integratorFog Mmgt : Plant IS
Integrator

System
Integrator Put Data

Fig. 9. Service Interface

Inputs from a Model-Based Approach Towards the Specification 485

5.4 Automatization

The agility provided by a microservices architecture mainly provides from having an
infrastructure that supports a proper continuous integration/deployment (CI/CD)
pipeline of the microservices to a production environement.

For this particular goal, obstacles refer to maximizing as possible CI/CD of the
microservices, namely by performing a set of tests to the microservice. For this pur-
pose, modeling may only provide some guidance on the expected behavior of the
microservice.

Components and associations are the required input for performing several types of
testing, from unit to acceptance testing. Additionally, component testing is enabled by
validating the microservice behavior as described its composing components. Service
integration contract testing is enabled by validating the scenarios where services invoke
other services. These invokes are represented as ServiceChannels by the associations
described in Step 4. Diagrams such as Service Contracts or even UML Sequence
diagrams enable the contract validation.

6 Lessons Learned

It is difficult to directly jump to service specification. In the UH4SP project, require-
ments were typically elicited by stakeholders regarding front-end functionalities, since
they are more aware of the business and not so much of the technology. Hence, starting
in modeling a logical architecture based on business requirements allowed using
stakeholder inputs for an initial stage and afterwards refine the information necessary to
specify the MSLA.

The UH4SP was composed by 5 teams, where each one was assigned to a module
from the architecture. Since a module could have one or more microservices, this
research allowed to validate loosed development from different teams. Sequence dia-
grams were also useful for discussing and developing microservice communications
that were developed by different teams.

As a disadvantage, the diagrams were only the starting point for developing and
deploying the microservices. In terms of data management, inter-service communica-
tion, messaging/brokers, deployment and infrastructure, the diagrams do not provide
still the necessary detail for implementing application, infrastructure application and
infrastructure patterns [5].

7 Conclusions and Future Work

Microservices architectures are seen with great advantages in software development,
and especially for cloud applications. Although its advantages, teams struggle with
properly designing, developing, and deploying this technology. Performing traditional
techniques in software engineering, in terms of requirements modeling, is still far from
providing a proper level of detail for developing microservices. However, there is room
for specifying services based on the elicited requirements.

486 N. Santos et al.

This paper proposed defining a method for deriving a microservices logical
architecture from functional requirements. The method has as input an UML logical
components diagram, where domains (DDD) were identified within the architecture.
That information was used for iterative refinement of the architecture, enabling deriving
microservices specifications, afterwards modeled in SoaML diagrams. Additionally,
these diagrams were basis for discussing microservices principles.

The discussion from this paper is an initial effort in designing the microservices
architecture. It allowed defining the bounded contexts, separation of data models, needs
for API calls. However, many issues around these concerns need to be addressed in
microservices development but will be focused in future research, like data consistency,
security (tokens) needs, or messaging, brokerage or API management.

References

1. Newman, S.: Building Microservices - Designing Fine-Grained Systems. O’Reilly Media
Inc., Newton (2015)

2. Thönes, J.: Microservices. IEEE Softw. 32, 116 (2015)
3. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12, 42–50 (1995). https://

doi.org/10.1109/52.469759
4. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML

models for service-oriented software architectures. In: Proceedings of 12th IEEE Interna-
tional Conference Workshops on Engineering of Computer Systems, pp. 173–182 (2005)

5. Richardson, C.: Microservice Patterns, 1st edn. Manning, Shelter Island (2018)
6. Krause, L.: Microservices: Patterns and Applications - Designing Fine-grained Services by

Applying Patterns (2014). Lucas Krause
7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf. Technol. 2,

24–27 (2014)
8. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic

mapping study. In: International Conference on Cloud Computing and Services Science,
CLOSER. INSTICC (2018)

9. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices: trends,
focus, and potential for industrial adoption. In: IEEE International Conference on Software
Architecture (ICSA), pp. 21–30. IEEE (2017)

10. Di Francesco, P.: Architecting microservices. In: IEEE International Conference on Software
Architecture Workshops, ICSAW 2017: Side Track Proceedings (2017)

11. Rademacher, F., Sachweh, S., Zündorf, A.: Analysis of service-oriented modeling
approaches for viewpoint-specific model-driven development of microservice architecture.
arXiv Preprint arXiv:180409946 (2018)

12. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice
architecture. In: Service Computing (2016)

13. Kharbuja, R.: Designing a Business Platform using Microservices. Technische Universität
München (2016)

14. Rademacher, F., Sorgalla, J., Sachweh, S.: Challenges of domain-driven microservice
design: a model-driven perspective. IEEE Softw. 35, 36–43 (2018). https://doi.org/10.1109/
MS.2018.2141028

Inputs from a Model-Based Approach Towards the Specification 487

http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://arxiv.org/abs/180409946
http://dx.doi.org/10.1109/MS.2018.2141028
http://dx.doi.org/10.1109/MS.2018.2141028

15. Santos, N., Rodrigues, H., Pereira, J., et al.: UH4SP: a software platform for integrated
management of connected smart plants. In: 9th IEEE International Conference on Intelligent
Systems (IS). IEEE, Funchal (2018)

16. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using
microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops
2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-33313-7_15

17. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, Boston (2004)

18. Lenarduzzi, V., Taibi, D.: Microservices, continuous architecture, and technical debt interest:
an empirical study. In: 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, Prague (2018)

19. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using functional
decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA 2018. LNCS, vol.
10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99933-3_4

20. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: an architectural meta-modelling
approach for microservice granularity. In: IEEE International Conference on Software
Architecture (ICSA), pp. 1–10. IEEE (2017)

21. Furda, A., Fidge, C., Zimmermann, O., et al.: Migrating enterprise legacy source code to
microservices: on multitenancy, statefulness, and data consistency. IEEE Softw. 35, 63–72
(2018). https://doi.org/10.1109/MS.2017.440134612

22. Messina, A., Rizzo, R., Storniolo, P., Tripiciano, M., Urso, A.: The database-is-the-service
pattern for microservice architectures. In: Renda, M., Bursa, M., Holzinger, A., Khuri, S.
(eds.) ITBAM 2016. LNCS, vol. 9832, pp. 223–233. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-43949-5_18

23. Chen, L.: Microservices: architecting for continuous delivery and DevOps. In: IEEE
International Conference on Software Architecture (ICSA). IEEE, Seattle (2018)

24. Santos, N., Ferreira, N., Machado, R.J.: Transition from information systems to service-
oriented logical architectures: formalizing steps and rules with QVT. In: Ramachandran, M.,
Mahmood, Z. (eds.) Requirements Engineering for Service and Cloud Computing, pp. 247–
270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51310-2_11

25. Santos, N., Pereira, J., Morais, F., Barros, J., Ferreira, N., Machado, R.J.: An agile modeling
oriented process for logical architecture design. In: Gulden, J., Reinhartz-Berger, I., Schmidt,
R., Guerreiro, S., Guédria, W., Bera, P. (eds.) BPMDS/EMMSAD - 2018. LNBIP, vol. 318,
pp. 260–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91704-7_17

26. Santos, N., et al.: Specifying software services for fog computing architectures using
recursive model transformations. In: Mahmood, Z. (ed.) Fog Computing, pp. 153–181.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94890-4_8

488 N. Santos et al.

http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-99933-3_4
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1007/978-3-319-43949-5_18
http://dx.doi.org/10.1007/978-3-319-43949-5_18
http://dx.doi.org/10.1007/978-3-319-51310-2_11
http://dx.doi.org/10.1007/978-3-319-91704-7_17
http://dx.doi.org/10.1007/978-3-319-94890-4_8

A Modular Approach to Calculate
Service-Based Maintainability Metrics
from Runtime Data of Microservices

Justus Bogner1,2(B) , Steffen Schlinger2, Stefan Wagner2 ,
and Alfred Zimmermann1

1 University of Applied Sciences Reutlingen, Reutlingen, Germany
{justus.bogner,alfred.zimmermann}@reutlingen-university.de

2 University of Stuttgart, Stuttgart, Germany
{justus.bogner,stefan.wagner}@iste.uni-stuttgart.de,

mail@steffen-schlinger.de

Abstract. While several service-based maintainability metrics have
been proposed in the scientific literature, reliable approaches to auto-
matically collect these metrics are lacking. Since static analysis is com-
plicated for decentralized and technologically diverse microservice-based
systems, we propose a dynamic approach to calculate such metrics from
runtime data via distributed tracing. The approach focuses on simplic-
ity, extensibility, and broad applicability. As a first prototype, we imple-
mented a Java application with a Zipkin integrator, 23 different metrics,
and five export formats. We demonstrated the feasibility of the app-
roach by analyzing the runtime data of an example microservice-based
system. During an exploratory study with six participants, 14 of the 18
services were invoked via the system’s web interface. For these services,
all metrics were calculated correctly from the generated traces.

Keywords: Maintainability metrics · Dynamic analysis · Microservices

1 Introduction

Service-oriented computing [12] introduced maintainability-related benefits like
increased reusability or loose coupling into the development of distributed enter-
prise applications. More recently, microservices [11] promise even greater advan-
tages with respect to flexibility and sustainable evolution. However, their decen-
tralized nature and their high degree of technological heterogeneity may pose
difficulties for metric-based quality assurance, e.g. with static source code anal-
ysis. Moreover, the most critical quality aspects of microservices are concerned
with architecture (e.g. coupling and cohesion) and not so much with source
code [2]. While a number of service-based maintainability metrics have been
proposed to address this [3], approaches to automatically collect these metrics
are lacking. Because meaningful static code analysis is very complex for service-
based systems, most suggestions so far have focused on programming language
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 489–496, 2019.
https://doi.org/10.1007/978-3-030-35333-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_34&domain=pdf
http://orcid.org/0000-0001-5788-0991
http://orcid.org/0000-0002-5256-8429
https://doi.org/10.1007/978-3-030-35333-9_34

490 J. Bogner et al.

independent workarounds, e.g. using SoaML [6] and service interface definitions
like WSDL [1] or OpenAPI [9].

A promising alternative to gather such metrics seems to be dynamic analy-
sis [14], i.e. to observe and document the system’s behavior at runtime. Dynamic
metrics already have a long history and a large number of them have been
proposed [13]. Analyzing the system execution may also produce additional
maintainability-related insights that static analysis cannot, especially in the area
of dynamic coupling [7]. Furthermore, microservice-based systems highly value
observability to operate the complex net of distributed services. This means
that microservices usually rely on monitoring or even distributed tracing1. Such
produced runtime data could be reused for maintainability evaluations. In this
paper, we therefore propose an extensible approach to calculate service-based
maintainability metrics from the runtime data of microservice-based systems.

2 Research Design

The development of our approach took place in several stages. First, we analyzed
existing service-based metrics (mostly based on [3]) to understand what data
attributes were necessary to calculate a broad set of maintainability metrics. We
also collected and evaluated existing approaches (see Sect. 5) as well as general
tools for distributed tracing in service-based environments. Based on this initial
analysis, we decided that our own approach should focus on the following three
principles:

• Simplicity: has a simple and clean data model and architecture
• Extensibility: can be extended with additional data sources or metrics
• Broad applicability: can be used with diverse service-based systems

In the second step, we then designed a modular architecture (see Sect. 3.1)
and an internal data model (see Sect. 3.2). Afterwards, we decided which data
sources and which metrics we would implement for the first iteration and devel-
oped the prototype of the tool (see Sect. 3.3). Lastly, we demonstrated the effec-
tiveness of the tool-supported approach in an exploratory study with an example
system that was used by six people (see Sect. 4).

3 Calculating Service-Based Metrics from Runtime Data

In this section, we describe the abstract details of our general approach as well
as the concrete implementation of the first prototype. For source code and more
extensive documentation, please refer to our GitHub repository2.

1 https://opentracing.io.
2 https://github.com/xJREB/microservices-runtime-analysis.

https://opentracing.io
https://github.com/xJREB/microservices-runtime-analysis

Calculating Service-Based Maintainability Metrics from Runtime Data 491

3.1 Architecture

The analysis tool was designed as a simple command line interface (CLI) appli-
cation and loosely follows a Pipes and Filters architecture. It consists of several
types of modules which sequentially process data (see Fig. 1). For data collec-
tion, different types of Integrator modules can be used. An Integrator queries
an external data source with runtime data (e.g. an OpenTracing server) and
produces the internal canonical data model from it. In one execution, several
different Integrators can be used to construct a more complete view of the
system. This model is then used as the foundation for metric calculation: each
implemented Metric module uses the data model to derive its metric results.
Lastly, this list of metric results is then processed by each specified Exporter
module. An Exporter transforms and forwards the results to the final location,
e.g. it may create an XML file. Likewise, several Exporters can be used in a
single execution. For the sake of simplicity and to ease integration into a CI/CD
pipeline, the analysis tool has no internal persistence. Upon execution, it collects
data, calculates the metrics, and finally outputs the results.

Fig. 1. General architecture of the approach (arrows indicate data flow)

3.2 Data Model

Every Integrator needs to produce our internal canonical representation of the
microservice-based system under analysis. This data model (see Fig. 2) includes
the services of the system, but also runtime information like the number of times
an operation was called during the analysis timeframe. In principle, it represents
a directed graph where the nodes are Services and the edges are Dependencies,
e.g. a Dependency could be an outgoing edge from node Service S1 to node
Service S2. Each Service in turn has a list of its offered Operations. They
consist of a list of input parameters, a list of how often other services called
this operation (calls), and a list of other Operations that were subsequently
invoked as a response to this operation (responsesForOperation). This simplis-
tic model enables the calculation of a large number of maintainability metrics
for e.g. coupling, cohesion, size, and complexity via efficient graph operations,
on system- as well as on service-level. It could also be easily extended with
additional attributes to facilitate the calculation of new metrics.

492 J. Bogner et al.

Fig. 2. Canonical data model for runtime data

3.3 Implementation

The first prototypical implementation of the approach is a Java CLI application
(see Fig. 3). Apache Maven is used to manage dependencies and to create an
executable JAR file that can be called with various input parameters such as
the endpoints of runtime data sources. We rely on the JGraphT library3 to create
the internal model of the system as a directed graph. The plugin mechanism to
dynamically include newly developed modules is realized with Java interfaces and
the Java Reflection API. In the first iteration, we implemented one Integrator,
23 Metrics, and five Exporters (XML, JSON, CSV, Markdown, plain text).

Concerning runtime data sources, we analyzed a wide variety of approaches,
among them distributed tracing frameworks like Jaeger and monitoring solutions
like Prometheus4. In the end, we decided to implement a Zipkin Integrator for
the first prototype. Zipkin5 is a distributed tracing system based on the Google
Dapper architecture. It implements the OpenTracing standard and is one of the
most popular open source tracing implementations (over 11k stars on GitHub at
the time of writing). Zipkin requires the inclusion of a small piece of application
code, a Tracer, into each service that should be instrumented. These Tracers
record application activity and then asynchronously send tracing information to
a central Zipkin server. As opposed to non-invasive techniques like e.g. tcpdump,
Zipkin is therefore able to gather very rich runtime data. Our implemented
Zipkin Integrator queries the RESTful API of a Zipkin server and retrieves
the list of services with their respective traces within a certain timeframe. These
information are then converted to our canonical data model.

With respect to Metrics, we collected a set of 58 service-based maintainabil-
ity metrics proposed in the scientific literature. The majority of them have been
summarized in [3]. These metrics were then analyzed for their relevance and
applicability to our approach. In the end, we selected 16 of these metrics for the
first prototype. Since several aspects of service-based maintainability (especially
dynamic coupling) were not covered, we designed and adapted seven additional

3 https://jgrapht.org.
4 For more details on tool analysis and selection, please refer to https://github.com/

xJREB/microservices-runtime-analysis/tree/master/docs/tools.
5 https://zipkin.io.

https://jgrapht.org
https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/tools
https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/tools
https://zipkin.io

Calculating Service-Based Maintainability Metrics from Runtime Data 493

metrics. These 23 metrics were then implemented6, among them 13 coupling,
five complexity, three cohesion, and two size metrics. Eight of them are system
level metrics, 14 relate to the service level, and one is collected per operation.

Fig. 3. Implemented architecture of the first prototype (arrows indicate data flow)

Architecture, data model, and implementation fulfill all three principles pos-
tulated for the approach (see Sect. 2). The approach is simple in the sense that
it avoids the complexity of e.g. model-driven engineering and relies only on very
few data model concepts and module types, i.e. the bare minimum of what is
needed. It is extensible in the sense that the plugin architecture makes it very
easy to develop additional Integrators, Metrics, or Exporters, which follows
the open/closed principle (“open for extension, closed for modification”). Lastly,
it is broadly applicable in the sense that it is not tied to specific service technolo-
gies or implementation frameworks. In principle, any data source with sufficient
information to construct the internal data model can be integrated without hav-
ing to touch any of the downstream implementation units.

4 Demonstration and Discussion

To illustrate the feasibility and effectiveness of our approach, we conducted an
exploratory study with an open source example system. The goals of this demon-
stration were to explore if metrics are calculated correctly and to get an esti-
mation if runtime data produced during normal usage of a system is sufficient
for accurate results. We chose the Twitter-like microblogging system ramanu-
jan7, since it is of decent size (18 services) while still being simple enough for
a small study and has a web frontend for convenient end-user access. Further-
more, each service already implements a Zipkin tracer so that no modifications
were required. We hosted this system together with a Zipkin server in a closed
environment and then instructed six test participants (master students) to use
it. We divided our testers into two groups with three participants each (G1 and
6 For more details on metric analysis and selection, please refer to https://github.

com/xJREB/microservices-runtime-analysis/tree/master/docs/metrics.
7 https://github.com/senecajs/ramanujan.

https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/metrics
https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/metrics
https://github.com/senecajs/ramanujan

494 J. Bogner et al.

G2). The groups used the system separately and had to work on two tasks (T1

and T2). For T1, they had five minutes to find and use the complete functionality
offered via the web interface. For T2, they should use the system’s messaging for
an additional five minutes to discuss a topic of their choosing. Afterwards, our
tool calculated the metrics from the produced Zipkin data and we analyzed the
results and differences per groups and tasks8.

In total, 14 of the 18 services were identified from the combined data of
both groups. The remaining four services provided functionality that could not
be invoked via the web interface, e.g. the manual import of messages into the
system. Based on these 14 services, all metric values for static coupling, size,
and cohesion were calculated correctly (dynamic coupling metrics do not have a
“correct” value). When looking at G1 and G2 separately, the results are the same
per group. However, an analysis of the individual tasks of G2 revealed that not
all service dependencies were identified in T1 as well as T2, because a clustered
service relied on load balancing to two instances based on chosen usernames.
This led to minor inaccuracies for the static coupling metrics. Since the testers
of G2 chose different usernames per task, the combined data sets of T1 and T2

therefore yielded accurate results. All in all, this small case study was successful
in demonstrating our approach with just six participants that used the system
for a combined duration of 20 min.

However, the demonstration also highlighted weaknesses of dynamic analysis:
evaluation quality depends on the richness and completeness of runtime data.
Services or operations that are not used during the recording are not registered
and therefore the resulting metrics may be inaccurate. This may be especially
relevant for very large systems with diverse services and functionality. Similarly,
a less invasive Integrator that does not require service modification would most
likely result in even larger inaccuracies or even no values for certain metrics. In
addition to the invasiveness vs. data quality trade-off, we must also consider
potential performance impacts. Our small demonstration was no suitable evalu-
ation for this. Even though modern distributed tracing like Zipkin is specifically
designed for minimal performance overhead, there is still additional load in the
system. Therefore, the usage of such an approach with a critical production
system needs to be carefully evaluated.

5 Related Work

Several approaches have been proposed in the area of architecture reconstruc-
tion for microservice-based systems. Granchelli et al. [8] designed an approach
called MicroART that combines static information from a source code reposi-
tory with dynamic runtime data collected via tcpdump. The approach is based on
model-driven engineering and requires the usage of Docker containers as well as
some manual effort in the refinement phase. Similarly, Mayer and Weinreich [10]
present a mixed recovery approach based on OpenAPI descriptions and runtime
8 We also published the results in our repository: https://github.com/xJREB/

microservices-runtime-analysis/tree/master/docs/demonstration-results.

https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/demonstration-results
https://github.com/xJREB/microservices-runtime-analysis/tree/master/docs/demonstration-results

Calculating Service-Based Maintainability Metrics from Runtime Data 495

information from HTTP calls intercepted via a custom data collection library.
Their approach is limited to RESTful services using the Spring framework.

Some publications also propose quality evaluation approaches for microser-
vices based on dynamic analysis. Engel et al. [5] created a framework (MAAT)
that utilizes the OpenTracing API to create a model and visualization of the
system’s architecture. Afterwards, six metrics are calculated to evaluate the sys-
tem’s conformance to principles derived from popular microservice characteris-
tics. While the approach promises to be very interoperable w.r.t. data sources,
metric extensibility does not seem to be a high priority. The source code of
MAAT is also not shared publicly. Lastly, Cardarelli et al. [4] built on the exist-
ing MicroART framework to use its output for a new customizable quality eval-
uation framework called MicroQuality. The complex approach employs model-
driven engineering techniques as well as the object constraint language (OCL)
for specifying quality attributes. The authors envision an ecosystem where such
quality definitions are shared across systems and organizations.

6 Conclusion

We designed a simple, extensible, and broadly applicable approach to calculate
service-based maintainability metrics from runtime data and implemented a Java
prototype with a Zipkin integrator, 23 maintainability metrics, as well as export
to XML, JSON, CSV, Markdown, and plain text. We demonstrated the feasibil-
ity of our approach via a small exploratory study with an example microblogging
system: metrics for all used services were calculated correctly based on the pro-
duced runtime data. Future work could expand the prototypical implementation
with additional Integrators or Metrics. Furthermore, an industrial evaluation
with a larger system would yield important insights into metric accuracy as well
as performance impact at such scale. Lastly, the dynamic approach could also
be combined with static information like machine-readable system descriptions
to mitigate some of its shortcomings.

Acknowledgments. This research was partially funded by the Ministry of Science of
Baden-Württemberg, Germany, for the doctoral program Services Computing (https://
www.services-computing.de/?lang=en).

References

1. Basci, D., Misra, S.: Data complexity metrics for XML web services. Adv. Electr.
Comput. Eng. 9(2), 9–15 (2009). https://doi.org/10.4316/aece.2009.02002

2. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability
of microservices: insights into industry practices and challenges. In: 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
Cleveland (2019)

3. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems. In: Proceedings of the 27th

https://www.services-computing.de/?lang=en
https://www.services-computing.de/?lang=en
https://doi.org/10.4316/aece.2009.02002

496 J. Bogner et al.

International Workshop on Software Measurement and 12th International Confer-
ence on Software Process and Product Measurement on - IWSM Mensura 2017, pp.
107–115. ACM Press, New York (2017). https://doi.org/10.1145/3143434.3143443

4. Cardarelli, M., Iovino, L., Di Francesco, P., Di Salle, A., Malavolta, I., Lago, P.: An
extensible data-driven approach for evaluating the quality of microservice archi-
tectures. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting - SAC 2019, pp. 1225–1234. ACM Press, New York (2019). https://doi.org/
10.1145/3297280.3297400

5. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice
architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H.
(eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92901-9 8

6. Gebhart, M., Abeck, S.: Metrics for evaluating service designs based on SoaML.
Int. J. Adv. Softw. 4(1), 61–75 (2011)

7. Geetika, R., Singh, P.: Dynamic coupling metrics for object oriented software sys-
tems. ACM SIGSOFT Softw. Eng. Notes 39(2), 1–8 (2014). https://doi.org/10.
1145/2579281.2579296

8. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle,
A.D.: Towards recovering the software architecture of microservice-based sys-
tems. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 46–53. IEEE (2017). https://doi.org/10.1109/ICSAW.2017.48

9. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the
structural analysis of REST APIs. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 55–58. IEEE (2017). https://doi.org/10.1109/
ICSA.2017.40

10. Mayer, B., Weinreich, R.: An approach to extract the architecture of microservice-
based software systems. In: 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pp. 21–30. IEEE (2018). https://doi.org/10.1109/SOSE.2018.
00012

11. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Sebastopol (2015)

12. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 7th International Conference on Properties and Appli-
cations of Dielectric Materials (Cat. No. 03CH37417), pp. 3–12. IEEE Computer
Society (2003). https://doi.org/10.1109/WISE.2003.1254461

13. Tahir, A., MacDonell, S.G.: A systematic mapping study on dynamic metrics and
software quality. In: 2012 28th IEEE International Conference on Software Main-
tenance (ICSM), pp. 326–335. IEEE (2012). https://doi.org/10.1109/ICSM.2012.
6405289

14. Tosi, D., Lavazza, L., Morasca, S., Taibi, D.: On the definition of dynamic software
measures. In: Proceedings of the ACM-IEEE International Symposium on Empiri-
cal Software Engineering and Measurement - ESEM 2012, p. 39. ACM Press, New
York (2012). https://doi.org/10.1145/2372251.2372259

https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3297280.3297400
https://doi.org/10.1145/3297280.3297400
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1145/2579281.2579296
https://doi.org/10.1145/2579281.2579296
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/SOSE.2018.00012
https://doi.org/10.1109/SOSE.2018.00012
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/ICSM.2012.6405289
https://doi.org/10.1109/ICSM.2012.6405289
https://doi.org/10.1145/2372251.2372259

Consumer-Driven Contract Tests
for Microservices: A Case Study

Jyri Lehvä(B), Niko Mäkitalo, and Tommi Mikkonen

Department of Computer Science, University of Helsinki, Helsinki, Finland
{jyri.lehva,niko.makitalo,tommi.mikkonen}@helsinki.fi

Abstract. Design by contract is a paradigm that aims at capturing the
interactions of different software components, and formalizing them so
that they can be relied upon in other phases of the design. Such a char-
acteristic is especially helpful in the context of microservice architecture,
where each service is an independent entity that can be individually
(re)deployed. With contracts, testing of microservice based systems can
be improved so that also the integration of different microservices can
be tested in isolation by the developers working on the system. In this
paper, we study how systems based on microservice architecture and
their integrations can be tested more effectively by extending the testing
approach with consumer-driven contract tests. Furthermore, we study
how the responsibilities and purposes of each testing method are affected
when introducing the consumer-driven contract tests to the system.

Keywords: Consumer-driven contract testing · Design by contract ·
Microservices · Test planning · Integration testing · Test coverage

1 Introduction

Consumer-Driven Contract testing [9] is a way to test integrations between ser-
vices and ensure that all the integrations are still working after new changes have
been introduced to the system. The main idea is that when an application or a
service (consumer) consumes an API provided by another service (provider), a
contract is formed between them. The contract contains information about how
the consumer calls the provider and what is being used from the responses.

As long as both of the parties obey the contract, they can both use it as a
basis to verify their sides of the integration. The consumer can use it to mock
the provider in its tests. The provider, on the other hand, can use it to replay the
consumer requests against its API. This way the provider can verify that the gen-
erated responses match the expectations set by the consumer. With consumer-
driven contracts, the provider is always aware of all of its consumers. This comes
as a side product when all the consumers deliver their contracts to the provider
instead of consumers accepting the contracts offered by the provider.

In this paper our objective is to study how systems based on the microservice
architecture [1,12] and their integrations [8] can be tested more effectively by
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 497–512, 2019.
https://doi.org/10.1007/978-3-030-35333-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_35&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_35

498 J. Lehvä et al.

extending the testing approach with consumer-driven contract tests. In partic-
ular, we are interested in how the responsibilities and purposes of each testing
method are affected when introducing the consumer-driven contract tests to the
system.

The rest of this paper is structured as follows. Section 2 provides the back-
ground for the paper, and Sect. 3 introduces the case study. Section 4 presents
the results of the case study. Section 5 provides an extended discussion regarding
our observations. Finally, Sect. 6 draws some final conclusions.

2 Background

Microservice architecture is a relatively new approach to architecting systems
that are updated continuously [5]. The fundamental goal of microservices is to
make each service self-contained, even if this means implementing similar (or
even the same) functions in numerous services [6]. In other words, the goal is
to minimize dependencies between the services, so that they can be designed
and deployed independently of the other parts of the system [7]. Furthermore,
different tools and techniques can be used when implementing microservices
because they only need to interact with each other using well-defined APIs [11].
Therefore, designers can apply various techniques in testing individual services.
However, when orchestration of numerous microservices is required, a common
testing approach is needed to test their interaction. This is often visualized with
testing pyramid (Fig. 1).

Fig. 1. Test pyramid with consumer-driven contract tests. Adapted from [3].

Since microservices are typically deployed directly to a live environment, tra-
ditional end-to-end and integration tests can be challenging to organize. Instead,

Consumer-Driven Contract Tests for Microservices: A Case Study 499

a testing approach is needed where microservices can be tested in isolation from
the live system, and preferably so that the developers can easily run the tests
on their machines.

Consumer-driven contract testing is an approach that allows testing both
sides of an integration separately and isolated from each other. It relies on
consumer-driven contracts [9] between a consumer and a provider, following the
design-by-contract paradigm [4]. They are created by the consumer and then
shared to the provider for verification so that each contract describes a set of
interactions between the consumer and the provider. A single interaction is a
pair of request and response describing how the services communicate with each
other. From the consumers perspective, the interaction describes the outgoing
request and the response for it from the provider. From the providers perspec-
tive, the interaction defines what kind of incoming request it receives from the
consumer and what kind of response the consumer expects to be generated for it.

Fig. 2. Scopes of different testing methods.

From the surface, consumer-driven contract testing resembles integration
testing – both involve a service provider and a service consumer, and their
interaction is being tested. However, in consumer-driven contract tests, they
are isolated from each other by an explicit contract instead of being directly
connected, whereas in integration testing, more liberal interactions are typically
allowed. The catch is that instead of forming a connection between the services,
the test is divided into two independent and isolated stages (Fig. 2). In the first
stage, the consumer creates a contract containing the details of each interaction
it requires from the provider. The contract is then shared with the provider.
In the second stage, the provider uses the contract to test its API. After the
provider has successfully verified the contract with the tests, the consumer and
the provider know they are compatible with each other.

The verified consumer-driven contract describes a specific state of the inte-
gration between the consumer and the provider. If that state changes from either
side, there is a high chance of introducing defects to the integration. As explained
earlier, the consumer and the provider can both be tested based on the contract.

500 J. Lehvä et al.

The consumer testing can be achieved by comparing the newly implemented
changes to the past state of the consumer. That can be done by using a mock
that is based on the previous version of the contract. If the mock fails when
the consumer sends the request to the provider, it means the implementation
has changed, and the consumer no longer obeys the contract. If the consumer
changed it on purpose, it is considered as a proposal for a new version of the
contract. After that, the mock should be updated to match the changes, and the
contract must be verified again by the provider to make sure it is compatible
with those changes.

The provider side verification of the contract is done by playing the consumers
requests from the contract against the provider and comparing the provider
responses to the expected responses from the contract. If they match, the con-
tract is satisfied, and both the consumer and the provider are compatible with
each other. Sometimes the provider needs to make breaking changes. In such sit-
uations, the changes should be communicated with the consumers. After that,
the consumers can create new versions of the contracts that take the breaking
changes into account and enables the provider to evolve as planned.

Obviously, consumer-driven contract tests aim at a very specific point in
development. Hence, they must be complemented with other types of testing that
have been traditionally executed. To understand the exact benefits of consumer-
driven contract testing, we conducted a case study in cooperation with a com-
mercial company and its production system.

3 Case Study

3.1 Overview

Our case study is based on a system built on microservice architecture, consisting
of eight services and four databases. The purpose of the system is to enable
admin users to create custom product configurations to be sold in web stores to
customers. Those web stores are consuming the APIs of the system. The system
keeps track of stock levels for the products in different warehouses and provides
tools for warehouse workers to fulfill orders placed by the customers.

An overview of the microservice system is shown in Fig. 3. The development
team owns the microservices inside the black box. Other teams own the rest of
the microservices. The arrows between the services are pointing from consumer
to provider direction or in other words, from downstream to upstream. Two
external calls from the Shop are highlighted with green color. Those are calling
the endpoints that are in the focus of this case study. Integrations from web apps,
external APIs, and the rest of the shops that act as consumers of the system
have been abstracted away to reduce the noise from the two endpoints.

All databases of the system are MySQL1 databases and the APIs are Express2

applications written in JavaScript. The API endpoints mostly consist of CRUD

1 https://www.mysql.com/.
2 https://expressjs.com/.

https://www.mysql.com/
https://expressjs.com/

Consumer-Driven Contract Tests for Microservices: A Case Study 501

Fig. 3. High level architecture and integrations. (Color figure online)

operations, the Orchestrator API being an exception. Orchestrator API does not
have direct access to the databases, and its purpose is to orchestrate the actions
needed to complete the save and the order operations. Those actions consist of
validation and calling the other APIs to complete the request.

The system was built to replace an old monolithic system. The transition
happened gradually, one endpoint and one functionality at a time. The Proxy
was implemented to help in the transition period. It used to contain logic to
decide whether to forward the incoming calls to the old or the new system
depending on the state of the transition. Currently, the Proxy is only used to
keep the old deprecated API endpoints supported until all the consumers have
been updated to use the new endpoints. Order requests from the Shop are still
going through the Proxy meaning that those have not yet been integrated to use
the new endpoints provided by the Orchestrator API.

The scope of the case study consists of the two endpoints: Save and Order.
Both are highlighted in Fig. 3 with green color. These endpoints were chosen for
the case study because they involve multiple microservices to fulfill the incoming
requests. That makes them an exciting target for a spike from the integrations
point of view.

502 J. Lehvä et al.

3.2 Baseline Test Setup

The system of the case study has been tested with unit-, component- and end-to-
end tests. The unit tests are used to test single functions within the microservices.
Most commonly, they have been written to help the developers to implement
more complex logic to verify that the small piece of code works as intended.
They do lift off some burden from the other testing methods, but they do not
test any parts of the code that is directly involved in integrations. Because of
that, they are not discussed further in the scope of this case study, and the focus
will be in the component- and end-to-end tests. The component tests present the
majority of the tests in the system. They have been implemented for every single
endpoint in every single service, and they extensively test the behavior of them.
The tested behavior includes different happy case scenarios, request validation
errors, and situations where the services in the upstream or the databases are
not functioning correctly.

The team ended up implementing a vast number of component tests because
these were comfortable and fast to implement. A single component test involves
sending a request to the endpoint and then checking if the endpoint returns the
expected response. All the outside integrations are always replaced with mocks.
The mocks help to verify if the service calls external services correctly, and helps
to emulate different scenarios where the external services behave in different
ways. Most importantly, they make the tests isolated and easy to operate.

The team was quite confident in the testing strategy with just the unit- and
component tests for quite a while. Together the tests were very throughout at
making sure the isolated services worked as expected. The team also had a tactic
to avoid making changes to the endpoints that could potentially break integra-
tions. That meant only adding new features instead of changing or removing the
existing ones. The confidence slowly faded away when the number of services,
endpoints, and integrations kept growing when new features were implemented.
As a result of that, the team decided to implement end-to-end tests to cover the
most critical functionalities of the system.

The experience from the end-to-end tests was entirely different compared
to the component tests. They required much additional effort because the tests
were not isolated anymore, and they involved multiple different services and
databases. To implement the tests, the developers needed to start all the associ-
ated services and databases on their machines. In addition, the end-to-end tests
required planning. The whole system had to be in a specific state to make the
tests pass. That meant inserting a correct set of data to all the databases – the
setting and resetting of the data needed to happen before the tests were run.
The team ended up implementing a couple of additional endpoints to the ser-
vices which were only used by the tests. They also created a couple of seed SQL
files that could be used to insert data to the databases manually.

The end-to-end tests needed to be run in the Continuous Integration (CI)
system as well. The team already had an existing development environment
that was used by the CI. The development environment had all the services
deployed and available for testing purposes. The same errors which happened

Consumer-Driven Contract Tests for Microservices: A Case Study 503

Fig. 4. Test boundaries of the order endpoint.

during developing on local machines often followed to the tests run by the CI in
the development environment. Those were mainly caused by other development
activities and other tests modifying the data. Often the fix required manual
work to rerun the seed SQL files when something in the system had changed.
The debugging of the errors became more challenging as the system grew, and
the errors had to be traced from logs collected from multiple services.

The general feeling of the end-to-end tests was that they were slow, prone
to errors, hard to debug, and non-deterministic in general. Sometimes it even
felt like the team avoided running them because of the high effort. It was not
uncommon that they failed to data errors, and no one wanted to spend time

504 J. Lehvä et al.

debugging them. In some cases, the errors in tests were left completely ignored
if it was evident that there were no new changes to the system that could have
broken the feature. It did not feel rewarding to debug and fix errors that were
only related to the testing environment and not to the actual features of the
system.

The above experiences and feelings guided the team to avoid implementing
the end-to-end tests for every feature. It felt like the growing number of end-
to-end tests would shift time and focus from other important things to just
debugging false-negative errors. Because of that, they were implemented for just
a handful of the most critical features of the system. The end-to-end tests only
tested one happy case scenario per feature and did not even try to test all the
different error scenarios.

Figure 4 introduces the testing boundaries for Order endpoint. The feature
involves four microservices and two databases in total. The component tests
isolate the microservices from each other using mocks and the end-to-end test
tests if the Order feature works when all of the services are connected.

3.3 Consumer-Driven Contract Tests

Consumer-driven contract tests were implemented using the Pact JS3, and they
used Pact Broker4 for sharing the contracts. Both the Pact Broker and the
tests were run on a local machine. They were not attempted to run in the CI
environment.

Calling the Save and Order endpoints initiates a set of interactions between
the services. Following the naming convention of consumer-driven contract test-
ing, each interaction happens between a consumer and a provider. Sometimes
service can have both of the roles if it needs to consume other services to be able
to respond to its consumer. The different roles for the services in this case study
are broken down for both endpoints in Tables 1 and 2.

Table 1. Save endpoint roles. C and P refer
to Consumer and Producer, respectively.

Service C P

Orchestrator API x

Configuration API x

Validation API x

Stock API x

Order API x

Table 2. Order endpoint roles in inte-
grations. C and P refer to Consumer and
Producer, respectively.

Service C P

Proxy x

Orchestrator API x x

Stock API x

Order API x

3 https://github.com/pact-foundation/pact-js.
4 https://github.com/pact-foundation/pact broker.

https://github.com/pact-foundation/pact-js
https://github.com/pact-foundation/pact_broker

Consumer-Driven Contract Tests for Microservices: A Case Study 505

Fig. 5. Consumer-driven contract tests of the Order endpoint.

506 J. Lehvä et al.

Consumer-driven contract tests break the testing boundaries between the
services when compared to the component tests. This means that the services are
no longer fully isolated from each other. The services are not directly connected
either, like happened with end-to-end tests or would happen with integration
tests. Instead, they are indirectly connected, and they communicate with each
other using the contracts as a tool.

Such setting lets the consumer and the provider sides to be tested separately.
There is no requirement for them both to be available and connected during the
test execution. That still does not lift off the requirement of having to run the
tests on both sides to fully verify the integration. Figure 5 illustrates this for
Order endpoint. When it is compared to Fig. 4 with the component- and end-
to-end tests, it is quick to notice that a few differences are standing out between
the approaches.

The consumer tests use the mocks to achieve isolation in the same manner
as component tests, but in addition to that, the Pact Broker is being utilized
to share the contracts to the provider tests to fully verify both sides of the
integrations. Unlike component tests, the consumer-driven contract tests do not
test the behavior of the consumers. They directly trigger the parts of the code
that initiate the external calls to the provider to focus solely on the integrations.

The implementation of the consumer and the provider tests with Pact differed
from each other quite a lot. On the consumer side, the tests were all about
implementing the Pact mocks. That meant writing a mock with the expected
request and response for it. When the tests were executed, Pact compared the
actual requests generated by the consumer application to the ones specified in
the mock. If they matched, the tests passed, and Pact generated a contract out
of the mock and considered the consumer side of the integration verified. At that
point, the new contract was automatically uploaded to Pact Broker.

The provider side of tests required much less work compared to the consumer
side. They ended up requiring only tens of lines of code. The implementation
of the tests consisted of making sure the provider is available, and there is a
correct set of data in its database. The provider tests automatically fetched all
the contracts from Pact Broker. Then Pact dynamically generated tests out of
the contracts and ran them against the provider. If the provider responded with
the same responses the consumer specified to the contract, the tests passed. The
test results were automatically reported to the Pact Broker after each test run.

Each tested integration between the services of both the Save and the Order
endpoints consisted of 2–3 interactions. In total, there were 23 different inter-
actions, and they all had a meaning to the consumers. Every single integration
between the services contained the 200 OK happy case interaction. The sec-
ond most common interaction was the 400 Error, which was a result of a failed
request validation on the provider side. All of those interactions were important
for the consumers because they had implemented behavior based on them. If the
format changes, the consumers fail to handle those scenarios properly.

Consumer-Driven Contract Tests for Microservices: A Case Study 507

4 Results

4.1 Comparison of Testing Methods

The comparison of the testing methods was made by seeding defects to the
integrations and studying how the tests caught them. The defects were imple-
mented by going through all the interactions one at a time and by separately
implementing them to both, to the consumer and to the provider, sides. The
goal was to find out how the testing methods can catch those defects that break
the integrations.

The seeded defects were violations against the contracts that were already
verified on both sides. On the consumer side that meant changing the request
that is sent to the provider. A few concrete examples of that would be renaming
of query parameters, changing the format of request body or modifying the
request headers. On the provider side the violations were changes to the API
and its responses.

The comparison of the testing methods revealed that the consumer-driven
contract tests were able to catch every single defect from the 23 different interac-
tions. That was not the case with the component tests; they allowed the defects
to slip through. The end-to-end tests were able to catch the defects from inter-
actions that were part of a single happy case scenario, but the rest of the defects
were left uncaught.

The comparison of the testing methods highlighted that the initial testing
strategy was lacking when it came down to testing integrations. It also showed
that consumer-driven contract tests were able to fill that hole from the testing
strategy. The component tests from the initial testing strategy were very brittle
in revealing errors in integrations. They did manage to reveal if something had
changed during implementation time, but they did very little to tell if the change
was an actual breaking change to a specific integration or just a change to
the behavior of the service. Because of that, there is a chance to accidentally
or unconsciously change the component tests to match the new functionality
without realizing the implications on the other side of the integration. That
leaves the integration broken while the component tests are still passing.

The end-to-end tests, on the other hand, proved to catch the breaking changes
in the happy case of the Order endpoint. That is great, but there were still many
different interactions that were left entirely untested. One good example is the
Order endpoint, which had just one test for the happy case scenario and the
different error case interactions were untested.

In conclusion, the introduction of the consumer-driven contract tests brought
confidence to the testing strategy. The consumer-driven contract tests turned out
to be very throughout at testing the integrations between the services. Compared
to the component tests, it was not possible to make the tests pass without fixing
the broken integrations first. They also caught all the different error cases which
were not covered by the end-to-end tests. They were also easy and fast to run as
they are always run in isolation from the other services. They did not cause any

508 J. Lehvä et al.

false negative errors, which proved they were very deterministic, making them
convenient to use.

Integrations between the shop, the case study system, and analytics were not
testable with the consumer-driven contract tests. They could and most likely
should be tested that way, but they were scoped out from the case study to
keep the scope more tightly on the testing method itself. Because of that, there
were no attempts to contact the other teams to implement the consumer or the
provider tests and to share the contracts. Therefore, the integrations with them
were left tested with component tests and mocks that are not being verified in
any way. That did not change the initial situation any better or worse as that
was the case even before the implementation of consumer-driven contract tests.

4.2 Experiences with Consumer-Driven Contract Testing

The literature suggested that consumer-driven contract testing is a viable option
to test integrations. There was just one requirement that could be hard to fulfill
in some situations. The requirement was that the consumer and the provider
must be able to communicate the process with each other.

The experiences from the case study supported the findings from the lit-
erature. The consumer-driven contract tests were very throughout on finding
defects from integrations between services. The defects got reliably caught from
both of sides of the integrations.

In addition to being a viable option for testing integrations, the literature
listed further benefits for the consumer-driven contract testing, including (i)
decoupling consumer from the provider and enables testing of both sides in
isolation; (ii) fast, stable, and deterministic execution; (iii) ensuring that the
provider knows who are consuming its API and how; enabling the provider to
evolve based on real business needs from its consumers; (iv) enforcing that the
provider tests always catch sudden breaking changes to the API; and (v) using
contracts as a tool to improve communication between teams.

With the case study, we were able to confirm most of the listed benefits. The
consumer-driven contract tests were run in isolation, which resulted in them
being fast and stable. Due to that, they were also relatively easy to operate
compared to the end-to-end tests even though they required the extra step to
share the contracts. The sharing was made simple with Pact and the Pact Bro-
ker, which both proved out to be prominent tools in the field of implementing
consumer-driven contract tests.

Especially the tooling made it possible to visualize who are the consumers
for the providers and how they are consuming the APIs. In the case study, the
consumer-driven contract tests were implemented after the actual services had
already been implemented. That did not let the case study to examine how the
provider could have been created and evolved from a scratch based on the needs
of the consumers. Still, the case study was able to prove that it is possible to
evolve the provider when the requirements from the consumers are visible in
the contracts. In the future, consumers can use the contracts to communicate or
suggest new changes to the provider.

Consumer-Driven Contract Tests for Microservices: A Case Study 509

The approach in the case study was to implement the consumer-driven con-
tract tests in a spike by experimenting and implementing the tests for only a
selected few features of the system. That was successful, and it proved that the
spikes are an excellent way to experiment with the consumer-driven contract
testing for already existing systems. That is an essential feature as it enables
teams to experiment with the tests with a smaller scope and see if it fits their
purposes. Majority of the time was spent at the beginning on learning the new
way of testing and finding out proper tools for the job. After those were sorted
out, the implementation of new tests became straightforward.

The spike method had another significant benefit when figuring out if the
consumer-driven contract testing should be used. It can work as an excellent
way to learn if there are any pain points in the communication inside the orga-
nization or between the different teams before fully committing to it. The effect
of communication is a good thing to keep in mind when thinking about using
the testing method. The system in the case study was initially implemented by
one team so the communication would not have been a problem. It could have
been challenging to extend the method to the outside consumers (the Shops)
who were consuming the system or to the other APIs (the Analytics) that were
consumed by the system.

The expansion of the testing coverage outside of the system developed by the
team in the case study would have required communication with other teams.
The first step would have been to introduce the testing method to them and
then convince them that consumer-driven contract testing is something that is
needed. That can be hard for many reasons. The other team can, for instance,
be busy doing something else, with its own prioritized backlog. Moreover, even
if the new testing method would end up to the backlog, it could take a while to
get it prioritized high enough for actual implementation. Still, contracts are a
great tool to communicate and share the details if all of the parties finally agree
to proceed with the implementation. In another scenario, the teams could break
the silos between them and cooperate so that the outside team does the initial
implementation of the tests to help the other team to get started.

5 Discussion

In this paper, we have used five different testing methods split into two categories:
isolated and integrated testing. Ideally, the highest number of tests should be
written to the isolated category as they are easier to implement, more stable,
and faster to execute, resembling a pyramid in shape (Fig. 1 given in Sect. 2).
Every testing method in the pyramid has a different purpose and should focus
solely on it to get the best results out of the combination of them all. Together
they were said to be an ideal testing strategy for microservices [2].

It was shown that the initial testing strategy in the case study was lack-
ing. It only included end-to-end, component, and unit tests. Compared to the
testing pyramid, it was completely missing the consumer-driven contract- and
integration test layers. Because of that, the errors in integrations were not caught
adequately by the tests.

510 J. Lehvä et al.

The component tests did give a clue if something possibly had changed in
the integrations during the development time, but they did not directly reveal if
the changes were breaking changes to the integrations. The change could also be
related to some simple behavior such as validation rule that does not break the
integration but makes the tests fail. When a new breaking change was imple-
mented, the component tests initially failed. After that, the test could be changed
without a notice that the other side of the integration is no longer compatible
with the new change.

Unlike the component tests, the end-to-end tests did reveal broken integra-
tions and prevented them from being deployed. The problem with end-to-end
tests was a massive effort required to implement and operate them. These need
much planning to implement, and these were prone to errors related to the testing
environment, network, and test data. Debugging the reason for the test failures
was troublesome and time-consuming because multiple services were involved
in the process. Due to that, they had been implemented just for a couple of
happy case interactions, and they lacked the coverage for different error case
interactions. It would have been next to impossible to cover all the different
interactions with the end-to-end tests, as there are so many different corner
cases and branches to consider.

The integration tests would test the integrations using real running instances
of the components in a production-like environment. These would be slower and
harder to implement and execute compared to the consumer-driven contract
tests. The added value would be mostly related to testing if the network and
other infrastructure are working as expected. In the end, this would be testing a
production-like environment but not the actual production environment. That
would not guarantee that the production environment works the same way as the
test environment. However, the experiences gained from the case study showed
that the consumer-driven contract tests could replace the integration tests.

An open question related to integration tests is if these could help with testing
the integrations with the systems that were developed by the other teams (Other
shops and Analytics in Fig. 3). That is an interesting issue, as consumer-driven
contract tests would have required the parties to communicate with each other
to make the tests happen. In both cases, we considered the other side of the
integration unreachable to reason about the impact on the testing method.

Integration tests addressing the integration with the shops would require the
shops to implement the integration tests as these are the consumer. The shops
were considered unreachable, so that is out of the question. Even if the shops
implemented the integration tests, the testing would remain challenging. Each
shop should run the tests every time there are changes to the provider. Ideally,
the developer would be able to run the tests while developing the changes on
a local machine. That would require having the codebase for all the shops and
be able to run their tests, which further does not sound ideal and would require
much unnecessary effort.

The integration with analytics was a case where the provider was considered
unreachable. From the perspective of integration tests, this does not matter as

Consumer-Driven Contract Tests for Microservices: A Case Study 511

long as the provider stays available for the tests to call it. Still, the integration
tests would be far from ideal in this case as well. The integration tests would only
be able to prove that the integration worked when the tests were run. They would
not prevent the provider from changing the interface unless the provider is able to
run the integration tests of the consumer. This means that the breaking change
could happen in any given time, and if it happens, it could take a while until the
consumer integration tests are rerun to catch the errors. With just integration
tests, there is no way for the consumer to prevent the unreachable provider
from publishing the breaking changes. The integration test would merely work
as a tool to find out if the integration is already broken and requires fixing.
That could and should be done more efficiently with a proper setup of logging,
monitoring, and alerts.

To summarize, an ideal testing strategy for microservices based on the lessons
learned from the case study as well as literature contains unit, component,
consumer-driven contract, and end-to-end tests. The integration tests can be
left out, and their responsibility should be given to consumer-driven contract
tests. This leaves only end-to-end testing in the integrated testing category,
while the rest of the testing methods are in the isolated testing category. An
additional benefit that was gained and considered significant is reduced flaki-
ness as a result of replacing the non-deterministic tests with deterministic tests.
This enables more enhanced automation when considering debugging of the sys-
tem. Finally, the ideal testing strategy is highly dependant on cooperation and
communication between the teams. Therefore, good communication across the
teams is something that should always be a top priority. It cannot be emphasized
enough that communication is the foundation that enables the teams to build
great things together.

Threats to Validity. The validity of as study is basically about the knowledge
claims that can be made based on the results [10]. As our intent was to gain
experiences on the usage of a particular testing methodology, one particular issue
in terms of validity is that of the role of the testing methodology itself in the
results achieved. The separation of the methodology used from the experience
of the designers in the actions taken is fundamentally hard. This is something
one may need to take into account if aiming to apply (generalise) the results
in other cases. In addition, the characteristics of the system used in the case
study may have an effect on the results. However, as these characteristics are
somewhat typical in microservice based systems, this is not considered an overly
restricting issue.

6 Conclusions

In this paper, we have studied consumer-driven contract testing in the light
of a case study based on an industrial system. Our experiences gained from
the case study confirmed the benefits commonly associated with such tests: (i)
integrations are tested in isolation by decoupling the consumer and the provider
using a contract, contributing to fast and stable tests; (ii) the provider knows

512 J. Lehvä et al.

who are consuming its API and how; (iii) the provider can evolve based on real
business needs from its consumers; (iv) the consumer can feel safe as the provider
tests always catch breaking changes to the API; and (v) contracts can work as
a tool to improve communication between different development teams.

Furthermore, our experiences suggest that the consumer-driven contract tests
can replace integration tests as they caught all the defects from the integrations
that were implemented in the case study. In that light, it can be safely said that
consumer-driven contract testing is a viable addition to testing strategies used
to test integration-heavy systems, especially those based on microservices.

Acknowledgments. The work of N. Mäkitalo was supported by the Academy of
Finland (project 313973).

References

1. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual understanding of microservice
architecture: current and future directions. ACM SIGAPP Appl. Comput. Rev.
17(4), 29–45 (2018)

2. Clemson, T.: Testing strategies in a microservice architecture (2014). https://
martinfowler.com/articles/microservice-testing. Accessed 8 Feb 2019

3. Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn.
Addison-Wesley Professional, Boston (2009)

4. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
5. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf.

Technol. 2(9), 24–27 (2014)
6. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media Inc., Sebastopol (2015)
7. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-

vices in practice, part 1: reality check and service design. IEEE Softw. 34(1), 91–98
(2017)

8. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 2: service integration and sustainability. IEEE Softw. 2,
97–104 (2017)

9. Robinson, I.: Consumer-driven contracts: a service evolution pattern (2018).
https://martinfowler.com/articles/consumerDrivenContracts.html. Accessed 21
Oct 2018

10. Shadish, W.R., Thomas, C.D., Thomas, C.D.: Experimental and Quasi-
experimental Designs for Generalized Causal Inference. Houghton Mifflin Com-
pany, Boston (2002)

11. Sill, A.: The design and architecture of microservices. IEEE Cloud Comput. 3(5),
76–80 (2016)

12. Wolff, E.: Microservices: Flexible Software Architecture. Addison-Wesley Profes-
sional, Boston (2016)

https://martinfowler.com/articles/microservice-testing
https://martinfowler.com/articles/microservice-testing
https://martinfowler.com/articles/consumerDrivenContracts.html

Continuous Experimentation

Data Driven Development: Challenges
in Online, Embedded and On-Premise

Software

Helena Holmström Olsson1(&) and Jan Bosch2

1 Department of Computer Science and Media Technology, Malmö University,
Malmö, Sweden

helena.holmstrom.olsson@mau.se
2 Department of Computer Science and Engineering,

Chalmers University of Technology, Gothenburg, Sweden
jan.bosch@chalmers.se

Abstract. For more than a decade, data driven development has attracted
attention as one of the most powerful means to improve effectiveness and ensure
value delivery to customers. In online companies, controlled experimentation is
the primary technique to measure how customers respond to variants of
deployed software. In B2B companies, an interest for data driven development
is rapidly emerging and experiments are run on selected instances of the system
or as comparisons of previously computed data to ensure quality, improve
configurations and explore new value propositions. Although the adoption of
data driven development is challenging in general, it is especially so for
embedded systems companies and for companies developing on-premise soft-
ware solutions. Due to complex systems with hardware dependencies, safety-
critical functionality and strict regulations, these companies have longer
development cycles, less frequent deployments and limited access to data. In
this paper, and based on multi-case study research, we explore the specific
challenges that embedded systems companies and companies developing on-
premise solutions experience when adopting data driven development practices.
The contribution of the paper is two-fold. First, we provide empirical evidence
in which we identify the key challenges that embedded systems and on-premise
software solutions companies experience as they evolve through the process of
adopting data driven development practices. Second, we define the key focus
areas that these companies need to address for evolving their data driven
development adoption process.

Keywords: Data driven development � Online software � Embedded systems �
On-premise solutions � Adoption process � Challenges

1 Introduction

Over the past years, software-intensive companies in a variety of domains, with online
companies leading the way, have started adopting data driven development practices to
continuously assess customer value and monitor feature usage [1–3]. Using the

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 515–527, 2019.
https://doi.org/10.1007/978-3-030-35333-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_36&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_36

definition provided by [4], data driven development is the ability of a company to
acquire, process, and leverage data in order to create efficiencies, iterate and develop
new products, and navigate the competitive landscape. In recent studies, data driven
development practices are proven useful for improving product performance, for
optimizing system parameters and for evaluating new product concepts [5–8]. As a
result, companies that are adept at acquiring, processing and leveraging customer and
product data become more profitable as continuous assessment of customer value can
have a profound impact on annual revenue [8]. As an additional benefit, data can help
question, challenge, complement and confirm existing assumptions in the organization.
In this way, collection and use of data is becoming an effective mechanism for
replacing opinions-based decision-making with data-driven decision-making about
customer value, system performance and overall product quality [2]. While the
opportunities provided by data are already well-established in online companies, they
are becoming increasingly recognized also in companies developing on-premise
solutions and embedded systems. With products such as cars, trucks, phones, cameras,
household appliances etc. being increasingly software-intensive and connected to the
Internet, these companies are starting to explore the opportunities that online compa-
nies have benefitted from for more than a decade [9]. However, although there are
examples of data driven development practices being used in embedded systems and
on-premise companies, the adoption process of these practices is challenging. Typi-
cally, and due to complex systems with hardware dependencies, safety-critical func-
tionality and strict regulations, these companies have longer development cycles, less
frequent deployments and limited access to customer and product data.

In this paper, and based on multi-case study research, we explore the specific
challenges that embedded systems companies and companies developing on-premise
solutions experience when adopting data driven development practices. To achieve
this, we first review contemporary literature on data driven development in online
companies where these practices are fully adopted and successfully used, and we
identify the typical stages these companies evolve through when adopting these
practices. Second, and with the adoption stages from the online companies as a basis,
we study a total of nine companies in the embedded systems and in the on-premise
software domain with the intention to understand the specific challenges these com-
panies experience when adopting the similar practices as the online companies.

The contribution of the paper is two-fold. First, we provide empirical evidence in
which we identify the key challenges that embedded systems and on-premise software
solutions companies experience as they evolve through the process of adopting data
driven development practices. Second, we define the key focus areas that these com-
panies need to address for further evolve their data driven development practices.

The remainder of the paper is organized as follows. In Sect. 2, we review con-
temporary literature on data driven development in online companies and we identify
the typical stages that online companies evolve through when adopting data driven
development. In Sect. 3, we describe the research method and the case companies. In
Sect. 4, we present our empirical findings. In Sect. 5, we identify the key challenges
that embedded systems and on-premise solutions companies experience when adopting
data driven development and we define the key focus areas that these companies need
to address to further evolve these practices. In Sect. 6, we conclude the paper.

516 H. Holmström Olsson and J. Bosch

2 Background

In this section, we review contemporary literature on the adoption of data driven
development in online companies. We define online companies as companies providing
web services and that use controlled experiments to determine which variant of a
product, design or interface that performs the best. In recent studies, companies such as
e.g. Facebook, Google, Booking, Amazon, LinkedIn and Skyscanner are often referred
to in relation to successful use of controlled experimentation [6, 10].

2.1 Data-Driven Development

For decades, one of the primary challenges in software development has been how to
shorten feedback cycles to customers [11, 12]. As outlined in previous research [13],
the first step towards shorter feedback cycles is the adoption of agile development.
These methods emphasize short iterations of increments rather than the long cycles as
known from traditional development. More recently, technologies such as continuous
integration [14] and continuous deployment [15] have enabled companies to further
shorten feedback cycles. These technologies allow for frequent test and deployment of
software and in combination with connectivity that enables diagnostic, performance
and operations data to be collected, companies can significantly shorten the time it
takes to learn from and respond to customers.

In online companies, data driven development is a well-established approach to
software development [3, 8, 11, 16]. In these companies, data is the foundation for any
decision regarding redesign or improvement of a feature, for prioritization of features
from the backlog and for optimization of certain metrics. With techniques such as A/B
testing and automated practices for data collection and analysis, customers are con-
tinuously part of experiments to help optimize the system and queries are processed
frequently to provide software developers and managers with rapid feedback [5]. As
recognized in our previous research [17], companies that adopt data driven develop-
ment typically do this by starting to identify what key factors to optimize for. This is
achieved by modeling the expected value of a feature in order to get a few metrics in
place to then collect data that will help improve these. In online companies, common
metrics are e.g. ‘number of users’, ‘frequency of use’, ‘response time’, ‘number of
successful upsells’. In addition to identifying metrics, teams also need to identify the
relative priority of these factors. This is important as some factors may improve while
others decline when running an experiment. Data driven development reflects a shift
from traditional development where requirements inform development [18], towards a
situation in which continuous collection of data inform development throughout the
lifecycle of the system [2, 5, 19]. Moreover, and as experienced in online companies,
data-driven development constitutes an effective means to challenge existing
assumptions held by people in the organization. Often, inaccurate assumptions result in
poor decision-making, an inaccurate understanding of customer value and slow feed-
back cycles. As a consequence, companies end up investing development efforts in
features that are not used by customers and optimizing for metrics that are no longer
representative for what generates business value.

Data Driven Development 517

2.2 Experimentation Practices

As a critical technique in data driven development, online controlled experimentation,
also known as A/B testing, allows continuous validation of value with customers [16].
Online controlled experiments constitute a practice of comparing two versions of
functionality to determine which one performs better in relation to predefined criteria
such as e.g. conversion rate, click rate or time to perform a certain task. In online
companies, controlled experiments are the norm with companies such as e.g. Amazon,
eBay, Facebook, Google and Microsoft running hundreds and even thousands of
parallel experiments to evaluate and improve their services at any point in time. To
achieve this, companies need an infrastructure to collect and store data from deployed
products and that makes data available for analysis. There are numerous experimen-
tation tools and platforms available on the market [6, 20]. However, the challenges of
building the data infrastructure are typically not concerned with the basic technologies
but rather with aspects related to customer relations, legal constraints, cost of data
collection and storage. It should be noted that experimentation involves many different
techniques. For example, experimentation could refer to iterations with prototypes in
the startup domain, canary flying of software features, gradual rollout and dark laun-
ches [11]. With frequent experimentation, teams can adopt an increasingly iterative
development approach in which features are sliced into smaller parts that can be
developed in less than a sprint and for which the team collects data to guide the next
steps of development. As recognized in [2], this allows teams to rapidly determine
whether a feature adds value or not. In our previous research, and based on studying a
large number of online experiments at Microsoft, we introduced the Experiment
Lifecycle in which we outline the three main stages of every Online Controlled
Experiment [11].

During recent years, online controlled experimentation has received increasing
interest and there exist a number of studies describing the many benefits with this
practice [8, 11, 16, 20, 21]. These studies outline the roles involved (e.g. data analysts,
data scientists, product managers, software developers etc.), the task at hand (e.g.
development of roadmaps, design and analysis of experiments, development of prod-
ucts, deployment of products etc.) and the technical infrastructure that is the platform for
the experiments (e.g. the application programming interfaces, experiment databases,
analytic tools, instrumentation, integration and deployment systems etc.). In particular,
challenges in relation to the definition of an ‘Overall Evaluation Criterion’ have been
carefully explored [16] as well as models that describe the experiment lifecycle in online
companies [2, 8], the data collection techniques that are used [22], and the infrastructure
that is required for running a successful online controlled experiment [16, 23].

2.3 Team – System – Business Metrics

As a prerequisite for an experiment, teams need to define an ‘Overall Evaluation
Criterion’ (OEC) [11, 16]. The OEC is a structured set of metrics consisting of success,
guardrail and data quality metrics that are used to define performance goals and desired
outcomes of an experiment. For teams, an OEC can consist of improving conversion
rate on a website, increase throughput or improve a specific feature. At a system or

518 H. Holmström Olsson and J. Bosch

product level, the OECs cover system and product performance and metrics are used to
track the overall product portfolio. At the highest level, business metrics are defined to
track overall business goals. While metrics at the team level are leading indicators that
teams can influence on a daily basis, business metrics are lagging indicators that are
hard to influence in the short term but instead metrics that change over a longer period
of time. In previous research [11], and based on our insights from working with four
companies in the online domain, we introduced a framework for how to scale exper-
imentation and in which the definition of OECs at the team, at the system and at the
business level are critical elements. The goal is to have efforts at the team level
positively influence business metrics [17]. If so, companies can effectively scale
experimentation, advance their data driven development practices and successfully use
data as the basis for decision-making throughout the organization.

2.4 Data Driven Development Adoption Process

Based on the learnings from our literature review, as well as from on our own expe-
riences when studying companies in the online domain, we have identified five stages
that we see online companies evolve through when adopting data driven development
(Fig. 1).

The first stage online companies enter when adopting data driven development is to
have development teams identify what factors to optimize for. This is achieved by
modeling the expected value of a new or existing feature and works as the basic stage in
order to get a few metrics in place to then collect data to help improve these. These
factors are used to guide experimentation and to track the performance of subsequent
releases of the feature. In the second stage, companies develop an infrastructure to
collect and store data from deployed products and that makes data available for
analysis. The third stage is concerned with increasing the effectiveness of development
teams by adopting an iterative development approach. In this approach, features are
sliced into smaller parts that can be developed in less than a sprint and for which the
team collects data to guide the next steps of development. In the fourth stage, com-
panies seek to further accelerate the feedback loop. To achieve this, they develop the
shortest possible cycle between development of a feature and deployment in the field.
In online companies, the feedback loop ranges from hours to minutes and even seconds

Fig. 1. Data driven development adoption process: the five stages we see online companies
evolve through when adopting data driven development. The model is derived from previous
literature as well as from our own experiences when studying online companies.

Data Driven Development 519

and as a result, these companies are able to use data to effectively direct their devel-
opment efforts. As the final stage, and as the mechanism to ensure alignment between
team, system and business level metrics, companies develop a hierarchical value model
where feature level metrics that are modeled as part of the first stage of the process are
connected and aligned with high-level business key performance indicators (KPIs).

3 Research Method

The goal of this study is to explore the challenges that embedded systems companies
and companies developing on-premise solutions experience when adopting data driven
development. In our study, embedded systems companies are companies that develop
larger systems and complete devices including hardware and mechanical parts and in
which software is one part [24]. On-premise software is software that is installed and
runs on the premises of the organization using the software, rather than at a remote
facility such as the cloud [25]. Our study builds on multi-case study research in
companies from these two different domains as well as on our previous learnings from
the online domain. Case study research focuses on providing a deeper understanding of
a particular context and it emphasizes the importance of peoples’ experiences [26]. In
our study, and as a first step, we reviewed contemporary literature on the adoption of
data driven development practices in online companies. In addition, we built on our
own experience from working with companies in the online domain and as reported in
[1–3, 8, 11, 13, 16, 17, 22, 23]. Based on this, we engaged with nine companies in the
embedded systems and on-premise domain to understand the challenges these com-
panies experience when adopting the similar process. The case companies (Table 1)
were at different maturity levels in the adoption process of data driven development. At
the time of our study, the practices in company E, H and I reflected the initial stages of
the process, company C, D, F, G and A were approaching or at the middle stages and
company B was aiming for a hierarchical value model. During our study, we engaged
in workshop sessions at each company in which we facilitated, as well as documented,
their experiences with the different stages in the adoption process. At each company we
had developers, product managers, technical specialists, software architects, system
engineers, agile coaches and data scientists present. Each workshop session involved
between 6–10 people and lasted for 3-5 h. In companies where data driven practices
were immature, we had larger groups of 15–20 people as the workshops served the
additional purpose of introducing the organization to the concept. Our study involved
nine companies (Table 1).

In the continuation of the paper, we provide a summary of the experiences from the
case companies in order to establish an understanding for the specific challenges these
companies experience when adopting data driven development. For validity of results
[24], and to address construct validity, we started each workshop with sharing our
definition of the key concepts. This established a common understanding of the topic
and we could discuss alternative interpretations already before we ran into potential
misunderstandings. With respect to external validity, our contributions provide rich
insight in different company domains and we identify implications for research and for
practice.

520 H. Holmström Olsson and J. Bosch

4 Findings

Below, we summarize the key findings from our study. When reporting on our findings,
we use the five stages of adopting data driven development that we identified in our
literature review.

Stage 1: Modeling of Feature Value
To introduce the embedded systems and on-premise software companies to the first
stage of adopting data driven development, we initiated a series of workshop sessions
in which we met with developers and product managers in order to model the value of a
selected feature. As part of the workshops, the teams selected a feature, identified key
value factors, prioritized these factors and their relative importance. In the end, a few
groups managed to develop a value function to quantitatively express what they
optimize for. While the majority of the companies selected existing features to work
with we also had companies that used the workshops to model new features that were
not yet developed and for which value was not yet proven. In company B, one of the
teams succeeded in developing a complete value function for one of their mobile
applications. They expressed it as: 0.1*feedback time + 0.2*success rate + 0.2*num-
ber of users + 0.2 successful drops – 0.3 cost of ownership where each value factor
was given a relative weight and where the formula indicates whether you look to
increase or decrease the value of each factor.

Stage 2: Build Data Collection and Analysis Infrastructure
In the second stage, the companies realized the need for a data collection and analysis
infrastructure. As experienced in these companies, the initial focus should be on
keeping things simple by collecting data only for the selected feature and only from
friendly customers as this allows easier access to data. As the companies had infras-
tructures for data collection in place already, this stage was mostly concerned with

Table 1. The case companies and the domain(s) they operate in.

Case Description Embedded
systems

On-
premise

A Provider of systems and equipment for network
operators

x x

B Developer of navigational information and
optimization solutions

x x

C Developer of network video surveillance solutions x x
D Developer of food packaging and processing systems x
E Provider of systems and solutions for military defense

and civil security
x

F Developer of automotive technology x
G Engineering and electronics company x
H Manufacturer of vehicles x
I Manufacturer of trucks, buses and construction

equipment
x

Data Driven Development 521

complementing these with metrics that would allow for measuring value according to
the new value function. As a common experience, this stage revealed lack of effective
analysis tools and often the approach was manual solutions and/or existing web-based
solutions.

Stage 3: Adopt Iterative Development Process
As most of the case companies have a hardware and mechatronics background, the
adoption of iterative development required a significant change in mind-set. For the
companies, the identification of parts of their organizations where these new ways-of-
working were feasible was an important step and typically, they selected already agile
teams within their software organization. With these teams, we developed hypotheses
that could be tested during each sprint and we ran validation workshops to evaluate
experiments. Most companies were able to identify 1–4 hypotheses to test during the
next 2–3 sprints and with the goal to either (1) increase the number of hypotheses to be
tested within their current sprints, or to (2) shorten their current sprints to increase the
total number of hypotheses tested.

Stage 4: Accelerate the Feedback Loop
All companies have a tradition in traditional development and they have adopted agile
development. To further accelerate the feedback loop, they have started adopting
continuous integration and continuous deployment. However, until these practices are
fully in place, it is difficult to further accelerate the feedback loop. In all companies,
huge efforts were put in place to drive CI and CD initiatives as well as to minimize
customer-specific branches of a product and instead strive for a single product branch
with configuration opportunities for different customers. In this way, feedback loops
were shortened and the companies could benefit from frequent releases.

Stage 5: Build a Hierarchical Value Model
The last stage is to build a hierarchical value model to ensure that team metrics and
business metrics align. While online companies have a complete hierarchy of metrics at
team – system – business level, the establishment of such a hierarchy proved chal-
lenging in the embedded and on-premise companies. While a well-defined set of
metrics, such as e.g. customer satisfaction, revenue, sales, customer retention, net
promoter score etc., existed at the business level, these did not necessarily translate into
executable metrics for teams to optimize for. In the case companies, we noted a
willingness to establish a hierarchical value model and we started aligning metrics in a
couple of the companies. However, as the previous four stages have to be in place in
order to successfully create a value model for the entire business, we did not achieve
this within the time span of this study.

5 Key Challenges When Adopting Data Driven Development

The intention with our study was to explore the specific challenges that embedded and
on-premise software companies experience when adopting data driven development.
Below, we identify the key challenges that these companies experience as they evolve
through the process of adopting data driven development.

522 H. Holmström Olsson and J. Bosch

Stage 1: Modeling of Feature Value
Based on our experiences, the first stage comes with at least four challenges:

Difficulties in agreeing on value factors and the relative priority of these: The work-
shops revealed that it is very challenging for a team to agree on the relevant factors and
the relative priority of these. This stage surfaced deeply held beliefs about the system
and its customers that were far from agreed upon among teams. And as the typical
development cycles in the companies were long, and with few opportunities for cus-
tomer feedback, the assumptions that evolve were rarely questioned. This made
improvement efforts difficult as there was no shared understanding on what metrics to
optimize for.
Painful quantification of value: Especially product managers were reluctant to explain
their reasoning behind prioritizing a certain feature and to quantify the expected value
of this feature. Instead, value was described in qualitative terms which made prioriti-
zations easier to defend as quantitative metrics did not exist.
Lack of end-to-end understanding of value: Even if a team agreed on the relevant
factors and their relative priority, the relationship between the value of the feature and
the business impact proved hard to define.
Illusion of alignment: By abstracting topics of contention to a level of vagueness that
everyone could agree on, teams in all companies created a false sense of unity. We
interpreted this as a way to avoid tension as to get precise might upset the existing
illusion of alignment.

Stage 2: Build Data Collection and Analysis Infrastructure
In the second stage, the case companies experienced an increasing organizational
resistance against the adoption of data driven development. Often, people used excuses
centered around the customer:

“Don’t go data driven because customers don’t want to”: Non-software people raised
the concern that customers don’t want to share data and that adopting data driven
development would be to go against the interests of these customers.
“Don’t go data driven because it is risky”: Security, safety and reliability issues were
brought forward as reasons to not adopt data driven development.
“Don’t go data driven because it is expensive and effort-consuming”: A common
belief was that to iteratively develop a smaller slice of a feature is difficult with the
standard argument being: “You can’t deploy something half done…”, and with many
people uncertain about the value of an MVF (‘minimal viable feature’).
“Don’t go data driven because you can’t have all customers do this”: In the companies
with a strong background in traditional development, there was a tendency to think that
all customers had to be involved at the same time. This mind-set revealed lack of
experience with starting small scale and with only a selected set of friendly customers.

Stage 3: Adopt Iterative Development Process
In the third stage, the case companies faced a number of challenges in relation to the
adoption of a more iterative development approach:

Data Driven Development 523

Stuck in waterfall development: All case companies struggled with adopting shorter
development cycles and more frequent deployment of software. Although both the
embedded systems and the on-premise software companies had agile practices in place
in parts of their organizations, people failed in realizing that iterative development
requires a change of mind-set in relation to communication, coordination and control of
teams.
One feature versus several small MVFs: The case companies have a strong engineering
background and people who pride themselves based on the completeness of a feature.
This made it difficult to break a feature into smaller increments and think in terms of a
‘minimal viable feature’ (MVF) with only slices being developed at a time.
Surfacing hidden misalignment: The case companies experienced situations in which
questions were raised on how to develop and test hypotheses. During this stage, people
who thought they agreed on something realized that this was not the case. Also, what
sounded as an easy hypothesis to test often turned out to cause the teams major
difficulties in actually realizing within the scope of a sprint.
Retrospective reinterpretation of data: The companies experienced situations in which
people, whenever data conflicted with their beliefs, sought explanations that would
make their beliefs still true. This was evident both in development teams and among
product managers and reflected low trustworthiness in data.

Stage 4: Accelerate the Feedback Loop
To accelerate the feedback loop in companies that are used to long development cycles
involves a number of challenges:

Shortening of QA cycles: It became evident that in order to align with the shortened
time between the end of a development sprint and deployment at customer site, it was
critical to shorten feedback cycles for quality assurance (QA) This was experienced as
very difficult in all case companies.
Changing practices for QA: The companies realized that the QA teams need to change
ways-of-working. Especially, test automation practices were identified as a key practice
QA needed to apply. For this to happen, there needs to be the willingness to deploy to
customer, test post-deployment and roll back if any issues.
Data-driven versus Requirements-driven: In most companies, situations in which data
driven practices will co-exist with situations in which regulations and standards
specify requirements. Therefore, the capability to select the most suitable approach is
important and this challenge surfaced when aspiring to accelerate the feedback loop.

Stage 5: Build a Hierarchical Value Model
Although the companies that we studied didn’t reach the stage of building a hierar-
chical value model, they reached far enough to have people reflect on why it is critical
for data driven development. In these discussions, we noted the following challenges:

524 H. Holmström Olsson and J. Bosch

Involvement of all company functions: To build a hierarchical value model involves all
company functions. While people close to development might be more enthusiastic to
data driven development this is not necessarily the case in other parts of the
organization.
Alignment of metrics: To agree on low and high-level metrics is difficult as it forces the
company to start aligning metrics and to establish relationships between these.
Model maintenance and evolution: As experienced in our work with online companies,
metrics need to continuously evolve to not inscribe an inaccurate understanding of
value. We foresee this as a relevant challenge also in the embedded and on-premise
companies.
Anecdotal prioritization of resources: Senior leaders have to abandon anecdotal pri-
oritization of resources and instead use data to prioritize customer requests. This is
important at all stages, but even more so in relation to the creation of a hierarchical
value model as this model is intended replace assumptions and encourage data driven
decision-making.

5.1 Key Focus Areas

In the above sections, we presented the key challenges that the case companies
experience when adopting data driven development. When reflecting on these chal-
lenges, we identify three key focus areas that we believe these companies need to
address to further evolve their data driven development practices (Table 2).

Table 2. Key focus areas that the case companies need to address to further evolve their data
driven development practices.

Key focus areas Description

Organizational
resistance

Due to a tradition in hardware, mechanics and electronics, these
companies experience significant organizational resistance.
Although this might be true for any change initiative, it is especially
so when adopting software-based practices that have the power to
radically question existing assumptions while at the same time
fundamentally change the basis for decision-making in an
organization with a non-software background and tradition

Data quality and
trustworthiness

Data quality is challenging as it involves collection, processing,
sharing, storing and management of large and distributed data sets.
As a result of the high complexity involved, trustworthiness is low
and people tend to rather lean back on existing assumptions than
trust the accuracy and quality of facts revealed in the data

Development cycle
time

To shorten development cycle time is problematic. Despite
modularized architectures and advice on how to combine and
evolve cycle times for mechanics, hardware and software, the
concept of iterative development and incremental development of
features remains an issue

Data Driven Development 525

6 Conclusions

In this paper, and based on multi-case study research, we explore the specific chal-
lenges that embedded systems companies and companies developing on-premise
solutions experience when adopting data driven development. When reflecting on these
challenges, we see that there are three key focus areas that these companies need to
address to further evolve their data driven development practices. First, due to a tra-
dition in hardware, mechanics and electronics, these companies experience significant
organizational resistance. Second, data quality and trustworthiness are challenging as
it involves collection, processing, sharing, storing and management, as well as trust, in
data. Finally, to shorten development cycle time is problematic in systems with highly
complex architectures and dependencies. In future research, we aim to further explore
the challenges the case companies encounter as these provide valuable input for the
open research challenges in relation to organizational resistance, data quality and
trustworthiness and development cycle time.

References

1. Holmström Olsson, H., Bosch, J.: Towards data-driven product development: a multiple case
study on post-deployment data usage in software-intensive embedded systems. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-44930-7_10

2. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘open loop’ problem. In: Proceedings of EUROMICRO, Software
Engineering and Advanced Applications (SEAA), 27–29 August, Verona, Italy (2014)

3. Olsson, H.H., Bosch, J.: Towards evidence-based development: learnings from embedded
systems, online games and internet of things. IEEE Softw. 4(5) (2017)

4. Patil, D.J.: Building Data Science Teams, pp. 1–25. Oreilly, Radar (2011)
5. Bosch, J.: Building products as innovations experiment systems. In: Proceedings of 3rd

International Conference on Software Business, 18–20 June, Cambridge, Massachusetts
(2012)

6. Kohavi, R., Longbotham, R.: Online controlled experiments and A/B tests. In: Encyclopedia
of Machine Learning and Data Mining, no. Ries 2011, pp. 1–11 (2015)

7. Fagerholm, F., Guinea, A.F., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering (RCoSE), pp. 26–35 (2014)

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch J.: The evolution of continuous experimen-
tation in software product development: from data to a data-driven organization at scale. In
Proceedings of the 39th International Conference on Software Engineering (ICSE), May 20–
28th, Buenos Aires, Argentina (2017)

9. Bosch, J., Eklund, U.: Eternal embedded software: towards innovation experiment systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 19–31. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_3

10. Van Nostrand, R.C.: Design of experiments using the taguchi approach: 16 steps to product
and process improvement. Technometrics 44(3), 289 (2002)

526 H. Holmström Olsson and J. Bosch

http://dx.doi.org/10.1007/978-3-642-44930-7_10
http://dx.doi.org/10.1007/978-3-642-44930-7_10
http://dx.doi.org/10.1007/978-3-642-34026-0_3

11. Fabijan, A., Dimitriev, P., Vermeer, L., Olsson, H.H., Bosch, J.: Experimentation growth:
Evolving trustworthy A/B testing capabilities in oline software companies. J. Softw.: Evol.
Process 30(12), e2113 (2018)

12. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in high-
tech industries. J. Prod. Innov. Manag. 32(5), 793–807 (2015)

13. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”: a multiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: Proceedings of the 38th Euromicro Conference on Software
Engineering and Advanced Applications, 5–7 September, Cesme, Izmir, Turkey (2012)

14. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry
software development. J. Syst. Softw. 87(1), 48–59 (2014)

15. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley, Boston (2010)

16. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J., Vermeer, L., Lewis, D.: Three key
checklists and remedies for trustworthy analysis of online controlled experiments at scale. In:
Proceedings of 41st International Conference on Software Engineering (ICSE), 25–31 May,
Montreal, Canada (2019)

17. Olsson, H.H., Bosch, J.: Make up your mind: towards a comprehensive definition of
customer value in large scale software development. CLEI Electron. J. 21(1) (2018)

18. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

19. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business, New York (2011)

20. Dmitriev, P., Frasca, B., Gupta, S., Kohavi, R., Vaz, G.: Pitfalls of long term online
controlled experiments. In: Proceedings of IEEE International Conference on Big Data (Big
Data), pp. 1367–1376 (2016)

21. Xia, T., Bhardwaj, S., Dmitriev, P., Fabijan, A.: Safe velocity: a practical guide to software
deployment at scale using controlled rollout. In Proceedings of the 41st International
Conference on Software Engineering (ICSE), 25–31 May, Montreal, Canada (2019)

22. Fabijan, A., Olsson, H.H., Bosch, J.: Customer feedback and data collection techniques in
software R&D: a literature review. In: Fernandes, J., Machado, R., Wnuk, K. (eds.) Software
Business (ICSOB). LNBIP, vol. 210, pp. 139–153. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19593-3_12

23. Issa Mattos, D., Dmitriev, P., Fabijan, A., Bosch, J., Holmström Olsson, H.: An activity and
metric model for online controlled experiments. In: Kuhrmann, M., et al. (eds.) PROFES
2018. LNCS, vol. 11271, pp. 182–198. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03673-7_14

24. Heath, S.: Embedded Systems Design. EDN Series for Design Engineers, 2nd edn. Newnes,
London (2003)

25. https://www.webopedia.com/TERM/O/on-premises.html. Accessed 20 Sept 2019
26. Maxwell, J.A.: Qualitative Research Design: An Interactive Approach, 2nd edn. SAGE

Publications, Thousands Oaks (2005)

Data Driven Development 527

http://dx.doi.org/10.1007/978-3-319-19593-3_12
http://dx.doi.org/10.1007/978-3-319-19593-3_12
http://dx.doi.org/10.1007/978-3-030-03673-7_14
http://dx.doi.org/10.1007/978-3-030-03673-7_14
https://www.webopedia.com/TERM/O/on-premises.html

Continuous Experimentation for Software
Organizations with Low Control
of Roadmap and a Large Distance

to Users: An Exploratory Case Study

Robin Sveningson(B) , David Issa Mattos , and Jan Bosch

Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselg̊angen 11, 412 96 Göteborg, Sweden

robinsv@student.chalmers.se, {davidis,jan.bosch}@chalmers.se

Abstract. With the increasing popularity of A/B testing and other
experimentation practices in web systems, companies from a range of
different domains are starting to look at continuous experimentation as
a way to guide product development and feature prioritization. Research
in continuous experimentation traditionally focused on companies that
have easy access to user data and that have a high degree of control
of the product roadmap. However, little research has been conducted to
understand how companies that have a low control of roadmap and have
a large distance to the users, such as consultancy companies, can benefit
from continuous experimentation practices. To address this problem, we
performed an exploratory case study with a software consultancy com-
pany combined with a validation procedure with four additional com-
panies. The contribution of this work is three-fold. First, we devised a
model to classify a company in the terms of the distance to users and
the control of roadmap. Second, we show how control of roadmap and
distance to user impacts continuous experimentation. Finally, we present
several perceived challenges and benefits of continuous experimentation
for companies and directions for future work.

Keywords: Continuous experimentation · A/B testing · Distance to
users · Control of roadmap · Benefits · Challenges

1 Introduction

A common problem in a lot of software organizations is that decisions are based
on opinions and previous experience of the organization members, rather than
collected empirical data and proof [2]. This becomes a problem because humans
are bad at making estimations and predicting what will be appreciated and
used by software users. This problem is exemplified by for instance Netflix, that
according to Moran say that as much as 90% of what they try is wrong [12,
p. 240].

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 528–544, 2019.
https://doi.org/10.1007/978-3-030-35333-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_37&domain=pdf
http://orcid.org/0000-0002-3744-6730
http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
https://doi.org/10.1007/978-3-030-35333-9_37

CE for Software Organizations with Low COR and a Large DTU 529

Continuous experimentation, a general term used for experimentation in the
software engineering process [1,6,7,16], is largely advocated by several large
software companies (such as Microsoft, Google, Facebook, Netflix, Etsy etc) as
a way to support evidence-based decision-making in the development organiza-
tion [9,11] [12, p. 240]. Continuous experimentation practices include a range of
different techniques such as A/B testing, canary releases, gradual rollouts and
dark launches [18].

Most of the research on continuous experimentation was conducted in collab-
oration with large web-faced software companies that operate in a business-to-
consumer domain and that own the products they develop [1]. However, continu-
ous experimentation is not restricted to this type of companies. In this work, we
investigate the impact of control of roadmap and distance to users on the usage
of continuous experimentation. We conducted an exploratory case study with a
consultancy company and a validation phase with an additional four companies.
The contribution of this paper is three-fold. First, we devised a classification sys-
tem to evaluate a company in the extent of the distance to users and the control
of roadmap. Second, we investigate how control of roadmap and distance to user
impacts continuous experimentation. Finally, we present several perceived chal-
lenges and benefits of continuous experimentation for the consultancy company,
as well as directions for future work.

The rest of this paper is outlined as follows. Section 2 provides background
information about continuous experimentation, control of roadmap and distance
to users as well as discussion on related work. Section 3 describes the research
method and validity considerations. Section 4 presents the main results. Section 5
provides a discussion of the results. Finally Sect. 6 concludes this research and
discusses future research directions.

2 Background and Related Work

Continuous Experimentation
Continuous experimentation is a general term that refers to the use of exper-
imentation in the software development process [1,6,7,16]. Continuous experi-
mentation allows the collection of empirical data and evidence in the form of
user data and feedback, that can be used to make informed decisions rather
than decisions based on opinions and previous experience. Additionally, it can
also be used to assure the quality of software deployed to customers. Over the
last decade, continuous experimentation has been studied from different perspec-
tives; from the evolution of traditional development to R&D as an Experiment
System in the Stairway to Heaven Model [13], building blocks and activities for
continuous experimentation [5,8] to the different experimentation practices [18].

Schermann et al. [18] introduces two types of experiments; business-driven
experiments and regression-driven experiments. Business-driven experiments are
conducted to evaluate what effects features have from a business perspective,
mainly with the use of A/B testing. A/B testing is largely used to solve a common
issue in software organizations where decision-making is being based on opin-
ions and previous experiences among employees [2]. This is possible since they

530 R. Sveningson et al.

allow evaluating hypotheses with collected empirical data through a controlled
experiment. Regression-driven experiments are used to evaluate the impact that
a new deployment has in regards to non-functional requirements in the produc-
tion environment. The regression-driven experiments can be performed with the
aid of canary releases, gradual rollouts and dark launches. This type of exper-
imentation addresses quality issues software organizations might experience in
production, by minimizing the exposure of the issues to the users.

Control of Roadmap (COR)
In agile development, the product owner serves an important role and is in charge
of managing the requirements, providing a prioritized backlog, communicating
with the development team(s) and having partial or full authority over other
decisions relating to the product [14]. In the B2B-context, the product owner,
who has the authority to plan or prioritize the product’s backlog and roadmap,
can be either part of the company or the client’s company.

In this paper, the authority to plan and prioritize a product’s backlog and/or
roadmap is referred to as the control of roadmap. To the best knowledge of the
authors, this is a subject that has not been discussed to any significant extent in
other research. We assume that control of roadmap refers to how much control
the company, or a team in the company, has over the planning and prioritization
of the product’s roadmap and backlog. Control of roadmap can refer to the
company or to specific product or development teams. A practical example of
when control of roadmap becomes relevant is if the product ownership is held
by one party and the product development is done by a second party, where the
two parties are cooperating with each other in producing the final product.

Distance to Users (DTU)
One recurring challenge in continuous experimentation in the B2B-domain is
accessing the end-users of the product for data-collection purposes [10,15,20].
Rissanen and Münch [15] considers the B2B domain and specific challenges and
benefits of continuous experimentation for this domain, as well as how continuous
experimentation can be introduced. However, the authors focus is on continu-
ous experimentation for the B2B domain in general, and not specifically how
accessing data of the users affects the continuous experimentation.

We refer to this challenge of accessing and collecting user data and user
feedback as distance to users. Since continuous experimentation requires data
collected from users it could become more problematic to use continuous exper-
imentation if the organization has a large distance to users.

3 Research Method

This research was conducted in collaboration with a small-scale software con-
sultancy company, with around 20 employees based in Sweden, that works with
multiple clients and have a B2B-relationship to these clients. The case study
company produces software solutions, in the form of web services to the dif-
ferent clients, who in turn are in charge of the business side of the software

CE for Software Organizations with Low COR and a Large DTU 531

products. Although the company have some experience with continuous experi-
mentation its use was not widespread and systematic. An initial hypothesis that
motivates this work is that the low control of roadmap and large distance to
users could impact how companies conduct experiments. Given this context, the
goal of this research is to explore the impact and relation between control of
roadmap and distance to users to the usage of continuous experimentation. For
that we formulated the following research questions:

RQ1 “How does control of roadmap and distance to users affect the use of
continuous experimentation?”

RQ2 “What are the perceived benefits and challenges of using more continuous
experimentation in a company with low control of roadmap and a large
distance to users?”

To answer the research questions we conducted an exploratory case study
within the case company since it allows the research gap to be further under-
stood by studying a company from the industry in their real environment. By
including a company with low control of roadmap and large distance to users it
is possible to explore and understand how the low control of roadmap and large
distance to their users affects their use of continuous experimentation. Addi-
tionally, we investigated the perceived benefits and challenges of using more
continuous experimentation for such a company. We conducted validation of the
results with an additional four software companies. These companies varied in
terms of size, level of control of roadmap and distance to users.

This research was conducted in six phases. The first phase consisted of learn-
ing about the case study company and their inner processes, through a first
round of interviews. The second phase consisted of assessing the case study
company in how well they use continuous experimentation, and several models
were considered from external research, such as the Stairway to Heaven model
[13], the Experimentation Growth Model [4] and the RIGHT model [5]. In the
third phase, we studied the control of roadmap and distance to users in more
detail. In the fourth phase, we studied the perceived benefits and challenges of
using more continuous experimentation. This was done by conducting a survey
in the company, as well as a second round of interviews. In the fifth phase, we
conducted the validation by interviewing the four additional software compa-
nies. Finally, the last phase consisted of reporting the research, i.e. producing
the written results of this paper.

Fig. 1. Different phases of this research

532 R. Sveningson et al.

Figure 1 shows the approximate order and duration of the phases for this
research. First, we see how the learning about the company phase was exe-
cuted, and in parallel the phase about the assessment of how well continuous
experimentation is used as well as the phase about the control of roadmap and
distance to users were started. After the assessment phase the perceived benefits
and challenges phase (the effects phase) was started, which was followed by the
validation phase and finally the report writing phase.

3.1 Data Collection and Analysis

In the case company, we collected data from internal company documentation,
two rounds of interviews and an online survey. For validation purposes we con-
ducted an additional four interviews with external companies that have different
control of roadmap and distance to users configurations.

The first round of interviews contained a total of five interviews with five
different people in the case study company. The two first interviews were held
with the same two people in both interviews, in the form of group interviews, and
the additional three interviews were held with one person in each interview. The
first round consisted of semi-structured interviews with both closed and open
questions. This first round was aimed at understanding the company internal
processes and how it used continuous experimentation techniques. In this first
round, as a data-triangulation measure, we collected documentation from the
company’s experimentation system for one of their clients.

The survey conducted was an online survey sent out to the employees of the
case study company. The survey consisted of both closed and open questions
regarding the advantages, disadvantages and blocking issues that the partici-
pants identify that would enable the company to use more experimentation, as
well as questions related to control of roadmap and distance to users. The survey
had a total of 13 responses, which is a sufficiently high response rate for a com-
pany with around 20 employees, and it should be considered high enough to be
representative of the entire population. The survey was analyzed with frequency
counting.

The second round of interviews consisted of four individual interviews with
four people who were selected on an availability basis, i.e. the people who felt that
they had the time. The interviews were between 15–20 min long and contained
open questions in a semi-structured fashion. The topics discussed were similar to
the ones in the survey, and the interviews were conducted to get some elaborated
responses on the same topics as the survey.

The interviews and documentations were analysed by first making interview
transcripts from recordings. A version of thematic analysis was then used to
perform qualitative analysis on these transcripts, which is defined by Braun and
Clarke as “a method for identifying, analysing and reporting patterns (themes)
within data.” [3]. This was done by identifying and highlighting different themes
in the interviews, for instance, similar discussion topics, by going through all
of the transcripts. Learnings from different interviews on the same themes as
well as data collected elsewhere were joined in a combined document, and for

CE for Software Organizations with Low COR and a Large DTU 533

each theme, conclusions were drawn based on all of the information on the same
theme. Interviewees were sent the transcript and analysis from their interview
in order to allow them the possibility to make any corrections.

Finally, the validation was performed by conducting four additional inter-
views with four other companies than the case study company, i.e. one interview
per company. The interviews were about 30 min each, and they contained open
questions in a semi-structured fashion. The discussion points were an introduc-
tion to their company, how experimentation is used in the company, how they
would classify their company or their team in the company when it comes to
control of roadmap and distance to users, and if they believe that control of
roadmap, distance to users and continuous experimentation are related to each
other. These interviews were valuable because they gave the opportunity to learn
what other companies think about the topics that are discussed in this research.
The validation interviews were analyzed less formally than the initial interviews,
and conclusions were drawn directly from the notes and/or the recordings of the
interviews. The analysis was made less formally since the discussion topics were
few and since the answers clearly mapped to a specific topic. Therefore it still
exists a clear trail of evidence. The interview participants were also given the
possibility to give feedback on the analysis made, which increased the trust in
that the analysis was done correctly.

In this research, some of the interviews were held in Swedish and some in
English, and any quotes from the interviews that were originally in Swedish and
that are used in this paper were carefully translated to English by the first thesis
author. Additional information regarding, for instance, the interviews or survey
conducted can be found in the original thesis report that is the foundation of
this work [19].

3.2 Validity Considerations

Several measures to prevent threats to validity were made for this research.
According to Runeson and Höst [17] there are four key aspects of validity that
should be addressed; construct validity, internal validity, external validity and
reliability. One measure to achieve construct validity was that the interview
and survey participants were provided brief definitions of concept they should
know about before participating. Another measure was to try to understand
how participants used certain terms, in order to try to find cases where different
definitions were used. For internal validity data-triangulation has been used, for
instance by looking at the experimentation system data. Given the amount of
interviews held related to the size of the company, there is a reason to believe
that most or all of the information that was sought after was discovered in the
data collection stages. Additionally, external research and feedback from the
participants during the research has been used for internal validity purposes.
Given that this work is an exploratory case study, external validity and gen-
eralizable results were not a main priority. However, the four companies used
for validation provided further insights compared to only having worked with
the single case study company. Finally, to achieve reliability guidelines on how

534 R. Sveningson et al.

to conduct a case study provided by Runeson and Höst [17] has been used for
a sound research methodology. This was done for instance by keeping detailed
case study protocols, working with triangulation and chains of evidence between
data collected and conclusions drawn.

The first author of this paper is employed at the case study company which
comes with threats to the validity of this research. It was recognized by the
author early on that specific measures had to be taken in order to not bias the
work. One such measure was to make sure that no data was added to the research
based on the author’s own experience with the company, and to make sure that
conclusions were drawn from an objective point of view. Furthermore, it also
helped to follow the case study guidelines by Runeson and Höst [17], as well as
cooperating with the second and third author, in order to get a reliable result.
Finally, another measure that has been taken is to make sure to objectively
observe the company and not try to present information about the company
subjectively, for instance, when doing the assessment of how well the company
uses experimentation.

4 Results

4.1 Classification

To evaluate the impact of continuous experimentation in the context of this
research, we first needed to be able to classify how a company performs in terms
of the dimensions control of roadmap and distance to users. To avoid complexity
and to achieve a deterministic classification we developed a scale of three stages 0,
1 and 2, to which a company could be assigned. The stages allow for transitioning
between them and the implied direction is from stage 0 to stage 2. Below we
describe the classification system.

In the classification system, the word “team” is used, which is referring to
either the company as a whole or a specific product or feature team inside the
company, depending on how the organization structure looks like. The person
using the classification system has to set their own context where they decide
whether the team should refer to the whole company, or to a single product
or feature team. Furthermore, for both the classification models the transitions
between stage 0, 1 and 2 are not necessarily equally large. So it can be possible
that transitioning between stages 0–1 is not equally difficult as transitioning
between stages 1–2.

Control of Roadmap. The classification system for control of roadmap is
shown here.

– Stage 0 or No Control: The roadmap cannot be controlled by the team.
There is no possibility for the team to add desired product changes to the
roadmap.

CE for Software Organizations with Low COR and a Large DTU 535

– Stage 1 or Low Control: Desired product changes can be added to the
roadmap, but there are difficulties. The team does not have full authority to
decide on specific changes themselves.

– Stage 2 or High Control: Desired product changes can easily be added to
the roadmap by the team. The team is allowed to make changes that they
evaluate as beneficial for the product. However, decisions that can have a high
impact in the product or the company business might still require approval
of external stakeholders.

The classification system refers to “product changes” or just “changes”, which
refers to both short-term product changes such as changes put on the backlog,
and long-term product changes such as changes put on the product roadmap.

Distance to Users. The classification system for distance to users is shown
here.

– Stage 0 or Very Large Distance: Users can not be accessed by the team
and there is no possibility of either qualitative or quantitative data-collection.

– Stage 1 or Large Distance: Users can be accessed by the team but there
are difficulties with accessing them, especially for new types of data.

– Stage 2 or Short Distance: Users can be accessed with ease by the team.
The decision to collect new data can be done with close to no delay. Decisions
on changes in data-collection with a very high impact might still be dependent
on external parties.

The classification defines in Stage 1 that for new qualitative and quantitative
data it might be difficult to access the users. This means that a company that at
this moment already has easy access to specific qualitative and quantitative user
data might still have a large distance to users if they have a lot of difficulties in
collecting new data. These difficulties would not be technical ones since everyone
needs to invest resources into collecting new user data, but rather organizational
difficulties.

4.2 Control of Roadmap and Distance to Users for Companies

Based on the empirical data that was collected for this research it was shown that
the companies differ in how much control of roadmap and how large distance
to users they have. Table 1 shows how the case study company and the four
validation companies varies in control of roadmap and distance to users. The
fourth validation company has the same control of roadmap and distance to
users as the case study company. The other three validation companies differ
from the case study company in control of roadmap and/or distance to users.

536 R. Sveningson et al.

Table 1. Control of roadmap and distance to users of the five companies

Company Control of roadmap Distance to users

Case study company Low Large

Validation company 1 High Short

Validation company 2 Low Short

Validation company 3 Low Varied between short - large

Validation company 4 Low Large

4.3 Relationship Between Control of Roadmap, Distance to Users
and Continuous Experimentation

During this work the relationship between control of roadmap, distance to users
and continuous experimentation has been studied.

The survey result shows that everyone believes that control of roadmap
affects the use of continuous experimentation. The respondents believe that the
control of roadmap affects the use of experimentation to different degrees, but
no-one believes that there is not a relationship. When it comes to distance to
users the same result is shown, and everyone believes that distance to users
affects the use of continuous experimentation. Some believe it is more and some
believe that it is less, but no-one thinks there is no relationship between the two
concepts.

In the second round of interviews, the control of roadmap is also considered
to be related to how continuous experimentation is used. Someone points out
that in the case study company the low control of roadmap is probably not the
biggest thing preventing evolving the experimentation in the company, but that
it instead is a lack of knowledge and will to do it. However, other interviewees
claim that if they had more control over their own roadmap(s) they would have
probably used more experimentation. An interviewee says that since the clients
are paying them to do a specific thing they are limited in controlling the roadmap.
The interviewee describes the low control of roadmap as a blocking issue for
using more experimentation. Finally, one interviewee believes that the control
of roadmap is not fixed and that it could perhaps be changed if they wanted to.

When it comes to the distance to users the second round of interviews show
that the interviewees from the case study company agree that there is a rela-
tionship between distance to users and the use of continuous experimentation.
However, not everyone believes that it applies to all types of experimentation or
for the company’s current circumstances. One interviewee argues that large dis-
tance to users is probably not affecting the use of continuous experimentation in
the company, because if they wanted to experiment more they could change the
distance to users. Another interviewee says that they have good access to a lot
of system data, so if they wanted to do experimentation related to for instance
infrastructure, it would not be a problem. However, for experimentation like
A/B tests the interviewee believes that the large distance to users would be an

CE for Software Organizations with Low COR and a Large DTU 537

issue. Another interviewee highlights that a short distance to users makes the
experimentation a lot easier to conduct and that user feedback is a precondition
for experimentation that should be acquired before the experimentation begins.
One interviewee thinks that with a large distance to users experimentation would
be possible, but getting results of the experiments would require more time and
it would be more difficult to do the actual implementation of the experiments.
In one of the interviews, the interviewee says that he/she believes that a large
distance to users is a blocking issue to using more experimentation. Finally, more
than one interviewee talks about how it perhaps would be possible to reduce the
distance to users if they wanted to.

From the validation interviewees with the four different companies, all of
the interviewees believe that there is a relationship, or that there probably is a
relationship, between control of roadmap and how continuous experimentation
is used in their companies or in a company. One interviewee believes that a low
control of roadmap would mean that the development team probably views the
product differently and not feel the same extent of ownership. This would have
probably meant less experimentation. Another interviewee answers the question
“Do you believe that control of roadmap is related to how experimentation is
used in your company?” with how being a more autonomous team in a company
improves the experimentation, and reasons why this is not trivial to achieve.

“Absolutely. It is. [...] The more autonomous you can be, the more control
you can have in the team that develops a part of the product, the easier
and the better it will become with the experiment. [...] The team defines
what the next experiment is, and has a quicker cycle and quicker feedback-
loops. That is outermost desirable, but not trivial to achieve. Because of
all those reasons that I have mentioned, with organization, culture, process
and technology.” - Validation interviewee.

Another validation interviewee mentions that he/she believes that having
low control of roadmap will make the ambitions of using more experimentation
significantly less. If the experimentation was done but the results not used for
the roadmap it would make it less desirable to do experimentation.

The validation interviewees are all certain or very certain that there is a
relationship between distance to users and the use of continuous experimentation
in their companies or in a company. If there would not be any data it would be
difficult to experiment. One interviewee points out that with a large distance
to users he/she believes that experimentation would be more difficult since it
limits what experiments can be run, what conclusions can be made and how
well the experiments can be validated. One interviewee reflects on the need
to ask why the distance to users in a company with a large distance to users
actually is large, and that it is probably often possible to access the users better
than initially thought. The interviewee mentions that the distance to users is
probably not a fixed thing and that you probably can change it if you want to.
He/she describes it as a barrier that you can remove. One interviewee reflects
on that they have experienced personally how a large distance to users affects

538 R. Sveningson et al.

experimentation and gives the example that an experiment that takes three days
to execute could require two months for approval of the data collection.

4.4 Perceived Benefits and Challenges

There are several perceived benefits identified by the case study company with
using more continuous experimentation. In the second round of interviewees the
perceived benefit of having more data to back the arguments the case study com-
pany makes towards the clients is mentioned, i.e. more data-driven arguments.
The interviewee explains that a benefit of using more experimentation is that
they don’t have to convince the client(s) to trust them and that they instead can
provide evidence for the claims they make. This is also mentioned by another
interviewee, who believes a benefit is that less emotional arguments will be used,
arguments that instead will be substituted by facts. This would, according to
the interviewee, avoid pointless discussions where people have strong personal
opinions on specific features. Figure 2 shows the survey responses for the per-
ceived benefits. Almost everyone in the survey identifies the benefit of fewer
decisions based on opinions, and many in the survey believe a benefit is the
feedback on the decisions made is received faster. One interviewee mentions the
benefit of building the right things, or at least to have the feeling of building the
right things. Furthermore, an interviewee mentions the perceived benefit of the
client making more money, and several respondents of the survey believe that a
perceived benefit is that the clients become happier.

Fig. 2. Perceived benefits of using more continuous experimentation identified in the
survey

“I think that because there is a lot [specific type of web service] that [case
study company name] is doing, it is... Everything that can make the cus-
tomer earn more money by analyzing how customers [means end users]
behave... is a very big advantage.” - Case study company employee.

One perceived benefit that many people in the survey identify is the higher
quality in the products, and this is also mentioned by two interviewees as a
perceived benefit. One interviewee mentions the ability to identify risks that

CE for Software Organizations with Low COR and a Large DTU 539

would perhaps otherwise not have been identified, as well as the benefit of getting
new insights from using experimentation. An “other” answer in the survey was
that the experimentation could provide a foundation for future decisions that are
going to be made. Another “other” answer in the survey revealed that someone
perceives the benefit for a better harmony inside the own company since people
will not use “vetos”. Finally, two interviewees identify the benefit of an improved
product, which is also a perceived benefit by many in the survey. However, one
interviewee mentions that because the case study company does not own its own
products, it is probably not the one benefiting from A/B testing and learning
more about how well the products perform, but the employees of the company
are happy to do A/B testing for the clients if they desire it.

Several perceived challenges, i.e. disadvantages and blocking issues, with
using more continuous experimentation are also identified by the case study
company in the second round of interviews.

Fig. 3. Perceived disadvantages (left) and blocking issues (right) of using more contin-
uous experimentation identified in the survey. Note: Not all respondents responded to
all questions, which is why percentages might differ.

One interviewee mentions the perceived challenge of more complex code,
DevOps situation, rollout situation and situation for a new developer. Figure 3
shows the survey response for perceived challenges. To get a more complex code
is also something that several people in the survey identify. Furthermore, two
interviewees talk about how they have to convince the clients that investments
in experimentation are worth it.

“Sometimes the client might not understand the importance of doing these
experiments, because they might not be as technical as we are, and then
we might need to take a conflict, or what you can call it, with the client to
argue for that ‘Yes but this is actually worth 120 hours, that you spend on
this, you might not immediately now see why, but in the long-term it pays
off’.” - Case study company employee.

Another perceived disadvantage identified in the interviews is that using more
experimentation might require a lot of resources, for instance time, which is also
identified in the survey by a large number of respondents. In the survey, an
“other” answer is that a perceived disadvantage would be that it would require

540 R. Sveningson et al.

more of a process in the company. Furthermore, one person in the survey believes
that using more experimentation will not make any significant improvements, e.g.
not increase the conversion rate. Some general reflections are a survey respondent
that says by the “other” answer that using more experimentation takes more
time, but that it is almost always worth it. An interviewee also makes a reflection
on that the disadvantages that the interviewee perceives are only relevant in the
short-term, and that they would not be relevant in a more long-term perspective.
Furthermore, that the need for education is a blocking issue, i.e. that there is
a knowledge barrier, is also recognized by some of the survey respondents. One
interviewee mentions the blocking issue of having to convince the client, for
instance, that it is worth it for the client to fund the experimentation, which is
similar to a previously described disadvantage. The need to convince clients is
also recognized as a blocking issue by several in the survey. Furthermore, one
interviewee reflects on that it is not only the client that has to change, and that
the case study company also has to change how they are working. That the own
organization has to change is also something that several in the survey identify.
Furthermore, one interviewee recognizes that limited resources, especially time,
are blocking issues to using more experimentation, and an “other” answer to
the survey is that experimentation needs to be prioritized when it comes to
time can be seen as a blocking issue as well. Finally, several survey respondents
also identify the blocking issue of that the code has to change in order to use
more experimentation. Table 2 shows a summary of the perceived benefits and
challenges of using more continuous experimentation that were identified in this
research.

Table 2. Summary of perceived benefits and challenges

Perceived benefit
Client trust and evidence for claims

Building the right things

Increased client profit

Increased client satisfaction

Higher quality products

Better identification of risks

Better harmony inside the own company

Perceived challenges
Increased code, devops and rollout
complexity for new developers

Experimentation training

Difficulty in convincing some clients
to fund experimentation activities

Need for internal and external
organizational changes

Limited resources, especially time

5 Discussion

Classification Models
During the first phases of this research, we identified the importance of assessing
a company on how much control of roadmap and how large or small distance to
users they have. However, since no previous research discusses how to evaluate

CE for Software Organizations with Low COR and a Large DTU 541

those aspects on a company we created two classification systems, one for control
of roadmap and one for distance to users. These systems were useful to be able to
correctly classify the companies studied, and to make sure that different people
who classify the same company can reach the same conclusion. A problem with
the models could be that it is a bit difficult to determine what constitutes as
“difficulties”, however, it should probably be fairly obvious to most contexts if
it is very easy, hard or not at all possible to control the roadmap or access users.

About the Companies
One of the initial theories early in this research was that the case study company
could be considered to have a low control of roadmap and a large distance to
users. The idea that the company has low control of roadmap and a large distance
to users was confirmed by the data collected for this research, which is why the
phrasing of the second research question, by specifying low control of roadmap
and a large distance to users, still maintains a relevance.

From the interviews with the four validation companies, it was shown that
there is a difference between the companies when it comes to control of roadmap
and distance to users, and only one of the four companies shares the same clas-
sification results as the case study company, i.e. low control of roadmap and a
large distance to users. The diversity in control of roadmap and distance to users
was a benefit for this research since it allowed other perspectives from companies
who were not necessarily all similar to the case study company.

Relationship Between Control of Roadmap, Distance to Users and
Continuous Experimentation
It is clear from the interviews and the survey in the case study company that
there is a relationship both between control of roadmap and continuous exper-
imentation, as well as the distance to users and continuous experimentation.
This was also confirmed by the four validation interviews, who believe the same
thing. It is possible to answer research question one (RQ1) with that there is
indeed a relationship between these concepts, where both control of roadmap
and distance to users affects how continuous experimentation is used.

Perceived Benefits and Challenges
Since the case study company was identified to have low control of roadmap and
a large distance to users the perceived benefits and challenges that were identified
by the case study company, which are shown in the results section, provide an
answer to the second research question (RQ2). Given that there was only a
single case study company considered for this research question, the external
validity of the answer might be low. However, given the exploratory nature of
this research, the identified perceived benefits and challenges provide an initial
answer for this question. It is specifically interesting to consider the perceived
benefits and challenges related to this type of company which works with clients,
such as the perceived benefit of happier clients and the perceived challenge of
having to convince the clients in order to be able to do more experimentation.
This perceived benefit and this perceived challenge are very relevant since it

542 R. Sveningson et al.

would perhaps not be the case if control of roadmap was high and distance to
users was short.

Control of Roadmap and Distance to Users as Barriers
There are two additional interesting learnings from this research. First of all
it appears by the collected data from interviews with the case study company
and the validation interviews that the control of roadmap and distance to users
might not be fixed. Several people believe that the control of roadmap and dis-
tance to users can be changed if that was desirable. Secondly, the control of
roadmap and distance to users are according to some interviewees considered
barriers to evolving the experimentation. This means that if a company wanted
to evolve their use of experimentation, the control of roadmap and the distance
to users could block this evolution. If the control of roadmap and distance could
be changed, these barriers could then be overcome for a company who’s experi-
mentation suffer as a consequence of low control of roadmap and a large distance
to users.

6 Conclusion

The purpose of this research was to explore the impact of and relation between
control of roadmap and distance to users and the usage of continuous experi-
mentation. This was done by conducting an exploratory case study with a single
company with low control of roadmap and a large distance to users, as well
as validation with four additional companies. The contribution of this work is
three-fold. First, we devised a classification system to evaluate a company in
the extent of the distance to users and the control of roadmap. Second, we
investigated how control of roadmap and distance to user impacts continuous
experimentation. Finally, we presented several perceived challenges and benefits
of continuous experimentation for the case study company.

Future work on this topic should investigate to what extent control of
roadmap and distance to users are fixed concepts inside a company and how they
relate to internal organization and domain. Additionally, practitioners would
value guidelines on how companies can engage in an organizational and busi-
ness transformation to increase control of roadmap in respect to introduction
of experiments and user data collection for experiment evaluation. Finally, it
would also be useful to conduct a multi-case study to understand how control
of roadmap and distance to users differs between companies in the industry and
how it affects their use of continuous experimentation.

Acknowledgments. This work was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

CE for Software Organizations with Low COR and a Large DTU 543

References

1. Auer, F., Felderer, M.: Current state of research on continuous experimentation:
a systematic mapping study. In: Proceedings - 44th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA, August 2018, pp. 335–
344 (2018)

2. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30746-1 3

3. Braun, V., Clarke, V.: Using thematic analysis in psychology. J. Chem. Inf. Model.
53(9), 1689–1699 (2013)

4. Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmström Olsson, H.,
Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities
in online software companies. J. Softw.: Evol. Process. 30(12), e2113 (2018)

5. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The RIGHT model
for continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

6. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

7. Issa Mattos, D., Bosch, J., Olsson, H.H.: Your system gets better every day you use
it: towards automated continuous experimentation. In: Proceedings - 43rd Euromi-
cro Conference on Software Engineering and Advanced Applications, SEAA 2017,
pp. 256–265 (2017)

8. Issa Mattos, D., Dmitriev, P., Fabijan, A., Bosch, J., Holmström Olsson, H.: An
activity and metric model for online controlled experiments. In: Kuhrmann, M.,
et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp. 182–198. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03673-7 14

9. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experi-
ments on the web. In: Proceedings of the 13th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining - KDD 2007, p. 959. ACM Press,
New York (2007)

10. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experi-
mentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)

11. McKinley, D.: Design for continuous experimentation (2012). https://www.
youtube.com/watch?v=qCKj K5RNfY

12. Moran, M.: Do It Wrong Quickly: How the Web Changes the Old Marketing Rules.
IBM Press, Indianapolis (2008)

13. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to heaven” - A
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: Proceedings - 38th EUROMICRO
Conference on Software Engineering and Advanced Applications, SEAA 2012, pp.
392–399 (2012)

14. Paasivaara, M., Heikkilä, V.T., Lassenius, C.: Experiences in scaling the product
owner role in large-scale globally distributed Scrum. In: Proceedings - 2012 IEEE
7th International Conference on Global Software Engineering, ICGSE 2012, pp.
174–178 (2012)

15. Rissanen, O., Munch, J.: Continuous experimentation in the B2B domain: a case
study. In: Proceedings - 2nd International Workshop on Rapid Continuous Software
Engineering, RCoSE 2015, pp. 12–18 (2015)

16. Ros, R., Runeson, P.: Continuous experimentation and A/B testing. In: Proceed-
ings of the 4th International Workshop on Rapid Continuous Software Engineering -
RCoSE 2018, pp. 35–41 (2018)

https://doi.org/10.1007/978-3-642-30746-1_3
https://doi.org/10.1007/978-3-030-03673-7_14
https://www.youtube.com/watch?v=qCKj_K5RNfY
https://www.youtube.com/watch?v=qCKj_K5RNfY

544 R. Sveningson et al.

17. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

18. Schermann, G., Cito, J., Leitner, P., Zdun, U., Gall, H.C.: We’re doing it live: a
multi-method empirical study on continuous experimentation. Inf. Softw. Technol.
99, 41–57 (2018)

19. Sveningson, R.: Continuous experimentation for software organizations with low
control of roadmap and a large distance to users - a case study (2019). https://
hdl.handle.net/20.500.12380/300184

20. Yaman, S.G., et al.: Introducing continuous experimentation in large software-
intensive product and service organisations. J. Syst. Softw. 133, 195–211 (2017)

https://hdl.handle.net/20.500.12380/300184
https://hdl.handle.net/20.500.12380/300184

Deep Unsupervised System Log
Monitoring

Hubert Nourtel, Christophe Cerisara(B), and Samuel Cruz-Lara

Université de Lorraine, CNRS, LORIA, 54000 Nancy, France
{hubert.nourtel,cerisara,samuel.cruz-lara}@loria.fr

Abstract. This work proposes a new unsupervised deep generative
model for system logs. It is designed to be generic and may be used
in various downstream anomaly detection tasks, such as system failure
or intrusion detection. It is based on the (reasonable) assumption that
most log lines follow rather fixed syntactic structures, which enables us to
replace the costly traditional convolutional and recurrent architectures
by a much faster component: a deep averaging network. Our model still
exploits a standard recurrent model with attention to capture the depen-
dencies between successive log lines. We experimentally validate the pro-
posed generative model on a real dataset obtained from a state-of-the-art
High Performance Computing cluster and show the effectiveness of the
proposed approach in modeling the “normal” behaviour of the system.

Keywords: Anomaly detection · System log · HPC · Deep learning

1 Introduction

Massive quantity of system logs are produced every second, and analyzing them
manually is out of question. However, they contain valuable information related
to the status of the system, risks of failures, potential intrusions and attacks, or
other types of anomalies that should be detected in advance. A generic approach
to predict most of these events is to train a generative model that is able to pre-
dict future log lines. When trained on a sufficiently large corpus, the generative
model shall capture the “normal” behaviour of the system, and deviations from
these predicted logs may be tagged as anomalies. This approach presents sev-
eral advantages, especially the facts that it does not require any (costly) manual
annotation, that it is generic and can be used in various domains and tasks.

We focus in this work on proposing a new deep generative model dedicated
to system logs. In a future work, this model will be used to predict system and
application failures in advance, by identifying early anomalies that may lead to
a process crash. Compared to the state-of-the-art [4], the design of our model
is based on two observations: first, system log lines often have a much less vari-
able syntactic structure across words than natural language text; second, massive

Supported by the ITEA 3 PAPUD 16037, the OLKi and CPER LCHN projects.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 545–553, 2019.
https://doi.org/10.1007/978-3-030-35333-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_38&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_38

546 H. Nourtel et al.

quantities of logs are continuously generated, which can only be treated with fast
inference algorithms. Both observations lead us to propose a new deep architec-
ture that replaces the traditional convolutional and recurrent processing within
line by a deep averaging component, which is at the same time simpler, faster
and powerful, as shown in the recent deep learning literature. Furthermore, we
argue that the main drawback of this architecture, which makes the modeling
of relative word positions more difficult, is not an issue with this type of data,
thanks to the fact that system log lines have much less variability in the struc-
tures linking words. We thus reserve the more costly recurrent processing to
capture cross-lines dependencies, and simplify the modeling of within-line word
sequences.

2 Related Works

The literature about unsupervised deep learning methods mainly focuses on rep-
resentation learning [24,29] and on deep clustering, with a few additional papers
that depart from these mainstream paradigms [9,20,23]. Generative models dom-
inate the field, because of their capability to capture the hidden structures within
observations, which constitute the only known information in the purely unsu-
pervised setting.

Deep Belief Networks (DBNs) [14] are one of the first successful deep repre-
sentation learning models. DBNs are formed by a stack of Restricted Boltzmann
machines (RBMs) [13], which learn features one level at a time. This greedy lay-
erwise training is finally used to initialize a deep supervised or a deep generative
model like Deep Boltzmann Machines (DBMs) [33]. Nowadays, thanks to recent
advances in the field [2], much simpler networks are used to learn good repre-
sentations of the data, such as the class of Autoencoders (AEs) [22,30,31,38].
Notable models of this class are Variational Autoencoders (VAEs) [21], which
are bayesian networks with an autoencoder architecture. These generative mod-
els, which try to maximize a lower bound of the data likelihood, can perform
efficient inference on large datasets. The hidden layer of these models capture
the most salient features of the data [10].

Deep clustering is usually performed on the observations (input space) [25],
but- may also be applied on the latent (intermediary) representation space [6,
7,16,18,26,41,42]. The options for the clustering loss are numerous: k-means
loss [40], cluster assignment hardening [39], locality-preserving loss [16], cluster
classification loss [15] or agglomerative clustering loss [41] to cite a few.

A special type of unsupervised methods, which is of particular interest in our
work, concern the training of models on positive examples only, or on a dataset
mainly composed of positive examples plus a minority of negative examples,
without any label. These methods are often referred to as anomaly detection
approaches, or one-class unsupervised classifiers. Indeed, the positive class is
the normal class, i.e., the class of samples that occur when the system is run-
ning correctly, or when the observed entities behave normally. Every sample that
deviates from this normal behaviour is considered as belonging to the negative

Deep Unsupervised System Log Monitoring 547

class, i.e., an anomaly. By definition, there are many observed positive samples,
and only a few negative ones, and we further do not know where these neg-
ative samples occur in the training corpus. The methods that handle such a
context include the one-class SVM [34], which projects all positive samples into
a high-dimensional space and computes an hyperplane that is as close as pos-
sible from these samples and separates them from the origin, which is assumed
to contain all negative samples. This approach is extended in [36] by replacing
the hyperplane with an hyper-sphere, and then in [32] by introducing deep neu-
ral architectures in these models. Later on, [5] transposes the original one-class
SVM model completely into a deep neural architecture, and [28] projects a sim-
ilar neural architectures as a supervised model by generating pseudo-labels for
negative samples.

Other approaches based on deep neural networks include variational autoen-
coders [27]. [4] further exploits successfully a recurrent neural network on the
difficult LANL dataset for anomaly detection in system logs. Deep architectures
are also used on other logs datasets, such as [1,3,37]. Other recent non-deep
approaches for anomaly detection in logs include [11,12,19,35]. A review of the
field can be found in [8].

3 Proposed Model

We propose a deep generative model, which generates the next log line based
on the previously observed log lines. Such a generative model may be used in
several applications, such as systems anomaly detection and intrusion detection,
but in this work, we focus on the evaluation of the generative model itself,
independently of the application.

The proposed model adopts a hierarchical structure, with a lower level ded-
icated to the modeling of a single line of text, while the upper level captures
dependencies across multiple lines. Conversely to most other works [4], we have
decided to not use a recurrent neural network at the lower level, but to rather
model word sequences through a Deep Averaging Network [17]. This choice is
first motivated by complexity considerations: indeed, recurrent networks are
among the slowest types of basic neural architectures, which is the main rea-
son why they are nearly never used in unsupervised generative models that have
to be trained on very large corpora, such as word embeddings, which either
exploit a fast single layer network (Word-to-Vec), or a small convolutional net-
work (Collobert&Weston embeddings), or yet fast transformer networks (BERT,
GPT...). Given the amount of system log lines that are generated every second,
we have thus decided to base our model on the Deep Averaging Network, which
is another type of extremely fast neural architecture that has already proven to
be also very powerful in many applications [17].

Figure 1 shows the first step of the model: this step takes as input a log
line tokenized into words. Each word is encoded into an embedding, and is
then smoothed through a temporal convolution filter, which outputs a sequence
of temporal vectors with the same size as the words embeddings. Then, a

548 H. Nourtel et al.

w1

wn−1

wn

Embeddings

w2

Temporal
convolutions MaxPooling

L

Fig. 1. Predictive model: first step

dimension-wise max-pooling operation is realized to reduce this sequence of vec-
tors into a single vector: this is similar to a Deep Averaging Network, which,
despite its name, can be performed either with an averaging or a max operator.

Ln−2 Ln−1 Ln

Embeddings +
Convolution +
MaxPooling

Embeddings +
Convolution +
MaxPooling

Embeddings +
Convolution +
MaxPooling

t-2 t-1 t

Bidirectional RNN

c

Attention
mechanism

∼

αt−2 αt−1 αt

ht−2 ht−1 ht

α′
t−2 α′

t−1 α′
t

∑i=t

i=t−2
αi.hi

αt−2 αt−1 αt ht−2 ht−1 ht

Linear + ReLu layers

h̃

w′
1 w′

2 w′
3 w′

n−1 w′
nL’

Ln−2 Ln−1 Ln

Embeddings +
Convolution +
MaxPooling

Embeddings +
Convolution +
MaxPooling

Embeddings +
Convolution +
MaxPooling

RNN +
Attention mechanism

Fig. 2. Predictive model: second and third steps

Figure 2 shows (left) how the line embeddings produced at step 1 are passed
to a bidirectional Long-Short Term Memory (LSTM) network with attention: the
embeddings of successive lines are passed one after the other into the LSTM,
which extracts the most relevant information from these embeddings and cumu-
lates this information into its hidden vector ht. The LSTM outputs one vector ht

per log line. Then, another parameter vector c is learnt, which role is to weight
each ht through an attention vector α:

Deep Unsupervised System Log Monitoring 549

αt =
ecT ·ht

∑
τ ecT ·hτ

The right column in Fig. 2 explicits how the hidden states are combined: h̃ =∑
t αtht. The summary embedding h̃ is finally passed to a standard feed-forward

neuronal classifier that transforms this vector into a “sequence” of T predicted
words: the output dimension of this multi-classification layer is thus T ×V where
V is the size of the vocabulary. T softmax operations are applied on this output
to obtain word probabilities.

4 Experimental Validation

4.1 Data

We evaluate our model on the Bull-ATOS HPC logs files dataset, which contains
anonymized system logs produced by the Deutsches Klimarechenzentrum Super-
computer, ranked #73 in 06/2019 in the TOP500 Supercomputer list. These
system logs have been recorded during the execution of real production applica-
tions. Every log line contains the following fields: Timestamp (in seconds)/Node
id/User id/Severity/Message. The training dataset is composed of 318,426 files
with 214,379,053 lines; a separate test dataset of 12 files with 5,396 lines is used
for validation. An example of sequence of logs is:

1527154392 10002 su info pam_unix(su:session): session opened for user b364103 by (uid=0)
1527154392 10002 su info pam_unix(su:session): session closed for user b364103
1527154393 10002 smartd info Device: /dev/sda [SAT], SMART Usage Attribute: 194
Temperature_Celsius changed from 56 to 55
1527154482 10002 pam_slurm info access granted for user root (uid=0)
1527154482 10002 sshd info Accepted publickey for root from 10.50.4.3 port 38260 ssh2
1527154482 10002 sshd info pam_unix(sshd:session): session opened for user root by (uid=0)

4.2 Experimental Setup

Every log line is tokenized into a sequence of words, by splitting the line with
whitespaces. Then, the length of every words sequence is set to 15 words, after
cutting or padding, to make parallel processing easier. All characters are trans-
formed into lower case, and every word that contains one or more digits is
replaced by a joker word. Finally, we remove successive lines containing exactly
the same words in the same order. The vocabulary contains every word that
occurs at least 10 times. Rare words are mapped to the special UNK word. The
final vocabulary contains 2,989 words.

Hyper-parameters are set based on reasonable values given in the literature
and on a few preliminary experiments: The ADAM optimizer is used with a
learning rate of 0.0001 and a batch size of 128. Word embeddings have 100
dimensions. The loss is the cross-entropy between the predicted words and the
gold words observed in the following line.

550 H. Nourtel et al.

4.3 Results

We compare our generative model in terms of word accuracy, i.e., ratio of pre-
dicted words that are correct in all 15-length words sequences, with three base-
lines in Fig. 3.

Our proposed model outperforms every baseline by a large margin. Further-
more, using two lines of context significantly increases its performances as com-
pared to observing only the previous log line, although using more than two lines
does not seem to bring further improvements.

Fig. 3. Prediction accuracy on the Bull dataset over two epochs.

5 Conclusion

We have proposed a deep generative model for predicting system logs. The orig-
inality of our model lies in the combination of a fast but powerful component to
merge individual word embeddings: the Deep Averaging Network, with a more
standard recurrent architecture with attention to model the relation between
successive lines. Such a generative model may be used to predict anomalies, sys-
tem failures or detect intrusions when the proportion of such events is too rare to
allow for supervised training. We focus in this work on evaluating the generative
capabilities of our proposed model, and experimentally show that it is able to
capture correlations both within and across lines to help predict the next log
line. In a future work, we plan to exploit attention to build semantically-related
chains of events and use the resulting model for anomaly detection.

Deep Unsupervised System Log Monitoring 551

References

1. An, J., Cho, S.: Variational autoencoder based anomaly detection using recon-
struction probability. Spec. Lect. IE 2, 1–18 (2015)

2. Bengio, Y.: Practical recommendations for gradient-based training of deep archi-
tectures. arXiv:1206.5533 (2012)

3. Bontemps, L., Cao, V.L., McDermott, J., Le-Khac, N.-A.: Collective anomaly
detection based on long short-term memory recurrent neural networks. In: Dang,
T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE
2016. LNCS, vol. 10018, pp. 141–152. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48057-2 9

4. Brown, A., Tuor, A., Hutchinson, B., Nichols, N.: Recurrent neural network atten-
tion mechanisms for interpretable system log anomaly detection. arXiv:1803.04967
(2018)

5. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neu-
ral networks. arXiv:1802.06360 (2018)

6. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering.
In: Proceedings of CVPR, Honolulu, Hawaii, pp. 5879–5887 (2017)

7. Dilokthanakul, N., et al.: Deep unsupervised clustering with Gaussian mixture
variational autoencoders. arXiv:1611.02648 (2016)

8. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PloS One 11(4), e0152173 (2016)

9. Golts, A., Freedman, D., Elad, M.: Deep energy: Using energy functions for unsu-
pervised training of DNNs. arXiv:1805.12355 (2018)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

11. Gutflaish, E., Kontorovich, A., Sabato, S., Biller, O., Sofer, O.: Temporal anomaly
detection: calibrating the surprise. arXiv:1705.10085 (2017)

12. Harada, Y., Yamagata, Y., Mizuno, O., Choi, E.H.: Log-based anomaly detection of
CPS using a statistical method. In: 2017 8th International Workshop on Empirical
Software Engineering in Practice (IWESEP), pp. 1–6. IEEE (2017)

13. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-35289-8 32

14. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

15. Hsu, C.C., Lin, C.W.: CNN-based joint clustering and representation learning with
feature drift compensation for large-scale image data. IEEE Trans. Multimedia 20,
421–429 (2018)

16. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for cluster-
ing. In: 22nd International Conference on Pattern Recognition, ICPR 2014, 24–28
August 2014, Stockholm, Sweden, pp. 1532–1537 (2014)

17. Iyyer, M., Manjunatha, V., Boyd-Graber, J., Daumé III, H.: Deep unordered com-
position rivals syntactic methods for text classification. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), vol. 1, pp. 1681–1691 (2015)

18. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding:
an unsupervised and generative approach to clustering. In: Proceedings of IJCAI,
Melbourne, Australia , pp. 1965–1972, August 2017

http://arxiv.org/abs/1206.5533
https://doi.org/10.1007/978-3-319-48057-2_9
https://doi.org/10.1007/978-3-319-48057-2_9
http://arxiv.org/abs/1803.04967
http://arxiv.org/abs/1802.06360
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1805.12355
http://www.deeplearningbook.org
http://arxiv.org/abs/1705.10085
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32

552 H. Nourtel et al.

19. Juan, D.C., Shah, N., Tang, M., Qian, Z., Marculescu, D., Faloutsos, C.: M3a:
Model, metamodel, and anomaly detection in web searches. arXiv:1606.05978
(2016)

20. Kilinc, O., Uysal, I.: Learning latent representations in neural networks for cluster-
ing through pseudo supervision and graph-based activity regularization. In: Pro-
ceedings of ICLR (2018)

21. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114
(2013)

22. Lecun, Y.: Modeles connexionnistes de l’apprentissage (connectionist learning mod-
els). Ph.D. thesis, Universite P. et M. Curie (Paris 6), Paris, France (1987)

23. Metz, L., Maheswaranathan, N., Cheung, B., Sohl-Dickstein, J.: Learning unsu-
pervised learning rules. arXiv:1804.00222 (2018)

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS,
pp. 3111–3119 (2013)

25. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering
with deep learning: from the perspective of network architecture. IEEE Access 6,
39501–39514 (2018)

26. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: Clustergan: Latent space clustering
in generative adversarial networks. arXiv:1809.03627, October 2018

27. Nguyen, Q.P., Lim, K.W., Divakaran, D.M., Low, K.H., Chan, M.C.: Gee: A
gradient-based explainable variational autoencoder for network anomaly detection.
arXiv:1903.06661 (2019)

28. Oza, P., Patel, V.M.: One-class convolutional neural network. IEEE Sig. Process.
Lett. 26(2), 277–281 (2018)

29. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

30. Ranzato, M.A., Poultney, C., Chopra, S., Cun, Y.L.: Efficient learning of sparse rep-
resentations with an energy-based model. In: Schölkopf, B., Platt, J.C., Hoffman,
T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1137–1144.
MIT Press (2007)

31. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contracting auto-encoders:
explicit invariance during feature extraction. In: Proceedings of ICML (2011)

32. Ruff, L., et al.: Deep one-class classification. In: International Conference on
Machine Learning, pp. 4390–4399 (2018)

33. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: van Dyk, D.,
Welling, M. (eds.) Proceedings of the Twelth International Conference on Arti-
ficial Intelligence and Statistics, vol. 5, pp. 448–455. Clearwater Beach, Florida,
April 2009

34. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

35. Sun, L., Versteeg, S., Boztas, S., Rao, A.: Detecting anomalous user behavior using
an extended isolation forest algorithm: an enterprise case study. arXiv:1609.06676
(2016)

36. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66
(2004)

37. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning for
unsupervised insider threat detection in structured cybersecurity data streams. In:
Workshops at the Thirty-First AAAI Conference on Artificial Intelligence (2017)

http://arxiv.org/abs/1606.05978
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1804.00222
http://arxiv.org/abs/1809.03627
http://arxiv.org/abs/1903.06661
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1609.06676

Deep Unsupervised System Log Monitoring 553

38. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of ICML, pp. 1096–
1103, January 2008

39. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: Proceedings of ICML, New York, pp. 478–487 (2016)

40. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces:
simultaneous deep learning and clustering. In: Proceedings of ICML, Sydney, Aus-
tralia, pp. 3861–3870, August 2017

41. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, 27–30 June 2016, Las Vegas, NV, USA, pp. 5147–5156
(2016)

42. Yang, T., Arvanitidis, G., Fu, D., Li, X., Hauberg, S.: Geodesic clustering in deep
generative models. arXiv:1809.04747, September 2018

http://arxiv.org/abs/1809.04747

Enablers and Inhibitors
of Experimentation in Early-Stage

Software Startups

Jorge Melegati1(B) , Rafael Chanin2 , Xiaofeng Wang1 , Afonso Sales2 ,
and Rafael Prikladnicki2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{jmelegatigoncalves,xiaofeng.wang}@unibz.it

2 School of Technology, PUCRS, Porto Alegre, Brazil
{rafael.chanin,afonso.sales,rafaelp}@pucrs.br

Abstract. Software startups are temporary organizations that develop
innovative software-intensive products or services. Despite of numerous
successful stories, most startups fail. Several methodologies were pro-
posed both in the scientific and commercial literature to improve their
success rate, and a common element among them is the idea of experi-
mentation. This concept was brought to software development as an app-
roach focused on taking critical product assumptions as hypotheses and
developing experiments to support or refute them. Although well-known
methodologies are based on this idea, the literature shows that software
startups still do not follow this approach. The goal of this paper is to
identify the enablers and inhibitors of experimentation in early-stage
software startups. To achieve the goal, we performed a multiple-case
study of four software startups. The results comprise a set of enablers
and inhibitors divided into the categories of individual, organizational
context, and environment.

Keywords: Software startups · Experimentation · Experiment-driven
software development

1 Introduction

Software startups are companies that develop innovative, software-intensive prod-
ucts or services [38]. The software startup context is characterized by a general
lack of resources, high reactiveness and flexibility, intense time-pressure, uncer-
tain conditions, and fast growth [29]. This context imposes several challenges to
software development activities [29,37]. Although several well-known tech com-
panies were once startups, such as Google, Facebook, and Spotify, more than 90%
of startups fail [20]. There are several possible reasons for this result [22]: market
conditions, lack of commitment, financial issues or a bad product idea, but “inad-
equacies in used engineering practices could lead to under or over-engineering the
product, wasted resources, and missed market opportunities” [22].
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 554–569, 2019.
https://doi.org/10.1007/978-3-030-35333-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_39&domain=pdf
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0002-6293-7419
http://orcid.org/0000-0001-8424-419X
http://orcid.org/0000-0001-6962-3706
http://orcid.org/0000-0003-3351-4916
https://doi.org/10.1007/978-3-030-35333-9_39

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 555

Several methodologies were proposed to improve startup success rate, both
in the scientific (e.g. [6,40]) and in the commercial (e.g. [4,31]) literature. A
common element in these methodologies is the idea of experimentation. Lean
Startup [31], the most well-known in the industry [5], is an example of such
methodology. Although Lean Startup is based mostly on anecdotal evidence
rather than on empirical research [1], this methodology brings elements from
established constructs, specially, “heavy use of effectuation logic” and “a clear
and explicit emphasis on experimentation” [15]. Therefore, experimentation rep-
resents a valuable practice for startups to reach better results.

Even with all these well-known methodologies focusing on experimentation,
software startups do not use them as expected. In an initial study to understand
how software startups approach experimentation, their challenges, and advan-
tages, Gutbrod et al. [18] concluded that these organizations focus on developing
solutions without validating the initial assumptions. Similar results were found
by authors investigating the reason for startups failure (e.g. [17]) and the use of
Lean Startup practices by software startups (e.g. [27]).

Failing to use experiments is specially detrimental for early-stage startups.
At this phase, software startups are looking for a “feasible solution” to a
“relevant problem” [22] which is closely related to the idea of experimenta-
tion in entrepreneurship. Here, experimentation is related to the idea that an
entrepreneurial venture operating under uncertainty should “experiment with a
range of business model” represented by several trial and errors along various
dimensions [2]. This idea is also present in innovation (e.g. [11]) and entrepreneur-
ship (e.g. [21]) literature. Therefore, better understanding the enablers and
inhibitors of experimentation in these early stages could help software startups
to thrive. Then, this study will be guided by the following research question:

RQ :Whatare the enablers and inhibitors of experimentation in

early-stage software startups?

To achieve this goal, we performed a multiple-case study in four software
startups in two countries. We identified a list of enablers and inhibitors divided
into three categories: individual, organizational context, and environment. The
remaining of this paper is organized as follows: Sect. 2 presents the background
and related work. Section 3 describes the research method used. Section 4 dis-
plays the study results and they are discussed in Sect. 5. Finally, Sect. 6 concludes
the paper.

2 Background and Related Work

The scientific interest in how software startups perform their engineering tasks
is growing. In a systematic mapping study on the topic, Berg et al. [3] iden-
tified 74 primary papers in the period of 1994 to 2013 and from those studies
27 were published between 2013–2017. Klotins et al. [22] performed a compre-
hensive study analyzing 84 startup cases and identified 16 goals, 9 challenges,

556 J. Melegati et al.

and 16 common engineering practices among these organizations. To analyze
their cases, they used a life-cycle model composed of four stages: inception, sta-
bilization, growth, and maturity. The first stage, inception, happens between
the idea and the product first release to the customers. In the stabilization, the
startup prepares its product to scale in regard to both technical and operational
perspectives. During the growth stage, the startup goal is to gain the desired
market share focusing on marketing and sales. Finally, in the maturity stage, the
organization transitions into an established company. In summary, in the early
stages, that is, inception and stabilization, teams focus on “finding a relevant
problem” and “a feasible solution”. In the later stages the focus is on marketing
and on improving the company’s efficiency [22]. It is also important to highlight
that a startup may change some critical aspect of the product and, consequently,
return to a previous stage.

In the early-stages, software startups should learn about its customers and
check if their ideas are valid by using experiment-driven software development
processes. This approach is characterized by continuously identifying critical
product assumptions, transforming them into hypotheses, prioritizing and test-
ing them with experiments following the scientific method in order to support or
refute the hypotheses [23]. It comprises different techniques, such as prototypes,
canary flying, gradual rollout, and controlled experiment [12] or even problem
and solution interviews [23]. In other words, this process is not restricted by the
scientific meaning of experiment, but refers to a broader sense of data-driven
decision making instead of opinion-based [23].

In a literature review on customer feedback and data collection techniques,
Fabijan et al. [13] grouped practices according to three product development
stages: pre-development, development, and post-development. For instance, in
pre-development, when “companies aim at identifying market interest in a new
product,” the authors mention, as used techniques, interviews and observations,
in development, prototype testing, and in post-development, A/B tests. Com-
paring these stages with a startup life-cycle, in early-stages, startups should use
techniques such as interviews, observations, surveys, and prototypes as described
in Table 1.

Table 1. Software startup early stages, related goals, development stages and experi-
ments that could be used to reach these goals

Startup stage Goal Development stage Experiments

Inception Release the product first version
to the first consumer. Balance
customer needs, resources, and
time

Pre-development Problem interviews
Solution interviews
Observations
Questionnaires

Stabilization Prepare to scale. Product should
be easy to maintain and scale,
including operations and
customer support

Development Prototype testing
Operational data

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 557

Several studies investigated inhibitors to experimentation in general soft-
ware development context. In a mapping study on continuous experimentation,
Ros and Runeson [33] found four types of challenges for companies adopting
these practices: technical, statistical, management/organizational, and business.
In the same vein, based on qualitative survey with 10 companies, Lindgreen and
Münch [23] emphasized that: “technology has a supporting role in an experiment
system, and that the more significant issues lie elsewhere”, and the major obsta-
cles are related to organizational culture, product management and resourcing.
Nevertheless, no study focused on early-stage software startups and their specific
context.

Some studies focused on to which extent startups perform experimentation
or use related techniques. In a large survey based on 1526 software startups, Pan-
tiuchina et al. [27] observed that only 229 (15%) were following Lean Startup
according to their criteria. In a grounded theory study on requirements engi-
neering in startups, Melegati et al. [24] observed: “startups very often develop
something and then realize that users did not want it. Even though validat-
ing assumptions as soon as possible is present in well-known startup develop-
ment methodologies [...] Unawareness of such methodologies would explain that,
but even interviewees aware of them still made these mistakes.” Gutbrod and
Münch [18] performed, to the best of our knowledge, the most focused study
on experimentation in the context of software startups. Through a multiple-
case study in four German companies, they concluded that startups spent a lot
of time developing their solutions without testing their assumptions. The main
reasons are the lack of awareness of the possibility of early testing, and the
lack of knowledge and support on identifying, prioritizing and testing hypothe-
ses. Nonetheless, as pointed out by the authors and other papers in the litera-
ture [15,26], Lean Startup is strongly based on the idea of experimentation and is
well-known by practitioners. As challenges they identified the following aspects:
getting enough subjects for experiments, fear of contacting customers, fear of
making cold calls, technical challenges to setup an experimentation infrastruc-
ture, lack of skills for conducting customer interviews, lack of resources/staff for
experimentation, lack of motivation to conduct experiments, and fear that people
steal the startup idea. Nevertheless, a study focused on enablers and inhibitors
in early-stage software startups is still missing in the literature.

3 Research Method

Based on what was previously exposed, it is clear that the context where soft-
ware startups operate is really determinant to the adoption of experimentation.
Therefore, a case study is reasonable choice to this study. As Yin [39] high-
lighted: “a case study is an empirical inquiry that investigates a contemporary
phenomenon within its real-life context, specially when the boundaries between
phenomenon and context are not clearly evident.” Given the plethora of contexts
for startups, we performed a multiple-case study.

An important aspect in a multiple-case study is the selection of cases [10].
This is more challenging given the lack of a unique and solid definition of what a

558 J. Melegati et al.

software startup is [3]. The most common characteristics given in the literature
are innovation and uncertainty [3]. Therefore, in selecting the cases, we decided
to take a conservative approach. First of all, we only considered digital star-
tups as a recent paper by Steininger [36] proposes: the value is created through
a “completely digitalized product or service, digitally sold and delivered” and
IT is diffused in all pillars: infrastructure management, customer interface and
value proposition. Besides that, the innovation must be present. As Garcia and
Calantone [16] discuss in their seminal work, innovation is seen as a discontinuity
in at least one of two dimensions: technological and marketing.

We selected the cases based on convenience through our contacts network
having these criteria in mind. Since there are several possible characteristics
that could be used to differentiate startups, selecting cases presenting all pos-
sible scenarios would not be feasible. However, we selected the cases trying to
diversify the characteristics of the studied software startups along the dimensions
of startup maturity stage and type of market (B2B or B2C).

The major data source was interviews. Before starting data collection, we
developed a case study protocol consisted of different interview guides depending
on the interviewee role (non-technical founder, software development manager,
and developer), and a set of information about the startup, the market it oper-
ates, and its environment. This protocol was used and updated by the researchers
throughout data collection. The interviews were performed by at least one author
mainly in the startup office to allow the interviewer to observe the company’s
processes. Interviews were recorded and relevant pieces were transcribed.

Data analysis consisted of thematic analysis. The process of coding followed
an integrated approach having deductive and inductive elements [8]. In such a
way, a general scheme is created from existent theories or other elements that
the research brings to the study that “points to general domains in which codes
can be developed inductively,” that is, they emerge while reviewing data line-
by-line. To create a general scheme, we inspected the Coleman and O’Connor’s
startup software development process formation framework [7] and came up
with a classification of the constructs in three categories (individual, organiza-
tional context, and environment). Then, we inductively coded the interviews and
researchers’ memos, and combined the codes to form themes, increasing the level
of abstraction [8].

3.1 Cases Background

We selected four cases from two countries in different continents, as summarized
in Table 2. The following subsections describe the cases studied: the product
or service, maturity stage, and the level in which experimentation is done and
evolved during the team lifetime. In order to preserve the startups identity, we
omit some details about the product and the business model.

Startup A designed a software library to be used in software development
projects. Through automatic data collection, it would show in a dashboard
software runtime problems (e.g. exceptions) and possible solutions from simi-
lar issues found on the Internet, along with a list of freelance developers that

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 559

Table 2. Case studies description and data collected.

Location Product or service Stage Data collected

A Italy Software library with
intelligent recommendations

Inception Interview with the founder
+ meetings with the founder

B Brazil Mobile app for fitness
workout routines

Inception Group interview with the
three founders

C Italy Two-side web platform Sell
of leads to a specific sector

Stabilization Interview with a founder +
interview with software
developer

D Italy Software as a Service
targeted to e-commerces

Stabilization Group interview with the
two non-technical founders
+ interview with the CTO

could help to solve the problem. In some cases, the system would be able to
automatically fix some problems. The startup founder is a software development
consultant. While working on some projects, he observed that such tool could
help him in working more effectively. Besides that, he believed that the technical
level of software developers was decreasing. Therefore, it would make sense to
develop such a tool. In the current stage, the startup has an initial prototype
consisted of a dashboard with some dummy data, and a website that displays
the idea. Although tools to collect software runtime data already exist, none of
them fix issues automatically, therefore, the proposed innovation is technologi-
cal. Nevertheless, the display of available freelancers based on the data collected
would be a marketing innovation.

The startup is in its initial steps. There are five people working on the project,
but none of them are fully dedicated to the startup. A few of them are working on
software development, while the others are focused on the business plan and the
marketing strategy. The founder appeared to be concerned about the cost related
to formally setting up the company. On the other hand, he did not perceive the
software development process as a challenge: “it is the easiest part to do”, he
argues.

Startup B develops an app that enables people to keep track of their work-
out routines, and to know exactly what they should do in each session to improve
results. The project began in 2017, when one of the founders was looking for an
app to help him improve his workout routines, but could not find one suitable
to his needs. Since he was a computer science student and knew how to develop
mobile apps, he started the project along with two other classmates. It is impor-
tant to point out that all of them had taken entrepreneurship/Lean Startup
courses, so they have learned about the process of creating a startup.

Their first strategy was to combine the software development process with
some interactions with local gym and fitness centers. The rationale behind this
approach was that they could reach several potential users at once. However,
they failed in the negotiation process; even though gym owners liked the idea
of having an app for their users, none of them wanted to take the risk and
pay upfront. Therefore, they decided to move to a B2C (business to consumer)
strategy. The goal at first was not to charge for the app, but to deliver a great

560 J. Melegati et al.

experience so they could retain customers. The strategy worked and they were
able to reach the 30.000 download mark at the beginning of 2019. However, they
were facing a big challenge: lack of resources since they failed in monetizing
the app. In order to address this issue, they had to invest part of their time to
develop software for others in order to survive as a company. At the point this
paper is being written, startup B is working on finding a business model. Since
they are still looking for a business model, we classified them in the inception
stage. Considering the team will use available technologies to develop the app
that will focus on a new product to gyms, the innovation is related to marketing.

Startup C develops a web platform that sells software solutions to a specific
type of offline business. Revenue is based on possible customers sent to tool
publishers (lead generation). Regarding our startup criteria, the service is lead
generation and it is completely digitally sold and delivered. It is also innovative
since they are the first company focused on this specific segment and they found
challenges throughout their history because of this fact.

This project began after one of the founders left a web agency, where he
worked for 10 years. This experience made him realize that there are several
opportunities to better serve this specific segment. Therefore, he wanted to take
advantage of his own background and give this startup a try. Currently there
are 3 people working in this organization: two co-founders and one software
developer. The company is almost reaching the break-even point, that is, the
point where income surpasses expenses. They are now working a new platform
that will support their growth.

Startup D develops a software platform to be used in customer interaction
and support on websites. The company focus on B2B (business to business),
already has some clients, and has also reached the break-even point. The com-
pany started back in 2014 when the founder, who does not have a technical
background but has an entrepreneurial mindset, was looking at new ways for
businesses to interact with one another. Since then, this idea has been also
developed by other companies. In spite of it, the founder believes this project
can be a business opportunity.

Regarding the criteria, the product is definitely digitally sold and delivered
(online), even though there is communication with the customers, for instance,
through feature requests. Although the solution is already offered by other com-
panies, we considered it as innovative because, when they started, the idea was
new. The project is developed by three founders (two non-technical and one
technical), along with two developers that do not work full-time. Currently, they
are looking for more developers in order to continue developing the tool.

4 Results

Through data analysis, we identified 12 themes that were grouped into the cat-
egories: individual, organizational context, and environmental factors as shown
in Fig. 1.

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 561

Angel investors

Mentors

Startup StartupStartup

Venture
Capital

Founder Software development
manager

Developer

Maturity
Business

model

Background
Previous

experiences
Expectations

AcceleratorUniversity

Government

Environment

Organizational context

Individual

Founder in
love with the

idea

Misunderstanding
of concepts

Previous
experience

with startups

Difficulty to
get capital

Small number
of users make

hard to do
experiments

(Lack of)
support/

flexibility of
software
platforms

Lack of
resources to

run
experiments

B2B: fear of
losing
clients

Lack of
knowledge/
experience
even from
mentors

Previous
experience with

agile
methodologies

Presence of
accelerators

and
incubators

Courses on
the topic

Fig. 1. Enablers and inhibitors of an experimentation in early-stage startups divided in
three categories: individual, organizational context, and environment. Each category is
represented by the elements that compose it: enablers with up-arrows, inhibitors with
down-arrows, and factors that could act as either with two-sided arrows.

4.1 Individual

The first common theme in this category is the founder in love with the
idea or, in case A founder’s words: “an entrepreneur is in love with his idea and
then sometimes it takes him to do things that are not rational [...] even before
[he knows] there is a market [to the product].” The problem here is investing
a lot of time and resources developing the solution without realizing if the user
or the customer is willing to pay for it, even though well-known methodologies
and practices targeted to this context argue not to do so. This is usually a con-
sequence of the founders’ overconfidence on their knowledge about the market.
Generally, they are creating their startups to tackle needs they observed in the
market they were already working on. This is the main reason case A is not
strictly following an experiment-driven approach. Although the founder praises
Lean Startup, the focus is clearly on implementing the features imagined for the
product rather than checking if the problem is really felt by customers and if
the solution would be useful. In the group interview for case B, the founders
mentioned: “in the first phase, we ignored Lean Startup because we thought we
knew the market since we are users.” Similarly, in case C, when asked why he did

562 J. Melegati et al.

not use an experimental approach from the beginning, the non-technical founder
mentioned: “since I have worked for twelve years in the sector, I thought I knew
my clients’ problems.”

Related to this factor, we observed a clear misunderstanding of concepts.
A clear example is Case A. Although, as mentioned earlier, the founder said that
a common problem is when a founder falls in love with the idea, he is an exam-
ple of that. We could observe during our meetings that he was concerned about
the cost to build the whole solution, although it was not clear if the software
would be technologically feasible. He claimed that the development would be the
easiest part of the puzzle. In his own words: “at least in programming, every-
thing seems more clear to me in the sense that it works or not [...] my biggest
problem is estimate cost.” To some extent, we observed in several moments
that the interviewees did not fully understand the concept of MVP (Minimum
Viable Product). Although Ries [31] described it as a minimum artifact to test
a hypothesis (and it does not necessarily mean to develop a piece of software),
generally the interviewees take it as an idea of a prototype or a product with a
minimum set of features. In case B, during the interview, the founders mentioned
that they consider the team passed through three stages considering experimen-
tation. First, they ignored the idea of testing and developed the features they
thought would be useful since they assumed they knew the market. Once they
realized it was not working, they began to understand the market by visiting
gyms and now, once they thought they already had a defined MVP and knew
their users, they changed their focus on building the company. Therefore, we
could observe some interesting facts. First, initially they considered their idea
to be good; they focused on developing it, despite their knowledge about Lean
Startup. Once, they realized it was not working, they performed an experimenta-
tion cycle: talked to gyms to check whether they would like to have the app, that
is, solution interviews. But then, they returned to the previous stage. Therefore,
they still do not use the process as a continuous approach; instead, they con-
sidered it as an initial first step in building their company. In their own words:
“the MVP is already well defined, [and we know] who the users are.”

The next factor could be an enabler or inhibitor: the founders’ previous
experience with startups. We could observe this, for instance, in case B, in
which the founders mentioned they changed their way from developing to under-
standing the customer when they realized the first path was not working. The
non-technical founder in case C, when asked why they are not doing experi-
ments from the beginning, mentioned that he did not have experience to do so.
Therefore, it is reasonable to think that an experienced entrepreneur would think
better before developing several features based on her previous experiences. In
comparison, as we observed in the cases studied, novice entrepreneurs lack this
experience.

In a similar way, previous experience with agile methodologies are
enabler, since these methods focus on customer feedback. For instance, the
founder in case A mentioned that “I was convinced because I already use an
agile methodology for software [...] and I thought that it may work as well for
business.”

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 563

4.2 Organizational Context

In this category, we grouped factors related to the startup, its internal and
surrounding dynamics, such as its business model, practices and tools used.

Case B interviewees mentioned the problem of small number of users.
They argued that most of the market test examples are based on quantitative
analysis and they cannot support a statistically significant result with a small
number of users. For instance, they mentioned the common example of building
a landing page to test the customer interest and said that it is hard to “bring
traffic to a landing page.”

A related problem occurs in a B2B market: concern of losing clients.
For instance, in Case D, the startup already has some clients, but the non-
technical founders mentioned that they cannot make several tests because of the
risk of current clients considering tests as problems and decide to abandon the
platform. This is more evident in a B2B market because of the possible amount
of customer (which is lower when compared to a B2C market) and also because
of the customer acquisition cost.

One factor that could have both effects is the (lack of) support/flexibility
from software platforms. For instance, in Case C, based on the data collected,
we considered that the company adheres to an experiment approach to some
extent. As the founder mentioned, from the beginning they used “Wordpress
with plugins.” Wordpress is a content management system (CMS) that allows
creating websites without writing code but configuring a set of add-ons among
the huge number available, making it easy to customize the website to the user
needs [28]. This tool allowed them to create something fast to test; “to verify the
business model,” which “was the goal [at the time].” Although this choice was
also used because of the lack of resources to build it in house. Anyhow, according
to the founder and the software developer, sometimes they were not able to do
more experiments because the platform was not flexible enough. Because of that,
they are considering building their own platform. Nevertheless, the software
developer sometimes feels uncomfortable with this idea because “he likes the
things well-done and perfect” in a way that “it simply works.” However, “now
we have the intention to invest a lot in the technological part and we want
everything in another framework” because they “have really particular needs,”
and it became harder to make tests. On case B, the team complained about
the Apple App Store, which takes time to make a new version of the product
available hindering tests execution.

Finally, the interviewees complained about the lack of resources to run
experiments. For instance, the case B’s founders argue that Lean Startup has
“a lack of practicability” since “the first thing a startup has to do is to get
money someway.” In this case, as already mentioned, they argued that they do
not have money to bring traffic to a landing page to test users’ interest in their
idea. In case C, the non-technical founder said that, because they do not have
more employees, “if [we take time to develop something and] I finish the cash
flow next month, the company will die.”

564 J. Melegati et al.

4.3 Environment

The first observed inhibitor in this category is related to the last in the previ-
ous one: difficulty in getting capital. We observed in all cases the constant
concern about obtaining money to run the company for more time. This fact con-
straints the team to focus on fast results that allow the company to run further.
It is important to point out that an experiment may invalidate a hypothesis.
Although this is valuable in regards to the knowledge obtained about customers
and the market, it does not represent new income that would allow the team to
continue the project.

Finally, a complaint observed in the cases was lack of knowledge, specially
from mentors. For instance, the non-technical founders in case D mentioned
that mentors generally come from a traditional business environment, and are
not used to an innovative and disruptive market. Therefore, they are not able to
give advice when it comes to experimentation. In case A, the founder admitted
that he changed his mind when he went to an incubator: “I arrived here in the [a
local incubator] and then they started talking about the need of a business plan.”
It is surprising to see that some incubators still focus on traditional business
plans rather than on startup-related processes and tools.

However, actors and activities in the environment can be enablers. Acceler-
ators and technology parks can help software startup founders in applying
new practices focused on experimentation, such as Lean Startup. Similarly, the
existence of university courses on entrepreneurship focusing on these tech-
niques make this content also available to startups. Case A founder mentioned
this when talking about the incubator his company is in: “it is really good the
fact that they make us aware of these methodologies, for instance, that startups
can participate in [a course about Lean Startup taught in the local university].”

5 Discussion

In this section, we present a discussion on the results showing how they are
related to previous studies in the literature, and possible ways to increase exper-
imentation in software startups.

First, other studies have already showed the founders’ influence on prac-
tices selection. While studying the competencies of a software startup initial
team, Seppanen et al. [35] concluded that the founder dominates actions and
competences related to the business and product innovations of the company.
Their knowledge about the market [7] causes their overconfidence on their idea.
Founders’ overconfidence is a well-known problem in entrepreneurship [19].

This discussion brings us to the concept of cognitive biases. In a recent sys-
tematic mapping study, Mohanani et al. [25] argued that “these systematic devi-
ations from optimal reasoning help to explain many common software engineer-
ing problems.” Using such lenses, we could say that the founder in love with
the idea is an instance of overconfidence bias, that is, an “inability to question
the fundamental way of thinking” [25], and confirmation bias, the tendency to
pay more attention to evidence that confirm our beliefs over those that challenge

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 565

them. The second can be observed when founders guide their experiments (mock-
ups, wireframes, etc.) to test if a customer would buy that product, generally
asking them. However, this is not even the way Ries proposes the MVP con-
cept [31]. He argues that one should test a hypothesis about the user/customer
even without building part of the final product with, for example, a landing page
or a video.

Debiasing tasks is a way to tackle this problem since it is easier than debias-
ing people [25] . For instance, planning poker tackled the anchoring bias when
estimating the time to complete a task. Therefore, new socio-technical practices
should be developed for software startups to avoid these biases. This is related to
Lean Startup lack of a full operationalized framework, making it hard to apply
in practice [6].

Besides that, these first two inhibitors could be explained using the cognitive
dissonance theory [14]. According to it, individuals seek consistency among their
cognitions (beliefs, opinions). Therefore, for instance, if an experiment disproves
a founder’s belief about the market, the person may look for explanations to it,
not abandoning the idea and spending more time and money from the startup,
instead of questioning the idea itself and abandoning or modifying it.

Regarding experience, several actors in a startup ecosystem could help
improve it. This result highlights the importance of accelerators, incubators and
technology parks, and which elements they should focus on to improve startup
results. Additionally, it shows the importance of university courses in related
topics.

Second, the first two inhibitors related to the context are similar: small num-
ber of users and B2B startups fearing the customers loss. The first makes hard to
perform controlled experiments, the most common examples in the Lean Startup
book [31] and in scientific studies (e.g., case studies in big companies [12]). In
the case of startups focused on B2B markets, this will always be the case. There-
fore, several software startups should collect knowledge through other strategies
that may focus on depth instead of quantity. A possible approach to solve this
problem may be the use of qualitative research techniques, such as case studies
and ethnographies to contrast the use of controlled experiments in a quantita-
tive scenario. These techniques could help to tackle the lack of money since the
startup does not need to spend money to bring traffic.

Regarding the similarity to agile methodologies, it refers to the idea of com-
patibility that is a well-used construct in adoption [30] and diffusion of innova-
tions [32] theory. That is, if the decision taker, in this case, the founder or the
software development manager, perceives that the innovation is similar to what
she knew before, she will be more inclined to adopt it. This result informs the
creation of further practices and techniques for software startups.

Third, the themes related to the environment are discussed in the startup
ecosystem literature. In this sense, we can use Cukier and Kon’s software startup
ecosystem maturity model [9]. The authors classify regions in four different lev-
els: nascent, evolving, mature, and self-sustainable based on a series of metrics
regarding financial, market, and knowledge aspects. All identified enablers and

566 J. Melegati et al.

inhibitors in our cross-case analysis can be mapped to such metrics. First, the
lack of capital is related to access to venture-capital and angel funding. Sec-
ond, the presence of accelerators, university courses, and the lack of experienced
mentors are related to the mentoring quality, accelerators quality, incubators,
technology parks, and methodologies knowledge. For instance, regarding men-
toring quality, the authors considered “the percentage of mentors that fit one
of these criteria: (1) had a successful startup in the past and (2) founded and
worked for more than 10 years in one or more startups.” From our interviews,
this is not the case of the ecosystems, or at least, the accelerators, incubators
and technology parks the studied startups are in. Most of the knowledge brought
to these startups came from people experienced with traditional businesses that
explains their focus on business plans and financial concerns. Clearly, this is a
problem of not existing a previous generation of digital entrepreneurs as in more
advanced ecosystems, such as Silicon Valley or Israel, a metric called “ecosystem
generations” [9].

5.1 Threats to Validity

Runeson and Höst [34] described a common scheme to assess threats to validity
when reporting a case study. It is composed by four aspects: construct validity,
internal validity, external validity and reliability.

Construct validity reflects “to what extent the operational measures that
are studied really represent what the researcher have in mind” [34]. The use
of multiple information sources for all four cases reduces this issue [39]. Besides
that, through face-to-face semi-structured interviews, it was possible to properly
solve any communication misunderstandings between interviewer and intervie-
wee regarding key concepts, such as experimentation. Finally, the interviewees
were available to further questions if any doubt occurred during data analysis.

Internal validity is related to causal relationships and represents the pos-
sibility of other factors not taken into account are actually causing the observed
factor. In order to mitigate this risk, we used triangulation of data from different
interviewees within each case study. In addition, the authors inspected the data
in order to make sure they all agreed upon the results.

Our case sampling strategy use of 4 cases studies in different scenarios (stage
and market) improved external validity. Nevertheless, a weakness of this study
is the lack of startups present in a more mature ecosystem. This could be an
interesting future work.

The reliability aims at minimizing errors and biases. In other words, if
another researcher performs the same study in the future, she has to reach
the same results [39]. In order to mitigate this risk, throughout this study, we
described all steps performed in data collection and analysis.

6 Conclusions

Experiment-driven software development could be an important approach to
improve software startups success rate. The goal of this paper was to identify

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 567

enablers and inhibitors for this approach in these early-stage companies where
an experimental mindset could bring critical results. We performed a multiple-
case study in four startups located in two continents, with distinct products and
markets. Our results identified several enablers and inhibitors grouped in three
levels: individual, organizational context, and environment. Finally, we compared
our results with previous ones found in the literature and presented directions
for improvement.

Future work could focus on developing social-technical practices to mitigate
human and context inhibitors, and enhance the enablers. An interesting future
study could be the replication of this study in more mature startup ecosystems in
order to better support our results. Our work could bring important information
to practitioners, specially, accelerators or policy makers, for instance, guiding
the selection and training of mentors and showing which problems they may
face when trying to make the startups they work with use an experiment-driven
approach.

Acknowledgments. This work is partially funded by FAPERGS (17/2551-0001/
205-4).

References

1. Ahrend, J.M.: Requirements Elicitation in Startup Companies. Research Topics in
HCI (2013)

2. Andries, P., Debackere, K., van Looy, B.: Simultaneous experimentation as a learn-
ing strategy: business model development under uncertainty. Strateg. Entrep. J.
7(4), 288–310 (2013)

3. Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144(February),
255–274 (2018)

4. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that
Win. Cafepress.com, Louisville (2007)

5. Bortolini, R.F., Nogueira Cortimiglia, M., Danilevicz, A.D.M.F., Ghezzi, A.:
Lean Startup: a comprehensive historical review. Manag. Decis. (August) (2018).
https://doi.org/10.1108/MD-07-2017-0663

6. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software
startup development model: a framework for operationalizing lean principles in
software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan,
L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-44930-7 1

7. Coleman, G., O’Connor, R.V.: An investigation into software development process
formation in software start-ups. J. Enterp. Inf. Manag. 21(6), 633–648 (2008)

8. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement, vol. 7491, pp. 275–284 (2011). https://doi.org/10.1109/ESEM.
2011.36

9. Cukier, D., Kon, F.: A maturity model for software startup ecosystems. J. Innov.
Entrep. 7(1), 14 (2018)

https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1007/978-3-642-44930-7_1
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1109/ESEM.2011.36

568 J. Melegati et al.

10. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev.
14(4), 532–550 (1989)

11. Eisenhardt, K.M., Tabrizi, B.N.: Accelerating adaptive processes: product innova-
tion in the global computer industry. Adm. Sci. Q. 40(1), 84 (1995)

12. Fabijan, A., et al.: Experimentation growth: evolving trustworthy A/B testing
capabilities in online software companies. J. Softw. Evol. Process. 30(12), e2113
(2018). (December 2017)

13. Fabijan, A., Olsson, H.H., Bosch, J.: Customer feedback and data collection tech-
niques in software R&D: a literature review. In: Fernandes, J., Machado, R., Wnuk,
K. (eds.) ICSOB. Lecture Notes in Business Information Processing, vol. 210.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19593-3 12

14. Festinger, L.: A Theory of Cognitive Dissonance, vol. 2. Stanford university press,
Redwood City (1957)

15. Frederiksen, D.L., Brem, A.: How do entrepreneurs think they create value? A
scientific reflection of Eric Ries’ Lean startup approach. Int. Entrep. Manag. J.
13(1), 169–189 (2017)

16. Garcia, R., Calantone, R.: A critical look at technological innovation typology and
innovativeness terminology: a literature review. J. Product Innov. Manag. 19(2),
110–132 (2002)

17. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 27–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08738-2 3

18. Gutbrod, M., Münch, J., Tichy, M.: How do software startups approach experi-
mentation? empirical results from a qualitative interview study. In: Felderer, M.,
Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 297–304. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69926-4 21

19. Hayward, M.L.A., Shepherd, D.A., Griffin, D.: A hubris theory of entrepreneurship.
Manag. Sci. 52(2), 160–172 (2006)

20. Herrmann, B.L., Marmer, M., Dogrultan, E., Holtschke, D.: Startup ecosystem
report 2012. In: Telefonica Digital and Startup Genome (2012)

21. Kerr, W.R., Nanda, R., Rhodes-Kropf, M.: Entrepreneurship as experimentation.
J. Econ. Perspect. 28(3), 25–48 (2014)

22. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering in startup
companies: an analysis of 88 experience reports. Empirical Softw. Eng. 24(1), 68–
102 (2019). https://doi.org/10.1007/s10664-018-9620-y

23. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experi-
mentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)

24. Melegati, J., Goldman, A., Kon, F., Wang, X.: A model of requirements engineering
in software startups. Inf. Softw. Technol. 109, 92–107 (2019)

25. Mohanani, R., Salman, I., Turhan, B., Rodriguez, P., Ralph, P.: Cognitive Biases
in Software Engineering: A Systematic Mapping Study. IEEE Trans. Softw. Eng.
5589(c), 1–20 (2018). https://doi.org/10.1109/TSE.2018.2877759

26. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case
study on how to close the ‘Open Loop’ problem. In: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 9–16. IEEE,
August 2014

27. Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P.: Are soft-
ware startups applying agile practices? the state of the practice from a large survey.

https://doi.org/10.1007/978-3-319-19593-3_12
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/s10664-018-9620-y
https://doi.org/10.1109/TSE.2018.2877759

Enablers and Inhibitors of Experimentation in Early-Stage Software Startups 569

In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
167–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 11

28. Patel, S.K., Prof Acharya, A., Patel, M., Rathod, V.R., Prajapati, J.B.: Perfor-
mance analysis of content management systems-joomla, drupal and wordpress gen-
eral terms open source content management system. Int. J. Comput. Appl. 21(4),
39–43 (2011)

29. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

30. Riemenschneider, C.K., Hardgrave, B.C., Davis, F.D.: Explaining software devel-
oper acceptance of methodologies: a comparison of five theoretical models. IEEE
Trans. Softw. Eng. 28(12), 1135–1145 (2002)

31. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York City
(2011)

32. Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York City (2010)
33. Ros, R., Runeson, P.: Continuous experimentation and A/B testing. In: Proceed-

ings of the 4th International Workshop on Rapid Continuous Software Engineering
- RCoSE 2018, pp. 35–41. ACM Press, New York (2018)

34. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

35. Seppänen, P., Oivo, M., Liukkunen, K.: The initial team of a software startup. In:
2016 International Conference on Engineering, Technology and Innovation (ICE)
& IEEE International Technology Management Conference, pp. 57–65 (2016)

36. Steininger, D.M.: Linking information systems and entrepreneurship: a review and
agenda for IT-associated and digital entrepreneurship research. Inf. Syst. J. 29,
363–407 (2019). https://doi.org/10.1111/isj.12206

37. Tanabian, M., ZahirAzami, B.: Building high-performance team through effective
job design for an early stage software start-up. In: Proceedings. 2005 IEEE Inter-
national Engineering Management Conference, 2005, vol. 2, pp. 789–792. IEEE
(2005)

38. Unterkalmsteiner, M., et al.: Software startups - a research agenda. e-Informatica
Softw. Eng. J. 10(1), 1–28 (2016)

39. Yin, R.: Case Study Research: Design and Methods. Applied Social Research Meth-
ods. SAGE Publications, Thousand Oaks (2003)

40. Zettel, J., Maurer, F., Münch, J., Wong, L.: LIPE: a lightweight process for E-
Business startup companies based on extreme programming. In: Product Focused
Software Process Improvement, pp. 255–270 (2001)

https://doi.org/10.1007/978-3-319-57633-6_11
https://doi.org/10.1111/isj.12206

European Project Space

European Project Space Papers
for the PROFES 2019 - Summary

Alessandra Bagnato1(&) and Davide Fucci2,3

1 Softeam Research & Development Department, Paris, France
alessandra.bagnato@softeam.fr

2 University of Hamburg, Hamburg, Germany
fucci@informatik.uni-hamburg.de

3 Blekinge Institute of Technology, Karlskrona, Sweden
davide.fucci@bth.se

Abstract. The European Project Space at PROFES 2019 provides an oppor-
tunity for researchers involved in ongoing and recently completed research
projects (national, European, and international) related to the topics of the
conference to present their projects and disseminate the objectives, deliverables,
or outcome.

1 Introduction

Today’s collaborative research projects act as a bridge between research (e.g., acade-
mia) and practitioners (e.g., industries). Within collaborative projects, the research
community can share ideas in real industrial environments while, at the same time, can
raise the need for new and different research inspired by the needs of the industry.

The European Project Space at PROFES 2019 provides an opportunity for
researchers involved in ongoing and recently completed research projects (national,
European, and international), related to the topics of the PROFES conference, to
present their results and disseminate their objectives, deliverables, and further
endeavors.

The types of projects eligible for presentation in this track were:

• Projects funded by the European Union, by national or local funding organizations,
or by individual universities and industries.

• Projects carried out by an international consortium of partners or projects that might
involve partners of the same country.

The EPS Workshop will include the presentation of nine different projects, corre-
sponding to the nine accepted papers reviewed by two different reviewers from the
selection committee. Projects and projects’ representatives who did not submit a paper
are also welcome to participate in the workshop to discuss their plans, share ideas, and
establish new collaborations.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 573–576, 2019.
https://doi.org/10.1007/978-3-030-35333-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_40&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_40

2 Accepted Papers

The PROFES EPS volume contains the proceedings of the European Project Space
(EPS’19) held on 27 November 2019 in Barcelona, Spain, in conjunction with
PROFES 2019 [1], the International Conference on Product-Focused Software Process
Improvement—one among the top recognized software development and process
improvement conferences. The 20th edition of PROFES has been held in Barcelona,
Spain, from November 27 to 29, 2019 in the North Campus of the Technical University
of Barcelona (https://www.upc.edu).

The following papers have been accepted in the proceedings of the workshop:

• Amin Boudeffa, Alessandra Bagnato, Antonin Abherve, Cedric Thomas, Martin
Hamant and Assad Montasser. Application of Computational Linguistics Tech-
niques for Improving Software Quality: Progress in Artificial Intelligence, Big Data
and Computational Linguistics domains offered new way to perform in-depth
analysis and evidence-based quality assessments of open source software compo-
nents. In this CROSSMINER Project paper we have seen how this can be integrated
into industrial development to improve the quality of developed software.

• Kaïs Chaabouni, Alessandra Bagnato and Antonio Garcia-Dominguez. Monitoring
ArchiMate models for DataBio project. The Data-Driven Bio-economy project
(DataBio) is a large scale project that aims to develop big data technologies in the
domains of agriculture, fishery and forestry. This project applies the standard
Enterprise Architecture language: “ArchiMate 3.0” for modelling the pilot case
studies and for modelling the software components in order to facilitate compre-
hension and communication between partners. The models are created with the
modelling tool “Modelio” which allows contributors to collaborate on a shared
version of the ArchiMate models. These models are monitored continuously by the
monitoring tool “Measure Platform” and the model querying tool “Hawk”. In this
Databio project paper we have seen the monitoring approach and the metrics
defined to evaluate the quality level of the models.

• Alessandra Bagnato, Alexandre Beaufays, Etienne Brosse, Kaïs Chaabouni, Uwe
Ryssel, Michael Schulze and Andrey Sadovykh. Showcasing Modelio and pure:-
variants integration in REVaMP2 project. REVaMP2 project is part of the ITEA 3
industry-driven Re-search, Development and Innovation programme in the domain
of software innovation. REVaMP2 project aims to develop an automated and
comprehensive tool that supports massive customizing of “Software-Intensive
Systems and Services” (SIS) Product Lines (PL). This approach requires agile
round-trip engineering processes for managing the different configurations in legacy
assets, and for more systematic and automated variability management. For this
purpose, the project put among its priority the standardization of a variability
language called “Variability Exchange Language” (VEL) as a format for describing
variability in models. This paper showcases the integration of model-driven engi-
neering (MDE) tool “Modelio” with the variability management tool “pure::vari-
ants” using the VEL language as data exchange format. VEL is used to model both
the feature model, also referred to as “150% model”, with all possible variation

574 A. Bagnato and D. Fucci

https://www.upc.edu

points and all variant configurations coming from the features selection for the
variant of a specific product.

• Victoria Torres, Miriam Gil and Vicente Pelechano. DECODER - DEveloper
COmpanion for Documented and annotatEd code Reference. Software is every-
where and the productivity of Software Engineers has increased radically with the
advent of new specification, design and programming paradigms and languages.
The main objective of the DECODER project is to introduce radical solutions to
increase productivity by increasing the abstraction level, at the specification stage,
using requirements engineering techniques to integrate more complete specifica-
tions into the development process, and formal methods to reduce the time and
efforts for integration testing.

• Juncal Alonso, Leire Orue-Echevarria, Marisa Escalante, Lorenzo Blasi and Kyri-
akos Stefanidis. DECIDE: DevOps for Trusted, Portable and Interoperable Multi-
Cloud Applications towards the Digital Single Market. This paper presents a
solution implemented in the context of the European project DECIDE which aims
to support DevOps teams in the design, pre-deployment, contracting, deployment
and operation of multi-cloud native applications with the provisioning of an inte-
grated framework. The project is entering its late phase, in which the DevOps
framework is currently being validated and evaluated in various use cases.

• Lidia López and Marc Oriol. Q-Rapids: Quality-Aware Rapid Software Develop-
ment – An H2020 Project. This work reports the objectives and current state of the
Q-Rapids H2020 project. Q-Rapids (Quality-Aware Rapid Software Development)
proposes a data-driven approach to the production of software following very short
development cycles. The focus of Q-Rapids is on quality aspects, represented
through quality requirements.

• Wishnu Prasetya, Tanja E. J. Vos, Gordon Fraser, Ivan Martinez-Ortiz, Ivan Perez-
Colado, Rui Prada, Jose Rocha and Antonio R. Silva. IMPRESS: Improving
Engagement in Software Engineering Courses through Gamification. The Eramus+
project IMPRESS seeks to explore the use of gamification in educating software
engineering at the university level. When used in the right way, gamification can
improve users’ engagement and hence their appreciation for the taught subjects.
This paper will present the project, its objectives, and its current progress.

• Marcin Wolski and Toby Rodwell. Software Governance in a large European
Project - GEANT case study. GEANT refers both to the research and innovation
community of European NRENs (operators of national networks for science and
education), and also a sequence of network-related projects co-funded by the EC
and the European NRENs. The latest such project is GN4, sustainable software
development is an essential part of GN4, the project co-funded by Europe’s NRENs
and the EU. This article presents how software governance has been applied in GN4
during its iterations.

• Jose Luis de la Vara, Eugenio Parra, Alejandra Ruiz and Barbara Gallina. AMASS:
A Large-Scale European Project to Improve the Assurance and Certification of
Cyber-Physical Systems. The paper presents the AMASS project and its de-facto
European-wide open tool platform, ecosystem, and self-sustainable community for
assurance and certification of cyber-physical systems.

European Project Space Papers for the PROFES 2019 - Summary 575

Acknowledgement. We would like to thank the people who have contributed to the
PROFES EPS 2019 workshop. We wish to thank all authors for their valuable contributions, and
we wish them a successful continuation of their work. We wish to thank all the members that
served in the international program committee, namely: Danilo Caivano (Università degli Studi
di Bari), Ana Cavalli (TELECOM & Management SudParis), Moharram Challenger (University
of Antwerp), Marcus Ciolkowski (QAware), Philipp Diebold (Bagilstein), Andreas Jedlitschka
(Fraunhofer Institute for Experimental Software Engineering IESE), Lidia López (Universitat
Politècnica de Catalunya (UPC)), Silverio Martínez (Fraunhofer Institute for Experimental
Software Engineering IESE), Markku Oivo (University of Oulu). We then wish to thank all the
projects participating in the event namely H2020 Databio [5], H2020 CROSSMINER [2], ITEA
3 REVaMP2 [6], H2020 DECODER [7], H2020 Decide [8], H2020 Q-Rapids, Eramus+
IMPRESS [4], ECSEL AMASS [10] and GEANT GN4 [3].

References

1. PROFES 2019. https://profes2019.upc.edu/. Accessed 15 Sept 2019
2. CROSSMINER. https://www.crossminer.org/. Accessed 15 Sept 2019
3. GEANT GN4. https://software.geant.org. Accessed 15 Sept 2019
4. IMPRESS project. https://impress-project.eu/. Accessed 15 Sept 2019
5. H2020 Databio. https://www.databio.eu/en/. Accessed 15 Sept 2019
6. Revamp2. http://www.revamp2-project.eu/. Accessed 15 Sept 2019
7. Decoder. https://www.decoder-project.eu/. Accessed 15 Sept 2019
8. Decide. https://www.decide-h2020.eu/. Accessed 15 Sept 2019
9. Q-Rapids. https://www.q-rapids.eu/. Accessed 15 Sept 2019
10. AMASS. https://www.amass-ecsel.eu/. Accessed 15 Sept 2019

576 A. Bagnato and D. Fucci

https://profes2019.upc.edu/
https://www.crossminer.org/
https://software.geant.org
https://impress-project.eu/
https://www.databio.eu/en/
http://www.revamp2-project.eu/
https://www.decoder-project.eu/
https://www.decide-h2020.eu/
https://www.q-rapids.eu/
https://www.amass-ecsel.eu/

Application of Computational Linguistics
Techniques for Improving Software

Quality

Amin Boudeffa1(B), Antonin Abherve1, Alessandra Bagnato1, Cedric Thomas2,
Martin Hamant2, and Assad Montasser2

1 Softeam, Paris, France
{amin.boudeffa,antonin.abherve,alessandra.bagnato}@softeam.fr

2 OW2, Paris, France
{cedric.thomas,martin.hamant,assad.montasser}@ow2.org

Abstract. Progress in Artificial Intelligence, Big Data and Computa-
tional Linguistics domains offered new way to perform n-depth analysis
and evidence-based quality assessments of open source software compo-
nents. In this paper we will see how this can be integrated into industrial
development to improve the quality of developed software.

Keywords: Computational Linguistics · Big Data · Sentiment analysis

1 Project Data

Developing new software systems by reusing existing open source software (OSS)
components raises challenges related to the level of quality of different OSS as
well as to the level of support that different OSS communities provide to users
of the software they produce [2]. The CROSSMINER project aim to address this
issue.

– Acronym: CROSSMINER
– Title: Developer-Centric Knowledge Mining from Large Open-Source Soft-

ware Repositories
– Start date: January 1, 2017
– Duration: 36 months
– Partners: The Open Group, University of L’Aquila, University of York, Soft-

eam, OW2 Consortium, Edge Hill University, Unparallel Innovation, Eclipse
Foundation Europe, Centrum Wiskunde & Informatica, Castalia Solutions,
Bitergia, Athens University of Economics & Business.

– Web site: https://www.CROSSMINER.org/

Supported by the European Unions Horizon 2020 Research and Innovation Programme.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 577–582, 2019.
https://doi.org/10.1007/978-3-030-35333-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_41&domain=pdf
https://www.CROSSMINER.org/
https://doi.org/10.1007/978-3-030-35333-9_41

578 A. Boudeffa et al.

2 CROSSMINER Analysis Platform

2.1 CROSSMINER Project

CROSSMINER is an EU-funded research project which aims to deliver an inte-
grated open-source platform that will support the development of complex soft-
ware systems by enabling the monitoring, in-depth analysis and evidence-based
selection of open source components, and facilitating knowledge extraction from
large open-source software repositories. The project leverages multi-disciplinary
sub-fields of computer science including Artificial Intelligence, Big Data and
Computational Linguistics. The project aimed six main scientific and technol-
ogy objectives among which the following four were used in the context of this
experimentation:

– Development of source code analysis tools to extract and store actionable
knowledge from the source code of a collection of open-source projects

– Development of natural language analysis tools to extract quality metrics
related to the communication channels, and bug tracking systems of OSS
projects by using Natural Language Processing and text mining techniques

– Development of workflow-based knowledge extractors that simplify the devel-
opment of bespoke analysis and knowledge extraction tools shielding engineers
from technological issues to concentrate on core analysis tasks

– Development of advanced integrated development environments that will
allow developers to adopt the CROSSMINER knowledge base and analy-
sis tools directly from the development environment will help developers to
improve their productivity.

2.2 Natural Language Processing Metrics

Natural language contains vital and potentially hidden information that can be
exploited to assist developers in making vital decisions surrounding open source
software development [3]. The natural language components developed within
the CROSSMINER project used to analyse various source of information of
given Open Source software projects. The NLP metrics compute heuristics that
summarise the quality of support offered to users over time, and contribute
to the CROSSMINER knowledge base by enriching documents with extra
information [3].

These metrics process the output classification values or a conversion of texts
provided by the main basic metrics associated with various natural language
tools integrated into CROSSMINER. We distinguish Sentimental Metric that
reveals which sentiments are expressed in a bug tracking system for a project and
Emotional Metric that Summarises the emotions expressed in the bug tracking
systems of a given project.

The state of the art industrial software development process is based on
monitoring the product quality through the use of a low level code-based met-
rics which are related particularly to the software development implementation

Computational Linguistics Techniques for Improving Software 579

phase. In CROSSMINER, the use of NLP tools is of high relevance, as the anal-
ysis of the text written by developers and users provides information that would
be expensive and laborious to process manually. The extraction of these infor-
mation about the quality of support offered by the community of an open source
software project to be made available the sentiment analysis, classification of
emotions, detection of request and replies among messages posted in a commu-
nication channel, bug tracker or forum, categorization of messages according to
their content type and the classification of threads of messages according to the
severity of the issue that they express.

3 Use Case Description

3.1 Softeam Use Case

The first company which perform this experimental integration, Softeam, is a
French Company of 1000 employees, which operates in many different domains
such as Finance, Banking, Insurance and Service industries. The company led
this experiment in the context of the development team of a commercial long
live software: Modelio, a modelings tool for developers and architects to support
software and system engineering.

Each Modelio release follows a specific development process based on the
Agile methodology in order to align Modelio features to market demands and
guarantee the product quality. Each developments projects start by an initials
specification phases in which the perimeter of the release is defined. At the end
of each sprint, the quality issues of delivered components are assessed by the
quality team by performing validations activity. Feedback are used to modify
and adapt the next sprint plan. The quality assurance process can lead to an
update of the project plan and require an adaptation of the architecture of the
solution, the specification of the features being implemented or the perimeter of
the release.

To develop its solutions, Softeam relies more and more frequently on open
source libraries. Due to the critically of open source libraries and framework
used as core components of his products, the selection and assessment of the
quality of these libraries follow the same level of quality evaluation as Softeam
internally developed code source. The selection process and administration of this
components are a long and costly process and we expect that CROSSMINER
will help us to conduct it.

3.2 OW2 Use Case

OW2 is a global open source software non-profit association, its mission is to
foster the development of a portfolio of open source software for information
systems and the growth of a business ecosystem around it. OW2 promotes a code
base of some 100 open source projects; its global community membership involves
some 40 members, including commercial, public and academic organisations, and
over 2500 individual members, half of them from Europe.

580 A. Boudeffa et al.

As the organisation becomes a reference community platform in the open
source marketplace, it increasingly stresses the quality and market readiness of
its software. OW2 endeavours to integrate solutions helping projects to produce
assessment reports on the quality of the code and on the maturity of their
governance.

The OW2 use case has two goals. The first one is to provide project leaders
and users with cutting edge tools for analysing and measuring accurately their
software information sphere. The second goal is to develop a Market Readiness
Index that will helps conventional managers select OW2 projects according to
criteria spanning from technology quality to business sustainability.

As a result, OW2 will differentiate from comparable organisations, such as
the Linux Foundation and the Eclipse Foundation (also a partner in the CROSS-
MINER project), which are also working on systems to collect data about their
projects.

4 Experimentation

4.1 Increasing Quality of Softeam Product by Including Sentiment
Analysis Technics in Development Process

To increase his capacity to evaluate the quality of open source components embe-
ded in his products, Softeam has integrated the provided solution, including the
sentiment analysis and classification of emotions techniques, with his standard-
ized development process (Fig. 1).

Fig. 1. Softeam standardized development approach with CROSSMINER solution.

In project initiation phase, Softeam evaluates how the source code analysis
tool and the natural language analysis tool could be used to assist architects to

Computational Linguistics Techniques for Improving Software 581

choose the open sources framework which will be included in project architec-
ture in order to add new services and functionality in Modelio. The result of
sentimental analysis of textual data sources related to the component is used to
evaluate how the open source community is reacting towards the specific library.
In sprint implementation phases, by the intermediary of the IDE, the Compu-
tational Linguistics Techniques to identify the more relevant information that
must be delivered to the developers.

The first evaluation of the impact of deploying the solution Softeam showed
a significant improvement when working with new open source libraries:

– Reduction of 40% of average time needed to evaluate existing open source
components used in a Modelio project architecture.

– Reduction of 25% of average time needed to choose open source components
to be included in a project architecture.

– Reduction of 10% of average time for development which involved the use of
new libraries unknown to our developers.

4.2 OW2 Experimentation with Sentiment Analysis Metrics

The experimentation with sentiments fits with OW2’s business need to integrate
into its process innovative ways to assess the market readiness of its projects,
and to provide project leaders with tools and methods to help them to progress
on the path toward greater maturity. The OW2 experimentation concentrates on
contributor metrics to provide project leaders with the ability to better monitor
and understand the behavior of their contributors.

The first objective is achieved by developing sentiment and emotion analysis
based on the application of Natural Language Processing techniques on informal
sources such as documentation and code and bug comments. There are three
main challenges here. One is to identify metrics that can be collected throughout
the whole code base so the method is applicable to all the projects. The second
one is to develop data collectors, or readers, that can address the variety of
sources. The third challenge is to define how to compute a snapshot indicator
from time series covering periods from one quarter to a whole year (Table 1).

Table 1. Sample of the emotions apparition which appear on three projects.

Project Emotions (count)

Surprise Joy Love Sadness Anger Fear

XWIKI 326 357 361 364 364 359

Sat4j 0 286 286 184 107 0

asm 5 38 38 37 38 0

The second objective is addressed by setting up visual user interfaces reflect-
ing the metrics that will get computed based on the tools delivered by CROSS-
MINER. Such visual interfaces will let the user browse both high level and fine

582 A. Boudeffa et al.

grained information, depending on the type of question. One key challenge here
is to produce visual representations that are easily understandable by any reader
and operationally meaningful for project leaders (Fig. 2).

Fig. 2. Dashboard of Sentimental analysis natural language metrics applied so far by
OW2 to assess projects

Acknowledgments. The research described has been carried out as part of the
CROSSMINER Project, which has received funding from the European Union’s Hori-
zon 2020 Research and Innovation Programme under grant agreement No. 732223.

References

1. Boudeffa, A., Bagnato, A., Abherve, A., Di Ruscio, D., Mateus, M., Almeida, B.:
Integrating and deploying heterogeneous components by means of a microservice
architecture in the CROSSMINER project. STAF-CE 1(5), 61–66 (2019)

2. Bagnato, A., et al.: Developer-centric knowledge mining from large open-source
software repositories (CROSSMINER). In: Seidl, M., Zschaler, S. (eds.) STAF 2017.
LNCS, vol. 10748, pp. 375–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74730-9 33

3. Edge Hill University: D3.4 Natural Language Components, 27 December 2017 Final

https://doi.org/10.1007/978-3-319-74730-9_33
https://doi.org/10.1007/978-3-319-74730-9_33

Monitoring ArchiMate Models
for DataBio Project

Käıs Chaabouni1(B), Alessandra Bagnato1, and Antonio Garcia-Dominguez2

1 Softeam, R&D Department, Paris, France
{kais.chaabouni,alessandra.bagnato}@softeam.fr

2 School of Engineering and Applied Science, Aston University, Birmingham, UK
a.garcia-dominguez@aston.ac.uk

Abstract. The Data-Driven Bio-economy project (DataBio) is a large
scale project that aims to develop a platform that offers access to big
data technologies in the domains of agriculture, fishery and forestry. This
project applies the standard Enterprise Architecture language: “Archi-
Mate 3.0” for modelling the pilot studies and for modelling the soft-
ware components in order to facilitate comprehension and communica-
tion between partners. The models are created with the modelling tool
“Modelio” which allows contributors to collaborate on a shared version
of the ArchiMate models. These models are monitored continuously by
the monitoring tool “Measure Platform” and the model querying tool
“Hawk”. This paper describes the monitoring approach and specifies the
metrics defined to evaluate the quality level of the models.

Keywords: ArchiMate · Enterprise Architecture · Models metrics

Project data

– Acronym: DataBio, Title: Data-Driven Bio-economy
– Start date: January 2017, Duration: 36 months
– Partners: INTRASOFT International S.A. Belgium (project coordinator),

VTT Technical Research Centre of Finland LTD, SINTEF and 45 more part-
ners including IT companies and research institutes [1]

1 Introduction

The DataBio project [2] aims to develop a big data platform based on existing
partners’ solutions and contains 27 pilot studies that fit among one of these
categories:

– Improving precision farming and utilizing predictive analysis in agriculture.
– Improving forest monitoring, predicting risks and optimizing tree resources.
– Predicting fishery market and rationalising its environmental impact.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 583–589, 2019.
https://doi.org/10.1007/978-3-030-35333-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_42&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_42

584 K. Chaabouni et al.

Each pilot integrates through its workflow a number of software components
that are linked together and act as a data pipeline in which every component
has a specific task along the data value chain from data collecting and processing
(mostly satellite imagery and IoT sensors data) to analyzing and visualizing [3].
In order to facilitate the comprehension of the pilots requirements and the tech-
nological design of the components, there is a need for a common modelling
language that allows people to have the same modelling conventions. Therefore
we use the standard “Enterprise Architecture” language “ArchiMate 3.0” [4]
which proved to be suitable for specifying requirements/strategies and has at
the same time a wide range of concepts for modelling IT systems [5]. The mod-
elling environment used for this task is “Modelio” [6] which allows partners to
collaborate on synchronized SVN repositories containing the ArchiMate mod-
els. In order to maintain the quality level of the models throughout the project
we defined new metrics for the models’ quality and we monitor continuously
the models’ repositories with the monitoring tool “Measure Platform” [7] and
the model querying tool “Hawk” [8]. This paper is structured as follows: Sect. 2
presents the monitoring of the ArchiMate models, Sect. 3 illustrates the defined
model quality metrics and the final section ends with concluding remarks.

2 Monitoring of Modelio ArchiMate Models

The DataBio ArchiMate models are structured in five Modelio projects described
as follows:

– Three projects: Project 1, 2 and 3 corresponding to the pilots of the following
domains of research: agriculture, fishery and forestry. These projects contain
motivation views, strategy views and business process views.

– Project 4 for modelling software and IoT system components.
– Project 5 for modelling “Earth Observation” data services.

These projects are monitored by the monitoring and analysis tool “Measure
Platform” designed primarily for monitoring software projects, integrating third
party analysis tools and creating a customized dashboard for visualization. Mea-
sure Platform collect periodically predefined “measures” that were developed to
monitor the ArchiMate Models by interrogating the model indexing tool “Hawk”
which allows to query the Modelio repositories [9]. For each metric, we add mea-
sures for the five monitored projects where we specify the query expression in
EOL language (Epsilon Object Language) [11] which is then interpreted and
executed by Hawk. Hawk optimizes the querying process by creating a graph
database index that contains the different elements of the model and their rela-
tionships and thus improving the response time of the queries [10]. The collected
measurements are stored in Measure Platform and can be visualized through the
platform dashboard. Figure 1 shows an example of the measurements that can
be visualized by Measure Platform dashboards.

Monitoring ArchiMate Models for DataBio Project 585

Fig. 1. Percentage of unrepresented elements in monitored Modelio projects

3 Metrics for Evaluating Models Quality

The metrics that we use for evaluating the quality level of the models are
inspired in part from literature review such as the “6C quality goals” described
by Mohagheghi et al. [12] for model driven software development. In addition,
these metrics are inspired from our experience with monitoring DataBio models
and evaluating their added value regarding to the purpose they serve. Hence, in
this context, the models are evaluated by how much they provide understanding
and clarity for users while having at the same time an efficient modelling process
that makes it well worth the effort.

3.1 Metrics for Optimizing the Modelling Process with Modelio

We present here metrics that reflect how optimal is the usage of Modelio in a
manner that guarantees completeness and efficiency in the modelling process.
Table 1 gives a summary of the collected measurements by Measure Platform
according to the following defined metrics.

Table 1. Metrics for optimizing the modelling process with Modelio

Projects Proj.1 Proj.2 Proj.3 Proj.4 Proj.5

Percentage of unrepresented elements 40% 52% 49% 15% 31%

Percentage of duplicate elements 49% 54% 44% 12% 10%

Percentage of empty diagrams 13% 6% 15% 29% 16%

Median diagram importance score 0 6 0 16 17.73

586 K. Chaabouni et al.

Percentage of Unrepresented Elements. Unrepresented elements are ele-
ments that have been created in the ArchiMate model and located in the Modelio
explorer but are not displayed on any diagram. This is due to the deleting of
the element representation instead of the element itself or could be an element
created in the model for future use but was never used afterwards. Having a big
percentage of unrepresented elements implies having inefficiencies in the mod-
elling process. On one hand these unrepresented elements are considered as a
wasted effort because they add no value in the final diagrams. On the other hand,
the presence of these unrepresented elements would result in a crowded project
explorer which would increase complexity and decrease needlessly the visibility
for the modellers. The monitored ArchiMate models for DataBio contain many
unrepresented elements, averaging 50% in some projects (see Table 1 and Fig. 1).

Percentage of Duplicate Elements. Duplicate elements are different Archi-
Mate elements created in the models but represent the same concept. This redun-
dancy can be the result of uncoordinated creation of elements by the different
collaborators or a simple misuse of the modelling tool. The presence of duplicate
elements add complexity for Modelio users and cause confusion in managing
different copies of the same concept. Furthermore, these redundancies prevent
Modelio users from identifying shared elements across diagrams and recognizing
all relations associated to the same element. The first three DataBio models
contain many redundancies (see Table 1) which is explained by the lack of expe-
rience of modellers freshly introduced to Modelio who are duplicating shared
elements between pilots to use them in different diagrams instead of referencing
the same element across different diagrams.

Complete Diagrams. We define two metrics for ensuring the completeness of
the ArchiMate diagrams. The first metric is concerned with the percentage of
empty diagrams as it is self evident to assume that an empty diagram is a sign
of incomplete work. However, when applying this metric in DataBio models we
noticed the presence of “almost empty diagrams” that can contain for instance
a few not related elements and therefore should also be considered as incomplete
or not having a mature enough design. Hence, we introduce the second metric
that measures the maturity level or the “importance score” of diagrams. The
importance score was introduced by Singh and van Sinderen [13] as an attempt
to formalize Enterprise Architecture metrics for measuring of the criticality and
the impact of an element in an Enterprise Architecture model. The importance
score is calculated based on assigned scores to elements and their outgoing rela-
tionships and therefore the more the elements inside a diagram are connected
together, the more the importance score is bigger. This measure could also be
considered as a indication of the maturity level of the diagrams if we assume
that any thing of value must be important and should have a certain minimum
defined importance score as opposed to “almost empty diagrams” which have
very low importance score. In the DataBio monitored projects (see Table 1) we

Monitoring ArchiMate Models for DataBio Project 587

can see that there is still many empty diagrams and that the median importance
score for diagrams is still very low especially for the first three projects.

3.2 ArchiMate Comprehensibility Metrics

The comprehensibility metrics evaluate the complexity to read ArchiMate dia-
grams by distinguishing the different elements and recognizing the connections
between them. Moreover, these metrics entail also the ability to understand the
concepts represented by ArchiMate diagrams such as the services, the compo-
nents and their interactions. Table 2 gives a summary of the collected measure-
ments by Measure Platform according to the defined comprehensibility metrics.

Table 2. Comprehensibility metrics for ArchiMate diagrams

Metrics Proj.1 Proj.2 Proj.3 Proj.4 Proj.5

Number of diagrams 59 36 33 312 141

Number of elements per diagram 13 17 13 7 7

Relations to Elements ratio 0.89 0.80 0.82 0.80 0.86

Percentage of documented elements 15% 19.2% 23.7% 57.9% 61.3%

Number of Diagrams. The number of diagrams reflect the size of the whole
model. Having a big sized model increases the complexity for readers. For exam-
ple, as we can see in the Table 2, the first three projects have reasonable number
of diagrams, but project 4 and 5, which represent mostly the technological com-
ponents in DataBio, have a big number of diagrams which can be disorienting
for readers to grasp all the concepts represented by these models.

Number of Elements per Diagram. The number of elements per diagram
metric is complementary to the previous metric because it highlights the density
of diagrams and thus showing the real size of models in terms of total number
of ArchiMate elements. The monitored DataBio models contain a reasonable
number of elements per diagram averaging from 7 to 17 elements per diagram
(see Table 2) which means that diagrams are not crowded and are easy to read.

Relationships to Elements Ratio. The relationships to elements ratio
reflects the congestion of associations between elements and shows the number
of different connections associated to the same element. The number of associa-
tions per element should be between 1 and 4, so that the resulted diagram would
be neither congested too much nor sparse too much.

588 K. Chaabouni et al.

Percentage of Documented Elements. Modelio allows modellers to attach
notes to the ArchiMate elements in order to describe the intended concepts rep-
resented in the diagrams. Although most of the elements have self evident names
that do not require more explanation, other elements require more explanation
for the readers especially if their names contain abbreviations, very technical
terms or terms that describe different purpose from the intuitive and most com-
mon perception.

4 Conclusion

This paper outlines the adopted approach for monitoring ArchiMate models con-
tained in Modelio repositories and the defined metrics that are used for collect-
ing measurements on the monitored projects. ArchiMate models provided clarity
and understanding throughout the DataBio project and therefore we needed to
maintain a good quality level for the models. For this purpose, we defined met-
rics for model quality based on our experience with DataBio and inspired by
other literature metrics. This has led to interrogate the models with a model
indexing tool “Hawk” and a monitoring tool “Measure Platform” in order to
evaluate models quality according to the defined metrics. We defined two sets
of metrics: the first type was for optimizing the modelling process with Modelio
and the second type for evaluating the ArchiMate diagrams.

For future work, we look forward to experiment with these metrics in other
projects and analyse modellers feedback in order to adjust these metrics for
ArchiMate modelling or for other modelling languages or methodologies.

Acknowledgements. This work is partially funded by “DataBio project” (No.
732064) under European Commission’s Horizon 2020 research and innovative pro-
gramme and “Measure project” (No. 14009) under the EUREKA ITEA 3 Programme.

References

1. DataBio partners. https://www.databio.eu/en/consortium. Accessed 27 May 2019
2. DataBio homepage. https://www.databio.eu. Accessed 27 May 2019
3. DataBio public deliverable: DataBi D4.2 Services for Tests
4. Josey, A.: ArchiMate R© 3.0 1-A Pocket Guide. Van Haren, ’s-Hertogenbosch (2017)
5. Fritscher, B., Pigneur, Y.: Business IT alignment from business model to enterprise

architecture. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011. LNBIP, vol. 83, pp.
4–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22056-2 2

6. Modelio Business Architecture. https://www.modeliosoft.com. Accessed 18 April
2019

7. Measure Platform. http://measure-platform.org. Accessed 21 May 2019
8. Hawk. https://github.com/mondo-project/mondo-hawk. Accessed 21 May 2019
9. Al-Wadeai, O., et al.: Integration of Hawk for model metrics in the MEASURE

platform. In: MODELSWARD (2018)
10. Garcia-Dominguez, A., et al.: Integration of a graph-based model indexer in com-

mercial modelling tools. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems. ACM (2016)

https://www.databio.eu/en/consortium
https://www.databio.eu
https://doi.org/10.1007/978-3-642-22056-2_2
https://www.modeliosoft.com
http://measure-platform.org
https://github.com/mondo-project/mondo-hawk

Monitoring ArchiMate Models for DataBio Project 589

11. Epsilon Object Language. https://www.eclipse.org/epsilon/doc/eol/. Accessed 14
June 2019

12. Mohagheghi, P., et al.: Definitions and approaches to model quality in model-based
software development-a review of literature. Inf. Softw. Technol. 51(12), 1646–1669
(2009)

13. Singh, P.M., van Sinderen, M.J.: Lightweight metrics for enterprise architecture
analysis. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 228, pp. 113–125.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26762-3 11

https://www.eclipse.org/epsilon/doc/eol/
https://doi.org/10.1007/978-3-319-26762-3_11

Showcasing Modelio and pure:variants
Integration in REVaMP2 Project

Alessandra Bagnato1(B), Alexandre Beaufays1, Etienne Brosse1,
Käıs Chaabouni1, Uwe Ryssel2, Michael Schulze2, and Andrey Sadovykh1,3

1 Softeam, 21 Avenue Victor Hugo, 75116 Paris, France
{alessandra.bagnato,alexandre.beaufays,etienne.brosse,

kais.chaabouni}@softeam.fr
2 pure-systems GmbH, Otto-von-Guericke-Str. 28, 39104 Magdeburg, Germany

{uwe.ryssel,michael.schulze}@puresystems.com
3 Innopolis University, Kazan, Russia

a.sadovykh@innopolis.ru

Abstract. REVaMP2 project is part of the ITEA 3 industry-driven
Research, Development and Innovation programme in the domain of soft-
ware innovation. REVaMP2 project aims to develop automated and com-
prehensive tools that support massive customizing of “Software-Intensive
Systems and Services” (SIS) Product Lines (PL). This approach requires
agile round-trip engineering processes for managing the different configu-
rations in legacy assets, and for more systematic and automated variabil-
ity management. For this purpose, the project puts among its priorities
the standardization of a variability language called “Variability Exchange
Language” (VEL) as a format for describing variability in models. This
paper showcases the integration of the model-driven engineering (MDE)
tool “Modelio” with the variability management tool “pure::variants”
using the VEL language as data exchange format. VEL is used to model
both the feature model, also referred to as “150% model”, with all pos-
sible variation points and all variant configurations coming from the fea-
tures selection for the variant of a specific product.

Keywords: Product Lines Engineering · Variability model ·
Variability

1 Introduction

“Round-trip Engineering and Variability Management Platform and Process”
project, abbreviated to REVaMP2, is a research project that started in Novem-
ber 2016 under the ITEA 3 industry-driven Research, Development and Inno-
vation programme and is scheduled for a period of 3 years. The consortium
of the project is composed of 30 partners from 5 countries and includes uni-
versities, research institutes, IT companies including Softeam (project leader),
and industrial giants such as ABB, AVL, Bosch, Siemens, Scania, SAAB and

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 590–595, 2019.
https://doi.org/10.1007/978-3-030-35333-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_43&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_43

Showcasing Modelio and pure:variants Integration 591

Thales [1]. REVaMP2 aims to conceive, develop and evaluate the first com-
prehensive automation tool-chain and associated executable process to support
round-trip engineering of “Software-Intensive Systems and Services” (SIS) Prod-
uct Lines (PL) and thereby helping to profitably engineer mass customized prod-
ucts and services. The Product Lines approach offers significant cost reductions
in customization and rapid development of products targeting various market
segments. However, Product Lines Engineering (PLE) often requires a complex
modelling and a co-evolution of multiple assets. This hinders the proliferation of
the PLE approach and constraints its accessibility for small and medium-sized
enterprises (SME) and for a large community of system developers [2,3]. In order
to tackle this issue, several tools were conceived, during REVaMP2 project, in
an attempt to formalize and automate the variability management process such
as the variability management tool named “pure::variants” [4]. “pure::variants”
provides a set of features for managing variability in the context of software
development. These features can be applied across several development process
phases such as specification, design, and implementation independently from the
used language. This implies that “pure::variants” can be used in model-driven
engineering (MDE) approaches to manage variability in UML models for exam-
ple. Moreover, “pure::variants” allows variability models to be exported using
“Variability Exchange Language” (VEL) [5] serialized as XML files. Thus, these
variability models can be exploited for communicating with MDE tools such as
Modelio [6]. Modelio is an MDE workbench that provides both model editing,
such as UML2 and SysML standards, and round-trip engineering including code
generation and reverse engineering. The rest of the paper is structured as fol-
lows. Section 2 introduces the different variability concepts as defined in VEL.
Section 3 provides a general overview of our proposed approach to express vari-
ability in UML/SysML models. Preliminary results of the variability and UML
co-modelling are presented in Sect. 4. Finally, Sect. 5 summarizes the paper and
presents some future work.

2 Variability

A variability model consists of a set of variation points that can occur in specific
parts of the customizable product which in our case is a UML/SysML model.
There are four types of variation points, two for structural variations that affect
the entirety of the model such as selecting parts of the model, and two for
parameter variations that affect only the values of the specific parameter. Hence,
the variation points can be categorized as follows:

– Optional structural: No restriction, all structural variation can be selected
independently.

– Alternative structural: One and only one structural variation can be selected.
– Alternative parameter: One and only one parameter value can be selected.
– Calculated parameter: Parameter value is calculated by an given expression.

Variability management tool handles several types of variability models across
its software product line development workflow. It manages a software product

592 A. Bagnato et al.

line as a set of integrated “Feature Models” describing the common and variable
features and “Variant Models” specifying individual products from the product
line. Figure 1 shows an example of feature model (in the left) that contains
mandatory features common for all variants of “Car” such as the “Window”
and an optional feature such as the “Air Conditionner”. Each feature can have
a variety of alternatives such as the possibility to have an electric or manual
window in the car. Contrary to the feature model that contains all possibilities,
the variant model contain a configuration with a selection of alternatives that
define a product variant. Figure 1 shows an example of variant model (in the
right) where we select a car with two windows, manual gear control and a radio.

Fig. 1. Feature model vs variant model in pure::variants

3 Variability Integration

Our integration of variability in Model Driven Engineering consists in designing
a new UML profile in a Modelio module that includes “Stereotypes” to match the
different types of variation points as defined in VEL. The properties of the stereo-
types describe a set of information related to variability such as conditions that
trigger the variation. In addition, these extensions can be used in UML/SysML
diagrams to represent product lines with all possible features (also called 150%
model). The “150% models” contain all possible assets of the system and act
in a similar way as the feature model in VEL. These constraints can be applied
to every asset represented in UML/SysML models such as classes, associations,
description notes, attributes, diagrams (e.g. class diagram, sequence diagram),
parameters of elements (e.g. “Multiplicity-Max”), etc.

VEL language is used to create two types of files:

1. Description file that represents the global variability model with all possible
variation points and associated variations.

2. Configuration file that contains a selection of features for a variant of a prod-
uct.

Showcasing Modelio and pure:variants Integration 593

Fig. 2. The modelling process between VM and MDE tools

The global process for creating a model variant with both an MDE tool and
a Variability Management (VM) tool (see Fig. 2) can be summarized with the
following steps:

– Create a 150% model with MDE tool representing the product line assets
with all its variations (see Fig. 3)

– Generate a VEL description file corresponding to the selected 150% Model
– Import the VEL description file with the variability management tool to

create a family model
– With the variability management tool couple description file with feature and

variant models to create a VEL configuration file
– Import the VEL configuration file within MDE Tool to create the variant

of the model which results in duplicating the 150% model all its elements
and then removing the elements that are not included in the variant and
the variability related constraints. It also changes the value of the elements
constrained with parameter variations (see Fig. 4).

4 Results

The integrating of variability in Model Driven Engineering approach resulted
in developing a new environment for the modelling process that includes the
use of two tools. The first tool is Modelio MDE with its extension “Variability
Designer” [7] which provides the variability profile described in the previous
section with a set of functionalities (commands, wizards, etc.) that allow users
to annotate their UML/SysML elements with stereotyped UML constraints that
correspond to the four types of variation points described in Sect. 2. It also
provides VEL import/export facilities. The second tool is pure::variant which
act as variability management tool that supports VEL language.

These tools have shown promising results in managing variability models
and generating variants of the 150% model. Figure 3 depicts 150% system model
where the supercharged model is annotated with variability constrains. Then,
based on a variant configuration, the variant system model is automatically
created containing the selected sub-systems with two windows, manual gear and
radio.

594 A. Bagnato et al.

Fig. 3. Annotated 150% system model in Modelio

Fig. 4. Variant in Modelio

We note that, as pointed by Dubinsky et al. [8], instead of adopting PLE,
many companies clone an existing product and modify it to fit the new customer
needs using the clone-and-own approach. Nevertheless, these tools could help
companies to adopt PLE in software and information system engineering in
order to efficiently managing variability in models.

5 Conclusion and Future Work

At this stage of the development, all the main features are functional, but the
user experience and the usability of the tool can still be improved. Additional

Showcasing Modelio and pure:variants Integration 595

features are planned for the future such as adding the ability to view and edit
the variation points in a more intuitive way, and to add data verification on rel-
evant fields. Moreover, we consider integrating other tools to further automate
the process, such as But4Reuse [9] tool helps to automatically create the 150%
model from a set of pre-existing variants. Finally, we consider performing sev-
eral experimentation of this approach with other modelling languages such as
ArchiMate in order to expand its field of application.

Acknowledgements. The research leading to these results was partially funded by
the ITEA3 project 15010 REVaMP2, which is funded in part by the national funding
agencies in various countries including Fonds Unique Interministériel (FUI), the Ile-de
France region and the Banque Publique d’Investissement (BPI) in France.

References

1. REVaMP2 project homepage. http://www.revamp2-project.eu. Accessed 22 July
2019

2. Sadovykh, A., Bagnato, A., Robin, J., Viehl, A., Ziadi, T., Martinez, J.: REVAMP:
challenges and innovation roadmap for variability management in round-trip engi-
neering of software-intensive systems (2017)

3. Martinez, J., Ziadi, T., Bissyandé, T., Klein, J., Le Traon, Y.: Bottom-up adoption of
software product lines - a generic and extensible approach. In: SPLC 2015, Nashville,
US, 20–24 July (2015)

4. pure::variants. www.pure-systems.com/products/pure-variants-9.html. Accessed 15
Apr 2019

5. Variability-Exchange-Language. variability-exchange-language.org. Accessed 22
July 2019

6. Modeliosoft homepage. https://www.modeliosoft.com/fr/. Accessed 22 July 2019
7. Variability Designer Module. https://forge.modelio.org/projects/variabilitydesi

gner. Accessed 15 Apr 2019
8. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An

exploratory study of cloning in industrial software product lines. In: 2013 17th Euro-
pean Conference on Software Maintenance and Reengineering, pp. 25–34. IEEE,
March 2013

9. BUT4Reuse homepage. https://but4reuse.github.io/. Accessed 24 July 2019

http://www.revamp2-project.eu
http://www.pure-systems.com/products/pure-variants-9.html
https://www.variability-exchange-language.org/
https://www.modeliosoft.com/fr/
https://forge.modelio.org/projects/variabilitydesigner
https://forge.modelio.org/projects/variabilitydesigner
https://but4reuse.github.io/

DECODER - DEveloper COmpanion
for Documented and annotatEd code Reference

Victoria Torres , Miriam Gil(&) , and Vicente Pelechano

Universitat Politècnica de València, 46022 València, Spain
{vtorres,mgil,pele}@pros.upv.es

Abstract. Software is everywhere and the productivity of Software Engineers
has increased radically with the advent of new specifications, design and pro-
gramming paradigms and languages. The main objective of the DECODER
project is to introduce radical solutions to increase productivity by increasing the
abstraction level, at specification stage, using requirements engineering tech-
niques to integrate more complete specifications into the development process,
and formal methods to reduce the time and efforts for integration testing.
DECODER project will develop a methodology and tools to improve the pro-
ductivity of the software development process for medium-criticality applica-
tions in the domains of IoT, Cloud Computing, and Operating Systems by
combining Natural Language Processing techniques, modelling techniques and
Formal Methods. A radical improvement is expected from the management and
transformation of informal data into material (herein called “knowledge”) that
can be assimilated by any party involved in a development process. The project
expects an average benefit of 20% in terms of efforts on several use cases
belonging to the beforehand mentioned domains and will provide recommen-
dations on how to generalize the approach to other medium-critical domains.

Keywords: Requirements analysis � Open source software � Software
engineering � Operating systems � Computer languages

1 Project Summary

The DEveloper COmpanion for Documented and annotatEd code Reference (DECO-
DER) project is a H2020 project (H2020-ICT-16-2018 Software Technologies call)
that has received funding from the European Union’s H2020 research and innovation
program under the grant agreement 824231. The project has a duration of 36 months,
starting in January 2019 and finishing in December 2021. Currently, the project has
already reached the first six months, period in which all work packages have started,
and some deliverables have also been submitted. Updated information about the project
can be found in the https://www.decoder-project.eu web site. Regarding the project

This work has been developed with the financial support of the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 824231 and the Spanish State
Research Agency under the project TIN2017-84094-R and co-financed with ERDF.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 596–601, 2019.
https://doi.org/10.1007/978-3-030-35333-9_44

http://orcid.org/0000-0002-2039-2174
http://orcid.org/0000-0002-2987-1825
http://orcid.org/0000-0003-1090-230X
https://www.decoder-project.eu
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_44&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_44

consortium, it is formed by contributors from seven partners from four different
European countries (cf. Table 1).

2 Project Motivation

Software drives our modern economy; it is indeed present everywhere, from critical
infrastructures supporting our societies, such as energy supply and transportation, down
to the smart devices connecting us to the internet (also called IoT). However, too much
time is wasted during software development projects due to wrong decisions taken
along the whole process. The main reason for taking such decisions is the amount of
information stakeholders have to deal with and the lack of proper documentation. To
this end, software production is insufficiently supported by effective tools and often,
engineers lack a systematic approach for the development and safe reuse of compo-
nents and their associated knowledge. In addition, a typical development process
requires interactions of many stakeholders, at very different abstraction levels, and
often over ambiguous and incomplete documents. This makes the integration and even
more the maintenance of software systems extremely difficult and costly.

Within this context, support to properly handle project knowledge derived from all
the involved artefacts (e.g., source code, specifications, informal documents, etc.) is
required; it is software project intelligence that assist developers with an instantaneous
access to its documentation, abstract models, verification data and traceability matrix.

3 Detailed Description of the Goals of the Project

The main goal of DECODER is to build a smart environment that could assist and help
developers, analysts, testers, etc. to improve the software development process. To
achieve this goal, in DECODER we propose to apply and combine techniques from
Natural Language Processing, Machine Learning, Process Modeling, Model Trans-
formations, and Verification. Specifically, the detailed objectives are the following:

Table 1. List of participating partners and key positions

Partner Short name Country Key positions

Technikon TEC Austria Project Leader and WP8
Leader

CEA Tech CEA France WP1, WP3 Leader
Tree Technology SA TREE Spain WP2 Leader
Capgemini España SL CAPGEMINI Spain WP4 Leader
Universitat Politècnica de
València

UPV (PROS) Spain WP5 Leader

Sysgo AG SYSGO Germany WP6 Leader
OW2 OW2 France WP7 Leader

DECODER - DEveloper COmpanion for Documented and annotatEd code Reference 597

• Objective 1: High-level abstract models for engineers.
• Objective 2: Significantly increase the software development and maintenance

efficiency.
• Objective 3: Drastically improving the use of informal knowledge and artefacts.
• Objective 4: Build collaborative knowledge and smart user interfaces.
• Objective 5: Improve the overall quality of software for medium-criticality

domains.

To achieve the aforementioned goals, the project has been designed according to
eight work packages as shown in Fig. 1. While the work developed in work packages 1
to 6 are focused mainly on the design and implementation of the technological inno-
vation foreseen in DECODER, in work packages 7 and 8, common activities in such
European projects such as dissemination and management activities will be performed.

4 Project Expected Achievements and Outcome

The DECODER project addresses objective ICT-16-2018 scope a) and both areas
thereof (i.e. code and resources abstraction, and advanced software systems develop-
ment). The project will support this objective by obtaining the following achievements:

• Improve the productivity of software engineers of medium-criticality applications
along the whole lifecycle process by several means: (1) increasing the abstraction
level, namely at specification stage, (2) using requirements engineering techniques
to integrate more complete specifications into the development process, and

Fig. 1. DECODER work package distribution and the relationships between them

598 V. Torres et al.

(3) using Formal Methods to reduce the time and efforts for integration testing,
replacing it by formal analyses. This achievement is related to objectives 1 and 3.

• Development of novel languages defined from the abstraction of the formalisms
used today for requirements analysis and specification: (1) an abstract formal design
language, namely ASFM, to navigate between different levels of abstractions, and
(2) an abstract graphical specification language, namely GSL, capable of intuitively
specifying some code and generating detailed specifications in ACSL/ACSL++ and
JML. This achievement is related to objective 1.

• Development of new languages and methods to formalize software requirements
that are often informal based on NLP techniques to formalize in a human under-
standable formalism the informal requirements. These new languages will permit to
describe data and processes amenable for specification and refinements. This
achievement is related to objectives 1, 3 and 4.

• Demonstrate the applicability and viability of the proposed solution on several use
cases from very different categories: (1) IoT/embedded systems, (2) Artificial
Intelligence and IoT domains (computer vision), (3) enterprise computing (in-
cluding Cloud computing/Big Data and Middleware/Cloud computing). This
achievement is related to objectives 2 and 5.

Regarding the outcomes, one of the major outcomes of DECODER is the Persistent
Knowledge Monitor (PKM) that will be developed in WP1. This PKM will provide a
“central” infrastructure to store, access, and trace all the persistent data, information
and knowledge related to a given software or ecosystem (notably its source code and
related artefacts, and also derived information). As Fig. 1 shows, the PKM will be used
in work packages 2, 3, and 4, where activities for developers, reviewers, and main-
tainers over the PKM are defined. Next, we detail the major outcomes of these work
packages.

Regarding WP2 where activities for developers are defined, support for the trans-
formation of informal code related data (e.g., text that captures requirements, informal
specifications, internal documentation or even comments in the source code) into
formal documentation and also summarize source code will be provided. The gener-
ation of formal documentation provides useful information for users who have created
that piece of code and have to return to it at some point as well as future maintainers.

Regarding WP3 where activities for reviewers are defined, support for saving in the
knowledge database is provided. In particular it will be stored what an external
reviewer understands from the code, the comments and how the code intentions are
automatically verified. This expert knowledge is usually lost after the code review and
the advanced users need to recreate it repeatedly. In this WP, we formalize the results
of the review activities into an Abstract Semi-Formal Model. Ideally, such a model
would only contain formal properties of the code written in ACSL/ACSL++ and JML
and automatically verified by formal deductive verification. However, the definition of
such a model requires far too much resources and expertise to build it from scratch. To
lower this expertise, we accept definitions coming from different sources: formal
description, function calls without any side effect, sequence diagram, formal

DECODER - DEveloper COmpanion for Documented and annotatEd code Reference 599

visualization and abstraction. The ASFM language will contain the functional logic
notions of data structure invariant, type states, behaviors based on pre/post-conditions.
If the reviewer can write them manually in the ACSL/ACSL++ and JML annotation
languages, WP3 proposes many ways to incrementally build and enrich such Abstract
Models between the code and the logic specification.

Regarding WP4 where activities for the maintainer are defined, support for con-
trolling the impact of changes through implementation of traceability management will
be provided. This means establishing links and maintaining cross-references between
artefacts. For this purpose, NLP technologies will be used to build and manage a
traceability matrix between requirements, code and documentation. This matrix is a
sparse matrix of traces. A trace is made of two anchors (or trace location) with addi-
tional semantic attribute (role, level of confidence) and some more technical or man-
agement attributes. The anchor references an element in the PKM. The traceability
matrix binds high-level requirements with fine-grain specifications of code to help
controlling the impact of changes. The traceability matrix binds a piece of code with a
piece of documentation to help experienced people to make explicit all implicit
knowledge that exists in their mind and will help new staff members to quickly grasp
the big picture and the crucial details before doing any change. Traceability manage-
ment is extended to check consistency with test cases.

Besides these four work packages, in work package 5 methodology support for
end-users (C, C++, and Java programmers) along the life cycle will be provided. To
ensure that certain software properties are satisfied when applying the proposed
methodology, an innovative methodology will be defined based on formal and agile
techniques. As a result, the proposed methodology will define the different stages of the
complete life cycle development, the different roles involved as well as the intermediate
artefacts built, modified or just consumed in the different proposed stages. In addition,
the supporting tool will integrate the set of tools proposed in WP1 and WP2 as well as
the artefacts consumed and produced by these tools along the life cycle. As a result, the
methodology will ensure the generation of better documentation, the construction of
critical and medium critical applications ensuring the quality of the obtained artefact as
well as the application of the existing standards.

Finally, the framework and tools developed in the previous work packages will be
put into practice with real source code, specifically on large use cases provided by
partners that are not themselves tool developers but applications developers. This will
be performed within the context of WP6, where besides demonstration purposes,
feedback on the quality of the maintenance activities in the form of measurements
(productivity gains) and recommendations will be also generated. These experimental
activities can be considered as a first step towards the later exploitation of the project’s
tools and framework. In addition to these six work packages DECODER defines two
more packages, WP7 and WP8 which are intended mainly for dissemination and
management purposes respectively.

5 Existing Collaborations with Other Projects

At the current state, DECODER project maintains collaborations with several projects:

600 V. Torres et al.

• Project VESSEDIA1 (Verification Engineering of Safety and Security Critical
Dynamic Industrial Applications): Our project will reuse the tools developed by
VESSEDIA to develop modular specifications and proofs to render formal speci-
fication activities easier to manage.

• Project OpenReq2 (Intelligent Recommendation & Decision Technologies for
Community-Driven Requirements Engineering): Our project will get inspiration from
the original requirements specification novelties to enforce its NLP activities and
define better languages for expressing semi-formalized requirements. We will assist
to the OpenReqweek in September 2019where DECODER project will be presented.

6 Interest in Participating in the EU Project Space
at PROFES

DECODER has different reasons to participate in PROFES. First, we would like to
announce the project to the PROFES community, a community mainly focused on the
software process improvement where DECODER is also putting all its efforts. Secondly,
we would like to present all PROFES participants the major research outcomes achieved
during the first six months of the project and discuss any potential improvement to them.
Thirdly, we would like to learn from the PROFES community the last advances and
research developed in this field in order to improve DECODER execution. Finally, we
also want to attract DECODER early adopters from practitioners, researchers, and
educators interested in the software process improvement. Besides PROFES, in
DECODER we have a dissemination plan that has also resulted in the participation of
different events during the first six months of execution (see Table 2). However, it is
important to continue this task both in industry and in academic contexts. For this
reason, the different partners from the consortium are actively working to participate in
different types of events, not just to announce the DECODER project but also to discuss
the research outcomes with the scientific and industrial communities interested in
improving the software development process. In particular, DECODER contributors are
working to participate in the next months in the events listed in Table 2.

Table 2. Past and upcoming events where DECODER has participated or will participate

Event Country Dates

Testnet Spring event Nieuwegein, Netherlands 11 May 2019
OW2con’19 Paris, France 12–13 June 2019
OpenReq week Hamburg, Germany 2–6 September 2019
EclipseCon Europe Ludwigsburg, Germany 21–24 October 2019
DeVoxx Antwerp, Belgium 4–8 November 2019
Paris Open Source Summit Paris, France 10–11 December 2019

1 https://vessedia.eu/.
2 https://openreq.eu/.

DECODER - DEveloper COmpanion for Documented and annotatEd code Reference 601

https://vessedia.eu/
https://openreq.eu/

DECIDE: DevOps for Trusted, Portable
and Interoperable Multi-cloud Applications

Towards the Digital Single Market

Leire Orue-Echevarria1(&) , Juncal Alonso1 ,
Marisa Escalante1 , Kyriakos Stefanidis2, and Lorenzo Blasi3

1 TECNALIA, Bizkaia Technology Park, Derio, Spain
{Leire.orue-echevarria,juncal.alonso,

marisa.escalante}@tecnalia.com
2 Fraunhofer Fokus, Berlin, Germany

kyriakos.stefanidis@fokus.fraunhofer.de
3 Hewlett Packard Italiana s.r.l., Cernusco sul Naviglio, Italy

lorenzo.blasi@hpe.com

Abstract. The transformation from a product to service economy means that
companies need to become software service providers as well as consumers.
Cloud enables greater business agility by making IT infrastructure more flexible.
The current trends of deploying applications following a hybrid cloud, multi-
cloud or cross-cloud architecture, as well as the design, development and
operation of multi-cloud native applications based on microservices present
several challenges for their developers and operators. This paper presents a
solution implemented in the context of the European project DECIDE which
aims to support DevOps teams in the design, pre-deployment, contracting,
deployment and operation of multi-cloud native applications with the provi-
sioning of an integrated framework. The project is entering its late phase, in
which the DevOps framework is currently being validated and evaluated in
various use cases.

Keywords: DevOps � Architectural patterns � Optimization � Automatic
deployment � Redeployment � Cloud service broker �Multi-cloud Applications �
Microservices � Cloud SLA

1 Project Data

DECIDE: DevOps for Trusted, Portable and Interoperable Multi-Cloud Applications
towards the Digital Single Market.

The project’s website is: https://www.decide-h2020.eu. The duration is 36 months,
spanning from December 2016 to November 2019. The project is currently ongoing.
The technical developments are being finished and the integrated DECIDE DevOps
Framework is planned to be released by August 2019.

The DECIDE consortium is composed by 8 partners from 6 European countries
(Spain, United Kingdom, Germany, Belgium, Italy and Switzerland), which are:

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 602–607, 2019.
https://doi.org/10.1007/978-3-030-35333-9_45

http://orcid.org/0000-0002-0648-4689
http://orcid.org/0000-0002-9244-2652
http://orcid.org/0000-0002-8624-6655
http://orcid.org/0000-0002-8709-522X
https://www.decide-h2020.eu
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_45&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_45

TECNALIA, EXPERIS IT, ARSYS, AIMES, Fraunhofer FOKUS, Time.lex, HPE and
CloudBroker.

This consortium has the right balance between academia and industry in order to
achieve cutting-edge research results in the field of Computer Science (Cloud and
Software Engineering). It involves internationally recognized research institutes
(TECNALIA, Fraunhofer), large companies (HPE, Experis IT), and SMEs (Time.Lex,
ARSYS, AIMES, and CloudBroker), with different profiles such as Cloud Service
Providers (ARSYS and AIMES), cloud service brokers (CloudBroker), integrators
(HPE, Experis IT) and ICT legal companies (Time.lex).

2 Objectives of the Project

The main scientific and technological (ST) objective of DECIDE is to provide a new
generation of multi-cloud services-based software framework, enabling techniques,
tools and mechanisms to design, develop, operate, and dynamically (re-)deploy multi-
cloud aware applications in an ecosystem of reliable, interoperable, and legal compliant
cloud services. DECIDE will provide architectural patterns and the needed supporting
tools for developers and operators of multi-cloud application providers to develop and
operate (following the DevOps approach) multi-cloud native applications that can be
dynamically self-adapted and re-deployed using the “best” combination of cloud ser-
vices in each moment, depending on the existing multi-cloud context considering both
the multi-cloud application behavior as well as the behavior of the underlying used
cloud offerings. Moreover, DECIDE will enhance the trustworthiness of multi-cloud
application providers towards buyers and users of the SaaS applications by setting up a
catalog of trusted, interoperable and legally compliant cloud services and the required
mechanisms to register, discover, compose, use and assess them.

This main objective has been broken down into smaller scientific and technological
objectives, which are explained next.

Objective 1: Set up a development, delivery and operation pipeline covering the stages
that a multi-cloud native application goes through, from development to operation,
providing the needed mechanisms for continuous architectural design, development,
continuous integration, continuous quality control, continuous (re-)deployment and
operation. To achieve that, DECIDE will provide a DevOps framework from design
and non-functional requirements (NFR) gathering through operation of multi-cloud
native applications in compliance with the DevOps paradigm.
Objective 2: Facilitate the continuous architectural design approach by providing a set
of architectural patterns along with the supporting tool that will support the design,
development, optimization and deployment of multi-cloud native applications. These
patterns can be classified as development patterns, optimization patterns and deploy-
ment patterns, each covering different phases of the software development lifecycle
(SDLC). The developers will be able to define their own set of prioritized NFRs (e.g.
Availability, Security, Scalability, Performance, Cost) and, based on them, DECIDE
will provide a suggestion of which architectural patterns need to be applied, how they

DECIDE 603

should be applied, to which component and in which order, so as to diminish trade –

offs powered by a decision algorithm. These multi-cloud architectural patterns will
allow the design and development of distributed applications over heterogeneous cloud
resources whose components are prepared to be deployed on different cloud service
providers (CSPs) and still, they all work in an integrated way and transparently for the
end-user. The main result of this objective is DECIDE ARCHITECT.
Objective 3: Provide mechanisms to analyze alternative cloud deployment scenarios
and their impact in the NFRs of the application (e.g. availability, performance), in the
multi-cloud application SLA (MCSLA) as well as in the application costs, suggesting
the developers and operators the best cloud deployment alternatives - through the
simulation of the behavior of the application under stressful conditions - and the cloud
resources and cloud nodes communications. The main result of this objective is
DECIDE OPTIMUS.
Objective 4: Make available broadly and cross border cloud services, so that enterprises
and developers can re-use and combine cloud services, assembling a network of
interoperable, legal compliant, quality assessed (against SLAs) single and composite
cloud services. This will be achieved through the Advanced Cloud Service (meta-)
intermediator (ACSmI), which will provide means to assess continuous real time
verification of the cloud services non-functional requirements fulfilment and legislation
compliance enforcement. ACSmI will also provide a cloud services store where
companies and developers across Europe can easily access centrally negotiated deals of
compliant and accredited applications developed by the software sector.
Objective 5: Enable the self-adaptation and (semi-)automatic redeployment of (parts of)
the application in real time, in order to comply with the set of predefined NFRs of the
application. DECIDE ADAPT will pro-actively adjust the running configuration of the
application based on measurements that are derived from the dynamic monitoring
activities of both the application and the non-functional properties of the CSPs and
cloud offerings where the application is deployed and making use of.

3 Envisioned and Achieved Results of the Project

DECIDE has envisioned the following results, delivered in the form of software
components and available for download in the project’s public git repository1:

• DECIDE DevOps Framework: is the graphical (web-based) entry point to the
DECIDE tool suite and it allows multi-cloud native application developers and
operators to manage their applications, from dev to ops, following the DevOps
philosophy. The DECIDE DevOps Framework integrates the tools that will be
presented next as well as additional tools such as:
– A general form-based editor, which is used to create all the needed information

about the application and the corresponding microservices, and to determine the
non-functional requirements that are key for that application.

1 https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components.

604 L. Orue-Echevarria et al.

https://git.code.tecnalia.com/DECIDE_Public/DECIDE_Components

– Integration of tools offered in the market for Continuous Integration and Con-
tinuous Quality such as Jenkins and SonarQube, in order to cover the complete
development lifecycle of an application.

– A Multi-Cloud Service Level Agreements (MCSLA) editor, that allows to create
multi-cloud Service Level Objectives (SLO) taking as input the SLOs of the
cloud services from the selected CSPs where the application will be deployed
initially. These SLOs will be used by ADAPT to verify that these values are kept.

– An application description, which is the way in which all tools communicate
with each other for seamless interoperability (Fig. 1).

• DECIDE ARCHITECT: This tool aims at recommending to the developers,
architectural patterns for the design, optimization and deployment of a multi-cloud
native application taking into consideration the non-functional requirements (NFRs)
as defined by the developer. These patterns are complemented with a set of fun-
damental patterns, covering basic aspects of multi-cloud native applications. The
supported NFRs are performance, scalability, availability, location, cost and legal
level. ARCHITECT is offered in two flavors, as an Eclipse plug-in as well as
integrated in the DevOps Framework. Both tools have the same functionalities.

• DECIDE OPTIMUS: This tool is composed of two complementary modules,
namely a classification tool and a simulation engine. The main objective of
OPTIMUS is to provide the best configuration for the deployment of a multi-cloud
application on multiple cloud services. In a first step, the developer needs to classify
the microservices (e.g. computing, public ip, database, etc.) and their infrastructure
requirements while in a second step, taking into consideration the previous data and
the defined NFRs, OPTIMUS provides a simulation and optimization of the best
combination of cloud services. The algorithm used for this is an adapted version of
NGSA II for the problem statement of DECIDE. OPTIMUS is offered also in two
flavors, as an eclipse plugin and as part of the UI of the DevOps framework.

Fig. 1. DECIDE DevOps framework user interface

DECIDE 605

• ACSmI (Advanced Cloud Service meta-Intermediator): ACSmI is a tool that allows
to discover, benchmark, contract and monitor trusted cloud service offerings.
To this end, ACSmI discovery allows to select, manually or through an API to
OPTIMUS, the most appropriate set of cloud services, namely virtual machines,
databases and storage considering the NFRs specified by the developer. ACSmI
contracting allows for an automatic contracting of the cloud services proposed by
OPTIMUS. The CSPs currently covered by this functionality are Amazon, Arsys,
CloudSigma and Azure. ACSmI monitoring monitors that the CSPs comply with
their SLAs, and more specifically, with the SLOs for availability, performance,
location and the user entered cost. Finally, ACSmI billing presents the costs attained
by each cloud service in a single point.

• ADAPT: It allows the automatic deployment and (semi-)automatic adaptation of the
application and redeployment in another multi-cloud configuration when certain
conditions are not met. These conditions are, on one hand, the violations of the
application’s own MCSLA and, on the other hand, the non-fulfilment of the SLOs
of the CSPs where the application is deployed (monitored by ACSmI monitoring).
These conditions will trigger a violation alert and will cause the OPTIMUS tool to
be launched again in order to search for another deployment configuration.
Depending on the technological complexity requirement, and the initially priori-
tized requirements by the user, the application will either be readapted automatically
or an alert to the operator will be sent along with a diagnosis of what malfunctioned
so that a new optimal configuration can be found.

The aforementioned tools extend the traditional CI/CD pipeline and provide their
functionalities throughout the whole application lifecycle. In the design phase, DevOps
framework supports the unified definition of the application properties and NFRs while
ARCHITECT suggests architectural patterns based on those NFRs. In the testing phase
and prior to deployment, OPTIMUS adds the notion of pre-deployment where various
deployment schemas are presented based on the application NFRs and the available
CSP offerings. ACSmI on the other hand, handles the discovery of the CSP offerings.
In the deployment phase, ADAPT provides automatic deployment and configuration
management on a multi-cloud environment while ACSmI handles the contracting of the
CSP offerings. During operation, ACSmI and ADAPT monitor the application per-
formance against the defined SLA and, in case of SLA violation, ADAPT provides the
means for automatic or semi-automatic redeployment of the affected modules in
alternative CSPs. The management and orchestration of the tools is done via a unified
web-based user interface provided by the DevOps framework.

The evaluation process of the key results against the success criteria defined in the
Description of Action of DECIDE project took place in three widely differing use
cases, with different requirements. These were a clinical data entry tool (StreamLine), a
change-tracking center (CTC), and a block-chain based energy-trading platform.

The project’s validation strategy follows an iterative approach where the tools are
assessed after the three major release milestones of the project. At the time of writing,
the results are limited to qualified, predominantly positive, comments, particularly
around usability and function with a positive quantitative result of a 50% reported
efficiency improvement on the multi-cloud deployment using the ADAPT module.

606 L. Orue-Echevarria et al.

More concrete quantitative results are expected after the finalization of the last eval-
uation at the end of the project.

A market analysis has shown that while there are several DevOps integrated tool
suites in the market such as Xebialabs2 (XL DevOps platform, XL Release and XL
deploy), IBM UrbanCode3, Microfocus4, AWS Developers Tools5, and Microsoft
Azure DevOps6, they do not full cover the functionalities presented above for Dev
(ARCHITECT, OPTIMUS and ADAPT Deployment), nor the complete Ops lifecycle
of monitoring the application and the CSP and re-adapting the application in a (semi-)
automatic way.

4 Collaboration with Other Projects

The collaboration in the project has been classified according to three angles or
perspectives:

• Types of collaboration: technical, promotional, commercial.
• Levels of collaboration: project organization and interest group
• Degree of collaboration continuous, frequent and punctual.

Technical collaboration has been done with the projects COLA, SHiELD, MUSA,
CloudWatch2 and ACROSS, organizations such as OW2 and groups such as the
intercloud cluster, software engineering cluster (SE4SA), ERRIN network and Com-
mon Dissemination Booster. Promotional collaborations have been performed with
projects such as ACTiCLOUD, MELODIC, RESTASSURED, CLOUDPERFECT,
MegaMart and TANGO.

5 Interest for the Participation in PROFES 2019

DECIDE would like to demonstrate the results of the project and gather feedback and
input from the community of DevOps practitioners, in order to assess the commercial
and scientific interest of such a framework and approach. This can result either in
commercial opportunities to exploit the results, contributions to the code, which has
been released in an open repository in GitLab (link above) and soon in OW2, or in
extensions and improvements of the tool chain in new research and commercial
projects.

2 https://xebialabs.com/.
3 https://www.ibm.com/us-en/marketplace/application-release-automation.
4 https://www.microfocus.com/en-us/services/devops-solutions.
5 https://aws.amazon.com/en/products/developer-tools/.
6 https://azure.microsoft.com/us-en/services/devops/.

DECIDE 607

https://xebialabs.com/
https://www.ibm.com/us-en/marketplace/application-release-automation
https://www.microfocus.com/en-us/services/devops-solutions
https://aws.amazon.com/en/products/developer-tools/
https://azure.microsoft.com/us-en/services/devops/

Q-Rapids: Quality-Aware Rapid Software
Development – An H2020 Project

Lidia López and Marc Oriol(&)

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{llopez,moriol}@essi.upc.edu

Abstract. This work reports the objectives, current state, and outcomes of the
Q-Rapids H2020 project. Q-Rapids (Quality-Aware Rapid Software Develop-
ment) proposes a data-driven approach to the production of software following
very short development cycles. The focus of Q-Rapids is on quality aspects,
represented through quality requirements. The Q-Rapids platform, which is the
tangible software asset emerging from the project, mines software repositories
and usage logs to identify candidate quality requirements that may ameliorate
the values of strategic indicators like product quality, time to market or team
productivity. Four companies are providing use cases to evaluate the platform
and associated processes.

Keywords: Software quality � Data-driven requirements engineering � Rapid
software development � Quality requirements

1 Introduction

The Q-Rapids project (Quality-Aware Rapid Software Development) is a 3-year project
funded by the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 732253. It started in November 2016 and finishes in October
2019. The project website is at https://www.q-rapids.eu/.

The Q-Rapids consortium is composed of serven partners from five European
countries, namely three research organisations, one SME, two mid-caps and one
corporative:

• Universitat Politècnica de Catalunya, Spain, acting as coordinator.
• University of Oulu, Finland.
• IESE Fraunhofer, Germany.
• Bittium Wireless OY, Finland.
• Softeam, France.
• ITTI SP ZOO, Poland.
• Nokia Solutions and Networks OY, Finland.

As a result, the consortium combines long research tradition in software develop-
ment and cutting-edge technological knowhow in versatile ICT sectors.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 608–612, 2019.
https://doi.org/10.1007/978-3-030-35333-9_46

http://orcid.org/0000-0002-6901-9223
http://orcid.org/0000-0003-1928-7024
https://www.q-rapids.eu/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_46&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_46

2 Project Goals

Figure 1 summarizes the concept of the Q-Rapids project. It shows the full data-driven
cycle. Quality requirements (QRs) are incrementally elicited, refined and improved
based on data gathered from software repositories, project management tools, system
usage and quality of service. This data is analysed and aggregated into quality-related
key strategic indicators (e.g., time-to-market delay related to not including the imple-
mentation of a given QR in the next development cycle) which are presented to
decision makers using a highly informative dashboard. QRs scheduled for the next
cycle are integrated with functional requirements for their uniform treatment in the
rapid software development life cycle. See [1] for more details.

The general objectives of the project are:

• Objective GO1. Improve the quality levels of software products and services with
the support of data-driven IT infrastructure and associated methods and techniques.

• Objective GO2. Increase the productivity of the software life cycle with a seamless
integration of quality requirements into the development process.

• Objective GO3. Reduce the time to market of software products and services by
making optimal decisions based on strong evidence and solid experience-based
decision-making models.

These general objectives are made actionable through several scientific objectives:

• Objective SO1. To provide methods to systematically collect and analyse runtime
and development time data to improve software quality.

Fig. 1. Q-Rapids concept

Q-Rapids: Quality-Aware Rapid Software Development 609

• Objective SO2. To define a rapid software life cycle process that integrates quality
requirements and functional requirements into a holistic method.

• Objective SO3. To provide quality-related key strategic indicators to support
decision makers in managing the development process from a quality-aware
perspective.

• Objective SO4. To implement adequate tool support to a quality-aware software life
cycle.

The outcome of all these objectives will be a validated Q-Rapids framework: a
quality-aware rapid software development process supported by advanced tools and
methods.

3 Project Use Cases

As usual in H2020 research and innovation actions, the feasibility of Q-Rapids is being
demonstrated using a significant portfolio of diverse use cases to demonstrate its
potential. From a methodological perspective, the use cases play a two-fold role in this
project: (1) They help to collect empirical data needed to solidify the objectives of the
project and to create the baseline upon which the methods and tools are defined, and
(2) they enable the assessment of the fulfilment of these objectives as the project
progresses and thus demonstrate the feasibility and impact of the project results.

Figure 2 shows the focus of every individual use case. They vary in: main focus
(e.g., from transparency to quality improvement), setting (from a single product to a
product line to multiple independent software products), domain (from highly privacy-
aware systems to telecommunication networks) and process framework (from Scrum to
ad hoc methods). Their diversity is both an opportunity and a challenge for the solu-
tions provided in the project.

Fig. 2. Q-Rapids use cases

4 Current State

The Q-Rapids project was organized into five phases:

• Phase 1: project set-up (months 1–6). Main result: the Q-Rapids platform reference
architecture, together with an implementation plan and the use cases specification.

• Phase 2: proof of concept (months 7–15). Main result: a first integrated version of
the Q-Rapids platform, with simple techniques available.

610 L. López and M. Oriol

• Phase 3: consolidated framework (months 16–24). Main result: Q-Rapids platform
integrating more powerful techniques and methods, with increasing validation from
the use cases.

• Phase 4: final framework (months 25–33). Main result: final solution offering full
functionality and fully-fledged associated processes.

• Phase 5: project finalization (months 34–36). Main result: packaging of the final
solution.

At the moment of writing this report, Q-Rapids is entering in the final phase. The
current framework is completed and the summative evaluation is being reported.
A detailed overview of the project is described in [2].

5 Achieved Outcomes

The main outcomes of the Q-Rapids project are the Q-Rapids platform and Q-Rapids
process.

The Q-Rapids platform is an advanced data-driven platform to manage quality in
Agile and Rapid Software Development. Details on the consolidated version (phase 3)
are described in [3]. Q-Rapids platform assists decision makers to make informed
decisions by means of:

• Assessing the quality of the software under development at different abstraction
levels. The platform relies on a quality model (QM) to define three abstraction
levels: key strategic indicators, project and process factors, and metrics [4]. The key
strategic indicators can be assessed qualitatively defining a Bayesian Network based
on the factors impacting on them [5].

• Predicting future quality levels through multiple predictive methods [6].
• Semiautomatically generating Quality Requirements to improve the quality of the

software if such quality goes below some specific thresholds [7].
• Providing what-if analysis simulating the quality levels of the software given a

particular scenario (e.g. the addition of a new quality requirement).

The Q-Rapids process is a layered process that relies on the Q-Rapids platform to
support the quality management during the development process. The process includes
how to use the Q-Rapids platform at the different development activities at three levels:
product, release, and sprint. As part of the process development, we defined some
process metrics to support the assessment of the development process performance [8].

Q-Rapids platform addresses objective G01 and Q-Rapids process and process
metrics address G02. All assets together address objective G03.

6 Why Participating in PROFES 2019 European Project
Space?

As mentioned above, Q-Rapids is arriving to its end and in particular, by the time of the
PROFES 2019 conference, it will be definitively over. Therefore, the main interest of
the consortium is to demonstrate the final platform hoping that some other project, in
earlier development stages, may be interested in adopting it. The code is open source

Q-Rapids: Quality-Aware Rapid Software Development 611

and available in GitHub (https://github.com/q-rapids) with permissive licenses, and
some of the partners are willing to collaborate in future endeavours. In fact, conver-
sations with the ITEA-3 VISDOM project (https://itea3.org/project/visdom.html) are in
place to use Q-Rapids in the context of DevOps processes analysis.

7 Conclusions

In this work, we have presented the objectives and current state of the Q-Rapids H2020
project. More information is available in the project website, www.q-rapids.edu.
Components are available at https://github.com/q-rapids.

Acknowledgments. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 732253.

References

1. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality
awareness support rapid software development? – a research preview. In: Grünbacher, P.,
Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0_12

2. Franch, X., Lopez, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., Trendowicz, A.:
Quality-aware rapid software development: the Q-rapids project. In: Mazzara, M., Bruel, J.
M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp. 378–392. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-29852-4_32

3. López, L., et al.: Q-rapids tool prototype: supporting decision-makers in managing quality in
rapid software development. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol.
317, pp. 200–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_17

4. Martínez-Fernández, S., et al.: Continuously assessing and improving software quality with
software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)

5. Manzano, M., Mendes, E., Gómez, C., Ayala, C., Franch, X.: Using Bayesian networks to
estimate strategic indicators in the context of rapid software development. In: PROMISE
2018, pp. 52–55 (2018)

6. Manzano, M., Ayala, C., Gomez, C., López, L.: A software service supporting software
quality forecasting. In: DSQA 2019 (2019)

7. Oriol, M., et al.: Data-driven elicitation of quality requirements in agile companies. In:
Piattini, M., Rupino da Cunha, P., García Rodríguez de Guzmán, I., Pérez-Castillo, R. (eds.)
QUATIC 2019. CCIS, vol. 1010, pp. 49–63. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29238-6_4

8. Ram, P., Rodríguez, P., Oivo, M.: Software process measurement and related challenges in
agile software development: a multiple case study. In: Kuhrmann, M., et al. (eds.) PROFES
2018, vol. 11271, pp. 272–287. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
030-03673-7_20

612 L. López and M. Oriol

https://github.com/q-rapids
https://itea3.org/project/visdom.html
http://www.q-rapids.edu
https://github.com/q-rapids
http://dx.doi.org/10.1007/978-3-319-54045-0_12
http://dx.doi.org/10.1007/978-3-030-29852-4_32
http://dx.doi.org/10.1007/978-3-319-92901-9_17
http://dx.doi.org/10.1007/978-3-030-29238-6_4
http://dx.doi.org/10.1007/978-3-030-29238-6_4
http://dx.doi.org/10.1007/978-3-030-03673-7_20
http://dx.doi.org/10.1007/978-3-030-03673-7_20

IMPRESS: Improving Engagement
in Software Engineering Courses Through

Gamification

Tanja E. J. Vos1, I. S. W. B. Prasetya2(B) , Gordon Fraser3,
Ivan Martinez-Ortiz4, Ivan Perez-Colado4, Rui Prada5, José Rocha5,

and António Rito Silva5

1 Open Univeriteit Nederland, Heerlen, Netherlands
2 Utrecht University, Utrecht, Netherlands

s.w.b.prasetya@uu.nl
3 Universität Passau, Passau, Germany

4 Universidad Complutense de Madrid, Madrid, Spain
5 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa,

Lisbon, Portugal

Abstract. Software Engineering courses play an important role for
preparing students with the right knowledge and attitude for software
development in practice. The implication is far reaching, as the quality of
the software that we use ultimately depends on the quality of the people
that make them. Educating Software Engineering, however, is quite chal-
lenging, as the subject is not considered as most exciting by students,
while teachers often have to deal with exploding number of students. The
EU project IMPRESS seeks to explore the use of gamification in edu-
cating software engineering at the university level to improve students’
engagement and hence their appreciation for the taught subjects. This
paper presents the project, its objectives, and its current progress.

Keywords: Software engineering education · Gamification in
education · Gamification in software engineering education

1 Introduction

While our society increasingly depends on software for various aspects of civic,
commercial and social life, software engineers struggle to ensure that software
achieves the necessary high quality. The increasing complexity of modern soft-
ware systems and the ever reducing time-to-marked further exacerbate the prob-
lem. Although the discipline of Software Engineering offers different techniques

The IMPRESS project https://impress-project.eu/ is funded by EU Erasmus+ Pro-
gramme, grant nr. 2017-1-NL01-KA203-035259. Duration: 2017–2020. Partners: Open
Univ. (NL), Utrecht Univ. (NL), Univ. Complutense Madrid (SP), Univ. Passau (DE),
INESC-ID Lisbon (PT). The project is also partially funded by the Fundacão para a
Ciência e a Tecnologia (FCT) fund UID/CEC/50021/2019.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 613–619, 2019.
https://doi.org/10.1007/978-3-030-35333-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_47&domain=pdf
http://orcid.org/0000-0002-3421-4635
http://orcid.org/0000-0001-9840-457X
https://impress-project.eu/
https://doi.org/10.1007/978-3-030-35333-9_47

614 T. E. J. Vos et al.

to ensure quality, programmers in practice are reluctant to engage with them,
with detrimental effects on software quality. The root of this situation lies in
how software developers are educated. The focus tends to lie on the creative
aspects of design and coding, whereas the more laborious and less entertaining
necessities to assure the software’s quality are neglected. This disengagement
carries over to practice. This has to change: tomorrow software engineers need
to be raised with appreciation of software quality, and quality assurance tech-
niques need to become a natural aspect of software development, rather than
a niche topic. Implementing the change, however, is not easy, as teachers have
to motivate students through materials already branded as uninteresting. To
help teachers, the IMPRESS project seeks to explore the use of gamification,
i.e., the application of game-design elements and game principles in non-gaming
contexts, which has seen successful applications in other domains. This paper
will present the project objective, the results so far, and a conclusion.

2 IMPRESS Expected Outcomes

Although gamification is known to improve users’ engagement and appreciation
[4], its application to Software Engineering is still limited. IMPRESS seeks to
deliver innovations that would help improving students’ engagement and enthu-
siasm on topics traditionally considered boring. It will focus on the following:

(1) Improving in-class engagement through gamified quizzes. Quizzes are an
effective tool to set a course’s pace. A cleverly setup quiz can trigger an
engaging discussion, while gamification can stimulate wider engagement
through competitive elements. A set of quizzes from selected topics will be
developed within the project, along with tools to let others to develop more.

(2) Improving out-class engagement through educational games that can be
played at home or in unguided lab sessions. We will focus on the subject of
quality assurance —a key subject, as pointed out earlier—, in particular in
two key competences: formalizing specifications and unit testing.

(3) Enhancing gamification with story telling AI for better emotional engage-
ment and advanced analytics to provide insight on students’ learning
progress.

3 IMPRESS Innovations

This section presents the project progress so far.

Keeping Students on the Move with Quizzes. Quizzes have great potential
as teaching tools. They can enrich the presentation of a course’s content, and
foster participation in the class subject. Tools like Kahoot prospered because of
this. Quizzes can be used in a class to raise attention to particular issues, e.g. by
showing to the students what they do not know, hence, supporting self-awareness

https://kahoot.com/

IMPRESS: Improving Engagement in Software Engineering Courses 615

of knowledge and make students more receptive to new information. Quizzes can
also be used to support revision of knowledge, for example, as a summary in the
end of the class, and to evaluate students. Outside the class, quizzes can be a
good self assessing tool for students and enhancing their learning process by
supporting self-regulation of learning and providing quick feedback about their
current state of readiness on their subjects.

We have developed a web-based tool to reduce teachers’ effort in prepar-
ing quizzes. The tool, available in a GitHub repository: https://github.com/
socialsoftware/as-tutor, allows users to search through a repository of questions
and quizzes, and create new quizzes by re-using and re-purposing the materials
they find. The tool also supports automatic generation of quizzes on students’ (or
teachers’) requests, e.g. classified according to a set of topics. Produced quizzes
can then be exported to gamified quiz tools, e.g. ARSnova, https://arsnova.eu/.
The repository currently contains over 600 questions and 80 quizzes, mostly on
the subject of Software Architecture. A pilot in some of our courses is planned,
after which the tool will be deployed open for the community. We plan to extend
the tool with automatic classification of questions (for more accurate automatic
quizz generation) and generation of post-quizz feedback for both students and
teachers on the students’ learning progress.

Training Formalization Skill with a Game. Writing formal specifications
is a skill that would greatly benefit students. Software with formal specifications
can be verified, or at least tested, automatically, hence greatly improving its
correctness assurance. Unfortunately, this skill is often left underdeveloped. The
skill is not easy to master: it is easy to make mistakes, and training it can
quickly become boring. In IMPRESS we experiment with a new game called
FormalZ [13] to train the basic of writing formal specifications in the form of
pre- and post-conditions. Unlike existing Software Engineering themed education
games like Pex [15] and Train-Director-B [6], FormalZ takes a deeper gamification
approach [1], where ‘playing’ is given a more central role. After all, what makes
games so engaging is not merely the awarded scores and badges, but primarily
the experience of playing them. Figure 1 shows a screenshot of FormalZ.

FormalZ also takes a Constructionism approach [10]: just typing in formu-
las, which would be faster, is forbidden. Instead, the user constructs formu-
las by dragging and connecting blocks of electronic hardware components. The
Constructionism theory believes that humans learn by constructing knowledge,
rather than by simply copying it from the teacher. Framing the knowledge in
terms of familiar physical objects, such as electronic components, plays a key role
in this process, because the learner already has knowledge on how they work [5],
which the learner then uses to construct the new knowledge in his mind. The
theory was originally proposed by Papert and Harel [10] and was e.g. used in
the programming language LOGO for teaching programming to children.

The initial reaction from our students have been encouraging [13], but more
studies are needed to investigate the actual impact on the game’s learning goal.

https://github.com/socialsoftware/as-tutor
https://github.com/socialsoftware/as-tutor
https://arsnova.eu/

616 T. E. J. Vos et al.

Fig. 1. A screenshot of FormalZ. The game is to defend the CPU in the middle of the
circuit board. The small red and blue blobs represent data coming to or leaving the
CPU. Some of them might be corrupted. The user builds pre- and post conditions, and
defense towers, trying to eliminate corrupted blobs. See also [13]. (Color figure online)

Teaching Software Testing Through a Competitive Game. A further
challenging activity in software engineering practice as well as education is test-
ing a program for errors. In IMPRESS we explore improving the education of
testing using Code Defenders, a game intended to engage students in the con-
text of a Java object-oriented class under test and its test suite. In the game,
attackers aim to introduce artificial bugs (“mutants”) into the class under test
that reveal weaknesses in the test suite, while defenders aim to improve the test
suite by adding new tests. If a mutant program produces a different output for
a test than the original program, then that mutant is detected by the test, and
the defender who wrote the test scores points. If a mutant is not detected by any
tests, then the attacker scores points. The number of points a mutant is worth
depends on the number of tests it “survives”, which further encourages players
to create as subtle as possible mutants, and as strong as possible tests.

Code Defenders is implemented as a web-based game and is played by teams
of students. The players are shown the source code of the Java class under
test, with color highlighting to indicate the coverage of the defenders’ test suite,
and with bug-icons labelling the locations and status of the attackers’ mutants.
Attackers create mutants by editing the source code of the Java class, and defend-
ers write JUnit tests using a code editor. A scoreboard breaks down the game’s
current score for each team and player.

We have studied player behavior in detail [14] and shown that players enjoy
writing tests in the game more than as a regular developer activity. We have also
applied Code Defenders in class and designed a software testing undergrad course
around it [3]. Initial evaluation results suggest that Code Defenders supports
students in achieving their learning objectives.

IMPRESS: Improving Engagement in Software Engineering Courses 617

3.1 Advanced Analytics

We have extended the analytics platform from the H2020 RAGE project1 to
adequate its functionalities to IMPRESS’ needs, in particular to support different
types of analytics generating educational activities [7]. These new developments
allowed two approaches for analytics integration: light and deep integration.

Often, educational tools (like Kahoot!) provide a report that summarizes stu-
dents interaction to some extent. In light integration the underlying educational
tool it is not modified at all (e.g. because modification is not possible). RAGE
Analytics is simply used on available analytics provided by the educational tool,
e.g. to provide better or uniform visualisation across multiple tools.

In deep integration, the developers of the education tool need to integrate a
“tracker” [11] into the tool, used to send out the user interaction information. As
such, this approach can provide more fine grained analytics and to provide it live
and is therefore the recommended integration approach. This was the approach
selected for integration of the FormalZ game with RAGE Analytics, allowing
us to collect all students interactions and to show them graphically to teachers,
near real-time, in a single dashboard (Fig. 2). The analytics can also show how
the students evolve their solutions, to give insight on their mental process in
constructing the solutions.

Having all analytics in one place allowed us to provide an additional capa-
bility for teachers that want to have analytics of multiple heterogeneous activity
(e.g. to track student progress during a longer period). This is facilitated through
configurator to perform simple operations and weight of activities, so they can
build new variables that can be included in class level dashboards [12].

Fig. 2. FormalZ analytics main dashboard.

1 GitHub repository: https://github.com/e-ucm/rage-analytics.

https://github.com/e-ucm/rage-analytics

618 T. E. J. Vos et al.

3.2 AI in IMPRESS

One of the use of AI for teaching is the generation and adaptation of learning
content [2]. We are currently working on an AI module to create personalization
features of the previously mentioned quiz tool we developed. It will work with
the data that will be stored by the students performance on the quizzes to define
student profiles and choose the best quizzes to enrich their learning experience.

AI can also improve the learning experience by adding a storytelling layer
to the content. Stories are common in games and support meaning making and
emotional engagement that foster learners motivation and learning [9]. We are
developing storytelling components for the Code Defenders and FormalZ games
by using the FAtiMA toolkit2 [8]. Our approach is to put the challenges presented
by the games into a narrative, by including a character in the game that will
talk to the players contextualizing the challenge that is given to the player(s)
and presenting feedback on the performance. The toolkit facilitates the creation
of such characters including mechanisms for the generation of personality and
emotional responses, an authoring tool for character’s behaviour, and integration
through a REST API.

4 Conclusion

While the importance of Software Engineering courses is well acknowledged,
creating engaging Software Engineering courses is very challenging. Much
can be improved through innovative use of modern technology. Along this
line, IMPRESS has contributed innovations in gamification, and more can be
expected before the project ends in 2020. Ultimately though, energizing Software
Engineering education is not a challenge that a single project like IMPRESS can
solve on its own. Community, and Industry, should also own the problem and
commit to solving it.

References

1. Boyce, A.K.: Deep gamification: combining game-based and play-based methods.
Ph.D. thesis, North Carolina State University (2014)

2. Brisson, A., et al.: Artificial intelligence and personalization opportunities for seri-
ous games. In: Proceedings of the 8th Artificial Intelligence and Interactive Digital
Entertainment Conference (2012)

3. Fraser, G., Gambi, A., Kreis, M., Rojas, J.M.: Gamifying a software testing course
with code defenders. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pp. 571–577. ACM (2019)

4. Hamari, J., Koivisto, J., Sarsa, H., et al.: Does gamification work? -a literature
review of empirical studies on gamification. In: 47th Hawaii International Confer-
ence on System Sciences (2014)

5. Kafai, Y.B.: Constructionism. In: The Cambridge Handbook of the Learning Sci-
ences. Cambridge University Press, Cambridge (2005)

2 https://fatima-toolkit.eu/.

https://fatima-toolkit.eu/

IMPRESS: Improving Engagement in Software Engineering Courses 619

6. Korečko, Š., Sorád, J.: Using simulation games in teaching formal methods for soft-
ware development. In: Innovative Teaching Strategies and New Learning Paradigms
in Computer Programming, pp. 106–130. IGI Global (2015)

7. Mart́ınez-Ortiz, I., Pérez-Colado, I., Rotaru, D.C., Freire, M., Fernández-Manjón,
B.: From heterogeneous activities to unified analytics dashboards. In: IEEE Global
Engineering Education Conference (EDUCON) (2019)

8. Mascarenhas, S., et al.: A virtual agent toolkit for serious games developers. In:
Proceedings of Conference on Computational Intelligence and Games (CIG). IEEE
(2018)

9. Ohler, J.B.: Digital Storytelling in the Classroom: New Media Pathways to Liter-
acy, Learning, and Creativity. Corwin Press, Thousand Oaks (2013)

10. Papert, S., Harel, I.: Constructionism. Ablex Publishing, Norwood (1991)
11. Perez-Colado, I., Alonso-Fernandez, C., Freire, M., Martinez-Ortiz, I., Fernandez-

Manjon, B.: Game learning analytics is not informagic! In: 2018 IEEE Global
Engineering Education Conference (EDUCON) (2018)

12. Perez-Colado, I.J., Rotaru, D.C., Freire-Moran, M., Martinez-Ortiz, I., Fernandez-
Manjon, B.: Multi-level game learning analytics for serious games. In: 10th Inter-
national Conference on Virtual Worlds and Games for Serious Applications (VS-
Games) (2018)

13. Prasetya, I.S.W.B., et al.: Having fun in learning formal specifications. In: Pro-
ceedings of 41st International Conference on Software Engineering (ICSE). IEEE
(2019)

14. Rojas, J.M., White, T.D., Clegg, B.S., Fraser, G.: Code defenders: crowdsourcing
effective tests and subtle mutants with a mutation testing game. In: Proceedings
of 39th International Conference on Software Engineering. IEEE Press (2017)

15. Tillmann, N., de Halleux, J., Xie, T.: Pex for fun: engineering an automated testing
tool for serious games in computer science. Technical report, MSR-TR-2011-41
(2011)

Software Governance in a Large European
Project - GÉANT Case Study

Marcin Wolski1(B) and Toby Rodwell2

1 Poznań Supercomputing and Networking Center, Poznań, Poland
marcin.wolski@man.poznan.pl

2 GÉANT Association, Cambridge, UK
toby.rodwell@geant.org

Abstract. Sustainable software development is an essential part of
GN4, the project co-funded by Europe’s NRENs and the EU. This arti-
cle presents how software governance has been applied in GN4 during its
iterations.

Keywords: Software governance · Software processes · Software
improvements

1 Introduction

GÉANT refers both to the research and innovation community of European
NRENs (operators of national networks for science and education), and also a
sequence of network-related projects co-funded by the EC and the European
NRENs. The latest such project is GN4, a truly pan-European collaboration
between 39 partners i.e. 37 European NRENs, NORDUnet (representing the
five Nordic countries) and GÉANT Association1. The third and final phase of
GN4, GN4-3, started in January 2019 and will last 48 months.

The NREN community is involved in collaborative software development
activities, focused on delivering software products that provide advanced ser-
vices. The GÉANT product portfolio contains software with different levels of
maturity, size and target domains: starting from prototype solutions (proof of
concept), through pilot applications that usually target a closed group of users, to
production versions supporting the delivery of operational services. Their users
mostly comprise of GÉANT partners and their member institutions, researchers,

1 https://www.geant.org/.

This work is part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreement No. 856726
(GN4-3).
The scientific/academic work is financed from financial resources for science in the
years 2019–2022 granted for the realization of the international project co-financed by
Polish Ministry of Science and Higher Education.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 620–625, 2019.
https://doi.org/10.1007/978-3-030-35333-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_48&domain=pdf
http://orcid.org/0000-0001-5550-7739
https://www.geant.org/
https://doi.org/10.1007/978-3-030-35333-9_48

Software Governance in a Large European Project - GÉANT Case Study 621

students and educators, who expect high-quality, reliable services and infrastruc-
ture to support their work or studies.

Proper support of the software governance has had significant attention in
GÉANT since before GN4 began, and this grew even stronger with the introduc-
tion of service transition and operation processes in the first two phases of GN4
(GN4-1 and GN4-2) [6]. This work has been continued and it is currently the
responsibility of GN4-3 WP9 Task 2: Software Governance and Support. This
task provides comprehensive governance and support for software development
within the project, to guarantee a consistent level of software product reliability
and resilience, and ensure the overall quality level of the GÉANT services that
rely on these products.

The paper is organized as follows. Section 2 describes in more detail the
software development effort in GÉANT and presents the main features of the
software projects and teams. Section 3 describes the major outcomes of software
governance in GÉANT and outlines the future work in GN4-3 WP9 Task 2.
Section 4 explains the interest in participation in the Profes 2019 event and the
expected collaboration opportunities this will afford.

2 Software Development in GÉANT

Most software teams in GÉANT (SW teams) are distributed and involve engi-
neers from different NRENs and the GÉANT organization. The teams have
autonomy in adopting a specific methodology for software development and
choosing associated tools [1]. This results in a wide range of processes and
approaches to software development [4].

In Table 1 we present selected information for GÉANT software projects:

– Codebase age – time between the first and last commit in the project,
– Codebase size – Source Lines of Code (SLOC),
– Languages – number of languages used in a project,
– Team size – number of GN4-3 contributors for the project in all roles (tester,

developer, manager etc.),
– Team size (software developers) – number of GN4-3 software developers con-

tributing to the project,
– Projects per person – a number of projects a single person contributes to.

Currently, there are 29 projects in the GÉANT software portfolio. They are
usually developed by the GÉANT and NREN community, but in a few cases
they have been inherited from external open source initiatives, and are currently
being developed globally (e.g., COTURN2).

The GÉANT product portfolio contains software projects with a wide range
of sizes (from less than a thousand to nearly one million lines of code) and system
age (from 92 days up to more than 17 years), and all of them use more than one
language (on average, 9).

2 https://github.com/coturn/coturn/blob/master/README.md.

https://github.com/coturn/coturn/blob/master/README.md

622 M. Wolski and T. Rodwell

Table 1. GÉANT software projects and teams as of July, 2019 (source: https://sc.
geant.org)

Statistic name Items Min Max Median

Software projects 29

Codebase age 92 days 17 years 3 years

Codebase size 858 965989 35864

Languages 4 23 9

Software teams 29

Team size 1 10 2

Team size (Software developers) 1 6 2

Project per person 1 4 1

Software contributors 63

Software developers 47

Moreover, there are 63 GN4-3 software contributors, which is to say someone
who commits source codes and/or reports issues. 47 of these people are software
developers, who have made at least 1 commit. Notably, GÉANT software teams
are usually small, with just two members on average - the largest team has 10
members, of whom 6 are developers. In most cases people contribute to only one
project.

3 Outcomes and Planned Work

3.1 Software Catalogue

The GÉANT Software Catalogue (GSC) addresses the recognized need for a
unified repository of software teams and projects in GÉANT, which will lead
to improvements in software development by facilitating knowledge exchange
and fostering opportunities for cooperation. GSC provides a global view of the
whole of software development in GÉANT, automatically aggregating and pre-
senting information from different data sources with software artefacts such as
source code repositories and issue tracker systems [2]. The tool has successfully
accomplished the transition to production phase and it currently holds consis-
tent information on about 30 software projects and over 300 individuals from
GÉANT, who have contributed to the software development (i.e. throughout all
phases of GN4).

Further development of the GSC is planned for the remaining years of the
GN4-3 project. The roadmap includes improvements and new features requested
by the software community, for example support for complementary data source
with software artefacts (like SonarQube), and extended reporting capabilities.

https://sc.geant.org
https://sc.geant.org

Software Governance in a Large European Project - GÉANT Case Study 623

3.2 Software Maturity Model

The GÉANT Software Maturity Model (SMM) has been designed to achieve two
primary goals: to identify and define the key best practices that help to success-
fully deliver software; and to highlight areas for improvement by teams. Unlike
software methodologies, which specify how to undertake certain actions, matu-
rity models propose a framework that simply specifies the goals to be achieved.
Therefore it is a good fit for the GÉANT project, where planning and evaluating
the implementation of software products within a distributed environment, with
only partial and ever changing involvement of team members, remains exceed-
ingly challenging.

The concept of the SMM was presented and evaluated with the help of
selected GÉANT software teams [3]. Based on the initial feedback, a revised ver-
sion of SMM has been prepared. The current effort is concentrated on producing
a policy for software best practices in GN4-3 based on the SMM framework [5].
The outcome of this work will be presented in a GÉANT project deliverable.

3.3 Software Developer Training

For almost a decade, the GÉANT project has organised two types of software
development training for the project participants, namely Secure Code Training
(SCT) and School of Software Engineers (SSE). SCT focuses on secure program-
ming with the aim of minimizing the number of security bugs in the source code.
SSE focus on code quality and management. As with SCT, the topics differ from
one training to another to address contemporary GÉANT project requirements,
and software methodologies and techniques in common current use in the com-
munity. Since 2010 SCT and SSE have respectively trained 107 and 73 developers
from over 20 NRENs [7].

Both training events are going to be continued and delivered annually to the
GÉANT software community.

3.4 Software Code Reviews

Software code reviews are offered as a supporting activity performed by an inde-
pendent testing team. An independent review is much more likely to detect
errors that the code authors are themselves blind to, as the reviewers, being
unfamiliar with the code, do not focus on functionality. Typically code reviews
are conducted as part of system testing during the transition of a service to pro-
duction, but they can be requested by any GÉANT software team at any time,
even during an early stage of the Software Development Life Cycle.

Currently the reviews are predominantly manual (i.e. an expert developer
reads through the code) but it is planned to extend the use of automated tests
in the code review process, using the customized and supported SonarQube tool3.

3 https://ci.geant.net/sonar/.

https://ci.geant.net/sonar/

624 M. Wolski and T. Rodwell

3.5 Software Tools

GÉANT currently provides a range of services and tools to support software
development4. These tools are now accessible to the whole GÉANT community
through federated authentication and authorisation5.

Together the tools form a technology stack which supports the full develop-
ment life-cycle from requirements management via issue/task management to
source code repository, and through continuous integration and deployment ser-
vice to binaries repository and production deployment. Software projects devel-
oped with the use of common GÉANT SWD tools set, policies and best practices
will benefit from increased transparency and maintainability of the GÉANT
projects. Compliance with Intellectual Property Rights (IPR), which is over-
seen by a different team within the project, can also be facilitated through the
GÉANT Software Development Infrastructure.

4 Collaboration

We expect to meeting a variety of different representatives of the software engi-
neering community attending the conference and would be glad to have the
opportunity to speak about GÉANT’s experience concerning software gover-
nance processes. Equally, hearing lessons learned from other projects could
provide further refinements to the existing software development practices in
GÉANT. Finally, learning about the tools, policies and best practices used by
practitioners and researchers will be valuable for influencing the GÉANT soft-
ware governance roadmap.

The presentation will include the current status and future work in the area
of software governance in the GÉANT project. In addition, there may be a demo
of the GÉANT Software Catalogue shown to the audience.

References

1. Bilicki, V., Golub, I., Vuletic, P., Wolski, M.: Failure and success - how to move
toward successful software development in Networking. In: Terena Networking Con-
ference (2014)

2. �Labȩdzki, M., Wolski, M.: GÉANT Software Catalogue as a Code Portfo-
lio. GÉANT Connect, p. 58 (2018). https://www.geant.org/News and Events/
CONNECT/Documents/CONNECT29FINAL(1).pdf

3. Stanisavljevic, Z., Walter, B., Vukasovic, M., Todosijevic, A., �Lab ↪edzki, M., Wol-
ski, M.: Géant software maturity model. In: 2018 26th Telecommunications Forum
(TELFOR), pp. 420–425, November 2018

4. Stanisavljevic, Z., Wolski, M., Labedzki, M., Kupiński, S., Todosijevic, A., Adomeit,
M.: Harmonising the software development process in the Géant community.
GÉANT Connect, pp. 50–51 (2018). https://www.geant.org/News and Events/
CONNECT/Documents/connect 28 web.pdf

4 https://software.geant.org.
5 https://edugain.org/.

https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT29FINAL(1).pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT29FINAL(1).pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/connect_28_web.pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/connect_28_web.pdf
https://software.geant.org
https://edugain.org/

Software Governance in a Large European Project - GÉANT Case Study 625

5. Todosijevic, A., et al.: Ensuring best practice For Géant software develop-
ment. GÉANT Connect, p. 29 (2019). https://www.geant.org/News and Events/
CONNECT/Documents/CONNECT 31.pdf

6. Wolski, M., et al.: Deliverable D5.3 - analysis of requirements for software manage-
ment. Technical report (2017). https://www.geant.org/Projects/GEANT Project
GN4/deliverables/D5-3 Analysis-of-Requirements-for-Software-Management.pdf

7. Wolski, M., Labedzki, M., Frankowski, G., Berus, P., Mazurek, C., Adomeit,
M.: Delivering software training to the Géant community. GÉANT Connect, pp.
10–11 (2017). https://www.geant.org/News and Events/CONNECT/Documents/
CONNECT 24.pdf

https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT_31.pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT_31.pdf
https://www.geant.org/Projects/GEANT_Project_GN4/deliverables/D5-3_Analysis-of-Requirements-for-Software-Management.pdf
https://www.geant.org/Projects/GEANT_Project_GN4/deliverables/D5-3_Analysis-of-Requirements-for-Software-Management.pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT_24.pdf
https://www.geant.org/News_and_Events/CONNECT/Documents/CONNECT_24.pdf

AMASS: A Large-Scale European Project
to Improve the Assurance and Certification

of Cyber-Physical Systems

Jose Luis de la Vara1(&), Eugenio Parra2, Alejandra Ruiz3,
and Barbara Gallina4

1 University of Castilla-La Mancha, Albacete, Spain
joseluis.delavara@uclm.es

2 Carlos III University of Madrid, Leganes, Spain
eparra@inf.uc3m.es

3 Tecnalia Research and Innovation, Derio, Spain
alejandra.ruiz@tecnalia.com

4 Mälardalen University, Västerås, Sweden
barbara.gallina@mdh.se

Abstract. Most safety-critical systems must undergo assurance and certifica-
tion processes. The associated activities can be complex and labour-intensive,
thus practitioners need suitable means to execute them. The activities are further
becoming more challenging as a result of the evolution of the systems towards
cyber-physical ones, as these systems have new assurance and certification
needs. The AMASS project (Architecture-driven, Multi-concern and Seamless
Assurance and Certification of Cyber-Physical Systems) tackled these issues by
creating and consolidating the de-facto European-wide open tool platform,
ecosystem, and self-sustainable community for assurance and certification of
cyber-physical systems. The project defined a novel holistic approach for
architecture-driven assurance, multi-concern assurance, seamless interoperabil-
ity, and cross- and intra-domain reuse of assurance assets. AMASS results were
applied in 11 industrial case studies to demonstrate the reduction of effort in
assurance and certification, the reduction of (re)certification cost, the reduction
of assurance and certification risks, and the increase in technology harmonisa-
tion and interoperability.

Keywords: AMASS � Cyber-physical system � CPS � Assurance � Certification

1 Introduction

Safety-critical systems are usually subject to rigorous assurance and certification pro-
cesses to provide confidence that the systems are dependable [18], i.e. acceptably safe,
reliable, etc. This is typically performed in compliance with standards, e.g. ISO 26262
in automotive and DO-178C in avionics, and is a requirement so that the systems are
allowed to operate. The associated activities are usually complex and labour-intensive
because of the large set of compliance criteria to fulfil, the amount of assurance

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 626–632, 2019.
https://doi.org/10.1007/978-3-030-35333-9_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_49&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_49

evidence to manage, and the need for providing valid justifications of system
dependability, among other issues [18]. Therefore, practitioners need support.

Safety-critical systems have also significantly increased in technical complexity and
sophistication toward open, interconnected, networked systems such as “the connected
car”. This has brought a “cyber-physical” dimension with it, exacerbating the problem
of ensuring dependability in the presence of human, environmental, and technological
risks. New approaches for assurance and certification are needed so that these activities
are cost-effective. The approaches must consider the new system characteristics, e.g.
new architectures and the need for guaranteeing several dependability concerns, and
provide means that facilitate the collection, management, and reuse of assurance assets.

The AMASS project (Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems; [1]) created and consolidated the de-facto
European-wide open tool platform, ecosystem, and self-sustainable community for
assurance and certification of Cyber-Physical Systems (CPS) in the largest industrial
vertical markets including automotive, railway, aerospace, space, and energy.

The ultimate goal of AMASS was to lower certification costs for CPS in face of
rapidly changing features and market needs. This was achieved by establishing a novel
holistic approach for architecture-driven assurance (fully compatible with standards
such as SysML), multi-concern assurance (for co-analysis and co-assurance of e.g.
security and safety aspects), seamless interoperability between assurance and engi-
neering activities along with third-parties (e.g. supplier assurance), and cross- and intra-
domain reuse of assurance assets (e.g. of assurance evidence between projects).

The AMASS project started in April 2016 and finished in March 2019. AMASS
work built on the results from previous successful EU projects such as OPENCOSS
[21], SafeCer [26], CRYSTAL [14], and CHESS [12]. Results from these projects were
integrated and further developed in AMASS.

The next sections summarise the AMASS project by presenting its objectives, its
organisation, and its main outcomes. Our purpose is to raise the awareness about the
project and its results, including its open source community, so that further people and
other projects continue researching on and developing solutions for assurance and
certification from AMASS outcomes. Prior publications [10] provide further details
about the motivation for the project [25], the process for approach application [15], and
the Eclipse open source project [16, 17]. Publications on specific research topics are
also available, e.g. on quality analysis of system artefacts for assurance [22]. More
information about the project and its results are available in AMASS deliverables [2].

2 Project Objectives

The high-level goals of AMASS were the demonstration of:

1. G1: A potential gain for design efficiency of complex CPS by reducing their
assurance and certification effort by 50%;

2. G2: A potential reuse of assurance results (qualified or certified before), leading to
40% of cost reductions for product (re)certification activities;

AMASS: A Large-Scale European Project 627

3. G3: A potential raise of technology innovation led by 35% reduction of assurance
and certification risks of new CPS products, and;

4. G4: A potential sustainable impact in CPS industry by increasing the harmonization
and interoperability of assurance and certification tool technologies by 60%.

To achieve the goals, these project objectives were specified:

• O1: Define a holistic approach for architecture-driven assurance to leverage the
reuse opportunities in assurance and certification by directly and explicitly
addressing current technologies and hardware and software architectures needs.

• O2: Define a multi-concern assurance approach to ensure not only safety and
security, but also other dependability aspects such as availability and reliability.

• O3: Consolidate a cross-domain and intra-domain assurance reuse approach to
improve mutual recognition agreement of compliance approvals and to help assess
the return of investment of reuse decisions.

• O4: Develop a fully-fledged open tool platform that allows developers and other
assurance stakeholders to guarantee seamless interoperability of the platform with
other tools used in the development of CPSs.

• O5: Benchmark the tool infrastructure against real industrial cases in relevant
environments.

• O6: Consolidate the AMASS ecosystem and community for:
– O6.a: Adoption of the AMASS conceptual and methodological approach as a

reference tool architecture for CPS assurance and certification.
– O6.b: Maintenance and further development of the open tool platform as a long-

term, API-standardized, and industry-driven assurance and certification
environment.

The main envisioned impact on the different stakeholders is as follows:

• OEMs (including system integrators) and Component suppliers can use AMASS
results to increase CPS design cost-effectiveness, ease innovation, and reduce the
costs and risks of CPS assurance and certification.

• Assessors and Certification authorities can provide services that better fit CPS-
specific needs.

• Tool vendors can extend their products with new features and integrate them with
AMASS tools.

• European society will benefit from the use of CPS with a higher confidence in their
dependability.

3 Organisation

The AMASS consortium (Table 1) consisted of 29 partners from eight countries
and covered the whole value chain for CPS assurance and certification. The project
manager was Alejandra Ruiz (Tecnalia R&I), the technical manager was Barbara

628 J. L. de la Vara et al.

Gallina (Mälardalen University), and the quality manager was Cristina Martínez
(Tecnalia R&I). Information about other roles and the implementation plan structure is
available online [9]. AMASS also had an External Advisory Board [8] that included
14 relevant and influential experts on the topics of the project, including assessors,
assurance and certification managers, consultants, engineers, and researchers. This
board advised on technical decisions, standardization, and community building.

The industrial application of AMASS was analysed in 11 case studies [3] from air
traffic management, automotive, avionics, industrial automation, railway, and space,
e.g. on autonomous driving features and satellite software design. The AMASS part-
ners established links with related ongoing EU projects for networking, discussion,
and collaboration, such as AQUAS [11], CP-SETIS [13], PDP4E [23], RobMosys [24],
and SafeCOP [27]. AMASS also established links with national projects. Result
standardisation was addressed, e.g. through system assurance work at OMG [19].

4 Main Outcomes

AMASS resulted in three main tangible outcomes.
The AMASS Reference Tool Architecture (Fig. 1; [5]) provides a conceptual

framework for architecture-driven assurance, multi-concern assurance, seamless
interoperability, and cross- and intra-domain reuse of assurance assets. It contains both
technological building blocks such as System architecture modelling for assurance and
Tool integration management, and the Common Assurance & Certification Metamodel,

Table 1. AMASS partners per country and their main role in the value chain: ASR – Assessor,
CER – Certification Authority, COS – Component Supplier, OEM – Original Equipment
Manufacturer, RES – research, TOV – Tool Vendor

Country Partner Role Country Partner Role

AT AIT RES

FR

ALL4TEC TOV
Virtual Vehicle RES Alstom Transport OEM

CZ Honeywell COS CEA List RES
Masaryk Uni. RES ClearSy COS

DE

Ansys medini TOV

IT

FBK RES
Assystem TOV Intecs ASR

Eclipse Found. TOV Rina CER
Infineon COS Thales OEM

Lange Aviation OEM

SE

Alten ASR

ES

Carlos III Uni. RES Comentor ASR
GMV COS Mälardalen Uni. RES

Schneider Electric OEM OHB COS
Tecnalia R & I RES RISE RES
Thales Alenia COS UK Rapita Systems TOV

The REUSE Co. TOV

AMASS: A Large-Scale European Project 629

which provides an information model for CPS assurance and certification, e.g. for
Compliance management and for Assurance case specification.

The AMASS Tool Platform (Fig. 2; [6]) is a collaborative tool environment that
represents a concrete implementation of the AMASS Reference Tool Architecture with
capability for evolution and adaptation. It is released as an open technological solution
that integrates and extends different existing open source tools for system modelling
and analysis (Papyrus, CHESS, Concerto-FLA), compliance management and argu-
mentation (OpenCert), process engineering (EPF-Composer), variability management
(BVR), and traceability (Capra). It is further integrated with over a dozen external tools
that provide additional features; usually commercial ones.

The Open AMASS Community [7] manages the main project results for main-
tenance, evolution and industrialization. The Open Community is supported by a
governance board and by rules, policies, and quality models. This includes support for
AMASS base tools and for extension tools. The OpenCert project of PolarSys/Eclipse
[20] hosts the Community.

The achievement of the AMASS goals thanks to these outcomes was demonstrated
in the industrial case studies [4]. The achievement varied among the case studies
because of their different characteristics (e.g. different base situation) and the different
features applied. Videos demonstrating AMASS outcomes are available online [28].

Fig. 1. AMASS Reference Tool Architecture

630 J. L. de la Vara et al.

5 Conclusion

The AMASS project developed a novel approach for CPS assurance and certification
by addressing architecture-driven assurance, multi-concern assurance, seamless inter-
operability, and cross- and intra-domain reuse of assurance assets. The approach
integrated and further developed results from other projects and resulted in three main
tangible outcomes: the AMASS Reference Tool Architecture, the AMASS Tool Plat-
form, and the Open AMASS Community. The benefits from using the outcomes were
demonstrated in 11 industrial case studies.

We expect that further researchers and practitioners gain interest in AMASS results
thanks to the summary presented. They could exploit the results in activities dealing
with process or product improvement, mainly for critical systems. New collaborations
on assurance and certification could also be created, e.g. around the open community.

We plan to continue working on CPS assurance and certification in the future from
the results developed in AMASS. This includes the development of novel solutions for
advanced assurance case management and for privacy assurance.

Acknowledgments. The research leading to this paper has received funding from the AMASS
project (H2020-ECSEL grant agreement no 692474; Spain’s MINECO ref. PCIN-2015-262;
Sweden’s Vinnova) and the Ramon y Cajal Program (Spain’s MICINN ref. RYC-2017-22836;
EC’s European Social Fund). We are also grateful to all the AMASS partners. Their work and
results are summarised in this paper.

References

1. AMASS Project. https://www.amass-ecsel.eu/
2. AMASS Project: Deliverables. https://www.amass-ecsel.eu/content/deliverables
3. AMASS Project: Deliverable 1.6 - AMASS demonstrators (c) (2019)
4. AMASS Project: Deliverable 1.7 - AMASS solution benchmarking (2019)

Fig. 2. General view of the AMASS Tool Platform and its ecosystem

AMASS: A Large-Scale European Project 631

https://www.amass-ecsel.eu/
https://www.amass-ecsel.eu/content/deliverables

5. AMASS Project: Deliverable 2.4 - AMASS reference architecture (c) (2018)
6. AMASS Project: Deliverable 2.5 - AMASS user guidance and methodological fwk. (2018)
7. AMASS Project: Deliverable D7.7 - AMASS open source platform (c) (2018)
8. AMASS Project: External Advisory Board. https://www.amass-ecsel.eu/content/external-

advisory-board
9. AMASS Project: Organization. https://www.amass-ecsel.eu/content/organization
10. AMASS Project: Publications. https://www.amass-ecsel.eu/content/publications
11. AQUAS Project. https://aquas-project.eu/
12. CHESS Project. http://www.chess-project.org/
13. CP-SETIS Project. https://cp-setis.eu/
14. CRYSTAL Project. http://www.crystal-artemis.eu/
15. de la Vara, J.L., et al.: The AMASS approach for assurance and certification of critical

systems. In: Embedded World Conference (2019)
16. Espinoza, H., et al.: Meet the new eclipse-based tools for assurance and certification of

cyber-physical systems. Eclipse Newsletter, July 2018. https://www.eclipse.org/community/
eclipse_newsletter/2018/july/amass.php

17. Gallina, B., et al.: AMASS: call for users and contributors. Eclipse Newsletter, July 2019.
https://www.eclipse.org/community/eclipse_newsletter/2019/july/amass.php

18. Nair, S., et al.: An extended systematic literature review on provision of evidence for safety
certification. Inform. Softw. Technol. 56(7), 689–717 (2014)

19. OMG: System Assurance Task Force. https://www.omg.org/sysa/
20. OpenCert. https://www.polarsys.org/opencert/
21. OPENCOSS Project. http://www.opencoss-project.eu/
22. Parra, E., et al.: Analysis of requirements quality evolution. In: ICSE (2018)
23. PDP4E Project. https://www.pdp4e-project.eu/
24. RobMosys Project. https://robmosys.eu/
25. Ruiz, A., et al.: Architecture-driven, multi-concern, seamless, reuse-oriented assurance and

certification of cyber-physical systems. In: SAFECOMP Workshops (2016)
26. SafeCer Project. https://artemis-ia.eu/project/40-nsafecer.html
27. SafeCOP Project. http://www.safecop.eu/
28. YouTube: Opencert. https://youtube.com/channel/UCw_D0l5sDgysEphi6tzzDyw

632 J. L. de la Vara et al.

https://www.amass-ecsel.eu/content/external-advisory-board
https://www.amass-ecsel.eu/content/external-advisory-board
https://www.amass-ecsel.eu/content/organization
https://www.amass-ecsel.eu/content/publications
https://aquas-project.eu/
http://www.chess-project.org/
https://cp-setis.eu/
http://www.crystal-artemis.eu/
https://www.eclipse.org/community/eclipse_newsletter/2018/july/amass.php
https://www.eclipse.org/community/eclipse_newsletter/2018/july/amass.php
https://www.eclipse.org/community/eclipse_newsletter/2019/july/amass.php
https://www.omg.org/sysa/
https://www.polarsys.org/opencert/
http://www.opencoss-project.eu/
https://www.pdp4e-project.eu/
https://robmosys.eu/
https://artemis-ia.eu/project/40-nsafecer.html
http://www.safecop.eu/
https://youtube.com/channel/UCw_D0l5sDgysEphi6tzzDyw

3rd International Workshop on
Managing Quality in Agile and Rapid

Software Development Processes
(QuASD)

Managing Quality in Agile and Rapid Software
Development Processes

Claudia Ayala1 , Pilar Rodríguez2 , and Adam Trendowicz3

1 GESSI Group, Universitat Politècnica de Catalunya (UPC) - Barcelona Tech,
Barcelona, Spain

cayala@essi.upc.edu
2 M3S Group, University of Oulu, Finland

pilar.rodriguez@oulu.fi
3 Fraunhofer Institute for Experimental Software Engineering IESE,

Kaiserslautern, Germany
adam.trendowicz@iese.fraunhofer.de

Abstract. Optimal management of software quality demands for appropriate
integration of quality management activities into the whole software (engineer-
ing) life-cycle. However, despite the competitive advantage of ensuring and
maintaining high quality levels, software development methodologies still prove
to offer little support to the integration and management of quality. This is
especially true for, and essential in, agile software development processes and the
more recent trends towards rapid and continuous software development. The
premise is that faster and more frequent release cycles should not compromise
quality. The third edition of the International Workshop on Managing Quality in
Agile and Rapid Software Development Processes (QuASD 2019) continues the
success of previous editions aiming to exchange challenges, experiences, and
solutions among researchers and practitioners to bring agile and rapid software
development processes a step further to seamless integrating quality management
activities into their practices. In this way, we expect to foster the exchange of
ideas between researchers and industry and consolidate a research agenda and
collaborations.

Keywords: Quality ⦁ Agile Software Development ⦁ Rapid and Continuous
Software Development

1 Introduction

The fast changing and unpredictability conditions characterizing current software
markets have favored methods under the umbrella of Agile Software Development
(ASD), which advocate speed, flexibility, and efficiency. These methods have become
mainstream in the software industry. Indeed, the current tendency is towards reducing
release cycles more and more, in which is known as Rapid Software Development
(RSD), i.e. develop, release and learn from software in very short rapid cycles, typically
hours, days or very small numbers of weeks. In this highly demanding context, faster
and more frequent release cycles should not compromise quality. Thus, a full

https://orcid.org/0000-0002-6262-3698
https://orcid.org/0000-0002-0618-6104
https://orcid.org/0000-0003-1347-6748

understanding of the quality of the product is essential in order to ensure that users
perceive only improve-ments rather than experience any loss of functionality.

Today, software quality is an essential competitive factor for the success of soft-
ware companies. For example, recent technological breakthroughs, such as cloud
technologies, the emergence of IoT and technologies such as 5G, pose new challenges
in software development. These challenges include quality aspects such as availability,
reliability, security, performance and scalability, which significantly affect the success
of current and future software products and services. Indeed, market studies show a
steady increase in the proportion of budged being spent on dealing with software
quality. A report by Capgemini states that the average spending on quality management
and testing in IT companies has grown from 18% in 2012 to 35% in 2015 and it is
estimated that this budged will increase to 40% by 2018. Another example is the
automotive industry, in which electronics and software lead over 90% of all innova-
tions, being software quality a critical success factor.

Despite the competitive advantage of ensuring and maintaining high quality levels,
software development methodologies still prove to offer little support to the integration
and management of quality. This is especially true for, and essential in agile and rapid
software development processes. Optimal management of software quality demands for
appropriate integration of quality management activities into the whole software
(engineering) life-cycle. However, empirical evidence shows challenges when
managing quality in agile and rapid software development process. For instance, the
high orientation towards customers makes functionality and fast delivery cycles to play
a relevant role that may provoke an overlook of quality requirements and quality
management activities in general. Further, as the product evolves, software quality may
be neglected due to cost and time constraints, which may incur in technical debt.
Hence, maintenance costs may rise and the development of functionalities may take
longer.

In this context, the QuASD workshop aims at investigating the current challenges
that companies using agile software development and rapid release cycles face when
integrating quality management activities into their practices. The objective of the
workshop is to exchange experiences and solutions to bring agile and rapid software
development processes a step further towards seamless integration of quality man-
agement activities into their practices. To strengthen this objective, QuASD 2019 is
held in the context of one of the top-recognized software development and process
improvement conferences: the International Conference on Product-Focused Software
Process Improvement (PROFES 2019) on November 27, 2019, in Barcelona, Spain.

2 Contents and Expected Outcomes

The workshop has received a positive response from the community with interesting
and valuable contributions. The submissions were peer-reviewed by at least three
members of the international program committee in order to evaluate their quality,
relevance and potential to foster discussions. Finally three papers were accepted for this
edition of the workshop. These works address issues on quality in agile software
development from different perspectives.

Managing Quality in Agile and Rapid Software Development Processes 635

The first paper: “Do internal software quality tools measure validated metrics?” by
Mayra Nilson, Vard Antinyan and Lucas Gren offers an overview of the data and
metrics provided by some existing tools and the extent that these metrics have been
validated. Their results suggest that a range of metrics do not seem to be validated in
the literature and that only a small percentage of metrics are validated by the provided
tools.

The second paper “A Unique Value that Synthesizes the Quality Level of a Product
Architecture: outcome of a Quality Attributes Requirements Evaluation Method” by
Mariana Falco and Gabriela Robiolo presents a five-step architecture evaluation
method which defines, analyze and measure the quality characteristics of a product
architecture and its implementation. They obtain as a final output, a unique value that
represents the quality level of a product. The method is illustrated by an example
developed in an agile setting.

The third paper “Comparison of Agile Maturity Models” by Anna Schmitt, Sven
Theobald and Philipp Diebold presents a comprehensive comparison of 14 agile
maturity models in order to help practitioners to understand the differences among
models and to select among them.

With this content, we aim to promote discussions and interchange of ideas among
participants from both industry and academia sectors in order to:

• Scope the current state of quality management in agile and rapid software
development in both research and practice.

• Compile success and failure experiences.
• Continue on the research agenda from previous editions of the workshop.
• Establish a community to foster long-term collaboration.

We hope that the workshop participants will enjoy the topics presented here and
perhaps find the inspiration to push the field a step further, or open the door for new
collaborations.

Acknowledgments. We would like to acknowledge all the people who have enabled the
organization of QuASD 2019.

The program committee was composed of prominent researchers from several universities
and the industrial sector. The effort and dedication of the program committee and the additional
reviewers who collaborated in the revision process were outstanding and deserve recognition.

We thank the authors and people that participate in the workshop for being willing to share
their experiences on quality and quality requirements in the context of agile and rapid software
development; and the organizing committee members, who handled all the complexity of
arranging an event such as PROFES 2019 and the associated events.

636 C. Ayala et al.

Do Internal Software Quality Tools
Measure Validated Metrics?

Mayra Nilson2, Vard Antinyan2, and Lucas Gren1,2(B)

1 Chalmers, University of Gothenburg, Gothenburg, Sweden
lucas.gren@cse.gu.se

2 Volvo Cars, Gothenburg, Sweden
{mayra.nilsson,vard.antinyan}@volvocars.com

Abstract. Internal software quality determines the maintainability of
the software product and influences the quality in use. There is a plethora
of metrics which purport to measure the internal quality of software, and
these metrics are offered by static software analysis tools. To date, a num-
ber of reports have assessed the validity of these metrics. No data are
available, however, on whether metrics offered by the tools are somehow
validated in scientific studies. The current study covers this gap by pro-
viding data on which tools and how many validated metrics are provided.
The results show that a range of metrics that the tools provided do not
seem to be validated in the literature and that only a small percentage
of metrics are validated in the provided tools.

Keywords: Software metrics tools · Static analysis tools · Metrics ·
Attributes

1 Introduction

Software quality has been a major concern for as long as software has existed [1].
Billing errors and medical fatalities can be traced to the issue of software quality
[2]. The ISO/IEC 9126 standard defines quality as “the totality of characteristics
of an entity that bears on its ability to satisfy stated and implied needs” [3]. This
standard distinguishes internal and external quality. The former is the quality
of pre-release software that determines the ability of a project to be maintained
further. Internal quality is observed and experienced by developers. However, it
affects the functionality and user experience too [4].

To assess and manage internal quality of software, internal software qual-
ity metrics are used. While much research has been conducted on such metrics
in forms of empirical studies, mapping studies, and systematic literature reviews
[5–7], very little research has been done on the tools that implement these
metrics.

One study on software metric tools concluded that there are considerable
variations regarding the output from different tools for the same metric on the
same software source code [8]. This indicates that the implementation of a given
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 637–648, 2019.
https://doi.org/10.1007/978-3-030-35333-9_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_50&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_50

638 M. Nilson et al.

metric varies from tool to tool. We have not found any study that investigates the
implemented metrics in the tools and their scientific validity in the research. We,
therefore, wanted to investigate whether the metrics provided in the tools are
validated in scientific studies: Studies concluding that a given metric can predict
an external software quality attribute to an acceptable precision. An external
attribute can for example be fault proneness, maintainability, or testability.

The value of validating an internal quality metric in regard to an external
quality attributes is to provide solid measures for good predictions of external
quality. For example, Santos et al. [5] conducted such a study on eight separate
groups of students developing a system based on the same requirements. For each
iteration of the software the metrics were studied to see if they could predict the
faults that were found by independent testing.

There are many software metric tools but the validity of the metrics they
provide is not investigated. Considering that the usefulness of a metric is in its
validity we set out to investigate the amount of somehow validated metrics that
the current popular tools provide. To the best of our knowledge there is no study
which investigates the existing tools in terms of what metrics they provide. To
address this research problem the following research questions were formulated:

RQ1 Which internal software quality metrics are validated in scientific
studies?

RQ2 Which are the tools that support these metrics?
RQ3 What are the administrative capabilities of these tools to conduct mea-

surements?

2 Related Work

Internal software quality is related to the structure of the software itself as
opposed to external software quality which is concerned with the behaviour of
the software when it is in use. The structure of the software is not visible to
the end user, but is still important since internal attributes (e.g., size, complex-
ity, and cohesion) affect external quality attributes (e.g., maintainability and
understandability) [9]. External quality is limited to the final stages of soft-
ware development, whereas testing for internal quality is possible from the early
stages of the development cycle, hence internal quality attributes have an impor-
tant role to play in the improvement of software quality. The internal quality
attributes are measured by means of internal quality metrics [10]. We, of course,
recognize that the metric is not the construct in itself, but since it is assumed
to be closely connected, we assume the metrics in the empirical studies are close
to the construct they aim at measuring.

Metrics can be validated for all programming languages, but some apply only
to specific programming paradigms and the majority can be classified as Tra-
ditional or Object Oriented Metrics (OO) [11]. Considering the popularity of
object oriented metrics it is not surprising that most of the validation studies
concentrate on OO [12]. In 2012, Suresh [13] performed a theoretical and empir-
ical evaluation on a subset of the traditional metrics and object oriented metrics

Do Internal Software Quality Tools Measure Validated Metrics? 639

used to estimate a systems reliability, testing effort and complexity. The paper
explored source code metrics such as cyclomatic complexity, size, comment per-
centage and CK Metrics (WMC, DIT, NOC, CBO, RFC LCOM). Yeresime’s
studies concluded that the aforementioned traditional and object oriented met-
rics provide relevant information to practitioners in regard to fault prediction
while at the same time provide a basis for software quality assessment.

Jabangwe et al. [14] in their systematic literature review, which focused
mainly on empirical evaluations of measures, used on object oriented programs
concluded that the link from metrics to reliability and maintainability across
studies is the strongest for: LOC (Lines of Code), WMC McCabe (Weighted
Method Count), RFC (Response for a Class) and CBO (Coupling Between
Objects). Antinyan et al. [15] proved in their empirical study on complexity that
complexity metrics such as McCabe cyclomatic complexity [16], [17] measures,
Fan-Out, Fan-In, Coupling Measures of [18], [19] OO measures, Size measure
[20] and Readability measures [21,22] correlate strongly with maintenance time.
They also suggested that more work is required to understand how software
engineers can effectively use existing metrics to reduce maintenance effort.

Another example is a recent study on client-based cohesion metrics for OO
classes. The study included a multivariate regression analysis on fourteen cohe-
sion metrics applying the backwards selection process to find the best combina-
tion of cohesion metrics that can be used together to predict testing effort, the
results revealed that LCOM1 (Lack of Cohesion of Methods 1) LCOM2 (Lack
of Cohesion of Methods 2), LCOM3 (Lack of Cohesion of Methods 3) and CCC
(Client Class Cohesion) are significant predictors for testing effort in classes [23].

3 Research Method

First, a review of previous work on software metrics validation was done. The
main goal was to elicit internal quality measures based on their existence in sci-
entific studies. We only consider empirical validation in this study and therefore
exclude theoretical validation without industry, or “real,” data. As a second step,
we searched and selected tools that support these metrics. Afterwards, relevant
data was investigated about the tools which could help with some practicalities
when using these tools in software development practice. Finally, consistency of
measurement was evaluated between these tools on a set of open source projects.

3.1 Search and Identification of Relevant Papers and Metrics

To identify relevant research papers, the subject area was restricted to Engi-
neering and Computer Science, the string below was built based on keywords as
well as synonyms defined for the study. We used the following digital libraries

640 M. Nilson et al.

and search engines: Google Scholars1, IEEE Digital Library2, Science Direct3,
Springer4 and Engineering Village5.

The following search string was used:

(validated OR “verification of internal quality” OR “code quality” OR
“software quality”) AND (metric OR metrics OR measure OR measur-
ing) AND tools

After the search 567 articles were found (Fig. 1) many of which were irrelevant
for the purpose of this paper.

Fig. 1. Pie chart showing types and percentage of papers found

These papers were assessed according the criteria described in Table 1. The
output from this step resulted in 292 research papers subjecting 30 internal qual-
ity metrics to validation. Afterwards, from these metrics we selected such metrics
that were considered somehow validated as results of the papers. If any metric
was evaluated inconsistently in different papers we excluded it from our final list.
We realize the issue with this type of exclusion criteria, but we wanted an initial
assessment of the existence of somehow validated metrics in the available tools.
The main criteria of validation was that a metric shall have tangible correlation
with an external software quality attribute such as maintainability and defects.
However, since the aim of the study was code improvement metrics particularly,
we added one more criteria: Besides having tangible correlation, a metric shall
also be possible to manipulate for influencing the external quality attributes, see
e.g. [24], that is increasing maintainability or decreasing defects. For example,
Lines of Code usually has a tangible correlation with defects and maintainabil-
ity. However, Lines of code is essential for writing code, and therefore cannot
be reduced for the purpose of decreasing defects or increasing maintainability.
Similarly, McCabe’s cyclomatic complexity has tangible correlation with defect
and maintainability but cannot be manipulated to a significant degree for code
1 https://scholar.google.se/.
2 http://ieeexplore.ieee.org.
3 http://www.sciencedirect.com.
4 http://www.springer.com.
5 https://www.engineeringvillage.com.

https://scholar.google.se/
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://www.springer.com
https://www.engineeringvillage.com

Do Internal Software Quality Tools Measure Validated Metrics? 641

improvements. It should be clear, however, that if a metric is not supported for
quality assessment in a validation study it can be valid for other activities. For
example, the same Lines of Code metric can be supported for maintenance effort
estimation. Or Cyclomatic complexity can be useful for testability assessment.

Table 1. Criteria

Inclusion criteria

I1 Papers published in a well-known software engineering
journals or conferences

I2 Papers that present studies in empirical validation of
internal quality or software metrics

Exclusion criteria

E1 Papers that are not written in English

E2 Papers that do not have internal metrics context and do
not provide scientific validation of internal quality metrics

3.2 Selection of Tools

For the selection of the tools, first, a free search on the Internet was conducted.
The main criteria was that the tools should conduct any type of static analysis.
As a result 130 tools were found. Because the aim of this paper is to aid practi-
tioners to improve the quality of their code, and because there are several tools
that support the same metrics, we set criteria for the selection of the tools. A
summary of the criteria is presented in Table 2.

Table 2. Criteria for tool selection

Criteria

C1 Support automated static analysis

C2 Offer at least one somehow validated metric

C3 Integration to IDEs and version control systems

C4 Be free or at least offer a trial option

C5 Support at least two programming languages

C6 Provide documentation such as user manual and/or installation manual

4 Results

4.1 Selection of Metrics

The first research question was what are the somehow validated metrics accord-
ing to literature. Based on the inclusion and exclusion criteria described earlier

642 M. Nilson et al.

a total number of 292 papers were found which evaluate internal quality met-
rics. After an in-depth analysis of each of the paper a preliminary table with
30 metrics was created (Table 3). This table presents all metrics that had been
subjected to validation in an empirical study.

Table 3. List of metrics subjected to validation in literature and the ones we selected
for this study.

Metric No of papers Selected

1 Lack of Cohesion on Methods 9 X

2 Weight Methods per Class 9

3 Depth of Inheritance 8 X

4 Response for Classes 8 X

5 Number of Classes 8

6 Coupling Between Objects 7 X

7 Tight Class Cohesion 6 X

8 Loose Class Cohesion 5 X

9 Lines of Code 4

10 McCabe Complexity 4

11 Lack of Cohesion on Methods 2 4 X

12 Lack of Cohesion on Methods 3 3 X

13 Lack of Cohesion on Methods 1 3 X

14 Degree of Cohesion (Direct) 3

15 Degree of Cohesion (Indirect) 3

16 Fan-Out Fan-In 2 X

17 Number of Methods 2

18 Block depth 2 X

19 Weight Methods per Class-McCabe 1

20 Standard Deviation Method Complexity 1

21 Average Method Complexity 1

22 Maximum Cyclomatic Complexity of a single Method of a Class 1

23 Number of Instance Methods 1

24 Number of Trivial Methods 1

25 Number of send Statements defined in a Class 1

26 Number of ADT Defined in A Class 1

27 Sensitive Class Cohesion 1

28 Improved Connection Based on Member Connectivity 1

29 Lack of Cohesion on Methods 4 1 X

30 Number of Attributes 1

In the next step all the metrics that were evaluated as somehow validated
were selected. After excluding metrics that are invalid for internal quality assess-
ment the final list of 12 validated metrics also presented in Table 3. These are

Do Internal Software Quality Tools Measure Validated Metrics? 643

the metrics that were consistently shown to have tangible correlation with qual-
ity attributes such as maintainability and defects. At the same time, these are
the metrics that can be useful when improving the code, due to the fact that
they are correlated to external quality attributes, and possible then also has
an effect on them. We recognize here that correlation is not causation but the
causality challenge in software engineering research is a much larger discussion,
and we assume a potential causality here even if that might not be true with
a lot of confounding factors in practice. It would at least be a useful start for
practitioners when improving code, we argue.

4.2 The Selected Tools

The research question 2 concerns the administrative capabilities of the tools.
In total there are over 130 commercial and non-commercial tools that claim to
provide internal software quality metrics. Out of these 130 only six tools were
selected according to the selection criteria. Interestingly, these tools also repre-
sent some of the widely known tools that researchers and software development
organizations have often reported to use. Brief descriptions of the tools can be
found on their respective homepages: QAC6, Understand7, CPPDepend8, Sonar-
Qube9, Eclipse Metrics Plugin10, and SourceMonitor11.

An additional difficulty of the tool selection was that most of the commercial
tools’ trial versions did not allow for a proper evaluation, meaning that, for
example, reports generated by the tools were unable to save, print or export,
the access to all metrics or features supported were not available for free trials.
Moreover, some of them required legal binding contracts for the trial as well as
written clarification of the purpose and the context in which the tool’s reports
will be used.

The third research question was about the administrative capabilities of the
tools. Table 5 shows whether a given tool has a given capability for all the tools
and all the defined capabilities. If a tool has the given capability the intersection
cell is marked with “1”, otherwise “0” is marked. A total score at the bottom of
the table shows the sum of all marks.

The second research question is concerned with which tools support the val-
idated metrics. No tool was found that supports all of the metrics in Table 5,
which indicated that it is reasonable to select tools that support as many of the
validated metrics as possible. A preliminary search of the prospects for each tool
indicated that several somehow validated metrics were supported, but a deeper
analysis of the technical documentation showed that this was not always the

6 https://www.qa-systems.com.
7 https://www.scitools.com.
8 https://www.cppdepend.com.
9 https://www.sonarqube.com.

10 http://eclipse-metrics.sourceforge.net/.
11 https://www.campwoodsw.com.

https://www.qa-systems.com
https://www.scitools.com
https://www.cppdepend.com
https://www.sonarqube.com
http://eclipse-metrics.sourceforge.net/
https://www.campwoodsw.com

644 M. Nilson et al.

case, since some metrics either did not exist in the tool or existed but under a
different name than in Table 5. In the latter cases it was unclear whether the
metric was implemented according to the design of the original scientific paper
or underwent modifications. These metrics were included as valid metric imple-
mentation, however, since the overall implementations of validated metrics in
the tools were scarce.

Table 4 presents all six tools, the amount of all metrics that they offer and the
somehow validated metrics that they offer. The second column of the table shows
the number of all metrics versus the number of somehow validated metrics that
each of the tools provide. In the third column the validated metrics names are
registered. Generally it appears that tools provide substantially larger amount
of metrics when compared to the number of validated metrics. Moreover, the
tools provide only half or less of validated metrics. This point is crucial and is
discussed in great detail in the discussion below.

Table 4. All the somehow validated metrics offered by the tools.

Tool All/Validated Validated metrics

QA-C 66/1 Nesting depth

Understand 102/6 Fan-in, fan-out, depth of inheritance,
response for classes, coupling between
objects, lack of cohesion between methods

CPPDepend 40/2 Depth of inheritance, lack of cohesion on
methods

SonarQube 59/0

Eclipse m. plugin 28/2 Depth of inheritance, lack of cohesion on
methods

SourceMonitor 12/2 Depth of inheritance, nesting depth

5 Discussion

First, it should be clear that the tools evaluated in this study may provide other
useful functionalities besides measurements. For example, some of the tools can
provide code violation detection. The scope of this paper is only concerned with
the metrics they provide. The results show that there are three important points
concerning the first research question. The first point is that there were a number
of metrics that were designed theoretically and reported in scientific papers,
which purported to be useful as internal software quality measures. These are
30 metrics presented in Table 3.

The second point is that as a first indication of validity these metrics shall
be able to predict some external software quality attributes, such as maintain-
ability, testability, defect-proneness, etc. For example Radjenović [44] found 106

Do Internal Software Quality Tools Measure Validated Metrics? 645

publications which evaluated one or another set of these metrics against defect
prediction.

The third and final point is that being a good predictor does not entail being
useful quality measure. An additional criteria for validity is whether the measure
can be manipulated for making code quality better. For example Lines of code
measure is a good predictor of defects, but it is not possible to manipulate
lines of code to reduce the defects, because lines of code is an essential element
of creating code [25]. Considering the last two points we got twelve somehow
validated metrics (marked with an “X” in Table 3).

Research question 2 concerns with finding tools for supporting these twelve
metrics. Unfortunately the currently available tools poorly capture the validated
metrics. Moreover, they provide an excessive number of other metrics, the use
of which are not clear. This confusion is deepened more when it turns out that
there are several ways for measuring the same metric. For example, when count-
ing function calls (fan-out) it is not clear whether unique functions calls or all
function calls should be counted. Furthermore, the same function can be called
multiple times with different argument list. Similarly “switch—case” problem
for cyclomatic complexity, or “commented—non-commented lines” for lines of
code.

Research question 3 is concerned by capabilities of the tools. Most of the
tools had specific technical requirements for the code to be analyzed. For exam-
ple, some tools were not able to start the analysis without a compiled file. Several
tools required a specific hardware in order to use their servers to run the static
code analysis, however none of these are explicitly mentioned in their documen-
tation. There are also big differences between the commercial and free tools,
where the commercial tools offer a sometimes overwhelming level of detail and
the free tools can be somewhat superficial.

Another issue with the tools is that they do not always support reporting
results on the same level. The measurements can be reported on entities such as
project, file or function/method level, but not all tools support these levels. The
most relevant level would normally be function/method level, since this level can
be assigned to a developer or a team for improvements.

Table 5 summarizes capabilities of the tools on a rough level. But much more
details reveal when using the tools. One clear point is that only a portion of the
validated metrics are actually supported in any of the tools. It is striking that
the tools offer overwhelming numbers of metrics (if they can be called metrics),
as though every additional metric provides some value (Table 4). But they are
likely to provide confusion, because simplistic and not validated metrics risk
their usefulness.

646 M. Nilson et al.

Table 5. Tool characteristics and scores

Tool
characte-
ristics

Tool
sub

characte-
ristics

QAC
Under-
stand

CPP
Depend

Sonar
Qube

Eclipse
Metrics
Plug-in

Source
Monitor

Language
Java

(Android) 0 1 1 1 1 1

C,C++ 1 1 1 1 0 1
Phyton 0 1 0 1 0 0
Csharp 0 1 1 1 0 1
Delphi/
Pascal 0 1 0 0 0 1

Visual
Basic 0 1 0 1 0 1

HTML/
.NET 0 1 1 1 0 1

Availability
Open
Source 0 0 0 1 1 0

Free 0 0 0 0 0 1
Free-Trial 0 1 1 0 0 0
Commercial 1 1 1 1 0 0

Interface
Dynamic

GUI 1 1 1 1 1 1

Export
Graphs 1 1 1 1 0 1

Customized
Metrics
Tables

1 1 1 0 0 0

Metrics
Automation
via CMD

1 0 0 0 0 0

Supported
OS

Windows 1 1 1 1 1 1

Mac 1 1 1 1 1 1
Ubuntu 1 1 1 1 1 1
Cloud 1 1 1 0 0 0

Integration IDE 1 1 1 1 1 0
Continuous
Integration

Tools
1 1 1 1 0 0

Version
Control
Tools

1 0 0 1 0 0

Issue
Tracker
Tools

1 0 0 1 0 0

Compliance
to

standards
MISRA 1 1 0 0 0 0

ISO
26262 1 0 0 0 0 0

CWE 1 0 0 0 0 0
CERT 1 0 0 0 0 0

ISO/IEC
9899:2011 0 0 0 0 0 0

Documentation Yes 1 1 1 1 1 1
Tutorials 1 1 1 1 0 0

Metric
resolution

Project 1 1 1 1 1 1

File 1 1 0 1 0 0
Function/
Method 1 1 0 0 0 1

Total Score in
Percentage

23 24 18 21 9 15

Do Internal Software Quality Tools Measure Validated Metrics? 647

6 Threats of Validity

There could be errors in the underlying studies, and the validity of the metrics
is established in those other papers. The results from those validation studies
could be incorrect, which could influence the result of this study. The threat to
validity for a specific metric can be assumed to be lower the more independent
validation studies have been conducted. This threat was somewhat mitigated by
the fact that the selected metrics are supported by 2 or more papers.

Another threat is a potential error in the search process. This kind of limi-
tation is particularly difficult to tackle, we tried to use a not too broad and not
to narrow search string to capture relevant papers.

Omission of relevant papers is a third threat we have identified, and as
stated in the research method section, during the initial search 567 papers were
found but many of these were not relevant to this study as they also included
papers about medicine, biochemistry, environmental science, chemistry, agricul-
ture, physics or social science. The reason for these papers being found by the
search is presumably that the keywords “metrics,” “software” and “validation”
are common to many scientific papers. In the second search the subject areas
above were excluded and as a result 292 papers were found. There is a chance
that there is an unidentified paper conducting metric validation, however, this
will not change the general ratio of generally offered and somehow validated
metrics.

Naming of metrics is an external threat to validity. Unfortunately each tool
can use different names for metrics in scientific papers, which could lead to a
mapping problem.

7 Conclusions

This study found 12 somehow validated metrics that can be helpful in prac-
tice for code improvements. Popular static code analysis tools capture these
metrics partially. But at the same time, they provide overwhelming number of
other metrics, the purpose of which are not clear. This may cause confusion
for practitioners. Additionally, these tools have capabilities for being integrated
to software development environment and helping developers in continuous code
improvements, even though they are oriented to specific programming languages.

References

1. Schulmeyer, G.G., McManus, J.I.: Handbook of Software Quality Assurance. Van
Nostrand Reinhold Co., New York (1992)

2. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Com-
puter 26(7), 18–41 (1993)

3. ISO, I.: IEC 9126–1: Software engineering-product quality-part 1: quality model.
International Organization for Standardization 21, Geneva (2001)

4. Nicolette, D.: Software development metrics (2015). (Electronic source)

648 M. Nilson et al.

5. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

6. Santos, M., Afonso, P., Bermejo, P.H., Costa, H.: Metrics and statistical techniques
used to evaluate internal quality of object-oriented software: a systematic mapping.
In: 2016 35th International Conference of the Chilean Computer Science Society
(SCCC), pp. 1–11. IEEE (2016)

7. Carrillo, A.B., Mateo, P.R., Monje, M.R.: Metrics to evalute fuctional quality: A
sistematic review. In: 7th Iberian Conference on Information Systems and Tech-
nologies (CISTI 2012), pp. 1–6. IEEE (2012)

8. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis,
pp. 131–142. ACM (2008)

9. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering mea-
surement. IEEE Trans. Softw. Eng. 22(1), 68–86 (1996)

10. Ordonez, M.J., Haddad, H.M.: The state of metrics in software industry. In: Fifth
International Conference on Information Technology: New Generations (ITNG
2008), pp. 453–458. IEEE (2008)

11. Shepperd, M., Ince, D.: Derivation and Validation of Software Metrics. Clarendon
Press, Oxford (1993)

12. de AG Saraiva, J., De França, M.S., Soares, S.C., Fernando Filho, J., de Souza,
R.M.: Classifying metrics for assessing object-oriented software maintainability: a
family of metrics’ catalogs. J. Syst. Softw. 103, 85–101 (2015)

13. Suresh, Y., Pati, J., Rath, S.K.: Effectiveness of software metrics for object-oriented
system. Procedia Technol. 6, 420–427 (2012)

14. Jabangwe, R., Börstler, J., Šmite, D., Wohlin, C.: Empirical evidence on the link
between object-oriented measures and external quality attributes: a systematic
literature review. Empirical Softw. Eng. 20(3), 640–693 (2015)

15. Antinyan, V., Staron, M., Sandberg, A.: Evaluating code complexity triggers, use
of complexity measures and the influence of code complexity on maintenance time.
Empirical Softw. Eng. 22(6), 3057–3087 (2017)

16. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
17. Halstead, M.H.: Elements of Software Science. Elsevier Science, New York (1977)
18. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE

Trans. Softw. Eng. 5, 510–518 (1981)
19. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE

Trans. Softw. Eng. 20(6), 476–493 (1994)
20. Antinyan, V., et al.: Identifying risky areas of software code in agile/lean software

development: an industrial experience report. In: 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineer-
ing (CSMR-WCRE), pp. 154–163. IEEE (2014)

21. Tenny, T.: Program readability: procedures versus comments. IEEE Trans. Softw.
Eng. 14(9), 1271–1279 (1988)

22. Buse, R.P., Weimer, W.R.: Learning a metric for code readability. IEEE Trans.
Softw. Eng. 36(4), 546–558 (2010)

23. Alzahrani, M., Melton, A.: Defining and validating a client-based cohesion metric
for object-oriented classes. In: 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), vol. 1, pp. 91–96. IEEE (2017)

24. Shepperd, M., Ince, D.C.: A critique of three metrics. J. Syst. Softw. 26(3), 197–210
(1994)

25. Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Confer-
ence on the Future of Software Engineering, pp. 357–370. ACM (2000)

A Unique Value that Synthesizes the Quality
Level of a Product Architecture: Outcome

of a Quality Attributes Requirements
Evaluation Method

Mariana Falco1(&) and Gabriela Robiolo2

1 LIDTUA (CIC)/CONICET, Facultad de Ingeniería,
Universidad Austral, Pilar, Buenos Aires, Argentina

mfalco@austral.edu.ar
2 LIDTUA (CIC), Facultad de Ingeniería,

Universidad Austral, Pilar, Buenos Aires, Argentina
grobiolo@austral.edu.ar

Abstract. The architecture can inhibit or enable the different quality attributes
that guide to software product, so it is extremely important to approach the
evaluation of the architecture to determine at what level the quality is being
achieved. Although there are frameworks and assessment methods for the
architecture or quality characteristics in particular, none of them synthesizes in a
single value the level of quality of a software product. We address this short-
coming by introducing a new five-step architecture evaluation method which
defines, analyze and measure the quality characteristics of a product architecture
and its implementation, obtaining as a final output a unique value that represents
the quality level. We illustrate the method by analyzing an architecture of a web
and mobile application within the healthcare domain, developed in an agile
context.

Keywords: Quality attributes � Quality characteristics � Evaluation method

1 Introduction

The quality of a system is extremely necessary to define whether the system satisfies or
not the needs of stakeholders, and those needs are precisely what is represented in the
quality model; which is characterized by quality characteristics defined by the ISO/IEC
25010 [1]. Different activities can benefit from the use of quality concepts, during
product development, like identifying requirements, design and testing objectives,
quality control and acceptance criteria, and also establishing measures of quality
characteristics.

A quality attribute is a “measurable feature of a system, which is utilized to stip-
ulate how well the system satisfies stakeholders” [2]. Bass et al. [3] defines a quality
attribute as “a measurable or testable property of a system that is used to indicate how
well the system satisfies the needs of its stakeholders”. Also, the authors say that “a
quality attribute can be thought of as a measuring of the “goodness” of a product

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 649–660, 2019.
https://doi.org/10.1007/978-3-030-35333-9_51

http://orcid.org/0000-0002-0006-2303
http://orcid.org/0000-0001-6865-8499
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_51&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_51

along some dimension of interest to a stakeholder”. Likewise, Bass et al. [3] define
quality attribute requirements (QARs) as “qualifications of the functional requirements
or of the overall product”. Having these definitions in mind, the research question of
the present paper is the following: Is it possible to define a unique value that synthesize
the quality level of a product architecture? Consequently, the main objective is to
introduce the construction, the definition of an architecture evaluation method and its
application on a case study, that analyze the quality characteristics of the architecture
and their implementation, obtaining a synthesized and unique value that represent the
quality level. The evaluation method includes five steps: (1) elicitation of QARs,
(2) definition of the acceptance criteria for the expected quality level of the product,
(3) measurement of each quality attribute requirements, (4) collect and synthesize the
results and finally, (5) the assessment of the product quality level obtained. This
method can be applied to every development method that defines iterations, like agile
methods.

It is worth mentioning that Step 1 implements the elicitation of QARs through the
Goal-Question-Metric method [4, 5], while Step 4 includes the extension of the testing
coverage definition [6–8] to analyze each quality characteristic included in the archi-
tecture. Later on, a case study was carried out to study the implementation of the
evaluation method, conducting the measurement of an architecture embedded in the
healthcare domain, for patients in a cardiac rehabilitation program, which it was
developed within an agile context. The list of quality characteristics included in the
architecture is as follows: Availability, Interoperability, Performance Efficiency,
Security, Usability, Modifiability, and Functional Suitability. By calculating the cov-
erage of each quality characteristic, the values evidence the different problems
encountered during the implementation of the application. Consequently, through the
analysis of the quality characteristic we obtained a feasible representation of the
application putting into numeric values how good or how bad each quality charac-
teristic was achieved; leading to a summary value that represent this idea.

The literature describes others architecture evaluation methods like SAAM [9] and
ATAM [10] which schematize the procedure in steps approaching the elicitation
process with scenarios. The main contributions of the present paper are: (a) we built an
architecture evaluation method that includes quality characteristics as defined by ISO
25010 [1], (b) we have extended the use of testing coverage to define QAR coverage,
and architecture coverage; (c) we have extended the acceptance criteria for functional
and nonfunctional requirements, and (d) we have synthesized the functional and
nonfunctional requirements on a number that represents the quality level of an archi-
tecture. The present article is structured as follows: in Sect. 2 the related work will be
addressed, while Sect. 3 will describe and characterize the method of Elicitation,
Measurement and Evaluation of an Architecture. Section 4 will approach the case
study, while Sect. 4.2 will address the discussion and threats to validity. Finally,
Sect. 5 will describe the conclusions and lines of future work.

650 M. Falco and G. Robiolo

2 Related Work

Both the definition of the architecture of a product and the specification of quality
characteristics and quality attributes requirements are decisions that should not be taken
lightly because they have a high impact on the state of the final product. The literature
addresses these issues in different ways, defining models, methodologies, frameworks,
and evaluation methods. As far as the quality model is concerned, Ortega, Pérez and
Rojas [11] designed a prototype with a systemic approach that contains quality attri-
butes that allows a product to be analyzed, and that when applied, it is possible not only
to analyze the weaknesses and strengths, but also discern its compliance with standards.
Their goal is to identify the quality characteristics of the product necessary to obtain
systemic quality. The biggest beneficiary of this model are the companies, because it
serves as a benchmark for their products to evolve and be competitive.

The main difference from our work is that as they built a model, they not only had
to identify quality characteristics and measures, but they also created a taxonomy with
them. Another difference is within the quality characteristics used: Efficiency, Relia-
bility, Functionality, Maintainability, Portability and Usability. In this line, Bachmann
et al. [12] presented a reasoning framework as a means of modularizing the knowledge
of quality attributes, where the requirements that the architecture must fulfill are defined
as specific quality attribute scenarios; and they also differentiate between an architec-
tural model and a model of quality attributes, and thus achieving the identification of
conflicting requirements.

In the same way, some authors have proposed scenarios-based evaluation methods
such as SAAM [9], ATAM [10], CBAM [13], ALMA [14], and FAAM [15]. The
analysis of an architecture through SAAM (Software Architecture Analysis Method)
allows to detect the strengths or weaknesses of it, together with those points where the
architecture fails to meet the modifiability requirements. Considering that the steps in a
SAAM evaluation session address the management of scenarios, one of the main
differences with our evaluation method is that it doesn’t include metrics to analyze the
quality characteristics.

On the other hand, ATAM (Architecture Tradeoff Analysis Method), based on
SAAM, performs an assessment of the following quality attributes: Modifiability,
Portability, Extensibility and Integrability; addressing how well the architecture meets
quality goals; also through scenarios. Furthermore, it analyzes the interdependencies
and trade-offs between quality attributes. A similarity in the steps defined by ATAM
with our evaluation method is that they also include the requirements elicitation, and
the scenarios they have specified are embedded in the definition of Bass [10] to
characterize a quality attribute that includes the following parts: a source of stimulus,
stimulus, environment, artifact, response and response measures.

Then, CBAM (Cost-Benefit Analysis Method) is a method that analyzes the costs,
benefits and schedule implications of architectural decisions; and positions them with
the same level of importance as quality attributes [13]. A partial similarity to our
method is that its second step advocates the elicitation of the benefits of quality
attributes for managers; in our case, the participation of managers is done in the
assessment of the quality of the architecture (step three and six, respectively). The focus

A Unique Value that Synthesizes the Quality Level 651

of ALMA (Architecture-Level Modifiability Analysis) is modifiability and it’s testing
in business information systems; and the main difference is that it advocates a set of
indicators for the assessment of modifiability: maintenance cost predictions, and risk
assessment. With respect to FAAM (Family-Architecture Assessment Method),
although our method includes interoperability, we not only advocate interoperability
between systems or between families of systems, but we analyze between systems,
between systems and sensors, between modules and between services [15].

Later on, the authors in [9] presented the central aspects to achieve an under-
standing of the structures of an architecture based on quality characteristics, in order to
propose a method to find an adequate software architecture structure based on quality
requirements of the software product in question. Although it is a generic method, they
have presented a case study that addresses the following QAs: Performance, Relia-
bility, Maintainability, and Portability. However, Bass et al. [10] studies the attributes
of quality (based on quality attributes requirements) from the definition of scenarios (as
also the previous evaluation methods such as SAAM and ATAM do), and definition of
tactics, which based on the progress of the technologies currently need to be expanded
and completed.

As a summary, some authors approach the study and implementation of specific
quality attributes such as interoperability or performance; others include a greater
number of quality attributes but none justify the selection of them for any particular
reason or by any standard such as ISO 25010 [1]. In the same way, some are domain-
specific with a quality attribute. Then, there are several methods of evaluation of
architecture, with which the idea of requirement elicitation is shared, but the vast
majority of them are based on scenarios, following the idea of Bass [10]. In our case,
elicitation is based on the GQM method, to specify the needs of stakeholders in the
form of goals, questions, metrics and acceptance criteria for each question. None of the
studies proposes any form of synthesis of the analysis, as such, we propose the defi-
nition and calculation of coverage values for each selected quality characteristics, and
for the entire architecture, which leads to the achievement of a multidimensional
number as a summary value of the achieved quality level as final output. Finally, the
focus of this method is oriented to the measurement of quality characteristics.

3 Method of Elicitation, Measurement and Evaluation
of an Architecture

This section specifies each of the five steps included within the defined evaluation
method, which are: (1) elicitation of QARs, (2) define the acceptance criteria for the
expected quality level of the product, (3) measure and test each QARs, (4) collect and
synthesize results, and finally, (5) assessment of the product quality level.

Step 1: Elicitation of Quality Attributes Requirements
Requirements engineering is the process of eliciting individual stakeholder require-
ments, and developing them into detailed, agreed requirements documented and
specified in such a way that they can serve as the basis for all other system development
activities [4]. In our context, this elicitation process approaches the definition of

652 M. Falco and G. Robiolo

stakeholders needs as a way to specify the quality characteristics of a software product,
not only identifying them but also describing for each characteristic what the stake-
holder want. This process will be done through the Goal-Question-Metric method [4].
The resulting hierarchical model is composed of three levels that are refined from one
level to the other; and consequently, step 1.1 will approach the conceptual level,
defining the goals, step 1.2 will embed the operational level, specifying the questions
by goal, and finally, step 1.3 will specify the quantitative level, defining the metrics by
question. It is worth mentioning that Step 1 should be validated by the stakeholders.

Step 1.1: Select Quality Characteristics and Sub-characteristics. ISO 25010 [1]
describes that the quality of a system is the degree to which the system satisfies the
stated and implied needs of its various stakeholders; and the quality model categorizes
the quality of the product into characteristics and sub-characteristics. The character-
istics are Functional Suitability, Performance Efficiency, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability; which can be selected by the
stakeholders; as each characteristic is mapped with a goal, it is defined by the purpose,
issue, object and viewpoint per selected characteristic.

Step 1.2: Specify Quality Attributes Requirements. Bass et al. [3] explain that the
requirements of a system originate from different sources and forms (functional, quality
attributes and constants). Considering the Step 1.1, the QARs for each of the quality
characteristics are now specified by the stakeholder and the development team. These
QARs are the questions defined for each of the goals. For example, in the context of
Performance Efficiency a QAR can be defined as: “Does a registry or directory of all
personnel who use or access the system is provided?”.

Step 1.3: Define Metrics and Acceptance Criteria of Each Quality Attribute
Requirement. In this sub-step, the metrics that act as a refinement of the questions
within the quantitative product measurement process should be defined, will provide
the necessary information to answer the questions defined in Step 1.2 [16]. By defining
the limits and parameters of a user story or functionality, and determining when a story
is complete and functioning as expected, it is possible to specify an acceptance criteria
containing conditions that a software product must satisfy in order to be accepted by
the user or stakeholder [17]. Acceptance criteria are also discussed when defining what
requirements must be met in each incremental version of a software product [3]. In this
context, we sought to extend these concepts for each of the metrics defined by goal in
order to determine if this measured value was met or not, addressing not only func-
tionalities, but also quality characteristics.

Step 2: Define the Acceptance Criteria for the Expected Quality Level of the
Product
This point is key when defining the acceptance criteria of the product expected level
that will be subject to measurement, because the value advocates understanding of how
well the quality for each goal is achieved, allowing a glimpse of the level of the entire
product quality. In this way, the acceptance criteria is a positive number that can take
any value between 0 and 1; and is defined by the stakeholders. We must mention that 1
is the best and strictest value of an acceptance criteria: 0 is equal to all QAR are not
passed, and 1 is equal to all passed QAR obtaining the same value as TEC which is also

A Unique Value that Synthesizes the Quality Level 653

equal to 1. It is important to mention that the acceptance criteria must be defined per
each of the expected iterations, which will be different and incremental from the first
one to the last one [18]. In the same way, as the stakeholder is the one who defines his
needs, he or she also defines the level of quality expected for each iteration.

Step 3: Measure and Test Each Quality Attribute Requirements
Step 3 involves carrying out the measurement of each question, executing the defined
metric and describing whether that acceptance criteria was met or not, indicating 1
(passed) or 0 (failed), respectively. In the case of Usability, the measurement binds the
responses of the number of users who perform the usability test effective. The final
value of each test question will be obtained from the application of Eq. (6), which
promotes the unification of the total number of answers per respondent, for each of the
defined questions; allowing later to compute the measurement.

Step 4: Collect and Synthesize Results
Within the software process, the coverage testing addresses two uses, where in the first
the coverage can be considered as a measure of the quality of the product, and in the
second, it is a feedback mechanism for the software engineer. In the context of the
evaluation method, we have based on the concept of testing coverage to derive cov-
erage for the different quality characteristics. Based on the foregoing, Eqs. (1) to (5)
describe the calculations needed to compute the quality level of an architecture.

OCi ¼ Number of passed QARi
Number of QARi

¼ NpQARi
NQARi

ð1Þ

ECarch ið Þ ¼ Number of QARi
Total number of QAR

¼ NQARi
TNQAR

ð2Þ

OCarch ið Þ ¼ Number of passed QARi
Total number of QARi

¼ NpQARi
TNQARi

ð3Þ

TEC ¼
Xn

i¼1

ECarch ið Þ ¼ 1 ð4Þ

TOC ¼
Xn

i¼1

OCarch ið Þ ð5Þ

where: i identified each quality characteristic; OCi is the obtained coverage per quality
characteristic, NpQARi is the number of passed QARs per quality characteristic, NQARi

is the number of QARs per quality characteristic; ECarchi is the expected coverage per
quality characteristic within the architecture, NQARi is the number of QARs per quality
characteristic, TNQAR is the total number of QAR; OCarchi is the obtained coverage
per quality characteristic within the architecture, NpQARi is the number of passed
QARs per quality characteristic, TNQAR is the total number of passed QAR; TEC is the
total expected coverage within the architecture, where n is the number of quality

654 M. Falco and G. Robiolo

characteristics; and TOC is the total obtained coverage of quality attribute requirements
within the architecture.

For each QAR corresponding to Usability, z answers will be obtained according to
the number of participants that perform the Usability test. With respect to Usability,
each QAR is analyze as follows: (1) it is necessary to unify the z answers from the
Usability test that were different from 0 and 1 to become 0 or 1, for example those
being a qualitative value like low, very low, medium or high can be unified defining a
criteria that all those answers with low and very low will be considered as passed
(1) and medium and high as failed (0); (2) Then, all the values (0s and 1s) for each
QAR are summarized, and it is obtained the value that represents the QARs that passed;
(3) Later, the coverage per QAR is calculated as follows (where x is each QAR) with
Equation

UCx ¼ Sum of passed answers per QAR
Number of respondents

ð6Þ

Where UCx is the Usability coverage per QAR. If the value obtained with Eq. (6) is
lower than 0.5 then it is considered as failed, passed otherwise, obtaining the value
NpQARi for Usability; as the sum of the passed values. (4) Finally, once NpQARi is
calculated, it is possible to compute the coverage for Usability itself with Eq. (1)-OCi

and (3)-OCarchi; and continue with the calculations in order to obtain the TOC value -
Eq. (5).

Step 5: Assessment of the Product Quality Level
It is possible to perform the analysis of the quality level obtained by means of Eq. (5),
and the comparison with the acceptance criteria defined by Step 3. If the value obtained
in (5) is lower than the criteria, the iteration will not have the expected quality level,
and the individual values of each quality feature must be analyzed to determine the
points of failure, and continuous working in the iteration.

4 Case Study

4.1 Description

The objective of this case study is to address the application of the proposed evaluation
method to a mobile and web app called HeartCare, describing also the results obtained.
HeartCare is an application designed and implemented by the authors with engineering
students, whose main goal is to ensure that the recovery of cardiac patients can take
place in an environment outside hospitals. The layered architecture includes a multi-
agent system and a heart-rate sensor (Polar H10) that helps the patient monitor their
heart condition while he or she is in rest position, or while performing a physical
exercise, through a mobile device with Android. The literature describes similar
examples to HeartCare [19–21].

A Unique Value that Synthesizes the Quality Level 655

Step 1: Elicitation of Quality Attributes Requirements

Step 1.1: Select quality characteristics and sub-characteristics. Based on the needs of
stakeholders, the following characteristics and sub-characteristics have been selected:
(a) Functional Suitability: Functional Completeness, Functional Correctness; (b) Per-
formance Efficiency: Time Behavior, Resource Utilization, Capacity; (c) Compatibility:
Interoperability; (d) Usability; (e) Reliability: Availability; (f) Security: Confidentiality,
Integrity, Authenticity; (g) Maintainability: Modifiability, Testability. These QAs were
selected based on the requisite of the Cardiology Service of a private hospital, which it
was in need of an improvement of their software services quality, in order to provide a
better attention for patients with cardiac conditions. In this context, only one goal will
be presented to achieve the traceability of the steps, but it is convenient to emphasize
that the specific goals of all the quality characteristics have been specified. Instantiating
the GQM approach, the goal for Performance Efficiency is specified with a purpose
(analyze), an issue (response and processing times), an object (mobile phone, sensor,
and web application), and a viewpoint (from the project manager and user viewpoint).

Step 1.2: Specify quality attribute requirements. Considering the goal, one of the
questions that arises for performance efficiency is: Is the user wait-time for the con-
nection of the sensor with the mobile adequate?, as shown in Fig. 1 row F16. The set of
QARs by quality characteristic leads to obtain the set of aspects that are wanted to be
analyze in the architecture.

Step 1.3: Define metrics and acceptance criteria of each quality attribute requirement.
The questions and the quality attributes are stored in a structured spreadsheet as shown
in Fig. 1. The ID column allows to identify and quickly group each row by quality
characteristic, the header together with columns 3 and 4 address the results of the
GQM, identifying the questions (QAR) and each metric. Finally, the Result column

Fig. 1. Performance Efficiency analyzed through GQM, acceptance criteria and result.

656 M. Falco and G. Robiolo

contains the result of the measurement made per row for all QARs (1 passed, 0 failed).
Each QAR was validated by the stakeholder.

Step 2: Define the Acceptance Criteria for the Expected Quality Level of the
Product. Following the GQM specification of the previous steps, the stakeholder has
defined the acceptance criteria as 0.70. The architecture to be measured outlines the
first iteration, so it is feasible to consider a value of 0.70 because at least two more
iterations are expected, which will increase the individual value of the acceptance
criteria for each of them.

Step 3: Measure and Test Each Quality Attribute Requirements. At this point and
to be able to complete the Result column of the cell corresponding to the table of Fig. 1,
the analysis was made of whether each of those quality attributes requirements were
included or not in the measured architecture. For example, the row with ID F16 shown
in Fig. 1 ask whether the time the user has to wait for the sensor connection with the
mobile is too long or not. Consequently, by measuring this time, a value of 4 s was
obtained, so it is considered as “passed” and in the result column, the value “1” was
written down. This same procedure was performed for all the QARs.

Step 4: Collect and Synthesize Results. It is necessary to calculate the coverage for
each of the defined quality characteristics. Following the example, Eq. (1) allows
calculating the coverage value for Performance Efficiency which gives OCi =
NpQARi/NQARi = 16/18 = 0.89. It is worth mentioning that within Usability, each
QAR was answered by fourteen respondents, who gave their perspective of the
functioning and design of the mobile app. Equation (6) allowed the unification of the
Usability answers, obtaining a single value to represent the result per each Usabil-
ity QAR. Once the results from Eq. (6) and NpQARi were obtained, Eqs. (1), (2), (3),
and (4) were calculated for all of the characteristics, and therefore completing Table 1,
obtaining by means of Eq. (5) a TOC value of 0.775.

Table 1 shows the list of selected quality characteristics, where i is 7; the second
column shows the number of QAR per each quality characteristic where it’s sum is
TNQAR = 138. Later, the third column includes the values of passed QAR per quality
characteristic, achieving a TNpQAR = 107. The fourth column represents the obtained

Table 1. Summary of results from the application of the proposed evaluation method.

Quality characteristic NQARi NpQARi OCi ECarchi OCarchi
Availability 12 12 1 0.086 0.086
Interoperability 31 27 0.870 0.224 0.195
Performance efficiency 18 16 0.888 0.130 0.115
Security 19 9 0.473 0.137 0.065
Usability 27 27 1 0.195 0.195
Modifiability 16 1 0.062 0.115 0.007
Functional suitability 15 15 1 0.108 0.108
Total TNQAR = 138 TNpQAR = 107 TEC = 1 TOC = 0.775

A Unique Value that Synthesizes the Quality Level 657

coverage per each quality characteristic, reaching in the fifth column to the expected
coverage of each QAR within the architecture; which has a total value of TEC = 1.
Finally, the sixth column possess the obtained coverage per QAR within the archi-
tecture, which its summarization allows to obtain the TOC value (0.775).

Step 5: Assessment of the Product Quality Level. The assessment itself addresses
the analysis of the value obtained by the Eq. (5) based on the previous calculation of
the coverage of all quality characteristics. In this case, an acceptance criteria was
defined in 0.70; and following Table 1, the quality level (TOC) was 0.775. Conse-
quently, the quality level of the measured architecture reached the expected level of
quality. In any case, when analyzing the quality characteristics, it is possible to observe
that the characteristics with the lowest level of completeness were security and mod-
ifiability; which will be addressed in the first instance of the next architecture iteration.

4.2 Discussion

Based on the literature analysis, some authors have presented different ways of
studying the architecture and its quality attributes. Even though there are several
frameworks or implementations that address testing coverage [7, 22, 23]; none of them
deals with the concept and calculations to understand the quality level obtained for each
quality attribute and quality characteristic. For that, we have made an extension to
calculate the coverage of each individual quality characteristic and the coverage of all
of them as part of the architecture.

The method used to derive the elicitation process within as the step 1 was per-
formed through GQM [4, 5]. Knowing what to measure is a recurrent problem in a
data-driven approaches, using GQM for identifying the quality attributes ensures that
the assessment of the product is adapted to the organization applying the proposed
method. The TOC value, that it was defined to be equal to or exceeds 0.70; was
calculated through the coverage of all quality characteristics for the first iteration of the
application. In the particular case of the implementation, three iterations are expected,
considering that the healthcare quality demand will be high due to the requirements of
this particular domain. According to the stakeholder, the first iteration (proof of con-
cept) were set with a 0.70 acceptance criteria, the second (new architecture) with 0.70
as well, and the third one and final (a prototype to attract investors) will have a 0.80
acceptance criteria.

After the application of the proposed evaluation method, it was possible to obtain a
coverage of 0.775, from which it can be understood that it can still improve by about
22%, considered as technical debt [24]. The architecture evaluation method presented
in this paper positions quality as a multidimensional concept, and whose resulting value
(0.775) allow us to demonstrate that one of the greatest achievements of this method is
that it has been able to synthesize the multiple dimensions through this number,
achieving a complete analysis. Later on, a manager in a business context can use that
number as a first means of analyzing the quality of an architecture, because it can
determine at a glance if the architecture passes or not the allowed acceptance criteria. If
it does not happen, the manager must extract what are the changes that must be made to
reach the allowed threshold, and thus achieve the expected product quality.

658 M. Falco and G. Robiolo

As threats to validity, it is possible to consider the subjectivity included in the
evaluation of the QARs, when we decided to accept or reject them. But it is worth
mentioning that all of them were defined in order for them to be easily verifiable,
testable or measurable. We must also mention that all the quality characteristics are
considered with the same weight, a point that will be improved in the next iteration of
the evaluation method. Also, all of those QARs belonging to Usability have a reduced
subjectivity due to the number of people involved in the Usability test carried out. It is
feasible to mention that we consider that these fourteen respondents were sufficient for
this first iteration of the framework measurement. Likewise, it is necessary to ask
whether really the quality level represents the quality of the product. In response, it is
feasible to mention that the quality level is a percentage measure of the amount of
QARs selected, where the selection of each one were validated with stakeholders, so
we considered that is not necessary to validate the value obtained per se.

5 Conclusions

The present paper embedded the definition of an architecture evaluation method, and
shows a fruitful measurement of a healthcare application. We conclude that it is pos-
sible to apply the method within agile methods, achieving a multidimensional value. As
future work, the method to include the various iterations of the life cycle of a software
product will be generalized, seeking to develop an automated software tool that
embodies this evaluation method, including the possibility of specifying a different
weight for each of the requirements defined.

References

1. ISO/IEC 25010 (s.f). https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
2. Alenezi, M.: Software architecture quality measurement stability and understandability. Int.

J. Adv. Comput. Sci. Appl. (IJACSA) 7(7), 550–559 (2016)
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison-

Wesley Professional, Boston (2012)
4. Basili, V.R.: Software Modeling and Measurement: The Goal/Question/Metric Paradigm

(1992)
5. Caldiera, V., Basili, V.R., Dieter Rombach, H.: The goal question metric approach. In:

Encyclopedia of Software Engineering, pp. 528–532 (1994)
6. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput. J. 52(5),

589–597 (2009)
7. Horgan, J.R., London, S., Lyu, M.R.: Achieving software quality with testing coverage

measures. Computer 27(9), 60–69 (1994)
8. Parra, P., da Silva, A., Polo, O.R., Sánchez, S.: Agile deployment and code coverage testing

metrics of the boot software on-board Solar Orbiter’s Energetic Particle Detector. Acta
Astronaut. 143, 203–211 (2018)

9. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: a method for analyzing the properties
of software architectures. In: Proceedings of 16th International Conference on Software
Engineering, pp. 81–90. IEEE (1994)

A Unique Value that Synthesizes the Quality Level 659

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

10. Kazman, R., Klein, M., Clements, P.: ATAM: method for architecture evaluation
(No. CMU/SEI-2000-TR-004). Carnegie-Mellon University, Pittsburgh, PA, Software
Engineering Institute (2000)

11. Ortega, M., Pérez, M., Rojas, T.: Construction of a systemic quality model for evaluating a
software product. Softw. Qual. J. 11(3), 219–242 (2003)

12. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to achieve
quality attribute requirements. IEE Proc.-Softw. 152(4), 153–165 (2005)

13. Kazman, R., Nord, R.L., Klein, M.: A life-cycle view of architecture analysis and design
methods (No. CMU/SEI-2003-TN-026). Carnegie-Mellon University, Pittsburgh, PA,
Software Engineering Institute (2003)

14. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability analysis
(ALMA). J. Syst. Softw. 69(1–2), 129–147 (2004)

15. Dolan, T.J.: Architecture assessment of information-system families: a practical perspective
(2003)

16. Jimenez-Fernandez, S., De Toledo, P., Del Pozo, F.: Usability and interoperability in
wireless sensor networks for patient telemonitoring in chronic disease management. IEEE
Trans. Biomed. Eng. 60(12), 3331–3339 (2013)

17. van Solingen, D.R., Berghout, E.W.: The Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development. McGraw-Hill, New York (1999)

18. Segue Technologies: What Characteristics Make Good Agile Acceptance Criteria?, 3
September 2015. https://www.seguetech.com/what-characteristics-make-good-agile-
acceptance-criteria/

19. Maia, P., et al.: A web platform for interconnecting body sensors and improving health care.
Procedia Comput. Sci. 40, 135–142 (2014)

20. Vassis, D., Belsis, P., Skourlas, C., Pantziou, G.: A pervasive architectural framework for
providing remote medical treatment. In: Proceedings of the 1st International Conference on
PErvasive Technologies Related to Assistive Environments, p. 23. ACM (2008)

21. Ray, P.P.: Home Health Hub Internet of Things (H 3 IoT): an architectural framework for
monitoring health of elderly people. In: International Conference on Science Engineering
and Management Research (ICSEMR), pp. 1–3. IEEE (2014)

22. Sakamoto, K., Washizaki, H., Fukazawa, Y. Open code coverage framework: a consistent
and flexible framework for measuring test coverage supporting multiple programming
languages. In: 10th International Conference on Quality Software, pp. 262–269. IEEE
(2010)

23. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using model
checkers. In: Proceedings of Eighth Annual IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems (ECBS 2001), pp. 83–91. IEEE (2001)

24. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

660 M. Falco and G. Robiolo

https://www.seguetech.com/what-characteristics-make-good-agile-acceptance-criteria/
https://www.seguetech.com/what-characteristics-make-good-agile-acceptance-criteria/

Comparison of Agile Maturity Models

Anna Schmitt1 , Sven Theobald1(&), and Philipp Diebold2

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{anna.schmitt,sven.theobald}@iese.fraunhofer.de

2 Bagilstein GmbH, Mainz, Germany
philipp.diebold@bagilstein.de

Abstract. Context: Agile software development is widely used by small teams.
Companies want to check their implementation of Agile for different reasons.
Many Agile Maturity Models (AMM) exist that support practitioners in
assessing and improving their agility. However, practitioners need to be able to
make informed decisions on which one to use. Objective: The aim of this work
is to enable the comparison of existing AMMs. Method: We identified 14
AMMs in a non-systematic literature review, considering non-scientific sources
as well. We propose criteria for their comparison based on our experience and
our understanding of practitioners’ needs. Results: We present twelve compar-
ison criteria and show how the identified AMMs differ along those criteria.
Conclusion: Practitioners get an overview of existing models and can select a
suitable one with the help of the comparison criteria.

Keywords: Agile Maturity Model � Assessment � Agile software
development � Comparison criteria

1 Introduction

Agile is widely used by software development teams [1]. However, many different
adaptations to the proposed methods and practices exist [2]. Agile processes are sel-
domly used in their pure form and often appear as a mix with traditional processes,
forming a hybrid process [3].

All teams want to know howwell they implemented Agile and how they can improve
based on their current status quo. The most common way for process improvement in
Agile is continuous process improvement supported by common agile practices like
retrospectives. In line with the agile principle of inspection and adaptation, the team
regularly inspects its own way of working and looks for improvement possibilities.

This way of improving allows only gradual improvement, but does not allow
describing a more objective status quo of the team’s agility. Maturity models like CMMI,
the Capability Maturity Model Integration [4], define different levels for describing the
maturity of existing processes. Similarly, many Agile Maturity Models (AMM) have
been constructed to enable teams to assess their agility and determine the quality of their
current agile implementation. Also, those maturity models usually describe certain
requirements to reach a higher level, which serve as an improvement roadmap.

Thus, a huge number of agile maturity models indicating how well Agile has
already been implemented have been developed to measure a team’s maturity. This

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 661–671, 2019.
https://doi.org/10.1007/978-3-030-35333-9_52

http://orcid.org/0000-0002-5889-3708
http://orcid.org/0000-0002-3910-7898
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_52&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_52

flood of different models provides many opportunities to practitioners. However,
practitioners must understand the advantages and disadvantages of each model in order
to be able to select the most appropriate AMM for their purpose and context.

The objective of this work is to provide a comparison of existing AMMs based on
defined, practical criteria. These criteria are intended to support practitioners in
selecting an AMM that fits best to their circumstances and requirements.

2 Related Work

Many Agile Maturity Models (AMM) have been published in the scientific and non-
scientific communities. However, not much literature exists comparing existing AMMs
in order to understand their commonalities and differences.

In their initial survey, Schweigert et al. [5] compared seven AMMs and mapped
their maturity levels to the maturity levels of CMMI [4]. They found that these AMMs
even use the maturity level names of CMMI, although their content differs largely from
AMM to AMM.

One year later, Schweigert et al. [6] extended their previous survey and compared
about 40 different AMMs. Furthermore, they investigated their structure. They grouped
the AMMs in two different ways. On the one hand, there are AMMs that use a level
structure close to the level structure of CMMI – initial, managed, defined, quantita-
tively managed, optimizing. On the other hand, there are AMMs that do not use CMMI
as a reference, rather using individual names and proposing six maturity levels.
Additionally, the considered AMMs were clustered based on the criteria “features”,
“recommendations”, “key questions”, “scaling factors”, “enablers”, “management
principles”, and “agile improvement procedure”.

Özcan-Top andDemirörs [7] chose another way to compare AMMs. They focused on
the strengths and weaknesses of five AMMs concerning the aspects of agile process
assessment and improvement. Therefore, they applied the considered AMMs in software
organizations and assessed the AMMs based on the following quality criteria: fitness for
purpose, completeness, definition of agile levels, objectivity, correctness, and consis-
tency. The degree of fulfillment of these criteria wasmeasured with the help of a scale that
included “not achieved”, “partially achieved”, “largely achieved”, and “fully achieved”.

Leppänen [8] compared eight AMMs on the basis of criteria like purpose, domain,
conceptual and theoretical backgrounds, structure, use, and validation.

The main differences to our comparison are that, on the one hand, we regard only
those AMMs that offer a detailed description of themselves, especially of their maturity
levels. On the other hand, we propose criteria aimed at helping practitioners choose the
most appropriate AMM for their circumstances (Sect. 4).

3 Agile Maturity Models

Before we started our search for existing Agile Maturity Models (AMM), we defined the
criteria for the selection of appropriate AMMs. Since there is no final definition of what
an AMM has to look like or of what purpose an AMM needs to fulfill, we declared our

662 A. Schmitt et al.

own AMM acceptance criteria. Not at all of these criteria need to be fulfilled together –
the considered AMMs only needed to fulfill one of the three defined criteria.

• The first criterion is that an AMM needs to have different maturity levels. On this
basis, practitioners can locate themselves at the respective level. They can measure
their agility and see what needs to be done to reach the next-higher level. Addi-
tionally, the particular maturity levels have to be described in detail. This makes it
obvious and easy for experts and non-experts alike to understand how to classify
themselves and see what is required for the next level.

• The second criterion is that the AMM needs to provide the possibility to assess a
company’s or team’s own maturity in terms of agility or the attainment of objectives
by providing questions that support und guide the assessment activities.

• The third criterion concerns the support of the AMM for providing an improvement
roadmap, e.g., by suggesting suitable agile practices for implementation.

After defining the characteristics an AMM needs to have from our point of view,
we started our search. We used scientific search databases such as Scopus as well as
non-scientific sources on the Internet, e.g., blogs and whitepapers. However, we did not
perform a systematic literature review [9]. Instead, we used an unsystematic search
approach complemented by a snowballing approach [10].

After browsing our sources, we identified 28 AMMs that seemed to match at least
one of our acceptance criteria, as described above. Then we carefully went through
every AMM and checked whether it matched one of our criteria. As a result, half of the
28 initial AMMs did not have the characteristics we had previously defined. Finally,
there were 14 AMMs that we selected for a more detailed comparison (cf. Table 1).

Table 1. Agile Maturity Models that are compared throughout this paper

Author Year Title Ref.

Ahmed Sidky, James Arthur 2007 The Agile Adoption Framework [22]
Chetankumar Patel, Muthu
Ramachandran

2009 Agile Maturity Model (AMM): A Software Process
Improvement framework for Agile Software
Development Practices

[16]

Jez Humble, Rolf Russel 2009 The Agile Maturity Model – Applied to Building and
Releasing Software

[23]

Mark Seuffert 2009 Agile Karlskrona test [24]

Robert Benefield 2010 Seven Dimensions of Agile Maturity in the Global
Enterprise

[18]

Martin Proulx 2010 Agile Maturity Model (AMM): The 5 Levels of Maturity [21]
Shirly Ronen-Harel 2010 Agile Testing Maturity Model [25]

Dan Woods 2011 An Agile BI Maturity Model [26]
Angela Druckman 2011 Agile Transformation Strategy [27]
Alexandre Yin, Soraia
Figueiredo, Miguel Mira da Silva

2011 Scrum Maturity Model [19]

Eric Minick, Jeffrey Fredrick 2014 Enterprise Continuous Integration Maturity Model [20]

Raphael Branger 2016 A Maturity Model for Agile BI [15]
Programmedevelopment – Agile readiness & maturity [28]

– 2008 Towards an Agile Process Maturity Model [17]

Comparison of Agile Maturity Models 663

4 Comparison Criteria

We defined twelve criteria to compare the chosen 14 AMM on a more detailed level
(cf. Table 2). These criteria are based on our experiences of what practitioners are
looking for and need in their daily work to apply an AMM appropriately. This practical
approach is intended to support practitioners in selecting the AMM best suited to their
needs. However, the practitioners weight the individual criteria differently, depending
on their subjective perception of the importance of the criteria for their needs. For
example, startups might focus on other criteria than large, more established companies.
They might weight the criteria differently, depending on their own needs. In the fol-
lowing, we will propose those criteria together with a description and motivation for
their usage.

Intention: Before choosing an AMM, practitioners should clarify for what purpose
they want to choose and apply an AMM. Therefore, it is important to specify what
intention the AMM pursues to match their own purpose with the purpose of the AMM.
An AMM does not necessarily follow solely one intention, but can also fulfill various
intentions that can also depend on each other. The frameworks mention the following
intentions: Benchmarking, Self-Assessment, Guide Agile Transition, Improvement,
Discover/Remove Bottlenecks, Implementing Practices/Methods, Process Visibility,
Goal-Specific Maturity.

Addressing Culture: For a successful agile implementation, two different parts are
important: technical agility and cultural agility [11]. Adopting agile methods and
practices primarily influences the technical aspects, improving the processes and the
organizational work of software engineering in enterprises. The other part, the culture,
depends on the mindset of the involved people. They need to internalize the new way
of working and collaborating. Thus, the cultural change cannot be seen by looking at
the workflow of software engineering, but rather by inspecting the mindset. Since this
change of culture is inevitable in order to mature in Agile, it is important that AMMs
also support practitioners in assessing and developing their culture. Thus, with these
criteria we assess whether culture is addressed or not.

Assessment: Most practitioners use AMMs since they want to measure or check how
agile they already are. Therefore, they expect an AMM either to have a structure or
levels in which they can classify themselves or to provide questions that help them
determine their agile maturity. Therefore, this criterion has two sub-criteria. On the one
hand, we compared the AMMs based on the criterion “State Analysis/Assessment”,
meaning whether they provide an approach with which practitioners can analyze the
status quo of their agile maturity. On the other hand, our comparison is based on the
criterion “Assessment Questions”, meaning whether the AMMs provide questions that
support practitioners in their self-evaluation concerning agility.

Improvement Activities: AMMs are known for helping to conduct a state analysis
and to show what needs to be done at which maturity level. However, they do not
always show how practitioners can reach the next maturity level. Therefore, we wanted

664 A. Schmitt et al.

to know whether the considered AMMs provide such improvement activities that help
reach a higher level of maturity.

Structure and Levels: Using this criterion, we compared the AMMs regarding their
maturity and capability levels. Generally, practitioners anticipate that an AMM has
maturity levels – simply because of the name. Practitioners that are more into the matter
of maturity models may also expect capability levels (cf. CMMI [4]). So it is interesting
to investigate whether the considered AMMs have a maturity or capability level
structure. Additionally, we wanted to compare the number of maturity and capability
levels, their naming, and their content.

Level Affiliation: Organizations share a common internal hierarchical structure, which
can be divided into three different levels: team, project, and organization. Thus,
organizations want to apply AMMs at one or more of these levels. The AMM should

Table 2. Criteria for the comparison of Agile Maturity Models

Criteria Characteristics

Intention Benchmarking, Self-Assessment, Guide Agile Transition,
Improvement, Discover/Remove Bottlenecks, Implementing
Practices/Methods, Process Visibility, Goal-specific

Addressing culture yes (y)/no (n)
Assessment
Incl. actual state/state-
analysis/assessment

yes (y)/no (n)

Incl. assessment-questions yes (y)/no (n)
Incl. improvement activities yes (y)/no (n)
Structure and levels
Maturity level yes (y)/no (n)
Capability level yes (y)/no (n)
Level affiliation
Team yes (y)/no (n)
Project yes (y)/no (n)
Organization yes (y)/no (n)
Incl. practices
Technical yes (y)/no (n)
Managerial yes (y)/no (n)
Behavioral yes (y)/no (n)
Documentation (available
for Questions/Practices?)

low, middle, high (expresses to what extent functionality,
execution, and attributes/components are covered by
documentation)

Underlying model e.g., CMMI, Testing Maturity Model, GQM, OPA.
Scope agility in general or concrete agile methods/practices like

Scrum
Advantages/chances free text
Disadvantages/challenges free text

Comparison of Agile Maturity Models 665

therefore support assessment of that specific level. This need is reflected in the structure
of the AMM, which differs in that different AMMs address different levels – some
address only one level, some two, and some even all three.

Including Practices: Since agile maturity is strongly related to the use and imple-
mentation of different practices in the software development process, we expect
AMMs to provide or suggest certain agile practices that help to reach a specific level
of agile maturity. As many different agile practices with different purposes exist, we
divided the criterion “Including Practices” into three sub-criteria. We examined
whether an AMM contained technical practices, e.g., Pair Programming [12];
managerial practices, e.g., Daily StandUp [13]; and behavioral practices (values/
principles), e.g., self-organization [14].

Documentation: With this criterion, we give practitioners hints on the extent to which
they can draw on existing documentation when using the selected AMM. We rated the
available information on a scale of “low, medium, high” that expresses to what extent
functionality, execution, and attributes/components are covered by documentation.

Underlying Model: Before AMMs came up, there were already other assessments
models for the field of software engineering. The most popular assessment model is the
CMMI [4], which is not related to Agile at all. Nevertheless, CMMI and other assess-
ment models may provide a good basis for the structured constitution of AMMs. It is
interesting to investigate whether the existing AMMs are based on existing assessment
models or whether they do not use such a model as a basic framework and instead
reassemble themselves from scratch. Additionally, it is helpful for users to know
whether an AMM is based on a specific assessment model because if they already have
experience with this specific assessment model, it is easier for them to make a decision
for or against a model – as they want to build on their existing knowledge.

Scope: Here, the scope of the AMMs regarding the agile methodology is examined. It
is interesting for practitioners to know whether an AMM focuses on concrete agile
methods or practices or considers Agile in general. Especially practitioners who already
use certain agile practices or methods can be supported in their decision regarding
which AMM to choose. They can select an AMM that builds on the methods and
practices already implemented in order to determine how mature they already are in this
field. In addition, they can consciously select an AMM that does not build on the
practices already used in order to further collect other improvement ideas.

Advantages/Opportunities: In general, every model has advantages that can be
crucial for whether it is used or not. They represent the opportunities for practitioners to
decide quickly whether the described advantages map with the advantages they hope to
receive by applying a certain AMM.

Disadvantages/Challenges: The opposite of advantages are disadvantages – with the
same purpose. They represent challenges practitioners could be faced with when
applying a particular AMM.

666 A. Schmitt et al.

5 Discussion

In the previous section, we described the criteria chosen for the comparison of Agile
Maturity Models (AMM). Now, we will take a closer look at how AMMs differ con-
cerning those criteria. In addition, we will discuss the threats to validity of this work.

5.1 Discussion of Criteria

The first criterion was “Intention”. This is the criterion where the AMMs differ the
most. The most common intention is “improvement”, which is the intention of five
AMMs. The objective of four AMMs was “Self-Assessment”. The intentions “Guide
Agile Transition” and “Implementing Practices/Methods” are addressed by three AMMs
each. The goal of two AMMs is to “Benchmark” themselves and to achieve a higher
maturity by fulfilling defined goals (“Goal-Specific Maturity”). Only one AMM pursued
the intention of “Discover/Remove Bottlenecks”, another one to make their process
visible (“Process Visibility”). However, it is not the case that every AMM only pursues
one intention. We discovered AMMs that have two or three intentions. So in total, 9
AMMs have one concrete intention, three AMMs have two intentions (Improvement &
Discover/Remove Bottlenecks; Self-Assessment & Improvement; Improvement &
Goal-specific Maturity), and two AMM pursue three intentions, namely “Improvement
& Implementing Practices and Methods & Process Visibility” and “Benchmarking &
Improvement & Implementing Practices/Methods”.

Concerning the criterion “Addressing Culture”, we found that although culture is
so important for applying agile methodology [14], only five of the 14 AMMs address
this issue. One example is the AMM “A Maturity Model for Agile BI” [15]. The issue
of culture is addressed by starting with the teaching and implementation of the agile
mindset and basics in the first step of this AMM – in fact, in the whole organization.
Another example is the AMM “Agile Maturity Model (AMM): A Software Process
Improvement Framework for Agile Software Development Practices” [16], which tries
to identify improvement areas by defining one’s own assessment questionnaire, which
is mainly based on the agile mindset.

As mentioned above, we divided the criterion “Assessment” into two sub-
categories, State Analysis and Assessment Questions. We found that 11 AMMs pro-
vide a State Analysis. “Towards an Agile Process Maturity Model” [17], for example,
furnishes two axes, the technical and the managerial, each consisting of three maturity
levels. At each maturity level, it is described in detail when practitioners can classify
themselves at these levels and what practices they need to implement to this end.
However, three AMMs do not provide any sub-category, neither a State Analysis nor
Assessment Questions, and no AMM provides solely Assessment Questions. Indeed,
three AMMs developed both a State Analysis and Assessment Questions.

A logical step after providing a State Analysis and/or Assessment Questions would
be to allocate “Improvement Activities” as well. However, only five AMMs provide
support regarding activities for improving a team’s own agile maturity. It is interesting
to see that out of these five AMMs, only three match the AMMs fulfilling the criterion
“Assessment”. This means that only three of the 11 AMMs that offer “Assessment”
also offer “Improvement Activities”. Benefield [19] describes seven dimensions, where

Comparison of Agile Maturity Models 667

each dimension provides benefits that might help with delivery and that improve the
quality of work and the speed of the team.

One interesting observation regarding the next criterion “Structure and Level” is
that none of the 14 AMMs developed capability levels, as CMMI did. Only maturity
levels were developed. There are similarities concerning the used maturity levels, but
also differences. Most (10) have five maturity levels. Two AMMs present four, one
AMM presents presents two axes (managerial, technical) with three levels at a time.
Another AMM presents six levels. Here are some examples to show the differences in
the naming of AMMs that have five levels:

– Patel and Ramachandran [16]: 1-Initial, 2-Explored, 3-Defined, 4-Improved,
5-Sustained

– Yin et al. [19]: 1-Initial, 2-Managed, 3-Defined, 4-Quantitatively Managed,
5-Optimizing

– Minick and Fredrick [20]: 1-Base, 2-Beginner, 3-Intermediate, 4-Advanced,
5-Extreme

– Benefield [18]: 1-Emergent Engineering Best Practices, 2-Continuous Practices at
Component Level, 3-Cross Component Continuous Integration, 4-Cross Journey
Continuous Integration, 5-On Demand Just in Time Releases

Another example are the six maturity levels of the “Agile Maturity Model (AMM)”
from [21]: 1-Team Level Maturity, 2-Department Level Maturity, Business Level
Maturity, 4-Project Management Level Maturity, 5-Management Level Maturity,
6-Corporate-wide Level Maturity.

Another important criterion was the “Level Affiliation”, which helps practitioners
to understand at which level of the organization they can use which AMM. Four
AMMs solely deal with the team level, three solely with the organizational level.
One AMM deals with the team and project level, two with the team and organization
level, one with the project and organization level, and three with all three levels.

Another fact that is important when talking about Agile is the use and imple-
mentation of agile practices. Therefore, we also examined the AMMs in terms of the
criterion “Including Practices”. Since there are many practices with different purposes,
we divided this issue into three areas: technical practices, managerial practices, and
behavioral practices. Four AMMs do not consider agile practices at all. Three AMMs
focus on the use and implementation of technical practices only, e.g., Continuous
Deployment, Test Automation [21], Code Quality Metrics, Test Driven Development,
Automated Builds and Configuration [19]. Technical and managerial practices were
used by five AMMs, where, e.g., Daily StandUp, Sprint Planning [20], or User Stories
[16] represent managerial practices. Two AMMs also deal with behavioral practices,
meaning that the values and principles of Agile are considered. Example practices used
include co-location, self-organization [15], and collaboration [23].

Concerning “Documentation”, most AMMs provide a good documentation basis
so that practitioners can try to apply those AMMs even if they have no relevant
experience. However, three models offer only little information.

What is obvious when comparing the maturity levels of AMMs is that there is a
strong connection with the criterion “Underlying Model”. Six AMMs, especially
those with five maturity levels, are based on the CMMI assessment model [4], e.g.,

668 A. Schmitt et al.

[16]. However, AMMs with fewer levels are also oriented towards CMMI, e.g., the
“Agile Process Maturity Model (APMM)” [17]. Other underlying models include:
GQM and OPA (one AMM, 1–5 levels), Agile Engineering Fluency and Agile Data
Warehouse Design (one AMM; 1–4 levels), Testing Maturity Model and Traditional
Process Maturity Model (one AMM, 1–5 levels). Five AMMs stated that they had not
used any other model as a basis.

With the help of the criterion “Scope” we wanted to examine on which agile
methods or practices the AMMs build on, or whether they just generally build on Agile.
We found that seven AMMs are not related to any special practices or methods.
One AMM explicitly refers to the values and principles of the Agile Manifesto [14].
Another two AMMs build on Extreme programming [12], and two build on Scrum
[13]. A more famous scope is the testing field – three AMMs refer to this. Additionally,
one AMM uses automation as its base. What can be seen here is that there are some
models that rely on more than one scope, e.g., “Agile Maturity Model (AMM): The 5
Levels of Maturity” (Scrum, FDD, TDD, XP) [22] or “Maturing Agile Processes to
Deliver Better Value” (generally agile, but little focus on TDD und CI) [18].

We do not discuss the criteria “Advantages/Opportunities” and “Disadvantages/
Challenges” in this paper. Every AMM mentions its individual advantages and dis-
advantages that are too specific to discuss.

5.2 Threats to Validity

No systematic literature review (SLR) was conducted to identify the models for
comparison. However, only conducting an SLR in a scientific database would not have
brought the same number of sources, since we also considered models not published in
the scientific literature. The definition of three acceptance criteria for the inclusion of
appropriate AMMs is based on our subjective opinion of what an AMM should entail.
The same applies to the twelve criteria used for the comparison of the 18 considered
AMMs. Their selection is based solely on our experience concerning the needs,
challenges, and daily work of practitioners concerning the maturing their own agility.
External researchers or practitioners did not evaluate these criteria. This fact also
extends to the assessment of the AMMs. It is a subjective assessment based on our
expertise and on the clarity of the criteria. Hence, the set of criteria as well as the
assessment of the AMMs based on these criteria could be subject to some bias.

6 Conclusion

Many teams have applied agile development approaches and are now looking for
maturity models to support them in assessing and improving their agility. Many Agile
Maturity Models (AMM) have been proposed, but practitioners do not know which one
to choose. Using a broad but unsystematic literature search, we identified 28 agile
maturity models, of which 18 satisfied our self-declared criteria for an AMM. We
propose twelve criteria on which AMMs can be rated and compared based on our
experiences and insights regarding what practitioners need to select the best-fitting
model. We discussed each criterion based on the analysis of the identified AMMs to
provide an overview of the differences of the existing models.

Comparison of Agile Maturity Models 669

As a result, one AMM can be recommended, as it is the one that meets most of the
criteria. The AMM of [16] has a specific Intention (improvement, goal-specific),
addresses Culture, supports Assessment by providing a State Analysis and Assessment
Questions, and includes Improvement Activities. Additionally, it supplies maturity
levels from one to five (Structure and Levels), is usable at the team, project, and
organization level (Level Affiliation), provides technical and managerial practices
(Including Practices), has a high level of Documentation, uses CMMI as the underlying
model, and has a wide scope, including agile values, principles, and practices. How-
ever, it is not complete. It does not provide capability levels (Structure and Level) nor
behavioral practices (Including Practices).

In general, the comparison was made to help practitioners select an appropriate
AMM for their circumstances. This means that the criteria can be weighted individu-
ally, depending on the needs and subjective perception of the importance of the criteria.
We do not specify which criteria must be considered first or which are most important,
since every company has different needs and circumstances. In future work, we will
present the details of our model comparison. Although they did not fulfill our definition
for an AMM, the ten excluded models should also be analyzed to identify their benefit
for practitioners.

Acknowledgements. This research is funded by the German Ministry of Education and
Research (BMBF) as part of a Software Campus project (01IS17047). We also thank Sonnhild
Namingha for proof reading this paper.

References

1. Version One: 12th Annual State of Agile TM Report (2018). https://www.versionone.com/
2. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners vary in using

scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212,
pp. 40–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2_4

3. Kuhrmann, M., et al.: Hybrid software and system development in practice: waterfall, scrum,
and beyond. In: Proceedings of the 2017 International Conference on Software and System
Process, pp. 30–39 (2017)

4. Software Engineering Institute: CMMI for Development, Version 1.3 – Improving processes
for developing better products and services (2010). http://www.sei.cmu.edu

5. Schweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M.: Agile maturity model:
oxymoron or the next level of understanding. In: Mas, A., Mesquida, A., Rout, T.,
O’Connor, R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 289–294. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30439-2_34

6. Schweigert, T., Vohwinkel, D., Korsaa, M., Nevalainen, R., Biro, M.: Agile maturity model:
a synopsis as a first step to synthesis. In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.)
EuroSPI 2013. CCIS, vol. 364, pp. 214–227. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39179-8_19

7. Ozcan-Top, O., Demirörs, O.: Assessment of agile maturity models: a multiple case study.
In: Woronowicz, T., Rout, T., O’Connor, Rory V., Dorling, A. (eds.) SPICE 2013. CCIS,
vol. 349, pp. 130–141. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38833-0_12

670 A. Schmitt et al.

https://www.versionone.com/
http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://www.sei.cmu.edu
http://dx.doi.org/10.1007/978-3-642-30439-2_34
http://dx.doi.org/10.1007/978-3-642-39179-8_19
http://dx.doi.org/10.1007/978-3-642-39179-8_19
http://dx.doi.org/10.1007/978-3-642-38833-0_12
http://dx.doi.org/10.1007/978-3-642-38833-0_12

8. Leppänen, M.: A comparative analysis of agile maturity models. In: Pooley, R., Coady, J.,
Schneider, C., Linger, H., Barry, C., Lang, M. (eds.) Information Systems Development,
pp. 329–343. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-4951-5_27

9. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Technical report EBSE-2007-01, School of Computer Science and
Mathematics, Keele University (2007)

10. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE 2014), no. 38 (2014)

11. Diebold, P., Küpper, S., Zehler, T.: Nachhaltige Agile Transition: Symbiose von technischer
und kultureller Agilität. In: Engstler, M., et al. (Hrsg.) Projektmanagement und Vorgehens-
modelle, pp. 121–126 (2015)

12. Wells, D.: Extreme Programming: A Gentle Introduction (2013). http://www.extreme
programming.org/

13. Sutherland, J., Schwaber, K.: The Scrum Guide (2016). http://www.scrumguides.org
14. Beck, K., et al.: Manifesto for Agile Software Development (2001). http://agilemanifesto.

org/
15. Branger, R.: A Maturity Model for Agile BI (2015). https://rbranger.files.wordpress.com/

2016/01/a-maturity-model-for-agile-bi_en_v1_1.pdf
16. Patel, C., Ramachandran, M.: Agile maturity model (AMM): a software process improvement

framework for agile software development practices. Int. J. Softw. Eng. 2(1), 1–26 (2009)
17. Towards an Agile Process Maturity Model (2008). https://pdfs.semanticscholar.org/2a99/

3ed7c2ab66700f54f19809a7617c7b9949fc.pdf
18. Benefield, R.: Seven dimensions of agile maturity in the global enterprise: a case study. In:

Proceedings of the 43rd Hawaii International Conference on System Sciences (2010)
19. Yin, A., Figueiredo, S., Da Silva, M.M.: Scrum maturity model. In: The Sixth International

Conference on Software Engineering Advances (2011)
20. Minick, E., Fredrick, J.: Enterprise Continuous Integration Maturity Model (2014). https://

developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
21. Proulx, M.: Yet Another Agile Maturity Model (AMM) – The 5 Levels of Maturity (2010).

https://danossia.wordpress.com/2010/07/12/yet-another-agile-maturity-model-the-5-levels-
of-maturity/

22. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices: the
agile adoption framework. Innov. Syst. Softw. Eng. 3(3), 203–216 (2007)

23. Humble, J., Russel, R.: The agile maturity model – applied to building and releasing software
(2011). ThoughtWorks STUDIOS. https://info.thoughtworks.com/rs/thoughtworks2/images/
agile_maturity_model.pdf

24. Seuffert, M.: Agile Karlskrona Test (2009). https://mayberg.se/media/downloads/karlskrona-
test.pdf

25. Ronen-Harel, S.: ATMM - Agile Testing Maturity Model: Practical View (2010). https://de.
slideshare.net/AgileSparks/atmm-practical-view

26. Woods, D.: An Agile BI Maturity Model (2011). https://www.forbes.com/sites/danwoods/
2011/10/26/an-agile-bi-maturity-model/#5bb8247b5960

27. Druckman, A.: Agile Transformation Strategy (2011). Whitepaper. https://www.collab.net/
28. Programmedevelopment: Agile Readiness & Maturity. Programmedevelopment.com/agile-

readiness-maturity.htm (website not available anymore)

Comparison of Agile Maturity Models 671

http://dx.doi.org/10.1007/978-1-4614-4951-5_27
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://www.scrumguides.org
http://agilemanifesto.org/
http://agilemanifesto.org/
https://rbranger.files.wordpress.com/2016/01/a-maturity-model-for-agile-bi_en_v1_1.pdf
https://rbranger.files.wordpress.com/2016/01/a-maturity-model-for-agile-bi_en_v1_1.pdf
https://pdfs.semanticscholar.org/2a99/3ed7c2ab66700f54f19809a7617c7b9949fc.pdf
https://pdfs.semanticscholar.org/2a99/3ed7c2ab66700f54f19809a7617c7b9949fc.pdf
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://danossia.wordpress.com/2010/07/12/yet-another-agile-maturity-model-the-5-levels-of-maturity/
https://danossia.wordpress.com/2010/07/12/yet-another-agile-maturity-model-the-5-levels-of-maturity/
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://mayberg.se/media/downloads/karlskrona-test.pdf
https://mayberg.se/media/downloads/karlskrona-test.pdf
https://de.slideshare.net/AgileSparks/atmm-practical-view
https://de.slideshare.net/AgileSparks/atmm-practical-view
https://www.forbes.com/sites/danwoods/2011/10/26/an-agile-bi-maturity-model/#5bb8247b5960
https://www.forbes.com/sites/danwoods/2011/10/26/an-agile-bi-maturity-model/#5bb8247b5960
https://www.collab.net/

4th International Workshop on Human
Factors in Software Development

Processes (HuFo)

Human Factors in Software Processes

Silvia Abrahao1, Maria Teresa Baldassarre2, Fabio Q. B. da Silva3,
and Simone Romano2

1 Universidad Politecnica de Valencia (UPV), Spain
sabrahao@dsic.upv.es

2 Università degli Studi di Bari Aldo Moro, Italy
{mariateresa.baldassarre,simone.romano}@uniba.it

3 Federal University of Pernambuco, Recife, Brazil
fabio@cin.ufpe.br

Abstract. Software Engineering and Human-Computer Interaction look at
software processes from different perspectives. They apparently use very dif-
ferent approaches, are inspired by different principles and address different
needs. But, they definitively have the same goal: develop high quality software
in the most effective way. The fourth edition of the workshop continues the
success of previous editions placing particular attention on efforts of the two
communities with respect to software processes.

Keywords: Human Computer Interaction • Software Engineering • Human
factors • Software process

1 Introduction and Motivation

Software development is a human intensive activity whatever the underlying produc-
tion process it is based on. Though both software engineering (SE) and human-
computer interaction (HCI) communities aim towards creating better software products,
the two communities are still far from being synergic while they could both gain from a
better integration. Recent efforts have contributed to increase the synergy between SE
and HCI. Nevertheless, this has not led to expected results and impacts with respect to
software processes. Software product industry emphasizes the importance of contact
with users and customers in order to understand requirements both regarding the
functionality and the usability of software products. At the same time, multi layered
software architectures are pursued in order to have robust and evolvable software
products, according to the customers’ needs, even if they were not properly taken in to
account at the beginning of the development process.

One might expect that such issues would lead to emphasize the core importance of
human factors in software. Unfortunately, this has not been the case. Indeed, recent
literature has pointed out how in most empirical evaluations only a small number of
works include human participants. Moreover, there is still little experience in con-
ducting empirical studies with human participants.

The overall goal of this interdisciplinary workshop that has come to its fourth
edition has been to raise the level of engagement and discussion about human factors in
software product engineering and processes in order to identify opportunities to
improve the quality of scientific results and improvements on human aspects of

software product development. A further goal of the workshop has also been to identify
opportunities to improve the quality of scientific discourse and progress on human
aspects within software processes, as well as to identify opportunities able to educate
researchers about how to conduct sound human-centered evaluations in the context of
software engineering.

The submissions received have addressed the following research questions:

• What are the key methods that allow the integration of human factors in software
processes?

• What methods do current software development teams use to engage users in
software processes?

• How can the level of human factor involvement be objectively verified during and
after software development?

• How to educate researchers on performing human-centered evaluations in software
engineering processes?

Researchers and practitioners who face the problem of integrating human factors in
software quality evaluation should have a place to discuss their experiences, lessons
learned and future intentions to reach a common understanding on evaluation topics.

2 Audience and Expected Outcomes

Although researchers and practitioners from the two communities share the same goal
of developing high quality systems, the methodologies, methods and metrics they use
to evaluate such quality are very different due to their background and expertise.

The fourth edition of the workshop on Human Factors in Software Processes aims
at providing a forum for discussing measuring system quality from both perspectives.
The workshop has received a positive response from both HCI and SE communities
with several interesting and valuable contributions. The submissions were peer-
reviewed by international committee members for their quality, topic relevance,
innovation, and potentials to foster discussion. Finally, five papers were accepted.

In the first paper “Dealing with Comprehension and Bugs in Native and Cross-
Platform Apps: A Controlled Experiment”, authors present the results of a controlled
experiment conducted with developers, aimed to investigate whether there is a
difference when comprehending apps implemented with either cross-platform
(Ionic-Cordova-Angular) and native (Android) technologies.

The second paper “Understanding how and when human factors are used in the
software process: a text-mining based literature review”, aims at indicating the state of
the art of the literature on human factors in the software development process, assessed
through a literature review using text mining techniques.

In the third paper “Working Conditions for Software Developers in Colombia: An
Effort-Reward-Imbalance-based Study”, authors focus on diagnosing the working
conditions of employees in the area of software development, based on existing models
that measure their satisfaction with the current positions in the area of software con-
struction in Colombia.

Human Factors in Software Processes 675

The fourth paper “Towards a better Understanding of Team-driven Dynamics in
Agile Software Projects”, describes a study with 15 software projects and a total of 130
undergraduate students where authors developed a plugin that enables the assessment
of team behavior in combination with exploratory analyses for JIRA. The study reveals
a set of team-related sprint dynamics.

Finally, in the fifth paper “A Case Study for Validating the Usability Model for
Software Development Process and Practice”, researchers define a Usability Model for
Software development Process and Practice (UMP), consisting of characteristics and
metrics, in the quest to improve the work experience of software development prac-
titioners and the effectiveness of process and practice adoption initiatives.

Acknowledgment. We would like to thank the organizers of PROFES 2019 for giving us the
opportunity to organize this workshop. We are also grateful to our international program com-
mittee of experts in the field for their reviews and collaboration.

676 S. Abrahao et al.

Dealing with Comprehension and Bugs
in Native and Cross-Platform Apps:

A Controlled Experiment

Maria Caulo1(B), Rita Francese2, Giuseppe Scanniello1, and Antonio Spera2

1 University of Basilicata, Potenza, Italy
{maria.caulo,giuseppe.scanniello}@unibas.it

2 University of Salerno, Fisciano, SA, Italy
francese@unisa.it, a.spera18@studenti.unisa.it

Abstract. In this paper, we present the results of a controlled exper-
iment aimed to investigate whether there is a difference when compre-
hending apps implemented with either cross-platform (Ionic-Cordova-
Angular) and native (Android) technologies. We divided participants into
two groups. The participants in each group were asked to comprehend the
source code of either the app implemented using Ionic-Cordova-Angular
technology or its Android version. We also asked the participants to
identify and fix faults in the source code. The goal was to verify if the
technology might play a role in the execution of these two kinds of tasks.
We also investigated the affective reactions of participants and the dif-
ficulty they perceived when accomplishing the tasks mentioned before.
The most important take-away result is: there is not a statistically signif-
icant difference in the comprehension and in the identification and fixing
of bugs when dealing with either native or cross-platform apps.

Keywords: Android · Cross-platform · Ionic · Sentiment analysis

1 Introduction

All the software organizations have to afford the problem of developing the
same mobile application several times for different mobile operating systems
(i.e., Android and iOS) and running on many target devices, while preserving
the performances and the user interface interaction of the native approaches. It
is not possible to share code among the various implementations, which have
to be separately developed. As a result, the development process might take a
longer time. Also, maintenance is very expensive because all the maintenance
activities have to be simultaneously conducted on all the software variants.

To try to reduce the development and maintenance costs and time-to-market
many mobile cross-platform development approaches have been proposed, some
of them are still in development phase [7]. Their main advantage is that the apps
for several mobile platforms are developed and maintained one time. In addi-
tion, many cross-platform tools are based on web technologies and this avoids
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 677–693, 2019.
https://doi.org/10.1007/978-3-030-35333-9_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_53&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_53

678 M. Caulo et al.

web developers to be forced to learn many new languages and development
environments. Another reason for choosing cross-platform frameworks is that
they can be adopted for rapid prototyping of apps to be run in various hard-
ware/software platforms. It is also a quick way to be operative in the market
and to reach the maximum number of users with the plan of re-implementing
or migrating them towards native platforms. Research work is focused on the
comparison of the performances of cross-platform apps and the native ones by
evaluating the performances of the apps on different platforms and their User
Experience [19,25]. In the recent past these results where still in favor of native
platforms, especially in case of applications stressing the user interface or mas-
sively exploiting the hardware resources, such as games. For this kind of appli-
cations cross-platform technology could be lagging and/or producing a worst
User Experience. At present, the adoption of cross-development technologies is
increasing due to the higher performances of top-level devices and we can expect
they will overcome their limitations.

In this paper, we present the results of a controlled experiment aimed to
investigate whether there is a difference when comprehending apps implemented
with either cross-platform (Ionic-Cordova-Angular) and native (Android) tech-
nologies. Source-code comprehension is vital to deal with many software engi-
neering tasks concerning existing code, e.g., testing [3]. For example, before
testing source code a developer should first comprehend it and then identify
the bug described in a bug report. On this respect, we decided to study also
if there is an effect of cross-platform and native technologies on bug identifica-
tion and fixing. To complete our study, we investigate the affective reactions of
participants and the difficulty they perceived when accomplishing source-code
comprehension and bug identification and fixing.

This paper is organized as follows: Sect. 2 discusses related work; Sect. 3
presents the planning of the controlled experiment, while Sect. 4 summarizes
the experiment results. Final remarks conclude the paper in Sect. 6.

2 Related Work

The greater part of the empirical research in the context of cross-platform apps
is either on the perspective of the end-user while using this kind of apps or on
the analysis of their performances. As an example, the authors in [25] and [19]
compared the application performances of native and cross-platform apps, such
as disk space and battery usage. Results that are negative for cross-platform
solutions at the beginning improve for them in the years because the mobile
device resources increased. Corral et al. [5] evaluated app performances by con-
sidering: hardware access, access to native features such as accelerometer and
Network access. The study was focused on PhoneGap and Android apps. Results
revealed that generally, Android performs better, but that the difference may be
not relevant for general-purpose business applications.

Heitkotter et al. [9] provided a set of criteria for comparing cross-platform and
native apps, e.g., license and cost, supported platforms, application speed, and

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 679

scalability. The criteria were founded on the authors’ and professional developers’
opinions. On the other hand, Dalmasso et al. [6] provided several decision criteria
for selecting the appropriate cross-platform technology, including quality of the
User Experience, the potential users, the security of the app, supportability,
easiness of updating and time to market. Performances have been evaluated by
developing Android test applications using four different cross-platform tools.
Differently, Malavolta et al. [17] analyzed hybrid mobile apps from the end-users
perspective by mining reviews from the Google Play Store. Results suggested
that hybrid development is more suitable for data-intensive mobile apps, whereas
it got poor performances when the app exploits platform-specific features.

Differently from the research highlighted before, Que et al. [19] approached
cross-platform development from the developer’s point of view. The authors con-
sidered aspects related to the easiness of coding, debugging and testing. Easiness
of use is discussed together with performances. This paper represents the closest
to ours. One of the most important differences concerns the method to investi-
gate the defined research questions. In particular, the authors did not founded
their research on users’ study.

Our research improves the body of knowledge in the context of cross-platform
development because we empirically investigated—through a controlled exper-
iment and quantitative data gathered during this experiment—the developers’
performances in source-code comprehension and bug identification and fixing.
Another remarkable difference concerns the study of the affective reactions of
participants while accomplishing these tasks.

3 Controlled Experiment

We followed the guidelines by Wohlin et al. [26] and Juristo and Moreno [12] to
conduct our controlled experiment. The planning of this experiment follows the
template suggested by Jedlitschka et al. [11].

3.1 Goals

We investigated the following main Research Question (RQ):

RQ1. Is there any difference when dealing with source code of native and cross-
platform apps?

We detailed RQ1 as follows:

RQ1.1. Is there any difference when dealing with native and cross-platform
apps in terms of source code comprehension?
RQ1.2. Is there any difference when dealing with native and cross-platform
apps in terms of bug identification?
RQ1.3. Is there any difference when dealing with native and cross-platform
apps in terms of bug fixing?

680 M. Caulo et al.

We also studied the affective reactions of the participants when dealing with
source-code comprehension and bug identification and fixing. To this end, we
defined the following RQs:

RQ2. Is there an effect on pleasure, arousal, dominance, and liking?

A positive (or negative) effect of a technology with respect to these four
dimensions might imply that a developer is more (or less) effective when per-
forming the considered tasks. We deepened our investigation by focusing on
the difficulty the participants perceived when accomplishing experiment tasks.
Accordingly, we defined and studied also the following RQ:

RQ3. Is there an effect on the difficulty the participants perceived when accom-
plishing source code comprehension tasks and bug identification and fixing?

3.2 Experimental Units

Initially, 40 people accepted to take part in the experiment, but 39 actually par-
ticipated. The participants were students of the “Enterprise Mobile Applications
Development” course at the University of Salerno (Italy). This course focuses on
the study of Ionic-Cordova-Angular technologies. A few days before the exper-
iment, we asked the participants to fill in a pre-questionnaire. The goal was to
gather demographic information on the participants and their perspectives with
respect to points in favor and against cross-platform development.

The average age of participants was 24. At the time of the experiment, par-
ticipants were 39 months (on average) experienced with programming and 10
months (on average) experienced with mobile programming, in particular. They
passed the programming exams with a rating of 27.4/30 on average. Most of
them attained the Mobile Development course focused on Android, in particular
35/39, and were rated 27/30, on average.

The results of the pre-questionnaire also indicated that the participants were
in favor of cross-platform development for the following reasons: (i) simplicity of
development, (ii) complete abstraction of native programming languages, (iii)
“reusability” of the code, in the sense that they have to write it only once and
then they can deploy the app for the operative system(s) they need, (iv) devel-
opment speed, (v) wider number of reachable users, (vi) ease of maintenance,
(vii) big support in the development of graphical interfaces. The participants
declared the following points against the cross-platform development: (i) hard
management of native functionality (low control), (ii) big effort in finding a sin-
gle best possible solution valid for all operating systems, (iii) low performance
(and lags), (iv) wide occupation of resources, and (v) poor customization and
no possible use of specific features of a platform.

3.3 Experimental Material

As experimental objects, we used the source code of two versions of Movies-app:1

the original one—implemented by Ionic-Cordova-Angular technologies—and the
1 https://github.com/okode/movies-app.

https://github.com/okode/movies-app

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 681

one migrated towards Android. Movies-app allows searching movies information,
then it is possible to filter the movies. Once selected a movie, it is possible to
have details on it and on its actors. We opted for this real-world app because (i)
it is not very complex (although not obvious), (ii) its problem domain can be
considered familiar with the participants, and (iii) it is small enough to allow a
good control over the participants that accomplished the tasks.

We migrated the original version of Movies-app to Android using an approach
based on the most followed and well known one, named “chicken little” [2]:

– Reverse Engineering, to analyze the project structure and identify the Ionic
pages that could be grouped to implement a given functionality.

– Migration planning, to define a migration order of the functionality and ser-
vices. For each Ionic page, we performed three steps: (i) Pre-processing, (ii)
GUI-Reengineering, and (iii) Single page and component code reengineering.

– Data Reengineering, to store key/value pairs, files and SQLite data on the
device file system.

– Provider Reengineering, to map Ionic providers (i.e.,, services) into Java
classes in Android.

– Incremental integration and testing, to integrate each page with those of the
same group. Starting from the Ionic app, test cases can be derived and used
to exercise the developed apps and find eventual differences in the behavior.

To gather affective reactions, we used the SAM [1] questionnaire, which con-
sists of a nine-point rating scale to evaluate pleasure, arousal, and dominance.
The pleasure scale ranges from “unhappiness/sadness” to “happiness/joyful-
ness”. The arousal scale ranges from “calm/bored” to “stimulated/excited”.
Finally, the dominance scale varies from “without control” to “with control”.
We also included the liking dimension. It consists of a nine-point rating scale:
from “dislike” to “like”. This further dimension is inspired by Koelstra et al. [16].

We also asked participants to rate the level of difficulty (from one to five)
when comprehending source code and accomplishing a bug identification fixing
tasks. We used an approach similar to that by Scanniello et al. [20] in their
family of controlled experiments.

3.4 Tasks

We asked the participants to perform three tasks in the following order:

1. Comprehension Task. We defined a comprehension questionnaire composed of
six questions that admit open answers. We formulated these questions on the
basis of the study by Sillito et al. [23]. In particular, we picked the most asked
by developers during change tasks and adapted them to our experimental
material (i.e., the two apps). Sillito [23] organized such questions in four
groups:

– Finding Focus Point (FFP) aiming at finding points in the source code
that were relevant to a given task.

682 M. Caulo et al.

– Expanding Focus Point (EFP) aiming at expanding a given entity in the
source code believed to be relevant often by exploring relationships among
entities (e.g., classes and methods).

– Understanding a Subgraph (UAS) aiming at building an understanding
of concepts in the code that involved multiple relationships and entities.

– Questions over a Group of Subgraphs (QGS) aiming at understanding
the relationships between multiple subgraphs or understanding the inter-
action between a subgraph and the rest of the application.

The questions of the comprehension questionnaire are shown in Table 1. This
questionnaire was the same for both the groups of participants; those work-
ing with the Android version of the app and those working with the Ionic-
Cordova-Angular version. We collected answers by a Google Form. For each
question, we also asked the participants to provide the time when they start
to work on a given question and the time when they believed to have correctly
provided the answer. We did not force participants to provide answers to the
questions.

2. Bug Identification. Similar to Scanniello et al. [21], we seeded (four) bugs in
the source code of the two apps. We asked the participants to fix these bugs
providing them with a bug report for each seeded one. The bug report was
the same independently from the app version. The bug seeding was based on
the mutation operators2 by Kim et al. [15]. We used the following operators:

– Language Operator Replacement (LOR), that replaces a language oper-
ator (e.g., <,>,<=, >=) with other legal alternatives.

– Variable Replacement Operator (VRO), that replaces a variable name
with other names of the same or compatible type(s).

– Statements Swap Operator (SSO), that swaps contents of compatible
blocks.

A few details on the seeded bugs are shown in Table 2. An example of bug
report for a seeded bug is shown in Table 3.
We asked the participants to document where they believed each bug was
in the source code. To this end, the participants had to write two lines of
comment one before and another one after the statement/s containing the
bug. The first line had to indicate the bug id as reported in the bug report. It
is worth mentioning that we seeded the same bugs in both the versions of the
apps. We show in Fig. 1 how the same bug (i.e., Search by Name of Authors
not working) appears in the source code of the cross-platform version of the
experimental object and its Android version.

3. Bug Fixing. Participants had to fix the bugs they identified. We asked the
participants to work with a bug at time. Bugs do not interfere one another.

4. Post questionnaire. Participants had to fill in a post questionnaire. It includes
a SAM questionnaire for each kind of task the participants accomplished (i.e.,
source-code comprehension, bug identification and bug fixing). We also asked
the participants to assess the difficulty they perceived to execute these tasks.

2 Mutation operators are predefined program modification rules [14].

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 683

Table 1. Comprehension questions.

ID Questions Category

1 Where in the code is the text of the error message concerning the
absence of popular movies?

FFP

2 Where is there any code involved in the implementation of HTTP
request to get the list of upcoming movies?

FFP

3 Where is called the method that shows the description of a movie? EFP

4 What are the arguments to be given to the function that loads the
detail of a movie?

EFP

5 How does the list of movies resulting from the search by title look
at runtime? (Indicate the code block responsible to display it)

UAS

6 How can we know that the Persona data type (concerning the
actor of a movie) has been created and initialized correctly in all
its fields?

QGS

Table 2. Seeded bugs

Title in the bug reports Mutation operator type

Search by Name of Authors not working LOR

Incorrect Value of the Duration of a movie VRO

No Actor’s Picture LOR

Second Star for movie Ratings wrongly Displayed SSO

Table 3. A bug report used in the experiment

Bug ID: 10348095

Title: “Search by Name of Authors not working”

Description: “The search field should return real-time
clickable results, related to the name of the typed
actor. For example, if I type the string
‘Angelina’, the screen should display all the
actresses with that name in the results; if I
complete with ‘Jolie’, the screen should display a
single result, which refers to the actress detail.
Instead, when searching for an actor by name,
the list of results is ALWAYS empty”

Submit date: 02/20/2019

Author: meryk90

3.5 Variables and Hypotheses

We considered one independent variable: Technology. It indicates the technology
used to implement the app. It is a categorical (or nominal) variable that can
assume the values of Android or Ionic.

684 M. Caulo et al.

(a)

(b)

Fig. 1. Bug 10348095 in the (a) cross-platform and (b) Android versions of the app.

As far as source-code comprehension, we used the dependent variable Com-
prehension. It measures the correctness of understanding of a participant given
a version of Movies-app by analyzing the answers provided to the comprehen-
sion questionnaire. We used an approach based on that by Kamsties et al. [13]
that computes the number of correct responses to the questions of the com-
prehension questionnaire. We consider a response to a question to be correct if
the participant selected all the correct alternatives and no incorrect alternatives
were selected. The correct alternatives were defined before the experiment took
place. Comprehension assumes values between zero and six. A value close to six
means that a participant comprehended source code very well. A value close to
zero means that a participant obtained a low comprehension.

A bug is successfully identified if the participant marks the source code where
the bug was seeded. We named the variable counting the bugs correctly identified
as Correctness of Bug Identification. This variable assumes values between zero
and four. The higher the value the better it is.

As for bug fixing, we considered the variable: Correctness of Bug Fixing. It
counts the number of bugs the participants correctly fixed. A bug is correctly
fixed if the participant replaced the source code as it was before the application
of the mutation operator. In other words, the participants did the “undo” of
a given mutation operator we executed on the source code. In such a way we
assumed that there was only a way to fix each bug. Correctness of Bug Fixing
assumes values between zero and four. The higher the value the better it is.

As for affective reactions, we considered four dependent variables (one for
each dimension of SAM plus the liking one) for each kind of task the participants
performed: comprehension, bug identification, and bug fixing. Therefore, the

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 685

dependent variables are: PLSK , ARSK , DOMK , and LIKK , where K indicates
the kind of task and assumes one of the following values: Comp (source code
comprehension), Ident (bug identification), and Fix (bug fixing). Each of the
twelve introduced dependent variables assumes values between zero and nine.
The best value is nine, while zero is the worst.

We defined a dependent variable to measure the perceived difficulty for each
kind of task. As for the comprehension task, we defined DiffComp. Similarly,
we defined DiffIdent and DiffFix for the tasks bug identification and fixing,
respectively. All these three variables assume values between zero and five. The
higher the value, the better it is.

To answer RQs, we tested the following parametrized null hypothesis.

H0X : There is no statistically significant difference between the participants
who were administered with the cross-platform and the native versions of
Movies-app with respect to X.

X indicates one of the dependent variable described just before and then
assumes one of the following possible values: Comprehension (RQ1.1), Cor-
rectness of Bug Identification (RQ1.2), Correctness of Bug Fixing (RQ1.3),
PLSComp (RQ2), ARSComp (RQ2), DOMComp (RQ2), LIKComp (RQ2),
PLSIdent (RQ2), ARSIdent (RQ2), DOMIdent (RQ2), LIKIdent (RQ2), PLSFix

(RQ2), ARSFix (RQ2), DOMFix (RQ2), LIKFix (RQ2), DiffComp (RQ3),
DiffIdent (RQ3), and DiffFix (RQ3).

3.6 Experiment Design

We used the one factor with two treatments design [26]. We randomly divided
the participants into two groups: Ionic and Android. The participants in the first
group were asked to accomplish the experiment tasks on the app implemented
by using the cross-platform technology, while those in the second group to on the
app implemented in the native technology. The participants in the Ionic group
were 20, while those in the Android one were 19.

3.7 Procedure

The experimental procedure included the following sequential steps.

1. We invited all the students of the “Enterprise Mobile Applications Develop-
ment” course at the University of Salerno. They filled in a pre-questionnaire.

2. We randomly split the participants into: Ionic and Android.
3. The experiment session took place under controlled conditions in a laboratory

at the University of Salerno. The participants accomplished the tasks under
the supervision of the authors to avoid any kind of interaction. All the used
PCs had the same (Hardware/Software) configuration.

4. The participant performed the comprehension task by answering the ques-
tions of the comprehension questionnaire.

686 M. Caulo et al.

5. We asked the participants to deal with each bug at time. The participants
could pass to the next bug only when they either fixed the previous bug or
were aware that they could not identify/fix it. Given a bug, participants first
had to identify and mark the bug (as described before) and then they could
pass to fix it.

6. Participants filled in the post-questionnaire by rating affective reactions and
perceived difficulty.

7. Participants compressed and archived their version of the app with the source-
code they modified. We then collected all those versions.

Participants in the Android group could run the app either on the emulator of
Android Studio or on their own smartphone. Similarly, participants in the Ionic
group could run the app either on a web browser or on their own smartphone.

3.8 Analysis Procedure

To perform data analysis, we used the R environment3 for statistical computing
and we carried out the following steps:

– We undertook the descriptive statistics of the dependent variables.
– To test the hull hypotheses concerned to RQ1 we planned to use either an

unpaired t-test or the Mann-Whitney U test [18]. Unlike the t-test, the Mann-
Whitney U test does not require the assumption of normal distributions. This
is to say that if data are normally distributed we will apply the unpaired t-
test, the Mann-Whitney U test otherwise. To study the normality of data,
we use the Shapiro-Wilk W test [22]. In the case of a statistically significant
effect of Technology, we plan to compute effect size to measure the magnitude
of such a difference. If data are normally distributed we will opt for Cohen’s
d, while Cliff’s δ otherwise. As for RQ2 and RQ3, we consider ordinal scales.
Therefore, we could only apply a non-parametric statistical inferences. The
Mann-Whitney U test [18] is the most appropriate.

– To summarize and analyze raw data and to support their discussion, we
exploited different graphical representations: boxplots and clustered bar
charts.

To verify if an effect is statistically significant, we fixed α to 0.05. That is,
we admit 5% chance of a Type-I-error occurring [26]. If a p-value is less than
0.05, we deemed the effect is statistically significant.

4 Results and Discussion

In this subsection, we present and discuss the results according to our RQs.

3 www.r-project.org.

www.r-project.org

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 687

4.1 RQ1: Native Vs Cross-Platform Apps Concerning Source-Code
Comprehension and Bug Identification and Fixing

In Table 4, we report the descriptive statistics for the dependent variables: Com-
prehension, Correctness of Bug Identification, and Correctness of Bug Fixing. In
this table, we also show the results of the statistical tests performed. To sum-
marize the distribution of these variables we used the boxplots shown in Fig. 2.

As for Comprehension, descriptive statistics and boxplots do not show a
huge difference in the source-code comprehension the participants achieved in
the Ionic and Android groups. Descriptive statistics indicate that the partici-
pants in the Ionic group better answered the questions of the comprehension
questionnaire: the mean and median values are 0.625 and 0.667, respectively.
On the other hand, the mean and median values for the Android group are both
0.5. The results of the Shapiro-Wilk W test4 indicate that data are not nor-
mally distributed in the Ionic group (p-value = 0.007). For such a reason, we
performed the Mann-Whitney U test. As shown in Table 4, the p-value this test
returned is 0.109. That is, there is no statistically significant difference between
the comprehension that the participants in the two groups achieved.

Concerning Correctness of Bug Identification, descriptive statistics (Table 4)
and boxplots (Fig. 2) indicate that the participants in the groups (Android and
Ionic) achieved a high correctness in the identification of the bugs (e.g.,, the
mean value for Correctness of Bug Identification is 0.882 for Android and 0.9 for
Ionic) in both the versions of Movies-app. The data are also similarly distributed
and do not follow a normal distribution as the results of the Shapiro-Wilk W test

(a) (b) (c)

Fig. 2. Boxplots for Comprehension, Correctness of Identification and Fixing.

Table 4. Descriptive statistics for Comprehension, Correctness of Bug Identification
and Correctness of Bug Fixing dependent variables with respect to Technology.

Technology Comprehension Correctness of bug identification Correctness of bug fixing

Mean Std. Dev.Median p-valueMean Std. Dev.Median p-value Mean Std. Dev.Median p-value

Android 0.5 0.266 0.5 0.109 0.882 0.255 1 0.971 0.829 0.289 1 0.935

Ionic 0.625 0.152 0.667 0.9 0.189 1 0.850 0.235 1

4 A p-value less than alpha (i.e., 0.05) indicates that data are not normally distributed.

688 M. Caulo et al.

show (p-values are 1.294e-06 for Android and 1.422e-06 for Ionic). The results of
the Mann-Whitney U test do not (Table 4) indicate any statistically significant
difference between the data in the two groups since the p-value is 0.971.

Finally, we observed a pattern similar to Correctness of Bug Identification
for Correctness of Bug Fixing. The participants in the groups achieved a high
correctness in the fixing of the bugs in both the versions of Movies-app. For
example, the mean value is 0.829 for Android, while 0.85 for Ionic. Data are
still not normally distributed. The Shapiro-Wilk W test returned the following
p-values for the groups Android and Ionic: 2.04e-05 and 2.656e-05. Therefore,
we applied the Mann-Whitney U test and we obtained 0.935 as the p-value.

4.2 RQ2: Native Vs Cross-Platform Apps Concerning Pleasure,
Arousal, Dominance, and Liking

As Sullivan and Artino [24] suggest, we used median values and frequencies as
descriptive statistics of the dependent variables PLSK , ARSK , DOMK , and
LIKK (where K is the kind of task). In Table 5, we report the median values
and the p-values of the statistical test performed, while we used the clustered
bar charts (Fig. 3) to show the frequencies.

As for the Comprehension task, medians and clustered bar charts do not
show a wide difference between the dependent variables measured on the two
groups. However, medians of dependent variables for the Ionic group were always
higher than the Android group ones (e.g., median of DOMComp is 8 for Android
and 9 for Ionic), except for ARSComp (7 for Android and 6.5 for Ionic). The
Mann-Whitney U test returned p-values higher than 0.05 for all the dependent
variables, hence there is no statistically significant difference between the affec-
tive reactions of both the groups of participants.

Also for the Bug Identification task, median values and clustered bar charts
do not show a huge difference between the two groups. However, in this case,
medians of dependent variables of the Ionic group were always greater or equal
to the Android group ones (e.g., median of DOMComp is 8 for Android and 9
for Ionic). Also, the Mann-Whitney U test returned p-values higher than 0.05
for all the dependent variables signifying that there is no statistically significant
difference between the affective reactions of both the groups.

The analysis of the Bug Fixing task follows the same pattern of the Bug
Identification task.

Table 5. Median values for affective reactions and statistical test results.

Technology PLSComp ARSComp DOMComp LIKComp PLSIdent ARSIdent DOMIdent LIKIdent PLSFix ARSFix DOMFix LIKFix

Android 7 7 8 7 8 7 8 8 8 7 8 8
Ionic 7.5 6.5 9 8 8 7.5 9 8 8 7.5 8 8.5

p-value 0.988 0.503 0.106 0.326 0.352 0.626 0.206 0.912 0.538 0.966 0.768 0.59

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 689

4.3 RQ3: Native Vs Cross-Platform Concerning the Difficulty

In Table 6, we report the median values for DiffComp, DiffIdent, and DiffFix.
The p-values of the performed statistical tests are shown as well. The clustered
barcharts in Fig. 4 summarize the frequencies of the answers for task difficulty.

Concerning all the three tasks, descriptive statistics do not show a difference
between the difficulty perceived by the participants of the two groups. Further-
more, medians are the same in the two groups for both DiffComp and DiffFix

(4 and 5, respectively), while DiffIdent has a slightly lower median for the Ionic
group (i.e., 4.5, while it is 5 for Android). The Mann-Whitney U test returned

Table 6. Median values for difficulty with respect to Technology.

Technology DiffComp DiffIdent DiffFix

Median p-value Median p-value Median p-value

Android 4 5 5
0.159 0.876 0.789

Ionic 4 4.5 5

(a) (b) (c)

(d) (e) (f)

Fig. 3. Frequencies of the affective reactions for Android (a), (b), and (c) and Ionic
(d), (e), and (f) groups.

690 M. Caulo et al.

(a) (b)

Fig. 4. Frequencies of the difficulty for Android (a) and Ionic (b) groups.

p-values always higher than 0.05, hence there is no statistically significant dif-
ference between the difficulty perceived by the participants of both the groups.

4.4 Implications and Future Extensions

We delineate main practical implications and future extension for our research.

– Overall results suggest that the participants did not find any difference
between the two studied technologies with respect to source-code compre-
hension and the correctness in identifying and fixing bugs. We also observed
that also the affective reactions might not be affected by technology. In addi-
tion, participants administered with the two treatments perceived difficulty in
completing the tasks (i.e., source-code comprehension and bug identification
and fixing) similarly. This outcome might be relevant to the practitioner. In
particular, our study seems to support one of the main results from an indus-
trial survey [8] that states that cross-platform development is valuable when
an app has to be run in different hardware/software platforms.

– Outcomes suggest future research on the design and the implementation of
native and cross-platform apps. This point is of interest to the researcher.

– The experiment object is of a specific kind of app, i.e., entertainment. The
researcher and practitioner could be interested in studying whether our results
also hold for different kinds of app (e.g., games). Finally, it could be of interest
for the researcher to study whether our outcomes scale to applications more
complex and larger.

5 Threats to Validity

We report threats to validity from the most to the least sensible. Since we were
more interested in studying cause-effect relationships, the most sensible kind of
threat is Internal Validity.

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 691

Internal Validity. A possible threat to Internal Validity is voluntary participa-
tion in the study (selection threat). However, we limited this threat by embedding
the experiment in a course at the University of Salerno and we did not consider
its outcome when grading the students. To deal with threat of diffusion or treat-
ments imitations, we monitored participants and asked back material to prevent
them from exchanging information. Another threat might be resentful demoral-
ization—participants assigned to a less desirable treatment might not perform
as good as they normally would.

Construct Validity. Each of the investigated constructs was quantified by
means of one assessment at the end of the task, which might affect the results
(i.e., mono-method bias threat). The participants were not informed about RQs.
However, they might guess them and change their behavior accordingly (i.e.,
threat of hypotheses guessing). To deal with this kind of threat (i.e., evaluation
apprehension threat), we did not evaluate the participants on the basis of their
performances. We also acknowledge the presence of a restricted generalizability
across constructs. That is, the technology can affect other relevant constructs
which we did not observe (cognitive load).

Conclusion Validity. To mitigate a threat of random heterogeneity of partici-
pants, our sample included students with a similar background. In particular, the
participants followed the same course at the same university, underwent similar
training, and had similar background, skills, and experience. Reliability of mea-
sures is another threat to conclusion validity. To deal with this kind of threat,
we used well known and widely used measures.

External Validity. The participants in our study were graduate students. This
could pose some threats to the generalizability of the results to the popula-
tion of professional developers (threat of interaction of selection and treatment).
However, the use of students has the advantage that they have a homogeneous
background and are particularly suitable to obtain preliminary evidence [4].
Therefore, the use of students could be considered appropriate, as suggested in
the literature [4,10]. In addition, the studied cross-platform technology is rela-
tively novel and then we can speculate that the participants are not so far from
many professional developers. The used experimental object might pose a threat
of interaction of setting and treatment.

6 Conclusion and Final Remarks

We presented the results of an experiment to investigate source-code comprehen-
sion of apps implemented either with native or cross-platform technologies. We
also investigated if these kinds of technology might play a role in the identifica-
tion and fixing of bugs in the source code. Furthermore, we studied the affective
reactions of participants and the difficulty they perceived when accomplishing
the tasks before mentioned. The data-analysis results suggested that there is

692 M. Caulo et al.

not a statistically significant difference in the comprehension and in the iden-
tification and fixing of bugs. This outcome holds also with respect to affective
reactions and the difficulty the participants perceived when accomplishing the
tasks.

References

1. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and
the semantic differential. J. Behav. Therapy Exper. Psychiatry 25(1), 49–59 (1994)

2. Brodie, M.L., Stonebraker, M.: Legacy Information Systems Migration: Gateways,
Interfaces, and the Incremental Approach. Morgan Kaufmann Publishers Inc., San
Francisco (1995)

3. Canfora, G., Di Penta, M.: New frontiers of reverse engineering. In: Proceedings
of Workshop on the Future of Software Engineering, pp. 326–341. IEEE (2007)

4. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in using students in empirical
studies in software engineering education. In: Proceedings of International Sympo-
sium on Software Metrics, pp. 239–251 (2003)

5. Corral, L., Sillitti, A., Succi, G.: Mobile multiplatform development: an experiment
for performance analysis. Procedia Comput. Sci. 10, 736–743 (2012)

6. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: Proceedings of
International Wireless Communications and Mobile Computing Conference, pp.
323–328 (2013)

7. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng. J. 8(2),
163–190 (2017)

8. Francese, R., Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Mobile app devel-
opment and management: Results from a qualitative investigation. In: Proc. of
Intl. Conference on Mobile Software Engineering and Systems. pp. 133–143 (2017)

9. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36608-6 8

10. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects-a comparative study
of students and professionals in lead-time impact assessment. Empirical Softw.
Eng. 5(3), 201–214 (2000)

11. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empir-
ical Software Engineering, pp. 201–228. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-1-84800-044-5 8

12. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Dordrecht (2001)

13. Kamsties, E., von Knethen, A., Reussner, R.: A controlled experiment to evaluate
how styles affect the understandability of requirements specifications. Inf. Softw.
Technol. 45(14), 955–965 (2003)

14. Kim, S., Clark, J.A., Mcdermid, J.: Class mutation: mutation testing for object-
oriented programs (2000)

15. Kim, S., Clark, J.A., McDermid, J.A.: The rigorous generation of Java mutation
operators using HAZOP. Technical report (1999)

https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps 693

16. Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

17. Malavolta, I., Ruberto, S., Soru, T., Terragni, V.: End users’ perception of hybrid
mobile apps in the Google play store. In: Proceedings of International Conference
on Mobile Services, pp. 25–32 (2015)

18. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Statist. 18(1), 50–60 (1947)

19. Que, P., Guo, X., Zhu, M.: A comprehensive comparison between hybrid and native
app paradigms. In: Proceedings of International Conference on Computational
Intelligence and Communication Networks, pp. 611–614, December 2016

20. Scanniello, G., Gravino, C., Risi, M., Tortora, G., Dodero, G.: Documenting design-
pattern instances: a family of experiments on source-code comprehensibility. ACM
Trans. Softw. Eng. Methodol. 24(3), 14:1–14:35 (2015)

21. Scanniello, G., Risi, M., Tramontana, P., Romano, S.: Fixing faults in C and Java
source code: abbreviated vs. full-word identifier names. ACM Trans. Softw. Eng.
Methodol. 26(2), 6:1–6:43 (2017)

22. Shapiro, S., Wilk, M.: An analysis of variance test for normality. Biometrika 52(3–
4), 591–611 (1965)

23. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a
programming change task. IEEE Trans. Softw. Eng. 34(4), 434–451 (2008)

24. Sullivan, G.M., Artino, A.R.: Analyzing and interpreting data from likert-type
scales. J. Graduate Med. Educ. 5(4), 541–2 (2013)

25. Willocx, M., Vossaert, J., Naessens, V.: Comparing performance parameters of
mobile app development strategies. In: Proceedings of International Conference on
Mobile Software Engineering and Systems, pp. 38–47, May 2016

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Understanding How andWhen Human Factors
Are Used in the Software Process:

A Text-Mining Based Literature Review

Mercedes Ruiz1(&) and Davide Salanitri2

1 University of Cadiz, Avda. de la Universidad de Cadiz, 10,
11519 Puerto Real, Cádiz, Spain
mercedes.ruiz@uca.es

2 University of Nottingham, Nottingham, Nottinghamshire, UK
Davide.Salanitri@nottingham.ac.uk

Abstract. Human Factors (HF) is the study of the interaction between users
and technology with the aim of improving the user’s experience of a product and
avoid unwanted issues in the usage of the system. HF is largely applied in
several fields such as industrial processes, education, training, and design. In
software development, HF plays a crucial role in the efficient and effective
development of a software product and the success of the final product. This
paper aims at indicating the state of the art of the literature on HF in software, in
general and in the software development process in particular. To do so, a
preliminary literature review using text mining has been performed. This work
gathered papers using the terms “human factors” and “software” from four of the
most used scientific digital databases (ACM DL, Scopus, Science Direct and
IEEE Xplore). A total of 2192 papers were selected and automatically gathered
into three clusters by using the X-means algorithm, which automatically rec-
ommended that number of clusters. The results show that there are three main
areas where HF have been researched within software development: (1) the field
of product evaluation (user experience) (2) the field of software development
process, especially in the project management processes (3) the field of edu-
cation. The results are an initial indication of the evolution of research in this
area and where and how HF is applied in software engineering.

Keywords: Human factors � Software process � Literature review � Text
mining

1 Introduction

In this paper, we address the aim of providing a structured overview of the landscape of
research on the topic of human factors in software. To reach this objective, we use text-
mining techniques in order to automate as much as possible the analysis of the research
literature, characterized by a high number of non-structured text documents.

Text mining can be defined as the automated or semi-automated processing of
usually unstructured text. When applied to the field of literature review, text mining

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 694–708, 2019.
https://doi.org/10.1007/978-3-030-35333-9_54

http://orcid.org/0000-0002-8527-4734
http://orcid.org/0000-0001-5151-3103
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_54&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_54&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_54

helps to consider the works published and identify reasonable and significant groups of
papers that follow objectively justifiable patterns [1].

In recent years, some authors have been applying text mining to broadly review the
scientific literature in different areas [2–4]. In this work, we provide the results of
applying a similar process to analyze the research published in the last 20 years on the
domain of human factors and software.

The paper is structured as follows: Sect. 2 provides a summary of conventional
literature reviews conducted in the area of human factors in software. Section 3
describes the aims and procedures of each step of the method we have applied in this
study. The results obtained are presented and discussed in Sects. 4 and 5, respectively.
Section 6 describes the issues affecting the validity of our study. Finally, Sect. 7
summarizes our paper and draws our conclusions and future work.

2 Related Work

We searched for literature reviews in the area of human factors in software by using the
search string “human factors” AND software AND “literature review” in the
title + abstract + keywords in several search engines such as Science Direct, Web of
Science and Scopus. The searches helped us retrieve eight systematic literature reviews
or mapping studies directly related to the search string.

The influence of human factors on the role of the software developer has been the
topic that has attracted more attention in the reviews located by our searches. Cruz et al.
aimed at summarizing the different ways of measuring and assessing the personality of
the software developers [5, 6]. Soomro et al. [7] analyzed the impact of personality on
different aspects of the software production, such as the team climate, and the indi-
vidual and the team performance. A broader analysis of the factors impacting on
software productivity was conducted by Oliveira et al. [8]. In their tertiary study, they
collect the influential factors identified in the secondary studies they analyzed. The
factors are grouped into organizational and human-related factors, being cohesion and
team communication the two most influential human factors identified. In this study,
motivation of software developers was identified as the fifth most influential factor. In
their review, Beecham et al. [9], go deeper in the analysis of the main motivators and
demotivators for the software developers, the models of motivation commonly used in
software development staff and the outcomes of motivation.

The relation of human factors and the software development approach has also
been a subject of study in some of the reviews found. In her work, Askarinejadamiri
[10] identifies which personality factors of software developers are most crucial for
requirement engineering in web development. She concluded that the technical
knowledge that the software developer has, their communication skills and their
abilities for customer interaction were the human factors most frequently mentioned in
the studies she analyzed. Likewise, Sánchez-Gordon and Colomo-Palacios [11]
focused on the role of culture of the DevOps software development approach [12] by
synthetizing the main attributes of the DevOps culture and analyzing the emotional
phenomenon implied in this way of producing software.

Understanding How and When Human Factors Are Used in the Software Process 695

Finally, Pocius studied the relation between human personality and human com-
puter interaction [13]. In her work, the author provides an analysis of the studies and
reports on: (a) non-concluding relation between the programmer personality and their
programming aptitude and achievement, and (b) the relationships reported about the
personality traits and the performance in computer-assisted instruction.

After analyzing the literature reviews retrieved by our search, we can conclude that
even though the topic seems to be attracting the interest of the research community, the
reviews available are mainly focused on categorizing particular approaches such as
how to measure the impact of personality traits of the developers on the software
production. In this work, we propose a broader and more holistic approach to our
review, by addressing the works published in the last twenty years describing any type
of relation between human factors and software, so that the predominant themes dis-
cussed can be identified and their time evolution tracked.

3 Method

3.1 The Research Questions

To address the main aim of this work, we set the following research questions:

RQ1: How much research has been published in the area of human factors and software
in the last twenty years?
RQ2: What have the broad topics of research in that area been?
RQ3: What is the relation between human factors and software process studied in the
works published?
RQ4: What is the trend of research in this area?

3.2 Search Process

In order to retrieve as many works as possible that could be related with human factors
in all aspects of software, we conducted automated searches in four of the most widely
used digital libraries and search engines: ACM Digital Library, Science Direct, Scopus
and IEEE Xplore. The search string used was “human factors” AND “software”. All
queries were based on Title + Abstract + Keywords within the scopes of journal or
conference papers published in English between 2000 and 2019. Table 1 shows the
number of papers retrieved from each digital library after removing the 34 duplicated
papers. It is noticeable that almost 83% of the papers were located by IEEE Xplore,
whereas ACM Digital Library and Science Direct helped retrieved only 0.3% and
2.7%, respectively. All the works retrieved by the searches were imported to the
Mendeley1 reference manager to save all the relevant data about each work.

1 https://www.mendeley.com/.

696 M. Ruiz and D. Salanitri

https://www.mendeley.com/

3.3 Data Extraction Process

In this step of the process, we selected the required data items for the analysis. As in
previous similar works [2–4], we decided to use only the abstract as the source of
information extraction and to leave out of our analysis the list of keywords. The reasons
that prevent us from adding them are that the keywords normally take also part in the
abstract of the paper and, therefore, including them in the analysis would add repeti-
tion, raising their numerical weight and potentially leading to wrong conclusions.
Additionally, the key words of a paper are chosen by the authors to set the key terms
they intend their work to be associated with. Since this is meant to facilitate the location
of the works associated with some particular key terms and does not add any extra
meaning to the abstract, including them in the analysis would have also led to
unnecessary repetition of terms.

3.4 Text Mining Approach

Most of research papers come in the form of text data files, which is a form of
unstructured information. They constitute an immense source of information and
knowledge that can be mined using text mining and knowledge discovery approaches
[1]. In this work, we make use of the following text-mining components:

• Preprocessing and feature extraction. The main aim in this step is to identify the
relevant terms that represent each abstract by removing unnecessary data.
– Tokenization: To split the text of the abstract into a sequence of tokens.
– Filtering and transforming: To remove unwanted words, such as stop-words, and

to transform all characters to lowercase.
– Stemming: To find the stem or root of derived words.

• Vector Space Model (VSM): The main of this step is to build a representation of
each abstract as a numeric vector for efficient analysis of the large collection of
abstracts. Each abstract is represented by its VSM that has as many positions as
terms remain after the previous step and that holds a number in each position.
Depending on the study carried out, the number may be:
– Occurrence: The number of times the term appears in the abstract.
– TF-IDF: The term frequency-inverse document frequency, which weighs how

important a term is to an abstract in the collection.
• Clustering: The aim of this step is to find groups of similar abstracts in our

collection.

Table 1. Number of papers retrieved from each digital library.

Digital library Number of papers retrieved

ACM Digital Library 6
Science Direct 59
Scopus 315
IEEE Xplore 1812
Total 2192

Understanding How and When Human Factors Are Used in the Software Process 697

– X-Means: We used X-Means as the clustering algorithm, since it determines the
correct number of centroids based on a heuristic and does not require the user to
input the number of clusters beforehand.

4 Results

4.1 RQ1: How Much Research Has Been Published in the Area
of Human Factors and Software in the Last Twenty Years?

The conference paper is the most frequent type of paper, with 70% of the papers of that
type in our collection. Figure 1 shows the number of papers published per year and
reveals that the amount of research published on the topic has increased notably in the
last years. If during the three first five-year periods (2000–2004, 2005–2009, and 2010–
2014) the average number of papers published is 481, this same metric grows to 749 for
the period 2015–2019. This represents an increment of 1.6 over the previous periods.
However, there seems to be a positive trend in the first three years of the last period
analyzed, reaching its maximum value in 2017 with 217 papers published, followed by
what looks like a negative trend in the remaining two years. It is important to note that
at the time of writing this paper, the last year of the period, 2019, is halfway only, but
the trend shows a clear reduction of the number of papers published on the topic.

As shown in Table 2, three IEEE journals are among the top five journals pub-
lishing papers on human factors and software, being IEEE Software the leading journal.
Table 3 shows the equivalent list for conferences publishing papers in this topic. The
list is headed by two highly reputed conferences such as the International Conference
on Software Engineering (ICSE) and the Hawaii International Conference on System
Sciences (HICSS) followed by the CHASE workshop.

106 118
91

62
91 100 94 87 91

113
89 88

105 101 107

157
174

217

167

34

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Fig. 1. Number of papers published per year.

698 M. Ruiz and D. Salanitri

4.2 RQ2: What Have the Broad Topics of Research in that Area Been?

To perform this analysis, we used the text-mining capabilities of RapidMiner’s2 text
analytics extension. The key element in this process is the X-means operator, which
implements the x-means algorithm published by Pelleg and Moore [14]. The x-means
algorithm is considered to overcome some of the limitations of the k-means clustering
algorithm [15], since it does not require the user to give the number of clusters as an
input, among other improvements. This algorithm was suitable for our case, since our
intention was to find groups of related papers that can then be allocated to different
topics of research in the area of human factors and software.

The x-means operator found three main clusters on the preprocessed abstracts
retrieved by our search. As Table 4 shows, the clusters did not have a uniform number
of papers. The first cluster, cluster 0, grouped together more than half of the papers
retrieved (66%). Cluster 1 has the smallest number of papers, only 10%.

Table 2. Top five journals publishing papers on the topic of human factors and software.

Journal Number of papers

IEEE Software 43
IEEE Transactions on Software Engineering 37
Information and Software Technology 19
IEEE Access 12
Empirical Software Engineering 10

Table 3. Top five conferences publishing papers on the topic of human factors and software.

Conference
acronym

Conference full name Number of
papers

ICSE International Conference on Software Engineering 97
HICSS Hawaii International Conference on System Sciences 63
CHASE International Workshop on Cooperative and Human

Aspects of Software Engineering
21

CISTI Iberian Conference on Information Systems and
Technologies

18

EDUCON IEEE Global Engineering Education Conference 17

Table 4. Clusters quantitative data.

Cluster Number of items Ratio of total

Cluster 0 1449 66%
Cluster 1 519 24%
Cluster 2 224 10%

2 https://rapidminer.com/.

Understanding How and When Human Factors Are Used in the Software Process 699

https://rapidminer.com/

In order to find the topics of the papers pertaining to each cluster, we performed, for
each of them, an analysis of the most frequent terms appearing in the abstracts of the
papers in that cluster. For each cluster list obtained, we selected the 20 most frequent
terms. Table 5 shows the number of occurrences of each of the terms (# ocurr) and the
number of abstracts in which such term was used (#docs) for the top 10 most frequent
terms.

A word cloud representation of the 20 most frequent terms in each cluster helps to
identify more clearly the topic of research of each one. As it can be seen in Fig. 2,
Cluster 0 seems to be more focused on the area of user research on the software
development products. This type of human factors methods has the product as target.
The words “human”, “system”, “user” and “software” define the possible subject of the
cluster while the words “design”, “model”, “study” and “research” could suggest the
method used. Example of this could be the usability evaluation of a system. For
example, some of the titles which enter in this cluster are: “From users involvement to
users’ needs understanding: A case study” [16], “Implementation of end-user devel-
opment success factors in mashup development environments” [17] and “Information
system design for a hospital emergency department: A usability analysis of software
prototypes” [18]. As it can be seen, these papers focus on either the development of
new software products or the evaluation of existing ones to verify human factors issues.

Cluster 1 seems to be more focused on the software development process as the
words “software”, “development”, “engineering” “team”, “projects” and “process”
seem to suggest. For instance, “The impact of human factors on the participation
decision of reviewers in modern code review” [19], “The effect of software engineers’
personality traits on team climate and performance: A Systematic Literature Review”
[7], “QUASE - A quantitative approach to analyze the human aspects of software
development projects” [20]. Contrary to Cluster 0, these papers do not have the soft-
ware product as their target, but the professional figures who develop software and how

Table 5. Top 10 most frequent terms per cluster.

Cluster 0 Cluster 1 Cluster 2
Term # ocurr # docs Term # ocurr # docs Term # ocurr # docs

System 2119 951 Software 1534 446 Student 632 245
User 1887 866 Development 567 276 Learning 516 162
Human 1325 655 Project 525 273 Software 203 110
Software 1045 658 Human 470 242 Study 159 101
Design 865 425 Factors 454 224 Computer 156 76
Model 691 334 Engineering 416 202 Results 124 95
Information 643 339 Process 401 191 Programming 120 42
Data 631 317 Developers 330 134 Motivation 119 60
Study 606 402 Research 327 193 Teaching 115 64
Use 579 390 Study 316 205 Education 112 77

700 M. Ruiz and D. Salanitri

the improvements of human factors aspects and, consequently, the improvement of
team performance, could increase software quality and productivity.

In Cluster 2, the words “student”, “teaching”, “learning” and “education” suggest
that this group is focused on the process of educating new computer science experts
and how human factors can improve their knowledge. Example of this are mostly on
how to increase the interest in coding and programming and how to improve the quality
of teaching. Another part of this cluster focuses on teaching Human Factors techniques
to computer science students and a small number of papers approaches the human
factors evaluation of educational systems and software. This last topic may be also
related to cluster 0, as they essentially regard the evaluations of software products.
However, since they concern education, they were included in cluster 2 by the algo-
rithm. Examples of papers included in this cluster are: “A Gamification Technique for
Motivating Students to Learn Code Readability in Software Engineering” [21],
“Software Engineering: Research-Led Education with Human Values” [22] and
“Reflection and abstraction in learning software engineering’s human aspects” [23].

To make a more complete analysis of the results, the number of papers for each
cluster has to be taken into consideration. Indeed, not all the three groups have the same
amount of interest in the academic community. Cluster 0 is the most populated with
1449 papers, while Cluster 1 includes 518 and Cluster 2 is composed by 224 papers.
This data suggests that while human factors have been applied to education and the
process of development, it seems that the focus has been on the evaluation of the
software systems.

4.3 RQ3: What Is the Relation Between Human Factors and Software
Process Studied in the Works Published?

To find the papers with the strongest relation with the topic of human factors and
software process, we performed another individual analysis on each cluster. This
analysis consisted in obtaining a series of consecutive tokens where the term “process”
is present. We made use of the n-Grams operator to create n-grams of maximum three-
token length used in the abstracts of each cluster. Then we selected the ones in which
the terms “process” and “human factors” were present and finally ordered the results to

Cluster 0 Cluster 1 Cluster 2

Fig. 2. Word clouds of the 20 most frequent terms in each cluster.

Understanding How and When Human Factors Are Used in the Software Process 701

find the top five papers of each cluster according to the frequency of appearance of the
n-grams. By doing so, we not only get the papers whose abstracts include the term
“process” more frequently, but the tokens to which the term “process” is frequently
associated.

After performing this analysis, we found different results in each cluster. For cluster
0, we did not find any n-gram with the term “process”, which may suggest that the
papers in that cluster do not deal with specific processes or parts of them and make use
of the term in its most general meaning.

The results for cluster 1 were very different. Table 6 collects the top five papers
mostly related to the term “process” and their n-grams, together with an extract of the
original abstract that helps validate the result of the automatic analysis. As it can be
seen, the first paper [24] is the one with the highest frequency of such term and it has
three n-grams showing the chain: “involves-human”, “human-perspective”,
“perspective-development” and “software-development”. For the second paper [25],
the topic predicted is the person-to-role allocation in the software process, as it can be
easily deduced from its n-grams. In the case of the third paper [26], the topic seems to
be related to software quality control process, the fourth paper [27] deals with software
process improvement initiatives and the last one [28] with software process assessment.

Surprisingly, the term “process” was not considered relevant by the operator in any
of the abstracts of the cluster 2.

Finally, when mapping the former top five works found in Cluster 1 to the
knowledge areas of Software Engineering Body of Knowledge (SEWBOK), it can be
found that three of them are related with the Software Engineering Management area
[25–27]. The areas of Software Requirements and Software Design [24] and Software
Engineering Process [28] follow with one work each.

Table 6. Top papers showing relation of human factors with the “process” in Cluster 1

Ref Title “Process” n-grams Aim of the paper (as in
abstract)

[24] “Impact of Human-
Centered Design
Process (HCDP) on
Software Development
Process”

involves_human
human_perspective
perspective_development
software_development

“This paper
encompasses the
impact of applying
human-centered design
process (HCDP) to the
software development
process (SDP)”

[25] “Human capacities in
the software process:
empiric validation”

person_role
role_allocation
allocation_process
software_process

“In this paper, an
empirical validation of
a person-to-role
allocation process is
presented”

(continued)

702 M. Ruiz and D. Salanitri

Table 6. (continued)

Ref Title “Process” n-grams Aim of the paper (as in
abstract)

[26] “A model and system
for applying Lean Six
sigma to agile software
development using
hybrid simulation”

software_quality
quality_control
quality_control_process

“The model and system
introduced in this
paper applies Six
Sigma methodologies
to software processes
using hybrid
simulation …. The
System collects
empirical data on
process actors and
uses them in simulation
to provide estimations
that incorporate the
human factor that has
substantial role in
software processes”

[27] “Designing Software
Project Management
Models Based on
Supply Chain Quality
Assurance Practices”

approach_software
software_process
software_process_improvement

“In short, this is a
snapshot of how a
process improvement
model can
be designed which has a
productivity analysis
capability for a self-
feedback. This paper
also describes the
human factors such as
reluctance to change
and the overhead for
the project members”

[28] “The need of a person
oriented approach to
software process
assessment”

critique_software
software_process
software_process_assessment

“This paper represents
a coherent critique of
software process
assessment, focusing
on the concerns and
perceived
shortcomings present.
A call is made to re-
direct attention and
resources toward
understanding the true
nature of people in
software process
assessment”

Understanding How and When Human Factors Are Used in the Software Process 703

4.4 RQ4: What Is the Time Trend of Research in This Area?

After identifying the topic of research of each cluster, we analyzed the evolution of the
number of publications in each cluster in the last 20 years to find if there had been a
particular tendency that could reveal different research interests at different moments of
time.

The results represented in Fig. 3 show that for all the clusters there is an increasing
tendency in the past 5 years (2015–2018)3. However, while cluster 0 has a softer
increase (average 2000–2014 = 63.2, average 2015–2018 = 105.25), cluster 1 and
cluster 2 have a much higher increase, with cluster 1 having more than double the
average in the past 5 years (Average 2000–2014 = 20.26, average 2015–2018 = 50.5)
and cluster 2 past five-year average being almost three times higher than the average of
the previous 15 years (average 2000–2014 = 8.4, average 2015–2018 = 23). Figure 3
shows the time evolution for the tendency of publication in each cluster.

In order to find specific research interests along time within each cluster, we
divided the period of analysis into four five-year periods and, for each cluster and time
period, we analyzed the most frequent terms used in the abstracts of the papers per-
taining to such period. However, this study did not offer any conclusive results that
could help us identify research trends within each cluster. The same analysis applied to
the complete collection of abstracts did not offer any conclusive results either.

5 Discussion

In this work, we set four research questions aimed at finding and categorizing the work
published as conference papers and journal papers during the last twenty years on the
topic of human factors and software in general by applying text-mining techniques.

0
20
40
60
80

100
120

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Cluster 0 Cluster 1 Cluster 2

Fig. 3. Distribution of papers per cluster and year.

3 In this analysis, 2019 was not considered, as at the moment this review is being written, several
papers could still be under review or in press.

704 M. Ruiz and D. Salanitri

As for RQ1, we found 2192 papers related to our topic of interest. The majority of
the works conducted on the topic of human factors and software were published as a
conference paper (70%). ICSE and HCISS proceedings, together with IEEE Software
are the preferred places to publish works on the aforementioned topic. The highest
number of works has been published in the last five years, especially during 2017.

Using text mining algorithms in this review, the papers were clustered automati-
cally intro three groups. After an analysis of the most frequent terms in the abstracts of
the papers in each group, we found three main areas of research: a) user research and
product evaluation, mostly grouping papers describing new approaches to evaluate the
software product including human factors, or analyzing the role of the user in the
software development, b) human factors in the software development process, which
groups papers dealing with how personality factors and other human factors of the
development team impact on aspects such as the teamwork and their productivity, and
c) software development education, grouping papers dealing with the education of
software engineers in human factors and also how human factors, such as motivation
and engagement impact on the education of future software engineers (RQ2).

A further analysis of the works which were closely related to the software devel-
opment process enabled us to find that the processes of software project management
are the ones that have attracted more research relating human factors and the software
process. Having into consideration how human factors impact on the productivity and
teamwork effectiveness of software developers is crucial for project planning and cost
estimation, and, therefore a high number of the papers focused on the impact of human
factors on software development describes this relation within the scope of the project
management processes (RQ3).

Finally, our analysis of the research trends in the area revealed that in the last five
years, there are two topics that have attracted a significant interest from the research
community in software-related human factors. The number of papers describing
experiences considering human factors such as motivation and engagement in the
computer science education has been three times higher in the last five-year period than
ever before, being gamification and serious games frequent topics of discussion in
those papers. Likewise, the effect of human factors, such as personality of software
developers, in the software development process is another topic that has duplicated the
number of publications in the last years (RQ4).

6 Threats to Validity

One important issue of a literature review is not missing any relevant study. We used
four of the most frequently used digital libraries of research literature and searched for
conference and journal papers written in English and published in the last 20 years. In
the case that a relevant work has not been indexed in the four digital libraries used or
has been published in a different language or as a different type of paper, that work has
not been included in this study.

Additionally, the findings of our work are necessarily influenced by the text-mining
process followed on the papers abstracts and the algorithms applied. As a relatively
recent approach, text-mining has also its disadvantages. One of them is the presence of

Understanding How and When Human Factors Are Used in the Software Process 705

overlapping when analyzing words that take part in two-words expressions, as in “user”
and “user experience”. In this work, the automatic process was done based on single
terms, although we manually analyzed the relevance of the two-word expressions
making use of the n-grams algorithm. Another issue is the effect of the stemming
algorithm that can lead to missing relevant results. For example, the algorithm can
identify terms such as “use” and “user” by their common stem. Since in this particular
area, the term “user” has a significant and distinctive meaning, to avoid this issue, we
manually excluded this term ‘user’ from the stemming process. Additionally, splitting a
set of papers into a number of clusters, requires the use of a clustering algorithm, such
as k-means. However, this algorithm requires the number of clusters as an input. Since
providing the number of broad topics of research to cluster the paper set would have
added the authors’ biases to the process, we opted for the x-means algorithm which
automatically identified three groups of papers. Consequently, we did not applied any
further method to determine the optimal value of the number of clusters (k), as in k-
means application.

7 Conclusions

In this work, we preliminary revised and categorized the research literature published in
the last twenty years on the topic of human factors and software using a text-mining
approach. This review helped identify the trends of research and the three broad topics
of research interest together with their time evolution. It also helped identify the
predominant research interest of human factors in software project management.

As our future works, it is our intention to further develop this analysis by com-
pleting the search of literature by using other digital libraries, exploring the results
offered by other text-mining techniques, comparing the results obtained when feeding
the operators with particular sections of the papers texts and correlating the results with
the bibliometric data and network that can be obtained from this collection of works.

Acknowledgements. This research was partly supported by the Spanish Ministry of Science
and Innovation and the ERDF funds under project BadgePeople (TIN2016-76956-C3-3-R and
the Andalusian Plan for Research, Development and Innovation (TIC-195).

References

1. Allahyari, M., et al.: A brief survey of text mining: classification, clustering and extraction
techniques. In: KDD 2017 (2017)

2. Rekik, R., Kallel, I., Casillas, J., Alimi, A.M.: Assessing web sites quality: a systematic
literature review by text and association rules mining. Int. J. Inf. Manag. 38(1), 201–216
(2018)

3. Galati, F., Bigliardi, B.: Industry 4.0: emerging themes and future research avenues using a
text mining approach. Comput. Ind. 109, 100–113 (2019)

4. Delen, D., Crossland, M.D.: Seeding the survey and analysis of research literature with text
mining. Expert Syst. Appl. 34(3), 1707–1720 (2008)

706 M. Ruiz and D. Salanitri

5. Cruz, S.S.J.O., da Silva, F.Q.B., Monteiro, C.V.F., Santos, C.F., dos Santos, M.T.:
Personality in software engineering: preliminary findings from a systematic literature review.
In: 15th Annual Conference on Evaluation & Assessment in Software Engineering (EASE
2011), pp. 1–10 (2011)

6. Cruz, S., da Silva, F.Q.B., Capretz, L.F.: Forty years of research on personality in software
engineering: a mapping study. Comput. Hum. Behav. 46, 94–113 (2015)

7. Soomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A.: The effect of
software engineers’ personality traits on team climate and performance: a Systematic
Literature Review. Inf. Softw. Technol. 73, 52–65 (2016)

8. Oliveira, E., Conte, T., Cristo, M., Valentim, N.: Influence factors in software productivity—
a tertiary literature review. Int. J. Softw. Eng. Knowl. Eng. 28(11n12), 1795–1810 (2018)

9. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in Software
Engineering: a systematic literature review. Inf. Softw. Technol. 50(9–10), 860–878 (2008)

10. Askarinejadamiri, Z.: Personality requirements in requirement engineering of web devel-
opment: a systematic literature review. In: 2016 Second International Conference on Web
Research (ICWR), pp. 183–188 (2016)

11. Sánchez-Gordón, M., Colomo-Palacios, R.: Characterizing DevOps culture: a systematic
literature review. In: Stamelos, I., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2018.
CCIS, vol. 918, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00623-
5_1

12. Debois, P.: DevOps: a software revolution in the making? J. Inf. Technol. Manag. 24(8), 3–5
(2011)

13. Pocius, K.E.: Personality factors in human-computer interaction: a review of the literature.
Comput. Hum. Behav. 7(3), 103–135 (1991)

14. Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of the number
of clusters. In: Proceedings of the 17th International Conference on Machine Learning,
pp. 727–734 (2000)

15. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
16. Niès, J., Pelayo, S.: From users involvement to users’ needs understanding: a case study. Int.

J. Med. Inform. 79(4), e76–e82 (2010)
17. Lizcano, D., López, G., Soriano, J., Lloret, J.: Implementation of end-user development

success factors in mashup development environments. Comput. Stand. Interfaces 47, 1–18
(2016)

18. Karahoca, A., Bayraktar, E., Tatoglu, E., Karahoca, D.: Information system design for a
hospital emergency department: a usability analysis of software prototypes. J. Biomed.
Inform. 43(2), 224–232 (2010)

19. Ruangwan, S., Thongtanunam, P., Ihara, A., Matsumoto, K.: The impact of human factors
on the participation decision of reviewers in modern code review. Empir. Softw. Eng. 24(2),
973–1016 (2019)

20. Prikladnicki, R.: QUASE - a quantitative approach to analyze the human aspects of software
development projects. In: 2009 ICSE Workshop on Cooperative and Human Aspects on
Software Engineering, p. 78 (2009)

21. Mi, Q., Keung, J., Mei, X., Xiao, Y., Chan, W.K.: A gamification technique for motivating
students to learn code readability in software engineering. In: 2018 International Symposium
on Educational Technology (ISET), pp. 250–254 (2018)

22. Sangal, R.: Software engineering: research-led education with human values. In: 2009 22nd
Conference on Software Engineering Education and Training, p. 1 (2009)

23. Hazzan, O., Tomayko, J.E.: Reflection and abstraction in learning software engineering’s
human aspects. Computer (Long. Beach. Calif) 38(6), 39–45 (2005)

Understanding How and When Human Factors Are Used in the Software Process 707

http://dx.doi.org/10.1007/978-3-030-00623-5_1
http://dx.doi.org/10.1007/978-3-030-00623-5_1

24. Farooqui, T., Rana, T., Jafari, F.: Impact of human-centered design process (HCDP) on
software development process. In: 2019 2nd International Conference on Communication,
Computing and Digital systems (C-CODE), pp. 110–114 (2019)

25. Acuna, S.T., Lasserre, C.M., Quincoces, V.E.: Human capacities in the software process:
empiric validation. In: Proceedings of the 24th International Conference on Software
Engineering, ICSE 2002, p. 715 (2002)

26. Ghane, K.: A model and system for applying Lean Six sigma to agile software development
using hybrid simulation. In: 2014 IEEE International Technology Management Conference,
pp. 1–4 (2014)

27. Reddy, G.: Designing software project management models based on supply chain quality
assurance practices. In: 2009 WRI World Congress on Computer Science and Information
Engineering, pp. 659–663 (2009)

28. Sampaio, A., Sampaio, I.B., Gray, E.: The need of a person oriented approach to software
process assessment. In: 2013 6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pp. 145–148 (2013)

708 M. Ruiz and D. Salanitri

Working Conditions for Software
Developers in Colombia: An

Effort-Reward-Imbalance-Based Study

Judy Moreno1(B), Jairo Aponte2, and Mario Linares-Vásquez3

1 Unipanamericana Fundación Universitaria, Bogotá, Colombia
jmmorenoo@unipanamericana.edu.co

2 Universidad Nacional de Colombia, Bogotá, Colombia
jhapontem@unal.edu.co

3 Universidad de los Andes, Bogotá, Colombia
m.linaresv@uniandes.edu.co

Abstract. The peopleware concept, although introduced in the field
of computer science since the seventies, is still in the process of con-
solidation given that the vast majority of previous studies have mostly
focused on theoretical and technical aspects of software construction.
Nowadays, companies recognize that human assets are a key component
of any strategy that seeks to increase their productivity, since identifying
and dealing with psychosocial factors in its personnel often allows project
managers to maintain a working team at ease and, therefore, productive.
This research focuses on diagnosing the working conditions of employees
in the area of software development, based on existing models that mea-
sure their satisfaction with their current positions. The main contribution
of the study is an initial characterization of the working conditions in
the area of software construction in Colombia. It may serve as a start-
ing point for future research aiming at improving existing development
models and organizational structures in such a way that the welfare of
employees is of greater significance, and consequently, more productive
and happy work teams are consolidated.

Keywords: Peopleware · Occupational stress · Psychosocial factors ·
ERI

1 Introduction

The software industry, like other ones in the productive sector, is continuously
looking for efficiency and increased productivity [27]. In the particular case of
software companies, they have been designing and implementing environments
and strategies aimed at improving developers’ performance. Examples of this
are the transition to agile methods that are more centered in the team members
than in the process [3], the design of spaces that improve working conditions
and team’s integration [25], and the introduction of a wide variety of tools that
reduce the time required to build and release a software product.
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 709–724, 2019.
https://doi.org/10.1007/978-3-030-35333-9_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_55&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_55

710 J. Moreno et al.

However, aspects related to developer welfare and how it motivates their pro-
ductivity is still an area that requires more empirical studies. Welfare is a subject
that has transcended to the software industry, with the existence of different
tools and guidelines that have been implemented to guarantee the well-being
of software developers. Concepts such as occupational health or worker’s mental
health have been introduced recently into the software engineering community
[10], and have motivated the design of healthy work environments and stress
reduction programs [12,14]. With increasing interest, from both researchers and
practitioners, software companies have begun to recognize that the psychosocial
aspects of developers are as important as their technical skills and background.

Previous studies involving people working at different organizations, have
focused on emotions and their impact on productivity [9,13,35]. This is also the
case of studies about social and human aspects of software engineering that have
indicated that the wide range of emotions that developers experience in their
daily activities, might affect their individual performance and team productivity.
However, a potential issue in some of previous studies, is the intrusiveness, in
the sense that the type of study (e.g., ethnography) might have an impact on
the results. Thus, it is desirable to use less-intrusive methods to avoid biases
introduced by intrusive methods.

One widely used non-intrusive method is the Effort-Reward Imbalance (ERI)
model [28], which has been extensively applied since its introduction in 1986 to
analyze the working conditions of employees across a broad range of occupations,
in several countries [4,5,30,33]; however, the context of software companies has
not been analyzed yet using this model in Colombia.

In this paper, we report the results of an empirical study, aimed at evaluat-
ing the working conditions and developers’ perceptions at software development
companies in Bogotá (Colombia), applying the ERI model. The results of the
analysis suggest that the participants perceive a high level of stress and there is
no reciprocity in their work in terms of effort versus reward, i.e., the participants
perceive their labor activity as a high-effort with moderate rewards.

The rest of this paper is organized as follows. Section 2 describes the related
work, with emphasis on previous studies using the ERI model. Section 3 describes
the study and the procedures for data collection and analysis. In Sect. 4 we report
the results and discuss the limitations of the study. Finally, Sect. 5 reports the
conclusions and future work.

2 Related Work

Based on a number of studies, since 1984 the International Labor Organization
and the World Health Organization have recognized that the psychosocial fac-
tors at work contribute to a wide range of workers’ health disorders [18]. These
stressful psychosocial factors include personal aspects of the worker (e.g., the
employee’s skills, needs, expectations, and culture), as well as characteristics of
the environment (e.g., conditions of the organization, way of working, and man-
agement style). The ongoing or progressing stress an employee experiences due
to all these factors is commonly named occupational stress [20].

Working Conditions for Software Developers: An ERI-Based Study 711

In the eighties and nineties, the first studies on occupational stress among
information systems personnel were conducted. Self-reports, surveys, and inter-
views have been the typical instruments used to identify job factors that are
perceived as stressful and examine their relationships with psychological disor-
ders [19,23]. For instance, a study with software engineers in Japan reported lack
of job control, lack of intrinsic rewards, and ambiguity of career development as
the main predictors of depressive symptoms [17].

By the year 2000, advances in communications technologies and the consoli-
dation of the cooperative software engineering (e.g., mobile devices, video chat
systems, version-control systems) had made work an on-going concern and an
omnipresent activity, and in particular, they brought the office home. As a result,
the causes and effects of occupational stress are becoming a serious concern, not
only for researchers and IT companies, but also for national and global labor and
health organizations. Tong and Yap [32] reviewed 12 existing occupational stress
models and suggested 9 critical aspects to take into account for the definition
of an occupational stress model for IS professionals. Rajeswari and Ananthara-
man [26] designed a survey and measures to study sources of pressure among
software professionals. They carried out a study with software professionals in
India and identified 10 causes of negative pressure on software developers, being
fear of obsolescence and individual team interaction the most influential factors.
Chilton et al. [8] highlight the mismatch between the preferred cognitive style of
a software developer and her perception of the cognitive style required by the job
environment as a factor that impacts stress/strain and performance. The results
show that the stress level is higher and productivity decreases as this mismatch
becomes greater.

More recent studies have focused on examining in more detail the conse-
quences of occupational stress in system and software professionals. Love et al.
[24], confirmed the predictive capabilities of the job stain model (JSM) by inves-
tigating whether perceived work demands, job control and social support are
suitable predictors of UK information systems employee’s health and job satis-
faction. Tominaga et al. [31], designed a survey-based study to investigate the
effects of occupational stress (micro and macro stressors) on the subjective health
status and productive behavior of Japanese computer engineers. They identified
relevant predictors such as quantitative and qualitative work overload, career and
future ambiguity, insufficient evaluation systems and poor supervisor’s support.
Anantharaman et al. [1], examined the relationships between occupational stress
and demographic characteristics in Indian software development professionals.
They found that men and women professionals experience similar levels of stress;
those over 30 years old have stress due to work family interface; those who work
less than 10 hours a day are more stressed due to fear of obsolescence, individual
interactions, work culture, family support, and technical risk propensity.

On the other hand, the ERI model, used in this study, has been empirically
validated [33] and widely used to understand and predict the effects of working
conditions on the well-being of workers, in multiple occupations and countries
[30]. In the particular case of Latin America, a study in Chile addressed the

712 J. Moreno et al.

association between the dimensions of the ERI model and the mental health
model (General Health Questionnaire, GHQ-28). The data collected from health
service workers show positive associations between poor mental health status
(e.g., symptoms of depression, anxiety, and insomnia) and the presence of occu-
pational stress (e.g., job insecurity) [6]. Another Chilean study focuses on explor-
ing and describing the prevalence of job stress in gendarmerie officials of the
preventive detention center CDP, through the application of the ERI model.
The findings indicate that 28.3% of the workers had low prevalence of job stress.
Likewise, the study determined that the job stress is associated mainly with
some sociodemographic characteristics and the workplace [34].

Work stress in Colombian workers has been studied using the ERI model
and other empirically validated models. For example, a combination of the Job-
Demand Control (JDC) [11] and ERI models was used to predict the bus oper-
ators’ blood pressure (BP) and psychological strain. It was found that the JDC
and ERI models combined explain 10% of systolic BP variance, and 34% of
psychological strain variance [7].

Another Colombian study was performed with high school teachers in Bogotá
with the aim of identifying the prevalence of psychological job factors, mea-
sured with the JCQ (Job Content Questionnaire) and the ERI models [16]. The
authors evaluated the relationship between psychological factors, mental health
and blood pressure. The results showed significant relation between job tension
and the effort-reward imbalance with the mental health, but not with the blood
pressure in the complete group. The study findings confirmed that there is a
high risk of job stress when teachers work in adverse psychosocial conditions,
which are related to negative health indicators.

3 The Empirical Study

The goal of this study is to assess the working conditions of software developers
in Colombia by using a non-intrusive analysis method that links features of
the work environment with well-being and related behavior, for the purpose
of providing some insight into psychosocial stressors that may impact people’s
health.

3.1 The Sample

The target population is software developers working in Bogotá (Colombia). We
include all roles that are directly involved in software construction: analysts,
designers, programmers, project leaders, testers, etc. We exclude administrative
and commercial roles because their main daily work is not part of the activi-
ties of the software process model. About 21,000 software developers work in
the Colombian center region. We sent the questionnaire to 378 developers and
obtained valid answers from 169 of them. This is a representative sample with
a 95% confidence level, and 7.5% confidence interval.

Working Conditions for Software Developers: An ERI-Based Study 713

3.2 The ERI Model

Although there are several models that relate the working conditions of employ-
ees with their physical and mental health [22,28], the ERI model has characteris-
tics that make it suitable for our purposes. First of all, it is a non-intrusive model
in which employees anonymously self-report their experiences and perceptions
of their current working conditions. Secondly, the data can be acquired through
standardized questionnaires that can be easily distributed through web-based
surveys. In third place, the ERI model has been already tested and validated in
Colombia within studies that involved various occupations [2,16,21]. In fact, in
2010 Gómez-Ortiz validated the reliability of the numerical scales used in the
model [15]. Lastly, and most importantly, a strong body of scientific evidence
is now available demonstrating that the ERI model effectively uncovers associa-
tions of adverse psychosocial working conditions with a variety of stress-related
disorders.

Specifically, the ERI model establishes that when there is a notorious imbal-
ance between employees’ perceptions of the effort made at work and their per-
ceptions of the rewards received for that work, sustained stress reactions are
created. Moreover, this model indicates that a high level of over commitment
may further increase the risk of strong negative emotions, stress reactions, and
adverse effects on health. In this context, the rewards refer not only to the salary,
but also to esteem (recognition, adequate support, and fair treatment at work),
job stability, and promotion opportunities [28].

With respect to the survey, we used the short version of the ERI question-
naire, consisting of 16 questions [29]. Table 1 shows the questionnaire which con-
sists of 3 questions to evaluate the effort (ERI1 to ERI3), 7 questions to assess
the reward perceived for respondents (ERI4 to ERI10), and 6 overcommitment
questions (OC1 to OC6). We decided to use the short version with the intention
of having a better acceptance rate among the respondents.

Each question is an assertion about the conditions of the participant’s current
work (See Table 1). In each response, the participant indicates how much the
respective statement reflects their typical condition in current work. The rating
procedure is a 4-point Likert scale where the respondent expresses her perception
choosing (1) strongly disagree, (2) disagree, (3) agree, or (4) strongly agree.
Thus, scales and scoring ranges for each of the dimensions of the ERI model
are constructed as shown by Table 2. In particular, the last column shows the
maximum and minimum values in each scale and subscale of the model.

3.3 Data Collection

In addition to the ERI questionnaire, we formulated demographic questions to
better characterize the population, so that the results of other studies can be
compared with ours, or future replications or extensions can be performed pre-
cisely. Tables 3 and 4 show the variables used for demographic information, which
includes gender, age, education level, work experience, salary, and characteristics
of the current job.

714 J. Moreno et al.

Table 1. Short questionnaire of the ERI model

Label Question

ERI1 I have constant time pressure due to a heavy work load

ERI2 I have many interruptions and disturbances while performing my job

ERI3 Over the past few years, my job has become more a more demanding

ERI4 I receive the respect I deserve from my superior or a respective relevant
person

ERI5 My job promotion prospects are poor (Reverse coding)

ERI6 I have experienced or I expect to experience an undesirable change in my
work situation (Reverse coding)

ERI7 My job security is poor (Reverse coding)

ERI8 Considering all my efforts and achievements, I receive the respect and
prestige I deserve at work

ERI9 Considering all my efforts and achievements, my job promotion prospects
are adequate

ERI10 Considering all my efforts and achievements, my salary/income is adequate

OC1 I get easily overhelmed by time pressures at work

OC2 As soon as I get in the morning I start thinking about work problems

OC3 When I get home, I can easily relax and ‘switch off’ work (Reverse coding)

OC4 People close to me say I sacrifice too much for my job

OC5 Work rarely lets me go, it is still on my mind when I go to bed

OC6 If I postpone something that I was supposed to do today I’ll have trouble
sleeping at night

Table 2. Construction of scales and scores

Scales Questions Range

Effort scale ERI1 to ERI3 3 to 12

Reward scale ERI4 to ERI10 7 to 28

Overcommitment OC1 to OC6 6 to 24

Subscales of the reward scale

Esteem ERI4, ERI8 2 to 8

Promotion ERI5, ERI9, ERI10 3 to 12

Security ERI6, ERI7 2 to 8

The ERI questions, as well as the demographic questions, were distributed
from April to October 2017, through the web-based survey tool Survio1. Initially,
it was distributed freely via convenience sampling to developers in the contacts
network of the authors. In a second stage, we contacted developers from the same

1 https://www.survio.com/en/.

https://www.survio.com/en/

Working Conditions for Software Developers: An ERI-Based Study 715

companies where the first stage respondents work. In a third stage, we asked the
Colombian Federation of Software and IT Industry (Fedesoft2) to distribute the
survey among its associates. At the end, we obtained 169 complete questionnaires
with valid answers.

4 Analysis and Results

4.1 Demographics

The details of the demographic characteristics of the sample are summarized in
Table 3. 43 respondents are women and 126 men. The majority of respondents
are under 30 (62%) and only 5.6% of them are over 40 years, which indicates that
the population working in software development is young. As for the educational
level, most of the participants have at least one bachelor degree (64%), but it is
interesting that more than a third of them (36%) are undergraduate students or
have only technical studies. In relation to work experience, most of them (54%)
already have more than three years of work experience, but many of them (74%)
have already worked for two or more different companies.

Table 4 lists the participants (169), differentiated by gender, and the distri-
bution with respect to the sample of each variable measured. The respondents
work in different companies having their headquarters in Bogotá. With respect
to their occupational profile, a high diversity can be observed in the sample, as
follows: 54% are developers/programmers; 12% corresponds to project leaders;
11% are software analysts; 23% is distributed in other profiles such as testers,
process managers, functional consultants, architects, and project managers; and
1% indicate the “other” option without specifying their position. Note that,
although the headquarters of the companies are located in Bogotá, only 78% of
the respondents carry out their work in Bogotá, followed by 18% working in Cali
and 4% in cities outside Colombia (e.g., Lima).

We found that 53% of the respondents work in national companies, while the
rest work for multinationals. Besides, 44% of them are in companies with more
than 200 workers, followed by 33% who work for companies that have between
51 and 200 employees, 15% are in companies with between 11 and 50 employees,
and only 8% are in companies with a staff less than 11. These numbers indicate
that the surveyed people work mostly in large companies.

Regarding the duration of their current jobs, we found that almost 44% of
them have been working in the current company for less than one year, while
43% report between 1 and 3 years of work in the present company. Only 13%
of the respondents have been working for more than 3 years in their current
companies. These percentages suggest that in the Colombian software industry,
the employee turnover rate is high.

Each year the Colombian government establishes the legal monthly minimum
wage (SMMLV, for its acronym in Spanish). For this reason, the question of the
survey that refers to salary, asks the respondent to say if her current salary is

2 https://fedesoft.org/.

https://fedesoft.org/

716 J. Moreno et al.

Table 3. Demographic characteristics of the 169 respondents

Women n = 43 Men n = 126 Frequency Percentage

Age (years)

Under 20 1 1 2 1%

20–30 22 83 105 62%

31–40 16 30 46 27%

Over 40 4 12 16 9%

Education level

Technician 7 44 51 30%

Undergrad 0 10 10 6%

Professional 27 59 86 51%

Grad 9 13 22 13%

Number of companies you have worked for

1 12 31 43 25%

2–4 28 77 105 62%

5 or more 3 18 21 12%

Experience (years)

Less than 1 6 18 24 14%

1–3 15 38 53 31%

more than 3 22 70 92 54%

less than 2 SMMLV, is between 2 and 4 SMMLV, is between 4 and 6, or if it is
greater than 6 SMMLV. For 2017, one SMMLV was equivalent to approximately
250 USD. Thus, we found that 11% of the respondents earn less than 2 SMMLV
(less than 500 USD), 50% earn between 2 and 4 SMMLV (between 500 and 1000
USD), 16% between 4 and 6 SMMLV (between 1000 and 1500 USD), and 23%
earn more than 6 SMMLV (more than 1500 USD). These data may indicate that
the majority of people working in the software industry in Colombia do not earn
high salaries. Although a deeper study is required, this salary issue could explain
why the employee turnover rate is high.

We also inquire about the schedule and the workplace. Regarding the place,
6% are remote workers, 71% work always at their offices, and 23% use a mixed
modality, in which some days they go to the office, and in others, they work from
home. Regarding the working hours, 67% indicate having a fixed schedule and
33% have a flexible one. These results indicate that about one-third of employees
benefit from the possibility of working from wherever they choose and/or with
a flexible schedule while maintaining full-time employment.

Working Conditions for Software Developers: An ERI-Based Study 717

Table 4. Job characteristics

Women n = 43 Men n = 126 Frequency Percentage

Professional profile

Analyst 6 12 18 11%

Architect 3 5 8 5%

Consultant 1 2 3 2%

Developer 14 78 92 54%

Process Manager 6 5 11 7%

Tester 5 4 9 5%

Project Leader 7 13 20 12%

Other 1 6 7 4%

City

Bogotá 27 104 131 78%

Cali 15 15 30 18%

Chilpancingo 0 1 1 1%

Lima 0 2 2 1%

Santiago 1 4 5 3%

Number of employees in the company

1–10 1 12 13 8%

11–50 6 20 26 15%

51–200 10 46 56 33%

Over 200 26 48 74 33%

Time in the current company (years)

Less than 1 18 57 75 44%

1–3 21 51 72 43%

more than 3 4 18 22 13%

Salary (SMMLV)

Less than 2 2 16 18 11%

2-4 23 62 85 50%

4-6 7 20 27 16%

Over 6 11 28 39 23%

Work modality

In person 25 95 120 71%

Mixed 17 22 39 23%

Remote 1 9 10 6%

Work schedule

Fixed 30 83 113 67%

Flexible 13 43 56 33%

718 J. Moreno et al.

4.2 The ERI Model Results

Table 5 shows the mean, the standard deviation, and the minimum and maximum
values obtained in each dimension of the ERI model. According to the means of
the scores obtained in each one of the dimensions, it can be seen that the par-
ticipants perceive moderate efforts to carry out their work, as well as moderate
rewards. In the case of esteem, job security, job promotion and overcommitment,
their perception is average, while the effort-reward ratio is perceived as high.

Table 5. Variables in the ERI model (N = 169)

DIMENSION Mean S.D. Min. Max. Range

Effort 8.61 1.74 3 12 3 to 12

Reward 18.12 2.96 8 25 7 to 28

Effort-Reward ratio 1.16 0.40 0.35 2.92

Esteem 5.26 1.22 2 8 2 to 8

Job Security 5.62 1.28 2 8 2 to 8

Promotion 7.24 1.54 3 12 3 to 12

Overcommitment 14.8 3.83 6 24 6 to 24

ER Ratio. The Effort-Reward ratio (See Table 5) shows whether there is an
imbalance between a developer’s effort and the reward earned for her work when
the value is not equal to one. A ratio greater than one is a signal of work stress.
Table 6 lists the cases of stress at work, according to the Effort-Reward ratio and
surprisingly, 63.31% of the respondents suffer some degree of stress at work due
to an effort-reward imbalance.

Table 6. Stress prevalence by ERI

Effort-reward imbalance N %

Without work stress 62 36.69

With work stress 107 63.31

Total 169 100

According to the age, 66% of the participants between 20 and 30 years are
suffering stress due to effort-reward imbalance, while 63% of the respondents in
the range between 31 and 40 years are in similar condition. Furthermore, the
level of studies shows that stress is more prone in levels equal to or higher than
the level of professional studies (more than 67%), compared to workers that are
still students. According to gender, the analysis shows similar work stress in
both men and women. However, women have significantly less participation in

Working Conditions for Software Developers: An ERI-Based Study 719

positions in the area of software development as it was reported above. With
regard to experience, the stress is greater in those who have been in the same
work position for more than 1 year or similar positions, in contrast to those who
have been working for less than one year in the current position.

Hypothesis Tests. In addition to the descriptive statistics-based analysis we
used hypotheses testing to identify whether there are significant differences in
the data. The inference analysis was carried out using the T-Student test, since it
allows to estimate if the averages of effort, reward, promotion and estimation are
the same regardless of the gender. To reject or not a hypothesis we used α = 0.05.
The results for the test are depicted in Table 7. On the one hand, statistically
significant differences were found between effort (p = 0.04378) and reward (p =
0.01233); therefore, it is inferred that there are significant differences by gender
in these categories. On the other hand, there are no significant differences with
respect to promotion (p = 0.06399) and esteem (p = 0.166). Thus, it can be
assumed that the perceptions of esteem and promotion are the same in both
men and women.

Table 7. Bivariate analysis among effort, reward, promotion and esteem according to
gender

Dimension Gender T-Student p-value

Men Women

Mean S.D. Mean S.D.

Effort 13.56 10.25 5.11 4.20 2.288 0.04378

Reward 7.18 6.0 2.71 3.48 2.657 0.01233

Promotion 13.56 11.03 5.11 5.69 2.041 0.06399

Esteem 17.43 17.25 5.88 6.73 1.665 0.1366

According to the tests, men who work in the area of software development
(mean = 13.56), report greater effort at work than women (mean = 5.11), with
statistically significant difference (p = 0.04378). Unlike women (mean = 2.71),
men also have a greater perception of reward (mean = 7.18), with statistically
significant difference (p = 0.01233). Men perceive the same financial status or
job promotion and salary (x = 13.56) that women (x = 5.11) since there is no
statistically significant difference between the means (p = 0.06399).

In relation to the dimension of esteem, men perceive the same esteem at work
(x = 17.43) that women (x = 5.88). The difference is not statistically significant
between the means of these groups (p = 0.166).

Lastly, the results suggest that the workers in the software development area
who have been working in their current company for less than 3 years (x = 7.74)
are more overwhelmed and overloaded at work, compared to workers who have
been working for 3 or more years in the same company. There is a statistically
significant difference of the means between both groups (p = 0.0064).

720 J. Moreno et al.

4.3 Discussion

The application of the ERI model allowed us to analyze in a non-intrusive way,
characteristics such as: esteem, job security (job stability), promotion in employ-
ment, as well as overcommitment. The results suggest that the practitioners
in the analyzed sample perceive a moderate esteem (5.26/8), also average job
security (5.62/8), as well as a not very high promotion (7.24/12) and a moder-
ate/high over-commitment (14.8/24). As a result, it is estimated that developers
are barely satisfied with their present working conditions.

The influence of the psychosocial state on the activities carried out by the
practitioners was determined by taking into account that the ERI model has as
premises the work effort, the rewards obtained and the overcommitment that
the workers perceive of their work. In our study, a high prevalence (mean =
1,160, s.d. = 0.40) of work stress was found, since it occurred in 63.31% of the
sample. This means that these workers perceive their labor activity as a high-
effort (mean = 8.61/12, s.d. = 1.74), with moderate rewards (mean = 18.12/28,
s.d. = 2.960). Consequently, the results suggest that the respondents perceive a
considerable level of stress and there is no reciprocity in their work. Specifically,
according to the ERI model, 63% of the respondents experience work stress.

A summary of other relevant findings and recommendations are the following:

– Economic compensation: lower levels of work stress occur when the eco-
nomic remuneration of employees is higher;

– Home office working day: those developers who reported Home-Office
benefits experience lower levels of work stress;

– Stability: the average is 5.62/8, which suggests to look for strategies to
improve the perception of job stability among software developers;

– Esteem: The average is 5.26/8, so that recognition and support at work are
aspects to be improved by generating non-monetary incentives for the work
carried out by developers;

– Promotion: it relates to the possibilities of personal and professional growth
in the company. It is another aspect to be taken into account since the average
is 7.24/12.

– The other variables analyzed in the correlations, such as age, level of studies,
gender, experience and working hours, do not seem to be relevant enough to
drive specific initiatives of developers well being.

Previous Studies. Compared with [9], there are many reasons that coincide in
the characterization they performed, such as: perceived workload (overload), lack
of rewards, uncertain progress and insecurity (safety at work) and effort-reward
imbalance. According to our results, in Colombia there is currently a greater
turnover of personnel than in Spain. With regard to job stability, the Spanish
study showed that it is one of the most notorious causes of job abandonment,
while for our study the variable measured as moderate. In [9] the salary was
identified as a variable perceived as low with respect to the effort devoted. This
result was consistent with ours, which also shows a non-conformity with respect
to salary remuneration as depicted in Table 8.

Working Conditions for Software Developers: An ERI-Based Study 721

Table 8. ERI distribution according to salary

Salary (SMMLV) Effort-reward imbalance

Without work stress With work stress

N % N %

Less than 3 9 21 34 79

3–5 32 37 55 63

5–8 21 54 18 46

Total 62 37 107 63

4.4 Limitations of the Study

This study has some methodological limitations. Getting a large sample of devel-
opers is often a frustrating and time-consuming task. Aware of this drawback,
we made several rounds of participants’ recruitment, starting with our direct
contacts, and ending with companies and business associations. Despite this,
replications of the study are needed to reach a diagnosis at the country level,
and increase the reliability of the results. However, the study has benefited from
a representative sample calculated with a 5% expected accuracy and a 7.5%
confidence level.

In addition, some researchers in the area of social sciences recommend con-
ducting studies using the ERI Questionnaire in combination with the Job Con-
tent Questionnaire since they have found that they are complementary, and
therefore, allow broader and more solid conclusions. Thus, studies applying both
models are recommended and desired.

5 Conclusions and Future Work

On the one hand, this study characterized the population of software developers
in Bogotá, in terms of gender, age, education level, salary, experience, and career
mobility, as well as, the type of companies where they work and the kind of jobs
they do. On the other hand, it evaluated the working conditions of this popu-
lation by using three standardized psychometric scales of the ERI model, i.e.,
effort, reward and overcommitment, after collecting and measuring perceptions
and experiences of developers. We consider it essential to carry out replications
of this study in other areas of the country to reach a more complete diagnosis of
the working conditions of developers in Colombia. Thus, we plan to extend the
scope of this diagnosis by replicating this initial study.

References

1. Anantharaman, R., Rajeswari, K.S., Ajitha, A., Jayanty, K.: Occupational stress
and demographic characteristics among information technology professionals. Int.
J. Bus. Manag. 13, 140 (2018). https://doi.org/10.5539/ijbm.v13n12p140

https://doi.org/10.5539/ijbm.v13n12p140

722 J. Moreno et al.

2. Balcázar, A., Rubio, M.: Análisis de las Propiedades Psicométricas del Cuestionario
Desbalance-Esfuerzo-Recompensa ERI en Conductores Colombianos. Thesis, Uni-
versidad de los Andes, Bogotá, Colombia (2006)

3. Beck, K., et al.: Manifesto for agile software development (2001)
4. Calnan, M., Wainwright, D., Almond, S.: Job strain, effort-reward imbalance and

mental distress: a study of occupations in general medical practice. Work Stress
14(4), 297–311 (2000). https://doi.org/10.1080/02678370110040920

5. Calnan, M., Wadsworth, E., May, M., Smith, A., Wainwright, D.: Job strain, effort -
reward imbalance, and stress at work: competing or complementary models? Scand.
J. Public Health 32(2), 84–93 (2004). https://doi.org/10.1080/14034940310001668.
pMID: 15255497

6. Canepa, C., Briones, J., Pérez, C., Vera Calzaretta, A., Juárez Garćıa, A.: Dese-
quilibro esfuerzo-recompensa y estado de malestar en trabajadores de servicios de
salud en chile. Ciencia & Trabajo, ISSN 0718–2449, N◦. 30, 2008, pp. 157–160
(2008)

7. Cendales, B., Useche, S., Gómez, V.: Psychosocial work factors, blood pressure
and psychological strain in male bus operators. Ind. Health 52(4), 279–288 (2014).
https://doi.org/10.2486/indhealth.2013-0156

8. Chilton, M.A., Hardgrave, B.C., Armstrong, D.J.: Person-job cognitive style fit for
software developers: the effect on strain and performance. J. Manage. Inf. Syst.
22(2), 193–226 (2005). https://doi.org/10.1080/07421222.2005.11045849

9. Colomo-Palacios, R., Casado-Lumbreras, C., Misra, S., Soto-Acosta, P.: Career
abandonment intentions among software workers. Hum. Factor. Ergon. Manuf.
24(6), 641–655 (2014). https://doi.org/10.1002/hfm.20509

10. Cullen, K.L., et al.: Effectiveness of workplace interventions in return-to-work
for musculoskeletal, pain-related and mental health conditions: an update of the
evidence and messages for practitioners. J. Occup. Rehabil. 28(1), 1–15 (2018).
https://doi.org/10.1007/s10926-016-9690-x

11. der Doef, M.V., Maes, S.: The job demand-control (-support) model and psycho-
logical well-being: a review of 20 years of empirical research. Work Stress 13(2),
87–114 (1999). https://doi.org/10.1080/026783799296084

12. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. J. Syst. Softw. 140, 32–47 (2018). https://doi.
org/10.1016/j.jss.2018.02.041

13. Graziotin, D., Wang, X., Abrahamsson, P.: Are happy developers more productive?
In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 50–64. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39259-7 7

14. Graziotin, D., Wang, X., Abrahamsson, P.: Do feelings matter? On the correlation
of affects and the self-assessed productivity in software engineering. J. Softw. Evol.
Process 27(7), 467–487 (2015). https://doi.org/10.1002/smr.1673

15. Gómez-Ortiz, V.: Assessment of psychosocial stressors at work: psychometric prop-
erties of the Spanish version of the ERI (effort-reward imbalance) questionnaire in
Colombian workers. Revista de Psicoloǵıa del Trabajo y de las Organizaciones
26(2), 147–156 (2010)

16. Gómez-Ortiz, V., Moreno, L.: Factores psicosociales del trabajo (demanda-control
y desbalance esfuerzo-recompensa), salud mental y tensión arterial: un estudio con
maestros escolares en Bogotá, Colombia. Universitas Psychologica 9(2), 393–407
(2009)

https://doi.org/10.1080/02678370110040920
https://doi.org/10.1080/14034940310001668
https://doi.org/10.2486/indhealth.2013-0156
https://doi.org/10.1080/07421222.2005.11045849
https://doi.org/10.1002/hfm.20509
https://doi.org/10.1007/s10926-016-9690-x
https://doi.org/10.1080/026783799296084
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1002/smr.1673

Working Conditions for Software Developers: An ERI-Based Study 723

17. Haratani, T., Fujigaki, Y., Asakura, T.: Job stressors and depressive symptoms
in Japanese computer software engineers and managers. In: Anzai, Y., Ogawa,
K., Mori, H. (eds.) Symbiosis of Human and Artifact. Advances in Human Fac-
tors/Ergonomics, vol. 20, pp. 699–704. Elsevier (1995). https://doi.org/10.1016/
S0921-2647(06)80297-2

18. International Labour Organisation: PSYCHOSOCIAL FACTORS AT WORK:
Recognition and control. Technical report, Report of the Joint ILO/WHO Com-
mittee on Occupational Health (1984)

19. Ivancevich, J.M., Napier, H.A., Wetherbe, J.C.: Occupational stress, attitudes, and
health problems in the information systems professional. Commun. ACM 26(10),
800–806 (1983). https://doi.org/10.1145/358413.358432

20. Jex, S.M.: Stress and Job Performance: Theory, Research, and Implications for
Managerial Practice. Advanced Topics in Organizational Behavior. SAGE Publi-
cations Ltd, Thousand Oaks (1998)

21. Jiménez, L.: Ampliación de la validación del JCQ y del ERI en Colombia. Thesis,
Universidad de los Andes, Bogota, Colombia (2014)

22. Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., Amick, B.: The
job content questionnaire (JCQ): an instrument for internationally comparative
assessments of psychosocial job characteristics. J. Occup. Health Psychol. 3, 322–
355 (1998). https://doi.org/10.1037/1076-8998.3.4.322

23. Lo, M.W.: Occupational stress in the information systems profession. ACM
SIGCHI Bull. 18, 25–29 (1987). https://doi.org/10.1145/25281.1044286

24. Love, P., Irani, Z., Standing, C., Themistocleous, M.: Influence of job demands,
job control and social support on information systems professionals’ psychological
well-being. Int. J. Manpower (2007). https://doi.org/10.1108/01437720710820026

25. McBreen, P.: Questioning Extreme Programming. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2002)

26. Rajeswari, K.S., Anantharaman, R.N.: Development of an instrument to mea-
sure stress among software professionals: factor analytic study. In: Proceedings
of the 2003 SIGMIS Conference on Computer Personnel Research: Freedom in
Philadelphia-leveraging Differences and Diversity in the IT Workforce, SIGMIS
CPR 2003, pp. 34–43. ACM, New York (2003). https://doi.org/10.1145/761849.
761855

27. Sadowski, C., Zimmermann, T. (eds.): Rethinking Productivity in Software Engi-
neering. Apress, Mountain View (2019)

28. Siegrist, J.: The Effort-Reward Imbalance Model, Chap. 2, pp. 24–35. Wiley, Hobo-
ken (2017). https://doi.org/10.1002/9781118993811.ch2

29. Siegrist, J., Li, J., Montano, D.: Psychometric Properties of the Effort-Reward
Imbalance Questionnaire. Technical report, Duesseldorf University, Germany
(2014)

30. Siegrist, J., et al.: The measurement of effort-reward imbalance at work: European
comparisons. Soc. Sci. Med. 58(8), 1483–1499 (2004). https://doi.org/10.1016/
S0277-9536(03)00351-4. Health inequalities and the psychosocial environment

31. Tei-Tominaga, M., Asakura, T., Akiyama, T.: The effect of micro and macro stres-
sors in the work environment on computer professionals’ subjective health status
and productive behavior in Japan. Ind. Health 45, 474–486 (2007). https://doi.
org/10.2486/indhealth.45.474

32. Thong, J.Y., Yap, C.S.: Information systems and occupational stress: a theo-
retical framework. Omega 28(6), 681–692 (2000). https://doi.org/10.1016/S0305-
0483(00)00020-7

https://doi.org/10.1016/S0921-2647(06)80297-2
https://doi.org/10.1016/S0921-2647(06)80297-2
https://doi.org/10.1145/358413.358432
https://doi.org/10.1037/1076-8998.3.4.322
https://doi.org/10.1145/25281.1044286
https://doi.org/10.1108/01437720710820026
https://doi.org/10.1145/761849.761855
https://doi.org/10.1145/761849.761855
https://doi.org/10.1002/9781118993811.ch2
https://doi.org/10.1016/S0277-9536(03)00351-4
https://doi.org/10.1016/S0277-9536(03)00351-4
https://doi.org/10.2486/indhealth.45.474
https://doi.org/10.2486/indhealth.45.474
https://doi.org/10.1016/S0305-0483(00)00020-7
https://doi.org/10.1016/S0305-0483(00)00020-7

724 J. Moreno et al.

33. van Vegchel, N., de Jonge, J., Bosma, H., Schaufeli, W.: Reviewing the effort-
reward imbalance model: drawing up the balance of 45 empirical studies. Soc. Sci.
Med. 60(5), 1117–1131 (2005). https://doi.org/10.1016/j.socscimed.2004.06.043

34. Cardenas Villar, P.A.: Estres laboral: modelo desequilibrio esfuerzo-recompensa en
funcionarios de gendarmeria del centro de detencion preventiva (CDP), Santiago
sur. Thesis, Facultad de Medicina, Universidad de Chile, September 2016. http://
bibliodigital.saludpublica.uchile.cl:8080/dspace/handle/123456789/457

35. Yilmaz, M., OConnor, R.V., Colomo-Palacios, R., Clarke, P.: An examination of
personality traits and how they impact on software development teams. Inf. Softw.
Technol. 86(C), 101–122 (2017). https://doi.org/10.1016/j.infsof.2017.01.005

https://doi.org/10.1016/j.socscimed.2004.06.043
http://bibliodigital.saludpublica.uchile.cl:8080/dspace/handle/123456789/457
http://bibliodigital.saludpublica.uchile.cl:8080/dspace/handle/123456789/457
https://doi.org/10.1016/j.infsof.2017.01.005

Towards a Better Understanding
of Team-Driven Dynamics
in Agile Software Projects

A Characterization and Visualization Support in JIRA

Fabian Kortum(B), Oliver Karras, Jil Klünder, and Kurt Schneider

Software Engineering Group, Leibniz University Hannover,
Welfengarten 1, 30167 Hannover, Germany

{fabian.kortum,oliver.karras,jil.kluender,
kurt.schneider}@inf.uni-hannover.de

Abstract. In agile software development, proper team structures and
sprint estimations are crucial aspects to reach high-performance out-
comes. Performance can vary due to the influence of social-driven team
factors. Resulting in team dynamics with the focus on human factors are
usually difficult to capture and thus often not monitored. However, their
impact can impede the planning and fulfillment of sprints.

Data on team behavior should be simplified to track, analyze, and
interpret as sprint influences are important to understand. We provide
a centralized solution that extends JIRA functionally and continuously
captures sprint characteristics in the daily working environment of teams.

In this paper, we describe a JIRA plugin that enables the assessment
of team behavior in combination with exploratory analyses. The tool
became approached with six software projects and a total of 53 under-
graduate students. Characterizations made with the plugin can reveal
sprint and team dynamics over time, involving development performance
and team-related measures. The feature comes with a feedback mecha-
nism for teams that visualize and implicates the sprint dependencies.

The approach reveals a set of team-related sprint dynamics, its sys-
tematically capturing, and characterization. With the achieved solution,
team leader and developer can be supported to understand the ongoing
sprint and team-driven dynamics better. Thus, they can keep track of
their habits for future sprint planning and team adjustment impacts.

Keywords: Team behavior · Human factors · Agile · Exploratory
analyses · Interdependency graph · Sprint characterization

1 Introduction

In agile software development, team- and process-related factors have increasing
importance for sprint estimations and executions [16,19]. Both elements are
often reflected in the performance outcome of sprints, usually measured by the
comparison of scheduled versus completed story points per sprint.
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 725–740, 2019.
https://doi.org/10.1007/978-3-030-35333-9_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_56&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_56

726 F. Kortum et al.

However, the estimation and prioritization of development tasks can be a
sophisticated and experience-based challenge for teams and stakeholders [15].
An extensive international survey in the industry revealed that sprint retrospec-
tives of post-mortem experiences and knowledge are applied in three out of four
projects [11]. In retrospectives, teams share, discuss, and interpret negative as
well as positive aspects according to past sprint conditions and occurrences, e.g.,
neglected tasks due to insufficient estimations or workloads [16]. Awareness of
the team, as well as an understanding of influences and interdependencies dur-
ing sprints, is the first step towards improvement opportunities that lead to the
planning of adjustments for follow-up sprints.

The team-driven factors in sprints are not trivial to characterize due to lack-
ing information sources [9]. Human factors are challenging to capture or often
not adequately taken into account [1]. As a consequence, interpretation gaps of
performance changes often remain uncovered or insufficiently questioned. Nev-
ertheless, human factors and the social-driven nature of agile teams have been
found by many studies to present key-directing impacts for the success in soft-
ware projects [3,24]. In particular, the social aspects in organizations commonly
involve, i.a., proper communication structures, meeting manner, group spirit,
and emotional constitution [20,21].

Recent studies have shown that regular retrospectives that combine data ana-
lytics with past sprint records provide more comprehensive insights and expla-
nations of sprint dynamics for teams [10,22]. As a result, pro-active feedback
mechanisms from an analytical perspective provide comprehensive and simpli-
fied summaries of past sprint conditions, even with trend implications for teams
[3]. The additional knowledge helps teams and leaders to estimate sprints more
accurately based on features that grant an increased awareness of highlighted
behavior habits. However, along with the pre-processing and visualization of ret-
rospective sprint feedback, we assume a further problem concerning the clarity
and transparency of team-driven dynamics over time. Some dependencies and
behavioral patterns are more prevalent than others, which in some cases cre-
ate more sustainable relevance to the teams. If particular positive or negative
behavior patterns persist over time, the teams should be aware of these patterns
to track them.

In this paper, we introduce an approach that applies exploratory analyses
[17] to provide pro-active feedback about sprint-wise characterizations and visu-
alizations of team-driven sprint dynamics in agile software projects. We strive
towards investigating sustainable interdependencies with long-term relevance for
individual teams and across projects. This approach is part of a series of previous
publications on team feedback described by Kortum et al. [8,10]. The authors
focus on pro-active feedback using retrospective sprint visualizations and future
trend highlighting. We developed a JIRA plugin called ProDynamics. Based on
this plugin, we collected sprint data of six software projects with a total of 53
undergraduate students using controlled self-assessments on the social-driven
team factors and productivity measures [8,10].

Towards a Better Understanding of Team-Driven Dynamics 727

Considering team characteristics and statistical implications of sprint influ-
ences, as well as dynamic performance changes over time, are of particular rele-
vance. The research goals of this approach are expressed in RG-1 and RG-2.

RG-1: Resolve a combined solution covering exploratory
analyses and statistical implications of sprint interde-
pendencies with concern for the social-driven team and
sprint-performances in JIRA.

RG-2: Resolve a proper visualization concept covering
sprint-interdependencies in JIRA that achieves a higher
cognitive perception and awareness of long-term sprint-
affects in teams.

In this approach, we resolve interdependency interpretations of sprint per-
formances and psychological team measures of teams through maximal informa-
tion coefficient analyses (MIC) [17] and force-directed network graphs. Previous
work indicated that the characterization and visualization of dependencies allow
teams and leaders to review and understand sprint effects better, especially in
case of significant and long-term sprint habits [6]. The use of exploratory analyses
revealed team-related sprint influences with direct relevance across the projects,
while a specific behavior pattern becomes more recognizable and transparent.

The paper is structured as follows: In Sect. 2, we outline previous results
and related work with relevance for this approach. Section 3 covers the method-
ology, highlights the considered dataset and the exploratory analyses, as well
the visualizing strategy applied in ProDynamics. We interpret the findings on
sprint-interdependencies in Sect. 4, followed by the threats to validity in Sect. 5.
We conclude our work and outline some future work in Sect. 6.

2 Related Work

This approach is based on previous work with the focus on pro-active knowledge
and awareness enhancement on social-driven team factors in the agile context.
Advanced data analysis and visualization methods are used to provide a char-
acterization of information and feedback support for teams.

Cockburn et al. [3,25] describe the relevance of human factors in agile soft-
ware projects. The authors highlight the central impact of team communication
and organizational structures in agile teams. They appraise that iterative feed-
back enables the opportunity to adjust the process and behavior of a team due
to increased awareness and expertise for dysfunctional conditions.

Feedback is crucial because it can trigger process and behavior changes within
projects [25]. Nonetheless, only a few publications focus on the effect of team
feedback involving human behavior aspects. Current studies usually refer to
sole self-management and productivity measures in combination with the per-
formance outcome of a team [16,22].

728 F. Kortum et al.

In recent years, investigations on human factors became intensified due to
an increased interest towards the team-driven effects and feedback influence
on development performances [16,19]. Missing awarenesses for ongoing habits,
especially in younger teams, often come along with improper sprint estimations
or problems in self-organization. This can harm the performance of teams, and
consequently, the success of projects [5].

In previous studies, Klünder et al. [6] and Kortum et al. [10] conducted
studies in industry and student software projects to observe and characterize
the appearances of particular behavior patterns in software development teams.
The authors studied how exploratory analyses, together with proper visualiza-
tion technologies, can enhance the interpretation of human factors and reduce
estimation gaps for the development process [9]. The approach results revealed
social-driven dependencies, for instance, between social conflicts, communica-
tion, and organizational structures [7,21] as well as the impact of interactions
during team-meetings on positive mood afterward [20].

In this approach, we address the pro-active feedback support for JIRA cov-
ering visualizations and statistical implication of sprint interdependencies. The
derived effects are results of exploratory analyses introduced by Reshef et al.
[17]. They manifested a novel measure called Maximal Information Coefficient
to capture and characterize dependencies with linear and non-linear associations.
Thus, mutual information can be expressed through advanced statistical proper-
ties, whereby even sophisticated or not distinct dependencies are characterizable.

A team can increase its awareness for particular conditions of problem causes
by enabling advanced cognitive perception besides solely textual feedback. As
Lehtonen et al. [13] describe in their study that the key for improvements in the
agile context strongly depends on information and its adequate visualization.

In a related Jermakovics et al. [4] studied the benefits of analyzing and visual-
izing developer networks. The authors characterize the interactions of different
team members based on data from repositories to identify and highlight the
workloads and internal development structures. The authors’ strategy is a cen-
tral aspect of this approach leading for interdependency visualizations expressed
through force-directed network graphs [2].

3 Methodology

In this methodology, we describe how team-driven dynamics can be systemati-
cally characterized and visualized across multiple sprints, e.g., in JIRA.

The ProDynamics plugin architecture enables the JIRA system to assess
repeatedly, and analyze sprint-wise development performances as well as team-
behavior features. Implication results become reflected through force-directed
network graphs and textual statements. We conducted an approach involving six
academic software projects that enabled us to capture team-related dynamics.

Customers from industry, government, and public institutions founded the
projects and accompanied as stakeholders in weekly meetings. All project teams
used Scrum as the development framework. Atlassian JIRA [14] and Gitlab were

Towards a Better Understanding of Team-Driven Dynamics 729

applied to manage their projects. The JIRA system helped the teams to self-
organize, trace, and update daily activities during the sprints. Each project
took 15 weeks, involved 8–9 team members, and had an estimated workload
of 2,000 person-hours. The software project is mandatory for students in the
5th semester but does not include gradings. The primary goal is to provide
students with a realistic software project, to use theoretical knowledge from
their studies and apply it practically as a team. In the following, we describe the
team-driven information and productivity measures [10] that we captured and
analyzed within JIRA.

Sprint and Team-Driven Data: Sprint performances can involve multiple
information aspects, e.g., a subjective team atmosphere and objective produc-
tivity metrics. The success of projects depends on functional communication and
efficient team performances [3,15], while dysfunctional structures often lead to
more conflicts and failure potentials [7]. The interdependency characterizations
consider the subjective and objective features shown in Fig. 1.

Fig. 1. Overview of captured sprint features

The listed categories with their sole features are based on previous work
[21] and related studies with established metrics from human-centered software

730 F. Kortum et al.

engineering [1,16] as well as organizational psychology [5,23]. Understanding
influential factors, in particular, the behavior-driven interdependencies during
sprints allows the teams to react on habit, by adjusting processes or organization.
Interdependencies are derived, e.g., from sprint retrospective and future trends
within a known system boundary [10]. The exploratory analyses in this app-
roach take part since they provide advanced characterization support of dynam-
ics compared to conventional linear statistics [24]. Therefore, the system can
even interpret social-driven factors of agile teams at a broader functional scope.
The details of each feature are listed in Table 1.

Table 1. Overview of sprint characteristics consider by ProDynamics

Sprint and team factors Measurement Ref.

Perceived project pressure 5P. Likert scales [9]

Perceived team motivation 5P. Likert scales [9]

Perceived positive affects 5P. Likert scales [23]

Perceived negative affects 5P. Likert scales [23]

Team leader satisfaction 5P. Likert scales [10]

Customer satisfaction 5P. Likert scales [10]

Flow Distance: Decentralized communication Ratio [%] [7]

Flow Centrality Centralized communication Ratio [%] [7]

Perceived communication media usage Ratio [%] [21]

Maverick manifestations in team Ratio [%] [21]

Communication intensity 5P. Likert scale [21]

Meeting frequency (amount) � ◦ per Sprint [5]

Meeting duration (minutes) � ◦ per Sprint [5]

Meeting participation Ratio [%] [5]

Team satisfaction 5P Likert scale [10]

Group spirit and solidarity 5P. Likert scale [9]

Workload balance Ratio [%] [10]

Perceived work dependencies 5P. Likert scale [10]

Perceived development performance 5P. Likert scale [10]

Planned, completed vs. left Sprint-Issues Ratio [%] [6]

Planned, completed vs. left Story Points Ratio [%] [6]

Development Problems |x| per Sprint [7]

Social Conflicts |x| per Sprint [7]

Self-assessments in JIRA: ProDynamics is designed for teams with open
mindsets for self-reflection in exchange for sustainable feedback. It was intro-
duced to all groups at the project start, mentioning its feedback opportunities
for a broader understanding of the ongoing sprint dynamics [10].

Towards a Better Understanding of Team-Driven Dynamics 731

Six groups approached the plugin to receive pro-active feedback on their team
performances and behavioral dynamics in exchange for sharing their individually
collected sprint experiences. Each developer’s reflection [3,21] was autonomously
captured and processed through our JIRA plugin using weekly self-assessments.
The additional response effort required 1–2 min on average for each student,
which is a proper outcome based on the integrated elicitation within their project
managing environment [12]. The assessment design and question set are based
on previous studies, also related work [18,21].

The self-assessments primarily capture the social- and organization aspects
in teams, e.g., who-to-whom communication and media channel usage, meeting
quantity and average duration, the atmosphere in groups, also personal mood,
satisfaction, and the perceived development performances during the last week.
Some questions can be directly analyzed, while others, e.g., whom-to-whom com-
munication requires additional computations to derive the maverick scores and
similar. The question types are limited to the measures listed in Table 1. Most
questions are based on Likert scales determining the interviewees’ level of agree-
ment on an asymmetric disagree-agree scale with predefined sprint or team state-
ments. A sample of the customer satisfaction assessment is shown in Fig. 2.

Fig. 2. Assessment excerpt with 5-points Likert scale

Next, in line with the subjective self-assessments features are the objective
system measures, e.g., workloads, development velocities, and estimation gaps.
Such information is directly accessed from project records natively tracked within
JIRA and is of equal importance for the sprint characterizations. Considering
both subjective and objective features allow a broader characterization of inter-
dependencies, thus more awareness and understanding of the reason for partic-
ular sprint performance outcomes.

3.1 Characterization of Sprint-Dependencies

Software development effects related to human factors can have a sophisticated
origin and are not always explainable through sole linear statistics. As a conse-
quence, it is highly desirable to consider more adequate methods that can char-
acterize and interpret team-driven dynamics during sprints [6,10]. Automated

732 F. Kortum et al.

exploratory analyses as introduced by Reshef et al. [17] can support analysts to
detect and understand effects, e.g., during sprints more extensively [9]. Without
such advanced analyses, inadequate interpretations often remain as a result of
analyzes gaps through sole linear measures. In the following, we describe the
exploratory analyses of sprint dynamics using MIC [17].

Exploratory Analyses: The team-driven phenomena in agile development
are often interpreted intuitively or experience-based, e.g., using empirical
studies that disclose valuable insights [1,16]. Unfortunately, many studies
explain human factors only through simple linear correlations [9,17]. Reshef
et al.’s MIC-algorithm [17] considers complex types of relationships, allowing to
autonomously identify, e.g., the dependency abstractions shown in Fig. 3.

Fig. 3. Exploratory analyses using MIC and Pearson r [17]

Figure 3 shows three rows, each with seven data example characterizations
that cover the interpretation gaps as mentioned above, i.e., between conventional
Pearson correlations (linear) and the MIC. A direct comparison of both analyzing
strategies for the first 14 data examples within the first and second row shows
complementary coefficients measures.

However, for the case of more sophisticated dependencies as in the third
row, the MIC reveals its strengths against sole linear analyses. The first exam-
ple of the third row has sinusoid characteristics, barely recognized when solely
considering Pearson r. The extensive functional property analysis of the MIC
algorithm can find and characterize the dependency adequately. But especially
when interpreting recurring behavior patterns, these characteristics should be
taken into account [9]. The applied MIC algorithm in this approach is optimized
to inter-work within the JIRA architecture.

Towards a Better Understanding of Team-Driven Dynamics 733

3.2 Visualization of Sprint-Dependencies

In agile software development, adequate summaries, visualization of rapidly
changing sprint condition, and progress information are essential [4,13]. Ret-
rospective reports and futurespective implications enable overall conclusive
insights about sprint performances and functional manners, thus support teams
in the next sprint planning [8,10]. This part of the research extends the existing
visual concepts in ProDynamics with force-directed network graphs for enhanced
transparency and understanding of team-driven dependencies during sprints.

The Force-Directed Network Graph: The visualization in JIRA provides a
fully interactive concept that empowers teams to access sprint-insights over time
from 2-factor up to multi-factor dependencies. The graph is a D3-adaptation [2]
and operates as front-end visualization for the sprint-wise dependency inter-
pretation by the exploratory analyses. The graph settings are predefined and
visualize only relevant sprint-dependency findings, i.e., interdependencies with
very strong coefficients r or MIC ≥ .9 and significances p-value ≤ .05. The
color of each node corresponds to one of the seven above categories. The sizes
of nodes depend on the impact of each factor, measured by the number and
strength of in- and outgoing forces. The forces are directed by the strengths and
effect polarity between two nodes. Figure 4 shows an example for a particular
sprint selection in JIRA. Visualizations across all yet completed sprints work in
the same way and only require to be selected.

Fig. 4. Example of Force-directed network graph for sprint-dependencies in JIRA

Tool-tips support the graphs with additional background information on
selected nodes, e.g., description of factor, impact score within sprints, infor-

734 F. Kortum et al.

mation type, and more. In case that the user is interested in a particular inter-
dependency, a single force can be select as well, highlighted in the close-up view
in Fig. 5. The manual dependency selection enables to review the detailed rela-
tionship characteristics. The example selections show that with increasing team
motivation, the tendencies for more mavericks in the team will decrease.

Fig. 5. Interdependency graph for an explicit factor selection

4 Interpretation Support of Sprint Dynamics

In the previous chapter, we described the methodology enabling software devel-
opment teams to access and gain sprint-insights about their individually social-
driven dynamics during projects. With this, the theoretical and practical aims
towards RG-1 could be entirely fulfilled. However, with RG-2, we wanted to
investigate the applicability towards better information transparency and higher
cognitive understanding for significant team dynamics in agile projects. We ret-
rospectively explored six software projects from a previous study using the Pro-
Dynamics plugin [8]. The six projects covered complete data sets from four
sprints on both social-related team records and objective development perfor-
mance measures. In the following, we show the sprint-wise characterizations on
the most relevant sprint-dynamics across all six projects.

The Sprint “Exploration” targeted project-specific tasks, e.g., framework
configurations, testing development environments, but also forming communi-
cation and work-flows. In Fig. 6, four relevant clusters of sprint-dynamics were

Towards a Better Understanding of Team-Driven Dynamics 735

identified. All projects emphasized a team satisfaction increase with higher par-
ticipation rates in meetings. Also, task-oriented pressure seemed to enforce for
more loners with the result that more work was done as the number of tasks
increased. The most relevant finding is that decentralized communications, e.g.,
through digital channels, caused perceiving on lacking information exchanges.

Fig. 6. Identified team-driven dynamics during Sprint-Exploration (1 of 4)

The Sprint “Iteration I” addressed development-tasks, e.g., fulfilling the
sprint-backlog, scrum-meetings, and realize a α − version of the intended soft-
ware product. Compared with the previous sprint, more significant activities and
team-driven dynamics came upfront in a total of five clusters, as Fig. 7 shows.
Unchanged, the decentralized communications still caused perceiving of lacking
information exchanges with adverse effects for work dependencies. Team satisfac-
tion in all projects changed not significantly due to higher participation rates in
meetings. Instead, it decreased whenever an additionally scheduled team meeting
occurred. The group spirit changed positively with centralized team communica-
tions, also when the workload balance was equally distributed and less maverick
activities. Besides, the team meeting durations often shortened when the backlog
issues became completed within the estimated times.

The Sprint “Iteration II” continued on the development outcome from
the previous sprint. The overall sprint goal across the projects was to realize a
β −version of the intended software product. Four dynamics cluster with strong
significances were determined, shown in Fig. 8. As for the previous sprints did
a decentralized communication structure cause a decreased perception of lack-
ing information transfers. Also, the teams increased the number of scheduled
issues, while the estimated story points were optimized. This shows an optimal
adjustment effect in sprint planning. Besides, due to the additional development
issues, the teams also perceived a slightly higher pressure, while the completion
of all tasks resulted in self-satisfaction. The most significant changes relate to
the development performances, which tend to increase due to a stronger consid-
eration of the scrum master’s reflections on the product and team performances.

The Sprint “Polishing” goal was to finalize the β − version from the pre-
vious sprint, optimize existing features, and release the final software product

736 F. Kortum et al.

Fig. 7. Identified team-driven dynamics during Sprint-Iteration I (2 of 4)

Fig. 8. Identified team-driven dynamics during Sprint-Iteration II (3 of 4)

to the customers. Figure 9 reveals, that the team-driven dynamics in the last
sprint were intense, as often the case in other agile projects. The most critical
impact presented the customer reflection on the current product and perceived
team performances. This involved software demonstrations, usability tests, and
so on. It seems that the teams across all projects, especially channelized their
focus to enhance customer satisfaction in this last sprint, not before. Reduced
decentralized communications prevailed to hold longer face to face meetings.
The latter was recognized by the teams and increased the perceived informa-
tion transfer with all participants. Positively activated mood triggers resulted in
stronger team motivations with effect for increased group spirits. The visualized
scope of all sprint dependencies only showed findings with very strong coeffi-
cients r ≥ .9 and significance level p ≤ .05. Moreover, several other significant
dynamics with strong or moderate relationships were found but would exceed
the interpretable outcome in this paper.

Towards a Better Understanding of Team-Driven Dynamics 737

Fig. 9. Identified team-driven dynamics during Sprint - Polishing (4 of 4)

Table 2. TOP 10: captured team-driven dynamics from four sprints

Sprint feature Abs. relevance Sprint 1 Sprint 2 Sprint 3 Sprint 4

Flow Distance 16% 16% 12% 9% 11%

Media Channel Usage 16% 16% 12% 9% 11%

Communication Intensity 14% 16% 8% 9% 10%

Customer Satisfaction 12% –% –% –% 21%

Work Dependencies 8% –% 7% 4% 8%

Meeting Durations 7% –% 8% –% 8%

Group Spirit 7% –% 11% –% 5%

Meeting Participation 7% 7% –% 13% 3%

Team Satisfaction 6% 16% 4% 5% –%

Issue Workload Schedule 6% 8% 4% 9% –%

Table 2 lists the interpreted sprint factors in teams, sorted by their sole rele-
vance during the sprints. The results show that the communication and informa-
tion flow in teams, expressed through the Flow Distance had a strong meaning
in the projects. For example, the teams seemingly started their projects with a
strong focus on information exchanges but neglected this manner over the time.

5 Threats to Validity

By Wohlin et al. [26], studies consist of threats limiting the conclusion, construct,
internal, and external validity. Results might not be overgeneralized.

738 F. Kortum et al.

Construct Validity: We characterize team-driven dynamics in sprints solely
through statistics. Team performance changes could also occur due to latent
independent variables, e.g., weather influences, which cannot be considered. The
teams were equally formed based on self-rated development skills, also previous
project experiences. The characterizations and visualization of sprint dynamics
only show significant (p-value ≤ .05) factors with very strong coefficients (r or
MIC ≥ .9). Statistical implications in the graphs are limited to human factors
identified from previous work [6,10] and are not equal to improvement advice.

Internal Validity: The interpretations of team-driven dynamics depend on self-
assessed team reflections and individual team performances. All team assess-
ments were voluntary activities in exchange for receiving pro-active feedback
through the ProDynamics plugin. For managing the projects, JIRA was manda-
tory. When assessing team information, we believe that the students and cus-
tomers were motivated to reply truthfully, mostly in exchange for supportive
project insights. The software projects did not involve gradings or parallel classes.
However, no bias within the responses can be expected. Feedback included per-
sonalized information, such as the sprint-wise moods, and other emotion-related
factors, but was implicated as aggregated team values for anonymity.

External Validity: The interpretation of team-driven dynamics during the stu-
dent software projects might not be overgeneralized [18]. However, each project
was founded from public institutions, government, or industrial partners. Nev-
ertheless, results cannot be necessarily transferred entirely to other software
projects. Sprint reflections from other customers or developer teams may result
in different dynamics interpretations when reconstructing the approach. Besides,
whenever considering team-driven dynamics, explanations are limited.

Conclusion Validity: The exploratory analyses and all interpreted dynamics
during the software projects are reliable and statistically valid. The textual and
visual feedback aspects within ProDynamics might not be comparable with oral
concepts. The methods are generalizable and applicable to other agile develop-
ment teams that use JIRA or similar project managing software.

6 Conclusion and Future Work

We described an approach using a JIRA plugin called ProDynamics to sup-
port agile development teams with sprint-feedback and insights on team-driven
dynamics. We aimed to enable a better understanding and awareness of the
effects and influencing factors in socio-technical systems, without extraordinary
efforts for developers. We applied exploratory analyses [17] with force-directed
network visualizations [2] in an enclosed JIRA-plugin. The exploratory analy-
ses allow sprint-dynamics interpretation considering subjective records on team-
driven factors as well as objective development metrics in sprints [8].

The sprint characterization detects even sophisticated dependencies in project
data. Statistic results became abstracted in force-directed graphs for a simplified
and applicable knowledge gain on the captured team-dynamics. We addressed two

Towards a Better Understanding of Team-Driven Dynamics 739

research goals that covered the realizations of a ProDynamics plugin feature for
automated interpretations and visualizations of team-driven dynamics. We also
targeted an applicability approach of the tool with six student software projects.
We could identify several sprint dynamics with very strong (Pearson r or MIC
≥ .9) and significant (p ≤ .05) dependencies across the teams. Especially the last
sprint revealed a broad set of dynamics with the primary objective in fulfilling the
essential customer expectations. Compared with the previous sprints, customer
satisfaction seemed to be of relevance for the teams only near the end of a project,
but never before. This presents more or less a trivial situation in agile projects,
and it also reflects the applicability of this work.

We can conclude that the ProDynamics sprint-dynamics feature provides
a supportive feedback mechanism on team-driven dynamics with its integrated
complex analyses and visualization strategies. It provides a simplified and auto-
mated information source for agile development teams, scrum masters, and man-
agers. In future work, we plan to perform a transfer from academia to industry
projects considering the practicability of team-dynamics characterizations using
ProDynamics. We also plan to extend the so far sole statistical implications with
an automated sprint-adviser for improvements of ongoing team dynamics.

Acknowledgment. This work was funded by the German Research Society (DFG)
under the project name Team Dynamics (2018–2020). Grant number 263807701.

References

1. Basili, V.R., Reiter Jr., R.W.: An investigation of human factors in software devel-
opment. Computer 12, 21–38 (1979)

2. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Visual Comput. Graph. 17(12), 2301–2309 (2011)

3. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131–133 (2001)

4. Jermakovics, A., Sillitti, A., Succi, G.: Mining and visualizing developer networks
from version control systems. In: Proceedings of the 4th International Workshop on
Cooperative and Human Aspects of Software Engineering, pp. 24–31. ACM (2011)

5. Kauffeld, S., Lehmann-Willenbrock, N.: Meetings matter: effects of team meetings
on team and organizational success. Small Group Res. 43(2), 130–158 (2012)

6. Klünder, J., Kortum, F., Ziehm, T., Schneider, K.: Helping teams to help them-
selves: an industrial case study on interdependencies during sprints. In: Bogdan,
C., Kuusinen, K., Lárusdóttir, M.K., Palanque, P., Winckler, M. (eds.) HCSE 2018.
LNCS, vol. 11262, pp. 31–50. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-05909-5 3

7. Klünder, J., Schneider, K., Kortum, F., Straube, J., Handke, L., Kauffeld, S.:
Communication in teams - an expression of social conflicts. In: Bogdan, C., et al.
(eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 111–129. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44902-9 8

8. Kortum, F., Klünder, J., Brunotte, W., Schneider, K.: Sprint performance fore-
casts in agile software development - the effect of futurespectives on team-driven
dynamics. In: 31st International Conference on Software Engineering and Knowl-
edge Engineering. KSI Research Inc. (2019)

https://doi.org/10.1007/978-3-030-05909-5_3
https://doi.org/10.1007/978-3-030-05909-5_3
https://doi.org/10.1007/978-3-319-44902-9_8

740 F. Kortum et al.

9. Kortum, F., Klünder, J., Schneider, K.: Don’t underestimate the human factors!
Exploring team communication effects. In: Felderer, M., Méndez Fernández, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS,
vol. 10611, pp. 457–469. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69926-4 36

10. Kortum, F., Klünder, J., Schneider, K.: Behavior-driven dynamics in agile devel-
opment: the effect of fast feedback on teams. In: 2019 IEEE/ACM International
Conference on Software and System Processes (ICSSP). IEEE (2019)

11. Kuhrmann, M., Tell, P., Klünder, J., Hebig, R., Licorish, S., MacDonell, S. (eds.):
HELENA Stage 2 Results. ResearchGate (2018)

12. Lee, G., Xia, W.: Toward agile: an integrated analysis of quantitative and qualita-
tive field data on software development agility. MIS Q. 34(1), 87–114 (2010)

13. Lehtonen, T., Eloranta, V.P., Leppanen, M., Isohanni, E.: Visualizations as a basis
for agile software process improvement. In: 2013 20th Asia-Pacific Software Engi-
neering Conference (APSEC), vol. 1, pp. 495–502. IEEE (2013)

14. Li, P.: JIRA Essentials. Packt Publishing Ltd., Birmingham (2015)
15. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall, Upper Saddle River (2002)
16. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: A teamwork model for understanding an agile

team: a case study of a scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)
17. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science

334(6062), 1518–1524 (2011)
18. Ross, J.A.: The reliability, validity, and utility of self-assessment (2006)
19. Salo, O., Abrahamsson, P.: Empirical evaluation of agile software development: the

controlled case study approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004.
LNCS, vol. 3009, pp. 408–423. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24659-6 29

20. Schneider, K., Klünder, J., Kortum, F., Handke, L., Straube, J., Kauffeld, S.: Pos-
itive affect through interactions in meetings: the role of proactive and supportive
statements. J. Syst. Softw. 143, 59–70 (2018)

21. Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Media, mood, and meetings:
related to project success? ACM Trans. Comput. Educ. (TOCE) 15(4), 21 (2015)

22. Vetro, A., Dürre, R., Conoscenti, M., Fernández, D.M., Jørgensen, M.: Combin-
ing data analytics with team feedback to improve the estimation process in agile
software development. Found. Comput. Decis. Sci. 43(4), 305–334 (2018)

23. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol.
54(6), 1063 (1988)

24. Whitworth, E., Biddle, R.: The social nature of agile teams. In: Agile (AGILE
2007), pp. 26–36. IEEE (2007)

25. Williams, L.A., Cockburn, A.: Agile software development: it’s about feedback and
change. Computer 36, 39–43 (2003)

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-69926-4_36
https://doi.org/10.1007/978-3-319-69926-4_36
https://doi.org/10.1007/978-3-540-24659-6_29
https://doi.org/10.1007/978-3-540-24659-6_29
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Evaluating the Utility of the Usability Model
for Software Development Process and Practice

Diego Fontdevila1(&) , Marcela Genero2 , Alejandro Oliveros1 ,
and Nicolás Paez1

1 Universidad Nacional de Tres de Febrero, Caseros, Argentina
{dfontdevila,aoliveros}@untref.edu.ar,

nicopaez@computer.org
2 Department of Technologies and Information Systems,
University of Castilla-La Mancha, Ciudad Real, Spain

marcela.genero@uclm.es

Abstract. Processes and practices are tools that organizations use to improve
their capabilities. Agile transformations are very popular, as are process and
practice improvement and adoption initiatives, but they face many challenges,
including low adoption rates. Improving process and practice usability might
increase adoption rates and effective use. This idea led us to define a Usability
Model for Software development Process and Practice (UMP), consisting of
characteristics and metrics, in the quest to improve the work experience of
software development practitioners and the effectiveness of process and practice
adoption initiatives. The goal of this paper is two-fold: (1) to present the refined
version of the UMP and (2) to describe a study on the application of the UMP to
the Visual Milestone Planning (VMP) method in order to evaluate UMP’s
utility, specifically its ability to produce useful feedback in a real-life scenario.
The study produced preliminary confirmation that the UMP is applicable to the
VMP, along with specific feedback on improvement opportunities for the
VMP. An interview with the VMP creator confirmed that the UMP model and
the evaluation feedback were valuable for enhancing VMP adoption. In sum-
mary, we can conclude that the empirical results obtained show that UMP can be
useful. Nonetheless, more studies are needed to provide further confirmation in
different scenarios.

Keywords: Usability � Process and practice � Improvement � Interview �
Design Science Research

1 Introduction

Improvement in software engineering increasingly takes the form of initiatives to adopt
pre-existing processes, practices, methods, frameworks, etc. As used to be the case with
generic “best practices”, agile methods have become a focus of popular interest in the
software development community (and beyond), and many organizations are
attempting agile and digital transformations [1]. Agile methods, like other related
trends such as DevOps, tend to be very attractive to newcomers, but sometimes seem
deceptively simple and easy to implement [2]. Research on actual agile projects shows

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 741–757, 2019.
https://doi.org/10.1007/978-3-030-35333-9_57

http://orcid.org/0000-0002-6786-3404
http://orcid.org/0000-0002-6868-7465
http://orcid.org/0000-0002-2251-9052
http://orcid.org/0000-0002-0453-4259
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_57&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_57

significant differences between method definitions and actual implementations [3],
including lack of implementation of many of the practices defined by those same
methods [4, 5]. This affects the ability of these initiatives to produce their intended
results. For example, agile engineering practices like Frequent Delivery have been
shown to be key success factors in agile projects [6, 7].

There is also growing evidence that human factors, emotions in particular, affect
software development productivity, turnover and job satisfaction [8]. Furthermore,
developer acceptance of new ways of working is a cornerstone of success for
improvement initiatives [9, 10]. Overall, the quality of interactions between practi-
tioners and their processes and practices affects the chances of success of improvement
initiatives and their effectiveness.

Although there are several process quality models [11, 12], none of them focuses
specifically on process usability. In its effort to improve both the overall experience of
practitioners and their effectiveness, the UMP provides support for the improvement of
the design of processes and practices, as well as their adoption plans. In particular, the
UMP should help practitioners to:

• Have a better understanding of usability issues related to processes and practices.
• Evaluate the fitness of potential processes or practices to specific contexts (for

example, mature teams might be better suited to hard-to-learn but potentially
beneficial practices).

• Adapt processes or practices by highlighting specific concerns (e.g. particular
characteristics), in an attempt to enhance the adoption process.

• Support planning of improvement initiatives by providing specifics on usability
related risks.

• Provide explanation for obstacles found in the adoption process.

In this context we have defined the long-term goal of our research as:

Define and validate a usability model for software development process and
practice (UMP) to support the enhancement of usability aspects of process and

practice, in order to improve the work experience of software development prac-
titioners and the overall effectiveness of process and practice adoption initiatives.

To achieve this main goal, a Design Science approach was followed. Design Sci-
ence proposes creating artifacts to solve a practical problem, together with knowledge
that is of general interest [13]. The research methodology shown in Fig. 1 was fol-
lowed. For each step the figure shows the associated Design Science activity [13] and
the research sub-activities performed:

742 D. Fontdevila et al.

To allow readers to understand the complete investigation process to which the
current paper belongs, the main aspects of the research methodology are introduced
briefly as follows:

Explicate Problem: The initial analysis of the state of the art was conducted, in which
the relevant literature was identified. Expert interviews were conducted to help identify
appropriate sources for the model, given the very limited search results that matched
process and practice usability research.

Define Requirements: The artifacts to be produced would be a quality model and an
evaluation process. Moreover, real life UMP application scenarios were defined (see
Appendix) to describe in detail the intended scope of applicability, including who
would use the model, what they would use it for, and which model elements (e.g.
empty model or model evaluation results) would be used.

Design and Develop Artifact: The UMP model was defined from the following
sources: the ISO 25010 international standard [14], the process quality model by
Kroeger et al. [11], and classic usability literature [15, 16].

To facilitate the application of the UMP, an evaluation process was defined by
adapting the reference model for software product evaluation proposed in the ISO
25040 international standard [17].

To refine the model, a focus group [19] with expert practitioners was conducted to
obtain feedback related to the clarity, understandability, precision, and relevance of
model characteristics and metrics (see Appendix for the detailed data collected).
Finally, the UMP was modified to address the improvement opportunities identified in
the focus group.

Demonstrate Artifact: An initial feasibility study was conducted by applying the
model to Scrum (this was the initial publication of the model [18]). Although Fig. 1
might seem like a sequence, the Design Science method framework is iterative; as an
example, the feasibility study [18] was performed before the refinement presented here.

Evaluate Artifact: A preliminary study was conducted through the evaluation of the
Visual Milestone Planning (VMP) method [20]. This was at the request of the method
creator, who was interested in an external evaluation. The objective of this study was to
evaluate UMP utility, i.e. its ability to produce actionable feedback that can be used in

Explicate
Problem

Analyze state
of the art

Define
Requirements

Model
+

Evaluation
process

+
Application
Scenarios

Design and
Develop
Artifact
Model

Evaluation
process

Refine the
Model

Demonstrate
Artifact

Feasibility
Study [17]

Evaluate
Artifact

Evaluate
Utility

Evaluate
Reliablity

Fig. 1. Design Science Research methodology overview

Evaluating the Utility of the Usability Model 743

real-life scenarios to improve the adoption process for specific processes and practices.
Other studies will be conducted to complement this preliminary study, in order to
provide stronger evaluation.

UMP reliability will be evaluated by asking practitioners to fill in a survey on
applying the model to specific processes and practices, and by assessing the inter-
evaluator agreement on the evaluations.

The goal of the current paper is two-fold: (1) to present the refined version of the
UMP (produced during the Design and Develop Artifact activity), and (2) to describe a
study on the application of the model to the Visual Milestone Planning (VMP) method
to evaluate UMP’s utility, i.e. its ability to produce actionable feedback that is useful in
a real-life scenario (first step of the Evaluate Artifact activity).

The rest of this paper is structured as follows: Sect. 2 presents work related to
Process and Practice Usability; Sect. 3 describes the UMP model in detail, including its
characteristics and metrics; Sect. 4 provides a description of the study on applying
UMP to the evaluation of VMP; Sect. 5 reviews the threats to validity, and Sect. 6
outlines the conclusions and future lines of work.

2 Related Work

In this section, we present literature related to process and practice usability:

• Feiler and Humphrey describe the challenges of improving process usability
due to long feedback loops, but do not include it in their list of process quality
attributes [12].

• Culver-Lozo limits the analysis to process documentation usability [21].
• Cockburn has reflected on the concept of high-discipline methodologies, which he

describes as those hard to sustain, and requiring a specific mechanism to keep them
in place [22]. This distinction touches on one aspect of the relationship between
methodologies and their users, through the associated risk of abandonment.

• Riemenschnaider et al. have found that practitioner acceptance of methodologies
can be strongly influenced by subjective norm, i.e., acceptance by close members of
the same organization. This highlights the importance of context and the social
aspect of usability beyond individual interactions [9].

• Kroeger et al. [11] built their process quality model through a sound grounded
theory research. The emergent process quality attributes were organized into 4
groups: Suitability, Usability, Manageability and Evolvability. Usability emerged as
a grouping of: Learnability, Understandability, Accessibility and Adaptability.
Though their process quality model emerged from interviews with practitioners, its
sub-attributes have little relationship with actual process performance by users.

• The ISO 25010 Standard on Systems and software quality models is a product-
oriented international standard that includes usability aspects. The process as
software analogy [12] supports the inclusion of software usability, given there is no
software development process quality standard. This standard was the only source
that provided specific metrics for the UMP.

744 D. Fontdevila et al.

• The works of Norman [15] and Nielsen [16] provided deep product usability
concepts and rich terminology.

To our knowledge, research on process and practice usability is very limited, since
most existing work does not consider people as users of their processes and practices.
We propose the UMP as a means of filling this gap, to help improve the experience of
practitioners and the overall effectiveness of adoption initiatives.

3 The UMP Usability Model for Process and Practice

We defined the UMP [18] to help consultants, researchers, teachers and practitioners to
enhance the usability aspects of software development processes and practices in order
to improve the adoption experience for newcomers and practitioners of software
development processes, practices and methods. The UMP consists of several artifacts:
The UMP itself (characteristics and metrics definitions), the UMP Evaluation Process,
and the Usability Profile (metric values and evaluation comments with improvement
recommendations) resulting from the evaluation of a specific process and practice.

The UMP can be used in several modes:

• Evaluation: the UMP is used to evaluate a specific process or practice and thus
produce a usability profile with improvement recommendations. In this mode, the
goal of the model user is to get systematic feedback on the process/practice under
evaluation. The UMP itself and the evaluation process are used to produce the
usability profile with improvement recommendations.

• Profile: the UMP was previously used by a third-party to perform an evaluation and
now the user applies the results of that evaluation to a specific context (e.g. team
considering adopting a specific practice, as in Scenario #4, see Appendix). In this
mode, the usability profile is the only artifact used.

• Framework: the UMP is used as a usability framework for process and practice
improvement, acting as a checklist that provides potential risks/root causes that can
assist in planning and assessing adoption/improvement initiatives. In this mode it
also provides metrics that can be used to assess the improvement initiative.

Given that the model is rather complex (its 10 characteristics aimed at being
complete), and that it tends to require significant experience with process for someone
to be able to perform effective evaluations, these modes allow practitioners to even-
tually benefit from third-party (and even reusable) expert evaluation results (in the
Profile mode) or to use only parts of the model in the Framework mode.

This section presents the refined version of the UMP. The model characteristics
modified from the original version of the model [18] during the refinement process are
marked with an asterisk in Table 1.

The construction of the UMP consisted of defining the 10 usability characteristics
and 24 metrics that the model is composed of. The construction process was based on
an adaptation of the top-down methodology for building structured quality models [23],
which proposes starting with the top-level elements (i.e. characteristics) and proceeding

Evaluating the Utility of the Usability Model 745

to the lower level elements (i.e. metrics). More details on the model development
process are available in [18].

Table 1 presents the model characteristics, which apply to several aspects of the
process and practice adoption lifecycle. For example, for process and practice adoption
planning: Self-evident Purpose, Understandability, Learnability, Attractiveness; for
process and practice performance: Visibility, because it characterizes how transparent
the status and intermediate products of a process are to its stakeholders; Controllability,
because it describes how easy it is for different stakeholders to control a process or
practice during execution; and User satisfaction, which is a by-product of the experi-
ence of using the process or practice. This does not mean that other characteristics
might not support those activities as well, but it highlights the fact that in different
contexts different sets of characteristics might prove more significant.

The Goal Question Metric (GQM) [25, 26] paradigm was used for the definition of
the metrics for each characteristic. For each metric, several meta-data were defined:
description, measurement method, type of scale (e.g. nominal), scale (e.g. yes/no), unit
of measurement and most favorable value. The meta-data fields were selected based on
the ISO 15939 Systems and Software Engineering – Measurement process Standard

Table 1. UMP characteristics

Characteristic Definition

Self-evident
purpose*

Ease with which users can recognize what a process or practice is for
by its name

Learnability* Ease with which a process or practice user is able to learn how to
perform its activities at a novice level of ability [24]

Understandability* Ease with which a process or practice user is able to apprehend how the
underlying principles, structure and dynamics make it work to achieve
the desired results

Safety* Degree to which a process or practice is safe for its users, preventing
errors, including using the practice or process incorrectly, or limiting
the impact of such errors

Feedback* Degree to which use of a process or practice produces or promotes
reactions or responses to actions performed

Visibility* Degree to which a process or practice helps make activities, status,
obstacles and information inputs and outputs visible to people

Controllability* Degree to which a process or practice allows its users to check status
and make decisions that affect the outcomes during process or practice
execution

Adaptability Ease with which a process or practice user is able to adapt the process
or practice for use in different contexts

Attractiveness Degree to which users of the process or practice find it attractive or
appealing because of its form, structure or reported results

User satisfaction Degree to which user needs are satisfied when using a process or
practice

746 D. Fontdevila et al.

[27]. Care was taken to keep the model as simple as possible and to improve ease of use
of the metrics. Overall, metrics were changed significantly during model refinement
and were simplified to enhance the experience of model users, based on feedback from
the focus group (see Appendix for details).

Table 2 shows the definition of the metrics for each characteristic:

Table 2. Overview of UMP metrics for each characteristic

Characteristic Metric Definition Values

Self-evident
purpose

Appropriateness
of name

Measures how appropriate the name is
for describing the purpose of the
process or practice (consider, for
example, whether names are
translations or are in a foreign language)

Deceiving,
Ambiguous,
Partial,
Appropriate,
Accurate

Self-evident
purpose

Recognized
purpose

Measures whether new adopters usually
recognize the purpose of the process or
practice

Yes/No

Learnability Time required to
learn to perform

Measures the time required to learn to
perform process or practice activities on
tasks of average complexity
independently, at a novice level of
ability

Number of
hours

Learnability Standard
introductory
course duration

Measures standard course duration in
hours, as defined by authoritative
sources

Number of
hours

Understandability # Of specific
conceptual
definitions

Measures how many specific
(new) definitions make up the
conceptual model of the process or
practice (evaluators must specify the
concepts considered)

Number of
specific
conceptual
definitions

Understandability Conceptual
model
correspondence

Measures the correspondence between
the conceptual model of the process or
practice and the user’s own conceptual
model for the same activity

Low,
Medium,
High

Understandability Conceptual
model
complexity
index

Measures the subjective complexity of
the conceptual model of the process or
practice

Low,
Medium,
High

Safety Cost of incorrect
adoption

Measures the cost of adopting the
process or practice incorrectly as overall
impact. Errors include applying the
process or practice inappropriately;
failing to understand its purpose or
dynamics, failure to perform its activities
and to evaluate results correctly. For
example, incorrect adoption might
produce burnout, a high cost, or local
inefficiencies, a medium cost

Low,
Medium,
High

(continued)

Evaluating the Utility of the Usability Model 747

Table 2. (continued)

Characteristic Metric Definition Values

Safety Reduction in
cost of error

Measures how applying the process or
practice correctly reduces the overall
cost of errors made in the work system.
For example, iterative processes are
designed to reduce the cost of errors by
checking early on, through intermediate
results

Low,
Medium,
High

Safety Safety
perception

Measures how the users perceive the
process or practice in terms of safety for
themselves and others. For example, if
the by-products of executing the process
or practice can be used against them, the
safety perception might be low

Low,
Medium,
High

Safety Use of
restraining
functions

Measures whether the process or
practice provides hard restrictions to
prevent the materialization of significant
risks

Yes/No

Feedback Timeliness of
feedback

Measures the timeliness of the feedback
as perceived by the actor with respect to
the action performed and the
consequent actions that need to be
performed

Immediate,
Prompt,
Delayed, Non
existent

Feedback Feedback
richness

Measures the value of the information
received in terms of significance,
breadth, depth or nuance

Low,
Medium,
High

Feedback People feedback Measures if the process or practice
promotes feedback from people
interactions

Yes/No

Feedback Automatic
feedback

Measures if the process or practice
provides automatic feedback

Yes/No

Visibility Defines
indicators

Measures if the process or practice
defines standard indicators

Yes/No

Visibility Information
tailored to
audience

Measures whether information is
tailored to better suit different audiences

Yes/No

Controllability Defines
checkpoints

Measures whether the process or
practice defines specific checkpoints
where users can make decisions that
control the outcomes of the process or
practice. For example, Scrum Reviews
are specific points to evaluate the
product and eventually decide whether
to accept, reject, or refine a product
increment

Yes/No

(continued)

748 D. Fontdevila et al.

To define a usability profile for a specific process or practice the UMP Evaluation
process shown in Table 3 is applied by performing the four activities described.

Table 2. (continued)

Characteristic Metric Definition Values

Controllability Explicit
outcomes

Measures if the process or practice
defines outcomes explicitly

Yes/No

Controllability Level of
autonomy

Measures the level of autonomy users
have in making decisions related to the
execution of the process or practice.
Examples include handling unexpected
results or deciding whether to proceed
or not at specific checkpoints

Low,
Medium,
High

Adaptability Defines
adaptation points

Measures whether the process or
practice defines adaptation points or not.
Adaptation points are specific
opportunities for variation described by
the process or practice. For example, in
Scrum the Retrospective is focused on
process adaptation

Yes/No

Adaptability Ratio of roles
allowed to adapt

Measures how many roles, from among
the process or practice users, are
allowed to modify the process or
practice, out of the total number of roles
(evaluators must specify the roles
considered; if no roles are
distinguishable, value should be 1)

0 to 1

Attractiveness User
attractiveness
rating

Measures how attractive the process or
practice is to prospective users (i.e.
those lacking experience)

1 to 5

User satisfaction User experience
rating

Measures the subjective experience of
using the process or practice

1 to 5

Table 3. UMP evaluation process.

Activity Description

Evaluation design Define the objectives, characteristic and metric exclusions, reference
sources and evaluators

Evaluator training Introduce the usability model and evaluation process to evaluators
Evaluation
execution

Perform the evaluation process by analyzing the process or practices
according to each sub-characteristic. Determine values for all included
metrics according to the analysis performed

Evaluation process
review

Complete the evaluation process questionnaire. Review the evaluation
results

Evaluating the Utility of the Usability Model 749

4 The VMP Study

The study was conducted as preliminary evaluation of UMP utility. The study selected
is a naturalistic evaluation according to the classification by Johannesson et al. [13].
A naturalistic evaluation “assesses the artefact in the real world” [13]. The research
method selected was the Interview, which “are effective instruments for gathering
stakeholder opinions and perceptions about the use and value of an artifact” [13].

The study goal was to evaluate UMP utility in a real-life scenario, specifically
whether the evaluation results were valuable to the user.

The VMP method is a participatory approach to milestone planning [20], created to
improve the experience of development teams and students who are planning software
development projects.

In the Define Requirements activity of the Research Methodology (see Fig. 1) ten
potential real-life model application scenarios were defined to help determine appli-
cability (see Appendix). The VMP study was selected because it was an example of
one of them, specifically Scenario #8, “Researcher evaluates method, process or
practice”. This scenario corresponds to an academic context in which a researcher
wishes to assess the usability of a process, practice or method. In this case the
researcher is the creator of the VMP method. The opportunity for conducting the study
arose when the researcher asked the first author to perform an external usability
evaluation on the VMP. In this specific situation, given that the researcher required an
external evaluation to further his own research activities, the UMP usage by the
researcher was restricted to the Profile mode, that is, the researcher used only the
evaluation results, and he did not perform the evaluation himself, which was performed
by the first author.

The rest of this section is organized as follows: Sect. 4.1 provides an overview of
the VMP, while Sect. 4.2 provides details on how the study was conducted.

4.1 VMP Overview

The VMP method is built on top of two existing planning processes, namely Milestone
Planning and Participatory Planning [20]. The main VMP contributions are: “The
integration of the milestone planning and participatory planning approaches through a
visual planning process. A novel construct called the milestone planning matrix, that
systematically and visually captures: (1) temporal dependencies between milestones
and (2) the allocation of work elements to the milestones they help realize. The
reification of work packages by means of sticky notes which must be physically
accommodated on a resource and time-scaled milestone scheduling canvas to derive the
milestones due dates” [20].

750 D. Fontdevila et al.

As revealed in [20], student teams in the Master of Software Engineering Program
at Carnegie Mellon University have successfully used the VMP for planning their
capstone projects, and it has also been taught in several industrial and governmental
organizations.

4.2 VMP Study Description

In order to reach the goals of the study, three research questions were posed:

• RQ1: Is the UMP applicable to the evaluation of the VMP method?
• RQ2: Are the UMP model evaluation results helpful in assessing the usability of the

VMP method?
• RQ3: Is the feedback produced from the UMP evaluation valuable and applicable

from the point of view of the VMP creator?

RQ1 was answered by the feedback from the execution of the UMP Evaluation
process by the first author of this paper. An affirmative answer to RQ1 would arise from
an effective execution of the UMP evaluation process. RQ2 and RQ3 were answered
via a short questionnaire used during the final interview with the VMP creator.
Affirmative answers to the questions in the questionnaire would confirm RQ2 and RQ3,
as described below.

The VMP study had two roles, researcher (the VMP creator, actor using the
evaluation results as described in scenario #8 in Appendix) and evaluator (the first
author of this paper who applied the UMP for evaluating the VMP).

The study activities were: (1) Initial definition of expectations of both parties;
(2) evaluator (first author) performed VMP evaluation taking as input VMP docu-
mentation [20] and information provided by the VMP creator; (3) Evaluator provided
feedback to the researcher (an early version of Table 4) who in turn provided minor
comments; (4) Final interview where researcher responded to questionnaire; (5) Data
analysis and reporting.

The initial interactions were aimed at setting expectations on both parties.
Specifically, it was validated with the researcher that the evaluation feedback (VMP
usability profile) would take the form of a table with metric values and comments, and
that the documentation and interview time from the researcher would be available.

After the initial interactions, the evaluator studied the VMP documentation [20],
planned and executed the UMP Evaluation Process on the VMP. Given that the
evaluator was the first author of the UMP, the evaluator training activity was not
necessary. In the evaluation design all characteristics and metrics were included,
although during evaluation some metric values were deemed non-applicable. The
execution of the evaluation produced a usability profile with evaluation metrics and
comments, presented as feedback to the researcher (as recommended by [28]), who in
turn provided confirmation and minor comments. These results are shown in Table 4.

Evaluating the Utility of the Usability Model 751

Table 4. VMP usability profile

Metric Comments Value

Appropriateness of
name

The name describes the essential aspects of the
method, that it is visual (and reified), that it is
milestone-based and that its purpose is planning

Appropriate

Recognized purpose From the experiences described by the VMP creator Yes
Time required to
learn to perform

From the experiences described by the VMP creator 4 h

Standard
introductory course
duration

Informed by the VMP creator 8 h

Of specific
conceptual
definitions

Outcomes, Dependencies, Milestone Planning
Matrix, Milestone Sequence Diagram, Milestone
Effort, Cross-cutting Effort, Milestone Dates, Soft
Milestone, Hard Milestone. Milestone work package,
Effort unit of time, Milestone scheduling canvas,
Milestone list

13

Conceptual model
correspondence

It is a participatory planning activity, where the team
is responsible for carrying out the plan. The meaning
of milestones and due dates is fairly straightforward,
as is the rest of the conceptual model

High

Conceptual model
complexity index

In general, the data model has low complexity, but
specific elements like the pair-wise dependency
matrix “roof”, the existence of two types of
milestones and two types of effort make the overall
data model less simple

Medium

Cost of incorrect
adoption

It seems hard to use the method so badly that it
would produce serious damage

Low

Reduction in cost of
error

The focus on milestone planning makes plans “much
more stable and practical” than task or activity-
oriented plans [20]. The cost of modifying milestones
is lower than that of modifying tasks. Making the
plan and its elements visual also makes it easier to
detect issues and gauge the impact of modifications

High

Safety perception The team participates in planning its own work. That
provides a safer environment for establishing
commitments, since these are not imposed from the
outside. Depending on the culture of the organization
around the team, and the level of autonomy that the
team has in planning and executing the plan, the cost
of error may vary

High

Use of restraining
functions

Matching the scheduling canvas scale to the sticky
notes size offers visible hard restrictions on milestone
planning to avoid resource over-allocation and help
validate milestone viability

Yes

(continued)

752 D. Fontdevila et al.

The effective evaluation confirmed applicability of the UMP (RQ1) and produced
feedback that was presented to the VMP creator.

The questionnaire used during the final interview is shown below, with the cor-
responding answers:

• Q1: Was the feedback from the evaluation clear and understandable? Yes.
• Q2: Is it useful and applicable in practice? Yes. It was also valuable that the UMP

model was already published, and that the UMP first author could act as an external
evaluator.

• Q3: Is it coherent with the adoption potential perceived in interactions with method
users? Yes.

• Q4: Are you satisfied with the results? Yes.
• Q5: Why? The evaluation touched upon all the main features of the method, and

highlighted its contributions.

Table 4. (continued)

Metric Comments Value

Timeliness of
feedback

Creating the Milestones Planning Matrix and the
Scheduling Canvas provides early feedback on the
soundness of the plan

Prompt

Feedback richness The feedback confirms that the plan is sound, but
does not provide more details

Medium

People feedback The method does not describe a specific stage to
request feedback from others

No

Automatic feedback Not applicable No
Defines indicators The Scheduling Canvas Yes
Information tailored
to audience

Not necessary, the information seems fairly general
and without much detail

No

Defines checkpoints The method describes explicitly several checkpoints
during planning

Yes

Explicit outcomes The Milestone Planning Matrix and the Scheduling
Canvas

Yes

Level of autonomy Teams have a say and are involved, but are not
necessarily self-organized

Medium

Defines adaptation
points

Milestone sequence diagram is optional Yes

Ratio of roles
allowed to adapt

No roles are defined Non-
applicable

User attractiveness
rating

Evaluator opinion after reading the documentation 4

User experience
rating

The VMP creator reports anecdotal positive initial
responses encountered in both classroom and
industry settings. A more precise measurement of
satisfaction might provide interesting insights

Not
available

Evaluating the Utility of the Usability Model 753

The analysis of data was very straightforward, given that there was a single data
point and the information was aimed directly at evaluating the UMP model. No coding
techniques were considered necessary.

The questionnaire answers confirmed that the feedback in the form of the evalu-
ation results was useful and applicable (Q2 for RQ2 and the rest for RQ3). This,
together with the manifest initial interest of the VMP creator to have the UMP eval-
uation performed, provides preliminary confirmation that the UMP was useful in
Profile mode; that is, the VMP creator deemed the evaluation results valuable.
The VMP creator also valued that the UMP was already published, allowing the UMP
to be referenced. It must also be noted that the VMP creator highlighted that the UMP
evaluation results touched upon all of the main features of the VMP, hinting that the
UMP sensitivity to the VMP was appropriate. In terms of the evaluation results, it is
interesting that several salient aspects of the VMP design, such as the reification of
work packages as post-it notes and the use of the scheduling canvas as a time-scaled
restrictive function, match classical usability principles like affordance and forcing
functions and are thus positively highlighted in the evaluation.

The main recommendations provided to the VMP creator were to consider a
simplified version of the model for simpler projects and to include some form of
satisfaction evaluation in VMP trainings, in order to obtain more systematic feedback.

5 Threats to Validity

In this section the threats to validity of empirical studies are presented, following the
categorization provided in [29]:

• Threats to construct validity: for the final interview, this validity may have been
affected by the questionnaire design. Care was taken to make answering easy for the
respondent, and two authors reviewed and refined the questionnaire.

• Threats to internal validity: In the study, only the VMP creator was interviewed;
information about the actual experience of VMP method users is thus not directly
available. Future work might include direct measures of the user experience of the
VMP, as recommended to the VMP creator. Both the VMP creator and the authors
had interests at stake in the study, but the study was carefully designed to reduce
bias. For the VMP researcher, the interest at stake was having an external review of
the VMP (and possibly a positive evaluation), thus, it did not introduce bias but
rather suggests that the UMP evaluation results were applicable. Regarding RQ1 in
the study, about UMP applicability to the VMP, the bias of the first author is
consistent with the stated interests and typical of Design Science research; evalu-
ation of the UMP by third-parties has been studied in [18] and will be further
studied during reliability evaluation.

• Threats to external validity: the bias introduced by limited access to study subjects
can have a significant impact on the research. To limit the bias towards accepting
any available subjects, the application scenarios for the UMP were defined
beforehand. In addition, the ability to generalize from a single preliminary study is
very limited, so future studies should encompass other scenarios to improve

754 D. Fontdevila et al.

generalizability. In particular, the study is an example of the Profile mode, in which
only the evaluation results are used; other studies that might assess the Evaluation
and Framework modes are needed to further evaluate UMP utility.

• Threats to conclusion validity: the number of observations limits the conclusion
validity in this study; further studies for other application scenarios will strengthen
the significance of the results. That is why we present this as a preliminary eval-
uation study, and will expand on it in future work.

6 Conclusions and Future Work

This paper presents a refined version of the Usability Model for Software development
Process and Practice (UMP) and a preliminary study for evaluating model utility i.e., its
ability to produce valuable results that are useful in a real-life scenario.

The preliminary study results show that the UMP assessment of the usability of the
Visual Milestone Planning (VMP) was valued by the VMP creator as an assessment of
the VMP contributions and a source of opportunities for improvement. This study was
focused on the Profile mode, in which the UMP evaluation performed by the first
author provided a usability profile that was used by the VMP creator. In this mode,
using the UMP is simpler since evaluations performed by a third-party can be reused,
thus reducing the need to perform evaluations, which can be time consuming and
require more experience. The VMP creator’s interest in having the evaluation also
strengthens this preliminary confirmation.

Future research activities include further utility evaluation through other studies
that include different scenarios and modes of use (see Appendix) and performing
reliability evaluation. For reliability evaluation practitioners will be asked to fill in a
survey on applying the model to specific processes and practices, and the inter-
evaluator agreement will be assessed on the evaluations, to gauge metric consistency.

Acknowledgements. The research work presented in this paper has been developed within the
following projects: the GEMA project (“Consejería de Educación, Cultura y Deporte de la
Dirección General de Universidades, Investigación e Innovación de la JCCM”,
SBPLY/17/180501/000293), the ECLIPSE project (“Ministerio de Ciencia, Innovación y
Universidades, y FEDER”, RTI2018-094283-B-C31) and the Software Development Process
Research Project at the Universidad Nacional de Tres de Febrero (Project lines: Usability of
Process and Practice, Agile Practices and Techniques and Requirements Engineering Processes).

Appendix

Supplementary data available at https://doi.org/10.6084/m9.figshare.8292314.

Evaluating the Utility of the Usability Model 755

http://dx.doi.org/10.6084/m9.figshare.8292314

References

1. Conboy, K., Carroll, N.: Implementing large-scale Agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

2. Kchwaber, K., Sutherland, J.: Scrum Guide. http://www.scrumguides.org/scrum-guide.html.
Accessed 08 June 2019

3. Paez, N., Fontdevila, D., Gainey, F., Oliveros, A.: Technical and organizational Agile
practices: A Latin-American survey. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018.
LNBIP, vol. 314, pp. 146–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91602-6_10

4. Kuhrman, M, et al.: Hybrid software development approaches in practice: a European
perspective. IEEE Softw. (2018)

5. Ambler, S.: Agile practices survey results, July 2009. http://www.ambysoft.com/surveys/
practices2009.html. Accessed 08 June 2019

6. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects.
J. Syst. Softw. 81(6), 961–971 (2008)

7. Forsgren, N., Humble, J., Kim, G.: Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High Performing Technology Organizations. IT Revolution Press,
Portland (2018)

8. Graziotin, D., Wang, X., Abrahamsson, P.: Software developers, moods, emotions, and
performance. IEEE Softw. 31(4), 24–27 (2014)

9. Riemenschneider, C.K., Hardgrave, B.C., Davis, F.D.: Explaining software developer
acceptance of methodologies: a comparison of five theoretical models. IEEE Trans. Softw.
Eng. 28(12), 1135–1145 (2002)

10. Overhage, S., Schlauderer, S., Birkmeier, D., Miller, J.: What makes IT personnel adopt
scrum? A framework of drivers and inhibitors to developer acceptance. In: The Proceedings
of the Annual Hawaii International Conference on System Sciences (2011)

11. Kroeger, T.A., Davidson, N.J., Cook, S.C.: Understanding the characteristics of quality for
software engineering processes: a Grounded Theory investigation. Inf. Softw. Technol. 56,
252–271 (2014)

12. Feiler, P., Humphrey, W.: Software process development and enactment: concepts and
definitions. Software Engineering Institute, CMU/SEI-92-TR-004 (1992)

13. Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-10632-8

14. International Organization for Standardization, ISO/IEC 25010 Systems and Software
Engineering - Systems and Software Quality Requirements and Evaluation (SQuaRE) -
System and Software Quality Models, Geneva, Switzerland (2011)

15. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (1988)
16. Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)
17. International Organization for Standardization: ISO/IEC 25040 Systems and Software

Engineering – System and software Quality Requirements and Evaluation (SQuaRE) –

Evaluation process, Geneva, Switzerland (2011)
18. Fontdevila, D., Genero, M., Oliveros, A.: Towards a usability model for software

development process and practice. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 137–
145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_11

19. Kontio, J., Bragge, J., Lehtola, L.: The focus group method as an empirical tool in software
engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical
Software Engineering, pp. 93–116. Springer, London (2008). https://doi.org/10.1007/978-1-
84800-044-5_4

756 D. Fontdevila et al.

http://www.scrumguides.org/scrum-guide.html
http://dx.doi.org/10.1007/978-3-319-91602-6_10
http://dx.doi.org/10.1007/978-3-319-91602-6_10
http://www.ambysoft.com/surveys/practices2009.html
http://www.ambysoft.com/surveys/practices2009.html
http://dx.doi.org/10.1007/978-3-319-10632-8
http://dx.doi.org/10.1007/978-3-319-69926-4_11
http://dx.doi.org/10.1007/978-1-84800-044-5_4
http://dx.doi.org/10.1007/978-1-84800-044-5_4

20. Miranda, E.: Milestone Planning: A Participatory and Visual Approach (2018). https://www.
researchgate.net/publication/328918275_A_Participative_Visual_Approach_to_Milestone_
Planning, https://doi.org/10.13140/rg.2.2.18969.06241. Accepted to be published in The
Journal of Modern Project Management

21. Culver-Lozo, K.: The software process from the developer’s perspective: a case study on
improving process usability. In: Proceedings of the Ninth International Software Process
Workshop, Airlie, VA, pp. 67–69 (1994)

22. Cockburn, A.: Agile Software Development: The Cooperative Game. Pearson Education,
London (2006)

23. Franch, X., Carvallo, J.P.: Using quality models in software package selection. IEEE Softw.
20(1), 34–41 (2003)

24. Dreyfus, S.E., Dreyfus, H.L.: A five-stage model of the mental activities involved in directed
skill acquisition. University of California/Berkeley Operations Research Center. DTIC
ADA084551 (1980)

25. Basili, V, Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

26. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. CRC
Press, Boca Raton (1997)

27. International Organization for Standardization: ISO/IEC 15939 Systems and Software
Engineering – Measurement process, Geneva, Switzerland (2017)

28. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131 (2009)

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29044-2

Evaluating the Utility of the Usability Model 757

https://www.researchgate.net/publication/328918275_A_Participative_Visual_Approach_to_Milestone_Planning
https://www.researchgate.net/publication/328918275_A_Participative_Visual_Approach_to_Milestone_Planning
https://www.researchgate.net/publication/328918275_A_Participative_Visual_Approach_to_Milestone_Planning
http://dx.doi.org/10.13140/rg.2.2.18969.06241
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2

Short Tutorials

PROFES 2019: Tutorial Summary

Matthias Galster1(&) and Dietmar Pfahl2

1 University of Canterbury, Christchurch, New Zealand
mgalster@ieee.org

2 University of Tartu, Tartu, Estonia
dietmar.pfahl@ut.ee

Abstract. The 20th International Conference on Product-Focused Software
Process Improvement (PROFES 2019) was held in Barcelona, Spain. As part of
PROFES 2019, four tutorials were held. Tutorials complemented the main
conference program, offering participants hands-on experiences on topics related
to product-focused software process improvement. In the following, a brief
summary of these tutorials is given.

Keywords: PROFES 2019 � Tutorials � DevOps � Conformance checking �
Grey literature � Data preparation

1 Tutorials at PROFES 2019

The 20th International Conference on Product-Focused Software Process Improvement
(PROFES 2019) was held in Barcelona, Spain. Tutorials at PROFES 2019 covered a
wide range of topics related to product-focused software process improvement from
theoretical foundations to practical applications. Tutorials provided a valuable oppor-
tunity for conference participants to expand their knowledge and skills in specific
topics under the umbrella of product-focused software process improvement. The
tutorials aimed at participants from both industry and academia. PROFES 2019
included four half-day tutorials on November 27, 2019, the day before the main
conference: (1) DevOps in Practice; (2) Conformance Checking: Relating Processes
and Models; (3) Benefitting from Grey Literature in Software Engineering Research;
(4) Hands-on Data Preparation.

2 Tutorial 1 – DevOps Practices

DevOps is currently one of the most popular topics in the software industry. Most big
software vendors implement some kind of DevOps. This tutorial presented the foun-
dations of DevOps and core practices. It offered a mix of theory and practice following
a hands-on approach. The two main topics covered in this tutorial were: Infrastructure
as Code and Continuous Delivery. These topics include other topics: immutable
infrastructure, monitoring and observability, database versioning and evolution, feature
toggles and canary releases. DevOps practices like Infrastructure as Code, Database

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 761–763, 2019.
https://doi.org/10.1007/978-3-030-35333-9

http://orcid.org/0000-0003-3491-1833
http://orcid.org/0000-0003-2400-501X
https://doi.org/10.1007/978-3-030-35333-9

Versioning, Immutable Infrastructure and Continuous Delivery were presented using
tools like Docker, Kubernetes, Vagrant, Jenkins, FlywayDB and Ansible.

Presenter: Nicolas Paez (Universidad de Buenos Aires and Universidad Nacional de
Tres de Febrero, Argentina).

3 Tutorial 2 – Conformance Checking: Relating Processes
and Models

This tutorial aimed at providing a concise introduction to conformance checking.
Conformance checking defines models and methods to analyze the relation between the
behavior of a process as captured by a process model and the behavior of it as captured
by event data that is recorded by an information system during process execution. The
goal was to introduce the essential ideas of how to relate modelled and recorded
behavior on an intuitive level, and outline applications that may benefit from confor-
mance checking.

Presenter: Josep Carmona (Universitat Politeecnica de Catalunya, Spain).

4 Tutorial 3 – Benefitting from Grey Literature in Software
Engineering Research

Grey literature is becoming more and more important as a source of knowledge because
software engineering practitioners write and share information in different forms of
grey literature (GL) like blogs, videos or white papers. The overall goal of this tutorial
was to present how software engineering research can benefit from the vast amount of
information covered by GL. The participants of this tutorial learned how GL can be
used for various aspects of software engineering research, e.g., shaping new directions
of research, or using knowledge and evidence from grey literature in empirical studies
in software engineering. First, the concept of GL in general and from the perspective of
different disciplines, like health sciences or social sciences, was presented. Second, the
concept of GL in software engineering and types of GL were presented. Third, ways
how GL can be used in primary studies and secondary studies in software engineering
were presented. In secondary studies, GL can be incorporated into multi-vocal literature
reviews and grey literature reviews. The instructors presented their guidelines for these
reviews. Finally, challenges and benefits of using GL in software engineering were
discussed.

Presenters: Michael Felderer (University of Innsbruck, Austria), Vahid Garousi
(Queens University, UK), Mika Mäntylä (University of Oulu, Finland), Austen Rainer
(Queens University, UK).

762 M. Galster and D. Pfahl

5 Tutorial 4 – Hands-on Data Preparation

From a process point of view, CRoss-Industry Standard Process for Data Mining
(CRISP-DM) describes six major steps for any data analysis project. After gaining
business understanding, required data need to be identified and semantically under-
stood, which requires domain knowledge, data engineering skills and data analysis
knowledge. In this phase, it is essential to assess the quality of the data. Data under-
standing is the starting point for data integration and preparation. For the integration,
various technologies are available. The goal of the analysis and the planned analysis
approach influence the technology stack as well as an existing infrastructure. The
analysis also poses concrete requirements on the data. The task of data preparation step
is to extract the required data from their sources through transformation, cleaning,
filtering, missing value treatment, etc. The explorative character of data analyses as
well as the strong influence of the data preparation on the results of the analysis require
that data preparation is performed repeatedly while parameters are changed based on
evaluation results. In addition, due to the exploratory nature of an analysis it is often
seen only in the course of the project, which data is actually important, how data needs
to be prepared, and which data lead to better results. Consequently, data scientists
spend a lot of time solely on data preparation. Within this hands-on tutorial, partici-
pants learned, based on concrete examples, how to kick-start a data analysis project
(i.e., data integration, data preparation). Based on their experience from many projects,
the presenters highlighted what the caveats are and how to avoid them. The tutorial
used different examples from process improvement in Jupyter Notebooks.

Presenters: Andreas Jedlitschka (Fraunhofer Institute for Experimental Software
Engineering, Germany) and Julien Siebert (Fraunhofer Institute of Experimental
Software Engineering at Fraunhofer, Germany).

PROFES 2019: Tutorial Summary 763

DevOps Practices Tutorial

Nicolás Paez(B)

Universidad Nacional de Tres de Febrero, Caseros, Argentina
nicopaez@computer.org

Abstract. DevOps is currently one of the most popular topics in the
software industry. All the important software vendors have some kind of
DevOps offering today. This popularity brings some confusion and for
many people it is not completely clear yet what DevOps is. This article
presents a summary of a DevOps tutorial that covers DevOps founda-
tions and its core practices. The tutorial offers a mix of theory and prac-
tice with a hands-on approach. DevOps core practices like Infrastructure
as Code and Continuous Delivery are presented using tools like Ansible,
Docker, Kubernetes, FlywayDB and Jenkins.

Keywords: DevOps · Continuous delivery · Infrastructure as code

1 Introduction

DevOps is currently one of the most popular topics in the software industry [1].
The term DevOps comes from the union of Development and Operations but
as noticed by Jabbari et al. [2] there is no unified definition of what it really is.
Len Bass [3] defines DevOps as a set of practices that tend to reduce the time
between the moment a change is generated in the source code of a system and
the moment that change is effectively applied in the production environment,
ensuring the quality of the whole process. Even when there are other definitions
of DevOps, most of them translate into a specific set of practices and that is why
Bass’s definition is so appropriate. Depending on the author the list of DevOps
practices varies but there is a core set of practices in which all authors agree.
This tutorial is focused on 2 of those key practices: Infrastructure as Code and
Continuous Delivery.

The learning objectives of the tutorial are

• Understand the set practices involved in the DevOps mindset.
• Experiment DevOps practices by using some popular tools usually used to

implement those practices.

The tutorial is composed of 3 kinds of activities: short-lectures, hands-on
exercises and facilitated discussions. Each topic is presented in a short-lecture
and then the participants do some hands-on exercises with the guidance of the
instructor. After analyzing practices in isolation a discussion is facilitated to
debrief and contextualize each practice in the software delivery process.
c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 764–765, 2019.
https://doi.org/10.1007/978-3-030-35333-9

http://orcid.org/0000-0002-0453-4259
https://doi.org/10.1007/978-3-030-35333-9

DevOps Practices Tutorial 765

2 Infrastructure as Code

According to Kief Morris [4] Infrastructure as Code is an approach to infras-
tructure automation based on software development practices. Infrastructure as
Code emphasizes consistent and repeatable procedures for creating and updat-
ing infrastructure and configuration by representing in it plain text files that act
as source code for an infrastructure as code tools. Any change required in the
system is made in source code, and then rolled out to the system through auto-
mated processes that include validation and ensure repeatably and traceability.
During the tutorial a map of tools is analyzed. A set of hands-on activities are
performed using Ansible, Docker and Kubernetes.

3 Continuous Delivery

Continuous Delivery is set of capabilities that enable to get changes of all types
(new features, fixes, configuration, etc.) into production or into the hands of
the users in a quickly, safety and sustainable way [5]. During the tutorial the
key principles and practices of Continuous Delivery are analyzed. Also some
hands-on activities are performed using FlywayDB and Jenkins.

4 Take-Away Message

DevOps is not a methodology. DevOps is a mindset that involves a set of key
practices and those practices require some tools. The tutorial allow the partici-
pants to meet and experiment with some of those tools. But tools are changing
all the time. So beyond the tools, the important concerns are the practices the
tools help to implement. Each organization and team has to think how to fit
these practices in their specific context and processes and should also define
which tools to use in order to implement these practices.

References

1. Version One.: 13th annual State of Agile Report. Version One (2018)
2. Jabbari, R., Ali, N.B., Petersen, K., Tanveer, B.: What is DevOps? A systematic

mapping study on definitions and practices. In: ACM International Conference Pro-
ceeding Series (2016)

3. Bass, L., Weber, I., Zhu, L.: DevOps, A Software Architect’s Perspective, 1st edn.
Addison-Wesley Professional (2015)

4. Morris, K.: Infrastructure as Code, Managing Servers in the Cloud, 1st edn. O’Reilly
Media (2016)

5. Forsgren, N., Humble, J., Kim, G.: Accelerate, Building and Scaling High Performing
Technology Organizations, 1 edn. IT Revolution Press (2018)

Conformance Checking:
Relating Processes and Models

A Tutorial for Researchers and Practitioners

Josep Carmona(B)

Computer Science Department, Universitat Politècnica de Catalunya,
Barcelona, Spain

jcarmona@cs.upc.edu

Abstract. The tutorial aims at giving participants a concise introduc-
tion to the field of conformance checking. Conformance checking defines
models and methods to analyze the relation between the behavior of a
process as captured by a process model and the behavior of it as cap-
tured by event data that is recorded by an information system during
process execution. Our goal is to introduce the essential ideas of how to
relate modelled and recorded behavior on an intuitive level, and outline
the space of applications that may benefit from conformance checking.

1 Motivation

Process mining bridges the gap between process modelling on the one hand
and data science on the other [3]. In many practical process mining applica-
tions, relating recorded event data and a process model is an important starting
point for further discussion and analysis. Conformance checking, one of the main
dimensions in process mining, provides the models and methods to analyze the
relation between modeled and recorded behavior [1].

In the course of the last decade, manifold approaches to conformance check-
ing have been developed in academia. With the respective models and methods
become more mature, the field of conformance checking is subject to consolida-
tion. That includes convergence on essential properties of conformance checking
(e.g., in terms of axioms on how to quantify aspects of the relation between event
data and process models), significant improvements of conformance checking effi-
ciency that enables analysis of large, real-world processes, and, most prominently,
an increasing interest and take-up in industry (e.g., by companies such as SAP
and Celonis).

While a large number of scientific results on conformance checking have been
published in recent years, there is a lack of a concise introduction to the essen-
tial concepts underlying it. With this tutorial, we intend to contribute to making
these results more broadly accessible, for practitioners and researchers with, so
far, little exposure to approaches for data-driven analysis of information systems
in general, and process mining in particular.

c© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 766–767, 2019.
https://doi.org/10.1007/978-3-030-35333-9

https://doi.org/10.1007/978-3-030-35333-9

Conformance Checking: Relating Processes and Models 767

2 Content

The PROFES community has already shown interest in the field of process
mining [2]. This tutorial can be seen as a continuation of the aforementioned
tutorial, where now the focus is narrowed-down to the dimension of conformance
checking.

More concretely, we focus on three concepts: Processes, Process Models, and
Event Logs, along with their relations. The tutorial starts with a short introduc-
tion to the concepts of event logs and process models. We then introduce fitness
as a metric to compare event logs and models on an intuitive level, i.e. we use
BPMN models and animations to explain the main ideas behind token-based
replay and alignments without presenting any formal definition or algorithmic
details.

In the second part of the tutorial, we introduce the notion of a ‘process’ or
‘system’ next to the event log and the model. Again, the above example will
be used to make these concepts easily interpretable by a large audience. In this
part, we will raise the awareness for the impact of the abstractions applied when
obtaining event logs and modeling a process.

We will overview in an accessible way concepts such as precision, gener-
alization, exceptions, illegal activities, fraud, etc., to outline the spectrum of
relations between possible, recorded, and modelled behavior. We then discuss
what actions can be taken to identify classes of deviations and how to deal with
them in the context of conformance checking. We provide an intuitive overview
of techniques for model-repair, log-repair, whitelisting, and blacklisting, as they
have been recently adopted by respective solutions in industry. As part of that,
we reflect on limitations and risks related to the use of conformance checking,
as imposed, for instance, by event data that is not trust-worthy.

References

1. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

2. Janes, A., Maggi, F.M., Marrella, A., Montali, M.: From zero to hero: a process
mining tutorial. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski,
M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 625–629.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 55

3. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Cham (2016). https://doi.org/10.1007/978-3-662-49851-4

https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-69926-4_55
https://doi.org/10.1007/978-3-662-49851-4

Benefitting from Grey Literature in Software
Engineering Research (Tutorial Summary)

Michael Felderer1(&), Vahid Garousi2, Mika Mäntylä3,
and Austen Rainer2

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at
2 Queen University Belfast, Belfast, UK

{v.garousi,a.rainer}@qub.ac.uk
3 University of Oulu, Oulu, Finland

mika.mantyla@oulu.fi

Abstract. Grey literature is becoming more and more important as a source of
knowledge because software engineering practitioners write and share infor-
mation in different forms of grey literature like blogs, videos or white papers.
The overall goal of this tutorial is to present ways in which software engineering
research can benefit from the vast amount of information covered by grey
literature. The participants of this tutorial will learn how grey literature can be
used for various aspects of software engineering research, e.g., shaping new
directions of research, or using knowledge and evidence from grey literature in
empirical studies of software engineering.

Keywords: Grey literature � Multivocal literature reviews � Software
processes � Evidence-based software engineering � Empirical software
engineering

1 Introduction

Grey literature, which is typically neither formally published nor peer-reviewed liter-
ature, is becoming more important as a source of knowledge because software engi-
neering practitioners write and share information in different forms of grey literature
like blogs, videos or white papers [1]. Software engineering researchers who work in
close collaboration with industry, have started to incorporate grey literature in their
research. The instructors of this tutorial have therefore started to systematically
investigate the role of grey literature in software engineering [2, 3] and they share their
findings and experiences in this tutorial.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 768–769, 2019.
https://doi.org/10.1007/978-3-030-35333-9

https://doi.org/10.1007/978-3-030-35333-9

2 Description of the Tutorial

The overall goal of the tutorial is to define what grey literature is for software engi-
neering and consider how it can be used in studies of software engineering. The tutorial
does not have specific entrance requirements. It will be structured as follows and cover
the following topics:

• Motivation. The need for integration of grey literature, and of specific analysis
methods of grey literature is motivated by examples including study results from the
authors [1, 3].

• The general concept of Grey Literature. The definition of the concept of grey
literature is discussed from a general perspective. Definitions and applications are
considered from other disciplines like health sciences, social sciences, natural sci-
ences, and humanities.

• Grey Literature in Software Engineering. The concept of grey literature in
software engineering and types of grey literature (like videos, blogs, white papers,
etc.) are presented and discussed with the participants. Also, ways to classify grey
literature and a model of the generation of grey literature content is presented.

• Usage Scenarios and Analysis of Grey Literature in Software Engineering.
Ways in which grey literature can be used in primary studies and secondary studies
in software engineering are presented, in particular.
– Application in primary studies: The discussed application scenarios in primary

studies comprise three scenarios, i.e., (1) analysis of grey literature materials
with a qualitative approach, (2) analysis of grey literature with a quantitative
approach and (3) reference of grey literature sources as related work or examples

– Application in secondary studies: Different types of systematic literature studies
including grey literature, i.e., multivocal literature reviews and grey literature
reviews will be discussed. Then, the steps when performing such a review are
presented based on the guidelines developed by the instructors [2]. The pre-
sented guidelines are explored by the participants.

• Reflection.Challenges and benefits of using grey literature in software engineering are
presented and discussed together with the participants. Finally, the tutorial is closed.

The tutorial includes lectures on the covered topics, discussions with the partici-
pants, and hands-on exercises, where the participants explore the steps of a grey
literature review in software engineering

References

1. Garousi, V., Felderer, M., Mäntylä, M.: The need for multivocal literature reviews in software
engineering: complementing systematic literature reviews with grey literature. In: EASE
2016, pp. 1–6. ACM (2016)

2. Garousi, V., Felderer, M., Mäntylä, M.: Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering. Inf. Softw. Technol. 106,
101–121 (2019)

3. Rainer, A., Williams, A.: Heuristics for improving the rigour and relevance of grey literature
searches for software engineering research. Inf. Softw. Technol. 106, 231–233 (2019)

Benefitting from Grey Literature 769

Tutorial: Data Preparation – Tackle the Most
Effort-Prone Phase in Data Projects

Adam Trendowicz, Julien Siebert(&), and Andreas Jedlitschka

Fraunhofer-Institut Für Experimentelles Software Engineering IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{adam.trendowicz,julien.siebert,andreas.jedlitschka}

@iese.fraunhofer.de

Abstract. From a process point of view, CRoss-Industry Standard Process for
Data Mining (CRISP-DM) describes six major steps for any data analysis
project. Having gained business understanding, required data need to be iden-
tified and semantically understood. In this phase, it is essential to assess the
quality of the data. The analysis’ goal and planned analysis approach influence
the technology stack as well as an existing infrastructure. The analysis also
poses concrete requirements on the data. The task of the data preparation step is
to extract the required data from their sources through transformation, cleaning,
filtering, missing value treatment, etc. The explorative character of data analyses
as well as the strong influence of the data preparation on the results of the
analysis require that data preparation is performed repeatedly while parameters
are changed based on evaluation results. In addition, due to the exploratory
nature of an analysis it is often seen only in the course of the project, which data
is actually important, how data needs to be prepared, and which data lead to
better results. Consequently, data scientist spends a lot of time solely with data
preparation (up to 70% of the project effort). Within this tutorial, you will learn,
based on concrete examples, how you kick-start your data analysis projects (i.e.,
data integration, data preparation). We will show, based on our experience from
many projects, where the caveats lie and how you safely ship around them.
During the tutorial, we will use different examples and will work together to
implement data preparation steps in Jupyter Notebooks.

Keywords: Big data analytics � Data preparation � Data quality

1 Motivation

The most effort-consuming phase in data science projects is data preparation. No
standard procedure that covers all potential data preparation issues exist. In this tutorial,
you learn how to increase the efficiency of data preparation in order to gain faster
insights into your data using data analytics. From a process point of view, the CRoss-
Industry Standard Process for Data Mining (CRISP-DM) describes six major steps for
any data analysis project [1]. After having gained Business Understanding, we need to
identify and semantically understand required data (Data Understanding). This
requires domain knowledge as well as data engineering and data analysis knowledge.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 770–771, 2019.
https://doi.org/10.1007/978-3-030-35333-9

https://doi.org/10.1007/978-3-030-35333-9

Therefore, data understanding is the starting point for data ingestion and data
preparation.

The task of the Data Preparation step is to extract and prepare required data from
their sources through transformation, cleaning, filtering, missing value treatment, etc.
Each analysis technique states concrete requirements on the data. During the course of
a project experts iteratively adjust which data is important, how data needs to be
prepared and which data lead to better results. In addition, it is essential to assess the
quality of the data. It is among the most critical steps of any data-driven project, be it
about classical data analytics or artificial intelligence (“garbage in, garbage out”). Data
analysts repeatedly perform the Data Preparation phase due to the explorative character
of data analyses as well as to the strong influence of the Data Preparation on the results
of the analysis. The analysis’ goal, the planned analysis approach as well as technical
aspects influence the technology stack used for data ingestion and Data Preparation.
Data scientist spend a lot of time solely with Data Preparation (up to 70% of the project
effort [2]).

2 Tutorial

Within this tutorial, you will learn basic approaches to prepare the data for your data
analysis projects. Based on concrete examples and on our experience from various data
analysis projects, we show typical data quality deficits and possible solutions to use
during data preparation. You learn how to perform data preparation steps using the
Jupyter Notebooks platform, Python and R programming languages. You will get an
understanding of the necessity of the data preparation phase in CRISP-DM and get to
know the methods and tools to assess data quality and learn how to mitigate commonly
available issues. The tutorial covers the following topics: Data Preparation: Why is it
important? What are the basic tasks of data preparation? Data quality: What is data
quality? What are relevant aspects of it? What are the challenges of data quality
management, e.g., in the context of big data? Data Quality assessment and improve-
ment: How to analyze and visualize data quality? How to detect and handle potential
data quality deficits? How to prepare data for specific analyses?

2.1 Target Group

Data Engineers and Data Scientists working with data in industrial context to develop
or maintain data-driven business solutions.

References

1. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous.
5(4), 14–22 (2000)

2. Alegion: What data scientists tell us about AI model training today, checked on 24 June 2019

Tutorial: Data Preparation 771

Author Index

Abherve, Antonin 577
Abrahamsson, Pekka 176, 331
Alahdab, Mohannad 195
Ali, Nauman Bin 37
Alonso, Juncal 602
Alves, Carina 367
Amasaki, Sousuke 247
Antinyan, Vard 637
Aponte, Jairo 709
Aymerich, Brenda 112

Bagnato, Alessandra 573, 577, 583, 590
Baldassarre, Maria Teresa 3
Banijamali, Ahmad 455
Barcellos, Monalessa Perini 103
Beaufays, Alexandre 590
Beecham, Sarah 341
Biffl, Stefan 53
Blasi, Lorenzo 602
Bogner, Justus 489
Börstler, Jürgen 37
Bosch, Jan 299, 515, 528
Boudeffa, Amin 577
Brosse, Etienne 590
Buchgeher, Georg 89

Caivano, Danilo 3
Çalıklı, Gül 195
Carmona, Josep 766
Caulo, Maria 120, 677
Cerisara, Christophe 545
Chaabouni, Kaïs 583, 590
Chanin, Rafael 554
Chaves, David 112
Conte, Tayana 103
Costa Silva, Camila 315
Cruz-Lara, Samuel 545

de Antona, Antonio 323
de la Vara, Jose Luis 626
de Souza, Cleidson R. B. 367
Derntl, Alexandra 89
Díaz, Jessica 323

Díaz-Oreiro, Ignacio 112
Diebold, Philipp 661

Escalante, Marisa 602

Fagerholm, Fabian 383
Falcini, Fabio 73
Falco, Mariana 649
Felderer, Michael 220, 768
Ferreira, Nuno 473
Ferrucci, Filomena 280
Fleck, Günter 161
Fontdevila, Diego 741
Francese, Rita 120, 677
Fraser, Gordon 613
Fucci, Davide 3, 573

Gallina, Barbara 626
Galster, Matthias 315, 761
Garcia-Dominguez, Antonio 583
Garousi, Vahid 768
Genero, Marcela 112, 741
Gil, Miriam 137, 596
Gilson, Fabian 315
Gómez, Juan Carlos 263
Gravino, Carmine 280
Gren, Lucas 637
Guzmán, Julio C. 112

Hamant, Martin 577
Heng, Samedi 433
Holmström Olsson, Helena 515
Horkoff, Jennifer 350
Hosio, Simo 20

Jamshidi, Pooyan 455
Jasser, Stefanie 203
Jedlitschka, Andreas 770
Jenkins, Marcelo 263

Karras, Oliver 725
Kemell, Kai-Kristian 331
Kettunen, Petri 383

Klünder, Jil 725
Knauss, Eric 350
Kneuper, Ralf 417
Kopczyńska, Sylwia 145
Kortum, Fabian 725
Koskinen, Mikael 176
Kuvaja, Pasi 455

Laanti, Maarit 383
Lacerda, Nycolas 367
Lami, Giuseppe 73
Lang, Dominic 401
Lehner, Daniel 53
Lehvä, Jyri 497
Linares-Vásquez, Mario 709
López, Gustavo 112, 236
López, Lidia 608

Machado, Ricardo J. 473
Mäkitalo, Niko 497
Mäntylä, Mika 768
Mäntylä, Mika V. 20
Marín-Raventós, Gabriela 236
Mårtensson, Torvald 299
Martínez, Alexandra 263
Martinez-Ortiz, Ivan 613
Martini, Antonio 299
Matalonga, Santiago 220
Mattos, David Issa 528
Meixner, Kristof 53
Melegati, Jorge 554
Mikkonen, Tommi 176, 383, 497
Montasser, Assad 577
Moreno, Judy 709
Moser, Michael 161
Münch, Jürgen 401

Nawrocki, Jerzy 145
Nilson, Mayra 637
Noll, John 341
Nourtel, Hubert 545

Ochodek, Mirosław 145
Oivo, Markku 455
Oliveros, Alejandro 741
Oriol, Marc 608
Orue-Echevarria, Leire 602

Pacheco, Alexia 236
Paez, Nicolás 741, 764

Parra, Eugenio 626
Pelechano, Vicente 137, 596
Perez, Jorge E. 323
Perez-Colado, Ivan 613
Pfahl, Dietmar 761
Pichler, Josef 161
Prada, Rui 613
Prasetya, I. S. W. B. 613
Prikladnicki, Rafael 554

Quesada-López, Christian 263

Rainer, Austen 768
Raulamo-Jurvanen, Päivi 20
Rebelo, Maria Eduarda 367
Robiolo, Gabriela 220, 649
Rocha, José 613
Rodrigues, Helena 473
Rodwell, Toby 620
Romano, Simone 3
Ruiz, Alejandra 626
Ruiz, Mercedes 694
Ryssel, Uwe 590

Sadovykh, Andrey 590
Salanitri, Davide 694
Salas, Luis Carlos 263
Sales, Afonso 554
Salomon, Christian 89
Santos, Gleison 103
Santos, Nuno 473
Scanniello, Giuseppe 3, 120, 677
Schlinger, Steffen 489
Schmitt, Anna 661
Schneider, Kurt 725
Schulze, Michael 590
Scott, Ezequiel 220
Shafiee, Sara 433
Siebert, Julien 770
Silva, António Rito 613
Spera, Antonio 120, 677
Ståhl, Daniel 299
Stefanidis, Kyriakos 602
Steghöfer, Jan-Philipp 350
Sveningson, Robin 528

Theobald, Sven 661
Thomas, Cedric 577
Torres, Victoria 137, 596

774 Author Index

Tran, Huynh Khanh Vi 37
Trendowicz, Adam 770
Trieflinger, Stefan 401
Trinkenreich, Bianca 103

Unterkalmsteiner, Michael 37

Vakkuri, Ville 331
Valença, George 367
Villegas, Andrea 323
Vizcaíno, Aurora 112
Vos, Tanja E. J. 613

Wagner, Stefan 489
Wang, Xiaofeng 554
Wautelet, Yves 433
Winkler, Dietmar 53
Winterer, Mario 89
Wohlrab, Rebekka 350
Wolski, Marcin 620

Yague, Agustín 323

Zehethofer, Martin 89
Zimmermann, Alfred 489

Author Index 775

	Preface
	Organization
	Intertwining Creative and Design Thinking Processes for Software Products (Keynote Abstract)
	Contents
	Testing
	An Empirical Assessment on Affective Reactions of Novice Developers When Applying Test-Driven Development
	1 Introduction
	2 Background and Related Work
	2.1 Affective States and Studies About Developers' Affective States
	2.2 Effects of TDD

	3 Experiment Planning
	3.1 Goals
	3.2 Experimental Units
	3.3 Experimental Material
	3.4 Tasks
	3.5 Hypotheses, Parameters, and Variables
	3.6 Experiment Design
	3.7 Procedure
	3.8 Analysis Procedure

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusions
	References

	Applying Surveys and Interviews in Software Test Tool Evaluation
	1 Introduction
	2 Related Work
	3 Case Study Design
	3.1 Tool Evaluation Survey
	3.2 Interviews

	4 Results
	4.1 Background Information
	4.2 Overview of Data from Tool Surveys and Interviews
	4.3 Analysis of the Criteria

	5 Discussion
	6 Threats to Validity
	7 Conclusions and Future Work
	References

	Test-Case Quality – Understanding Practitioners' Perspectives
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Research Questions
	3.2 Data Collection
	3.3 Data Analysis

	4 Threats to Validity
	5 Results and Discussion
	5.1 Test-Case Quality Definition (RQ1)
	5.2 Alignment in Understanding of Test-Case Quality (RQ2)
	5.3 Quality-Related Factors (RQ3)
	5.4 Improvement (RQ4)
	5.5 Source of Information (RQ5)

	6 Conclusions and Future Work
	References

	Test Reporting at a Large-Scale Austrian Logistics Organization: Lessons Learned and Improvement
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Test Automation
	2.2 Test Reporting
	2.3 Engineering Process Improvement

	3 Research Issues
	4 Study Process
	4.1 Case Study Company
	4.2 Study Process
	4.3 Survey and Interview Structure

	5 Results
	5.1 Stakeholder Needs for Test Reporting
	5.2 Survey Results
	5.3 Candidate Improvements and Assessment

	6 Discussion and Limitations
	7 Conclusion and Future Work
	Acknowledgement
	References

	Software Development
	Embracing Software Process Improvement in Automotive Through PISA Model
	Abstract
	1 Introduction
	2 Reference Standards in Automotive Software-Intensive Components Development
	3 Motivations for a New Process Assessment and Improvement Model in Automotive
	4 Adequacy Quality Characteristic
	5 Process Improvement Scheme for Automotive (PISA Model)
	5.1 Processes Scope and Augmented Framework
	5.2 Process Structure and Requirements

	6 Adequacy Measurement System
	7 Conclusions and On-going Activities
	Appendix A
	References

	Establishing a User-Centered Design Process for Human-Machine Interfaces: Threats to Success
	1 Introduction
	2 Industrial Context
	3 User-Centered Design Principles
	4 Experiences When Introducing UCD
	4.1 Integrated and Comprehensive Solution
	4.2 Focus on Users and Tasks
	4.3 Active User Participation
	4.4 Continuous Evaluation and Iteration
	4.5 Interdisciplinary Teams

	5 Related Work
	6 Conclusion
	References

	Combining GQM+Strategies and OKR - Preliminary Results from a Participative Case Study in Industry
	Abstract
	1 Introduction
	2 Background
	3 Study Planning and Execution
	3.1 Planning
	3.2 Execution

	4 Results
	5 Discussion
	6 Conclusions and Future Work
	Acknowledgment
	References

	Software Development Practices and Frameworks Used in Spain and Costa Rica: A Survey and Comparative Analysis
	Abstract
	1 Introduction
	2 Related Work
	3 Results and Discussion
	3.1 Which Is the Degree of Agility in the Activities of the Software Development Lifecycle?
	3.2 Which Frameworks and Methods Are Used for Software Development?

	4 Conclusions
	Acknowledgements
	References

	Does the Migration of Cross-Platform Apps Towards the Android Platform Matter? An Approach and a User Study
	1 Introduction
	2 Background and Related Work
	2.1 Ionic App Architecture
	2.2 Android App Architecture
	2.3 Migration

	3 The Migration Approach
	3.1 Resulting Metrics

	4 User Study
	4.1 Goals
	4.2 Experimental Units
	4.3 Experimental Study Material and Tasks
	4.4 Hypotheses and Variables
	4.5 Experimental Study Design
	4.6 Procedure
	4.7 Analysis Procedure
	4.8 Results
	4.9 Further Analysis
	4.10 Discussion
	4.11 Threats to Validity

	5 Conclusion and Final Remarks
	References

	Software Knowledge Representation to Understand Software Systems
	Abstract
	1 Introduction
	2 Knowledge Sources to Populate the PKM
	3 Meta-Models for Software Knowledge Representation
	4 The PKM Meta-Model
	4.1 The PKM Core Package Overview

	5 Conclusions and Future Work
	References

	When NFR Templates Pay Back? A Study on Evolution of Catalog of NFR Templates
	1 Introduction
	2 Related Work
	3 Terminology
	4 Method
	4.1 Projects
	4.2 Catalog Evolutions

	5 Results
	5.1 Dynamics of Catalog Value
	5.2 Dynamics of Maintenance Effort
	5.3 Dynamics of Catalog Utilization

	6 Threats
	7 Conclusions
	References

	Improving Quality of Data Exchange Files. An Industrial Case Study
	1 Introduction
	2 Industrial Context
	3 Approach
	3.1 Prerequisites and Foundations
	3.2 Recovery from Documentation
	3.3 Recovery from Example Corpus
	3.4 Generation of Parsing Infrastructure
	3.5 End-User Programming of Parser Component

	4 Evaluation
	4.1 Case Study Design
	4.2 Quantitative Analysis
	4.3 Qualitative Analysis

	5 Related Work
	6 Threats to Validity
	7 Conclusion
	References

	Containers in Software Development: A Systematic Mapping Study
	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Definition of Research Questions
	2.2 Conduct Search

	3 Results
	3.1 RQ 1 How Are Containers Used in Software Development?
	3.2 RQ 1.1 Are Containers Used to Modularize Software System, Either Through Component-Based Architecture or Through Microservices Architecture?
	3.3 RQ 1.2 Are Containers Used to Provide Plugin-Support for Software Systems?

	4 Discussion
	4.1 Research in Using Containers in Software Development
	4.2 More Focused Research
	4.3 Potential Research Avenues

	5 Threats to Validity
	6 Conclusion
	References

	Technical Debt
	Empirical Analysis of Hidden Technical Debt Patterns in Machine Learning Software
	1 Introduction
	2 Related Work
	3 Methodology
	4 Preliminary Results
	5 Conclusions and Future Work
	References

	Constraining the Implementation Through Architectural Security Rules: An Expert Study
	1 Introduction
	1.1 Background

	2 Identifying Common Architectural Security Rules
	3 A Catalogue of Architectural Security Rules
	4 Evaluation
	4.1 Study Design
	4.2 Study Results
	4.3 Finding Architectural Security Rules

	5 Discussion and Future Work
	5.1 Findings on Architectural Security Rules
	5.2 Towards Monitoring Architectural Security Measures

	6 Related Work
	7 Conclusion
	References

	Technical Debt and Waste in Non-functional Requirements Documentation: An Exploratory Study
	1 Introduction
	2 Background
	2.1 The NaPiRE Project
	2.2 Published Research on Non-Functional Requirements

	3 Research Method
	3.1 Concepts and Assumptions
	3.2 Research Questions
	3.3 Data Extraction and Analysis Procedure

	4 Results
	5 Discussion
	6 Conclusion
	References

	Technical Debt in Costa Rica: An InsighTD Survey Replication
	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	4 Results
	4.1 Demographics
	4.2 Familiarity with TD Concept
	4.3 Reaction of Development Teams When They Are Aware of TD

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

	Estimations
	Exploring Preference of Chronological and Relevancy Filtering in Effort Estimation
	1 Introduction
	2 Related Work
	2.1 Chronological Filtering
	2.2 Relevancy Filtering

	3 Methodology
	3.1 Effort Estimation Techniques
	3.2 Chronological Filtering
	3.3 Relevancy Filtering
	3.4 Dataset Description
	3.5 Experiment Procedure
	3.6 Performance Measures

	4 Results and Discussion
	4.1 Effects of Chronological Filtering
	4.2 Effects of Relevancy Filtering
	4.3 Effects of Chronological and Relevancy Filtering

	5 Conclusion
	References

	Automated Functional Size Measurement: A Multiple Case Study in the Industry
	1 Introduction
	2 Background
	3 Related Work
	4 Measurement Prototype Tool
	5 Case Studies
	5.1 Planning
	5.2 Analysis of Results
	5.3 Discussion

	6 Conclusion
	References

	Can Expert Opinion Improve Effort Predictions When Exploiting Cross-Company Datasets? - A Case Study in a Small/Medium Company
	1 Introduction
	2 Background and Related Work
	3 Study Design
	3.1 Datasets
	3.2 Data Selection Strategy
	3.3 Estimation Technique
	3.4 Validation Method
	3.5 Evaluation Criteria
	3.6 Threats to Validity

	4 Results and Discussion
	4.1 Cross-Company Dataset Selection
	4.2 Model Construction and Validation
	4.3 Main Findings

	5 Conclusion
	References

	Continuous Delivery
	Excellence in Exploratory Testing: Success Factors in Large-Scale Industry Projects
	Abstract
	1 Introduction
	2 Research Method
	3 Reviewing Literature
	3.1 Criteria for the Systematic Literature Review
	3.2 Results from the Literature Review

	4 Identifying the Key Factors
	4.1 Background Information
	4.2 Key Factors for Efficient and Effective Exploratory Testing

	5 Confirming the Key Factors
	5.1 Follow-up Interviews
	5.2 Cross-Company Workshop

	6 Threats to Validity
	6.1 Threats to Construct Validity
	6.2 Threats to Internal Validity
	6.3 Threats to External Validity

	7 Conclusion
	7.1 Further Work

	References

	Comparison Framework for Team-Based Communication Channels
	1 Introduction
	2 Framework
	3 Case Study
	4 Discussion
	5 Conclusions
	References

	DevOps in Practice – A Preliminary Analysis of Two Multinational Companies
	Abstract
	1 Introduction
	2 Exploratory Case Study
	2.1 Data Collection and Instruments
	2.2 Subjects

	3 Key Findings
	4 Conclusions and Threats to Validity
	Acknowledgment
	References

	Implementing Ethics in AI: Initial Results of an Industrial Multiple Case Study
	Abstract
	1 Introduction
	2 Related Work
	3 Research Model
	4 Study Design
	5 Empirical Results
	6 Discussion
	7 Conclusions and Future Work
	References

	Agile
	How Agile Is Hybrid Agile? An Analysis of the HELENA Data
	1 Introduction
	2 Background
	2.1 Agile and Traditional Development Approaches
	2.2 Research Questions

	3 Method
	3.1 Data Analysis

	4 Results
	5 Discussion and Conclusions
	References

	Challenges of Scaled Agile for Safety-Critical Systems
	1 Introduction
	2 Methodology
	3 Existing Agile Approaches for Safety-Critical Systems
	4 Open Challenges According to Industry
	4.1 Living Traceability
	4.2 Continuous Compliance
	4.3 (Organisational) Flexibility – Safe Ecosystem
	4.4 (Organisational) Flexibility – Change Management
	4.5 (Organisational) Flexibility – Way of Working

	5 Discussion
	5.1 Challenges
	5.2 Possible Solutions

	6 Conclusion
	References

	On the Benefits of Corporate Hackathons for Software Ecosystems – A Systematic Mapping Study
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Software Ecosystems
	2.2 Corporate Hackathons

	3 Research Method
	3.1 Research Question
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 Overview of Existing Research on Corporate Hackathons
	4.2 Research Question Analysis

	5 Discussion
	6 Conclusion
	Acknowledgements
	Appendix
	References

	Agile in the Era of Digitalization: A Finnish Survey Study
	Abstract
	1 Introduction
	2 Background
	2.1 Current State of Practice and Trends
	2.2 Research Streams
	2.3 Prior and Related Studies

	3 Research Design
	4 Results
	4.1 Background Information
	4.2 Company’s State of Agile
	4.3 Agile Company Transformation
	4.4 Agile Future of the Company

	5 Discussion
	5.1 Comparative Analysis
	5.2 Implications
	5.3 Threats to Validity and Limitations

	6 Conclusions
	References

	Project Management
	What’s Hot in Product Roadmapping? Key Practices and Success Factors
	Abstract
	1 Introduction
	2 Related Work
	3 Study Approach
	4 Results
	4.1 Product Roadmapping Practices
	4.2 Challenges
	4.3 Success Factors

	5 Conclusion
	Acknowledgements
	References

	Integrating Data Protection into the Software Life Cycle
	1 Introduction
	2 Data Protection and the General Data Protection Regulation
	2.1 Basic Concepts of Data Protection
	2.2 The General Data Protection Regulation (GDPR)

	3 Data Protection in the Software Life Cycle
	3.1 Analysis (Requirements)
	3.2 Design (Architecture)
	3.3 Implementation
	3.4 Test and Acceptance
	3.5 Transition
	3.6 Operations
	3.7 Change Control
	3.8 Withdrawal
	3.9 Agile Development

	4 Validation of Results
	5 Conclusion
	References

	Revisiting the Product Configuration Systems Development Procedure for Scrum Compliance: An i* Driven Process Fragment
	1 Introduction
	2 Theoretical Background
	2.1 PCS Projects Specifics
	2.2 Product Configuration Systems, the Traditional Center Product Modeling Procedure
	2.3 Artifacts Traditionally Required in Product Configuration Systems Development Projects

	3 Research Method and Process Fragment Validation
	4 The Software Process Fragment
	5 Discussion: Requirements Representation and Backlog Management Within Scrum
	6 Towards a Revised Process Pattern for Product Configuration Systems Development and Threats to Validity
	7 Related Work
	8 Conclusion
	References

	Microservices
	Kuksa: A Cloud-Native Architecture for Enabling Continuous Delivery in the Automotive Domain
	1 Introduction
	2 Background
	2.1 Microservices
	2.2 Software Architectures of Automotive Cloud Platforms

	3 Research Questions and Method
	3.1 Objective and Research Questions
	3.2 Research Method

	4 Eclipse Kuksa
	4.1 The Existing Architecture of Eclipse Kuksa
	4.2 The Proposed Microservices Architecture for the Eclipse Kuksa Cloud Platform

	5 Evaluation
	5.1 Experimental Setting
	5.2 Results

	6 Discussions
	6.1 Threats to Validity

	7 Conclusion
	References

	Inputs from a Model-Based Approach Towards the Specification of Microservices Logical Architectures: An Experience Report
	Abstract
	1 Introduction
	2 Related Work
	3 Running Example: The Unified Hub for Smart Plants (UH4SP)
	4 From Business Needs to Microservices
	4.1 Setting Boundaries of Domains
	4.2 Transforming Use Cases in Services
	4.3 Service Modeling in SoaML

	5 Microservices Design
	5.1 Microservice Design
	5.2 Data Management
	5.3 Inter-service Communication
	5.4 Automatization

	6 Lessons Learned
	7 Conclusions and Future Work
	References

	A Modular Approach to Calculate Service-Based Maintainability Metrics from Runtime Data of Microservices
	1 Introduction
	2 Research Design
	3 Calculating Service-Based Metrics from Runtime Data
	3.1 Architecture
	3.2 Data Model
	3.3 Implementation

	4 Demonstration and Discussion
	5 Related Work
	6 Conclusion
	References

	Consumer-Driven Contract Tests for Microservices: A Case Study
	1 Introduction
	2 Background
	3 Case Study
	3.1 Overview
	3.2 Baseline Test Setup
	3.3 Consumer-Driven Contract Tests

	4 Results
	4.1 Comparison of Testing Methods
	4.2 Experiences with Consumer-Driven Contract Testing

	5 Discussion
	6 Conclusions
	References

	Continuous Experimentation
	Data Driven Development: Challenges in Online, Embedded and On-Premise Software
	Abstract
	1 Introduction
	2 Background
	2.1 Data-Driven Development
	2.2 Experimentation Practices
	2.3 Team – System – Business Metrics
	2.4 Data Driven Development Adoption Process

	3 Research Method
	4 Findings
	5 Key Challenges When Adopting Data Driven Development
	5.1 Key Focus Areas

	6 Conclusions
	References

	Continuous Experimentation for Software Organizations with Low Control of Roadmap and a Large Distance to Users: An Exploratory Case Study
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Data Collection and Analysis
	3.2 Validity Considerations

	4 Results
	4.1 Classification
	4.2 Control of Roadmap and Distance to Users for Companies
	4.3 Relationship Between Control of Roadmap, Distance to Users and Continuous Experimentation
	4.4 Perceived Benefits and Challenges

	5 Discussion
	6 Conclusion
	References

	Deep Unsupervised System Log Monitoring
	1 Introduction
	2 Related Works
	3 Proposed Model
	4 Experimental Validation
	4.1 Data
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Enablers and Inhibitors of Experimentation in Early-Stage Software Startups
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Cases Background

	4 Results
	4.1 Individual
	4.2 Organizational Context
	4.3 Environment

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions
	References

	European Project Space
	European Project Space Papers for the PROFES 2019 - Summary
	Abstract
	1 Introduction
	2 Accepted Papers
	Acknowledgement
	References

	Application of Computational Linguistics Techniques for Improving Software Quality
	1 Project Data
	2 CROSSMINER Analysis Platform
	2.1 CROSSMINER Project
	2.2 Natural Language Processing Metrics

	3 Use Case Description
	3.1 Softeam Use Case
	3.2 OW2 Use Case

	4 Experimentation
	4.1 Increasing Quality of Softeam Product by Including Sentiment Analysis Technics in Development Process
	4.2 OW2 Experimentation with Sentiment Analysis Metrics

	References

	Monitoring ArchiMate Models for DataBio Project
	1 Introduction
	2 Monitoring of Modelio ArchiMate Models
	3 Metrics for Evaluating Models Quality
	3.1 Metrics for Optimizing the Modelling Process with Modelio
	3.2 ArchiMate Comprehensibility Metrics

	4 Conclusion
	References

	Showcasing Modelio and pure:variants Integration in REVaMP2 Project
	1 Introduction
	2 Variability
	3 Variability Integration
	4 Results
	5 Conclusion and Future Work
	References

	DECODER - DEveloper COmpanion for Documented and annotatEd code Reference
	Abstract
	1 Project Summary
	2 Project Motivation
	3 Detailed Description of the Goals of the Project
	4 Project Expected Achievements and Outcome
	5 Existing Collaborations with Other Projects
	6 Interest in Participating in the EU Project Space at PROFES

	DECIDE: DevOps for Trusted, Portable and Interoperable Multi-cloud Applications Towards the Digital Single Market
	Abstract
	1 Project Data
	2 Objectives of the Project
	3 Envisioned and Achieved Results of the Project
	4 Collaboration with Other Projects
	5 Interest for the Participation in PROFES 2019

	Q-Rapids: Quality-Aware Rapid Software Development – An H2020 Project
	Abstract
	1 Introduction
	2 Project Goals
	3 Project Use Cases
	4 Current State
	5 Achieved Outcomes
	6 Why Participating in PROFES 2019 European Project Space?
	7 Conclusions
	Acknowledgments
	References

	IMPRESS: Improving Engagement in Software Engineering Courses Through Gamification
	1 Introduction
	2 IMPRESS Expected Outcomes
	3 IMPRESS Innovations
	3.1 Advanced Analytics
	3.2 AI in IMPRESS

	4 Conclusion
	References

	Software Governance in a Large European Project - GÉANT Case Study
	1 Introduction
	2 Software Development in GÉANT
	3 Outcomes and Planned Work
	3.1 Software Catalogue
	3.2 Software Maturity Model
	3.3 Software Developer Training
	3.4 Software Code Reviews
	3.5 Software Tools

	4 Collaboration
	References

	AMASS: A Large-Scale European Project to Improve the Assurance and Certification of Cyber-Physical Systems
	Abstract
	1 Introduction
	2 Project Objectives
	3 Organisation
	4 Main Outcomes
	5 Conclusion
	Acknowledgments
	References

	3rd International Workshop on Managing Quality in Agile and Rapid Software Development Processes (QuASD)
	Managing Quality in Agile and Rapid Software Development Processes
	1 Introduction
	2 Contents and Expected Outcomes

	Do Internal Software Quality Tools Measure Validated Metrics?
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Search and Identification of Relevant Papers and Metrics
	3.2 Selection of Tools

	4 Results
	4.1 Selection of Metrics
	4.2 The Selected Tools

	5 Discussion
	6 Threats of Validity
	7 Conclusions
	References

	A Unique Value that Synthesizes the Quality Level of a Product Architecture: Outcome of a Quality Attributes Requirements Evaluation Method
	Abstract
	1 Introduction
	2 Related Work
	3 Method of Elicitation, Measurement and Evaluation of an Architecture
	4 Case Study
	4.1 Description
	4.2 Discussion

	5 Conclusions
	References

	Comparison of Agile Maturity Models
	Abstract
	1 Introduction
	2 Related Work
	3 Agile Maturity Models
	4 Comparison Criteria
	5 Discussion
	5.1 Discussion of Criteria
	5.2 Threats to Validity

	6 Conclusion
	Acknowledgements
	References

	4th International Workshop on Human Factors in Software Development Processes (HuFo)
	Human Factors in Software Processes
	1 Introduction and Motivation
	2 Audience and Expected Outcomes

	Dealing with Comprehension and Bugs in Native and Cross-Platform Apps: A Controlled Experiment
	1 Introduction
	2 Related Work
	3 Controlled Experiment
	3.1 Goals
	3.2 Experimental Units
	3.3 Experimental Material
	3.4 Tasks
	3.5 Variables and Hypotheses
	3.6 Experiment Design
	3.7 Procedure
	3.8 Analysis Procedure

	4 Results and Discussion
	4.1 RQ1: Native Vs Cross-Platform Apps Concerning Source-Code Comprehension and Bug Identification and Fixing
	4.2 RQ2: Native Vs Cross-Platform Apps Concerning Pleasure, Arousal, Dominance, and Liking
	4.3 RQ3: Native Vs Cross-Platform Concerning the Difficulty
	4.4 Implications and Future Extensions

	5 Threats to Validity
	6 Conclusion and Final Remarks
	References

	Understanding How and When Human Factors Are Used in the Software Process: A Text-Mining Based Literature Review
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 The Research Questions
	3.2 Search Process
	3.3 Data Extraction Process
	3.4 Text Mining Approach

	4 Results
	4.1 RQ1: How Much Research Has Been Published in the Area of Human Factors and Software in the Last Twenty Years?
	4.2 RQ2: What Have the Broad Topics of Research in that Area Been?
	4.3 RQ3: What Is the Relation Between Human Factors and Software Process Studied in the Works Published?
	4.4 RQ4: What Is the Time Trend of Research in This Area?

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	Acknowledgements
	References

	Working Conditions for Software Developers in Colombia: An Effort-Reward-Imbalance-Based Study
	1 Introduction
	2 Related Work
	3 The Empirical Study
	3.1 The Sample
	3.2 The ERI Model
	3.3 Data Collection

	4 Analysis and Results
	4.1 Demographics
	4.2 The ERI Model Results
	4.3 Discussion
	4.4 Limitations of the Study

	5 Conclusions and Future Work
	References

	Towards a Better Understanding of Team-Driven Dynamics in Agile Software Projects
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Characterization of Sprint-Dependencies
	3.2 Visualization of Sprint-Dependencies

	4 Interpretation Support of Sprint Dynamics
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Evaluating the Utility of the Usability Model for Software Development Process and Practice
	Abstract
	1 Introduction
	2 Related Work
	3 The UMP Usability Model for Process and Practice
	4 The VMP Study
	4.1 VMP Overview
	4.2 VMP Study Description

	5 Threats to Validity
	6 Conclusions and Future Work
	Acknowledgements
	Appendix
	References

	Short Tutorials
	PROFES 2019: Tutorial Summary
	Abstract
	1 Tutorials at PROFES 2019
	2 Tutorial 1 – DevOps Practices
	3 Tutorial 2 – Conformance Checking: Relating Processes and Models
	4 Tutorial 3 – Benefitting from Grey Literature in Software Engineering Research
	5 Tutorial 4 – Hands-on Data Preparation

	DevOps Practices Tutorial
	1 Introduction
	2 Infrastructure as Code
	3 Continuous Delivery
	4 Take-Away Message
	References

	Conformance Checking: Relating Processes and Models
	1 Motivation
	2 Content
	References

	Benefitting from Grey Literature in Software Engineering Research (Tutorial Summary)
	Abstract
	1 Introduction
	2 Description of the Tutorial
	References

	Tutorial: Data Preparation – Tackle the Most Effort-Prone Phase in Data Projects
	Abstract
	1 Motivation
	2 Tutorial
	2.1 Target Group

	References

	Author Index

