Xavier Franch
Tomi Mannisto
Silverio Martinez-Ferndndez (Eds.)

Product-Focused
Software Process Improvement

20th International Conference, PROFES 2019
Barcelona, Spain, November 27-29, 2019
Proceedings

LNCS 11915

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

11915

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Xavier Franch - Tomi Méannisto -
Silverio Martinez-Fernandez (Eds.)

Product-Focused
Software Process Improvement

20th International Conference, PROFES 2019
Barcelona, Spain, November 27-29, 2019
Proceedings

@ Springer

Editors

Xavier Franch Tomi Ménnisto
Universitat Politécnica de Catalunya University of Helsinki
Barcelona, Spain Helsinki, Finland

Silverio Martinez-Fernandez
Fraunhofer Institute for Experimental
Software Engineering

Kaiserslautern, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-35332-2 ISBN 978-3-030-35333-9 (eBook)

https://doi.org/10.1007/978-3-030-35333-9
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9733-8830
https://orcid.org/0000-0001-7470-5183
https://orcid.org/0000-0001-9928-133X
https://doi.org/10.1007/978-3-030-35333-9

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 20th International Conference on Product-Focused Software Process
Improvement (PROFES 2019) held in Barcelona. The hosting institution was the
Universitat Politécnica de Catalunya - BarcelonaTech in Spain. Since 1999, PROFES
has established itself as one of the top recognized international process improvement
conferences. In the spirit of the PROFES conference series, the main theme of PROFES
2019 was professional software process improvement (SPI) motivated by product,
process, and service quality needs.

PROFES 2019 provided a premier forum for practitioners, researchers, and
educators to present and discuss experiences, ideas, innovations, as well as concerns
related to professional software development and process improvement driven by
product and service quality needs. At PROFES 2019, solutions found in practice and
relevant research results from academia were presented.

A committee of leading experts in software process improvement, software process
modeling, and empirical software engineering selected the technical program. This
year, 65 full research papers were submitted. At least three independent experts
reviewed each paper. After thorough evaluation, 24 technical full papers were finally
selected (37% acceptance rate). In addition, four out of nine industrial papers were
selected to the program.

Furthermore, we received 30 short paper submissions. Each submission was
reviewed by three members from the PROFES Program Committee. Based on the
reviews and overall assessments, 11 short papers were accepted for presentation at the
conference and for inclusion in the proceedings (37% acceptance ratio).

Continuing the open science policy in the previous PROFES 2017 and PROFES
2018, we encouraged and supported the authors of all accepted submissions to make
their papers and research publicly available.

The topics addressed in this year’s papers indicate that SPI is still a vibrant research
discipline, but is also of high interest for industry. Several papers report on case studies
or SPI-related experience gained in industry. The accepted papers of PROFES 2019
addressed, for example, the following topics:

— Continuous Delivery and Experimentation
— Software Testing

— Software Development

— Technical Debt

— Estimations

— Microservices

Since the beginning of the PROFES conference series, the purpose has been to
highlight the most recent findings and novel results in the area of process improvement.
We were proud to have Professor Neil Maiden (City, University of London) and

vi Preface

Jennifer Nerlich (Vogella), two renowned keynote speakers from research and industry,
at the 2019 edition of PROFES.

Further relevant topics were added by the events co-located with PROFES 2019: the
Third International Workshop on Managing Quality in Agile and Rapid Software
Development Processes, the 4th International Workshop on Human Factors in Software
Processes, and four tutorials addressing themes relevant to industry. The role of two
European space co-chairs was added to the Organizing Committee. Responsibilities
included providing an opportunity for researchers involved in ongoing and/or recently
completed research projects (national, European, and international) related to the topics
of the conference to present their projects and disseminate the objectives, deliverables,
or outcome. Complementing the main scientific program, these events were included in
the program to bring together researchers and representatives from industry by
providing researchers with the opportunity to attend industry tutorials and providing
practitioners with the latest research.

We are thankful for the opportunity to have served as chairs for this conference. The
Program Committee members and reviewers provided excellent support in reviewing
the papers. We are also grateful to all authors of submitted manuscripts, presenters, and
session chairs for their time and effort in making PROFES 2019 a success. We would
also like to thank the PROFES Steering Committee members for the guidance and
support in the organization process. Furthermore, we thank everyone in the
organization team as well as the student volunteers for making PROFES 2019 an
experience that will live on in the participants’ memory for years to come.

November 2019 Xavier Franch
Tomi Ménnisto
Silverio Martinez-Fernandez

Organization

Organizing Committee

General Chair

Xavier Franch Technical University of Catalunya, Spain

Program Co-chairs

Tomi Ménnisto University of Helsinki, Finland
Silverio Fraunhofer IESE, Germany
Martinez-Fernandez

Short Paper Co-chairs

Oscar Dieste Universidad Politécnica de Madrid, Spain
Pilar Rodriguez University of Oulu, Finland

Industry Paper Chair
Danilo Caivano SER & Practices, Italy

Workshop Co-chairs

Casper Lassenius Aalto University, Finland
Andreas Vogelsang Technical University of Berlin, Germany

Tutorial Co-chairs

Matthias Galster University of Canterbury, New Zealand
Dietmar Pfahl University of Tartu, Estonia

Journal-First Track Chair

Daniel Méndez Fernandez Blekinge Institute of Technology, Sweden,
and fortiss GmbH, Germany

European Project Space Co-chairs

Alessandra Bagnato Softeam, France
Davide Fucci HITeC - University of Hamburg, Germany

Organization Chair

Carme Quer Technical University of Catalunya, Spain

viii Organization

Proceedings Co-chairs

Claudia Ayala
Jordi Marco

Technical University of Catalunya, Spain
Technical University of Catalunya, Spain

Social Media and Publicity Co-chairs

Marc Oriol
Anna Maria Vollmer

Webmaster

Carles Farré
Maria José Salamea

Contact Person

Dolors Costal

Local Organization Team

Katarzyna Biesialska
Xavier Burgués
Cristina Gémez
Lidia Lopez

Marti Manzano
Cristina Palomares

Program Committee

Technical University of Catalunya, Spain
Fraunhofer IESE, Germany

Technical University of Catalunya, Spain
Technical University of Catalunya, Spain

Technical University of Catalunya, Spain

Technical University of Catalunya, Spain
Technical University of Catalunya, Spain
Technical University of Catalunya, Spain
Technical University of Catalunya, Spain
Technical University of Catalunya, Spain
Technical University of Catalunya, Spain

Full Research and Industry Papers Program Committee

Silvia Abrahao
Sousuke Amasaki
Maria Teresa Baldassarre
Vita Santa Barletta
Stefan Biffl

Andreas Birk

Luigi Buglione
Gerardo Canfora
Bruno da Silva
Maya Daneva
Michal Dolezel
Christof Ebert
Fabian Fagerholm
Davide Falessi
Masud Fazal-Baqgaie
Michael Felderer
Davide Fucci

Lina Garcés

Universitat Politecnica de Valéncia, Spain
Okayama Prefectural University, Japan
University of Bari, Italy

University of Bari, Italy

Vienna University of Technology, Austria
SWPM, Germany

Engineering Technology Services (ETS), Italy
University of Sannio, Italy

California Polytechnic State University, USA
University of Twente, The Netherlands
University of Economics — Prague, Czech Republic
Vector, Germany

University of Helsinki, Finland

California Polytechnic State University, USA
Fraunhofer, Germany

University of Innsbruck, Austria

HITeC — University of Hamburg, Germany
University of Sdo Paulo, Brazil

Carmine Gravino
Daniel Graziotin
Noriko Hanakawa
Frank Houdek
Andrea Janes
Petar Jovanovic

Oliver Karras
Petri Kettunen
Jil Kliinder
Jingyue Li

Lidia Lopez

Stephen MacDonell
Kenichi Matsumoto

Maurizio Morisio
Maleknaz Nayebi
Risto Nevalainen
Edson Oliveira Jr.
Paolo Panaroni
Dietmar Pfahl
Rudolf Ramler
Daniel Rodriguez
Simone Romano
Bruno Rossi
Gleison Santos

Giuseppe Scanniello

Klaus Schmid

Kari Smolander
Martin Solari
Michael Stupperich

Guilherme Travassos

Rini Van Solingen
Antonio Vetro
Stefan Wagner
Hironori Washizaki
Dietmar Winkler

Organization ix

University of Salerno, Italy

University of Stuttgart, Germany

Hannan University, Japan

Daimler AG, Germany

Free University of Bolzano, Italy

Universitat Politécnica De Catalunya — Barcelona Tech,
Spain

Leibniz Universitdt Hannover, Germany

University of Helsinki, Finland

Leibniz Universitdt Hannover, Germany

Norwegian University of Science and Technology,
Norway

Universitat Politécnica De Catalunya — Barcelona Tech,
Spain

University of Otago, New Zealand

Nara Institute of Science and Technology (NAIST),
Japan

Politecnico di Torino, Italy

Ecole Polytechnique de Montréal, Canada

Spinet Oy, Finland

State University of Maringd, Brazil

INTECS, Italy

University of Tartu, Estonia

Software Competence Center Hagenberg, Austria

The University of Alcala, Spain

University of Basilicata, Italy

Masaryk University, Czech Republic

Federal University of the State of Rio de Janeiro, Brazil

University of Basilicata, Italy

University of Hildesheim, Germany

Lappeenranta University of Technology, Finland

Universidad ORT, Uruguay

Daimler AG, Germany

Federal University of Rio de Janeiro, Brazil

Delft University of Technology, The Netherlands

Politecnico di Torino, Italy

University of Stuttgart, Germany

Waseda University, Japan

Vienna University of Technology, Austria

Short Papers Program Committee

Muhammad Ovais Ahmad

Elina Annanpera

Beatriz Bernardez Jiménez

Dante Carrizo

Karlstad University, Sweden
University of Oulu, Finland
Universidad de Sevilla, Spain
University of Atacama, Chile

X Organization

Jessica Diaz

Efrain R. Fonseca C.
Davide Fucci

Vahid Garousi

Itir Karac

Kati Kuusinen

Lucy Ellen Lwakatare
Marc Oriol

Simone Romano
Norsaremah Salleh
Davide Taibi
Xiaofeng Wang

Additional Reviewers

Corrado Aaron Visaggio
Monica Anastassiu
Justus Bogner

Eliezer Dutra

Jonas Fritzsch

Universidad Politécnica de Madrid, Spain
Universidad de las Fuerzas Armadas ESPE, Ecuador
HITeC — University of Hamburg, Germany
Queen’s University Belfast, UK

University of Oulu, Finland

Technical University of Denmark, Denmark
Chalmers University of Technology, Sweden
Universitat Politécnica de Catalunya, Spain
University of Basilicata, Italy

International Islamic University Malaysia, Malaysia
Tampere University of Technology, Finland

Free University of Bozen—Bolzano, Italy

Hong Guo

Nektaria Kaloudi
Vasileios Theodorou
Eugenio Zimeo

Intertwining Creative and Design Thinking
Processes for Software Products
(Keynote Abstract)

Neil Maiden

Cass Business School, City, University of London, 106 Bunhill Row, London
EC1Y 8TZ, UK
N.A.M.Maiden@city.ac.uk

Abstract. Most software development processes still pay little attention to
creativity and creative thinking, even though creative outcomes are
pre-requisites for innovation. The recent interest in design thinking methods
places shifts the focus to both software products and processes, but still does not
address the creativity deficit of most design thinking practices. This keynote
presentation and paper proposes an alternative and more effective framing of
design thinking — as situated uses of creativity techniques and design artefacts,
opportunistically, in agile development processes. It will introduce the role of
design thinking as creative thinking for specific ends. It will summarize common
characteristics of high-performance design behaviours — behaviours that are
often impeded by software development methods. It will then demonstrate, with
multiple examples, how coupling creativity techniques with playful artefacts for
design thinking can lead to original design outcomes, often more productively,
than with existing software development processes and models.

Keywords: Software development - Software product - Creativity

1 Creativity, Design Thinking and Innovation

Creativity and creative thinking have emerged as essential capabilities of most busi-
nesses. It has become a strategic, macro-economic activity, replacing the focus on
information at the end of the last century. The World Economic Forum identified it to
be a top-three need for economic growth in the next decade, alongside complex
problem solving and critical thinking. It is identified as a precondition for business
success — for example an IBM survey of 1500 CEOs identified creativity as the leading
need and differentiator in their businesses [3]. It is also recognized as a critical
pre-condition to effective innovation, generating new forms of creative capitalism
based on knowledge and talent. And as digital technologies have become critical to the
functioning of many organizations, creativity assumes a more important role in the
specification and design of these technologies. Unfortunately, few methods and tech-
niques for software product development explicitly support creative thinking by
developers or stakeholders.

Xii N. Maiden

Outside of software product development, creative thinking is core to early design
activities. For example, the United Kingdom’s Design Council defines design as
shaping ideas to become practical and attractive propositions for users or customers,
and it can be described as creativity deployed to a specific end. Design is both a
creative and user-centred approach to problem solving that cuts across different
professions, from art and design to engineering and architecture. As such, creativity is
needed to generate new ideas that design can shape to become the practical and
attractive propositions for users or customers [2].

To deliver more creative design processes over the last decade, design thinking has
become accepted practice for many forms of product and service. Design thinking is a
human-centred innovation process that involves observation, collaboration, fast
learning, the visualization of ideas and rapid prototyping, all of which run concurrent to
business analysis activities [4]. It has been successfully used in projects to design new
workplaces, consumer products and even brands.

However, one criticism that can be leveled at most design thinking processes is the
lack of explicit use of creativity techniques from creative problem solving communi-
ties. Indeed, we observe an increasing disconnect between design thinking and creative
problem solving, and believe that new techniques and tools that bridge the outputs
of these communities are needed. More connected creative problem solving and design
thinking methods and techniques can impact on the development of many forms of
service and product, including software products.

This keynote proposes an alternative and more effective framing of design
thinking — as situated uses of creativity techniques and design artefacts, opportunisti-
cally, in agile and other software development processes. It will introduce the role of
design thinking as creative thinking for specific ends. It will summarize common
characteristics of high-performance design behaviours — behaviours that are often
impeded by software development methods. It will then demonstrate, with multiple
examples, how coupling creativity techniques such as constraint removal [5] and
creativity triggers [1] with playful artefacts for design thinking such as storyboards and
desktop walkthroughs [6] can lead to original design outcomes, often more produc-
tively, than with existing software development processes.

References

1. Burnay, C., Horkoff, J., Maiden, N.: Stimulating stakeholders’ imagination: new creativity
triggers for eliciting novel requirements. In: Proceedings of IEEE International Requirements
Engineering Conference, 12-16 September 2016, Beijing, China (2016)

2. Design Council, Design for Innovation (2011). https://www.designcouncil.org.uk/sites/

default/files/asset/document/DesignForInnovation_Dec2011.pdf

IBM, IBM Global CEO Study: Capitalizing on Complexity (2010)

Lockwood, T.: Design Thinking, Allworth Press, New York (2010)

5. Maiden, N.A.M., Robertson, S.: Integrated creativity into requirements processes: experiences
with an air traffic management system. In: Proceedings of 13th IEEE International Conference
on Requirements Engineering, 105-114. IEEE Computer Society Press (2015)

6. Stickdorn, M., Schneider, J.: This is Service Design Thinking, BIS Publishers (2010)

Rl

https://www.designcouncil.org.uk/sites/default/files/asset/document/DesignForInnovation_Dec2011.pdf
https://www.designcouncil.org.uk/sites/default/files/asset/document/DesignForInnovation_Dec2011.pdf

Contents

Testing

An Empirical Assessment on Affective Reactions of Novice Developers

When Applying Test-Driven Development. 3
Simone Romano, Davide Fucci, Maria Teresa Baldassarre,
Danilo Caivano, and Giuseppe Scanniello

Applying Surveys and Interviews in Software Test Tool Evaluation 20
Pdivi Raulamo-Jurvanen, Simo Hosio, and Mika V. Mdntyld

Test-Case Quality — Understanding Practitioners’ Perspectives 37
Huynh Khanh Vi Tran, Nauman Bin Ali, Jiirgen Bérstler,
and Michael Unterkalmsteiner

Test Reporting at a Large-Scale Austrian Logistics Organization:
Lessons Learned and Improvement 53
Dietmar Winkler, Kristof Meixner, Daniel Lehner, and Stefan Biffl

Software Development

Embracing Software Process Improvement in Automotive Through
PISA Model. 73
Fabio Falcini and Giuseppe Lami

Establishing a User-Centered Design Process for Human-Machine

Interfaces: Threats to Success. 89
Mario Winterer, Christian Salomon, Georg Buchgeher,
Martin Zehethofer, and Alexandra Derntl

Combining GQM+Strategies and OKR - Preliminary Results

from a Participative Case Study in Industry 103
Bianca Trinkenreich, Gleison Santos, Monalessa Perini Barcellos,
and Tayana Conte

Software Development Practices and Frameworks Used in Spain

and Costa Rica: A Survey and Comparative Analysis 112
Ignacio Diaz-Oreiro, David Chaves, Brenda Aymerich,
Julio C. Guzman, Gustavo Lopez, Marcela Genero, and Aurora Vizcaino

Does the Migration of Cross-Platform Apps Towards the Android
Platform Matter? An Approach and a User Study 120
Maria Caulo, Rita Francese, Giuseppe Scanniello, and Antonio Spera

X1v Contents

Software Knowledge Representation to Understand Software Systems 137
Victoria Torres, Miriam Gil, and Vicente Pelechano

When NFR Templates Pay Back? A Study on Evolution of Catalog
of NFR Templates. e e e e 145
Sylwia Kopczynska, Jerzy Nawrocki, and Mirostaw Ochodek

Improving Quality of Data Exchange Files. An Industrial Case Study 161
Giinter Fleck, Michael Moser, and Josef Pichler

Containers in Software Development: A Systematic Mapping Study 176
Mikael Koskinen, Tommi Mikkonen, and Pekka Abrahamsson

Technical Debt

Empirical Analysis of Hidden Technical Debt Patterns in Machine
Learning Software. 195
Mohannad Alahdab and Giil Calikli

Constraining the Implementation Through Architectural Security Rules:
An Expert Study. 203
Stefanie Jasser

Technical Debt and Waste in Non-functional Requirements Documentation:

An Exploratory Study 220
Gabriela Robiolo, Ezequiel Scott, Santiago Matalonga,
and Michael Felderer

Technical Debt in Costa Rica: An InsighTD Survey Replication. 236
Alexia Pacheco, Gabriela Marin-Raventds, and Gustavo Lopez

Estimations

Exploring Preference of Chronological and Relevancy Filtering
in Effort Estimation. 247
Sousuke Amasaki

Automated Functional Size Measurement: A Multiple Case Study

inthe Industry 263
Christian Quesada-Lopez, Alexandra Martinez, Marcelo Jenkins,
Luis Carlos Salas, and Juan Carlos Gomez

Can Expert Opinion Improve Effort Predictions When Exploiting
Cross-Company Datasets? - A Case Study in a Small/Medium Company. ... 280
Filomena Ferrucci and Carmine Gravino

Contents

Continuous Delivery

Excellence in Exploratory Testing: Success Factors in Large-Scale
Industry Projects.
Torvald Martensson, Antonio Martini, Daniel Stahl, and Jan Bosch

Comparison Framework for Team-Based Communication Channels.
Camila Costa Silva, Fabian Gilson, and Matthias Galster

DevOps in Practice — A Preliminary Analysis of Two

Multinational Companies vttt
Jessica Diaz, Jorge E. Perez, Agustin Yague, Andrea Villegas,
and Antonio de Antona

Implementing Ethics in Al: Initial Results of an Industrial Multiple
Case Study.o
Ville Vakkuri, Kai-Kristian Kemell, and Pekka Abrahamsson

Agile

How Agile Is Hybrid Agile? An Analysis of the HELENA Data.
John Noll and Sarah Beecham

Challenges of Scaled Agile for Safety-Critical Systems
Jan-Philipp Steghdfer, Eric Knauss, Jennifer Horkoff,
and Rebekka Wohlrab

On the Benefits of Corporate Hackathons for Software

Ecosystems — A Systematic Mapping Study
George Valenca, Nycolas Lacerda, Maria Eduarda Rebelo,
Carina Alves, and Cleidson R. B. de Souza

Agile in the Era of Digitalization: A Finnish Survey Study
Petri Kettunen, Maarit Laanti, Fabian Fagerholm,
and Tommi Mikkonen

Project Management

What’s Hot in Product Roadmapping? Key Practices and Success Factors . . .
Jiirgen Miinch, Stefan Trieflinger, and Dominic Lang

Integrating Data Protection into the Software Life Cycle
Ralf Kneuper

Revisiting the Product Configuration Systems Development Procedure
for Scrum Compliance: An i* Driven Process Fragment.
Yves Wautelet, Sara Shafiee, and Samedi Heng

XV

315

Xvi Contents

Microservices

Kuksa: A Cloud-Native Architecture for Enabling Continuous Delivery

in the Automotive Domain.

Ahmad Banijamali, Pooyan Jamshidi, Pasi Kuvaja, and Markku Oivo

Inputs from a Model-Based Approach Towards the Specification

of Microservices Logical Architectures: An Experience Report.

Nuno Santos, Helena Rodrigues, Nuno Ferreira,
and Ricardo J. Machado

A Modular Approach to Calculate Service-Based Maintainability

Metrics from Runtime Data of Microservices

Justus Bogner, Steffen Schlinger, Stefan Wagner,
and Alfred Zimmermann

Consumer-Driven Contract Tests for Microservices: A Case Study

Jyri Lehvd, Niko Mdkitalo, and Tommi Mikkonen

Continuous Experimentation

Data Driven Development: Challenges in Online, Embedded

and On-Premise Software.

Helena Holmstrom Olsson and Jan Bosch

Continuous Experimentation for Software Organizations with Low Control

of Roadmap and a Large Distance to Users: An Exploratory Case Study

Robin Sveningson, David Issa Mattos, and Jan Bosch

Deep Unsupervised System Log Monitoring.

Hubert Nourtel, Christophe Cerisara, and Samuel Cruz-Lara

Enablers and Inhibitors of Experimentation in Early-Stage

Software Startupso

Jorge Melegati, Rafael Chanin, Xiaofeng Wang, Afonso Sales,
and Rafael Prikladnicki

European Project Space

European Project Space Papers for the PROFES 2019 - Summary.

Alessandra Bagnato and Davide Fucci

Application of Computational Linguistics Techniques for Improving

Software Quality.

Amin Boudeffa, Antonin Abherve, Alessandra Bagnato, Cedric Thomas,
Martin Hamant, and Assad Montasser

Contents

Monitoring ArchiMate Models for DataBio Project

Kais Chaabouni, Alessandra Bagnato, and Antonio Garcia-Dominguez

Showcasing Modelio and pure:variants Integration in REVaMP? Project

Alessandra Bagnato, Alexandre Beaufays, Etienne Brosse,
Kais Chaabouni, Uwe Ryssel, Michael Schulze, and Andrey Sadovykh

DECODER - DEveloper COmpanion for Documented and annotatEd

code Reference oo e

Victoria Torres, Miriam Gil, and Vicente Pelechano

DECIDE: DevOps for Trusted, Portable and Interoperable Multi-cloud

Applications Towards the Digital Single Market

Leire Orue-Echevarria, Juncal Alonso, Marisa Escalante,
Kyriakos Stefanidis, and Lorenzo Blasi

Q-Rapids: Quality-Aware Rapid Software Development —

An H2020 Project.o

Lidia Lopez and Marc Oriol

IMPRESS: Improving Engagement in Software Engineering Courses

Through Gamification i

Tanja E. J. Vos, I. S. W. B. Prasetya, Gordon Fraser,
Ivan Martinez-Ortiz, Ivan Perez-Colado, Rui Prada, José Rocha,
and Antonio Rito Silva

Software Governance in a Large European Project - GEANT Case Study . . .

Marcin Wolski and Toby Rodwell

AMASS: A Large-Scale European Project to Improve the Assurance

and Certification of Cyber-Physical Systems.

Jose Luis de la Vara, Eugenio Parra, Alejandra Ruiz,
and Barbara Gallina

3rd International Workshop on Managing Quality in Agile
and Rapid Software Development Processes (QuASD)

Mayra Nilson, Vard Antinyan, and Lucas Gren

A Unique Value that Synthesizes the Quality Level of a Product
Architecture: Outcome of a Quality Attributes Requirements

Evaluation Method e

Mariana Falco and Gabriela Robiolo

Comparison of Agile Maturity Models.

Anna Schmitt, Sven Theobald, and Philipp Diebold

Xvii

583

590

596

602

608

613

620

Xviil Contents

4th International Workshop on Human Factors
in Software Development Processes (HuFo)

Dealing with Comprehension and Bugs in Native and Cross-Platform Apps:
A Controlled Experiment 677
Maria Caulo, Rita Francese, Giuseppe Scanniello, and Antonio Spera

Understanding How and When Human Factors Are Used in the Software
Process: A Text-Mining Based Literature Review 694
Mercedes Ruiz and Davide Salanitri

Working Conditions for Software Developers in Colombia:
An Effort-Reward-Imbalance-Based Study 709
Judy Moreno, Jairo Aponte, and Mario Linares-Vasquez

Towards a Better Understanding of Team-Driven Dynamics in Agile
Software Projects: A Characterization and Visualization Support in JIRA. ... 725
Fabian Kortum, Oliver Karras, Jil Kliinder, and Kurt Schneider

Evaluating the Utility of the Usability Model for Software

Development Process and Practice. 741
Diego Fontdevila, Marcela Genero, Alejandro Oliveros,
and Nicolas Paez

Short Tutorials

PROFES 2019: Tutorial Summary. 761
Matthias Galster and Dietmar Pfahl

DevOps Practices Tutorial 764
Nicolas Paez

Conformance Checking: Relating Processes and Models:
A Tutorial for Researchers and Practitioners. 766
Josep Carmona

Benefitting from Grey Literature in Software Engineering Research
(Tutorial SUMMATrY).t e e e e 768
Michael Felderer, Vahid Garousi, Mika Mdntyld, and Austen Rainer

Tutorial: Data Preparation — Tackle the Most Effort-Prone Phase
in Data Projects 770
Adam Trendowicz, Julien Siebert, and Andreas Jedlitschka

Author Index e 773

Testing

®

Check for
updates

An Empirical Assessment on Affective
Reactions of Novice Developers
When Applying Test-Driven Development

, Davide Fucci?®, Maria Teresa Baldassarre'®,

1@®, and Giuseppe Scanniello®

(=) 2

Simone Romano
Danilo Caivano

L University of Bari, Bari, Italy
{simone .romano,mariateresa.baldassarre,danilo. caivano}@uniba. it
2 University of Hamburg, Hamburg, Germany
fucci@informatik.uni-hamburg.de
3 University of Basilicata, Potenza, Italy
giuseppe.scanniello@unibas.it

Abstract. We study whether and in which phase Test-Driven Devel-
opment (TDD) influences affective states of novice developers in terms
of pleasure, arousal, dominance, and liking. We performed a controlled
experiment with 29 novice developers. Developers in the treatment group
performed a development task using TDD, whereas those in the control
group used a non-TDD development approach. We compared the affec-
tive reactions to the development approaches, as well as to the implemen-
tation and testing phases, exploiting a lightweight, powerful, and widely
used tool, i.e., Self-Assessment Manikin. We observed that there is a
difference between the two development approaches in terms of affective
reactions. Therefore, it seems that affective reactions play an important
role when applying TDD and their investigation could help researchers
to better understand such a development approach.

Keywords: Test-Driven Development - TDD - Affective state - SAM

1 Introduction

Test-Driven Development (TDD) is an Agile software development approach in
which a developer first writes a unit test to frame a chunk of functionality and
then writes production code to make the test pass and applies refactorings to
improve the internal quality of production and test code. This iterative process
happens in fast-paced iterations of five to ten minutes [2].

TDD promises to increase external quality of software (i.e., less functional
bugs) and developers’ productivity as: (4) writing test first forces developers to
break a problem into simpler ones; (ii) the tests provide initial software quality
assurance; and (i) the regression test suite resulting after several iterations
allows the developer to catch breaking changes early. The safety net provided
by the regression tests boosts developers’ confidence to the extent that TDD

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 3-19, 2019.
https://doi.org/10.1007/978-3-030-35333-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_1&domain=pdf
http://orcid.org/0000-0003-4880-3622
http://orcid.org/0000-0002-0679-4361
http://orcid.org/0000-0001-8589-2850
http://orcid.org/0000-0001-5719-7447
http://orcid.org/0000-0003-0024-7508
https://doi.org/10.1007/978-3-030-35333-9_1

4 S. Romano et al.

is referred to as “The art of fearless programming” [22]. However, empirical
research on the effects of TDD has so far shown inconclusive results [29,32,39].
Some research relates these results to the negative affective states that developers
experience when initially exposed to TDD—e.g., frustration due to the counter-
intuitive behavior of designing test cases rather than immediately working on
a solution [39].

Recent studies have leveraged affective states of developers to improve
requirements engineering [8], software development [17], and software evolu-
tion [31]. Further, sentiment analysis has been applied to study the collabo-
rative facets of software development [15]. These previous studies are based on
the analysis of artifacts, mostly in textual form, produced during the software
development life-cycle. Graziotin et al. [17] showed that unhappiness (i.e., expe-
riencing a sequence of negative affective states) impacts developers’ productivity.

Although there is a growing interest in studying the affective states of devel-
opers and previous research hypothesizes that TDD elicits negative and positive
affects (e.g., counter-intuitive order and regression tests), no work has investi-
gated whether and in which phase TDD influences affective states of (novice)
developers. To fill this gap, we conducted a controlled experiment with 29 novice
developers. Our experimental design allowed us to isolate the affective reactions
to TDD from a baseline—i.e., “Your Way development” (YW)—, in the short
run, in terms of four dimensions: pleasure, arousal, dominance, and liking. To
measure these dimensions, we relied on a lightweight yet powerful tool, namely
Self-Assessment Manikin (SAM) [4].

The results of our study provide initial evidence that novice developers like
TDD less than YW. Moreover, developers following TDD seem to like the imple-
mentation phase less than the others, and the testing phase seems to make devel-
opers using TDD less happy. To foster replications of our study so increasing the
confidence in this initial evidence, we make our laboratory package public.

Paper Structure. Sect.2 discusses background and related work. Section 3
details the planning of our experiment. The results from the experiment are
presented in Sect. 4 and discussed in Sect. 5. Possible limitations are reported in
Sect. 6. Section 7 concludes the paper.

2 Background and Related Work

In this section, we report background information and work investigating devel-
opers’ affective states. We also provide evidence on the effects of TDD.

2.1 Affective States and Studies About Developers’ Affective States

In psychology, affective states are due to a set of stimuli and directed toward
such stimuli. They can be characterized according to two theories, discrete and
dimensional [37]. The former states that there is a fixed set that can be firmly

! https://doi.org/10.6084/m9.figshare.9778019.v1.

https://doi.org/10.6084/m9.figshare.9778019.v1

An Empirical Assessment on Affective Reactions of Novice Developers 5

[=#]

Fig. 1. From top down, the pleasure, arousal, dominance, and liking dimensions visu-
alized by means of the extended version of SAM by Koelstra et al. with nine-point
rating scales to self-assess each dimension [26].

distinguished (e.g., resulting in joy, fear, or disgust). The latter characterizes
affective states over three orthogonal dimensions: pleasure, arousal, and dom-
inance. Pleasure varies from unpleasant (e.g., sad/unhappy) to pleasant (e.g.,
joyful/happy). Arousal varies from inactive (e.g., calm/bored) to active (e.g.,
stimulated /excited). Finally, dominance ranges from a helpless and weak feeling
(i.e., “without control”) to an empowered one (i.e., “in control”) [26].

SAM is a non-verbal self-assessment method for a person’s affective reaction
based on the dimensional theory and it is used to measure pleasure, arousal, and
dominance associated with a stimulus [4]. Each dimension is described graphi-
cally and evaluated thanks to a rating scale—usually a nine-point rating scale—
placed below the graphical representation of that dimension (Fig.1). For exam-
ple, pleasure is visualized by means of figures ranging from an unhappy figure
to a happy one. SAM was extended by Koelstra et al. [26], who added the liking
dimension. This dimension ranges from dislike to like and is visualized through
thumb-down, -middle, and -up symbols with the rating scale placed below these
symbols (Fig. 1). SAM is used in Human-Computer Interaction (HCI) and affec-
tive computing studies [19,26,36]; lately Software Engineering (SE) work has
used this method to study developers’ affective states [16,18].

Graziotin et al. [18] showed that happier developers are more productive.
They studied eight developers working on individual projects. Every ten minutes,
they measured the developers’ affective states using SAM and their productivity
using a self-assessment questionnaire. The results of a mixed-effect model show
that pleasure, arousal, and dominance explained 25% of the variance in produc-
tivity. A follow-up multi-method study with 317 professional developers [17]

6 S. Romano et al.

showed that both happiness and unhappiness are experienced in relation to
increased and decreased productivity and quality of the development process. A
survey of 49 developers provides further evidence that affective states influence
the productivity of software developers [41]. In particular, positive ones enhance
development productivity, whereas negative ones—particularly frustration—are
associated with decreased productivity. In an interview with 45 professional
developers, Ford and Parnin [11] showed that frustration can occur due to the
difficulty of constructing a mental model of the code, learning new tools, dealing
with too large task sizes, on boarding a new project, accurate effort estimation,
dealing with teammates. Mueller and Fritz [28] investigated frustration—and
its counterpart, progress or flow [9]—using biometrics. Physiological signals are
suited to distinguish the affective states experienced by software developers. The
authors studied 17 novice developers, equipped with three biometric sensors, per-
forming software evolution. Their results show that different affective states are
correlated with the perceived (i.e., self-assessed) progress.

Developers’ affective states can be identified in the textual artifact produced
during software development (e.g., commit messages). Murgia et al. [30] ana-
lyzed 17 open-source projects to investigate whether and to what extent issue
reports contain information that can be related to specific affective conditions.
They showed that developers express mostly positive affects. Mantyla et al. [27]
investigated the association between developers’ affective states and productiv-
ity by applying sentiment analysis to 700,000 Jira issue reports. The authors
showed that different pleasure is associated with different types of issues (e.g.,
enhancement vs. bug fix request).

Only a few studies assessed affective reactions of developers while perform-
ing a task in a controlled fashion. An example is the work of Khan et al. [25].
The authors linked the effect of mood on debugging in two experiments. In the
first, they elicited specific affective states of 72 developers, who then performed
debugging. The results show a significant difference in performance between the
developers exposed to a stimulus eliciting low arousal and the ones exposed to a
stimulus eliciting high arousal. In the second, 19 developers worked on a debug-
ging task for 16 min, then performed physical exercise, and finally continued
working on that task. After the physical exercise, the authors reported increased
arousal and pleasure correlated with better task performance.

2.2 Effects of TDD

The effects of TDD on a number of outcomes (e.g., developers’ productivity)
is the subject of several empirical studies, summarized in Systematic Reviews
(SR) and Meta-Analysis (MA). Turhan et al’s SR [39] includes 32 primary
studies (e.g., case studies) investigating TDD in different settings (e.g., industry
and academia). The results are inconsistent, as they show a positive effect on
quality, but not regarding productivity. Rafique and Misic [32] conducted an
MA of 25 controlled experiments published between 2000 and 2011. Overall, the
results are mixed. However, TDD seems to improve quality to the cost of a loss
in productivity when considering subjects from academia. Finally, Munir et al.’s

An Empirical Assessment on Affective Reactions of Novice Developers 7

SR [29] took into account 41 primary studies. The results show, for both student
and professional developers, that TDD increases quality but not productivity.

3 Experiment Planning

To conduct our experiment, we followed Wohlin et al.’s guidelines [40]. We report
the planning of this experiment based on Jedlitschka et al.’s template [21].

3.1 Goals
We studied the following Research Question (RQ):

RQ1. Is there a difference in the affective reactions of novice developers to a
development approach (i.e., TDD vs. a non-TDD one)?

With RQ1, we aimed to understand the affective reactions of novice developers
due to the use of TDD in terms of pleasure, arousal, dominance, and liking.
A positive (or negative) effect of TDD with respect to these four dimensions
might imply that TDD developers are more (or less) effective when performing
development tasks. We deepened our investigation by focusing on two central
phases of the process underlying TDD: testing and implementation.? To this end,
we considered the effect of TDD in terms of the four above-mentioned dimensions
when testing and implementing code. Accordingly, we devised two further RQs:

RQ2. Is there a difference in the affective reactions of novice developers to the
implementation phase when comparing TDD to a non-TDD development app-
roach?

RQ3. Is there a difference in the affective reactions of novice developers to the
testing phase when comparing TDD to a non-TDD development approach?

3.2 Experimental Units

The participants of the experiment were 29 final-year undergraduate students
in Computer Science (CS) at the University of Basilicata. In particular, the stu-
dents were enrolled in the SE course, which represents the context of our exper-
iment. To encourage participation in the study, we informed the students that,
regardless of the outcomes they would achieve in the experiment, they would
be rewarded with two bonus points on the course final mark. We can consider
final-year undergraduates in CS as a proxy of novice software developers [20,38].

Before the SE course, the participants had passed exams related to Procedu-
ral and Object Oriented Programming. During these courses, all students had
acquired programming experience in C and Java. According to the curricula,

2 Although refactoring is part of the process underlying TDD, we did not consider
this phase because refactoring could not be performed when following a non-TDD
development approach (and some participants who used a non-TDD approach did
not refactor their code).

8 S. Romano et al.

the students did not have a notion of TDD. We also verified that they had
never practiced TDD. We trained the participants with a series of both frontal
and laboratory lessons after which they performed three homework assignments
(i.e., development tasks) in preparation for the experiment. The lessons cov-
ered unit testing, JUnit, Test-Last (TL) development,® Incremental Test-Last
(ITL) development,* and TDD. Initially, 47 students accepted to take part in
the experiment; 29 completed the training. This sample is homogeneous in terms
of skills because of the training process the students underwent (Sect.3.7) and
their similar academic background.

3.3 Experimental Material

The experimental objects consisted of the specifications of two development tasks
to be implemented in the Java programming language: Bowling Score Keeper
(BSK)—an API for calculating the score of a bowling game including bonus—
and Mars Rover API (MRA)—an API for controlling the movements of a rover
on a 2D planet on which obstacles are present. Regardless of the experimental
object, we provided the students with the following experimental material: (i) a
brief description of the program (i.e., a problem statement); (%) a series of
features to implement reported as a set of user stories; (i7i) a template project
for the Eclipse IDE containing stubs of the expected API signatures and an
example JUnit test class; and (iv) an acceptance test suite, developed by the
authors, to simulate customers’ acceptance of the user stories. The acceptance
tests were executed using the Concordion framework.® We opted for BSK and
MRA as experimental objects because they are often adopted to learn/practice
TDD and were used in past empirical studies on TDD [10,13,14,38].

To gather the affective reactions, we relied on the extended version of SAM by
Koelstra et al. [26], which includes four dimensions: pleasure, arousal, dominance,
and liking. Each dimension was thus measured through a nine-point rating scale.

3.4 Tasks

We asked the participants to carry out one development task each, in which
they tackled either BSK or MRA. That is, we asked them to implement the
user stories associated with these programs—MRA had 11 user stories, while
BSK had 13 user stories—by following TDD or an alternative approach. The
participants were asked to take into account one user story at a time (starting
from the first one). The participant could implement the next user story only
when the current one passed its related acceptance test suite. The total time
allotted to accomplish the task was three hours. Right after the development
task, we asked the participants to self-assess their affective reactions—in terms

3 In TL development, a developer first implements a feature entirely and then tests it.

4 In ITL development, a developer alternates implementing a code increment with
testing that increment until the entire feature is implemented.

5 https://concordion.org/.

https://concordion.org/

An Empirical Assessment on Affective Reactions of Novice Developers 9

of pleasure, arousal, dominance, and liking—of the development approach using
SAM. Similarly, they self-assessed their affective reactions to the testing and
implementation phases.

Table 1. Summary of the dependent variables.

Name | Values | Description

APPpis | 1-9 Affective reaction to the development
approach in terms of pleasure

APPpps | 1-9 Affective reaction to the development
approach in terms of arousal

APPpoy | 1-9 Affective reaction to the development
approach in terms of dominance

APPr ¢ | 1-9 Affective reaction to the development
approach in terms of liking

IMPps | 1-9 Affective reaction to the implementation
phase in terms of pleasure

IMPggs | 1-9 Affective reaction to the implementation
phase in terms of arousal

IMPpoy | 1-9 Affective reaction to the implementation
phase in terms of dominance

IMPrx | 1-9 Affective reaction to the implementation
phase in terms of liking

TESprs | 1-9 Affective reaction to the testing phase in
terms of pleasure

TESms | 1-9 Affective reaction to the testing phase in
terms of arousal

TESpox | 1-9 Affective reaction to the testing phase in
terms of dominance

TESi ik | 1-9 Affective reaction to the testing phase in
terms of liking

3.5 Hypotheses, Parameters, and Variables

We manipulated two independent variables: Approach and Object. The former
represents the development approach the participants had to follow to carry out
the development task, namely TDD or the approach they preferred (i.e., YW).
Therefore, Approach is a categorical variable with two values, TDD and YW.
The Object variable indicates the experimental object the participants dealt
with (i.e., BSK or MRA) in the experiment. Similarly to Approach, Object is a
categorical variable. It can assume the following two values: BSK and MRA.

10 S. Romano et al.

Table 2. Number of participants assigned to each studied approach and object.

Approach
TDD | YW
Object MRA | 7
BSK |8 7

To measure PLeaSure (PLS), ARouSal (ARS), DOMinance (DOM), and LIKing
(LIK) associated with the development APProach (APP), we used the follow-
ing ordinal dependent variables: APPprs, APPjrg, APPpgy, and APPrrx. Similarly,
we quantified pleasure, arousal, dominance, and liking for the IMPlementation
(IMP) and TESting (TES) phases by means of the following ordinal dependent
variables: IMPprg, IMPsrs, IMPpou, IMPr1x, TESprs, TESars, TESpam, and TES;ix. In
Table 1, we summarize the dependent variables of our experiment.

We formulated and tested the following null hypotheses:

HOx . There is no difference between TDD and YW with respect to the depen-
dent variable X € {APPPLS7 APPAR87 APPDDM> APPLIKa IMPPLS; IMPARS7 IMPDUMa
IMPLIKa TESPLS7 TESARS) TESDUM7 TESLIK}-

3.6 Experiment Design

The design of our experiment was 2 x 2 factorial—a type of between-subjects
design [40]. In particular, each participant used only one development approach
(i.e., either TDD or YW). Within each development approach, each participant
tackled only one experimental object—i.e., either BSK or MRA. Those who used
TDD (either tackling BSK or MRA) form the treatment group, while those who
experimented YW (either tackling BSK or MRA) form the control group.

In Table2, we show the number of participants assigned to each of four
groups constituted by the combination of development approaches and experi-
mental objects. The assignment was randomly performed. By looking at Table 2,
we can notice that the number of participants distributed among development
approaches, experimental objects, and their combination was almost uniform.

3.7 Procedure
The experimental procedure included the following steps.

1. We gathered the availability of the students to participate in the experiment
through a questionnaire (also used to gather demographic information).

2. The participants attended the frontal lessons on unit testing, JUnit, TL devel-
opment, and ITL development. They also took part in a laboratory session
(of two hours) on unit testing with JUnit.

3. We (randomly) split the participants into two groups: TDD and YW. The par-
ticipants in the YW and TDD groups were 14 and 15, respectively (Table 2).
Based on the group, the participants underwent two different training:

An Empirical Assessment on Affective Reactions of Novice Developers 11

— The students in the TDD group attended a face-to-face lesson on TDD
and experimented this approach through two laboratory sessions (of two
hours each) and three homework assignments. Handing in the assignments
was mandatory to participate in the experimental session.

— The students in the YW group did not attend lessons on TDD nor used
the approach in the laboratory sessions and assignments. However, the
students in the YW group took part in two laboratory sessions (of two
hours each) and performed the same homework assignments as the TDD
group, but to practice TL and ITL. Similarly to the TDD group, home-
work assignments were mandatory.

4. The experimental session took place under controlled conditions in a research
laboratory at the University of Basilicata. All the laboratory computers were
equipped with the same hardware and software. Furthermore, they contained
all the material necessary to complete the tasks, i.e., the template project (of
Eclipse) corresponding to the assigned experimental object. During the exper-
imental session, the participates performed the development tasks and then
they self-assessed their affective reactions (Sect. 3.4). We avoided interactions
among participants by monitoring them during the task execution.

3.8 Analysis Procedure

We relied on diverging stacked bar plots to summarize the distributions of the
values of the dependent variables. To test the null hypotheses (one for each
dependent variable), we used a non-parametric version of ANOVA, namely
ANOVA Type Statistic (ATS) [5]. We opted for ATS because this method
is frequently used in the medical field and recommend, in place of ANOVA,
in the HCI field to analyze data from rating scales in factorial designs like
ours [23]. For each dependent variable X, we built ATS models as follows:
X ~ Approach + Object + Approach : Object.

Approach and Object are the variables we manipulated, while App-
roach:Object represents their interaction. That is, this model allows determining
if Approach, Object, and Approach:Object had statistically significant effects on
a given dependent variable. To judge whether an effect is statistically significant,
we used o = 0.05 as the threshold value. It indicates 5% chance that a Type-I-
error occurs (i.e., rejecting the null hypothesis when it is true) [40]. If a p-value
is less than «, it is deemed statistically significant. In case of a statistically signif-
icant effect of Approach, we quantified the magnitude of that effect through the
Cliff’s § effect size. We opted for such a kind of effect size since it was originally
developed for use with ordinal variables (like ours) [7]. The effect size is consid-
ered: negligible if |5 < 0.147, small if 0.147 < |6] < 0.33, medium if 0.33 < || <
0.474, or large if |6] > 0.474 [33].

Further Analysis. To better contextualize our experiment, we also assessed
participants’ performance. We counted the number of user stories each partici-
pant implemented in the allotted time. We normalized them in the [0, 1] interval
to obtain a fair comparison between participants tackling tasks with a different

12 S. Romano et al.

number of user stories. We named this additional dependent variable STR. The
strategy we followed to quantify participants’ performance is time-fired—the
number of successful steps within a fixed time span defines performance [3]. The
higher the value of STR, the better the developer’s performance.

12 3 4 5 6 7 8 om
T T T S S S S H S S S
APP_PLS APP_ARS APP_DOM APP_LIK
oD | |
Yw _ I I |
- IMP_PLS IMP_ARS IMP_DOM IMP_LIK
é TDD
g Yw L | | ||
< TES PLS TES_ARS TES_DOM TES_LIK
TDD
Yw | | I |

50 0 50 10050 O 50 10050 O 50 10050 O 50 100
Percent

Fig. 2. Diverging stacked bar plots for the dependent variables. (Color figure online)

4 Results

In Fig. 2, we show the diverging stacked bar plots summarizing the distributions
of the values of the twelve dependent variables. The x-axes report the frequen-
cies of the dependent variable values, which range from one—the most negative
value—to nine—the most positive value. Therefore, the neutral value is five. The
diverging stacked bar plots display positive values in shades of blue, while those
negative in shades of red. The neutral value is displayed in grey. The y-axes
allow grouping the values based on the Approach variable. As for the results
from ATS, they are summarized in Table 3.

RQ1l1—Affective Reactions to Development Approach. By looking at
Fig. 2, there is no noticeable difference between TDD and YW regarding pleasure
(APPps), arousal (APPygs), and dominance (APPpgy). As for liking (APP.1x), Fig. 2
suggests that participants in the YW group liked this approach more, compared
to the participants in the TDD group.

The ATS results (Table3) indicate that there is no statistically significant
difference between TDD and YW regarding pleasure, arousal, and dominance.
Accordingly, we cannot reject the corresponding null hypotheses. The test results
allow us to reject HOupp,,,, showing an effect of the development approach on

An Empirical Assessment on Affective Reactions of Novice Developers 13

Table 3. Results from ATS—F-statistic (in parentheses) and p-values (in bold those
less than o = 0.05) for the dimensions associated with the development approach, and
implementation and testing phases.

Dep. Var. | Indep. Var.
Approach Object Approach:Object

APPps 0.1615 (2.1094) |0.7721 (0.0861) | 0.8998 (0.0162)
APPps 0.2774 (1.2378) | 0.7794 (0.0803) | 0.1816 (1.8985)
APPpoy 0.2796 (1.2313) | 0.8569 (0.0333) | 0.4296 (0.6487)
APPy1¢ 0.0024 (11.4580) | 0.1650 (2.0467) | 0.6368 (0.2285)
IMPpLs 0.2008 (1.7454) |0.6663 (0.1914) | 0.9793 (0.0007)
IMPrs 0.6799 (0.1755) | 0.6881 (0.1661) | 0.5752 (0.3249)
IMPpoy 0.3449 (0.9330) | 0.5614 (0.3480) | 0.4672 (0.5481)
IMPLik 0.0396 (4.7562) |0.1862 (1.8557) | 0.2703 (1.2752)
TESpLs 0.0178 (6.5782) |0.6500 (0.2118) | 0.7652 (0.0915)
TESars 0.4147 (0.6887) | 0.4765 (0.5230) | 0.3406 (0.9451)
TESpou 0.6341 (0.2324) | 0.2564 (1.3508) | 0.4738 (0.5293)
TESL1k 0.0504 (4.2785) |0.1194 (2.6224) | 0.0547 (4.1112)

APP; 1. The frequencies displayed in Fig. 2 suggest that such an effect is in favor
of YW. The effect size is large (6 = 0.6048, CI95% = [0.2018, 0.8326]).

Based on these results, we can answer RQ1 as follows: developers using TDD
seem to like their development approach less than those using a non-TDD one.

RQ2—Affective Reactions to Implementation Phase. Figure 2 does not
highlight remarkable difference between TDD and YW for pleasure (IMPprg),
arousal (IMPgs), and dominance (IMPpgy) during the implementation phase.
However, for these dimensions, we can observe a slight trend in favor of YW
since the percentages of very positive scores (i.e., >6) appear to be higher for
YW. With respect to the liking dimension (IMPr 1), Fig. 2 suggests that partici-
pants who followed YW liked the implementation phase more, compared to the
ones following TDD.

The results in Table 3 do not show a statistically significant difference between
TDD and YW regarding pleasure, arousal, and dominance. Accordingly, we can-
not reject the null hypotheses corresponding to these dimensions. We reject
HOmp,,, as there is a statistically significant effect of Approach on IMPp1x. The
effect is in favor of YW as the plot in Fig.2 suggest. The size of the effect of
Approach is medium (§ = 0.4286, CI95% = [0.0209, 0.714]).

According to the obtained results, we can answer RQ2 as follows: developers
using TDD seem to like the implementation phase less than those using a non-
TDD development approach.

RQ3—Affective Reactions to Testing Phase. Figure 2 suggests that there
is a difference between TDD and YW in terms of pleasure (TESprs) during the

14 S. Romano et al.

testing phase. In particular, the participants using TDD reported negative scores
with some frequency while those using YW never reported negative scores. When
considering the arousal (TES;s) and dominance (TESpgy) dimensions, we can-
not observe any substantial difference between the two development approaches
(Fig.2). On the contrary, when considering liking (TESp1x), we can notice a dif-
ference between TDD and YW in favor of the latter as YW tends to have more
very positive scores (i.e., > 6) than TDD.

The results of ATS (Table3) reveal a statistically significant difference for
the pleasure dimension, which allows us to reject the HOrgs,,, hypothesis. Such
a difference is in favor of YW (Fig.2). The effect size is large (§ = 0.5, CI95%
= [0.0796, 0.7694]). As for arousal and dominance, the effect of the development
approach is not statistically significant during the testing phase. Regarding lik-
ing, the observed difference in TES;1x between YW and TDD is not significant.

The obtained results allowed us to answer RQ3 as follows: the testing phase
seems to make developers using TDD less happy compared to those using a non-
TDD development approach.

Further Analysis Results. We also studied participants’ performance by run-
ning ATS using STR as dependent variable.® The results indicates that Approach
(p—value = 0.4765), Object (p—value = 0.2596) and their interaction (p-value
= 0.0604) have no statistically significant effect on STR.

5 Discussion

The results from this experiment present initial evidence about aspects that are
not investigated by the empirical TDD research. Current research on the effects
of TDD shows inconclusive results [29,32,39], which can be attributed to the
disliking the developers experience when using TDD, at least in the experiment
time frame. We show initial evidence—supported by a large effect size—that,
although participants’ performance do not vary significantly (Sect.4) due to
the development approach, TDD seems to negatively impact affective reactions
(i.e., liking) of novice developers. Researchers need to be aware of the effect that
disliking TDD can have (e.g., low motivation to perform a task) when designing
experiments involving such an approach.

We observed a difference between TDD and YW regarding the liking dimen-
sion for the implementation phase. The medium effect size shows initial evidence
that implementing production code when performing TDD seems to be disliked
by developers. Writing production code during TDD is trivial, at least in the
first few iterations, and usually consists in taking shortcuts (e.g., returning hard-
coded values) to make the test pass. In our study, developers did not like such
an activity. We conjecture this may be the case because they did not base their
implementation on creative activities requiring challenging decisions. Conversely,

6 STR does not meet the normality assumption (Shapiro-Wilk normality test p—value
= 0.0114); this is why we run ATS (rather than ANOVA).

An Empirical Assessment on Affective Reactions of Novice Developers 15

this should have resulted in different levels of arousal (i.e., low for TDD) com-
pared to non-TDD developers which we did not observe. Our explanation for
the lack of such an observation lies in the task complexity which could have not
been enough to elicit stronger arousal responses. The lack of significant effect
due to the Object in our ATS models partially supports this explanation.

The liking dimension could change over time. Longitudinal studies could be
necessary to validate such hypothesis and qualitative studies are required to
pinpoint the reason for the observed results. In particular, the latter is necessary
to explain the contrasting results presented in Romano et al. [34,35] in which a
preference for the implementation phase among TDD developers emerged due
to its rewarding feeling (i.e., observing the JUnit red bar turn green).

The testing phase seems to make developers using TDD less happy than those
using a non-TDD approach. Previous work [34,35] shows that TDD developers
create a mental model of their solution to a task which is then translated into unit
tests. Novice developers can be uncomfortable with such an activity due to the
counter-intuitiveness of this step, but also due to the difficulty of writing tests
of good granularity in the absence of the underlying production code [12,24].
Conversely, developers following the non-TDD approach can decide when and
what to test without (mindlessly) following a process. Such freedom of action—
e.g., testing what is worth according to the developer’s own understanding—can
explain the higher pleasure score of non-TDD developers. Although this can be
the case in the short term, longitudinal studies of TDD developers’ affective
states are also necessary in this case.

In general, our observations are supported by the results of a survey among
professional developers, who are new to TDD [1]. They expressed concerns that
worrying about writing unit tests and working in small increments distracts
them from achieving their implementation goals while the extra effort necessary
to perform TDD is perceived as waste [1]. Practitioners should take into account
the results of this study when introducing TDD. The disliking attitude towards
this development approach can (negatively) impact developers’ performance in
the long run (which we did not observe in the short term). Considering the results
regarding the (negative) affective reactions to the implementation and testing
phases, we suggest that, for greenfield development tasks, developers could skip
TDD for few initial iterations and rely on their preferred development approach.
This should not have an impact on performance but could reduce their negative
affect which, in turn, could impact motivation and job satisfaction [17,39].

6 Threats to Validity

We discuss the threats that could affect the validity of the results according to
the guidelines presented by Wohlin et al. [40]. We ranked these threats from the
most to the least sensible for the goal of our study. In particular, being this the
first investigation of developers’ effective states when using TDD, we prioritize
threats to internal validity. That is, we were more interested in studying that
cause-effect relationships were correctly identified.

16 S. Romano et al.

Internal Validity. A possible threat is the voluntary participation in the study
(i.e., selection threat) by students particularly willing to be assessed. However,
we limited this threat by embedding the experiment in the SE course and did not
consider its outcome when grading. To deal with a threat of diffusion or treat-
ments imitations, two authors of this paper monitored participants to prevent
them from exchanging information during the experiment. Another threat might
be resentful demoralization—participants assigned to a less desirable treatment
might not perform as good as they normally would.

Construct Validity. Each dependent variable was measured by means of a
single self-assessment at the end of the task. If there was a measurement bias,
the results would be misleading (i.e., mono-method bias threat). Although the
participants were not informed about the research goals of our experiment, they
might guess them and change their behavior accordingly (i.e., threat of hypothe-
ses guessing). To deal with an evaluation apprehension threat, we did not eval-
uate the participants in the experiment on the basis of their performances. We
acknowledge the presence of a threat of restricted generalizability across con-
structs. That is, while influencing the affective states, the approach might affect
other non-measured constructs (e.g., cognitive load).

Conclusion Validity. To mitigate a threat of random heterogeneity of par-
ticipants, our sample included students who followed the same course at the
same university, underwent a similar training, and had similar background, skills
and experience. A threat of reliability of treatment implementation might occur
(e.g., some participants might follow TDD more strictly than others so influenc-
ing their affective reactions). In several occasions, during the task execution, we
reminded the participants to follow the treatment they were assigned to. Finally,
our sample was limited because of the difficulty of recruiting participants avail-
able for all the period of the experiment including training.

External Validity. The participants in our study were undergraduate students.
This could pose some threats to the generalizability of the results to the popula-
tion of professional developers (i.e., threat of interaction of selection and treat-
ment). However, the use of students has the advantage that they have homoge-
neous background and are particularly suitable to obtain preliminary evidence
from empirical studies [6]. Therefore, the use of students could be considered
appropriate, as suggested in the literature [6,20]. The used experimental objects
might pose a threat of interaction of setting and treatment. BSK and MRA can
be completed in a single exercise session of three hours [13,14] so allowing a
better control over the participants. This was our preferred trade-off due to the
theory-testing nature of our experiment.

7 Conclusions

We presented a controlled experiment to study whether and in what phase TDD
influences affective states of novice developers in terms of pleasure, arousal,
dominance, and liking. Developers in the treatment group implemented a task

An Empirical Assessment on Affective Reactions of Novice Developers 17

using TDD whereas the control group used a non-TDD development approach
(i.e., YW). We compared the affective reactions of developers with respect to
the development approach they used, further focusing on the implementation
and the testing phases. The results indicate a significant difference between the
two development approaches in terms of affective reactions. Developers seem to
like YW more than TDD. Moreover, developers like the implementation phase
in YW more than that in TDD and the testing phase makes developers using
TDD less happy. The findings from our study can help explain the inconclusive
results of experiments focusing on the claimed effect of TDD. As future work,
we plan to conduct replications, investigations focusing on settings closer to the
real world, and longitudinal studies to measure affective states in the long run.

References

1. Aniche, M.F., Ferreira, T.M., Gerosa, M.A.: What concerns beginner test-driven
development practitioners: a qualitative analysis of opinions in an agile conference.
In: Proceedings of Brazilian Workshop on Agile Methods. Springer (2011)

2. Beck, K.: Test-Driven Development: By Example. Addison-Wesley (2003)

3. Bergersen, G.R., Sjgberg, D.I.LK., Dyba, T.: Construction and validation of an
instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12),
1163-1184 (2014)

4. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and
the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49-59 (1994)

5. Brunner, E., Dette, H., Munk, A.: Box-type approximations in nonparametric fac-
torial designs. J. Am. Stat. Assoc. 92(440), 1494-1502 (1997)

6. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in using students in empirical
studies in software engineering education. In: Proceedings of International Sympo-
sium on Software Metrics, pp. 239-249. IEEE (2003)

7. CIliff, N.: Ordinal Methods for Behavioral Data Analysis. Psychology Press (1996)

8. Colomo-Palacios, R., Herndndez-Lépez, A., Garcia-Crespo, A., Soto-Acosta, P.:
A study of emotions in requirements engineering. In: Lytras, M.D., Ordonez de
Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS
2010. CCIS, vol. 112, pp. 1-7. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16324-1_1

9. Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Every-
daylife. Basic Books (1997)

10. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Trans. Softw. Eng. 31(3), 226-237 (2005)

11. Ford, D., Parnin, C.: Exploring causes of frustration for software developers. In:
Proceedings of International Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 115-116. IEEE (2015)

12. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of the
test-driven development process: does it really matter to test-first or to test-last?
IEEE Trans. Softw. Eng. 43(7), 597-614 (2017)

13. Fucci, D., et al.: A longitudinal cohort study on the retainment of test-driven
development. In: Proceedings of International Symposium on Empirical Software
Engineering and Measurement, pp. 18:1-18:10. ACM (2018)

https://doi.org/10.1007/978-3-642-16324-1_1
https://doi.org/10.1007/978-3-642-16324-1_1

18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Romano et al.

Fucci, D., et al.: An external replication on the effects of test-driven development
using a multi-site blind analysis approach. In: Proceedings of International Sym-
posium on Empirical Software Engineering and Measurement, pp. 3:1-3:10. ACM
2016

g}ache)chiladze, D., Lanubile, F., Novielli, N., Serebrenik, A.: Anger and its direction
in collaborative software development. In: Proceedings of International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track, pp.
11-14. IEEE (2017)

Girardi, D., Lanubile, F., Novielli, N., Fucci, D.: Sensing developers’ emotions: the
design of a replicated experiment. In: Proceedings of International Workshop on
Emotion Awareness in Software Engineering, pp. 51-54. IEEE (2018)

Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. J. Syst. Softw. 140, 32-47 (2018)

Graziotin, D., Wang, X., Abrahamsson, P.: Are happy developers more productive?
In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 50-64. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39259-7_7

Herbon, A., Peter, C., Markert, L., Van Der Meer, E., Voskamp, J.: Emotion
studies in HCI-a new approach. In: Proceedings of International Conference on
Human-Computer Interaction (2005)

Host, M., Regnell, B., Wohlin, C.: Using students as subjects—a comparative study
of students and professionals in lead-time impact assessment. Empirical Softw.
Eng. 5(3), 201-214 (2000)

Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Guide to advanced empirical software
engineering. In: Shull, F., Singer, J., Sjoberg, D.LLK. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 201-228. Springer, London (2008). https://
doi.org/10.1007/978-1-84800-044-5_8

Jeffries, R., Melnik, G.: Guest editors’ introduction: TDD-the art of fearless pro-
gramming. IEEE Softw. 24(3), 24-30 (2007)

Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of
likert-type ratingscales. In: Proceedings of International Conference on Human
Factors in Computing Systems, pp. 2391-2394. ACM (2010)

Karac, 1., Turhan, B.: What do we (really) know about test-driven development?
IEEE Softw. 35(4), 81-85 (2018)

Khan, I.A., Brinkman, W.P., Hierons, R.M.: Do moods affect programmers’ debug
performance? Cogn. Technol. Work 13(4), 245-258 (2011)

Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18-31 (2012)

Maéntyla, M., Adams, B., Destefanis, G., Graziotin, D., Ortu, M.: Mining valence,
arousal, and dominance: possibilities for detecting burnout and productivity? In:
Proceedings of International Conference on Mining Software Repositories, pp. 247—
258. ACM (2016)

Miiller, S.C., Fritz, T.: Stuck and frustrated or in flow and happy: sensing develop-
ers’ emotions and progress. In: International Conference on Software Engineering,
vol. 1, pp. 688-699. IEEE (2015)

Munir, H., Moayyed, M., Petersen, K.: Considering rigor and relevance when eval-
uating test driven development: a systematic review. Inf. Softw. Technol. 56(4),
375-394 (2014)

Murgia, A., Tourani, P., Adams, B., Ortu, M.: Do developers feel emotions? an
exploratory analysis of emotions in software artifacts. In: Proceedings of Working
Conference on Mining Software Repositories, pp. 262-271. ACM (2014)

https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

An Empirical Assessment on Affective Reactions of Novice Developers 19

Ortu, M., et al.: The emotional side of software developers in JIRA. In: Proceedings
of International Conference on Mining Software Repositories, pp. 480-483. ACM
(2016)

Rafique, Y., Misi¢, V.B.: The effects of test-driven development on external quality
and productivity: a meta-analysis. IEEE Trans. Softw. Eng. 39(6), 835-856 (2013)
Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Appropriate statistics for
ordinal level data: should we really be using t-test and Cohen’sd for evaluating
group differences on the NSSE and other surveys? In: Annual Meeting of the
Florida Association of Institutional Research, pp. 1-3 (2006)

Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Results from an
ethnographically-informed study in the context of test driven development. In: Pro-
ceedings of the International Conference on Evaluation and Assessment in Software
Engineering, pp. 10:1-10:10. ACM (2016)

Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Findings from a
multi-method study on test-driven development. Inf. Softw. Technol. 89, 6477
(2017)

Rudmann, D.S.; McConkie, G.W., Zheng, X.S.: Eyetracking in cognitive state
detection for HCI. In: Proceedings of international conference on Multimodal inter-
faces, pp. 159-163. ACM (2003)

Russell, J.A.: Core affect and the psychological construction of emotion. Psychol.
Rev. 110(1), 145-172 (2003)

Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of profession-
als in software engineering experiments? In: International Conference on Software
Engineering, vol. 1, pp. 666—676. IEEE (2015)

Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F.: How effective is
test-driven development. In: Making Software: What Really Works, and Why We
Believe It, pp. 207-217. O’Reilly Media (2010)

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, New York (2012). https://doi.org/
10.1007/978-1-4615-4625-2

Wrobel, M.R.: Emotions in the software development process. In: Proceedings of
International Conference on Human System Interactions, pp. 518-523. IEEE (2013)

https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2

l‘)

Check for
updates

Applying Surveys and Interviews
in Software Test Tool Evaluation

Piivi Raulamo-Jurvanen!®™) | Simo Hosio?, and Mika V. Mantyla!

L ITEE, M3S, University of Oulu, Oulu, Finland
{paivi.raulamo-jurvanen,mika.mantyla}@oulu.fi
2 ITEE, UBICOMP, University of Oulu, Oulu, Finland
simo.hosio@oulu.fi

Abstract. Despite the multitude of available software testing tools, lit-
erature lists lack of right tools and costs as problems for adopting a
tool. We conducted a case study to analyze how a group of practitioners,
familiar with Robot Framework (an open source, generic test automation
framework), evaluate the tool. We based the case and the unit of analysis
on our academia-industry relations, i.e., availability. We used a survey
(n=168) and interviews (n=6) with convenience sampling to develop a
comprehensive view of the phenomena. The study reveals the importance
of understanding the interconnection of different criteria and the potency
of the context on those. Our results show that unconfirmed or unfocused
opinions about criteria, e.g., about Costs or Programming Skills, can
lead to misinterpretations or hamper strategic decisions if overlooking
required technical competence. We conclude surveys can serve as a use-
ful instrument for collecting empirical knowledge about tool evaluation,
but experiential reasoning collected with a complementary method is
required to develop into comprehensive understanding about it.

Keywords: Test automation - Software testing tool - Tool support -
Tool evaluation + Case study - Survey - Interviewing

1 Introduction

Testing and test automation are expected to have potential combining quality
with speed and reducing costs. Nevertheless, those tasks are reported to be
under-exploited activities in Quality Assurance (QA) [2]. It seems rather easy to
search for types of software testing tools, but practically hard to evaluate and
select the most suitable one from the plethora of tools. Despite the volume of
software testing tools available, practitioners tend to find lack of right tools as
an obstacle [2,18]. Marketing material or promotional tool comparisons tend to
focus on desirable benefits, but seem to fail in providing realistic details about
prerequisites or related challenges. In software engineering (SE), practitioners
tend to find beliefs of their peers more credible than empirical evidence [15,19].

In this paper, we report a case study [23,29], a common case of a tool evalua-
tion in the context of software testing. We find it relevant to ask, whether expert

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 20-36, 2019.
https://doi.org/10.1007/978-3-030-35333-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_2

Applying Surveys and Interviews in Software Test Tool Evaluation 21

advice is accurate and appropriate for tool selection. Case studies are suitable
to settings where how and why questions are favorable, researchers do not have
control over variables and the focus is on some contemporary events [16,29].
The use of multiple sources of evidence is a major strength of case study data
collection [29]. We study the different criteria of the tool and its potential, as
evaluated by software practitioners in the field, in the form of a survey. To pro-
vide a broader view on the concept, we complement the survey with interviews
and assess quantitative results of the survey in the light of qualitative data from
the interviews. We formulated the following research questions:

— RQ1. How do practitioners ground their tool evaluations?
— RQ2. How to identify possible false expectations from tool surveys?

To answer our research questions, we will compare the results of both meth-
ods for supportive and conflicting perceptions. By triangulation, we intend to
capture rich dimensions on the characteristics of the tool [23].

2 Related Work

Evaluating software testing techniques and tools is time-consuming, expensive
and difficult [17,28]. According to Fenton et al. [4], a single tool evaluation trial,
even with a realistic project having realistic subjects, is not adequate, and claims
by analytical advocacy are considered insupportable. In academia, publication
bias of positive research results may be a problem, especially in stronger sources
of evidence [18]. Dyba et al. [3] promoted evidence-based SE (EBSE) as a mech-
anism to aid adoption of technology related decisions. The research should seek
evidence of realization of expected outcomes, potential side effects and causes
of those, that can be integrated from both research and practical experience [3].
Sjeberg et al. [25] consider the viewpoint of practitioners as means to explore,
describe, predict and explain phenomena.

Murphy-Hill et al. [13] focused on events where a need for a tool arises on
its discovery. They reported tool encountering to be the most frequent discovery
mode [13]. A widely used tool is likely found useful upon tool discovery [13]. In
software projects, the need for a software testing tool is often perceived, but it
is problematic to discover and select the most suitable tool(s). Comprehensive
understanding of usage habits of software practitioners in a community is seen
more reliable than an opinion of just one individual [13]. It is important to
understand the experiences, both positive and negative, related to those habits.

Practitioners seem to have common but not systematically applied consensus
about important criteria for selecting software testing tools [20,21]. For example,
costs, in general is one frequently mentioned factor for the adoption and use of
software testing tools [1,5,14,20,27]. Cost is an important factor, but not con-
sidered to be a characteristic of product quality'. Rather, costs are categorized
as a tool external factor [21]. In our prior research on tool evaluations [22], we

! http://is025000.com /index.php/en /iso-25000-standards/iso-25010.

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

22 P. Raulamo-Jurvanen et al.

found that practitioner evaluations for a tool, in a survey, may be dispersed. To
improve understanding and robustness of the results, we analyze the topic using
a complementary method.

3 Case Study Design

We apply a case study as an empirical research method for studying the evalu-
ation of the selected software testing tool, in the context of shared open source
software (OSS) ecosystem. For a case study, both the case and the unit of analysis
should be selected intentionally [23]. We based the tool selection on our existing
academia-industry relations, i.e., availability [23]. The case tool is Robot Frame-
work, an open source (OS), “generic test automation framework for acceptance
testing and acceptance test-driven development (ATDD)”2. The tool is utilized
by a set of collaborating companies in our research project, EUREKA ITEA3
TESTOMAT 2. We could reach practitioners familiar with the tool via the com-
panies, representing an example case of shared OSS ecosystem. See Fig. 1 for the
design of the case study.

Survey Quantitative
Case study Design 1 month Analysis
ot A
c ERO_, & ¢
2 Epy™ — e L >
3 L} b
» -+ Objective
] (111
I - Tool
% . Theory l ./
6 -Ros - ¢
@+ Methods Interviews @ I
£ - Selection R R || 1
g strategy .'-a_} B / '- .
c - (e Qualitative
4 Transcription Analysis
~ 30-60 mins of the recordings

Fig. 1. Case study design, complementing a survey with interviews

The primary objective of our study is of exploratory nature. Perry et al. [16]
find case studies to be useful for exploratory studies that “attempt to understand
and explain phenomenon or construct a theory”. Kitcheham et al. [8] emphasize
that although case studies are not scientifically as rigor as formal experiments,
those are useful in judging whether some technologies will be of advantage in a
setting. To evaluate software testing tools, we need collective information, knowl-
edge from people who have invested in choosing and using tools [20]. For our
study, we considered two methods for collecting data, a survey and interviews.
Kitchenham et al. [9] outline a survey as “comprehensive system for collecting
information to describe, compare or explain knowledge, attitudes and behavior”.

2 https://robotframework.org/.
3 https://itea3.org/project /testomatproject.html.

https://robotframework.org/
https://itea3.org/project/testomatproject.html

Applying Surveys and Interviews in Software Test Tool Evaluation 23

Complementing a survey with interviews allows us to increase the amount and
diversity of the data, to develop a more comprehensive understanding about the
phenomena and possibly to confirm the validity of conclusions [11,23,24].

3.1 Tool Evaluation Survey

The questionnaire? included 15 questions. The questions are based on our prior
work [20] and on the ISO/TEC 25010 quality model. The approach for the survey
tool was adopted from the studies of Hosio et al. [7] and Goncalves et al. [6]. The
survey tool was validated by the authors and an industry partner. As a result, we
added the options to indicate the basis of the answers (i.e., hands-on experience
or generic opinion) and any experience in the development of the tool to the
questionnaire. The survey was sent to seven software professionals collaborating
in the research project (March 1%¢, 2018). We requested them to distribute the
survey to their colleagues experienced with Robot Framework. To reach users
of the tool, the survey was also promoted in Robot Framework Slack and in
Twitter (with hashtag robotframework). The survey was open for a month.

Background information was given in 80 unique responses. We excluded the
responses known to be for testing purposes, and those having only default values.
68 respondents completed the survey (998 unique questionnaire answers for the
15 criteria, in total). The response rate among those having started the survey
was 85%. We could not calculate the overall response rate as the number of prac-
titioners having received the link was not known. As the survey was anonymous,
we could not ask for reasons not completing or not responding the survey. We
used MS Excel and R/RStudio for analyzing the data. We analyzed the numeric
data using descriptive statistics and graphical visualization (boxplots).

3.2 Interviews

While the purpose of the survey was to collect quantitative data, the interviews
were designed to collect rich descriptions, i.e., qualitative data. The interview
questions were based on the questionnaire, to have the experts elaborate on
their personal experiences. We recruited six volunteering practitioners, using
convenience sampling [10] for interviews, from our contacts via the TESTOMAT
project and Robot Framework Slack.

The objective of the interviews was descriptive and explanatory. The inter-
views were semi-structured, the questions open and the content and order of the
questions the same for all interviewees although the questions could be answered
freely. The interviews were conducted via Skype (March—April 2018). To miti-
gate the risks of misunderstandings and loss of information, we requested each
interviewee the permission to record the interview. To minimize the bias related
to different interviewers, the interviews were conducted by one of the authors.
The recordings were analyzed in NVivo 11. The data were coded against the
survey criteria, to find explanations in the descriptions, i.e., to “lluminate the
quantitative findings” [24].

4 https://drive.google.com/open?id=1xzXG5ypANvOCbMdRyAyUnmYdON24VCr4.

https://drive.google.com/open?id=1xzXG5ypANvOCbMdRyAyUnmYd0N24VCr4

24 P. Raulamo-Jurvanen et al.

4 Results

First, we present the demographics of the survey respondents and interviewees
in Sect.4.1. Thereafter, we present the overview of the results from both the
survey and the interviews in Sect. 4.2. To build a comprehensive picture of the
phenomena under study, we will triangulate the results from both methods, in
detail in Sect. 4.3 and answer our research questions in Sect. 5.

4.1 Background Information

Unsurprisingly, most of the survey respondents (54%) work in Finland (the tool
originated in Finland, and the survey was initially promoted via Finnish collab-
oration companies). Most questionnaire answers (97%) were based on hands-on
experience using the tool. Of the respondents, nearly 6% had contributed to
the development of either the core of the tool or both the core of the tool and
related libraries, about 21% to the development of related libraries, while major-
ity (63%) had not contributed at all. About 85% of the respondents had used
Python in their work and 50% Java. Six respondents had not used either of those
while two had not reported (or used) any programming languages.

The interviewees represented different companies, in different domains (from
consulting to cyber security). Regarding the experience in the industry, the inter-
viewees were more experienced than the survey respondents in areas other than
the maximum number of years, see Table1l. Three interviewees had not con-
tributed to the development of the tool, two had contributed to the development
of libraries, and one to both the core of the tool and libraries. Five interviewees
had been using Python and two Java in their work while one had not been using
either of those.

Table 1. Experience in years

Source Experience in | Min | Max | Mean | Median | Mode

Survey (68) | Industry 3.0/33.0 |[12.4 |10.0 5.0
Current role 0.0 14.0 | 3.5 2.0 1.0

Interviews (6) | Industry 11.018.0 | 14.2 |13.5 11.0
Current role 0.0 6.0 2.2 1.5 0.0

4.2 Overview of Data from Tool Surveys and Interviews

In the boxplots® of questionnaire answers, see Fig. 2, the median is shown as
a horizontal line and the arithmetic mean as a dot. The interquartile range

5 https://www.rdocumentation.org/packages,/graphics,/versions/3.5.3/topics/
boxplot.

https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/boxplot
https://www.rdocumentation.org/packages/graphics/versions/3.5.3/topics/boxplot

Applying Surveys and Interviews in Software Test Tool Evaluation 25

(IQR) describes the middle 50% of the data. By default, in R, the formula for
calculating the upper whisker is min(maz(x), Q3+ 1.5x IQR), and for the lower
whisker max(min(z), Q1 — 1.5 x IQR).

Median 85.00 80.00 80.00 95.00 100.00 85.00 85.00 80.00 80.00 85.00 80.00 80.00 75.00 70.00 80.00
Mean 82.72 81.40 79.85 88.98 9250 83.73 80.15 79.09 78.38 79.70 76.69 77.54 68.97 63.00 79.78
IQR 16.25 17.50 21.25 15.00 5.00 1250 15.00 18.75 20.00 20.00 21.25 20.00 25.00 45.00 17.50

n=68 n=68 n=68 n=64 n=66 n=67 n=67 n=66 n=65 n=66 n=68 n=65 n=68 n=65 n=67

e A N S S S A I
T o : :
2 : o
i : o ' -
3 : : i o : : : : : : :
3 | Po= o i i 3 3 3 3 3 |
3 : : : o - = | | | | : :
2 — : : o o : : : : : : :
o L o o R <
i i : | o
2 o _ o o o e O S : . o
o o i :
o o o o o o o : : o
° o -
& o o o o o o o i o
o 3 o]
o ° .
T T T T
O M M R &Q'& SRS N
< & &° &9 ;N F e NS & & @ &
R & & 9 <0 S & @ 0 < Q>
wo & \é§o‘ (ébgﬁ ¢ K P &S < @&& N
& < S P K
& & S T ®
< &

Fig. 2. Variability of questionnaire answers for the criteria in the survey

The interview transcripts were coded according to the criteria (related sen-
tences were coded accordingly) as the questions were based on those. We clas-
sified the thoughts for the criteria from the interviews as positive, negative and
neutral, based on the sentiment, see Table2. The column “Rank” in Table 2
indicates the order of the column “n”, the total number of coded items for each
criterion. The columns “Positive”, “Negative” and “Neutral” items include the
number of coded items and the number of associated interviewees. Most of the
coded items were either positive or neutral (roughly about 40% both), see exam-
ple statements in Table 3. The quantity of coded items provides an overview of
the topics of interest or familiarity, those the interviewees felt easy, comfortable
or important to discuss. A high positive rank may indicate favorable attitude
towards the criterion while a high negative rank may reveal concerns or prob-
lems. Next, we will discuss the criteria in the light of the thoughts from the
interviews.

4.3 Analysis of the Criteria

Applicability. The participants evaluated the applicability of the tool to their
tasks, methods and processes. The interviewees highlighted that the tool is appli-
cable for various different purposes, provided the users have relevant technical

26 P. Raulamo-Jurvanen et al.

Table 2. Interview data coded as Positive, Negative & Neutral items

Rank |n Criterion Positive items Negative items |Neutral items
|Interviewees|# |Interviewees|# |Interviewees
33 | Applicability 16 713 10 |4
26 | Compatibility 15 |6 11 10 |4
15 17 | Configurability 11 |6 00 6 |4
10 25 | Cost- 13 |4 212 10 |5
effectiveness
10 25 | Costs 3 4 17 |5
13 18 | Cross-platform 4 0 10 |5
support
12 20 |Easy to deploy 8|5 11 |6 111
44 |Easy to use 18 |6 2 19 |5
36 | Expandability 23 |6 2 10 |3
52 |Further 16 |5 12 |4 24 |4
development
6 31 | Maintenance 713 11 |5 13 |6
13 18 | Performance 4 5 713
31 | Popularity 11 |5 4 14 |6
32 |Programming 413 10 |4 18 |6
skills
8 28 |Reporting 17 |4 3|2 8 |4
features
Total | 436 175 84 177

= Number of coded items, Interviewees = Number of unique respondents

skills. However, applicability was seen as a dilemma. A multitude of possible con-
texts and ways of utilizing the tool prevents generalizing, e.g., providing detailed
guidelines and best practices. “The fact that the tool is desinged to be a com-
mand line tool enables its use in many contexts, in many operating systems. So,
I would say rather well.” (#2)°. “In terms of tools, it is very applicable and then,
in terms of the language, the structure of writing tests in Robot Framework, that
s also very applicable, because the group that I am working in, this is mostly
manual testers.” (#4).

Compatibility. Compatibility of Robot Framework with the existing tools was
not considered to be a problem threshold by the interviewees. In the survey, it
was the only criterion for which the arithmetic mean was greater than median.
The interviewees pointed out that there are always issues that could be simply
improved, in general. For example, there were needs to have the tool started via
REST-API, or to integrate it with other tools. “And then, whenever there is not

5 #n = ID of the interviewee.

Applying Surveys and Interviews in Software Test Tool Evaluation 27

Table 3. Example statements from the interviews

Criterion

ID

Type

Statement

Applicab.

“Many times people try to use Robot Framework for many other purposes
for which it is not the best tool”

+/-

“It is good for mature cases, where the lifespan of the product or system
is long”

Compatib.

“It is very compatible. The community has created a large number of
libraries for integrating with other tools”

“In my opinion the problem is that people expect it to work out-of-the
box and that is not how it always work”

Configurab.

“It is an advantage that we can easily do configurations from files and we
can avoid hard-coded items”

“I think it is highly configurable, meaning there are several ways in which
to override settings, several ways in which to specify settings”

Cost-Effect.

w

“Cost-effectiveness and re-use are developed along with the experience
and know-how of the tool and its usage”

“It (test automation) may not even be any cheaper than manual work”

Costs

“They are, I mean the only cost is training, so they are very low”

“Deployment costs, a lot, to gain benefits”

Cross-PL.S.

“You can run the tool basically for any platform where needed”

N I =)

“Depending on the environment you are running in, you can specify the
configuration for that, at run-time”

Easy to Dep.

(™)

“You don’t have to have in-depth know-how but for a non-technical
person deployment may be quite difficult”

“Building the test environment is many times the biggest challenge in
every project. But it not necessarily due to the selected tool but more
about the characteristics of the underlying system”

Easy to Use

“To use the tool efficiently, you need to have technical competence. That
is not always clear”

+/-

“There are many libraries, developed in many ways for different purposes
and it’s more of a question which libraries you use and how easy that is”

Expandab.

“For developing libraries you will need programming skills and more
understanding about the system”

+/-

“It is open source and if you want to touch the core system, that is
doable. And the libraries, those are, as a general rule, open source and
you may expand those, too”

Further Dev.

“There is the Foundation developing the tool and it convinces again, end
customers or other customers, that there is sustainable development for
the tool”

“It was some web-automation demo I found, and I tried to use it... it did
not quite work and the instructions would require small elaboration and
the links updating... then it would be easier for the people to get started”

Maintainab.

“Another good feature is the tool is keyword-based, at the core of the
maintainability, how you can create layers of keywords and how you can
create meaningful abstractions for the test cases”

+/-

“The way in which you write your tests and your keywords... will
essentially determine how easy or how difficult it is, for maintenance and
re-use in the future”

Performance

“The tool itself is good, or has always been adequate, so I have not had
such problems”

+/-

“At the end of the day, it is up to the user of the tool”

(continued)

28 P. Raulamo-Jurvanen et al.

Table 1. (continued)

Criterion ID|Type|Statement

Popularity |6 |+ “In Finland, the tool is well-known and you would have to have good
reasons for selecting another tool”
3 |- “A community-type tool like this has not had credibility in all branches of
industry”
Progr. Skills |5 |+ “I have heard that people without any programming skills can create

test-automation scripts with the tool, and that is based on the keywords”

6 |- “If you have a misconception about Robot Framework, library or any
other framework, that you do not have to write any code, that is a
terrible misconception”

Reporting F.|4 |+ “As long as the tests were written well, anybody without programming
skills should be able to read the log and understand what happened”

5 |- “There is not much visualization. If you want something more, you have
to build it yourself, that is my opinion”

ID=Interviewee ID, Type: (+)=Positive, (-)=Negative & (4 /-)=Neutral

a particular library for integrating with a tool, it is often to make a tool available
via an API, so that Robot simply then just calls the tool’s APL” (#4).

Configurability. Our participants evaluated the possibilities for configuring the
tool for their needs. The interviewees found configuration of both the run time
environment and reporting for a test set very practical. None of the interviewees
came up with negative coded items, but Configurability had the least coded
items. Thus, it could be seen as an issue having no use for emphasis. For those
having experience with configurations, the tool seems configurable. “There are
moderately a lot of different options to configure the handlig of the tests, the kind
of tests you want, how you want to view the report, format and all that.” (#6).

Cost-Effectiveness. Surprisingly, there were not very many coded items, and
most of those were positive or neutral. A tool, as test automation in general, is
cost-effective if applied the right way, at the right time alongside the development
work. What is the right way and the right time are volatile and contexts specific
concepts. Amount of money was seen as a likely issue for consultants and clients
to discuss, but difficult to verify in real life. One of the interviewees pointed out
cost-effectiveness as a way to prioritize the work load. They emphasized the fact
that test automation helps to become faster, i.e., in the best case it helps to
deliver software more often, in smaller batches and with better quality. “If one
starts from the scratch, it takes some time and some studying. Like everything
else, from scratch, so I do not see that as a problem .” (#3).

Costs. The tool was evaluated for expected costs (for acquisition and use).
In survey responses, the median was the highest. We expect the main reason
for that to be the fact the tool is free. Costs was the criterion with the most
outliers (given by 10 respondents having been in the software industry on average

Applying Surveys and Interviews in Software Test Tool Evaluation 29

12.9 years). In the interviews, there were 25 coded items, most of which were
neutral (17). The interviewees highlighted the importance of understanding the
inevitable costs related to the tool. The required resources for setting up and
maintaining a system (e.g., people, training or time) depend on the context, and
have direct effect on Costs and Cost-Effectiveness. “The problem is, how you
organize the use in the company... where the costs come from, that holds true
how much you have available resources, people, how technically competent they
are.” (#2). “And its [test automation] maintenance costs, a lot.” (#6).

Cross-Platform Support. The participants evaluated their view on cross-
platoform support of the tool. In the interviews, there were no negative coded
items. The tool was considered to have good support for different platforms.
“The support for SUTs comes via the libraries and the support is broad. We have
tested all kinds of systems, from elevators to insurance systems... and network
protocols, and dynamic web-applications, so it is very, very versatile, in that
sense.” (#1). “You may run Robot anywhere where you can run Python, which
means from mainframes to Raspberry Pi’s and small micro controllers.” (#6).

Easy to Deploy. The participants considered the initial efforts to take the tool
into use. In the interviews, there were the 2°¢ most negative items (of all crite-
ria). All interviewees had stated one or more negatively coded items. Although
the interviewees found the deployment to be rather easy, they emphasized the
need for technical know-how, preferably with Python. The interviewees high-
lighted the fact that the difficulties may not only be related the tool but also to
test automation, in general, and to the underlying system itself as well. “When
considering the easiness of the deployment, it is difficult to disassociate the tool,
the system and all that is around it.” (#1). “In a way, it is easy to deploy, but
the difficulty lies in that it truly requires planning.” (#3).

Easy to Use. We requested the participants to consider their perceptions of
Easy to Use. In the interviews, the criterion had the 2" most coded items. Those
were mainly positive (18) and neutral (19). Thus, we assume interviewees felt
easy to talk about their experiences using the tool. The interviewees pointed
out the need for technical know-how. They thought that the concept of test
automation in general, in the given context, may be difficult to comprehend.
Possible wrong choices or mistakes in the setup may require unexpected changes
to the test sets (or even to the system) later on. Effective use of the tool requires
careful planning. “Planning must be done the right way, meaning, that you can
also make bad choices that may backfire on you later.” (#3). “The people on
my teams have really seen the effectiveness of it, and have enjoyed working in
it.” (#4). “Writing the actual tests is easy and clear, of course.” (#5).

Expandability. For Ezpandability, the participants could share their views on
the possibility to remold or expand the tool. An OSS tool has its benefits and its

30 P. Raulamo-Jurvanen et al.

downsides when considering expandability. There may be an active community
of software practitioners developing the features of the tool. Nevertheless, one
needs programming skills and understanding of the problem area and/or the
architecture to make changes. “With Robot Framework, you need to be careful
whether to talk about the tool itself or the ecosystem, as many issues that have
been discussed over the years, that would be good to have in a tool in one way
or another, are such that could already be done as an extension (library) and in
that sense there is necessarily no need to modify the tool itself.” (#2). “There are
true programming languages to use, and the sky is the limit, so, expandability
can be achieved with those.” (#1).

Further Development. The participants could evaluate whether they find
the Further Development of the tool (by the OS community) active or not. The
criterion was the most discussed among the interviewees and the coded items
were mainly neutral (24). What could not be understood from the survey was
the dualistic nature of the tool. The tool consists of two fundamental entities,
the core tool and related ecosystem (libraries and tooling type of development).
The core tool is a framework using the functionality provided by the ecosystem.
The two concepts are distinct, developed and maintained separately. The core
tool itself is rather stable. It is the ecosystem that needs to change according
to the conditions around the tool, in the industry, in general. The interviewees
emphasized that the core tool is well designed for adding new functionality via
libraries. The documentation must be up-to-date to provide value to the users.

The Robot Framework Foundation supports the resourcing for the develop-
ment of the core tool. “We have this foundation, which will support development,
collect membership fees from member companies to finance basic updates to Robot
[Framework] to keep it compatible and to work in all platforms in the future, too.
And of course, there is the open source community that contributes a lot to the
libraries.” (#1). “The fact that the foundation supports the development, it is a
good thing.” (#3). It was noted that if the difference between the core tool and
the ecosystem is not understood, a low quality library may invite unfounded crit-
icism for the core tool. “What I hope is that the discussions, in general, would
move from the core tool to the libraries and testing... and there would be the
common understanding that if something goes wrong, it is not necessarily Robot
Framework but some library, instead. And even though Robot Framework has
a public site for reporting bugs, many of those are closed because those are not
related to the core tool but to some specific library.” (#2). “You should develop all
libraries and other type of development following the good software development
practices, but what those really are, that is a good question.” (#2).

Maintenance of Test Cases and Data. The participants could evaluate
maintenance and re-use of test cases and data. In the interviews, the coded
items were mainly neutral (13) and negative (11). It became clear the prac-
titioners find maintenance of test cases and data laborious and costly, if not
planned carefully. Furthermore, practitioners maintaining the test system must

Applying Surveys and Interviews in Software Test Tool Evaluation 31

need competence for the tasks. The help of possible external consultants must
meet the needs and competence level of the clients. “I think that you have to
be very careful in setting up your library of tests, and it can be very simple
to create a maintenance headache for yourself.” (#4). “Development of libraries

may be challenging, development of keywords, what I have heard, may easily
explode.” (#5).

Performance. We queried about the Performance of the tool for its purpose.
In the survey, based on the boxplots, Performance was evaluated as many other
criteria. In the interviews, there were not many coded items. The interviewees
considered the tool itself to be fine, performance-wise, although they found per-
formance to be a difficult concept to measure. The problems with performance
can be related to the system under test (SUT), set up of the overall test system
and its users, not just the tool. So, this is not a self-contained criterion. “So, as
you are using the tool, the tool itself performs just fine, but... there are things like
parsing files, for example, that is probably done faster outside of the tool.” (#4).

Popularity. In the survey, Popularity had the 2" lowest arithmetic mean. The
interviewees noted that the tool is rather well-known in Finland and in the Nordic
countries, but not globally. According to the interviewees, practitioners seem to
rely on positive hearsay and meet-ups, as well as testimonials from reference
companies. Companies may be reluctant to change an invested tool, even if the
tool was not found as the best option in the task. “Testing as a field suffers a
bit from the fact that information is not shared the similar way as in software
development.” (#2). “I’'m not actively involved in the community but I have been
following the Slack channel, the Slack work space, which I think is great... I think
the most important enablers for future development are the community itself, the
fact that the community is welcoming, that the community is helpful.” (#4).

Programming Skills. The participants assessed the level of required Program-
ming Skills. In the survey, the criterion had the lowest arithmetic mean. In the
interviews, it was the 5*® most coded criterion. Programming skills and technical
skills are issues of importance for the use of the tool. A high variance in ques-
tionnaire answers and a negative nuance in the coded items from the interviews,
suggests that technical competence, in general, is of importance. Building and
maintenance of the test environment, and development of needed functionalities
are linked to performance and cost-effectiveness of the tool yet tool cost itself is
not the issue. “Would be good to understand the basic concepts of programming
for creating test cases in the right abstraction level, which impacts maintainabil-
ity.” (#1). At the time of the study, the testing capabilities of the tool could be
extended by test libraries implemented with Python or Java’. So, it is not only
about programming skills, but also about specific programming languages.

" https://robotframework.org)/.

https://robotframework.org/

32 P. Raulamo-Jurvanen et al.

Reporting Features. The participants assessed the set of reporting features in
the tool to be limited or rich. In the interviews, the coded items in the interviews
were mainly positive (17). The interviewees emphasized Reporting Features as a
tool not only for the developers, testers and managers but also for the clients.
The tool provides logs for finding bugs and understanding the behaviour of
the system, and rich data for visualization. Programming skills are not needed
for reading the logs or reports, but for creating rich reports with charts and
graphs (for connecting external tools). “An example of tasks where you don’t need
programming skills, I would say, reading the logs and reading the reports.” (#4).

5 Discussion

Tool evaluations depend on the interpretation of a construct under study, i.e.,
have a degree of subjectivity [26] but also validity as measures [12]. The question-
naire answers are results from plain realism acquired from personal experiential
knowledge for reasoning about each criterion as such. We conducted interviews
to grasp detailed understanding about the findings.

For RQ1. “How do practitioners ground their tool evaluations?” we assessed
the foundation for the responses of the interviews. One emphasized testable
requirements and realistic benefits for the test system to be built. Another
noted that test automation is expensive in the short term, but may be very
economical, in the long run. Importantly, test automation is efficient and pru-
dent use of resources in the development process. “It (test automation) helps you
to be faster... helps you to achieve the goals and to release faster, more often, in
small batches. It helps you to achieve better quality, if you have done it the right
way.” (#6).

The different criteria are interconnected. The interviewees connected crite-
ria like Costs, Cost-Effectiveness and Ezrpandability not only to the to technical
competence, but also to the level of Programming skills. Evaluation of a tool cri-
teria may be related to the level of knowledge of the system, in general. “Building
the test environment is the biggest challenge, in general, in every project.” (#1).
“Sometimes, it is really difficult to find the right way to apply your solution...
efficient use of the tool requires some level of technical competence.” (#2). “Test
automation is always a programming issue, and if you want to have test automa-
tion, you need to be able to program.” (#6).

The issues regarding Costs and Programming skills are interconnected to
the main characteristics of OSS®: free to use and source code accessible to all.
An OS tool is free and expandable, and there may be an active OS community
developing it. Yet, tool related tasks require investments (e.g., competent people,
time and money), within contexts of the organizations utilizing the tool and the
community developing the tool. Lack of technical competence or programming
skills seem disadvantageous for tool usage and evaluations. Practitioners seem

8 https://opensource.org/osd.

https://opensource.org/osd

Applying Surveys and Interviews in Software Test Tool Evaluation 33

to ground their evaluations on conscious understanding of encountered or envi-
sioned issues. The interviewees reflected on their insights with rich, informative
examples from real life, verbalizing their reasoning.

With RQ2. “How to identify possible false expectations from tool surveys?”,
we focused on finding possible potentially misleading or restrictive perceptions.
From the boxplots (see Fig. 2), we could observe many of the criteria, for exam-
ple, Easy to Use, Expandability and Performance, to be of similar shape, and to
have both the median and the length of the whiskers roughly the same. However,
Costs and Programming Skills were the criteria having the lowest and the high-
est variance in the questionnaire answers, respectively. Furthermore, the findings
for those criteria from the two methods were contradictory.

The respondents agreed the most on Costs, majority finding costs for acqui-
sition and usage of the tool to be very low. The finding suggests they considered
the licensing fee, not costs of required training or using the tool. Thus, it seems
we missed to cover different aspects of Costs in the survey. However, it is pos-
sible they had not faced costs (as extra costs but work) or needs for training.
“If you have enough of technical competence, at that stage, costs will be trivially
small, because you just re-prioritize the tasks of those people for Robot Frame-
work” (#2). The interviewees, highlighted that software test automation costs, a
lot, no matter the tool. “Test automation is always a big investment for a com-
pany. It costs, always. Costs is not about just getting the software, it is about
using it, setting up the infrastructure, learning to use it, creating, maintaining,
all that. It includes a lot of costs and Robot Framework is not an exception.” (#6).

Programming skills had the lowest arithmetic mean and median of the crite-
ria. Role and tasks of a practitioner using the tool impact the level of required
programming skills. The interviews revealed the dualistic nature of the tool. The
Robot Framework foundation is resourcing the development of the core tool, but
has no control over resourcing or quality of the ecosystem around it. “If some
of the libraries does not support your thing, you are basically on your own, you
need to build the library yourself.” (#6).

To summarize our findings, we consider that well-argued experiences from
expert practitioners allow to reveal unexpected problems, clarify common mis-
conceptions or confirm understanding about tool criteria. Neither single criterion
nor grounded reasoning by a peer should be decisive. “It is the accumulation of
that information, not the ratings themselves, that is decisive [12]”.

6 Threats to Validity

As our target population for the use case was very specific, i.e., software practi-
tioners experienced with Robot Framework, we could not rely on random sam-
ples. We used non-probabilistic sampling methods: convenience sampling com-
plemented with snowball sampling [10]. We expected to have representative sam-
ples of the target population, i.e., software practitioners experienced on using
the tool (in their contexts). While the survey respondents (n = 68) were expected
to be experienced in using Robot Framework, we could not assess their expe-
riences of each criterion. In a survey, the likelihood of participation may be

34 P. Raulamo-Jurvanen et al.

related to negative experiences [10]. To mitigate deficiencies in collecting data
and to understand the phenomena better, we used a complementary method,
interviewing (n=6), and triangulated the results with those from the survey.
As the participants of the study were mainly from Finland, the results may
be biased by confounding factors e.g., knowledge of the tool or contexts. How-
ever, the survey participants came from 13 countries, 10 participants from other
European countries and 21 from outside Europe. Experience in the development
of the tool was seen as in depth view of the tool. The cohesion and consistency
of the results from the survey are impacted by the facts that tool evaluations are
highly subjective, and we could not control the contexts or the constructs. Thus,
our results are not generalizable as such, but provide a snapshot of opinions, in
a given time, and are presented to be useful for analyzing dissenting opinions.

7 Conclusions and Future Work

We complemented a survey with interviews for analyzing differing opinions about
characteristics of an OSS testing tool. Our survey revealed Costs and Program-
ming Skills to be quite different from the other criteria. The interviews clarified
a tool may be free, but investments carry costs which, in turn, are always context
specific. While cost is not a quality characteristic of a tool, tool related costs are
restrictive and can hamper strategic decisions. Technical competence is vital for
efficient tool adoption and usage, and development of the tool. A tool is no silver
bullet but a facility for re-prioritizing tasks in the software development work.
We conclude that complementary methods can dispel common misconcep-
tions about characteristics or usage of a tool, or about software test automation
as a whole. Contradictions should merit further studies and reasoning, in the
context. There is a need for more, in depth research on software testing tool
evaluations. In the future, we plan to study viewpoints of the practitioners, in
more detail. Academic research on software test tool criteria can help the prac-
titioners to view the forest from the trees, and focus on achievable goals.

Acknowledgments. The work was supported partially by research Grants No.:
3192/31/2017 from Business Finland for the EUREKA ITEA3 TESTOMAT project
(16032), and No.: 286386-CPDSS from the Academy of Finland for the CPDSS project.

References

1. Bhargava, S., Guleria, S., Gaurang, A.: A study on the current trends in software
testing tools. Int. J. Adv. Res. Comput. Sci. 8(5), 129-131 (2017)

2. Capgemini, Micro Focus and Sogeti: World quality report 2017-2018 (2017).
https://www.sogeti.com/globalassets/global /downloads/testing/wqr-2017-2018/
wqr-2017_v9_secure.pdf. Accessed 5 June 2019

3. Dyba, T., Kitchenham, B.A.; Jgrgensen, M.: Evidence-based software engineering
for practitioners. IEEE Softw. 22(1), 58-65 (2005). https://doi.org/10.1109/MS.
2005.6

https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://www.sogeti.com/globalassets/global/downloads/testing/wqr-2017-2018/wqr_2017_v9_secure.pdf
https://doi.org/10.1109/MS.2005.6
https://doi.org/10.1109/MS.2005.6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Applying Surveys and Interviews in Software Test Tool Evaluation 35

Fenton, N., Pfleeger, S.L., Glass, R.L.: Science and substance: a challenge to
software engineers. IEEE Softw. 11(4), 86-95 (1994). https://doi.org/10.1109/52.
300094

Garousi, V., Zhi, J.: A survey of software testing practices in canada. J. Syst.
Softw. 86(5), 1354-1376 (2013). https://doi.org/10.1016/j.jss.2012.12.051
Goncalves, J., Hosio, S., Kostakos, V.: Eliciting structured knowledge from situated
crowd markets. ACM Trans. Internet Technol. 17(2), 1-21 (2017). https://doi.org/
10.1145/3007900

Hosio, S., Goncalves, J., Anagnostopoulos, T., Kostakos, V.: Leveraging wisdom
of the crowd for decision support. In: Proceedings of the 30th International BCS
Human Computer Interaction, pp. 1-12. BCS Learning & Development Ltd., Swin-
don (2016). https://doi.org/10.14236 /ewic/HCI2016.38

Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation. IEEE Softw. 12(4), 52-62 (1995). https://doi.org/10.1109/52.391832
Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C.,
Emam, K.E., Rosenberg, J.: Preliminary guidelines for empirical research in soft-
ware engineering. IEEE Trans. Softw. Eng. 28(8), 721-734 (2002). https://doi.org/
10.1109/TSE.2002.1027796

Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Shull, F., Singer,
J., Sjoberg, D.I.LK. (eds.) Guide to Advanced Empirical Software Engineering, pp.
63-92. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5_3
Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empirical Softw. Eng. 10(3), 311-341 (2005).
https://doi.org/10.1007 /s10664-005-1290-x

Linacre, J.M.: Judge ratings with forced agreement. Trans. Rasch Meas. SIG Am.
Educ. Res. Assoc. 16(1), 857-858 (2002)

Murphy-Hill, E., Lee, D.Y., Murphy, G.C., McGrenere, J.: How do users discover
new tools in software development and beyond? Comput. Support. Coop. Work
(CSCW) 24(5), 389-422 (2015). https://doi.org/10.1007/s10606-015-9230-9

Ng, S.P., Murnane, T., Reed, K., Grant, D., Chen, T.Y.: A preliminary survey
on software testing practices in Australia. In: Proceedings of the 2004 Australian
Software Engineering Conference, pp. 116-125. IEEE, NJ, USA (2004). https://
doi.org/10.1109/ASWEC.2004.1290464

Pano, A., Graziotin, D., Abrahamsson, P.: Factors and actors leading to the adop-
tion of a Javascript framework. Empirical Softw. Eng. 23(6), 3503-3534 (2018).
https://doi.org/10.1007/s10664-018-9613-x

Perry, D.E., Sim, S.E., Easterbrook, S.M.: Case studies for software engineers. In:
Proceedings. 26th International Conference on Software Engineering, pp. 736-738
(2004). https://doi.org/10.1109/ICSE.2004.1317512

Poston, R.M., Sexton, M.P.: Evaluating and selecting testing tools. In: Proceedings
of the Second Symposium on Assessment of Quality Software Development Tools,
pp- 55-64 (1992). https://doi.org/10.1109/AQSDT.1992.205836

Rafi, D.M., Moses, K.R.K., Petersen, K., Méantyld, M.V.: Benefits and limitations
of automated software testing: systematic literature review and practitioner survey.
In: 7th International Workshop on Automation of Software Test (AST), pp. 36-42
(2012). https://doi.org/10.1109/TWAST.2012.6228988

Rainer, A., Hall, T., Baddoo, N.: Persuading developers to “buy into” software
process improvement: a local opinion and empirical evidence. In: Proceedings of the
2003 International Symposium on Empirical Software Engineering, 2003, ISESE
2003, pp. 326-335. IEEE, Rome, September 2003. https://doi.org/10.1109/ISESE.
2003.1237993

https://doi.org/10.1109/52.300094
https://doi.org/10.1109/52.300094
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1145/3007900
https://doi.org/10.1145/3007900
https://doi.org/10.14236/ewic/HCI2016.38
https://doi.org/10.1109/52.391832
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1007/s10664-018-9613-x
https://doi.org/10.1109/ICSE.2004.1317512
https://doi.org/10.1109/AQSDT.1992.205836
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1109/ISESE.2003.1237993
https://doi.org/10.1109/ISESE.2003.1237993

36

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

P. Raulamo-Jurvanen et al.

Raulamo-Jurvanen, P., Kakkonen, K., Méantyld, M.: Using surveys and web-
scraping to select tools for software testing consultancy. In: Abrahamsson, P.
Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.)
PROFES 2016. LNCS, vol. 10027, pp. 285-300. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49094-6_18

Raulamo-Jurvanen, P., Méantylad, M.V., Garousi, V.. Choosing the right test
automation tool: a grey literature review of practitioner sources. In: Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering, EASE 2017, pp. 21-30. ACM, New York (2017). https://doi.org/10.
1145/3084226.3084252

Raulamo-Jurvanen, P., Hosio, S., Méntyla, M.V.: Practitioner evaluations on soft-
ware testing tools. In: Proceedings of the Evaluation and Assessment on Software
Engineering, EASE 2019, pp. 57-66. ACM, New York (2019). https://doi.org/10.
1145/3319008.3319018

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131-164 (2009). https://doi.
org/10.1007/s10664-008-9102-8

Seaman, C.B.: Qualitative methods in empirical studies of software engineer-
ing. IEEE Trans. Softw. Eng. 25(4), 557-572 (1999). https://doi.org/10.1109/32.
799955

Sjeberg, D.I.LK., Dyba, T., Jgrgensen, M.: The future of empirical methods in
software engineering research. In: Future of Software Engineering, FOSE 2007, pp.
358-378. IEEE (2007). https://doi.org/10.1109/FOSE.2007.30

Stemler, S.E.: A comparison of consensus, consistency, and measurement
approaches to estimating interrater reliability. Pract. Assess. Res. Eval.
9(4), 1-11 (2004). https://www.ingentaconnect.com/content/doaj/15317714/
2004,/00000009,/00000004 /art00001

Taipale, O., Smolander, K., Kalvidinen, H.: Cost reduction and quality improve-
ment in software testing. In: Software Quality Management Conference (2006)
Vos, T.E.J., Marin, B., Escalona, M.J., Marchetto, A.: A methodological frame-
work for evaluating software testing techniques and tools. In: 12th International
Conference on Quality Software, pp. 230-239. IEEE (2012). https://doi.org/10.
1109/QSIC.2012.16

Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications, Inc.
(2014)

https://doi.org/10.1007/978-3-319-49094-6_18
https://doi.org/10.1007/978-3-319-49094-6_18
https://doi.org/10.1145/3084226.3084252
https://doi.org/10.1145/3084226.3084252
https://doi.org/10.1145/3319008.3319018
https://doi.org/10.1145/3319008.3319018
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/FOSE.2007.30
https://www.ingentaconnect.com/content/doaj/15317714/2004/00000009/00000004/art00001
https://www.ingentaconnect.com/content/doaj/15317714/2004/00000009/00000004/art00001
https://doi.org/10.1109/QSIC.2012.16
https://doi.org/10.1109/QSIC.2012.16

®

Check for
updates

Test-Case Quality — Understanding
Practitioners’ Perspectives

Huynh Khanh Vi Tran®™, Nauman Bin Ali, Jiirgen Borstler,
and Michael Unterkalmsteiner

SERL Sweden, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
{huynh.khanh.vi.tran,nauman.ali, jurgen.borstler,
michael.unterkalmsteiner}@bth.se

Abstract. Background: Test-case quality has always been one of the
major concerns in software testing. To improve test-case quality, it is
important to better understand how practitioners perceive the quality of
test-cases.

Objective: Motivated by that need, we investigated how practitioners
define test-case quality and which aspects of test-cases are important for
quality assessment.

Method: We conducted semi-structured interviews with professional
developers, testers and test architects from a multinational software com-
pany in Sweden. Before the interviews, we asked participants for actual
test cases (written in natural language) that they perceive as good, nor-
mal, and bad respectively together with rationales for their assessment.
We also compared their opinions on shared test cases and contrasted
their views with the relevant literature.

Results: We present a quality model which consists of 11 test-case
quality attributes. We also identify a misalignment in defining test-case
quality among practitioners and between academia and industry, along
with suggestions for improving test-case quality in industry.

Conclusion: The results show that practitioners’ background, includ-
ing roles and working experience, are critical dimensions of how test-case
quality is defined and assessed.

Keywords: Software testing - Natural-language test case - Test-case
quality

1 Introduction

Testing plays an important role in software quality assurance, which has been
one of the main concerns in the software development life cycle. The fundamental
artefacts in testing are test cases. Grano et al. have shown in their study that
good test cases in terms of being simple and readable make it easier for developers
to maintain them and to keep up with fast software development life cycle [11]. A
study by Athanasiou et al. also showed that high quality of test code could also
increase the performance of development teams in fixing bugs and implementing

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 37-52, 2019.
https://doi.org/10.1007/978-3-030-35333-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_3

38 H. K. V. Tran et al.

new features [1]. Therefore, good test cases increase the confidence in testing,
and thereby assist product release decisions. Hence, assuring the quality of test
cases is an important task in quality assuring software-intensive products.

There have been studies which focused on different test-case quality
attributes such as performance, readability, and effectiveness [3,7,10,11,13,17,
19,20,24]. Some studies adapted the ISO standard for software quality to define
test-case quality [18,23]. Those studies provided researchers’ perceptions of test-
case quality. Though the contributions from academia are important, it is neces-
sary to verify how knowledge could be transferred between academia and indus-
try. The first step would be to investigate how test-case quality is understood
by practitioners. However, there is currently a lack of empirical studies on the
topic.

To reduce this gap, we conducted an exploratory study to investigate how
test-case quality is defined and assessed in practice. Our focus was manual test
cases written in natural language. This type of test cases is still required for test-
ing levels such as system testing, acceptance testing, and for a testing approach
such as exploratory test. Hence, studying how the quality of natural-language
tests is perceived in practice is as important as of code-based test cases. The
contributions of the study are as follows:

— Descriptions of test-case quality attributes identified by practitioners.

— Reasons for the difference in defining and assessing test-case quality among
practitioners with different roles, and between academia and practice.
Context factors to consider when defining test-case quality.

— Suggestions to improve test-case quality by practitioners.

Sources of information for understanding and assessing test-case quality sug-
gested by practitioners.

The remainder of the paper is structured as follows: Sect. 2 describes related
work. Section 3 describes the study design, followed by Sect.4 which discusses
threats to validity. Section 5 discusses our findings. Our conclusions and future
work are summarised in Sect. 5.

2 Related Work

We identified nine studies which involved practitioners in their work focusing on
test-case quality [1,2,4,6,8,9,12,15,22]. We organised them into three groups.
The first group includes two studies which integrated practitioners’ knowl-
edge into the studies’ results regarding test-case quality [2,22]. Adlemo et al. [22]
introduced 15 criteria for good test cases. There was no specific focus on types of
test cases. Of those criteria, ten were inspired by the literature while five came
from practitioners’ suggestions. The criteria were ranked by 13 Swedish practi-
tioners with experience in software testing and software development. Repeatabil-
1ty, meaning that a test case should produce the same result whenever it receives
the same input, had the highest votes from practitioners. Bowes et al. [2], focused
on test code in unit testing. The authors identified 15 testing principles collected

Test-Case Quality — Understanding Practitioners’ Perspectives 39

from three sources: a workshop with industrial partners, their software testing
teaching materials, and practitioners’ books. Simplicity in terms of test-code
size, number of assertions and conditional test logic, is considered as the most
important principle, and is the foundation for the other ones.

The second group contains four studies which had practitioners evaluate their
hypotheses relating to some test-case quality attributes [1,4,6,15]. Jovanovikj
et al. [15] introduced an approach and a tool to evaluate and monitor test-
case quality. They presented eight quality characteristics based on Zeiss et al.’s
work [23], which relied on the ISO/IEC 25010 (ISO/IEC, 2011) software quality
models. To verify their approach’s applicability, they conducted a case study
in the context of natural-language tests, and had interviews with two quality
managers and some testers. Similarly, Athanasiou et al. [1] proposed a model
to assess three test-code quality attributes, namely Completeness, Effectiveness,
and Maintainability with associated metrics. To verify if the model was aligned
with practitioners’ opinions, they compared its results from two software systems
with the evaluations of two experts via focused interviews. They concluded that
there is a strong correlation between test code quality, throughput, and produc-
tivity of issue handling. In another study, Daka et al. [6] introduced a model of
unit test readability which could help to generate test suites with high coverage
and high readability. Their model involved human judgement, but there was no
clear indication on their selection criteria. Focusing on only test-case effective-
ness, Chernak [4] proposed an evaluation and improvement process for test cases
in general. The process was used by one project team, including three testers
and 10 developers who worked on a banking system.

The third group includes three studies which discussed test smells [8,9,12].
Hauptman et al. [12] presented seven test smells in natural-language tests, which
were collected based on their experiences with evaluating natural-language sys-
tem tests. Their study was claimed as the first work on test smells in the context
of natural-language tests. For smells in test code, Garousi et al. [9] conducted
a systematic ‘multivocal’ literature mapping and developed a classification for
196 test smells. The authors included their descriptions of top 11 most discussed
test smells in a subsequent study [8].

The related works show that practitioners’ perceptions of test-case quality
have not been well studied. Particularly, we have not identified any study focus-
ing on eliciting first-hand data from practitioners on their perceptions of test-case
quality in the context of natural language tests.

3 Research Method

The objective of the study is to gain a better understanding of practitioners’
perceptions towards test-case quality. We conducted an exploratory study with
a multinational telecommunication company in Sweden. This type of study was
chosen since the research focus on eliciting practitioners’ genuine perspective on
test-case quality has not been well studied. The exploratory study helped us to
get more familiar with the research topic, to determine what the study design(s)
should be for our subsequent studies on the same topic.

40 H. K. V. Tran et al.

In this study, we used semi-structured interviews to explore the practitioners’
perspectives on the topic. According to Robson and McCartan [21], this interview
approach allows researchers to flexibly modify the interview questions depending
on the interviewees’ answers. Since the interviews were about discussing test-case
quality, the same strict questionnaire would not be applicable to all interviewees.
Also, the interviews were based on real test cases provided by the interviewees.
Thanks to the explicit test cases, our approach makes it easier for interviewees
to refer to instances of quality aspects instead of vague, generic or abstract ideas.

3.1 Research Questions

— RQ1. How do practitioners describe test-case quality? The research question
directly connects to our study’s objective. Without defining quality criteria
upfront, we first want to elicit information on how practitioners perceive test-
case quality.

— RQ2. How well is the understanding of test-case quality aligned among practi-
tioners in a company? Test-case quality might be assessed differently depend-
ing on how it is perceived by the assessors. That could affect testing-related
activities such as test-case design, and test-case maintenance. Therefore, we
want to understand whether practitioners perceive test-case quality differ-
ently; if so, then we want to identify the potential reasons.

— RQ3. What context factors do practitioners consider when assessing test-case
quality? The context factors could be testing level, testing purpose, charac-
teristics of the software system under test, etc. Test-case quality might be
context-dependent. Hence, we want to identify the potential context factors
or aspects which could influence how test-case quality is assessed.

— RQ4. What are potential improvements suggested by practitioners for improv-
ing test-case quality? Answers to this research question would help us to
understand practitioners’ needs regarding test-case quality, which could give
us and researchers potential research directions.

— RQ5. What information sources guide practitioners’ opinions of test-case
quality? Identifying such information sources could helps us to understand
why practitioners perceive test-case quality in certain ways.

3.2 Data Collection

The data was collected from the interviews which included test cases provided
by the interviewees. Before conducting the study, we had a meeting with the
company’s representatives to present our study’s design and to obtain basic
understanding of the company’s structure, and potential interviewees.

Interview Design. Before conducting the interviews, we asked each participant
to provide us three test cases with their quality classification (good, bad or
normal). They could choose any test case from the company’s test suites that
they are familiar with. We also asked for a written rationale for the classification,

Test-Case Quality — Understanding Practitioners’ Perspectives 41

since we not only wanted to see whether other interviewees would rate them
similarly, but also whether they would provide similar reasons. We intentionally
did not define quality criteria upfront in order to elicit the genuine perceptions of
the interviewees. We swapped the test cases between two participants who work
in the same team. Before the interviews, we informed the interviewees which test
cases they had to review extra. Hence, in the interviews, the swapped test cases
were also judged by the interviewees so that we could gauge their alignment.

We used the pyramid model [21] for our interview session. Hence, each inter-
view starts with specific questions followed by more open questions. More specif-
ically, the interview session is divided into three phases.

— Part 1: Background Information: we focused on obtaining information about
the interviewee’s testing experience.

— Part 2: Test Case Classification: we asked the interviewee to clarify his reasons
for his test-case quality classification and to discuss some test cases given by
another participant.

— Part 3: General Perception of Test-Case Quality: we had a more generic dis-
cussion with the interviewee about his or her perception of test-case quality.

To mitigate flaws in our interview design, we conducted a pilot interview
with a colleague whose research interest includes software testing and has been
working with test cases for years. The interview questionnaire could be found at
https://tinyurl.com/y6qakcjc.

Participants Selection. Our selection criteria were that (1) a participant
should be a tester and/or a developer; (2) the participant has at least one year
of working experience relating to software testing. Our selection is convenience
sampling [16] as we involved those who meet our criteria and are willing to par-
ticipate in the interviews. At the end, we had six participants from three different
teams working in different projects. Their information is described in Table 1.
Even though four of them are test architects, their responsibilities still involve
working with test cases. Hence, having them participate in the study did not
affect our study design.

Interview Execution. The interviews were conducted by two researchers each.
One researcher asked questions while the other took notes and added extra
questions for clarification if needed. Each interview took around one hour, and
was audio-recorded with the participant’s consent.

Test Cases. In total, we collected 17 manual natural-language test cases as
not all practitioners followed the instruction of providing three test cases each.
They were extracted from the company’s test suites for functional testing. We
focused on the following information of a test case in our analysis: ID, name,
description, and steps. Even though there is no strict format for the test case’s
description, it often includes, but does not require, the following information:

https://tinyurl.com/y6qakcjc

42 H. K. V. Tran et al.

Table 1. Participants’ experience, roles, tasks and test cases provided

ID |Role Exp®|Make |Design|Review | Report | Maintain | Execute | TC ID
TP® |TCs® |TCs |TR? |TCs TCs
P1|Test architect | 6 v v v v v P1.1-3
P2 | Tester 14 v v P2.1-4
P3| Test architect | 6 v v v v v P3.1-2
P4 | Tester, test 20 v v v v v P4.1-3
architect,
consultant
P5| Developer 5 v v P5.1-2
P6| Test architect | 15 v v v v v P6.1-3

¢Exp: number of years of working experience in testing
b TP: test plan

¢ TC: test case

4 TR: test results

purpose, preconditions, additional information, references, and revision history.
Additionally, we also received the quality classification (Good/Bad/Normal) and
the written explanations before the interviews. Nonetheless, we could not report
the actual test cases’ content due to confidentiality reasons.

3.3 Data Analysis

Interview Data. Before analysing the data, the first author transcribed and
anonymised all audio recordings of the interviews. The transcribed data were
coded using a thematic coding approach [5]. More specifically, we applied an inte-
grated approach, which allows codes to be developed both inductively from the
transcribed data and deductively from the research questions and researchers’
understanding of test-case quality in general. The main themes which were
inspired by the research questions are as follows:

— Practitioners’ Background Information: contains information such as roles,
testing experience;

— Test-Case Quality Description: contains information about how practition-
ers described test-case quality and their selection of the top three quality
indicators or attributes of a good test case and of a bad one;

— Test-Case Quality Assessment: contains information about practitioners’ clas-
sification of test-case quality and their reasoning;

— Test-Case Quality Alignment: contains information about differences and sim-
ilarities in practitioners’ perceptions of test cases and their reasoning;

— Test-Case Quality Improvement: contains information about practitioners’
suggestions to improve test-case quality;

— Source of Information: contains information about sources that practitioners
refer to when they need to assess or get a better understanding of test-case
quality.

Test-Case Quality — Understanding Practitioners’ Perspectives 43

For each interview, we followed the following steps:

Step 1: Starting from the beginning of the interview, mark a segment of text
which is relevant to the pre-defined themes with a code and assign it to a cor-
responding theme. For the Test-Case Quality Description theme, relevant codes
could be test-case quality attributes such as wunderstandability, effectiveness,
traceability, etc. Some of those attributes were named and explained explicitly
by the practitioners while the others were generated based on their discussions
during the interviews.

Step 2: Find the next relevant segment of text. Mark it with an existing code
or with a new code and assign it to a relevant main theme. If the information
is related to test-case quality but does not belong to any main theme then a
new theme is created for that new information. It helps us to capture emerging
concepts related to our study’s focus.

Step 3: Repeat Step 2 until no relevant information is found.

Step 4: Create sub-themes under every main theme to cluster related codes
together.

During the process, codes, themes, and their descriptions were continuously
refined to fit the data. We used a commercial tool to complete this coding process,
which allows us to maintain traceability between the transcribed data and the
related codes and themes. To mitigate bias and increase the reliability of the
coding, the first set of codes and themes were discussed by two researchers, and
the coding scheme was refined. Furthermore, the final set was reviewed by all
researchers. All disagreements regarding the coding were resolved in a meeting
by discussion.

To obtain an overall ranking of the top quality indicators and attributes of a
good test case and of a bad one, each of them gets three points if it was ranked
first by a practitioner, two points if it was ranked second, and one point other-
wise. We wanted to get a general picture of which quality attributes or indicators
are normally considered more important than the other by practitioners. Hence,
we did not consider the contextual factors identified by RQ3 in the ranking.

Test Case Data. To analyse the collected test cases, we extracted the quality
classifications and reasons from practitioners’ written notes. The information
was coded in the same manner as the interview data (see previous section).
To compare practitioners’ opinions with the literature, before the interviews, we
searched for test smells in those test cases based on test smells’ descriptions from
two studies [8,12]. This step did not only give us another assessment angle but
also helped us to better understand the test cases’ quality. We selected those
studies for reference for two reasons. The first study [12] is the most recent
work on test smells of natural-language tests. The second study [8] provides us
descriptions of the top 11 most discussed smells of test code. There are common
characteristics between natural language test cases and unit test cases such as
testing logic, issues in test steps, dependencies between test cases, test behaviour
when executing, etc. Hence, the study of Garousi et al. [8] is a relevant reference.

44 H. K. V. Tran et al.

Even though that study was based on a former work of Garousi et al. [9], the
former one did not provide definitions of test smells, hence not chosen as a
reference.

4 Threats to Validity

Construct Validity. Construct validity is concerned with the reliability of
operational measures to answer the research questions. Our interviews were
semi-structured with follow-up questions which gave us opportunities to clar-
ify practitioners’ answers and reduce misunderstandings during the interview.
Their written explanations for the test cases’ quality assessment reduced the
risk of misinterpreting their answers. The test cases were selected subjectively
by the practitioners to demonstrate their perspective of good/bad/normal test
cases in terms of their perceived quality. Since our study’s type is exploratory
and attempts to capture practitioners perspective, this selection method is not
considered a threat to the validity of our results. Additional information about
practitioners such as whether they were ISTQB!-certified might influence their
perspective on test-case quality. Since we did not collect this information, it is a
limitation of the study. Nevertheless, we collected important information (their
testing experience, roles, and working tasks relating to test cases) which would
be still sufficient to describe the participants’ background information.

Internal Validity. Internal validity is about causal relations examined in the
study. Even though we identified possible aspects which should be considered
when defining and assessing test-case quality, our focus was not to generate a
complete list of such aspects. By not eliminating one aspect or another, this type
of threat is not of concern.

External Validity. External validity is concerned with the generalisability of
the study’s findings. In general, with the “convenience sampling” [16], the sample
might not represent the population, which could potentially affect the findings’
generalisability. However, as our study is exploratory, not confirmatory, this
sampling method is not considered as a validity threat. Our study’s context is
characterised by the type of the company, which is a global company working on
embedded software systems, the practitioners’ documented working background
and the nature of the natural-language tests. That is the context to which the
findings can be potentially applied.

Reliability. Reliability is about the reliability of the results. Our study’s design
was discussed among all authors of the paper. The interviews were conducted
by two researchers and the findings were discussed by all researchers to mitigate
the bias from one researcher. The data collection process and interview questions
were clearly documented to increase the reliability.

! https://www.istgb.org/.

https://www.istqb.org/

Test-Case Quality — Understanding Practitioners’ Perspectives 45

5 Results and Discussion

In this section, we present and discuss our findings in relation to each of the
research questions stated in Sect. 3.1.

5.1 Test-Case Quality Definition (RQ1)

To answer the first research question, we asked practitioners to define test-case
quality and explain how they would assess such quality (the interview question
Q7-11). Table 2 contains a list of 11 test-case quality attributes that we collected.
It also includes the practitioners’ authentic terms and phrases used to describe
the attributes. It is worth mentioning that the use of specific test cases, chosen
by the participants from the organization’s test suites, triggered more in-depth
reflections. The insights from practitioners regarding these test cases identified
as many unique test-case quality attributes as a discussion in abstract of what
constitutes test-case quality.

Overall, we could see that the quality attributes could be placed into two
groups. The first group, including understandability, step cohesion, complete-
ness, efficiency, and flexibility, is oriented around quality attributes of a test
case which could be relevant for practitioners when executing it. The second
group includes understandability, simplicity, completeness, homogeneity, issue-
identifying capability, repeatability, traceability, effectiveness, and reasonable size.
The latter group of attributes relates to general concerns, namely the design, the
maintenance, and the objective of testing in general.

Understandability is the most common attribute, and discussed by all prac-
titioners. A reason for this could be the nature of the discussed test cases, which
were written in natural language. Hence, it makes sense that ambiguity in test
cases is considered as a major concern. We could also see an alignment between
practitioners’ perceptions and the literature. Understandability is directly con-
nected to three test smells, namely ambiguous tests in natural-language tests [12],
long/complex/verbose/obscure test, and bad naming in test code [8]. Even though
the last two smells are for test code, according to their definitions, which are “It
is difficult to understand the test at a glance. The test usually has excessive
lines of code” and “The test method name is not meaningful and thus leads
to low understandability” respectively, those smells could also occur in natural-
language tests. The other connection is between the quality attribute simplicity
and the test smell eager test, which is described as “The test is verifying too
much functionality in a single test method” [8].

Apart from identifying test-case quality attributes, practitioners also listed
the top characteristics and indicators of a good test case and of a bad one. The
outcome is a mixture of specific quality indicators: clear objective (the purpose
of a test case), clear precondition (how to set up the testing environment), clear
steps with clear expected results, and general quality attributes: understandabil-
ity, completeness, effectiveness. According to our ranking scheme, understand-
ability is rated as the most important attribute. This is consistent with the most
commonly discussed quality attributes in the general discussion. The second

46 H. K. V. Tran et al.

place goes to the quality indicator clear objective. One of the reasons given by
one practitioner was that “the objective of each test case or of each component
of the test scope is the most important thing because those are combined to
make sure that all the requirements of each of the projects are met.”

Table 2. Test-case quality attributes

Quality Description Practitioners’ phrases Ne
attribute
Understand- | The information of a test case | Straightforward, understandable 6
ability (name, objective, description, how and what to test, clear
precondition, steps, terms) steps, clear objective, clear precondition
should be easy to understand
by both testers, and
developers
Simplicity A test case should not A big story for many test, not so many |4
combine different test cases steps cases
together nor contain so many
steps
Step cohesion | Steps in a test case should be |Unnecessary step, mandatory steps 3
well connected. The test case
should not contain redundant
steps or miss necessary steps
Completeness | A test case should contain all | All information needed to perform the 2
relevant information for its test, all kind of information that
execution developers and testers need
Homogeneity | Test-case design should follow | Homogeneous, unity with the same rules, |2
the same rules harmony
Issue- A test case should help to Find bug, mitigate possible issues 2
identifying identify issues, weakness of
capability features/functions
Repeatability | A test case returns the same |Run any time, tested repeatedly 2
results every time it is
executed
Traceability | There should be traces Mentioned issue, function category, ISO |2
between a test case and other |attributes category
related artefacts such as
issues, ISO quality attributes,
functionality
Effectiveness | A test case covers the Meets the requirement 1
expected requirements
Efficiency A test case should be easy to |Efficient, easy to run, not complicated, 1
run so that it does not waste |save time
time
Flexibility A test case should have Flexible, loosely written test, freedom, 1
flexibility in how to execute it |run differently

®N: Number of practitioners discussed the quality attribute

5.2 Alignment in Understanding of Test-Case Quality (RQ2)

We asked practitioners to classify test cases given by the others into good, bad
or normal in terms of their quality (Sect.2 of the interview questionnaire). Due
to the interviews’ time constraint, only seven out of 17 test cases, were analysed

Test-Case Quality — Understanding Practitioners’ Perspectives 47

by more than one practitioners as shown in Table 3. Half of them, P1.3, P2.4,
P3.1, and P3.2, had the same quality classification while the other half, P1.2,
P3.1, P4.1, and P5.2, received a mixed assessment.

In general, we could see that test-case understandability was always the first
concern. For the test cases having the same quality assessment (P1.3, P2.4, P3.1,
P3.2), a test case’s quality is considered as absolutely bad if the practitioners
could not understand what they are supposed to do, especially when both the
test objective and other details like steps, precondition, expected results of steps
are unclear. If the test case’s objective is sufficiently clear enough that the prac-
titioners could get some idea about its purpose, they would consider its quality
as acceptable or normal, though other details like preconditions are missing.

By analysing test cases which had different quality classification results (P1.2,
P3.1, P4.1, and P5.2), we could see that the difference is strongly associated with
the practitioners’ responsibilities relating to test cases. If one of their responsibil-
ities is to execute test cases, then they are more concerned about whether they
have all relevant information to run the test cases. If they are responsible for
broader tasks, in this case mainly about test-case maintenance and test results
analysis such as what faults to fix, then they would have other concerns such as
the test cases’ complexity or their traceability to issues, bugs.

Our observation aligns with the perceptions of practitioners as they explained
that they might have different concerns regarding test cases depending on their
responsibilities. Those responsible for executing test cases prioritise understand-
ability and completeness of test cases, that is, whether they have all relevant
and clear information for executing the test cases. Those responsible for broader
tasks like test architects do not only care about how test cases execute but also
about the outcome of the test cases and the test suites in general. Hence, they
have extra expectations such as whether the test cases cover the requirements,
or whether it is easy to maintain the test cases. They also explained that the
difference in working styles might have an impact on the test-case quality assess-
ment. If they have different approaches in designing test cases, they would have
different requirements on how to assure the test-case quality.

To provide a different perspective on the test-case quality assessment, the lead
author used the list of test smells from the literature (see Sect.3.3) to identify
test smells in those seven test cases. As a result, there is a considerable overlap
between the practitioners’ concerns and the identified test smells (ambiguous
test [12], conditional tests [12], long/complex/verbose/obscure test [8], and eager
test [8]) (shown in Table3). It is shown that the concerns about understand-
ability, ambiguity, cohesion of test cases match with the test smells ambiguous
test and long/complex/verbose/obscure test. Likewise, the concerns about the
complezxity of test cases directly relate to the test smells eager test.

However, the concerns about two quality attributes, traceability and repeata-
bility, have no corresponding smells according to our list of test smells. One
potential reason is that those quality concerns could be the consequences of
some other test smells. Traceability could be affected by the test smells eager
test, ambiguous test and long/complex/verbose/obscure test. As pointed out by

48 H. K. V. Tran et al.
Table 3. Test-Case (TC) quality classification
TC |Concerns from Assessor 1|Classification Concerns from Literature
1D (G/B/N) Assessor 2 [8,12]
P1.2 |-Understandability: Assessorl [P1]: N |-Ambiguity: not -Ambiguous
explained objective, links | Assessor2 [P4]: G | well written test [12]
to specs/requirements, pre-conditions -VOLC test [8]
unclear precondition -Complexity: -Eager test [8]
-Complexity: combination of
combination of multiple multiple TCs
TCs -Traceability to
bugs: not clear due to
the complexity
P4.1 |-Ambiguity: unclear Assessor 1 [P4]: -Ambiguity: unclear |-Ambiguous
terms, missing expected |Assessor 2 [P1]: terms test [12]
results of steps, missing -Repeatability: can |-VOLC test [8]
pre-conditions be run anytime
P5.2 |-Ambiguity: unclear Assessor 1 [P5]: -Ambiguity: unclear |-Ambiguous
terms -Complexity: Assessor 2 [P2]: terms test [12] VOLC
combination of multiple test [8] -Eager
TCs -Traceability to test [8]
bugs: not clear due to
the complexity
P3.1 |-Understandability: Assessor 1 [P3]: -Ambiguity: unclear |-Conditional
sufficient description Assessor 2 [P2]: terms due to poor |test [12]
English -Ambiguous
test [12]
-VOLC test [8]
P3.1 |-Understandability: Assessorl [P3]: -Understandability: |-Conditional
sufficient description Assessor2 [P5]: explained objective |test [12]
-Ambiguity: missing |-Ambiguous
pre-conditions test [12]
-Traceability to -VOLC test (8]
bugs: established
P1.3 |-Ambiguity: unclear Assessorl [P1]: -Ambiguity: unclear |-Conditional
objective -Complexity: Assessor2 [P6]: objective, unclear |test [12]
combination of multiple terms, unclear -Ambiguous
TCs -Traceability to expected results for |test [12]
bugs: not clear due to multiple steps -VOLC test (8]
the complexity -Complexity: - Eager test [8]
combining several
TCs
P2.4 |-Ambiguity: missing Assessorl [P2]: -Ambiguity: unclear |-Ambiguous
pre-conditions Assessor2 [P5]: objective, missing |test [12]
pre-conditions -VOLC test [8]
P3.2 |-Ambiguity: missing Assessorl [P3]: -Ambiguity: unclear | Ambiguous
objective -Cohesion: Assessor2 [P5]: step test [12]

missing steps

-VOLC test (8]

1VOLC: Long/complex/verbose/obscure [8]

Test-Case Quality — Understanding Practitioners’ Perspectives 49

practitioners, if a test case contains multiple test cases, it becomes complex.
Hence, it is harder to understand which part the test case leads to found issue(s).
Ambiguity in a test case’s description could also make the test execution non-
deterministic [12], which potentially affects the traceability to found issue(s).
Likewise, repeatability might not be possible if there are dependencies among
the test cases. Indeed, there are test smells due to dependencies in testing [8].
However, they were not in our list as they were not the top discussed smells [8].

5.3 Quality-Related Factors (RQ3)

By answering our interview questions (Q4-9), the practitioners described factors
which could influence how they assess test-case quality. In general, practitioners
believe that the test-case quality depends on the test case’s context. For example,
the assessment could depend on whether the practitioner knows how the code
was written. He or she might have a different opinion on how to design test cases
for testing that code compared with those who do not know the code. Another
context factor is the maturity level of the software system under test (SUT).
According to three practitioners, to save their time, they could combine multiple
test cases into one when the SUT is more or less working properly as those test
cases hardly fail at that state. Hence, in that case, a test case is not considered
as bad even though it contains different test cases. Two practitioners mentioned
that the testing level also has an impact on how test-case quality is defined.
For example, for exploratory tests, practitioners whose responsible is execute
test cases prefer to have flexibility in executing test cases. They would rather
not to follow steps so closely as that might not help them to identify new issues.
Therefore, if an exploratory test case’s execution instructions are restrictive, that
test case could be perceived as bad. Hence, practitioners’ pre-knowledge of the
test-case context has a strong influence on their test-case quality perceptions.

5.4 Improvement (RQ4)

With the interview question Q14, we identify several suggestions for improving
test-case quality. In general, a homogeneous directive or procedure for test-case
design could improve the quality as it could guarantee test cases are designed sys-
tematically. A uniform quality policy could also help to ensure the quality is met
and aligned among practitioners. More specifically, to enhance test-case under-
standability in the test-case design phase, it was suggested that each test case
should contain all necessary information. Importantly, the information should
be relevant to both testers and developers. That will help to avoid a situation
in which testers or developers have to look for information of related test cases
in order to understand their assigned test cases. For test-case maintenance, the
most common suggestion was that test cases should be reviewed regularly as they
could become obsolete due to the evolution of the SUT. Updating test cases so
that they contain all relevant information for execution and removing no-longer-
needed test cases are important steps in this phase. Apart from improvements in
test-case design and maintenance, practitioners also suggested that developers

50 H. K. V. Tran et al.

and testers should have active communication in order to mitigate misunder-
standing in executing and analysing test results.

5.5 Source of Information (RQ5)

With the interview question Q15, we collected information sources that practi-
tioners refer to for a better understanding of test-case quality. The most com-
mon source is from colleagues like testers and developers working on the same
projects, especially seniors who have experience in similar tasks. It is consistent
with the previous research on information sources consulted by practitioners [14].

Regarding test-case design, product specifications are considered the most
relevant internal source of information. Other types of internal sources include
software architect documents, test cases in previous projects, guidelines and
templates for writing test cases, rules and policies from test architects, and test
plans. The practitioners also refer to external sources such as guidelines provided
by the ISTQB and ISO standards. Apart from those common sources, one prac-
titioner also mentioned that he or she learns about test-case quality by attending
industrial seminars and workshops on related topics. Some practitioners also said
that they rely on their own experience when assessing test-case quality.

6 Conclusions and Future Work

We conducted an interview-based exploratory study involving six practitioners,
working in three different teams in a company to understand practitioners’ per-
ceptions of test-case quality. We identified 11 quality attributes for test cases,
of which understandability was perceived as most important. That could be
due to the nature of the studied test cases, which were written in natural lan-
guage. Nevertheless, the study of Garousi et al. [8] also reported the related test
smell long/complez/verbose/obscure test as the main concern in test code, which
means that understandability is also important in test code.

We also found that there is a misalignment in practitioners’ perceptions
of test-case quality. The explanation is that, depending on the practitioners’
responsibilities, they have different quality requirements. For practitioners whose
responsibility is to run test cases, the focus is more on acquiring relevant infor-
mation for test-case execution. Hence, their priority is the understandability of
test cases. For those who need to design and maintain test cases like test archi-
tects and developers, their concerns are more about test-case maintenance and
outcomes of test suites. Therefore, they require other quality attributes such
as traceability to other artefacts, efficiency, effectiveness, repeatability, etc. The
context factors of test cases, such as code-related knowledge, the maturity level
of software under test, testing types such as exploratory test potentially also
impact how practitioners define test-case quality.

We also identified suggestions for improving test-case quality. The most com-
mon suggestion is a homogeneous procedure for test-case design, with focus on
completeness of test cases, meaning that a test case should contain all relevant

Test-Case Quality — Understanding Practitioners’ Perspectives 51

information for execution by any involved party. Reviewing test cases and regular
communication between developers and testers were also highly recommended by
practitioners. Practitioners also discussed different sources of information they
refer for a better understanding of test-case quality. In general, their informa-
tion comes from external sources such as ISTQB and ISO standards. For specific
test cases, they rely on the internal sources, such as product specifications, and
discussion with other colleagues.

Even though our findings were based on a few data points, we had a sound,
repeatable strategy to identify them. They are not generic, but for a specific
context. For more general findings, we plan to interview more practitioners in
different contexts. We will also compare our findings of the quality attributes
and quality definition(s) with other existing studies. Another planned future
work is to have a broader investigation on differences and similarities between
the industry and the literature on defining and assessing test-case quality.

Acknowledgment. This work has been supported by ELLIIT, a Strategic Area
within IT and Mobile Communications, funded by the Swedish Government, and by
the VITS project from the Knowledge Foundation Sweden (20180127).

References

1. Athanasiou, D., Nugroho, A., Visser, J., Zaidman, A.: Test code quality and its
relation to issue handling performance. IEEE Trans. Softw. Eng. 40(11), 1100-1125
(2014)

2. Bowes, D., Hall, T., Petric, J., Shippey, T., Turhan, B.: How good are my tests? In:
2017 IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics (WET-
SoM), pp. 9-14, May 2017

3. Caugevié, A., Sundmark, D., Punnekkat, S.: Test case quality in test driven devel-
opment: a study design and a pilot experiment. In: 16th International Conference
on Evaluation Assessment in Software Engineering (EASE 2012), pp. 223-227, May
2012

4. Chernak, Y.: Validating and improving test-case effectiveness. IEEE Softw. 18(1),
81-86 (2001)

5. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement, pp. 275-284, September 2011

6. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pp. 107-118. ACM, New York (2015)

7. Garousi, V., Felderer, M.: Developing, verifying, and maintaining high-quality
automated test scripts. IEEE Softw. 33(3), 68-75 (2016)

8. Garousi, V., Kucuk, B., Felderer, M.: What we know about smells in software test
code. IEEE Softw. 36(3), 61-73 (2019)

9. Garousi, V., Kiiglik, B.: Smells in software test code: a survey of knowledge in
industry and academia. J. Syst. Softw. 138, 52-81 (2018)

10. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by develop-
ers. In: Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 72-82. ACM, New York (2014)

52

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H. K. V. Tran et al.

Grano, G., Scalabrino, S., Gall, H.C., Oliveto, R.: An empirical investigation on
the readability of manual and generated test cases. In: Proceedings of the 26th
Conference on Program Comprehension, ICPC 2018, pp. 348-351. ACM, New York
(2018)

Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun, P.: Hunting
for smells in natural language tests. In: 2013 35th International Conference on
Software Engineering (ICSE), pp. 1217-1220, May 2013

Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 435-445. ACM, New York (2014)

Josyula, J., Panamgipalli, S., Usman, M., Britto, R., Ali, N.B.: Software practi-
tioners’ information needs and sources: a survey study. In: Proceedings of the 9th
International Workshop on Empirical Software Engineering in Practice (IWESEP),
pp- 1-6, December 2018

Jovanovikj, I., Narasimhan, V., Engels, G., Sauer, S.: Context-specific quality eval-
uation of test cases. In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development - Volume 1: MODELSWARD, pp.
594-601. INSTICC, SciTePress (2018)

Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations
and samples. SIGSOFT Softw. Eng. Notes 27(5), 17-20 (2002)

Nagappan, N., Williams, L., Osborne, J., Vouk, M., Abrahamsson, P.: Providing
test quality feedback using static source code and automatic test suite metrics. In:
16th IEEE International Symposium on Software Reliability Engineering (ISSRE
2005), pp. 10-94, November 2005

Neukirchen, H., Zeiss, B., Grabowski, J.: An approach to quality engineering of
TTCN-3 test specifications. Int. J. Softw. Tools Technol. Transf. 10(4), 309 (2008)
Pfaller, C., Wagner, S., Gericke, J., Wiemann, M.: Multi-dimensional measures
for test case quality. In: 2008 IEEE International Conference on Software Testing
Verification and Validation Workshop, pp. 364-368, April 2008

Reichhart, S., Girba, T., Ducasse, S.: Rule-based assessment of test quality. J.
Object Technol. 6(9), 231-251 (2007)

Robson, C., McCartan, K.: Real World Research: A Resource for Users of Social
Research Methods in Applied Settings, 4th edn. Wiley, Hoboken (2016)

Tan, H., Tarasov, V.: Test case quality as perceived in Sweden. In: 2018 IEEE/ACM
5th International Workshop on Requirements Engineering and Testing (RET), pp.
9-12, June 2018

Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the
ISO 9126 quality model to test specifications - exemplified for TTCN-3 test speci-
fications. In: Bleek, W.G., Raasch, J., Ziillighoven, H. (eds.) Software Engineering
2007 - Fachtagung des GI-Fachbereichs Softwaretechnik, pp. 231-242. Gesellschaft
fiir Informatik e. V, Bonn (2007)

Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366-427 (1997)

)

Check for
updates

Test Reporting at a Large-Scale Austrian
Logistics Organization: Lessons Learned
and Improvement

Dietmar Winkler'> , Kristof Meixner"?, Daniel Lehner?,
and Stefan Biffl*

! Christian Doppler Laboratory for “Security and Quality Improvement in the
Production System Lifecycle”, Institute of Information Systems Engineering,
Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna, Austria
{Dietmar.Winkler,Kristof.Meixner}@tuwien. ac. at
2 Institute of Information Systems Engineering, Vienna University
of Technology, Favoritenstrasse 9-11, 1040 Vienna, Austria
{Daniel. Lehner, Stefan. Biff}@tuwien. ac. at

Abstract. Context and Background. Software testing and test automation are
important activities in software development where frequent requirements
changes and the fast delivery of software increments are supported by traditional
and agile development processes. Test reports are often used as “proof of evi-
dence” for executed software tests. However, the practical impact of test reports,
such as decision making and quality assessment, requires structured information
which might not be available in sufficient quality. Goal. In this paper we
(a) report on needs of test reports of different stakeholders at a large-scale
Austrian logistics organization, (b) develop candidate improvement actions
based on the state of the practice, and (c) conceptually evaluate selected
improvement actions. Method. We used surveys and interviews to elicit needs
and expected capabilities for test reporting and developed candidate improve-
ment. We used expert discussions prioritize improvement actions in the orga-
nization context for further implementation. Results. Based on 23 recommended
improvement actions, 14 were initially selected for implementation. Most of
these accepted improvement action focus on regular test status reports and
visualization aspects of test reports. Conclusion. Although test reporting is
systematically applied in development processes, there is still some potential to
improve test reports to gain (additional) benefits for related stakeholder.

Keywords: Software testing - Test reporting - Engineering process
improvement - Case study

1 Introduction

Delivering high-quality software products is the most important objective in software
development projects [9]. Static quality assurance approaches, such as reviews and
inspections can help to identify defects early in the software development life cycle [6].

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 53-69, 2019.
https://doi.org/10.1007/978-3-030-35333-9_4

http://orcid.org/0000-0002-4743-3124
http://orcid.org/0000-0002-3413-7780
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_4

54 D. Winkler et al.

Because no executable software code is required, reviews and inspection can focus on
various types of software artifacts, e.g., requirements specifications, architecture dia-
grams, or code. Dynamic quality assurance approaches, such as software tests, require
executable code and can help identifying defects in the software system or sub-systems
based on defined test scenarios and test cases [8]. In context of continuous integration
and test strategies [2], test runs are typically embedded within a software build process
and, thus, represents the foundation for test automation. Figure 1 presents a typical and
simplified continuous integration and test process: (1) Developers commit newly
constructed software code into a code repository; (2) Release Managers initiate a build
process (on purpose or on a regular basis, e.g., daily/nightly builds) including test runs
and reporting; (3) Test managers and Testers prepare test scenarios, test cases and test
data for test execution; (4) Developers receive feedback, e.g., by using test reports, on
the test runs with focus on of their committed piece of code; (5) finally, a test report is
generated, used by different stakeholders for analysis and decision making. For
instance, fest managers and testers can use test reports for providing evidence on the
results of executed test runs, project managers can use test reports for analyzing the
quality of the software code and for assessing the status of the project and business
managers can use test reports to assess the overall progress of the project, e.g., based
on coverage analysis.

@ Feedback on Test Runs f f

A 4

Ifﬂl Development

Developer Commit
Code

(Project)
Management

Test Report I1JQ|JJ

Test Manager
& Tester

Test Run

2

Source
Code
Repos.

Build
Release Release

Test Cases |Q Test
& Data rn'l

Test Manager
& Tester

Manager

Fig. 1. Simplified continuous integration and test process.

However, an important question focus on the impact of test reports usage, i.e., to
derive what is most beneficial in a test report for all involved stakeholders. Although
there exist standards for test reporting, e.g., by ISO/IEC/IEEE 29119-3:2013 [4] a
remaining question is to what extent required (and standardized) test documentation
can help development teams or test/project managers to better control software engi-
neering projects.

In this paper we focus on (a) the identification of stakeholder needs in context of
test reporting at a large-scale Austrian Logistics Organization, (b) identifying
improvement candidates based on test report best-practices as foundation for
improvement action implementation, and (c) on a conceptual analysis of selected

Test Reporting at a Large-Scale Austrian Logistics Organization 55

improvement actions in the study context. For identifying stakeholder needs we con-
ducted a survey and a set of interviews at the logistics organization. Based on the
results we developed a set of candidate improvements as foundation for improvement
and discussed benefits and limitations with the related stakeholders in the organization.
Finally, we conceptually evaluated selected improvement actions in the study context.
Note that the implementation and further investigations remain for future work.

The remainder of this paper is structured as follows: Sect. 2 summarizes related
work on software testing and test automation, test reporting, and engineering process
improvement. We present the research issues in Sect. 3 and describe the study process
in Sect. 4. Section 5 summarize results and Sect. 6 focuses on the discussion of the
results. Finally, Sect. 7 summarizes and concludes.

2 Background and Related Work

This section summarizes background and related work on Software Tests and Test
Automation (2.1) Test Reporting (2.2), and Engineering Process Improvement (2.3).

2.1 Software Test Automation

Software tests aim at identifying defects in executable software engineering artefacts,
i.e., in software code [8, 10]. Manual testing approaches and the creation of manual test
reports require (high) human effort for test case and test data definition and test exe-
cution. However, frequent test runs, common in agile software development, make it
hard to manage manual tests because of effort and cost considerations. In addition,
testing of non-functional requirements, such as performance and load tests, require
appropriate tool support because such type of tests cannot be conducted efficiently by
human experts [7]. Thus, automated tests embedded within continuous delivery
strategies need to be implemented to overcome limitations of manual activities and/or
enable defined types of tests, such as performance or load testing [3].

Test Management @

Analysis & Implementation Evaluation & Closing &
1 Design 2) & Execution 3) Reporting 4) Follow-up

Fig. 2. Basic software test process according to Spillner ez al. [10].

Although application context and customer requirements have a strong impact on
selection appropriate test types, test processes follow a defined sequence of steps (see
Fig. 2):

1. Test Analysis and Design focuses on the specification of test levels and types. Test
levels focus on different levels/scopes of the software/system under test, such as
units, components, sub-systems, or systems. Test types refer approaches how to test
these system parts, e.g., functions, performance, or load.

56 D. Winkler et al.

2. Implementation & Execution includes the setup of the test infrastructure,
generation/construction of test cases, test data and the (automated) execution of
software tests.

3. Evaluation & Reporting include test results analysis for feedback (e.g., within a
continuous integration and test strategy) and for test report generation.

4. Closing & Follow-up focuses on test run and environment archiving and preparing
decision support for test and/or project management.

5. Test management includes test planning, decision of test strategies, and control of
test runs based on analysis results and test reports.

In this paper we focus on test reports and the impact of test reports on a defined set
of stakeholders, e.g., developers, release managers, test managers, test experts, and
(project) management — key stakeholders as depicted in Fig. 1. Often test reports are
used to provide some evidence on executed test runs and for decision making. How-
ever, based on observations in industry, we see the need to investigate test reports to
improve the acceptance and usability of test reports.

2.2 Test Reporting

The ISO/IEC/IEEE 29119-3 standard [4] focuses on general software test documen-
tation templates and how they map to the several levels/scopes of software testing.
Furthermore, the standard defines the Organizational Test Documentation including
the Test Policy and Organizational Test Strategies derived from this policy as general
guidelines from the organization to be used for test processes in specific projects. The
Test Management Documentation contains Test Plans for defining particular testing
strategies beforehand as well as a Test Completion Report available after a particular
testing effort. The Dynamic Test Documentation which is produced during actual
testing efforts including the Test Specification, Test Environment Readiness Report, and
Test Data Readiness Report (prerequisites for executing the tests). When executing test
cases, Test Execution Documentation holds related information. Incident Reports
include defects, deviations, and incidents identified during test execution.

Although this standard provides some guidance for implementing test reporting in
an organization, one should also consider more general factors to satisfy a wider range
of stakeholders. Kelley [5] defines a set of guidelines and recommendations for
reporting in a medical context: (a) Quality before quantity, i.e., focus on data that is
needed by readers of the reports in order to do their job; (b) Focus on patterns, rather
than on isolated occurrences; (c) Apply benchmarks for comparing current results to
similar institutions; (d) Include Data Analysis and Interpretation, i.e., never use raw or
unexplained data; and (e) Include a Management Summary, i.e., highlight actions and
options for board consideration. In this work, we want to find out to which degree these
recommendations are relevant in the context of test reporting. For example, a test
report, e.g., embedded within a continuous integration and test strategy (see Fig. 1),
holds test individual case definitions and test results that can be aggregated to test
scenarios, and related (summarized) results. Furthermore, individual test results rep-
resent the foundation for deriving quality metrics, such as test coverage or quality
estimations for decision-making.

Test Reporting at a Large-Scale Austrian Logistics Organization 57

2.3 Engineering Process Improvement

Industry organization often follow a pre-defined set of test report items (e.g., recom-
mended by standards, such as [4]) without carefully analyzing strength and limitations
of test reports in their individual context. Thus, we see the need to analyse the current
state of the practice in organizations, identify strength and limitations in context of best
practices, and initiate a process improvement initiative to improve test reporting and
tests processes. For initiating and executing engineering process improvement strate-
gies, there is the need to follow a systematic process approach, such as the Quality
Improvement Paradigm (QIP) [1]. In context of this paper we applied the Quality
Assurance Tradeoff Analysis Method (QATAM) [11], an engineering process
improvement approach that helps identifying strengths and limitations and suggests
candidate improvements in a defined context (see Fig. 3 for a conceptual overview).
Main building blocks of the QATAM approach includes (1) Context and Scope defi-
nition of the planned improvement initiative, e.g., improving test reporting; (2) Method
Repositories as a pool of mechanisms, methods and tools available from best practice
recommendations; (3) Candidate Improvement Options as possible improvement
strategies; and (4) Evaluation of Candidate Improvements as a foundation from
implementation in the organization context.

Goals, Scope, Expected Benefits
@ Context and Scope

Organization and
Application Context
Y A

Selected
@ Candidate Improvement Candidate | @ Evaluation of Candidate |mbrovement
Options Improvements” | Improvements Actions)

A

Best Practice Recommendation
(candidate improvement actions)

Feedback on Method Improvement

@ Method Repository <

Fig. 3. Quality Assurance Tradeoff Analysis Method (QATAM) according to [11].

In context of this paper, we focus on test reporting (Context and Scope) based on
best practice recommendations (Method Repository), e.g., in [4] to derive an initial set
Candidate Improvement Options to be evaluated in collaboration with the organization
to elicit appropriate improvement action (Strategy Evaluation and Selection).

3 Research Issues

Based on the related work on test automation and test reporting, we identified a set of
research issues as part of the process improvement initiative at a large-scale Austrian
logistics organization.

RQ.1: What are critical stakeholder requirements for test reporting in context of
the case study organization? Although there are some further goals of reports, like

58 D. Winkler et al.

documenting the work that has been done, we want to focus on reports for transmitting
information with a clear purpose, to a specific audience, i.e., to relevant stakeholders
like developers, testers, test managers, release managers, project management, and
business management. The first research question focusses on eliciting requirements
from best practice recommendations and defined stakeholder groups at the industry
partner.

RQ.2: What are the best-practices implemented in the organization, i.e., a large-
scale Austrian logistics organization? Up to now, test reports have been established
within the organization. A specific test department offers testing as a service to
developer groups. However, it remains unclear how individual reports are implemented
and used and what are the conclusions drawn out of the reports. In context of this work,
we used a survey to identify he current use of test reports. Thus, the second research
questions focuses on identifying best practices implemented in the organization.

RQ.3: What is the impact of improved reporting in context of a logistics organi-
zation? Following the QATAM approach, we analysed strength and limitations of
current approaches, derived improvement actions, and discussed selected improvement
actions in the organization as foundation for implementation. The third research
question focuses on investigating the impact of improved test reports.

4 Study Process

This section introduces to the study company (4.1) and summarizes the study design
and process steps (4.2).

4.1 Case Study Company

The case study organization is a large-scale Austrian logistics organization with an
integrated IT department with around 250 people, including dedicated departments for
testing and architecture and project management. These two departments represent
important core producers and consumers of test reports. The main business goal of the
logistics organization focuses on worldwide shipping of items (and related processes
and applications). The software developed and maintained by the IT department aims at
supporting and optimizing relevant processes, e.g., passing metadata of items through
barcodes as well as improving customer experience, e.g., tracking of items.

4.2 Study Process

Main objective of this work focus on (a) identifying test reporting needs and
requirements, (b) analyzing the state of the practice in the case study organization, and
(c) eliciting and evaluating improvement candidates. Figure 4 illustrates the study
design and the study process steps.

Step 1. Test Report Requirements ldentification. We used surveys to capture specific
test report needs of external stakeholders (i.e., stakeholders that are outside the testing
department, e.g., project managers) in the organization. The second part of the

Test Reporting at a Large-Scale Austrian Logistics Organization 59

requirements elicitation process focuses on interviewing test managers to identify their
expectation on test reporting.

Step 2. State of the Practice Analysis. Test processes and related artifacts are stan-
dardized in the case study company, we selected a typical project to analyze the state of
the practice on test report usage in the study context. The analysis process focuses on
whether or not identified requirements are captured in the selected project.

Step 3. Identification of Improvement Candidate. We identified gaps between the state
of the practice (step 2), requirements (step 1), and the state of the art derived from the
literature. Based on the results of this analysis process step we came up with a set of 25
concrete improvement suggestions (i.e., improvement candidates) for optimizing test
reporting to close these gaps.

. Expert
Survey Interviews State of the Art . P .
Discussions
Best Business
}/ A4 - Y Practices Needs
Test Report Requirements Needs@\ v @ v
Identification / -~
Elicitation of Evaluation of | Agreed
Candidate
Improvements » Improvements morovemaly
X X mprovement
Candidate Candidate Actions
State of the Practice Analysis [i

@

Fig. 4. Study process overview.

Step 4. Evaluation of Improvement Candidates. We evaluated improvement candidates
(Step 3) to assess their relevance in the case study organization and whether or not they
can be accepted by key stakeholders in the organization, i.e., test managers. The
assessment was based on informal interviews and discussions with test managers in the
case study company. The study was executed in 2017 by process improvement and
testing experts, i.e., the authors. One of the authors was responsible for conducting the
study at the case study organization, supervised by the other authors. Several feedback
rounds were implemented to ensure the quality of the study design.

4.3 Survey and Interview Structure

For the assessment of requirements, we separated internal and external stakeholders.
We created a survey with focus on team members of the Architecture and Project
Management Office, involving 30 people. The department consists of project man-
agers, i.e., users of test reports, as well as roles whose work is indirectly influenced by
test reports, e.g., requirements engineers and enterprise architects. Additionally, we
included team leads who are responsible for a group of project managers, requirement
engineers and enterprise architects. As line managers, they need to have an overall view

60 D. Winkler et al.

on the projects of their team members. Therefore, they are mainly interested in the
current quality status of the individual projects. Additionally, they want to improve the
working conditions of their staff, so they are highly interested in improving test reports
to improve the engineering process and support project management. These employees
were all considered external stakeholders of the testing department.

The survey is structured into seven sections: (a) Demographics and Background;
(b) General Question on test reporting; (c) Current Usage of Regular Test Reports;
(d) Test Automation; and (e) Current Usage of Final Test Status Reports. The detailed
questionnaires are available online'. We used an online tool for executing the survey?.

In addition, we interviewed the test managers within the testing department (i.e.,
internal stakeholders). Main tasks of test managers is to plan and control the execution
of testing, to solve problems that occur during testing and to communicate the work of
the testing department by sending out reports. The four test managers that were
employed by the testing department had a different view on the work and especially on
the reporting of the testing department. The goal of the interviews was to capture
insights and get a broader and more un-biased view on test reports. We used open
questions (see footnote 1) to get qualitative information on the state of the practice and
to complement quantitative data collected during the surveys.

5 Results

This section summarizes the results of the improvement initiative in context of test
reporting at the case study organization.

5.1 Stakeholder Needs for Test Reporting

We derived general stakeholder needs (requirements) from the literature for identifying
general factors of “well-designed” reports (see [5] Section 2.2) and extended require-
ments derived from [4] as the test reporting framework at the case study organization
was initially set up using this standard. Note that the organization decided to apply all
reports (recommended by the standard [4]).

Additionally, we identified some further needs of stakeholders during the case
study. Note that the mapping between identified requirements and stakeholders was
based on a discussion with test center managers. Table 1 summarizes identified
requirements and shows the relevant and related stakeholders. Note that requirements
(RO7-R12) were identified during the case study (see Sects. 5.2 and 5.3 for details).

5.2 Survey Results

The survey has been sent to 30 external stakeholders of the testing department (see
Sect. 4.3 for details). We received an overall number of 15 responses, i.e., a response

! Complementary study material: gse.ifs.tuwien.ac.at/profes-2019-test-reporting
2 Online Survey: www.umfrageonline.com/

http://qse.ifs.tuwien.ac.at/profes-2019-test-reporting
http://www.umfrageonline.com/

Test Reporting at a Large-Scale Austrian Logistics Organization 61

Table 1. Identified requirement and related stakeholders.

Req.ID | Requirement Stakeholder

PM | TM | BM | Others
RO1 Quality before quantity X X X
RO2 Patterns instead of isolated occurrences X X
RO3 No raw or unexplained data X X X
RO4 Highlight actions and options X
RO5 Use benchmarks X
RO6 Fulfill standard, e.g., ISO/IEC/IEEE 29119-3:2013 [4] X
RO7 Use graphics instead of metrics for visualization X X X
RO8 Modular reports X
R0O9 Support decision making X |x
RI0 Status of software development X X
RI11 Status of software testing X
RI2 Minimum time effort for reporting X

PM = Project Management, TM = Test Management, BM = Business Management, Others
= developers, testers, etc.)

rate of 50%. We divided the responses into three groups: (a) Project Managers (PM),
(b) Team Leads (TL), and (c) ENGineers (ENG), including requirements engineers and
enterprise architects, as their work is indirectly influenced by test reports.

The survey results were exported as raw .csv data and then analyzed by using
descriptive statistics supported by a spreadsheet solution. Table 2 presents background
and demographics of participant roles of collected responses. The majority of survey
respondents were project managers (PM), i.e., 8 participants (53%), followed by
technical experts and engineers (ENG) including 5 participants (33%) and team leads
(TL) with 2 participants (14%).

Table 2. Distribution of participant roles of collected responses.

Role Distribution PM TL ENG* ALL
Number of responses 8 2 5 15
Share of Responses 53% 14% 33% 100%

*Engineer includes 2 Requirements Engineers, 2 Enterprise Architects and 1 Developer

The first section batch of questions focuses on general questions regarding test
reports, i.e., how test reports are perceived by the participants. Figure 5 summarizes the
goals of stakeholders related to test reports they receive from the testing center. Note
that in the case study company a dedicated testing support supports various projects.
We used a Likert-Scale for collecting different ratings (1 refers to disagreement and 6
indicates a high agreement to a given statement). Figure 5 presents mean values of
responses related to test report aspects and roles.

62 D. Winkler et al.

‘What is your goal when using test reports you receive from the testing

department? PN T ENG e ALL
6
PM TL ___ENG __ ALL j
Derive Measures 4,1 35 1,6 3,1 3
Quality Level Overview 5,9 25 22 4,1 1
Observe Quality Trends 47 30 1,6 34 0
. . Derive Quality Observe Project Others
Project Progress Overview 5,6 2,5 2,4 4,0 Measures Level Quality Progress
Others 4,1 3,0 12 29 Overview Trends Overview

*mean value based on Likert Scale 1 (disagree) to 6 (agree)

Fig. 5. Goals of test report usage from different perspectives.

The main goal of PMs is to get an overview of the quality level based to executed
tests and some indication on the project progress. For TL it is more important to
receive concrete measures, provided by the test center, to improve the product.
Engineering roles focus on a project progress overview and some decision support
(i.e., classified as “others” in Fig. 5) It is notable that PM are more interested in test
reports, i.e., all aspects has been rated above average, while for TL and ENG test
reports seem to be less important.

Results on the question regarding stakeholder expectations on the content of test
reports are summarized in Fig. 6. For PM trend graphics (mean value: 3.5) are most
important to assess the project progress and to have a quality level overview. TL expect
textual summaries (4.0) and quality metrics (3.0) as foundation for decision support
and to derive measures, while ENG are most interesting in a textual summary including
measures and improvement suggests from the test center.

‘What do you expect from a test report?

— N — L ENG ==ALL
PM TL ENG ALL 6

Textual Summary 23 4,0 3,2 2.8 4

Quality Metrics 25 30 20 24) H—h

Trend Graphics 3,5 1,0 23 2,7 0

Status Graphics 1,5 2,0 22 1.8 Textual Quality Trend Status

*mean value based on Likert Scale 1 (disagree) to 6 (agree) Summary Metrics Graphics Graphics

Fig. 6. Expectations of test report content.

In the case study company, the test center provides testing as a service for indi-
vidual projects. Typically, there is an order for the test center to execute a set of tests
related to a test plan, e.g., a sequence of manual tests that could be relevant for
acceptance testing. Another option is an order for implementing a continuous inte-
gration and test strategy as testing infrastructure that can be maintained by project
members. However, an interesting question focuses on the expectation when to place
which type of testing orders in the test center. Figure 7 summarize the findings.

Based on the results, PM expect highlighted issues and defect reports (5.7) based
on the test runs to ensure the quality (5.6) of the product under test. For TL, in addition
to ensuring the quality, where all participants agreed (6.0), they also expect suggestion

Test Reporting at a Large-Scale Austrian Logistics Organization 63

What do you expect when placing an order in the testing department?

PN —TL ENG == ALL
PM TL ENG ALL 6
Highlight Issues 5,7 4,0 4,6 5,1 4
Ensure Quality 5,6 6,0 5,0 54 2
Suggest QA Activities 5,1 4,5 4,0 4.6 0
Improve Communic. 4,0 4.0 3,6 39 Highlight Ensure Suggest QA Improve
Issues Quality Activities Communic.

*mean value based on Likert Scale 1 (disagree) to 6 (agree)

Fig. 7. Expectations when placing an order in the testing department.

for QA and testing activities to further improve the product. ENG focus on similar
goals compared to PM but with a lower rate of agreement.

In test automation, reports are typically generated on a regular basis, e.g., based on
iterations or based on a defined schedule, e.g., once a week or month. Therefore, we
asked for the current usage of regular test reports with focus on content and frequency.
Figure 8 presents typical content elements of (regular) test reports and the estimations
on their stakeholder value. It is notable that highlighted test report elements seem to be
of limited interest (maximum mean value 3.0 on a Likert-Scale from 1 to 6). This is
quite surprising as common test reports are often based on a standard configurations.
However, another question is, how well are test report content elements understood by
test report consumers. Figure 9 summarizes the results on the understandability of test
reports components. The results show on average that test report elements are well-
understood by PM and TL but of limited value for ENG. Thus, there seem to be an
improvement option to increase the usefulness of test reports.

Which parts of a regular test status report has most value for your own work?

— PV — L ENG e ALL

PM TL ENG ALL ;
"Traffic Light Status" 1,0 20 1,7 13 4
Management Summary 14 20 20 17 3
Defect Trend 13 20 2,3 1.7 0
Requirements Coverage 14 3,0 1,7 1,7 @, @Q"f @§> & \\\é‘ * <&
Test Case Evolution 1,6 3,0 2,3 19 59 &,@ \@Q Q\@@ & ¢
Defect Evolution 13 3,0 23 17 @y‘% K * & \Oﬁ“ &
Metrics 15 3,0 23 19 « <&

*mean value based on Likert Scale 1 (disagree) to 6 (agree)

Fig. 8. Perceived importance of test report components.

How well understandable are the following parts of a regular test status report?

o NG ALL — N —L ENG ——ALL
"Traffic Light Status” 37 4,0 25 35 °
Management Summary 37 20 20 31 s
Next Steps 37 4,0 25 35 a
Defect Trend 31 20 10 28 B
Requirements Coverage 4,0 30 25 34 B
Test Case Evolution 38 30 10 33
Defect Evolution 38 30 10 34 '
Metrics 3,0 - 1.0 27 0
"TrafficLight Management NextSteps Defect Trend Requirements Test Case Defect Metrics

*mean value based on Likert Scale 1 (disagree) to 6 (agree) Status” Summary Coverage Evolution Evolution

Fig. 9. Understandability of test reports components.

64 D. Winkler et al.

Often, test reports are generated and distributed on a regular and timely basis. This
could lead to effects that test reports do not receive much attention. The results on the
frequency of test reports showed that PM would like to receive test reports on a weekly
basis (72%) while TL want to receive test reports weekly (50%) and depending on the
project context and project state (50%). In contrast to PM and TL, ENG support longer
time-interval (e.g., bi-weekly or monthly) but would also prefer to configure test report
frequency depending on the project context (similar to TL) and on request.

Independent on test report frequency, Fig. 10 presents the value of regular status
reports per stakeholder group. PM are mainly interesting in the quality status and
suggestions for QA activities, TL are interested in the festing progress and quality
trends and ENG stakeholders focus on the quality status and quality trend. The result
seem to be in conflict to goals and expectations of test reports in general (see Figs. 5
and 6).

Where do you see the value of regular test status reports? PN T ENG emm=ALL
6
PM TL ENG ALL

- 4
Testing Progress 50 5,5 45 50
Quality Trends 50 55 5,0 5.1 2
Quality Status 6,0 50 5,0 5,6 0
Propose QA Activities 5,3 4,5 3.0 4,7 Testing Quality Quality Propose QA

Progress Trends Status Activities

*mean value based on Likert Scale 1 (disagree) to 6 (agree)

Fig. 10. Perceived value of regular test reports.

In context of Test Automation, were test reports are typically generated as part of
the testing tool chain automatically, we wanted to know to what extent test automation
has been applied by the stakeholders. While 86% of PM and 100% of TL have already
applied test automation at least in one project, 75% of ENG did not apply test
automation in their projects. Note that ENG include requirements engineers and
architects. Similar results have been derived when asking whether or not test
automation should be strengthened in their projects. Although there is some agreement
to include test automation results in the test report, an interesting question focuses on
the perceived value of a final test report. Figure 11 summarizes these results. PM
participants see the summary of issues as most valuable part of test reports (5.7). TL are
more interested in final test results and detailed defect detection results (5.5 each) all
ENG participant see final test status report as most beneficial for a summary of issues
(6.0).

What is the perceived value of afinal test status report?
— N m—L ENG =mmmALL

PM TL ENG ALL 6
Summary of Issues 57 50 6,0 56 :
Test Effort Review 43 50 25 41 3
Final Test Results 50 55 55 52 2
Deviation Detection 47 55 50 49 é
Improvement Options 50 3.0 4,0 45

Summary of TestEffort Final Test Results Deviation Improvement
*mean value based on Likert Scale 1 (disagree) to 6 (agree) Issues evie Detection Options

Fig. 11. Perceived value of final test report.

Test Reporting at a Large-Scale Austrian Logistics Organization 65

To improve test reporting and test automation, we included as set of candidate
improvements in the survey. Figure 12 summarize the survey results. All stakeholder
groups support and expect recommendations from the test center based as core part of a
test report. The management roles PM and TL would prefer to adapt test activities
(based on current test results and their needs) instead of sticking to a standardized test
report. This adaption also include the definition of the frequency of test reports, which
is especially interesting for TL. For ENG, capabilities for test report configuration is
critical as size and complexity seem to be too large for this stakeholder group.

How do you rate the ing il i in
context of test reports and test

PM TL ENG ALL 6
Test Center Recommendation 6,0 5,0 5,5 57 5
Adapt Test Activities 53 5,0 50 52 4
Size of the Test Report 41 40 6,0 45 i
Flexibe TR size config 46 45 25 42 1

Frequency definition 33 5,5 25 35 0

*mean value based on Likert Scale 1 (disagree) to 6 (agree)

Fig. 12. Suggested improvements for test reports and test automation.

Based on these survey, we conducted three interviews with test managers to discuss
the results and derive additional requirements (see Table 1). Stakeholders use reports to
support decision making (R09) and get an overview of the status of software devel-
opment (R10) and software testing (R11). Additionally, they found some parts of the
reports unnecessary and wanted modular reports where they could define for each
project separately which parts should be included into a specific test report (RO8). More
generally, they stated to prefer graphics for visualizing data instead of raw numbers in
the form of metrics (R07). Finally, the effort for reporting should be minimized (R12)
as data visualization currently takes much effort and involves a couple of manual
human steps to produce test reports. Finally, each of the test managers stated that they
would like to establish a cross-project learning process. The idea came up to implement
an internal report only used within the testing department that summarizes and docu-
ments key learnings with a more general project summary.

5.3 Candidate Improvements and Assessment

Following the QATAM approach (see Fig. 3) and the study process (see Fig. 4), we
collected a set of candidate improvements based on survey results, complemented with
interview results, and industry best practices.

Table 3 summarizes 23 candidate improvement action (I01-123) to be considered
for improving the usage (and acceptance) of test reporting at our industry partner. Note
that we classified these candidate improvements according to the survey structure and
assigned them to identified requirements (see Table 1). Note that Table 1 consists of
best practices recommended by standards (RO1-R06) such as [4] complemented by
additional requirements coming from survey results and interviews (RO7-R12).

Some of the candidate improvements (i.e., [02 and 112) are not directly linked to
requirements but were elicited from interviews to improve internal testing processes.

66 D. Winkler et al.

Table 3. Candidate improvements and stakeholder assessment results.

ID Suggested Improvement Requirement Category A Decision
101 Provide modular and configurable reports RO1, RO6, RO8 General yes Selected
102 Establish a cross-project learning process - General yes Selected
103 Include recommendations/suggestions from test center for QA- Actions R04 Test Status Report yes Selected
104 Report current testing progress according to target measures (defined at R10, R11 Test Status Report yes Selected
105 Focus on a management summary explaining the "traffic-light" status RO4, RO7 Test Status Report yes Selected
106 State-Gate-Model following QATAM = Test Status Report yes Selected
107 Make "Defect Trends" and "Indicators and Metrics" more RO4, RO5 Test Status Report yes Selected
108 Clarify "Requirements coverage" RO1, RO3 Test Status Report no not now
109 Dynamic Interval for sending the report - Test Status Report no not now
110 Focus on trends instead of the current status RO2, RO3, RO7 Test Status Report no Not planned
111 Define target goals for specific measures at the beginning of the project R05, RO9 Test concept yes Selected
112 Send test concept only in project with external partners - Test concept yes Selected
113 Define specific Test End Criteria RO5, RO9 Test concept no Not planned
114 Generate reports according to stated stakeholder needs RO6, RO8 Final Test Status report no not now
115 Overview on identified issues in the Final Test Status Report RO1, R04, R12 Final Test Status report no not now
116 Include lessons learned in the Final Test Status Report FO4 Final Test Status report no not now
117 Create Cross-Project Learning Backlog for internal use - Final Test Status report no not now
118 Suggest possible application of Test Automation at the project start RO1, RO8 Test automation yes Selected
119 Explicitly highlight Test automation results in the Test status report RO1, R08, R12 Test automation yes Selected
120 Visualize Data instead of presenting statistical metrics RO7 Test automation yes Selected
121 Present a general trend in the specific test (overview) followed by R10, R11 Test automation yes Selected
122 Use Graphs instead of tables to support understandability RO1, RO7 Test automation yes Selected
123 Create standard report templates R12 Test automation no not now

Candidate improvements were informally discussed with testing experts at our industry
partner, i.e., test managers, which were stakeholders similar to the interview partners.
Because they represent key stakeholders in the testing center, they are also responsible
for implementation. We have discussed all candidate improvements with these testing
experts, elicited benefits and limitations based on the current state of the practice.
Based on the discussion results we classified every candidate improvement with a
yes/no decision. “Yes” means that this candidate improvement is important and
promising to be implemented at the industry partner. “No” refers to candidate
improvements that (a) are less important for implementation in the near future; (b) has
been considered as less useful in the given company context; or (c) needs further
investigations on the expected benefits. Finally, based on the assessment (see Table 3)
14 suggested candidate improvements (61%) have been selected for implementation in
the near future. Those candidate improvements which have not been selected in the
near future were separated in (a) promising approaches that need to be considered for
future improvement initiatives (i.e., 7 improvement actions (30%)) and (b) improve-
ment actions that are not planned yet (i.e., 2 improvement actions (9%)).

Based on these evaluation results, 14 improvement actions have been selected for
implementation. Note that implementing these improvement actions and the evaluation
are out of scope of this paper.

6 Discussion and Limitations

The goal of this paper was to analyse the usage, benefits, expectations and acceptance
of test reporting at our industry partner, a large-scale Austrian logistics organization
with focus on improving test reports to increase the benefits, provided by test reports on
the quality of projects. Therefore, we set up a case study to collect requirements (based

Test Reporting at a Large-Scale Austrian Logistics Organization 67

on survey and interviews), developed candidate improvements based on the state-of-
the-practice and industry best practices, given by standards (such as [4]), evaluated
candidate improvements in informal interviews with test experts at the industry partner
as foundation for establishing an improvement strategy in the company.

RQ.1: What are critical stakeholder requirements for test reporting in context of
the case study organization? We derived basic stakeholder needs and requirements
based on literature as the case study organization follows the suggestions given by the
standard [4]. Based on a survey, where we received 15 qualified responses from
different stakeholder groups, we complemented the list of requirements by stakeholder
needs from the organization. In total we derived 12 requirements, where 7 requirements
have been derived from literature and 6 additional requirements have been derived
from survey and interviews in the case study organization. Table 1 presents the
summarized results of retrieved requirements.

RQ.2: What are the best-practices implemented in the organization, i.e., a large-
scale Austrian logistics organization? We applied the survey approach to identify the
state of the practice at our industry partner in context of test reporting, test status
reports, and test automation (see Sect. 5.2 for the results). As the case study organi-
zation typically follow test reporting standards, we identified a set of limitations
regarding the usage and acceptance of the current practice. The most important finding
focus on the structure and complexity of test reporting which have to be improved and
modularized to improve acceptance. Therefore, there is a need for a configuration
capability according to the project context which needs to be considered in the
improvement initiative.

RQ.3: What is the impact of improved reporting in context of a logistics organi-
zation? We used the QATAM approach [11] for driving the improvement initiative.
Based on identified requirements (derived from RQ.1), survey results and interviews
we came up with a set of 23 candidate improvements where 14 improvement actions
have been found useful for implementation and 7 remain for future work, and 2 have
been rejected (for now). Note that the candidate improvement actions have been
assessed by testing experts from the organization, supported by the authors by using
informal interviews and discussions. However, 14 improvement actions have been
finally selected for implementation in the organization.

Limitations: In context of the study we have identified a set of threats to validity and
tried to address them. The most critical limitation focuses the selection of survey and
interview participants because of the low number of participants. Survey participants
include 15 experts (including 8 project managers (PM), 2 team leads (TL), and 5
engineers (ENG) including requirements engineers and software architects). The low
number of participants may not be representative enough for generalization. However,
in the case study organization and the study context the selection of participants is
representative. Similar arguments apply for the selection of interview partners (3 test
managers of the case study organization). The setup of the questionnaire and the
interview guideline was designed to initiate an improvement strategy at the case study
organization. However, the questionnaire can be used in different contexts as foun-
dation for eliciting the state of the practice in context of test reporting. In addition these

68 D. Winkler et al.

guidelines have been extensively reviewed by testing experts (i.e., the authors, where
one author designed the questionnaire and the others provide feedback on the content)
to ensure the correctness and completeness in the stud context.

7 Conclusion and Future Work

Test reporting us usually used to provide some evidence on the quality of a software
product or to report on the quality status of a project/product at a defined time within
the project course. However, a well-defined test report can also be used to support
project teams in better monitoring and supporting the project progress. An agreed test
report structure, the content and the level of detail of a test report (within a project team
or an organization or) represent the foundation for acceptance and for application in the
project context. Therefore, we initiated an improvement initiative at our industry
partner as starting point for establishing test reports and vehicle for project and quality
improvement. We used surveys, interviews, and industry best-practices as foundation
for providing a set of candidate improvement that are evaluated by testing experts at the
case study organization. 14 improvement action have been selected for evaluation.
Based on the case study results we believe that the case study approach (in general) and
the identified improvement actions can support organizations in improving test reports
and, as a consequence, improving engineering projects.

Future work will include two aspects: (a) we are planning to support the case
study organization in the implementation of the suggested and selected candidate
improvements. Furthermore, an empirical study is planned to investigate the impact of
improvements of test reporting in context to the state of the practice; (b) with focus on
the questionnaire we are planning to re-visit the survey questionnaire and interview
guidelines with respect to improving and re-using the material in other contexts, such
as organizations with testing and test report needs. Future work will also include
replication of the improvement approach in larger contexts to collect a higher number
of responses and interviews.

Acknowledgement. The financial support by the Austrian Federal Ministry for Digital, Busi-
ness and Enterprise and the National Foundation for Research, Technology and Development is
gratefully acknowledged.

References

1. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, 1., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 68-83. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57209-0_6

2. Duvall, P.M., Matyas, S., Glover, A.: Continuous Integration: Improving Software Quality
and Reducing Risk. Addison-Wesley, Boston (2007)

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Pearson Professional, Gurugram (2010)

4. ISO/IEC/IEEE 29119-3:2013: Software and Systems Engineering. Software Testing. Part 3:
Test Documentation. International Standard, ISO/IEC/IEEE (2013)

http://dx.doi.org/10.1007/3-540-57209-0_6

10.

11.

Test Reporting at a Large-Scale Austrian Logistics Organization 69

. Kelley, J.J.: Quality assurance reporting to the governing board. Trustee: J. Hospital

Governing Boards 43(5), 10-12 (1990)

. Laitenberger, O., DeBaud, J.-M.: An encompassing life cycle centric survey of software

inspection. J. Syst. Softw. 50(1), 5-31 (2000)

. Molyneaux, I.: The Art of Application Performance Testing: From Strategy to Tools, 2nd

edn. O’Reilly and Associates, Sebastopol (2014)

. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley, Hoboken

(2011)

. Sommerville, 1.: Software Engineering. Global Edition, 10th edn. Pearson Education

Limited, Bengaluru (2015)

Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations: A Study Guide for the
Certified Tester Exam, 4th edn. Rocky Nook, San Rafael (2014)

Winkler, D., Elberzhager, F., Biffl, S., Eschbach, R.: Software process improvement
initiatives based on quality assurance strategies: a QATAM pilot application. In: Riel, A.,
O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 71—
82. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15666-3_7

http://dx.doi.org/10.1007/978-3-642-15666-3_7

Software Development

q

Check for
updates

Embracing Software Process Improvement
in Automotive Through PISA Model

Fabio Falcini and Giuseppe Lami®®
Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie
dell’Informazione, via G. Moruzzi, 1, 56124 Pisa, Italy
giuseppe. lami@isti.cnr. it

Abstract. Vehicles innovation is principally driven by electronics components
and software that play today a predominant role for the vehicle’s functions.
Because the quality of on-board automotive electronic systems is strongly
dependent on the quality of their development practices, car-makers and sup-
pliers proactively focused on improvement of technical and organizational
processes. In this setting, several reference standards for the assessment and
improvement of automotive electronics processes and projects have been con-
ceived and used in the last decade. Although the effects of the application of
them in automotive industry have been generally positive, getting compliance in
the short period may represent, in some contexts, a target hardly achievable, or
even a chimera. In this context, a novel scheme addressing both project eval-
uation and process improvement and targeting a hand-on approach for the
practitioners has been recently developed starting from the analysis of practi-
tioners needs and success factors in the software process improvement. This
scheme is named Process Improvement Scheme for Automotive (PISA Model).
The structure and contents of the PISA Model is described in this paper.

1 Introduction

The last two decades witnessed a deep change in the vehicle manufacturing, car OEMs
(Original Equipment Manufacturer) reshaped their vehicles from mechanical devices
into elaborated digitally controlled systems. As a result, the software (with increasing
demand in terms of size and complexity and cybersecurity) is a crucial component
since it is part of embedded systems called Electronic Control Units (ECU) that control
electronically a large number of the vehicle functions. The number of ECUs, from
economic to luxury vehicle models, is remarkably increased during the last
fifteen/twenty years. Electronics is so pervasive in today’s cars that almost all the main
features and functionalities are controlled by software; not to mention the innovation
driven by the deep-learning-based systems that are becoming pervasive in automobiles
[8]. But technological innovation still run on the fast lane, today’s trend towards
connected and autonomous cars is presenting new and very complex challenges.

In this setting, the quality of on-board automotive electronic systems is the key
issue OEMs shall face. Because the quality of products strongly dependent on the
quality of their development practice, car-makers and suppliers are proactively and
increasingly focusing on the improvement of technical and organizational processes.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 73-88, 2019.
https://doi.org/10.1007/978-3-030-35333-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_5

74 F. Falcini and G. Lami

Several models and standards addressing both automotive system and software
development are available for the automotive market. These models and standards have
typically a strong focus on processes; among them the most relevant and influencing
are Automotive SPICE [1], ISO 26262 [4], and IATF 16949 [15]. Moreover, it is worth
mentioning the ISO 21434 [14] that is on the way to be published.

The application of such standards, in particular Automotive SPICE, produced
undoubted positive effects on the automotive industry in the last years. Advancements
have been achieved in terms process awareness, possibility of benchmarking, devel-
opment discipline, and incitement to improvement [7].

Nevertheless, the specifics and the complexities reached by today’s automotive
software-intensive systems have shown that current models and standards have some
drawbacks in responding to the needs of the automotive industry [5, 6]. In particular,
the automotive players are in need of the following aspects: more focus on projects
rather than a pure process-centred approach, improved technical guidance, and explicit
links to already established automotive quality frameworks. Several initiatives and
studies have been conducted with the aim of finding out solutions to such problems
[9-11].

In this context, a novel scheme addressing both project evaluation and process
improvement and targeting a hand-on approach for the practitioners has been devel-
oped. This scheme is named Process Improvement Scheme for Automotive (PISA
Model). The PISA Model [12] is being applied in practice by means of trials on real
projects with the aim of getting feedbacks and identifying improvement indications for
the next releases. In this paper the PISA Model Rating System is addressed. Starting
from the definition of the quality characteristic the PISA Model addresses (i.e. Ade-
quacy), the mechanism to determine the rating will be presented and discussed.

This paper is structured as follows: in Sect. 2 the overview of relevant existing
standards in automotive is provided. In Sect. 3 a discussion on the motivations for a
new scheme for process assessment and improvement in automotive is provided. In
Sect. 4 the Adequacy quality characteristic is defined. The structure of the PISA Model
is described in Sect. 5 and the PISA Model rating system in Sect. 6. Finally, in Sect. 7
conclusions are provided and on-going activities are described.

2 Reference Standards in Automotive Software-Intensive
Components Development

In automotive, similarly to the other transportation domains (e.g. aerospace and rail-
ways), exist several technical standards that are often used as reference for evaluation
or qualification of software-intensive components.

In this Section an overview of the existing automotive-specific reference models for
evaluating or qualifying software-intensive development projects and processes is
provided. In the last years standards addressing software development have been
released and applied in automotive, the most relevant and impacting are:

Automotive SPICE (SPICE stands for Software Process Improvement and Capa-
bility Determination) [1]: it provides a process framework that disciplines, at high level
of abstraction, the software development activities and allows their capability

Embracing Software Process Improvement in Automotive Through PISA Model 75

assessment in matching pre-defined sets of numerous process requirements. Automo-
tive SPICE, as a de-facto process standard, is used by car manufacturers to push
software process improvement among suppliers of software-intensive systems [2]. The
purpose of the standard is to provide both a scheme for evaluating the capability of
software processes and a path for their improvement. Process capability is defined as a
characterization of the ability of a process to meet current or projected business goals.
Many car makers are using also this standard to qualify suppliers by requiring to them
the achievement of specific rating [3]. Automotive SPICE standard provides a Process
Reference Model and a Process Assessment Model including a Measurement Frame-
work to assign ratings to processes.

ISO 26262 [4]: it is a Functional Safety standard titled Road vehicles — Functional
safety released in late 2011. Similarly to its parent standard IEC61508, ISO 26262 is a
risk based safety standard, where the risk of hazardous operational situations are
qualitatively assessed and safety measures are defined to avoid or control systematic
failures and to detect or control random hardware failures, or mitigate their effects.
The ISO 26262 standard:

Provides an automotive safety lifecycle (management, development, production,
operation, service, decommissioning) and supports tailoring the necessary activities
during these lifecycle phases.

Covers functional safety aspects of the entire development process (including such
activities as requirements specification, design, implementation, integration, verifica-
tion, validation, and configuration).

Provides an automotive-specific risk-based approach for determining risk classes
(Automotive Safety Integrity Levels, ASILs).

Uses ASILs for specifying the item’s necessary safety requirements for achieving
an acceptable residual risk.

Provides requirements for validation and confirmation measures to ensure a suffi-
cient and acceptable level of safety is being achieved.

The ISO 26262 scope embraces the whole system life cycle and addresses
specifically the hardware and the software development lifecycles.

The application of the ISO 26262 standard in industry represents a real challenge
for many automotive software-intensive systems. In fact, the 687 requirements, 100
work products and 62 decisional tables in the standard require a significant effort (both
from a technical and managerial point of view) to adapt existing (hopefully sound and
mature) processes and to acquire possible additional technical competencies and tools
as well.

ISO/PAS 21448 [13] - Safety of the Intended Functionality (SoTIF). This standard,
recently published, aims at overcome a limitation of the ISO 26262 standard. In fact,
what it is not always recognized is that ISO 26262 only covers fault failures and not the
so-called Safety of the Intended Functionality (SOTIF). This ISO document addresses
the fact that for some automotive applications there can be safety violations with a
system free from faults - for example a false-positive detection by a radar of an obstacle
for the vehicle — because it is extremely problematic to develop systems able to address
every possible scenario. The ISO/PAS 21448 aims at providing guidance to the design,
verification and validation measures applicable to avoid malfunctioning behaviour in
the system in absence of faults, resulting from system definition shortcomings. It is

76 F. Falcini and G. Lami

intended to be applied to systems for which a proper situational awareness by the item
is critical for safety, and is derived from complex sensors and processing algorithms,
especially.

ISO/SAE CD 21434 [14]: This standard is still under development (it reached the
status of CD on September 2018). Its focus is on defining common terminology and the
key aspects of cybersecurity in automotive. The application of the standard aims to
help companies demonstrate responsible and careful handling of vehicle development
and cyber-threat prevention. The activities in the product development according to
standard are controlled on the basis of a risk assessment, for this purpose measures for
the organizational anchoring are demanded. Although processes are required, the
standard only describes the task of a process, but leaves the design of the process to the
user. Special technologies or solutions are not proposed and autonomous vehicles are
not given special status in the recommendations of the standard.

IATF 16949: it is a standard for the Quality Management System (QMS) in
automotive [15]. It is based on the requirements of the ISO9001 standard with the
addition of specific requirements for automotive. The definition of such a special
version of the ISO 9001 for automotive, has been supported by major international car
manufacturers with the aim of providing a mean to increase the confidence in the
automotive suppliers. The IATF 16949 promotes a process-oriented approach in the
development, enactment, and improvement of the QMS.

3 Motivations for a New Process Assessment
and Improvement Model in Automotive

In this section we discuss, on the basis of our wide experience as Automotive SPICE
Principal Assessors (qualification obtained by the IntACS [18]), some objective
motivations for the definition of a new model for process assessment and improvement
in automotive.

1. Automotive-native Assessment and Improvement Schemes:
Automotive electronics is an application domain having its own peculiarities and
specific characteristics both in terms of product and process. Automotive software-
intensive components are principally ECUs, inter-connected via the vehicle net-
work, with specific demands in terms of interoperability, modularity, calibration,
and time-to-market. The platform-based approach to the design and development of
automotive software-intensive systems, as well as the wide deployment of model-
driven software development and the application of agile methods make the picture
even more complex. In such a context, generic process assessment and improve-
ment schemes are not able fit at all for such a kind of products. In particular,
Automotive SPICE is a model derived from the generic SPICE model (former
ISO/IEC 15504, today moved in the ISO 33000 series). For this reason, though
Automotive SPICE contains automotive-specific elements, nevertheless it is still
affected by the original approach. In particular, some process elements to be
addressed to achieve compliance (e.g. Base Practices) are both hard to be applied in
real development project contexts and at the same time can provide little added

Embracing Software Process Improvement in Automotive Through PISA Model 77

value from a process improvement perspective. Moreover, the terminology used in
Automotive SPICE is sometimes far from the technical lexicon and then difficult to
understand by practitioners.

2. Technology readiness:
If we consider the main success factors for software process improvement according
to the existing literature [18, 19] [20], we can understand that some of them are not
sufficiently addressed by current reference standards, in particular by Automotive
SPICE. In particular, the resource availability as suitable technology for deploying
and supporting development projects (identified as a relevant success factor) is a
success factor that is not sufficiently addressed by the existing standards. Tech-
nology is not explicitly addressed by reference standards principally because the
need of being general (i.e. applicable in several contexts) as well as the need of
being updated (i.e. the technology evolves in a fast way and the standard should be
maintained updated with a high frequency). Nevertheless, technology factor cannot
be omitted, because in such a context, in which innovation runs in a very fast way,
the technological readiness is a fundamental requirement.

3. Unique Rating:
As in automotive process assessment results are used to qualify E/E suppliers
(mainly on the basis of Automotive SPICE), the availability of reference assessment
models providing a unique final rating is desirable. Unfortunately, Automo-
tive SPICE doesn’t provide a unique rating but it is able to provide a rating for each
single process under assessment, and for this reason it not suitable at all for this
purpose. To cope with this gap OEMs defined assessment scopes (composed of
processes and related target ratings) for supplier qualification purposes. Such a
situation presents some drawbacks as, for instance, the heterogeneity of target
assessment scopes due to different requirements from different OEMs. Having a
qualification scheme providing a unique rating for qualification purposes would be
an advantage.

4. Availability of application guidelines:
Standard should be a proper balance between general clauses and precise guidelines
for their implementation. Automotive SPICE, for instance, lacks of guidelines for a
correct interpretation and an easier implementation of clauses. For this reason, a
book has been recently released by VDA with the aim of filling this gap [19].
Anyway, having a standard inclusive of application guidelines would give benefits
in order to facilitate the application of and the achievement of compliance with
respect standards as well as increase the uniformity.

5. Cross references among different standards:
The reference standards presented in Sect. 2 have some commonalities in terms of
technical and managerial areas addressed. Moreover, an organization may need to
achieve compliance with several standards on the same development project. For
these reasons, it is important standards have cross references each other in order to
optimize achievement of compliance with respect different standards. Currently
such a kind of mutual reference among automotive standards is poor.

78 F. Falcini and G. Lami

4 Adequacy Quality Characteristic

The authors, in order to overtake the drawbacks discussed in Sect. 2, defined a new
approach to face the challenge of providing an effective model for quantitatively
evaluate quality of automotive software-intensive developments from a process per-
spective. As initial step a new quality characteristic has been defined, such a charac-
teristic has been named Adequacy.

Definition: Adequacy is the responsiveness of process deployed in development
projects to automotive demands from technical and organizational perspectives.

A new framework able to allow the rating of a development project in terms of
Adequacy has been developed by the authors. Such a framework has been named PISA
(Process Improvement Scheme for Automotive) Model [12]. The PISA Model will be
described in detail in Sect. 4.

A project is then said being Adequate (i.e. it fulfils the quality characteristic of
Adequacy) when the project performance includes the deployment of a core set of
technical and managerial practices and when state-of-the-art technology is used.

Adequacy has been defined in order to integrate the concepts of: process capability,
organizational maturity and technological readiness. In the following, the way these
concepts have been addressed in the definition of the quality characteristics of Ade-
quacy is described:

1. Process capability: the achievement of project Adequacy is based on the perfor-
mance of a precise set of technical and managerial practices. Performing a prede-
fined set of practices is the basis of the achievement of process capability (as, for
instance, in the case of Automotive SPICE). The combination of the PISA Model-
provided practices allows to define the processes and addresses their capability as
well.

2. Organizational maturity is defined as “the extent to which an organizational unit
consistently implements processes within a defined scope that contributes to the
achievement of its business needs” [16]. It’s about the derivation of a unique rating
valid for the whole organization calculated starting from ratings of single processes.
The approach of the PISA Model is the same. As it will be described later in this
paper, the Adequacy characteristic is derived by combination of the ratings of single
processes.

3. Technological readiness is a novel element in existing automotive process models.
Technology is a key element to achieve high quality process and to improve them as
well. The PISA Model addresses this element by including among the Adequacy
indicators a set of requirements addressing the use of state-of-the-art technology in
development projects.

The PISA Model is composed of the three pillars:

— Process Scope and Augmented Framework
— Process Structure and Requirements
— Evaluation and Rating System

Embracing Software Process Improvement in Automotive Through PISA Model 79

In Sect. 4 Process Scope and Augmented Framework, and the Process Structure
and Requirements are presented. Evaluation and Rating System is presented and dis-
cussed in Sect. 5.

5 Process Improvement Scheme for Automotive (PISA
Model)

The purpose of the PISA (Process Improvement Scheme for Automotive) Model is to
provide the automotive community with a quality model with innovative features that
targets the specific needs of the automotive industry in the context of the development
of electronic systems.

Explicitly, the peculiar needs for an effective quality model in the context of
automotive electronics developments are:

— Ability to evaluate the project performance in the context of automotive in order to
provide usable feedbacks on the project risk level;

— Ability to evaluate process capability in the context of automotive, as a means to
identify risks associated to development processes.

The PISA model addresses both project evaluation and process improvement in a
balanced fashion and targets a hand-on approach for the practitioners.
The PISA model, in the context of electronic automotive systems, addresses:

1. System-level development
2. Electronic and mechanics hardware-level development
3. Software-level development.

The PISA Model fits the characteristics of automotive developments by incorpo-
rating automotive technical and procedural requirements as well as a more project-
centered perspective into a standard process framework. Conceptually, the PISA Model
can be defined as an automotive-specific “augmentation” of a process model, conceived
to better serve the needs of automotive electronics developments.

5.1 Processes Scope and Augmented Framework

The PISA Model encompasses processes at technical and managerial levels that

incorporate the backbone of a typical automotive project structure. The processes

belonging to the PISA Model are twenty-two (22) in total (as shown in Fig. I).
They are divided into five (5) Process Segments:

— Three (3) Technical Segments: System Engineering, Hardware Engineering, and
Software Engineering
— Two (2) Coordination Segments: Management, and Sustenance.

80 F. Falcini and G. Lami

SY2 - Requirements SY4 - Functional @ Management
SY1 - Technical Engineering Validation %
Concept 3
Development SY3 - System Design SY5 — APQP Validation 9 MG1 - Program
& Calibration Q@ Management
3
]
3
HWH1 — Electronic hardware SW1 - Software «
design requirements specification MG2 - Project and
Risk Management
, | HW2 — Electronic hardware SW2 — Software design
- | integration & validation »
HWS3 - Electronic hardware f;ﬁrg"—ui?;:vare H MG3 - Technical
dependability evaluation & 3 Supervision
o | verification e
& SW4 - Software unit 2
Z | HW4 - Housing mechanics verification 3
5 | engineering 3 MG4 - Quality and
I _SWS - Soﬂware _ @ improvement
HWS5 - Actuation integration & validation management
mechanics engineering
Sustanance SU1 - Configuration SU2 - Reuse SU3 - Documentation
Management management management

Fig. 1. PISA model processes

In the following, the PISA Model processes are grouped by segment and shortly
described. System Engineering Segment processes address the product view — the
processes belonging to this segment are described in Table 1.

Table 1.

Process Id. and Name

Pertinence

SY1 - Technical concept
development

SY2 — Requirements engineering

SY3 - System design and
calibration

SY4 - Functional validation

SYS5 — Advanced product quality
planning (APQP) validation

Early setup of the overall system architecture; this
process acknowledges the fact that in the automotive
market crucial design decisions are often taken during
the commercial phases of the project

Definition, documentation and maintenance of
requirements for development at system level
Definition of a detailed system design with strong
focus on hardware-software interfaces and system
calibration aspects. Such a level of design takes into
account typical automotive design drivers such as
“design for manufacturing”

Verification of the conformance of the developed
system to its functional specification

Confirmation that the organization can produce
products that meet customer requirements in a cost-
effective and repeatable way

Embracing Software Process Improvement in Automotive Through PISA Model 81

Hardware Engineering Segment processes address the product view — the processes
belonging to this segment are described in Table 2.

Table 2.

Process Id. and Name

Pertinence

HW1 — Electronic hardware design

HW?2 — Electronic hardware integration

and validation

HW?3 — Electronic hardware verification
and dependability evaluation

HW4 — Housing mechanics engineering

HWS5 — Actuation mechanics

engineering

Definition of electronics design, including the
preparation of the physical layout

Validation of electronic sub-system(s) from a
functional and electrical point of views
Performance of in-depth design verification as
well as the performance of dependability analysis
Deployment of both the design and the verification
of mechanical housing

Deployment of both the design and the verification
of actuation mechanical hardware

Software Engineering Segment processes address the product view — the processes
belonging to this segment are described in Table 3.

Table 3.

Process Id. and Name

Pertinence

SW1 - Software
requirements specification
SW2 — Software design

SW3 — Software
construction

SW4- Software units
verification

SWS5 — Software integration
and validation

Definition, documentation and maintenance of requirements
for software development

Definition of the software architectural design following a
multi-level and multi-perspective approach

Deployment of consolidated best practices for the
implementation of the software design

Deployment of verification activities to ensure correctness of
software units. The robustness verification of software units is
pivotal for this process

Verification and validation of software sub-system(s) from a
functional and performance point of views

Management Segment processes address the product view — the processes
belonging to this segment are described in Table 4.

Table 4.

Process Id. and Name

Pertinence

MGI1 - Program
management

MG?2 - Project and risk
management

MGS3 — Technical
supervision

High-level management of projects within the program
umbrella and related customer interfacing

Management of projects according to automotive industry best
practices

Management of technical operative aspects of project activities

82 F. Falcini and G. Lami

Sustenance Segment processes address the product view — the processes belonging
to this segment are described in Table 5.

Table 5.
Process Id. and Name Pertinence
SUI — Configuration Deployment of configuration management at system, hardware
management and software levels
SU2 — Reuse management | Management of the reuse of hardware and software elements
SU3 — Documentation Deployment of a rigorous and lean documentation management
management

5.2 Process Structure and Requirements
The PISA Model process definition structure is composed of the following fields:

1. Process Name

2. Context of the Process: general information on the process and on its context of use.
Entry Criteria: pre-conditions that are expected to be satisfied when the process
starts.

Input Work products

Requirements: definition of practices to be performed by the process.

Output Work Products and related content outline

Exit Criteria: conditions expected to be satisfied when the process ends.

et

Nk

The PISA model requirements are divided into three (3) categories:

a. Process Requirements
b. Governance Requirements
c. Technological Requirements

PISA Model requirements are prioritized in terms of impact on Adequacy evalu-
ation. With this aim, requirements are classified as high-priority or low-priority. In
Appendix A an example of PISA Model requirement is provided. For more details on
processes and related requirements refer to [12].

6 Adequacy Measurement System

Evaluation and rating within the PISA Model is governed by the PISA Rating System
(PISA-RS). The PISA-RS works according to a bottom-up approach. The PISA Model
contains the demonstration of compliance of PISA-RS with the ISO/IEC 33003
requirements [17]. Figure 2 shows the conceptual path towards the project evaluation
in terms of Adequacy.

As Fig. 2. shows, the PISA-RS provides a step-wise, bottom-up mechanism to
project evaluation that is based on process-specific sets of requirements belonging to
three categories (process, governance, and technological).

Embracing Software Process Improvement in Automotive Through PISA Model

83

Zo8

Project
Ratings

Process Segment
Ratings

Process
Ratings

Requirements
Compliance

L

Project

System Engineering Hardware Engineering Software Eng:

Measurable Indicators

Fig. 2. PISA model adequacy measurement approach

Table 6 describes the rating scale of the Adequacy attribute

semantics.

and associated

Table 6.

Adequacy rating
value

Meaning

Adequate - A
Sufficient - S

Incomplete - I

Inadequate - N

Project is run in a sound fashion and project objectives are not at risk
Process improvement opportunities are limited in scope and criticality
Project is run satisfactorily and project objectives are largely not at risk
Process improvement opportunities are present

Project is deployed nearly satisfactorily and project objectives are
exposed to some noteworthy risk

Significant Process improvement opportunities are present

Project objectives are at risk

Process improvement opportunities are important and require immediate
improvement action items

Table 7 summarizes the rating attribute related to each element under evaluation at
each step of the PISA-RS.

84 F. Falcini and G. Lami

Table 7.
PISA model rating level | Attribute
Project Adequacy
Process segment
Process
Requirement Compliance

Step 1: Compliance to process requirements. Compliance to all the requirements
(Process, Governance, Technology) is verified starting from the analysis of related
work products. Compliance is rated by a binary scale.

Step 2: Process rating. On the basis of the requirements compliance and their priority,
the rating of each process in terms of Adequacy is determined (Table 8).

Table 8.
Process Governance Technological
Requirements Requirements Requirements Process
High Low High Low High Low Ratings
prior. prior. prior. prior. prior. prior.
ALL * ALL * ALL *

ALL * >0 * >0 ¥

otherwise

ALL * >0 * =0 = S
I

Step 3: Segment rating. The weighted aggregation of process ratings determines the
relevant process segment rating (segment rating level). It is possible that not all the
processes belonging to a Process Segment are applicable (i.e. it is possible that, because
the project characteristics, some activities are not executed and, consequently, some
evidences are not available for rating a process). According to that, N, represents the
number of applicable processes in a Process Segment.

For System Engineering, Hardware Engineering, Software Engineering, and
Management Segments if N, < 3 the whole Process Segment is not applicable and,
consequently, it cannot be rated. For sustenance Process Segment if N, < 2 the whole
Process Segment is not applicable and, consequently, it cannot be rated.

Table 9 summarizes the rating rules at for a Process Segment:

Embracing Software Process Improvement in Automotive Through PISA Model 85

Table 9.
Number of occurrencies of process ratings Segment
Rating
S I
N, 0 0 0
N, -1 1 0 0
* >1 0 0
I
* k * >1

Step 4: Project rating. The combination of the process segments ratings determines the
project rating in terms of Adequacy attribute.

The Rating of a Project in terms Adequacy is based on the ratings of the three
(3) Technical Segments (System Engineering, Hardware Engineering, Software Engi-
neering) and on the ratings of the two (2) Coordination Segments (Management and
Sustenance).

It is possible that not all the Technical Process Segments are applicable (i.e. it is
possible that, because the project characteristics, some activities are not executed and,
consequently, some processes are not performed).

The PISA-RS allows to evaluate a project in terms of Adequacy also in the case of
one or two Technical Process Segments are not applicable.

Project Ratio

rating

A (All Segments rated A) || (All Technical Segments A) && (Coordination
Segments rated A or S)

S (Project Not Rated A) && (No Technical Segments rated I or N) & (No
Coordination Segments rated I or N)

1 (Project Not Rated S) && (No Technical Segments rated N) & (No
Coordination Segments rated N)

N Otherwise

In addition, a set of argumentations are provided in the PISA-RS on how to use the
project-level Adequacy characteristic in the context of organizations benchmarking.
These argumentations support the exploitation of the PISA Model to give a risk-based
evaluation that is specifically referred to the involved organization (e.g. an ECU
supplier). A mechanism to extend the Adequacy rating to the whole organization is
provided in [12]. This mechanism can be used to qualify an organization, and

86 F. Falcini and G. Lami

consequently as a mean for benchmarking. The mechanism is based on the concept of
project representativeness (that for space reasons is not described in this paper).

7 Conclusions and On-going Activities

In this paper we presented the mechanism to evaluate an automotive software-intensive
development project from a process perspective. The quality characteristic under
evaluation is named Adequacy. A project is said being adequate (i.e. fulfill the quality
characteristic of Adequacy) when the project performance includes the deployment of a
core set of technical and managerial practices and when state-of-the-art technology is
used.

The Adequacy evaluation mechanism is part of the PISA Model, a novel model
aimed at providing the automotive community with a quality model with innovative
features that targets the specific needs of the automotive industry in the context of the
development of electronic systems.

The authors, on the basis of their wide experience in automotive, recognized that
the existing standards and schemes used in automotive to assess and improve the
development of electronic components for automobiles present some weaknesses and
their application is not always respondent to players demands. The PISA Model has
been conceived with the aim of overtaking such lacks. Therefore, the PISA Model’s
processes are synthetically defined and embrace the whole product development life-
cycle including development processes at system, hardware, software level.

Though the PISA Model has been released recently, it is going to be applied on real
projects in order to get feedbacks on its suitability for the intended use.

The authors are conducting several trial PISA Model assessments with the aim of:

— Evaluating the ease of use, the completeness and the correctness of the PISA Model,

— Assessing the capability of the PISA Model to serve as a driver for improvement;

— Assuring its alignment with the State of the Art and Practice

— Spreading the knowledge of the PISA Model in the automotive community;

— Studying possible relationships and dependencies with other automotive-relevant
standards.

The trial assessments with PISA Model are carried out on real projects in parallel
with Automotive SPICE assessments. Data are collected during the trial PISA Model
assessments and a related empirical study will be provided in a next paper. The evi-
dences collected so far show that achieving the A rating in terms of Adequacy
according to the PISA Model rating mechanism assures the achievement of the
Capability Level 2 on the processes belonging to the assessment scope of the major
OEMs. We are also noticing that there is an increasing interest by OEMs in the PISA
Model to include it in their supplier qualification mechanisms.

Embracing Software Process Improvement in Automotive Through PISA Model 87
Appendix A

In this Appendix an example of Process Requirement is provided in order to show the
structure of PISA Model Requirements. The exemplar requirements is related to the
SW2 Software Design process. Each requirement of the PISA Model independently of
its category (process, governance, technological) has the same structure of the exemplar
process requirement shown below.

. SW2-PR1 ‘ Develop high-level software design

Clause |Software design shall be provided in order to represent the software part of the
system and its interfaces.

Elabora | A complete architecture of software shall be elaborated and documented. It shall
tions contain the software components and the related interfaces and relationship.
The software high-level design shall provide a complete representation of
software units and their interfaces and interactions.

Software high-level design shall address static aspects of software, as:

External interfaces of the software; Interfaces between software units/software
components; Resources usage constraints for software; Allocation of system
requirements to the system elements

SW high-level design shall address dynamic aspects of software behavior, as:
Dataflow between software units/software components; Dataflow at software
external interfaces; Interrupts management; SW operating modes

Software design shall specify the notation to be used. Possible notations to
represent software design are: natural language; semi-formal graphical notations
(as UML, SysML); informal notations

In the case of model-based software development the first levels of model
decomposition can be equated to high-level design.

In case of artificial intelligence, the definition of the structure of neural
network(s) such as layers and number of nodes, learning strategy can be equated
to high-level design.

LINKS TO ISO 26262 Requirement(s): ISO 26262-6:2011, clause 6.4.1, 11.2; ISO
26262-6:2011, clause 9.4.
LINKS TO APQP Requirement(s): Engineering Drawings

Tip(s) | A layered representation of software design is encouraged in the case of
architectural high complexity of software.

The use of formal notations to represent software design is not to be encouraged,
because their costs in terms of tool support and people training.

To address software design dynamic aspects, the use of graphical notation is
profitable.

Tailoring | High-level design can be expressed as collection of separate work-product,
Criteria | documental and electronic.

Notes | AUTOSAR provides a set of specifications that builds a common design
methodology based on standardized exchange format.

88

F. Falcini and G. Lami

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

. VDA QMC Working Group 13/Automotive SIG “Automotive SPICE Process

Assessment/Reference Model”, ver. 3.1, Verband der Automobilindustrie (2017). http://
www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf

. Hoermann, K., Mueller, M., Dittman, L., Zimmer, J.: Automotive SPICE in Practice:

Surviving Implementation and Assessment. Rocky Noor (2008). ISBN 978-1933952291

. Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: A SPICE-based supplier qualification

mechanism in automotive industry. Softw. Process Improvement Practice J. 12, 523-528
(2007)

. ISO 26262 - Road Vehicles - Functional Safety, International Organization for Standard-

ization (2018)

. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software improvement

implementation: an empirical study. Softw. Process Improvement Practice 11, 193-211
(2006)

. Niazi, M., Ali, B.M., Verner, J.M.: Software process improvement barriers: a cross-cultural

comparison. Inf. Softw. Technol. 52(2010), 1204-1216 (2010)

. Fabbrini, F., Fusani, M., Lami, G., Sivera, E.: Software engineering in the european

automotive industry: achievements and challenges. In: COMPSAC, pp. 1039-1044. IEEE
Computer Society (2008)

. Falcini, F., Lami, G., Costanza, A.M.: Deep learning in automotive. software. IEEE Softw.

34(3), 56-63 (2017)

. Kreiner, C., et al.: Automotive knowledge alliance AQUA - integrating automotive SPICE,

six sigma, and functional safety. In: McCaffery, F., O’Connor, Rory V., Messnarz, R. (eds.)
EuroSPI 2013. CCIS, vol. 364, pp. 333-344. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39179-8_30

Lami, G., Falcini, F.: Is ISO/IEC 15504 applicable to agile methods? In: Abrahamsson, P.,
Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 130-135. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4_16

Johannessen, P., Halonen, O., Orsmark, O.: Functional safety extensions to automotive
SPICE according to ISO 26262. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A.
(eds.) SPICE 2011. CCIS, vol. 155, pp. 52-63. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21233-8_5

Falcini, F., Lami, G.: Process Improvement Scheme for Automotive - PISA Model ver. 2.0.
Rapporto Tecnico ISTI n. 390840 (2018)

ISO/PAS 21448 - Road Vehicles - Safety of the Intended Functionality, International
Organization for Standardization (2019)

ISO/SAE CD 21434 - Road Vehicles - Cybersecurity engineering, International Organiza-
tion for Standardization (2018)

TIATF16949:2016 Quality management system requirements for automotive production and
relevant service parts organizations, International Automotive Task Force. 1st Edition
ISO/IEC 33001. Information Technology — Process Assessment — Concepts and terminol-
ogy. International Organization for Standardization (2015)

ISO/IEC 33003. Information Technology — Process Assessment — Requirements for process
measurement frameworks. International Organization for Standardization (2015)
International Assessor Certification Scheme. www.intacs.org

Verband der Automobilindustrie e. V. Automotive PSICE Guidelines, 1st Ed. September
2017

http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
http://www.automotivespice.com/fileadmin/software-download/AutomotiveSPICE_PAM_31.pdf
http://dx.doi.org/10.1007/978-3-642-39179-8_30
http://dx.doi.org/10.1007/978-3-642-39179-8_30
http://dx.doi.org/10.1007/978-3-642-01853-4_16
http://dx.doi.org/10.1007/978-3-642-21233-8_5
http://dx.doi.org/10.1007/978-3-642-21233-8_5
http://www.intacs.org

®

Check for
updates

Establishing a User-Centered Design
Process for Human-Machine Interfaces:
Threats to Success

Mario Winterer!®™) @, Christian Salomon'®, Georg Buchgeher' ®,

Martin Zehethofer?, and Alexandra Derntl?

! Software Competence Center Hagenberg GmbH, Hagenberg, Austria
mario.winterer@gmail.com
2 ENGEL Austria GmbH, Schwertberg, Austria

Abstract. While user-centered design (UCD) processes have widely
been established in domains like end-user electronics and business-to-
consumer products, such processes still lack widespread adaptation for
the development of industrial human-machine interfaces (HMIs). Over a
period of more than two years, we have worked as part of a development
team at a company from the manufacturing domain in a pilot project
to introduce a UCD process. During this period, we have - via partic-
ipant observation - collected a set of observed practices and behaviors
that violate well-known UCD principles. Furthermore, we derived some
root causes of these violations. Our insights are that introducing a UCD
processes cannot be performed isolated for a single development team
but impacts the entire organization including management and requires
trust as well as changes with regard to mindset, methods, technologies,
and team organization.

Keywords: User-centered design - Design process - Industry 4.0

1 Introduction

User-centered design (UCD) processes are well established in development of
end-consumer electronics and web-based business-to-consumer products, as a
good user experience (UX) is considered as a key success factor in these domains.
However, in industrial companies, most human-machine interfaces (HMIs) are
still developed traditionally in a feature-oriented manner. The design of HMIs
in the mechanical engineering domain, which are used to inspect and modify
process parameters or to manipulate automated processes, is typically heavily
influenced by the logical structure of the control system, more precisely, the
information model of the programmable logic control (PLC), without taking
human factors into account.

The resulting HMIs focus on data such as functional blocks and their param-
eters, rather than on workflows or tasks that need to be performed by their
operators. This, combined with the increasing complexity of modern industrial

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 89-102, 2019.
https://doi.org/10.1007/978-3-030-35333-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_6&domain=pdf
http://orcid.org/0000-0002-3894-4635
http://orcid.org/0000-0002-5665-2919
http://orcid.org/0000-0002-8565-6257
https://doi.org/10.1007/978-3-030-35333-9_6

90 M. Winterer et al.

machines, leads to cumbersome HMIs that do not match the high expectations
raised by modern user interfaces of business-to-consumer products like smart-
phones. Today, companies see user experience as differentiating factor to get
competitive advantage over competitors [23]. The need for user participation
to build flexible, nevertheless understandable and fault-tolerant HMIs is also
motivated by the industry 4.0 initiative [6,24].

In this case study we report on our experiences of introducing a UCD pro-
cess at ENGEL Austria GmbH, a company from the manufacturing domain. The
company is manufacturer of injection molding machines and is currently in the
process of developing a new generation of its software stack. As part of this soft-
ware stack a new version of a Sequence Editor application for the programming
of robot arms is being developed. This project was selected as a pilot project for
introducing UCD at ENGEL. As part of an industrial research cooperation, the
authors of this paper have worked over two years as project members in this pilot
project to supervise the introduction of the UCD process. As a result, we have
obtained deep insights in the processes and social fabric of the company which is
advantageous over other inquiry approaches as for this research we considered it
important to be able to look behind the facade of the organization. Based on our
experiences we have collected a set of practices and behaviors we encountered
during the introduction of UCD, that violate the core UCD principles.

The remainder of this paper is organized as follows: In Sect.2 we describe
the industrial context of this work. Section 3 presents a brief overview of UCD
including central principles. In Sect.4 we present malpractices we have found.
Section 5 discusses related work. Section 6 concludes this paper with a summary
of our main findings.

2 Industrial Context

ENGEL is a large manufacturer of injection molding machines. Such machines
are used across many industry domains like consumer electronics, automotive,
avionics, food industry for producing different kinds of plastic parts like enclo-
sures of cell phones and laptops, toys, car parts, bottles, tooth brushes, etc. By
using different molds and adaptable machine parameters, a single machine is able
to process varying types of material and hence produce many different products.
Nevertheless, certain domains require very specific adaptions of machines. Pro-
viding almost any requested customization is one of the key success factors of
the company.

In 2016, the company started the development of its next generation of soft-
ware for injection molding machines. This project encompasses the development
of a new HMI (framework and applications), and a new middleware tier based
on the OPC Unified Architecture (OPC UA) specification [19] for a unified com-
munication with PLC control systems and auxiliary devices (e.g. robot arms
and conveyor belts) of different vendors. As a consequence, large parts of the
software have to be re-engineered and migrated to new technologies and frame-
works. This undertaking affects many different stakeholders across several orga-
nizational units in the company. The core parts of the HMI are developed by four

Establishing a UCD Process for HMIs: Threats to Success 91

different agile teams in a Scrum process. Once, the HMI framework is released,
several customization teams, which adapt the machine to the customer’s needs,
will also make use of it. In addition, many other teams are working on software
products that are not directly related to the HMI, but may have influence on
the overall user experience (e.g. the customer portal).

One application of the HMI is a Sequence Editor for the programming of
industrial robots and the manipulation of machine workflows. The Sequence
Editor supports visual motion-level programming and is used by a wide range
of technicians from well-trained maintenance engineers to novice factory atten-
dants. The company selected the Sequence Editor as a suitable application for
piloting a UCD process.

3 User-Centered Design Principles

UCD processes focus on putting users into the center of product design and
development [18]. Existing approaches aim to integrate users in the develop-
ment process because user involvement is a critical factor for system acceptance
and success [1,3,10]. No matter which concrete methods [4] are applied by a
particular approach, they all share the following common principles:

Integrated and Comprehensive Solution. In order to provide a consis-
tent user experience, surrounding services and products must be developed
together with core functions. Therefore, the development teams should coop-
erate closely with surrounding departments like marketing, training, and cus-
tomer service [9].

Focus on Users and Tasks. For a good and minimal system design it is
necessary to understand which people are using the system and what goals
they are trying to achieve [8].

Active User Participation. End-users and domain experts, which in the man-
ufacturing domain are often end-users as well, should participate through all
process stages [12] beginning with early analysis. Identifying and selecting
representative users is an ongoing process [13] that is crucial for project suc-
cess.

Continuous Evaluation and Iteration. Development is iterative and based
on prototypes even in very early states of the project. These prototypes are
incrementally evaluated by either experts or (again) in collaboration with
potential users [17]. Insights of these evaluations are used to build enhanced
prototypes in subsequent iterations.

Interdisciplinary Teams. As a consequence of the preceding principles, a team
must allocate a broad range of skills and knowledge to satisfy the UCD pro-
cess needs. Usually, (software) engineers alone cannot cover this range but
must be assisted sporadically by members of other departments and sup-
ported consistently by UX designers and usability engineers [5]. It is highly
recommended to integrate these experts into the development teams.

92 M. Winterer et al.

One approach that transfers these principles to agile development environ-
ments is Lean UX as proposed by Gothelf and Seiden [7]. Lean UX focuses on
vertical prototypes and minimum viable products (MVP) to gain rapid feedback
and test the relevance and usability of implemented concepts (there are a lot
of different definitions for MVP [16], we agreed on the definition given by Ries

[21]).

4 Experiences When Introducing UCD

In this Section, we report on our experiences of introducing a UCD process for
the development of the Sequence Editor in the UCD pilot project after about
two years. For this purpose, we identified malpractices that symptomatically
violate the UCD principles and methods we presented in Sect. 3. Figure 1 gives
an overview of all findings. The figure lists all observed symptoms on the left
side and categorize them by the principles (see Sect. 3) violated. Outgoing arrows
mean that the source item is caused by the target item. So each of the symptoms
can ultimately be tracked down to at least one root cause that originates in the
behavior of the project team or their surrounding (processes, supervisors, etc.).
As Fig. 1 shows we have identified four major root causes:

Inappropriate Development Organization, Tools, and Mindset. User
interface development based on UCD requires appropriate mindsets. As indus-
trial companies don’t see themselves as software developers, they are much
more traditional concerning methods, organization, tools, and mindset than
modern software development organizations. These outdated attitudes may
have severe impact on UCD based software product development.

UCD Intrinsic Issues. The user-centered design process is not perfect and
has also some drawbacks [2]. Issues that are related to these drawbacks are
summarized by this root cause.

Domain Specific Difficulties. HMI development in the industrial domain is
very special due to its tight coupling to the machinery hardware and its
special usage environment. Although hard- and software must work together
perfectly, the software development process differs significantly from the hard-
ware development process. Apart from that, there is the very long product
life-cycle, which can last 20 years or longer. Within this time, the company
must provide support and maintenance of both, software and hardware. As
many machines are not connected to the internet, updating the software sys-
tem requires maintenance personnel to be on-site. So for cost reasons, updates
should not be done too frequently. Last, but not least, industrial companies
want to keep their production knowledge secret. Due to this and because the
companies are spread worldwide, it is not too easy to perform UCD related
tasks like observations or interviews with end-users.

Too Less UCD Experience. ‘Exercise makes perfect’ is also true for introduc-
ing a new process. The team members as well as all other people concerned
have to learn new ways of doing things and - even more important - accepting

Establishing a UCD Process for HMIs: Threats to Success 93

that things are different now. Lack of experience is especially noticeable when
something goes wrong. But even when everything runs fine, people tend to
revert to old habits.

The following sections (Sects.4.1, 4.2, 4.3, 4.4 and 4.5) systematically
describe all found problems and their symptoms grouped by UCD principle.
Even more, where appropriate, mitigation strategies to overcome the correspond-
ing problem are given. These strategies arise mainly from personal experiences of
the authors mixed with tried and tested statements of literature. It is important
to note that currently not all of these optimal situations are already established
in the pilot project, hence their effectiveness is not proven yet.

4.1 Integrated and Comprehensive Solution

Feature-Driven Vs. User-Driven Development. While the pilot project
follows a user-centric approach from start, all other teams continued to work
feature oriented. This situation is a continuous source of conflict in a multi-
team project. In a feature-driven development process, the overall model and
the feature list are specified first; then the features are implemented step-wise.
This is inconsistent with the user-centered design, where new features are defined
and refined gradually based on user research.

Symptom: The framework team is busy implementing components like Ul
controls or input dialogues without any user need. Special framework features
defined by the pilot project team are postponed as they do not match the prede-
fined feature list of the framework team. As a consequence, the pilot project team
must either implement the features by themselves, or wait until the framework
team is able to deliver the requested feature. As the latter is irreconcilable with
the UCD process (which demands early user-testing of implemented features),
the pilot project team has to do much more work than planned.

Mitigation: All teams of the multi-team project follow the UCD approach.
User research is done in tight cooperation. New features can be defined on
demand.

Departmental Thinking. Traditionally, there is no communication channel
between departments like marketing and the development teams. As a conse-
quence, business goals do not necessarily align with product requirements nor
do they drive innovation.

Symptom: There is no general design system that covers all different com-
munication channels between company and customer: print media, the company
web page, the web based customer portal, the product, and auxiliary apps. All
these parts are developed independently and tell their own story to the user.
As the marketing department is not interested in HMI development, and the
product manager is not informed about marketing activities, the business goals
of marketing and product development do not match.

Another example is the missing link between development department and
customer training. While the customer training team usually has deep knowledge

94

M. Winterer et al.

Symptom

Integrated and
comprehensive solution

Eealure drvenva)
Feature driven vs.
user driven

development
S
Departmental
thinking

2
Non-holistic

€

approach

Continuous evaluation and

iteration

)

)

y
>

Horizontal teams

~—
—
Inflexible Ul

technology

No questioning of

inappropriate

development
organisation, tools

and mindset

A
W
>

concepts

Focus on users and tasks

—_—

Missing usage data

| S —

not refutable due to

e ———

misbelief

2
We-need-this-feature

Cornucopia of users | |

UCD intrinsic
issues

Distrust in the process

A

thinking

S
Parameter-driven

and in the team

N

HMI misconception

Active user participation

Y
support
.
Too few observations
2
We-know-our-users

Lack of management | |

€

Domain specific
difficulties

misconception

Uﬁ

Interdisciplinary

teams

K

UX-consultant

Too less UCD
experience

misconception
S —
.
UX-team

misconception

N —

Fig. 1. Identified issues grouped by UCD principles and their causes.

Establishing a UCD Process for HMIs: Threats to Success 95

about the needs and sufferings of many customers, they are not really integrated
in the development process. Therefore, valuable information that is actually
already within the company remains unused.

Mitigation: Development is driven by business goals. There is a clear vision
for the next generation HMI which is defined interdisciplinary by UX experts,
business executives, marketing experts, technicians and more. The vision is not
necessarily restricted to virtual user interfaces. Every development iteration cycle
generates value for the user and hence for the company.

Non-holistic Approach. Although the HMI is part of an integrated industrial
environment, the HMI development is restricted to the graphical display only.
This is disadvantageous in situations, where the user research findings demand
a holistic approach which touches both, display and machine hardware as well.
This issue is related to Departmental thinking, which is one of the root causes of
this misconception.

Symptom: The team is presented with a fait accompli. Important decisions
which have deep impact on user experience, are already made and cannot be
(easily) changed. These may be size, orientation and position of the display pan-
els, specification of the visualization hardware, or form and position of hardware
keys. Adding additional hardware, like sensors or input devices are out of the
question.

Mitigation: Due to a holistic approach, UCD means rethinking the entire
machine and its environment from the point of view of user interaction. This
provides an integrated solution that works best for the user.

4.2 Focus on Users and Tasks

Missing Usage Data. Due to missing usage data, the pilot project team has
no idea about how the thousands of users interact with the HMI of the machines
in-use. Knowledge about usage can make time-consuming observations and dis-
cussion obsolete. The reasons for the lack of data are manifold. Most industrial
machines in-use are either not connected to the internet at all, or are not acces-
sible from outside due to security reasons. So usage data has to be collected
manually. Apart from that, many of the machines in-use are rather old and out-
dated from a technical point of view and provide too little data storage to collect
user interaction data and its usage context (e.g. machine state) over time.

Symptom: Although the stakeholders pretend to know the users (see 4.3),
they are not able to answer questions like ‘Which Ul parts are used most?’, ‘How
many minutes/hours per day do users use the HMI?’, ‘Which navigation paths
are used most?’, ‘Do the users use swipe gestures or previous/next buttons for
navigating between views?’, or ‘What are the top ten operation errors?’. Based
on such information, the development team could focus on Uls that are really
relevant to the user instead of laboriously gathering such information through
user research.

96 M. Winterer et al.

Mitigation: Usage data is collected automatically and periodically uploaded
to a centralized cloud storage so that it can be used for detailed usage analysis.
The results are an important basis for further development.

Cornucopia of Users Misbelief. The process of defining personas based on
observations is regularly distrusted by stakeholders. They believe that the com-
pany has so many end-users, and all of them work differently, so it is impossible
to unify their personalities in just a few personas. As a non-domain expert, these
believes are hard to assess or even declare invalid, especially when there is no
usage data to verify this (see Missing usage data).

Symptom: Experts that act as stakeholders of the project often point out
the great functionality of the existing product by telling stories about a special
user or use case, which, at first glance, seem to render the prospected solution
impractical or incomplete.

Mitigation: Although special users and use cases are real and respected by
the HMI team, they do not drive HMI development. The stakeholders have trust
in the team and the process and know, that the result of a design iteration does
not support all possible use cases. There are enough domain experts that defend
the design iteration result against disbelievers.

‘We-Need-This-Feature Thinking. Stakeholders tend to use the old system
as requirement reference. They demand features from this system to be trans-
ferred to the new system without taking user needs into account. As a result,
they question feature-incomplete iteration results. Similar to Cornucopia of users
misbelief, the main causes are distrust in the process and in the team, but the
symptoms are different.

Symptom: Again - similar to Cornucopia of users misbelief, experts act as
stakeholder. But instead of telling a story about individuals, they pretend a
certain feature is crucial to most of the users. For non-domain experts, it is
very hard or even impossible to refute this claim, hence these features are often
re-implemented without any confirmation by user research or testing.

Mitigation: Stakeholders focus on the iterative progress of the team, even
if they know that the current product still misses features that seem to be
important at first glance. This requires a certain level of trust in the team and
in the UCD process.

Parameter-Driven HMI Misconception. The PLC of ENGEL defines about
16.000 parameters that may be relevant to the HMI. Due to multiple product
lines and individual customization, the parameters actually viewed in the HMI
vary heavily. The easiest way to support this flexibility is to just visualize the
logical structure of the control system, ignoring any user tasks or workflows.
Symptom: Instead of focusing on tasks, the Ul focuses on parameters. Most
of the views are just parameter lists without additional information. The group-
ing and ordering of these parameters are defined by the PLC and customer

Establishing a UCD Process for HMIs: Threats to Success 97

customization developers without assistance by UI/UX experts. Concepts like
wizards or ’intelligent” workflow assistants are missing.

Mitigation: The HMI is two-layered. The parameter layer provides a flexible
mechanism for both, the developer and the end user to define easily, which
parameters should be displayed on which page and in which order. This layer
is sufficient to control and operate the machine. Apart from that there is the
workflow layer, that provides explicitly developed user interfaces that support
important workflows and tasks. These Uls can be introduced step-by-step each
improving the overall user experience.

4.3 Active User Participation

We-Know-Our-Users Misconception. As the company is unfamiliar with
user-driven development, the project stakeholders are still tempted to ignore
user research and demand features, they think are relevant instead. They argue
this by mentioning their many years of experience. Although the company has
sufficient knowledge about the customer’s usage scenarios, it is almost exclusively
in the minds of service technicians and customer advisers. The knowledge is not
structured and therefore not directly usable.

Symptom: When presenting insights gained from user observations in the
field, experienced employees, which are not part of the project team, claim
that they already knew about that and this information could have easily been
requested.

Mitigation: Although service technicians and customer advisers are impor-
tant sources of information, the main user needs are based on user research in
the fields.

Too Few User Research There are many reasons, why user research in the
industrial domain is difficult. Obviously, there are safety and information security
reasons. In addition, intrusive techniques like interviews keep workers away from
their work, so not all companies are suitable for that. We also found that observ-
ing infrequent tasks requires good planning, so it is important to synchronize
the schedule of the UX researchers with the work schedule of the participants.
Hence, often the right user is not next door. Last, but not least, typical work-
flows often consist of many technical steps, which are less interesting to the UX
expert. All in all, observing the entire workflow may take a few hours or even
several days. All this causes high costs. As a result, the team tends to do less
observations than necessary.

Symptom: The symptoms are obvious: for many scenarios, confirmation by
observation is still pending; results from ideation workshops are not validated
with end-users; colleagues are used as representative for real end-users.

Trade-off: Observations happen on a regular basis for important workflows.
Missing user needs due to missing observations are mitigated by defining user
need assumptions and trying to confirm or refute them early by user testing
rapid prototypes. Participants are real end-users, but also service technicians,
customer advisers, trainers, apprentices and other personnel of the company.

98 M. Winterer et al.

Lack of Management Support. Although the management supports the pilot
project and the UCD process, it has too little knowledge about the philosophy
of UCD. The consequences are lack of trust and demand for intervention.

Symptom: Time spent on user observations is criticized by supervisors (see
Too few user research), especially if their main findings are already known by
stakeholders (see We-know-our-users misconception).

4.4 Continuous Evaluation and Iteration

No Questioning of Concepts. Once, an early prototype has been tested
and proven to work at a certain degree, it is never questioned any more. As
a consequence, iterations just improve existing prototypes gradually and never
raise radical changes. Although this issue is inherent to UCD methods in general,
it is even worse in this industry. Due to high domain complexity, it is almost
impossible to test all technical details of concepts, so there is always the risk
of improving a prototype that is basically broken without knowing it. A similar
issue has already been identified by [15] in 1997.

Symptom: Shortly after project start a central prototype was elaborated in
detail to overcome some doubts about the user-centered approach. Even so user
tests have shown that the prototype basically works for experienced users another
promising concept has never been tested, because of the effort already spent.

Mitigation: Interaction concepts are tested at a very early stage. In this
phase, there are often several concept proposals that can be tested against each
other using A/B tests. This makes it possible to find concept errors early on
and to optimally combine the best solutions. In addition, special domain expert
reviews improve the prototype quality on a conceptual level.

Horizontal Teams. Currently, the multi-team project is set up with four hor-
izontal teams. One team is responsible for the OPC UA based layer set up on
top of machine and robot control, which is developed by a second team. Third,
a team implements the HMI framework and the HMI base application accessing
information of the OPC UA layer. Fourth, the pilot project team develops the
Sequence Editor by means of the HMI framework and integrates it into the HMI
base application. As a consequence, new interaction concepts designed by the
pilot project team cannot be integrated into the system without support from
the other teams. This causes latency which makes it hard to evaluate new Ul
concepts in time.

Symptom: A new concept that should facilitate trouble shooting in the
Sequence Editor caused the robot control layer to provide novel data. This cir-
cumstance was not foreseen by the team implementing the Sequence Editor and
so the group of persons participating in the technical coordination meetings on
this issue has been successively increased, with a lead time of more than two
Scrum sprints (3 weeks each) [22].

Mitigation: The teams are vertically organized, so they can work indepen-
dently most of the time. Dependencies between teams arise only when both
teams share the same user needs.

Establishing a UCD Process for HMIs: Threats to Success 99

Inflexible UI Technology. Both, technology-in-use and system architecture
did not support exchanging Ul parts and modifying interaction concepts easily.
Even more, due to the limited capabilities of the mobile touch device, interaction
concepts are limited too.

Symptom: The Ul framework in use does not or barely support multi-touch
input. Implementing animations like fade-out of dialogs, transitions or rotations
is hard and requires major code changes. Controls like text input fields, buttons
or check boxes cannot be styled or skinned to be adapted to modern UI designs.
Features like visualization of 3D models or embedding multimedia are missing
or difficult to integrate.

Mitigation: Existing legacy components have been replaced and a more suit-
able Ul framework has been introduced. Furthermore, a more capable mobile
touch device has been prospected in favor of better user experience.

4.5 Interdisciplinary Teams

UX-Consultant Misconception. In the first months of the pilot project, the
main UX work was done by external UX experts. As a result, the team had
too little knowledge about UX related aspects to be able to develop the MVPs.
Furthermore, external UX experts have too little domain know-how, which is
necessary for a holistic understanding of scenarios.

Symptom: As the UX-consultants have only very few contact to the devel-
oper team, most of the user stories are already specified into detail when they
are presented to the software developers. Although the stories might be perfect
from a UX point of view, they are not technically validated, hence the developers
might face several technical difficulties while implementing them. As they were
not involved in the user research nor design process, they miss any reasoning
and don’t know if and how far they can deviate from the specification to cir-
cumvent these difficulties. Again, as the UX-consultants are separated from the
development team, most of these problems are not discussed, thus the features
are implemented exactly as specified - no regard to expenses. Even worse, expe-
rienced software developers often question the UX designs and concepts, which
leads to disparaging opinions and disrespect toward the UX experts.

Mitigation: UX is an integrated part of the development process. The teams
defines UX roles similar to the typical software development roles ‘Software
Architect’, ‘Tester’ or ‘DevOps Engineer’. All team members take part in UX-
related tasks like user research or evaluation for the sake of knowledge transfer
in both directions.

UX-Team Misconception. Separating the UX experts from the development
team by building a UX team of its own was another misconception. This app-
roach clearly conflicts with the vertical team thinking (see Horizontal teams).
Although this keeps the UX know-how inside the company at least, it also keeps
UX know-how away from the development teams.

100 M. Winterer et al.

Symptom: The symptoms are similar to UX-consultant misconception,
although less severe, as at least there is UX know how in the company.
Mitigation: See UX-consultant misconception

5 Related Work

In the manufacturing industry the need for usability and user experience as
explicit quality measures for user interfaces of cyber-physical systems (CPS)
[24] is rather new. This need is based on changing requirements, a higher level
of automation, and increasing complexity driven by the Smart Factory idea
of the Industry 4.0 initiative [14]. These requirements demand for appropriate
and proper working UCD processes, as described by Pfeiffer et al. [20], but
industry still lacks long-time experience on how to integrate these processes in
their development practice.

Systematic reviews [4,11] have shown that most publications that discuss
UCD processes in practice primarily discuss issues that emerge when introduc-
ing particular UCD methods (e.g. personas, user tests,...) in the context of agile
processes. In [15] Lauesen investigates the introduction of UCD processes. We
can confirm his findings, i.e., that early prototypes are only modified in details
in later phases (see Sect.4.4), and that there exists a friction between software
developers and UX-experts (before UX-experts became part of the team). Com-
pared to Lauesen, we have identified additional issues, which had negative impact
on the project’s pace.

6 Conclusion

Introducing UCD in the industrial domain represents a significant paradigm
shift, since industrial HMIs are typically still developed in feature-oriented man-
ner. UCD processes are based on a set of principles that must be followed in
order to be successful. We have presented a set of issues that we have encoun-
tered when introducing UCD in a company from the manufacturing domain
including symptoms and potential mitigation strategies. The root cause of most
of the problems seems to be the lack of trust in the process on all organizational
levels (line management, stakeholders, other teams, other departments), which
itself originates from lack of knowledge about the UCD process.

Acknowledgement. The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry for
Digital and Economic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH.

Establishing a UCD Process for HMIs: Threats to Success 101

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abelein, U., Sharp, H., Paech, B.: Does involving users in software development
really influence system success? IEEE Softw. 30(6), 17-23 (2013)

Abras, C., Maloney-Krichmar, D., Preece, J., et al.: User-centered design. In: Bain-
bridge, W. (ed.) Encyclopedia of Human-Computer Interaction. Sage Publications,
Thousand Oaks, 37(4), 445-456 (2004)

Bano, M., Zowghi, D.: A systematic review on the relationship between user
involvement and system success. Inf. Softw. Technol. 58, 148-169 (2015)

Da Silva, T.S., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile
methods: a systematic review. In: 2011 AGILE conference. pp. 77-86. IEEE (2011)
Goransson, B., Sandbéck, T.: Usability designers improve the user-centred design
process. In: Proceedings for INTERACT, vol. 99, pp. 1-4 (1999)

Gorecky, D., Schmitt, M., Loskyll, M., Ziihlke, D.: Human-machine-interaction in
the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), pp. 289-294. IEEE (2014)

Gothelf, J., Seiden, J.: Lean UX: Applying Lean Principles to Improve User Expe-
rience. O’Reilly Media, Inc., Sebastopol (2013)

Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers
think. Commun. ACM 28(3), 300-311 (1985)

Gulliksen, J., Géransson, B., Boivie, I., Blomkvist, S., Persson, J., Cajander, A.:
Key principles for user-centred systems design. Behav. Inf. Technol. 22(6), 397-409
(2003)

Harris, M.A., Weistroffer, H.R.: A new look at the relationship between user
involvement in systems development and system success. Commun. Assoc. Inf.
Syst. 24(1), 42 (2009)

Jurca, G., Hellmann, T.D., Maurer, F.: Integrating agile and user-centered design:
a systematic mapping and review of evaluation and validation studies of agile-ux.
In: 2014 Agile Conference, pp. 24-32. IEEE (2014)

Kujala, S.: User involvement: a review of the benefits and challenges. Behav. Inf.
Technol. 22(1), 1-16 (2003)

Kujala, S., Kauppinen, M.: Identifying and selecting users for user-centered design.
In: Proceedings of the Third Nordic Conference on Human-Computer Interaction,
pp- 297-303. ACM (2004)

Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf.
Syst. Eng. 6(4), 239-242 (2014)

Lauesen, S.: Usability engineering in industrial practice. In: Howard, S., Ham-
mond, J., Lindgaard, G. (eds.) Human-Computer Interaction INTERACT 1997.
ITIFIP, pp. 15-22. Springer, Boston, MA (1997). https://doi.org/10.1007/978-0-
387-35175-9_4

Lenarduzzi, V., Taibi, D.: Mvp explained: a systematic mapping study on the defi-
nitions of minimal viable product. In: 2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 112-119. IEEE (2016)
Nielsen, J.: Usability inspection methods. In: Conference Companion on Human
Factors in Computing Systems, pp. 413-414. ACM (1994)

Norman, D.A., Draper, S.W.: User Centered System Design: New Perspectives on
Human-Computer Interaction. CRC Press, Boca Raton (1986)

OPC Foundation: IEC 62541: OPC Unified Architecture. Standard, International
Electrotechnical Commission (2015-2016)

https://doi.org/10.1007/978-0-387-35175-9_4
https://doi.org/10.1007/978-0-387-35175-9_4

102 M. Winterer et al.

20. Pfeiffer, T., Hellmers, J., Schon, E.M., Thomaschewski, J.: Empowering user inter-
faces for industrie 4.0. Proc. IEEE. 104(5), 986-996 (2016)

21. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Crown Books (2011)

22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

23. Vaataja, H., Seppanen, M., Paananen, A.: Creating value through user experience:
a case study in the metals and engineering industry. Int. J. Technol. Mark. 9(2),
163-186 (2014)

24. Wittenberg, C.: Human-CPS interaction-requirements and human-machine inter-
action methods for the industry 4.0. IFAC-PapersOnLine 49(19), 420-425 (2016)

q

Check for
updates

Combining GQM-+Strategies and OKR -
Preliminary Results from a Participative Case
Study in Industry

Bianca Trinkenreichl(m), Gleison Santos!,
Monalessa Perini Barcellosz, and Tayana Conte®

! PPGI/UNIRIO - Graduate Program in Informatics,
UNIRIO, Rio de Janeiro, Brazil
{bianca. trinkenreich, gleison. santos}@uniriotec. br
2 NEMO Ontology and Conceptual Modeling Research Group — UFES,
Vitoéria, Brazil
monalessa@inf.ufes. br
3 USES Research Group, Institute of Computing (IComp) — UFAM,
Manaus, Brazil
tayana@icomp. ufam. edu. br

Abstract. Aligning IT strategies to business goals is a top priority for CIOs.
However, measuring results that IT brings to business is a challenging task. We
carried out a study to help an IT director of a large mining company to define
OKRs (Objective Key Results) and quantitatively monitor the achievement of
goals. We performed a participative case study to define OKRs for goals and
initiatives to achieve them, by using GQM+Strategies to support us in that
matter. As a result, after three meetings with the IT director and IT managers, we
defined OKRs for five IT goals and initiatives to achieve them. From this
experience, we noticed that GQM+Strategies and OKR can be used together,
working in a complimentary way: OKR gives simplicity and agility to the
process, while GQM-+Strategies provides useful knowledge to define OKRs and
initiatives to achieve them properly.

Keywords: GQM+Strategies *+ Objective Key Results + OKR - Measurement

1 Introduction

Alignment between IT (Information Technology) and business goals is considered by
both practitioners and researchers a management practice to enhance organizational
performance. However, there is still lack of knowledge about what organizational
actors really should do in practice for this alignment to happen [5]. There is a need for
researchers to adapt and extend knowledge about what means IT to be aligned with
business and how to measure it [6].

Measurement is a key process to support organizations in managing and improving
processes, products, and services to achieve customer satisfaction [1]. Measures should
be used to monitor the alignment of IT to business goals by providing useful infor-
mation for decision-making [3]. However, managers face difficulties to define

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 103-111, 2019.
https://doi.org/10.1007/978-3-030-35333-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_7

104 B. Trinkenreich et al.

measures, evaluate if projects are bringing expected results to business and monitor
results to keep alignment between IT and business goals [3, 4].

The first author of this paper works at IT team of a large global mining company.
She was asked to help the director and the five managers to define measures for goals
and to review initiatives (projects and operational activities) to achieve those goals. At
that point, goals were qualitative and subjective, and the director was not able to verify
if the initiatives were contributing to goals achievement. We have already successfully
used GQM+Strategies [2] in other areas of the organization to aid in the alignment
between goals and strategies through measurement [10]. However, the IT director was
running a tight schedule and needed a fast approach, which did not require training or
many phases. He asked us to use OKR (Objective Key Results) [7], a method to
support defining and tracking goals and their outcomes, which has been increasingly
used in industry. OKR has an agile appeal, while GQM-+Strategies provides detailed
knowledge on how to align goals and strategies through measurement. Thus, we
decided to explore the combined use of the two methods in a way that they work
complementarily. As a result, after three meetings, we defined OKRs to five IT goals
and initiatives to achieve them.

This paper presents the study and its main findings. It is organized as follows:
Sect. 2 provides the background for the paper; Sect. 3 presents the study planning and
execution; Sect. 4 addresses the process that arose from the study, Sect. 5 discusses our
findings and study limitations; and Sect. 6 presents conclusions and future work.

2 Background

IT-business alignment can be considered the level of fit and integration between
business, IT processes, projects, and infrastructure of an organization [13]. Aligning
goals and IT projects help focus resources and projects towards value creation and
requires finding the connections between them so that the links are explicit and allow
for analytic reasoning about what is successful and where change is necessary [2].

The GQM-+Strategies approach [2] is an extension of the Goal-Question-Metric
paradigm and helps control the success or failure of strategies and goals by using a
measurement system. In GQM+Strategies, strategies refer to projects, actions, or other
initiatives performed to achieve goals. The GQM+Strategies model relates goals and
strategies at several organizational levels. One or more strategies can accomplish the
same goal. Context factors and assumptions influence goals and strategies. A GQM
+Strategies element includes an organizational goal, respective strategies, context, and
assumptions that influence them. GQM-+Strategies elements and related models are
represented in a GQM-+Strategies Grid, making goals and strategies explicit, as well as
measures related to them, providing a transparent correlation between goals, strategies
and measurement initiatives. The GQM-+Strategies process consists of an initial phase
and a repeatable cycle with three stages and six phases: Develop (phases 1 and 2);
Implement (phases 3 and 4) Learn (phases 5 and 6) [2].

Objective Key Results (OKR) is a collaborative goal-setting protocol to help ensure
that the company is consistently focusing and prioritizing efforts on the same issues
throughout the organization [8]. An OKR has two components: the Objective,

Combining GQM+Strategies and OKR - Preliminary Results 105

qualitative and inspirational, and Key Results, quantitative and measurable. The
objective should be meaningful, significant, concrete, actionable, and inspirational. Key
results gauge and measure how to achieve the objective and are quantitative, usually
time-bound, verifiable, and realistic. The process to define OKRs consists in setting the
objectives; determining the key results for each objective, executing actions to achieve
the objectives; providing regular feedbacks.

3 Study Planning and Execution

Participative case study was selected as research method as the researcher was a
member of organization, she observed the particular group of organization’ subjects,
and was one participant in the process being observed [11]. The researcher had some
control over some intervening variables and was a stakeholder in the process’ outcome,
as she was part of the department and would work to achieve OKRs. The participative
case study report attempts to capture and communicate the biased interpretation by
stakeholders of their particular environment during a particular period in time. We
followed two phases Planning, for case study preparation, and Execution, for data
collection.

The organization where we carried out the study is a large global mining company
operating in over 30 countries, with offices, operations, exploration, and joint ventures
across five continents. Information Technology (IT) department is composed of five
areas: Innovation and Projects, Architecture and Technology, IT Services, Business
Partners, and Strategy and Planning. At the beginning of the year, the IT director
defined a set of goals, and the IT managers elicited 140 initiatives to achieve them. In
April, the director realized that the goals seemed non-measurable, and he was not able
to verify if initiatives elicited by IT managers were able to achieve the defined IT goals.
The IT director needed a fast approach to focus efforts on the right direction and had
not enough time to spend on training or following many phases of a traditional goal-
setting method.

Since OKR (Objective Key Results) [8] has been increasingly used by industry to
support the creation of measurable and achievable goals to foster alignment, engage the
team and follow a fast cadence, the IT director showed interest in using it. The OKR
literature provides knowledge (examples, good practices, tips, concepts) to build OKRs
and monitor results [8]. However, there is no practical direction or procedure about
how to gather contextual information and turn a qualitative objective into a measurable
goal for a key result. There is also no direction about how to elicit initiatives (i.e.,
strategies) to achieve goals. GQM+Strategies [2] provides this kind of knowledge. We
had previous experience using GQM-+Strategies [2] in other departments of the com-
pany [10], and thus, we decided to combine both methods. By doing that, we expected
that OKR would satisfy the need for a faster approach, while GQM+Strategies would
provide complementary knowledge to perform the activities. Next, we present infor-
mation about the study planning and execution.

106 B. Trinkenreich et al.

3.1 Planning

The goal of the study is to analyze the combined use of OKR and GQM+Strategies to
support defining measurable goals, OKRs, and initiatives for IT goals. Aligned with
this goal, we defined the following research question: How to combine OKR and
GQM+Strategies to measure qualitative goals and support their achievement? The
expected outcomes were (i) a list of OKRs agreed by both IT director and IT managers
to measure the achievement of IT goals, (ii) a process to support defining OKRs.

The technique used to collect data was document analysis and three brainstorm
meetings with the IT director and IT managers. When we received the following list of
five IT goals (G) defined by the IT director, it became clear for us that goals could not
be easily quantified without contextual information: (G1) Become the natural provider
of Operational Technology (OT) support; (G2) Continue to streamline and improve
services delivery; (G3) Improve customer experience through innovation; (G4) Enable
Digital Transformation journey; (G5) Be a role model for digital transformation inside
IT. We also received spreadsheets containing the initiatives elicited by the IT managers
and the initiative’s deliverables. Meetings were scheduled to review goals in measur-
able terms, define OKRs, and review the initiatives.

3.2 Execution

We followed a plan of using practical work meetings, lasting between 1 and 2 h each.
The IT director and the five IT managers participated in all meetings. We started by
analyzing the IT goals under the perspective of OKR in order to verify if they were
meaningful, significant, concrete, actionable, and inspirational. The main problem we
found was that the IT goals were defined using qualitative terms (e.g., natural provider),
without a rationale to explain them. This makes it difficult to measure goals achieve-
ment. We needed the information to express the goal in measurable terms. Thus, we
followed practices from the Develop stage — Phase 1 of the GQM-+Strategies process,
which says that rationale, context factors, and assumptions characterize the environ-
ment and help define and understand goals. We asked questions to brainstorm dis-
cussion and get information to define aspects that could bring a basis to measure the
achievement of qualitative objectives (e.g., aspects to explain and quantify what means
to be a natural provider for the organization).

Once the aspects to be measured were identified, we used practices from the
Develop stage — Phase 2 of the GQM-+Strategies process to, first, define key results
(KRs) and, then, elicit strategies to achieve them. To define KRs, we considered OKR
guidelines (KRs should be quantitative, time-bound, verifiable, and realistic). When
discussing being verifiable, the IT director and managers quickly defined how to collect
data, as a brief measurement plan that would be further detailed. For sake of confi-
dentiality, we used X and Y to represent current and target values, respectively, and
omitted the time to achieve the result (Table 1).

Combining GQM+Strategies and OKR - Preliminary Results 107

Table 1. OKRs for “Become the natural provider of Operational Technology (OT) support”

Service delivery aspects to | Key results
be improved

Increase availability Reduce planned and unplanned downtime of high impact
applications from X to Y

Reduce baseline costs Reduce baseline costs from X to Y

Reduce security and Reduce outdated components from X to Y

operational risks Increase the number of components being tracked by Software
Asset Manager from X to Y

Expand coverage to Increase the maturity level of maturity model in Location Z

Location Z (people, process and technologies) from X to Y

Once we had measurable goals expressed by OKRs, next step was to review
elicited initiatives to verify and prioritize the ones aligned to OKRs. Due to the high
number of initiatives and for the sake of confidentiality, we discuss only some of them.

First, we verified alignment between initiatives and OKRs by analyzing if the
initiative deliverable could contribute to the achievement of the OKR. We also ques-
tioned the high number of initiatives (IT managers listed 140 initiatives) and their
connection with the IT goals. Thus, we selected only the initiatives truly aligned with
OKRs. For example, by analyzing the initiatives, it was noted that the initiative
“Elaborating Software as a Services Contract Guidelines,” which includes bench-
marking studies, architecture guidelines and contracts review, was not aligned to any
OKR, since it was not able to produce deliverables that contribute to achieving the
OKRs.

We also verified the need for new initiatives. For example, there were only two
initiatives related to the goal “Become the natural provider of Operational Technology
(OT) support,” namely: “Include scope for supporting OT users in outsourcing con-
tract” and “Implementation of network standards to improve the security posture for
OT sites.” When we defined measurable goals and created OKRs, the participants
realized that those initiatives were not enough, and new initiatives should be created to
achieve the OKRs. The OKR goal-setting protocol does not provide any mechanism to
elicit initiatives to achieve KRs. Thus, we followed an approach based on GQM
+Strategies [10] to fulfill this gap. This proposal suggests that in order to elicit effective
initiatives, processes related to the goals to be achieved should be analyzed. Hence, we
qualitatively analyzed processes associated with each KR and investigated root-causes
of problems related to these processes that impact KRs achievement. As a result, new
initiatives were created to support goals achievement.

For example, we analyzed the process performed to provide the required infras-
tructure foundation for a new location, and we found out that the main obstacles related
to the OKR “Increase the number of OT locations with foundation implemented from
X to Y” are related to network and support. So, we defined two initiatives: Implement
network standards and Extend the outsourcing contract to support OT users. After
reviewing the initiatives to achieve each OKR, we consolidated OKRs and respective
initiatives in a GQM+Strategies grid [10] to visualize results and analyze conflicts.

108 B. Trinkenreich et al.

4 Results

The OKR provides a simple way to define and track goals and measurable results,
including agile principles to help define and monitor objectives and key results, and
some ideas about techniques to use during meetings to define OKRs (e.g., Design
Thinking) [7]. However, it does not provide a process to guide establishing quantitative
key results for qualitative objectives. Moreover, OKR does not clearly address the
initiatives to be executed in order to achieve the KRs. GQM+Strategies describes a
process, including a Develop stage, which can be helpful when defining quantitative
KRs. Besides, GQM+Strategies gives directions on eliciting strategies to achieve goals
and, once again, can be helpful to define initiatives to achieve OKRs.

OKR and GQM-+Strategies have some similarities (e.g., both are concerned with
defining measurable goals) and also differences (as discussed previously). In this study,
we combined both practices and, together with an IT director and five IT managers, we
could define OKRs and initiatives to achieve them. Figure 1 illustrates the process that
arose from the study, and we briefly explain it next. Although the process is linearly
presented, there can be interaction between the phases.

ﬁWHAT DO WE 2. WHAT IS BEHIND 3. WHERE ARE 4. HOW TO GET 5.LET'S 6. ARE WE \
WANT? THIS GOAL? WE GOING TO? THERE? CONSOLIDATE? GETTING THERE?
« Define (meaningful, » Gather rationale, « Use measurable aspects - Elicit strategies to |« Elaborate a grid with E Exegutg the
significant, context factors and and build verifiable Key achieve key results ~ OKRs and respective monitoring plan and
concrete, actionable assumptions behind Results - Break each strategies to detect and =~ measure key results
and inspirational) each goal and find + Collect data about current ~ strategy into remove any conflicts | « Review objectives
objectives to be measurable aspects values to granular initiatives, |« Align, adjust if needed and create new
achieved - Explore abstract terms | establish baseline projects or actions | and communicate the OKRs when is
by asking questions « Define challenging (where = that can be grid necessary
as “why”, “how”, “for do we want do go) but executed and « Define a monitoring
what” also realistic (where we monitored process in short cycles
are able to go) targets (maximum quartely)
Strategies to
Objectives 2> e Obiecve Koy el » OKRsStategios Z>>
Results ¢

8 Y

Fig. 1. Process to support defining and monitoring OKRs and strategies to achieve them.

Stage 1: What do we want? — Define objectives aligned to business (or review if
they exist) being meaningful, significant, concrete, actionable, and inspirational [8].

Stage 2: What is behind this objective? — Identify measurable aspects to provide a
basis to turn qualitative objectives into measurable objectives. Explore abstract terms
like adjectives to understand what they mean for the organization by asking questions
such as “why,” “how,” “for what.” Gather rationale, context factors and assumptions
[2] behind each goal and find measurable aspects to be measured in key results [8].

Stage 3: Where do we want to go? — Create KRs for each objective using the
measurable aspects as basis. KRs should be quantitative, usually time-bound, verifiable
and realistic [8]. When building KRs current values for each measurable aspect are
used to establish baseline (where we are today) and challenging (where do we want to
go) but also realistic (where can we go) values defined as targets [8].

Stage 4: How are we going to get there? — Elicit strategies (i.e., projects, actions or
other initiatives) to achieve KRs [2]. Includes reviewing existent strategies to verify if

Combining GQM+Strategies and OKR - Preliminary Results 109

their deliverables contribute to OKRs achievement. Process analysis, involving root-
cause analysis and Pareto techniques, can be used to find obstacles to be addressed in
the strategies, and that can help prioritize them [10].

Stage 5: Let’s consolidate? — Elaborate a grid with OKRs and respective strategies
to detect and remove any conflicts that can prevent an OKR from being achieved.
Adjust the grid, if needed, and communicate to stakeholders. OKRs should be public
[8] but many times, strategies may not be. Define a monitoring process instrumentation
(e.g., emails, reports) and frequency in short cycles [8] to review OKRs results.

Stage 6: Are we getting there? — This stage is cyclic, as monitoring repeat following
the frequency defined by organization. OKRs results, projects’ deliverables, business
contextual information behind goals should be regularly monitored, preferably on a
short period [8]. Consolidate information, align with teams, communicate OKRs and
results to all organization, review what changed and create new OKRs if needed.

5 Discussion

The results of the participative case study have initial findings to show it is possible to
use GQM+Strategies and OKR together to support creating measurable goals, OKRs,
and initiatives for IT goals. When asking the IT director for feedback, he said “we were
stuck before your help starting with questions to demystify some terms used in goals.
From there, creating measurable goals was very practical and useful to clarify meaning
and make explicit how to measure it.” He mentioned the approach was agile enough to
provide expected results and clear enough to make the information explicit to the team.

IT goals were originally defined in a non-quantitative way, which was hard for IT
managers to think about measurable attributes for them and select, from all initiatives,
which ones could really deliver what was needed to achieve the goals. The culture of
creating measurable goals needs to be spread through all the organization. OKRs can
help with simple and actionable goals, constant monitoring, and agile changing for new
OKRs when needed. By evaluating the deliverables of each initiative, we found only a
few of them were truly strategic. The use of OKR and GQM+Strategies helped to make
clear the alignment between initiatives and OKRs, providing a link between the actions
performed by the teams and the goals the IT area wants to achieve. OKR literature
suggests when OKRs are transparent, teams are senior enough to take ownership and
get the work done [9]. During this study, we found a different scenario. Even for senior
professionals, details about what have to be done to achieve the KRs were necessary.
GQM+Strategies helped to satisfy this need. Aiming to make it easier to visualize the
resulting OKRs, we built a grid. The grid was inspired by the GQM+Strategies grid
proposed in [10]. Besides providing an overview of the defined OKRs and initiatives, it
allows finding conflicts between them, as a monitoring and communication tool.

The process we followed to define OKRs can inspire other organizations on how
measuring goals. Managers responsible for defining IT measurement processes can use
information about how we defined OKRs, how we reviewed initiatives to guarantee
alignment, then minimize difficulties during the definition of goals and initiatives and
reduce the risk of failing in goals achievement. Furthermore, the study results can also
be useful for researchers to identify practical issues to be addressed in future researches.

110 B. Trinkenreich et al.

Regarding this study limitations, one of the biggest threats in this context is the
ability to generalize from the case-specific findings to different cases [12]. Thus, the
main threat to external validity in this study is about results’ generalization. In case-
based research, after getting results from specific case studies, generalization can be
established for similar cases. Participative case study is biased [11] and subjective as its
results rely on the researchers. The first author of this paper primarily conducted the
study collaborating with the practitioners. She has been working at the organization for
eight years. Thus, she does not provide an external view of the situation. To reduce this
threat, we involved other researchers as a steering group in discussing and reflecting on
the study and results. Besides, the first author had previous experience with GQM
+Strategies, which may have influenced its use along with the study.

6 Conclusions and Future Work

In this paper, we reported a preliminary experience of using GQM+Strategies and OKR
practices together to define measurable goals, OKRs, and initiatives for IT goals. GQM
+Strategies and OKR worked in a complimentary way, where OKR provided basic
concepts, simplicity, and agility to the process, while GQM+Strategies provided useful
knowledge to perform activities and define initiatives. We used an informal language to
avoid communication barriers between academy and industry members.

As a result of this initial study, we created a first version of a process with six stages
to define OKRs and initiatives to achieve them. We used provocative questions as What
is behind this goal? to guide a brainstorm between practitioners and help them define
measurable attributes for goals; Where do we want to go?, to incentivize practitioners
to think about targets; How are going to get there?, to review if existent initiatives were
able to achieve key results and elicit new ones; Let s consolidate?, to group OKRs and
initiatives; and Are we getting there?, to monitor results and check if goals are achieved
by the elicited initiatives. This paper points out a direction for further studies to
evaluate whether the proposed process could help other software organizations.

The process and knowledge provided from using OKR and GQM-+Strategies
practices together can be useful for practitioners to reuse or adapt the process, as well as
to be inspired by our experience to define their own OKRs and initiatives. Researchers,
in turn, can identify practical issues to be addressed in future research (e.g., the
knowledge gaps in OKR). We did not find any work reporting the use of OKR in the IT
domain combining OKR and GQM-+Strategies. As future works, we intend to perform
new studies applying the created process to get new data about its use and improve it.

Acknowledgment. We thank the financial support by CNPq (423149/2016-4, 311494/2017-0,
461777/2014-2, 423149/2016-4), FAPERJ (E-201.670/2017).

Combining GQM+Strategies and OKR - Preliminary Results 111

References

11.

12.

13.

. Forrester, E., Buteau, B., Shrum, S.: CMMI For Services, Guidelines for Superior Service.

CMMI-SVC, vol. 1.3, 2nd edn. Addison-Wesley, Boston (2010). SEI

. Basili, V., et al.: Aligning Organizations Through Measurement. TFISSSE. Springer, Cham

(2014). https://doi.org/10.1007/978-3-319-05047-8

. Jantti, M., Lepmets, M.: Proactive management of IT operations to improve IT services.

J. Inf. Syst. Technol. Manag. 14(2), 191-218 (2017). https://doi.org/10.4301/s1807-
17752017000200004

. Gacenga, F., Cater-Steel, A., Toleman, M.: An international analysis of IT service

management benefits and performance measurement. J. Glob. Inf. Technol. Manag. 13(4),
28-63 (2010)

. Karpovsky, A., Galliers, R.D.: Aligning in practice: from current cases to a new agenda.

J. Inf. Technol. 30(2), 136-160 (2015). https://doi.org/10.1057/jit.2014.34

. Coltman, T., Tallon, P., Sharma, R., Queiroz, M.: Strategic IT alignment: twenty-five years

on. J. Inf. Technol. 30, 91-100 (2015). https://doi.org/10.1057/jit.2014.35

. Nivan, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment, and

Engagement with OKRs, p. 224. Wiley Corporate, Hoboken (2016)

. Doerr, J.: Measure What Matters: How Google, Bono, and the Gates Foundation Rock the

World with OKRs, p. 31. Penguin Publishing Group, London (2018)

. Wodtke, C.: Introduction to OKRs, p. 37. O’Reilly Media, Newton (2016)
. Trinkenreich, B., Santos, G., Barcellos, M.P.: SINIS: a GQM+Strategies-based approach for

identifying goals, strategies and indicators for IT services. J. Inf. Softw. Technol. 100, 147-
164 (2018)

Baskerville, R.L.: Distinguishing action research from participative case studies. J. Syst. Inf.
Technol. 1(1), 2443 (1997)

Wieringa, R., Daneva, M.: Six strategies for generalizing software engineering theories. Sci.
Comput. Program. 101, 136-152 (2015)

Henderson, J.C., Venkatraman, H.: Strategic alignment: leveraging information technology
for transforming organizations. IBM Syst. J. 38(2.3), 472-484 (1999)

http://dx.doi.org/10.1007/978-3-319-05047-8
http://dx.doi.org/10.4301/s1807-17752017000200004
http://dx.doi.org/10.4301/s1807-17752017000200004
http://dx.doi.org/10.1057/jit.2014.34
http://dx.doi.org/10.1057/jit.2014.35

)

Check for
updates

Software Development Practices
and Frameworks Used in Spain and Costa
Rica: A Survey and Comparative Analysis

Ignacio Diaz-Oreiro!, David Chaves', Brenda Aymerichl,
Julio C. Guzman®, Gustavo L(’)pezl(g), Marcela Generoz,
and Aurora Vizcaino®

! University of Costa Rica, San José, Costa Rica
{ignacio.diazoreiro, david. chavescampos,
brenda. aymerich, julio. guzman,
gustavo. lopez_h}@ucr. ac.cr
2 University of Castilla-La Mancha, Ciudad Real, Spain
{marcela. genero, aurora.vizcaino}@uclm. es

Abstract. Software development has been impacted by the arrival of agile
frameworks, especially in the last two decades. The HELENA Project (Hybrid
dEveLopmENt Approaches in software systems development) was developed to
identify the use of these frameworks in relation to more traditional ones. As part
of this project, a survey was carried out in 55 countries, including Spain and
Costa Rica. This paper presents the comparison of the results of these two
countries, particularly in relation to two topics: the degree of agility of the
activities of the software development life cycle and what are the most used
methods and frameworks in each country. The results show similarities in both
topics for the two countries, such as the fact that the most agile-oriented
activities are Implementation/Coding and Integration/Testing, or the widespread
use of agile frameworks with Scrum in the first place, followed by Iterative
Development and Kanban. There are, however, some differences, such as a
greater presence in Spain of scaling agile frameworks.

Keywords: Software development approach - HELENA project - Scrum -
Waterfall - Agile

1 Introduction

Software development evolves continuously and in the last 25 years it has been
impacted by the arrival of agile frameworks. However, despite the impact generated by
agile frameworks such as Scrum, the process of converting to agile has not been
unanimous through organizations in the software industry. Even within an organization
it is common to find combinations of agile and traditional methods and practices, what
has been called Hybrid approaches. To understand the current state of practice in the
use and combination of different software development approaches, a group of
researchers initiated an international research project called HELENA (Hybrid
dEveLopmENt Approaches in software systems development) [1, 2]. HELENA Project

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 112-119, 2019.
https://doi.org/10.1007/978-3-030-35333-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_8

Software Development Practices and Frameworks 113

had a first stage in which an evaluation tool was built on the use of different practices
and frameworks in software development. In a second stage, an online survey was
conducted that gathered information from 55 countries and almost 1,500 products or
projects.

The overall goal of this international study is to investigate the current state of
practice in software and systems development. This paper presents and compares the
results of two countries represented in this survey (i.e., Spain and Costa Rica).

With 505 000 Km?2 and 47 million inhabitants, Spain is ten times larger and more
populated than Costa Rica. Sharing cultural correspondences and having a similar
number of responses, comparing the results of these two countries could provide
insights into the differences between a sizeable European country and a small Latin
American country.

Spain has become an important center of nearshore outsourcing for Europe due to
several factors: it is part of the European Union and the Schengen Agreement, it has a
significant number of IT and Telecommunications schools, the salaries are competitive
compared to the rest of Europeans countries and share a good part of the working hours
with these countries. On the other hand, Costa Rica has remained as an offshore and
nearshore software development center for almost two decades, mainly for the US
market. Subcontracting in Costa Rica is reinforced by proximity to the United States, a
shared central time zone and competitive salaries compared to the United States. Many
technology companies have operations in Costa Rica [3], among which are Amazon,
Deloitte, IBM, Hewlett Packard Enterprise, Intel and Microsoft. In addition, around 50
companies are dedicated exclusively to software development.

This paper reports the main findings of the comparison between Spain and Costa
Rica according to these key questions: (1) Which is the degree of agility in the activities
of the software development lifecycle? and (2) Which frameworks and methods are
used for software development?

2 Related Work

Teams of researchers have presented the results of the HELENA survey in their
respective countries [4-6]. However, given the global nature of the HELENA Project,
authors have also compared countries and regions. For example, Nakatumba-Nabende
et al. [7] compared the results of Sweden and Uganda, showing that respondents from
Uganda were mostly developers, while in Sweden, the most represented roles were
architect and project/team managers. The main finding of this research is that neither
country adheres to one development model but rather employ hybrid approaches. Scott
et al. [8] conduct the comparison between Estonia and Sweden. Regarding develop-
ment frameworks and methods, Estonian responses state a clear preference for agile
frameworks, with Scrum “always used” by 58% of the respondents. In Sweden,
although the use of Scrum is also frequent, only 8% indicate that it is always used, and
Kanban, Iterative Development, and the Classic Waterfall Process are used as often as
Scrum.

114 1. Diaz-Oreiro et al.

3 Results and Discussion

In both Spain and Costa Rica, the survey was conducted by academic teams of the
University of Castilla La Mancha and University of Costa Rica, respectively. The
online survey was forwarded to several software development companies and networks
interested in agile approaches. Hereafter, the results presented are extracted from the
responses 51 responses received in Costa Rica and the 50 responses obtained from
Spain. The individual results of the HELENA Survey for Costa Rica are presented in
[9]. Regarding the size of the companies, four categories were defined: small (fewer
than 50 employees), medium (between 50 and 250), large (between 250 and 2500) and
very large (more than 2500 employees). The distribution of companies in Costa Rica
and Spain are similar for the small (18% and 16% respectively) and medium (28% and
25% respectively) categories. However, large and very large companies differ signif-
icantly. In Costa Rica, 39% of the companies are large while in Spain only 12% are in
this category. Furthermore, 42% of Spanish companies are very large while only 20%
of Costa Rican companies fall into this category.

Additionally, as for the team geographical distribution of the teams, 27% of Costa
Rican companies carry out their projects in a single location, 22% distribute them
within the same country, 16% within the same continent and 35% globally. On the
other hand, in Spain, 24% of companies concentrate their software development in one
place, 48% distribute them throughout the country, only 8% regionally and 20%
globally. It is interesting to notice that Costa Rica works in a highly communicative and
cooperative way with other countries to develop software products. In Spain, 72% of
the projects are carried out locally, which is also conditioned by the size and population
of the country, which could be since Spain would have a larger group of software
builders available in the local environment.

With respect to the company business area, the answers were classified into five
categories: Software Development, System Development, Consulting, Research &
Development, and “Other”. Table 1 shows the distribution of companies by business
area and size both for Spain and Costa Rica.

In Costa Rica, large and very large companies operate mostly in Software Devel-
opment and in the “Other” category, being “Other” predominantly companies that
serve the financial sector. In Spain, on the other hand, the largest companies focus on
Software Development and Consulting. The most representative business area in both
countries is Software Development (around 40%). Consulting is another significant
business area (24% for Costa Rica and 34% in Spain).

Table 1. Company business area and size for Spain and Costa Rica.

Company | Costa Rica Spain
size Software | System | Consulting | R&D | Other | Total | Software | System | Consulting | R&D | Other | Total
Dev. Dev. Dev. Dev.

Small 3 0 2 2 1 8 4 0 3 1 2 10
Medium 6 0 6 0 0 12 6 0 5 3 0 14
Large 8 1 2 0 9 20 3 0 2 0 1 6
Very large | 2 3 2 1 3 11 9 1 7 2 1 20
Total 19 4 12 3 13 51 22 1 17 6 4 50

Software Development Practices and Frameworks 115

3.1 Which Is the Degree of Agility in the Activities of the Software
Development Lifecycle?

In the following sections we will present the findings of the HELENA survey along the
key questions presented above. This section focuses on the practices and frameworks
used in Spain and Costa Rica to develop software. In the survey we focused on the
level of agility of every stage of the software development lifecycle using SWEBOK
[10] as guide. Table 2 shows the distribution of these results. Some stages such as
Implementation/Coding, Integration/Testing, Change Management, and Maintenance
and Evolution tend to be agile.

Configuration Management is an interesting activity since in Costa Rica most
projects are conducted mainly traditional in this stage. In contrast, in Spain this stage is
more balanced between traditional and agile.

In Spain, three stages tend simultaneously towards Mainly Traditional and Mainly
Agile: Risk Management, Quality Management, and Transition and Operations. This
shows that some projects are conducted in a traditional manner and other are agile, but
with a similar weight to both sides. In Costa Rica this behavior is not observable. As it
was expected, activities that are conducted mainly or Fully Agile are the same for both
countries. These are: Implementation/Coding, and Integration/Testing, although Costa
Rica with slightly higher numbers in these two activities.

Table 2. Degree of agility in each stage of the software development lifecycle. Each cell
represents the number of companies in that category.

Fully Mainly Mainly
Traditional Traditional Balanced Agile Fully Agile

Implementation Costa Rica 1 4 9
/Coding Spain 2 4 5
Integration and Costa Rica 1 3 7/
Testing Spain 3 4 Y 14 5
Change Management Costa Rica 2 4 2 10 4
Spain 2 5 9 n 5

Maintenance and Costa Rica 1 4 9 11 4
Evolution Spain 1 ¢ 8 9 4
Configuration Costa Rica 5 8 9 3 3
Management Spain 1 2l 6 8 4
. Costa Rica 3 9 8 6 2
Risk Management spain 3 10 7 5 i
Requirements Costa Rica 2 9 7 12 5
Analysis/Engineering Spain 3 9 6 11 3
. Costa Rica 3 9 8 6 4
Quality Management Spain 3 7l 3 n 3
Transition and Costa Rica 2 3| 14 6 S
Operation Spain 2 9 4 8 3
Architecture and Costa Rica 4 8 8 il 2
Design Spain 4 6 8 il 3
Project Management Costa Rica 2 4 2 | n 2
Spain 1 1] 3 3 1

Regarding the profile of respondents, in Costa Rica 49% have the role of developer,
while only 32% of Spanish respondents are developers. On the other hand, 30% of
Spanish respondents are Project/Team managers, for only 6% of Costa Rican

116 1. Diaz-Oreiro et al.

respondents in this category. Years of experience also show differences between both
countries: 84% of Spanish respondents have 6 years or more of experience (26%
between 6 and 10 years and 58% with more than 10 years), while only 53% of Costa
Rican respondents have 6 years or more of experience (20% between 6 and 10 years
and 33% with more than 10). The largest group of Costa Rican respondents is formed
by people with between 3 and 5 years of experience (35%).

To delve in the effect of the company size on the degree of agility for different
stages, we analyzed how the participants rate their way of implementing the SWEBOK
stages. Figure 1 shows the result of this analysis for Costa Rica and Spain, using the
averaged ratings grouped by company size.

Fully Fully Fully Fully
Traditional Balanced Agile Traditional Balanced Agile

Project Management | IR : /

\W

Risk Management

:1 —— Small
\ \ #— Medium
B N 4 \ Large
Configuration Management \ Very Large

Change Management

Requirements \
Analysis/Engineering

Architecture and Design

Quality Management

Company size

Activities

Implementation/Coding
Integration and Testing

Transition and Operation
\

Malntenanice and Evolution Averaged ratings of responses Averaged ratings of responses

Costa Rica Spain

Fig. 1. Respondents rating on the implementation of activities for Spain and Costa Rica,
grouped by company size.

It can be seen that there are no significant divergences for the different company
sizes, with some exceptions in small companies: in Costa Rica Quality Management
tends to be more agile in small companies, while in Spain, Integration/Testing tends
towards “Traditional” slightly more than the rest of company sizes.

3.2 Which Frameworks and Methods Are Used for Software
Development?

The use of different frameworks and methods in software development is shown in
Fig. 2, which compares the results of both countries. Although the survey offered seven
possible answers for this question, the chart presents only 5 of them. The remaining
two (not representative) are indicated with percentages in the left side of the figure.

Software Development Practices and Frameworks 117

One of the main insights of the chart is the extended use of the agile framework
Scrum in both countries. The use of Scrum in Costa Rica is, however, more widespread
than in Spain, with 39% of respondents stating, “We often use it” and 41% “We
Always use the framework” (compared to 22% and 26% for Spain, respectively).
Another important fact is the balanced use in both countries of Iterative Development,
Kanban and Test-Driven Development, which are also agile paradigms. On the con-
trary, in the chart we can identify frameworks or practices such as Nexus and PRINCE,
which show some use in Spain and in Costa Rica are practically unknown. In the case
of PRINCE, these numbers may be due to it is a project management methodology
widely used in the United Kingdom, where many Spanish companies carry out soft-
ware projects. On the contrary, Costa Rican companies have little participation in that
market.

© it 00 ot Degree of use of frameworksand methods for Spain and Costa Rica
i1y Y 1
%U‘?e/,p'scll% mWeneveruseit ®Werarelyuseit = We sometimes use it We often useit m We always use the framework
o | a%| 2 o]
Scrum
CostaRica | 0% | 2% 2%EQ 41%
Iterative spain | 0% | 18% {12% |
Development cosaica | 49 | 18%
spain | 4% | 18% 24% 10% | 8% |
Kanban + t
CostaRica | (% | 22%
Spain | 2% | 42%
Nexus
Costa Rica 0% | 82%
Classic seain | 4% | 48% |
Waterfall CostaRica | 0% | 20%
sain | 10% | 38%
Scrum Ban
CostaRica | 4% | 50%
Test driven spain | 8% | 16%

Development coganica 6% | 14%

seain | 0% | 52%

CostaRica | 4% | 71%

PRINCE

Lean Software SPain | 6% | 34%
Development cosarica | g9, | 51%

Frameworls by country

eXtreme spain | 6% | 18%
Programming o2 pica 6% | 10%

V Shaped spain | 0% | 62%
Process CostaRica | 4% | 67%
Large Scale seain | 10% | 40% |
Scrum CostaRica | 6% | 59%

Dynamic Syst. spain | 8% | 64%
Development costarica | 49 | 80%

Rational Unified P2 | 4% | 40%
Process CostaRica | 8% | 43%

Feature driven P3| 4% | 40%

Development costaRica 6% | 37%

Scaled Agile spain | 6% | 46%
Framework costaRica | 29 | 75% ree

Percentage of degree

Fig. 2. Degree of use of frameworks and methods for Spain and Costa Rica

118 1. Diaz-Oreiro et al.

The classic waterfall process is still used in both countries, to a greater extent in
Costa Rica than in Spain, despite current trends towards agile frameworks. It is
important to note, however, that its use is much lower compared to software developed
through agile frameworks and practices.

Regarding scaling agile frameworks, Nexus, SAFe and LeSS are better known in
Spain than in Costa Rica. Accordingly, the use of these frameworks is practically non-
existent in Costa Rica. In Spain, although the use is somewhat greater, only Nexus is
used significantly: 8% of respondents answered “We often use it”, and 12% “We
always use the framework”.

4 Conclusions

Results of the second stage of the HELENA Project show interesting similarities and
differences between the usages of development frameworks, methods and practices
when comparing responses from Spain and Costa Rica. Regarding the geographical
distribution of companies, 72% of Spanish companies have their development centers
within Spain, while 51% of Costa Rican respondents work in companies with offices
distributed throughout the region or globally.

As for the business area, both countries are primarily involved in Software
Development. Additionally, Spain dedicates a good part of its industry to Consulting,
while in Costa Rica this component is surpassed by its involvement in the Financial
sector.

Analyzing the size of the companies, this factor does not seem to influence the trend
towards agile or traditional frameworks, both for Costa Rica and Spain. The most agile-
oriented software development activities are Implementation/Coding and Integration/
Testing for both countries, although with slightly higher numbers in Costa Rica.

Finally, in relation to the frameworks and practices used, it is important to mention
that Scrum is the most widely used in both countries. Iterative Development and
Kanban occupy the second position as most commonly used frameworks, both in Spain
and Costa Rica. Classic Waterfall still has a presence, especially in Costa Rica,
although in a reduced way. Regarding scaling agile frameworks, the survey identifies
uses of Nexus, SAFe and LeSS frameworks, with more presence in Spain than in Costa
Rica, where its use is still incipient.

As future work, we hope to broaden the analysis to include other features addressed
in the survey, as well as to continue collaborating with other research teams, comparing
the results of different countries that took part in the survey.

Acknowledgements. The research work presented in this paper has been developed within the
following projects financed by “Ministerio de Ciencia, Innovacion y Universidades, y FEDER™:
ECLIPSE (RTI2018-094283-B-C31) and BIZDEVOPS-GLOBAL (RTI2018-098309-B-C31). It
was also partially supported by CITIC at the University of Costa Rica, Grant No. 834-B4-412.

Software Development Practices and Frameworks 119

References

10.

. Kuhrmann, M., Miinch, J., Diebold, P., Linssen, O., Prause, C.R. On the use of hybrid

development approaches in software and systems development: construction and test of the
HELENA survey. In: Proceedings of the Annual Special Interest Group Meeting
Projektmanagement und Vorgehensmodelle (PVM). (Lecture Notes in Informatics), vol.
263, pp. 59-68 (2015)

. Kuhrmann, M., et al.: Hybrid software and system development in practice: waterfall, scrum,

and beyond. In: Proceedings of the 2017 International Conference on Software and System
Process - ICSSP 2017, pp. 30-39. ACM Press, New York (2017)

. CAMTIC: Camara de Tecnologias de Informacion y Comunicacion. https://www.camtic.org
. Felderer, M., Winkler, D., Biffl, S.: Hybrid software and system development in practice:

initial results from Austria. In: Felderer, M., et al. (eds.) PROFES 2017. LNCS, vol. 10611,
pp- 435-442. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_33

. Paez, N., Fontdevila, D., Oliveros, A.: HELENA study: initial observations of software

development practices in Argentina. In: Felderer, M., et al. (eds.) PROFES 2017. LNCS, vol.
10611, pp. 443-449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_34

. Tell, P., Pfeiffer, R.-H., Schultz, U.P.: HELENA stage 2—Danish overview. In: Felderer,

M., Méndez Fernandez, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 420-427. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_31

. Nakatumba-Nabende, J., Kanagwa, B., Hebig, R., Heldal, R., Knauss, E.: Hybrid software

and systems development in practice: perspectives from Sweden and Uganda. In: Felderer,
M., Méndez Fernandez, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROEES 2017. LNCS, vol. 10611, pp. 413—419. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_30

. Scott, E., Pfahl, D., Hebig, R., Heldal, R., Knauss, E.: Initial results of the HELENA survey

conducted in Estonia with comparison to results from Sweden and worldwide. In: Felderer,
M., Méndez Fernandez, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 404—412. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4_29

. Aymerich, B., Diaz-Oreiro, 1., Guzman, Julio C., Lopez, G., Garbanzo, D.: Software

development practices in Costa Rica: a survey. In: Ahram, Tareq Z. (ed.) AHFE 2018. AISC,
vol. 787, pp. 122-132. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94229-2 13
IEEE Computer Society: About SWEBOK. https://www.computer.org/web/swebok

https://www.camtic.org
http://dx.doi.org/10.1007/978-3-319-69926-4_33
http://dx.doi.org/10.1007/978-3-319-69926-4_34
http://dx.doi.org/10.1007/978-3-319-69926-4_31
http://dx.doi.org/10.1007/978-3-319-69926-4_31
http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_30
http://dx.doi.org/10.1007/978-3-319-69926-4_29
http://dx.doi.org/10.1007/978-3-319-69926-4_29
http://dx.doi.org/10.1007/978-3-319-94229-2_13
https://www.computer.org/web/swebok

)

Check for
updates

Does the Migration of Cross-Platform
Apps Towards the Android Platform
Matter? An Approach and a User Study

Maria Caulo', Rita Francese?(®) Giuseppe Scanniello', and Antonio Spera?

L University of Basilicata, Potenza, Italy
{maria.caulo,giuseppe.scanniello}@unibas.it
2 University of Salerno, Fisciano, SA, Ttaly
francese@unisa.it, a.speral8@studenti.unisa.it

Abstract. We present an approach to migrate cross-platform apps
toward a native platform (i.e., Android). The approach is tailored to
Ionic, i.e., an open-source framework providing a mobile UI (User Inter-
face) toolkit for developing high-quality cross-platform apps. The validity
of our approach has been validated on an open-source app developed by
means of Ionic (i.e., Movies-app). In such a way, we had two versions of
the same app: one developed in Ionic (the original one) and the other
in Android (the migrated one). To investigate if there is a difference in
the user experience when using these two versions, we conducted a user
study. This user study also aimed at assessing the presence of possible dif-
ferences in the affective reactions of users when using these two versions
of Movies-app. The results suggest that the user experience is better
when users deal with the migrated app. Similar results were achieved
with respect to the affective reactions of users. We can then conclude
that the migration from Ionic towards Android matters.

Keywords: Android - Cross-platform - Ionic - Migration - Sentiment
analysis - User experience

1 Introduction

Migration means transferring an application to a new target environment hold-
ing the same features as the original application [5]. Migration is relevant to
consolidate past knowledge and to preserve past investments [7]. In addition,
the use of the migrated application should not negatively affect how the end-
user perceives it as compared with its original version. Therefore, the migration
is successful from the end-user perspective if she does not note any difference.
The development of apps based on cross-platform solutions (e.g., Titanium,
PhoneGap, and Ionic) are free from the operating system. That is, the devel-
oper writes the code of an app once and deploys it to the different (supported)
hardware/software platforms (e.g., i0S and Android). Among the cross-platform
solutions, Tonic is receiving great interest because it provides tools and services

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 120-136, 2019.
https://doi.org/10.1007/978-3-030-35333-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_9

Does the Migration of Cross-Platform App Towards the Android 121

to easily build Mobile Uls (User Interfaces) with a native look and feel. Tonic also
provides full access to native functionality of the device (behaving in this case
as a hybrid platform). On the other hand, native development means developing
the mobile app specifically for each hardware/software platform. For example,
Android apps have to follow a Model View Controller pattern closely tied to the
Android operating system architecture.

The results from an industrial survey [8] indicated that cross-platform devel-
opment is largely adopted because it is less risky than the native development.
Respondents in this survey also thought that a cross-platform (or hybrid) app
should be preferred when no much money can be invested in the native devel-
opment. The use of cross-platform frameworks is also a valuable means to the
rapid prototyping of apps to be run in different hardware/software platforms.
Once the value of these apps has been assessed with real users (e.g., through
beta-testing), these apps could be re-implemented or migrated towards native
platforms (e.g., Android or i0OS). As an example, a Stack Overflow user asks
some suggestions on how to substitute an Ionic app with a native Android one
in the Google Play store, because he is “planning to start a startup and currently
he is not in a position to afford individual development for various platforms.”!

In this paper, we present an approach to migrate Apps developed with Ionic
towards Android platform. To assess the validity of this approach and its under-
lying process, we applied both of them on a real open-source app, i.e., Movies-
app.? Finally, to assess if the migration from Ionic to Android is valuable from the
end-user perspective, we conducted a qualitative investigation with 18 users with
different experience and background. The main goal of this investigation was to
study affective reactions® and user experience? of the involved participants on
both the versions of Movies-app. In particular, we first assessed the difference (if
any) in the affective reactions of users when using Ionic and Android versions.
Affective reactions were measured using a lightweight yet powerful tool, Self-
Assessment Manikin (SAM) [4]. Later, we asked the participants in our study to
fill a questionnaire to assess user experience [17]. The general goal of the study
was to investigate whether affective reactions and user experience are affected
by the used version of the app. This is to say that in case the end-user does
not perceive any difference in terms of affective reactions and user experience
between the original version of the app and its migrated version the migration is
successful and then migration matters. It is even better if affective reactions and
user experience are more positive in the case of the migrated version of the app.

! https://stackoverflow.com/questions /34986098 /migrating-from-hybrid-app-to-
native-app-at-later-point-of-time.

2 https://github.com/okode/movies-app.

3 Affect is a concept used in psychology to describe the experience of feeling or emotion.

4 In the ISO 9241-210 [10], the user experience is defined as “a person’s perceptions
and responses that result from the use or anticipated use of a product, system or
service.”

https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://github.com/okode/movies-app

122 M. Caulo et al.

ANGUAR w
" <componert>

p—
Module EI
<<component>>
Component @
O

e @]

Fig. 1. Architecture of an Ionic app.

This paper provides the following main contributions:

— An approach to migrate Ionic apps towards the Android platform and its
validation on open-source app developed with Ionic;

— A user study to assess if the migration from Ionic towards the Android plat-
form matters.

In Sect. 2, we present related work and background information. We present
the migration approach and the results of its application on a real case in Sect. 3.
The design of the study to assess affective reactions and user experience is shown
in Sect. 4. In this section, we discuss the obtained results. We conclude the paper
in Sect. 5.

2 Background and Related Work

In the following of this section, we highlight some differences (at a high gran-
ularity level) between the architectures of Ionic and Android apps (depicted in
Figs. 1 and 2, respectively). We conclude presenting the migration of the apps.

2.1 Ionic App Architecture

An Jonic app is based on web technologies, such as HTML5 and CSS, and
developed on the top of Angular, a component-based platform for building mobile
and desktop web applications [3]. An Ionic app is structured in pages (screens
of the mobile app). Each page of the application is represented by an Angular
component. The content of a component is described in an HT'ML file named
template, the style in C'SS and the behavior in Typescript, the development
language adopted by Angular, that is derived by Javascript and enhanced with
classes and a stronger type definition. The template of a component together
with HTML tags contains instructions for modifying the app HTML, the app
status and the DOM data, and tags related to other components or data binding.

Does the Migration of Cross-Platform App Towards the Android 123

<<component>> a
Activity/Fragment
'
| <<use>>
'
W
<<component>> €|

ViewModel

II <<component>> §3]
LiveData 3

<<use>>

<<component>> g
<<use>> Repository
ffffffffffffffffffffff
A
|
i
'
|
|
AY v
<<component>> &) <<component>>]
Model Remote Data Source
<<componen> @] <<component>]
Room Retrofit

\ '
| '
| <<user>
'
'
'

\L <<use>> } o
Wi &

Fig. 2. Architecture of an Android app.

The modular architecture of an Angular application is based on NgModules:
each application contains a root module called AppModule, and is constituted
by components and service providers. It may export functionality which may be
used by other NgModules and imports functionality offered by other NgModules,
as shown in the right-hand part of Fig. 1. In Angular, service providers are used to
share logic or data between components and for calls to server-side web services.
Tonic accesses to the native device features through the Cordova plugins, written
in the native language on the native platform.

2.2 Android App Architecture

Android apps architecture follows a Model-View-Controller pattern closely tied
to the Android operating system architecture. It is good practice in Android app
development to put in Ul-based classes (Activity or Fragment) only the logic for
handling the User Interface, by maintaining the separation of concerns [1]. As
shown in Fig. 2, the architecture is composed of the following elements [9]:

— The View layer is responsible for interacting with the user and is performed
by Activity and Fragment which only configure the view. It shows LiveData
taken from the ViewModel.

— The ViewM odel observes the Lifecycle state of Activities and Fragments (the
view), by maintaining consistency during configuration changes and other
Android life-cycle events. It gets LiveData from the Repository and makes
them available to be observed by the view.

124 M. Caulo et al.

— The Repository is a class responsible for getting data from different sources,
such as databases and web services. It handles all this data, in terms of
observable LiveData, and let them be available to the ViewModel, which can
monitor changes through the design pattern observer.

— Room is a persistence library on the top of SQLite providing more robust
database access and returning queries with observable LiveData.

2.3 Migration

One of the most followed migration approaches is the one proposed by Brodie
and Stonebraker, named “chicken little” [5]. It consists of an iterative migration
of separable functionality. We also follow this approach, by identifying which
aspects of the migration process may be automatized.

Klima and Selingerer [15] consider that many Android apps exist and that
the use of cross-platform development tools is suitable for app development from
scratch. To reuse existing Android apps, they propose an automated approach to
convert them into Web applications by using the Google Web Toolkit (GWT),
a Java to Javascript converter. For the functionality not supported by HTMLS5,
Android wrappers are created. No evaluation is provided and only the descrip-
tion of the converter is discussed. Also, Stehle and Riebisch [20] approach the
problem of porting a system from a single to multi-platform development plat-
form by proposing a transformation method. Both the apps on the two different
architectures evolve, by establishing traceability across the two versions. They
present three case studies of porting applications with different operating systems
to evaluate the extent of code conversion and structural equivalence achieved by
the application. Unlike previous papers, we perform a user study aiming at eval-
uating the presence of possible differences in the affective reactions and user
experience when using the original and the migrated app.

3 The Migration Approach

The proposed approach is conceived to migrate an app from the Ionic-Angular-
Cordova to the Android native technology. The migration follows an incremental
process, conducted by performing small steps, as shown in Fig.3 by the UML
activity diagram with object-flow depicting the process. To assess and describe
the migration approach, we used an open-source application developed by using
Tonic4-Angular-Cordova technologies. Among the ones available on GitHub we
selected Movies-app, an application aiming at providing information on the most
popular movies. We opted for this app because its source files were available for
the download and because it is not very complex (although not obvious) and its
problem domain can be considered familiar.

Some screens of Movies-app are shown in Fig.4. The app starts from the
screen in Fig. 4(a). It is possible to select three types of filters on the movies (i.e.
Populares, Top and Proximamente) by tapping on the tab buttons in the lower
part of the screen. Once selected a movie, it is possible to examine its detailed

Does the Migration of Cross-Platform App Towards the Android 125

T 2 '
| :lonic App |—

(Revelse—ing'neerirg

v
| |

l :Source code inventoryl

Migration Planning

Migration Plan

S

\L

‘ :Component Descrlptlon
Data-Reengineering Provider-Reengineering
GULReengheenng |%

4' XML, Styles, Themes‘

il

CSS, HTML

Application-Data :Provider-Code

Java Code

Testing
:Android Application

Fig. 3. The migration process.

description (Fig.4(b)) and get details on one of its actors. In the following we
examine in detail the various migration steps.

Reverse Engineering. In this phase, we analyze the functionality of the appli-
cation by executing it and by examining the project structure. We identify the
Tonic pages involved in the accomplishment of a given functionality and group
together in modules that functionality logically related. Each Ionic page is com-
posed of content formatting (html), style (SCSS) and behavior (TypeScript).
It also imports other components, directives, and providers (or services) which
are listed in the pagName.module.ts file available in the page N ame folder. The
output of this phase is the Source Code Inventory document, which lists the app
modules and, for each of them, the related pages and services.

Migration Planning. Starting from the Source Code Inventory document,
we individuate a migration order of the various functionality and services. The
following three steps are performed for each page.

126 M. Caulo et al.

Movies Q & Aladdin Movies Q

Populares Populares

128 mins

Aventura, Fantasia, Musica, Romance,
Comedia, Familia

Aladdin

2019

Populares

Fig. 4. Two screens of the Ionic application Movies-app (Fig. 4(a) and 4(b)) and a
migrated interface in Android (Fig. 4(c)).

Pre-processing. This phase provides details on the types and attributes of
each component included in the page. Information on the Ionic component is
collected, such as tags (e. g., ion — list and ion — alert), its position on the
screen, and the number of sub-components composing it. As a result of this
phase, a list of components and the related sub-components of the considered
page is provided (Component Description in Fig. 3).

GUI-Rengineering. The Ionic page whose layout and style are described by
its .html and .scss files, respectively, has to be mapped into an Android activity,
whose GUI is strictly dependent on the platform. Android layout is described in
XML, the style by Android styles and themes [2]. A page can be composed of
Ionic predefined sub-components (e.g., a list - sonlist - may represent its elements
by a ioncard), and contain information, such as < ioncardheader > and < ion-
cardcontent >. In Android, ionlist has to be mapped into a RecyclerView
widget of the Activity XML file. This shows the generic element of the list by
viewholderobjects, which are managed by an adapter that creates view holders
when needed®. The mapping has to be performed for each Ionic GUI component.
HTML and SCSS files may be automatically mapped in XML by a translator.
We test the GUI appearance on various devices or on the emulator (UI testing)
each time a new widget is added.

5 https://developer.android.com/guide/topics/ui/layout /recyclerview.

https://developer.android.com/guide/topics/ui/layout/recyclerview

Does the Migration of Cross-Platform App Towards the Android 127

Single page and component Code Reengineering. The application logic of an
Tonic app is written in TypeScript. Many TypeScript constructs are very similar
to the corresponding in Java. The main translation rules are the following [18]:

— Variable declaration. In TypeScript, developers only need to manage num-
bers, booleans, and strings. These variables have to be associated in Java to
more specific types, such as double, float, char, boolean and long. Concerning
arrays, their declaration in TypeScript differs from Java only in the order in
which the array and its datatype have to be written.

— Conditional Statements. No difference.

— Loops. Typescript loops have the same syntax as Java ones. Except for the
let Typescript syntax.

— Classes. Both Typescript and Java support classes. The syntax has some little
differences.

— Data binding. One of the advantages of Angular is that it provides an easy
way to bind data to the views. As an example, in Ionic we declare the vari-
able name_person in the Typescript page and use it freely in its HTML
with the following syntax: {{name_person}}. This binding approach is called
interpolation in Angular. In Android, we bind the XML view with Java using
its id: name_person = findViewByld(R.id.name_person_detail);

— Methods/functions. Java methods and TypeScript functions have the same
meaning, but the syntax is different. As an example, in Typescrypt the word
function should be inserted in the name of the method.

— Ionic native plugin calls replacement by Android API. The Android Manifest
of the migrated version has to include the appropriate permissions to allow
use of the native functionality. The plugin call in the TypeScript class has to
be replaced by a Java call to the same code in Android.

There exist several approaches to automatically convert Java in TypeScript, but
at the moment no one is available to do the vice-versa. A quick approach may
consist in using a transpiler to translate TypeScript in Javascript and then tran-
spile it to Java. The resulting code may be difficult to read. Otherwise, a code
converter from TypeScript to Java has to be implemented. Since TypeScript is
continuously evolving, this solution requires continuous updating of the transla-
tor. We conduct Unit testing by using JUnit for validating the behavior of each
class of the app. Test cases available in Ionic may be reused as a guide.

Data-Reengineering. The Data Reengineering step is made independently
from page migration. In both systems, the app may store key/value pairs in the
local storage, on the device file system and SQLite is adopted as local DBMS.

Provider-Reengineering. Tonic providers (i.e., services) are mapped into Java
classes in Android.

Incremental Integration and Testing. Each page is progressively integrated
with the pages and providers of the same module. Test cases can be derived from
the Tonic app and used to exercise the target system in order to identify eventual
behavior differences. Once the Ionic application has been migrated, it has to be
customized for the various type of Android devices, with different screen sizes
and resolutions.

128 M. Caulo et al.

Table 1. Descriptive statistics for the Ionic Movies-app and its Android version.

Tonic Android
Screen Number 4 Screen Number 4
Typescript Class Number 27 Java Class Number 65
Typescript LOC 665 Java LOC 31748
SCSS file number 6 XML file number 75
SCSS LOC 611 XML LOC 7930
HTML file number 6
HTML LOC 611

3.1 Resulting Metrics

Some descriptive metrics on the source code of the original Ionic app and the
migrated one are reported in Tablel. LOC data revealed that Ionic code is
lighter than Android one, this is due to the fact that many tasks are performed
by Angular libraries.

4 User Study

To conduct our user study, we followed the guideline by Wohlin et al. [24] and
Juristo and Moreno [22]. We report the planning of the user study following the
template suggested by Jedlitschka et al. [11].

4.1 Goals
We investigated the following main Research Question (RQ):

— Does the migration of cross-platform Apps developed by means of lonic
towards the Android platform matter?

To answer this RQ, we had to compare from the end-user point of view the
original version of an app (i.e., Movies-app) with that migrated to Android. To
this end, we considered two main perspectives: affective reactions of users (i.e.,
pleasure, arousal, dominance, and liking) and user experience. In particular,
we speculate that the migration from Ionic to Android matters if we observe
a difference in favor of the Android version of a given app (Movies-app) with
respect to the affective reactions and the user experience. Therefore, we detailed
our main RQ as follows:

— RQ1. Is there an effect (either positive or negative) on pleasure, arousal,
dominance, and liking when using the (Android) migrated version of an app
developed by means of Ionic?

— RQ2. Is there an effect (positive or negative) on the user experience when
using the (Android) migrated version of an app developed by means of Ionic?

If the effect is positive for both the RQs, we can conclude that the migration
of a cross-platform app towards Android matters.

Does the Migration of Cross-Platform App Towards the Android 129

4.2 Experimental Units

Initially, 19 people accepted to take part in the experimental study; however, 18
actually participated. The participants in the study had a different background:
12 people had a Bachelor Degree (10 in Computer Science and two in Math-
ematics); four people had a Master’s Degree (three in Computer Engineering
and one in Mathematics); one had a Ph.D. in Computer Science and one had a
Scientific High School Diploma. The average age of participants is 27. Except for
one of them that owned a smartphone with iOS, the others owned an Android
smartphone. On average, participants install two apps a month. Most partici-
pants complain of sudden crashes and lags of apps, and irreversible blocks of the
smartphone, as main annoyances during the use. This information was collected
through a pre-questionnaire (i.e., a Google form) we asked the participants to
fill in a few days before the actual study.

4.3 Experimental Study Material and Tasks

The experimental objects consisted of the two versions of Movies-app: the orig-
inal one and the migrated one. Movies-app is a real-world App small enough to
allow a good control over the participants while completing the study.

To gather affective reactions, we relied on SAM [4]. It is a questionnaire that
consists of a nine-point rating scale for each of the following dimensions: pleasure,
arousal, and dominance. The pleasure scale ranges from affective states associ-
ated with unhappiness/sadness to happiness/joyfulness. The arousal scale varies
from calm/bored to stimulated /excited. Finally, the dominance scale ranges from
submissive to dominant, i.e., from “without control” to “with control”. As Koel-
stra et al. [16] did, we included the liking dimension on top of the SAM dimen-
sions ones. Also, liking consists of a nine-point rating scale and varies from dislike
to like.

As for user experience, we relied on the 26 statements by Laugwitz et al. [17].
These authors defined these statements to evaluate the quality of interactive
products (e.g., software). Each statement is made of two adjectives that describe
some opposite qualities of products. According to their objectives, these state-
ments are grouped into the following six categories: Attractiveness, Perspicuity,
Efficiency, Dependability, Stimulation, and Novelty. The scale for each adjec-
tive ranges from 1 to 7. The original set of statements from the User Experience
Questionnaire® was in German, and then it was translated in 20 other languages,
Italian included. In our experimental study, we administered the questions in the
Italian version provided by the authors.

As for the experimental tasks, we asked the participants to freely use both
the versions of the app according to the design described in Sect. 4.5. Right after
the use of each version of the app, we asked the participants to fill in the SAM
questionnaire and to respond to the 26 UEQ statements.

5 https://www.ueq-online.org.

https://www.ueq-online.org

130 M. Caulo et al.

Table 2. Experiment design

Order/Group | Period

Period 1 | Period 2
G1 Android | Ionic
G2 Tonic Android

4.4 Hypotheses and Variables

We considered two independent variables: Technology and Order. The first indi-
cates the technology used to implement the app. Therefore, Technology is a
categorical variable with two values: Android and Ionic. The Order variable indi-
cates the order in which a participant used the version of the app (also known as
sequence in the literature). Similarly to Technology, Order is categorical and can
assume the following two values: First and Second. For example, First indicates
that the Android version has been used first and then the Ionic one. We analyzed
Order to study learning effect on affective reactions and user experience.

To measure affective reactions, we used four dependent variables (one for
each dimension of SAM). To measure user experience, we used six dependent
variables, one for each of the six categories of UEQ (e.g., Attractiveness). To
obtain a single value for each category we summed the scores of each statement
in that category. For example, the Attractiveness category, which is composed of
six statements, can assume values in between 6 (if all the statements are scored
1) and 42 (if all the statements are scored 7). This practice to aggregate scores
from single statements is widespread (e.g., [23]). To answer the defined RQs,
we formulated and tested the following parameterized null hypothesis.

— HOx: There is no statistically significant difference between the Android and
Tonic Apps with respect to X.

Where X is one of the considered dependent variables. Because we could
not postulate an effect of Technology in a specific direction, either positive or
negative, our alternative hypotheses are two-tailed.

4.5 Experimental Study Design

The design of our experimental study (see Table2) was a factorial crossover
[21]. In this design, the number of periods (i.e., Order) and treatments (i.e.,
Technology) is the same, and the treatment applies to participants once and
only once [21]. The participants were divided into two groups, G; and G, both
made of nine members. The assignment to the groups was randomly performed.
Each participant used both the versions of the app, but participants in G, firstly
used the Android version and then the Ionic one, while vice-versa was applied
to Go. The use of this design mitigated the effect of the app on the results.

Does the Migration of Cross-Platform App Towards the Android 131

4.6 Procedure
The study procedure included the following sequential steps.

1. We invited Ph.D. and Master’s students in Computer Science and Mathe-
matics at the University of Basilicata and students enrolled in the course of
Advanced Software Engineering of the Master Degree in Computer Engineer-
ing from the same University. We also invited people working in the Software
Engineering Laboratory at the University of Basilicata. They had to fill in
a pre-questionnaire to gather demographic information. This design choice
allowed us to have participants with heterogeneous backgrounds.

2. We randomly split the participants into two groups: G; and Gs.

3. The study session took place under controlled conditions in a research labo-
ratory. We avoided interactions among participants by exploiting one-to-one
sessions, namely each participant accomplished the study tasks under the
supervision of one of the authors (the first one). This author did not interact
with the participants to accomplish the tasks and applied the same proce-
dure/steps for each participant.

4. Each participant performed the first task and then filled in the SAM ques-
tionnaire (first) and UEQ (later).

5. Each participant performed the second task and then filled in the SAM ques-
tionnaire (first) and UEQ (later).

6. Finally, we collected for each participant some free comments about the over-
all experience, through voice recordings.

All the participants used the same smartphone” in both the tasks. No other apps
were open in the background at the beginning of each experimental session.

4.7 Analysis Procedure

To test null hypothesis, we used the ANOVA Type Statistic (ATS) [6]. It is used
(e.g., in medicine) to analyze data from rating scales in factorial designs [12]. We
built ATS models as: X ~ Technology + Order + Technology : Order. Where
the dependent variable is X and Technology and Order are the manipulated
ones. Technology:Order indicates the interaction between Technology and Order.
This model allows determining if Technology, Order, and Technology:Order had
statistically significant effects on the given dependent variable X. To verify if an
effect is statistically significant, we fixed a to 0.05. That is, we admit 5% chance
of a Type-I-error occurring [24]. If a p-value is less than 0.05, we deemed the
effect is statistically significant.

" Umidigi A3, a Dual-Sim smartphone equipped with Android 8.1.0, 5.5” screen
with 720 x 1440 resolution points, 3300mAh capacity battery, 2GB RAM, 16 GB
of expandable memory, MediaTek MT6739 processor.

132 M. Caulo et al.
Table 3. Summary of the results for affective reactions.
Dep. Var | Indep. Var.
Technology | Order | Technology:Order
Pleasure 0.3496 0.9165 | 0.0140
Arousal 0.4011 0.8178 1 0.1519
Dominance | 0.1454 0.1454 | 0.7665
Liking 0.0494 0.6376 | 0.0494
Table 4. Summary of the results for user experience.
Dep. Var. Indep. Var.
Technology | Order | Technology:Order
Attractiveness | 0.0968 0.3683 | 0.2523
Perspicuity 0.4153 0.0851 | 0.8293
Efficiency 0.0004 0.3061 | 0.6581
Dependability | 0.0610 0.0874 | 0.6849
Stimulation 0.2489 0.5606 | 0.1437
Novelty 0.2539 0.7532 |/ 0.0109
4.8 Results

RQ1. Android Vs Ionic with Respect to Affective Reactions. In Table 3,
we summarize the results of the statistical inference with respect to RQ1. We can
observe a statistically significant difference with respect to Liking with a medium
effect size (0.383). We quantified effect size by means of the Cliff’s delta.®

The median values for G; are 8 for Android and 7 for Ionic, while the median
values for G, are 5 for Ionic and 6 for Android. Therefore, we can assert that
the participants liked more the migrated version of Movies-app than its original
version for Ionic. As for Liking, we also observed a significant interaction between
the two independent variables. This interaction is significant also for Pleasure.
This means that there is a combined positive effect of Technology and Order.

RQ2. Android Vs Ionic with Respect to User Experience. In Table4,
we summarize the results of the statistical inference with respect to RQ2. We
can observe a statistical difference with respect to Efficiency with a large effect
size (0.67). The median values for G; are 23 for Android and 17 for Ionic, while
the median values for G5 are 18 for Ionic and 23 for Android. Therefore, we can
assert that the participant found the Android version of the app more efficient

8 We used this kind of effect size because it is conceived to be used with ordinal
variables [13]. It is: negligible if |§] < 0.147, small if 0.147 < |§] < 0.33, medium if
0.33 <[] < 0.474, or large if |§] > 0.474 [19].

Does the Migration of Cross-Platform App Towards the Android 133

than its original version for Ionic. We also observed a significant interaction
between the two independent variables for Novelty.

4.9 Further Analysis

To analyze data from the interviews, we used TAT (Thematic Analysis Tem-
plate) [14]. For space constraint, we do not provide details on how we applied
TAT. We report identified themes and excerpts of the interviews carried out at
the end of the experimental study with the participants.

Reactivity. The apps implemented with Android is more reactive than the other
and this makes it more enjoyable.

We can justify this pattern in the data because in Ionic the use of the browser
may cause prolonged app loading and a deteriorated responsiveness and there
may be performance issues when several callbacks are sent to the native code.

Fluidity. The scroll is not fluid when sliding the results of a query. This happens
for the app implemented in Ionic.

This theme can be considered related to the previous one. The highlighted
issue should depend on the resources to execute the Ionic version of the app.

User Interface, Contents, and Functionality. The two versions of the app
look quite the same, have the same functionality, and show the same contents.

This result might be in relation to the absence of a statistically significant
difference in three out of four dependent variables for affective reactions, and in
five out of six dependent variables for user experience.

4.10 Discussion

On the basis of the obtained results, it seems that the main research question
can be positively answered: the migration of cross-platform Apps developed by
means of Tonic towards the Android platform matters. According to our study,
end-users’ opinions are in favor of the Android version of the app in terms of
Liking and Efficiency, with respect to Technology. This is evidenced by a medium
effect size for Liking and a large effect size for Efficiency. Variables related to
how the two apps appear (e.g. Attractiveness includes couples of adjectives such
as: Annoying/Enjoyable, Good/Bad, Unlikable/Pleasing, Unpleasant/Pleasant,
Attractive/Unattractive, Friendly /Unfriendly) seem to measure no preferences
for any of the versions. We conjecture that Liking might be influenced by the
performance of the apps perceived by end-users (measured by Efficiency) and
this is supported by free comments collected. This might also imply that the
migration approach was carried out successfully, because such an approach did
not negatively affect the perceived performance, indeed, the Android version has
been reputed more efficient over the same experimental conditions. The Order
seems not to affect the users’ opinions in any of the two cases (SAM and UEQ),
while Technology and Order seem to interact each other in cases of Pleasure
(SAM), Liking (SAM) and Novelty (UEQ), in favor of the Android version.

134 M. Caulo et al.

4.11 Threats to Validity

We discuss the threats that could have affected the validity of the results in the
user study. We ranked these threats from the most to the least sensible for the
goal of our study (i.e., Internal Validity).

Internal Validity. A possible threat is voluntary participation in the study
(selection threat). To deal with threat of diffusion or treatments imitations, the
first author of this paper monitored participants and asked back material to
prevent them from exchanging information.

Construct Validity. Each of the investigated constructs was quantified by
means of one assessment at the end of the task, which can affect the results (i.e.,
participants tend to assess the affective state closer to when we provided them
the SAM). Although the participants were not informed about our RQs, they
might guess them and change their behavior accordingly (threat of hypotheses
guessing). To mitigate evaluation apprehension threat, we reassured participants
that their data were treated anonymously and in aggregate form. It is worth
mentioning that we asked the participants to sign a consent form to use their
data. We also acknowledge the presence of a restricted generalizability across
constructs. That is while having an impact on the affective states, the approach
can affect other relevant constructs which we did not observe (cognitive load).

Conclusion Validity. Threat of random heterogeneity of participants could be
present since we involved participants with a different background. Reliability of
measures is another threat to conclusion validity. To deal with it, we used well
known and widely used measures.

External Validity. The experimental objects might affect the external validity
of the results (i.e., threat of the interaction of setting and treatment). They could
be not representative of real-world tasks. The selected mobile device on which the
user study is performed was a mid-range device, because not all the real-world
users own the most performing devices.

5 Conclusion and Final Remarks

We presented an approach to migrate Ionic apps towards Android. The validity
of this approach has been assessed on an open-source app (i.e., Movies-app).
We also studied if the application of our approach matters from the end-user
perspective. To this end, we conducted an empirical investigation to study both
user experience and affective reactions of possible users. The main goal was
to identify differences when using both the versions of Movies-app: the Ionic
and the Android ones. The results suggest that a better user experience was
achieved when dealing with the Movies-app version implemented in Android.
Similar results were achieved with respect to the affective reactions of users.
Summarizing, it seems that the migration from Ionic towards Android matters.

Does the Migration of Cross-Platform App Towards the Android 135

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Android Developers: Guide to app architecture. https://developer.android.com/
jetpack/docs/guide

Android Styles and Themes. https://developer.android.com/guide/topics/ui/look-
and-feel /themes

Angular. https://angular.io

Bradley, M.M., Lang, P.J.: Measuring emotion. The self-assessment manikin and
the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49-59 (1994)
Brodie, M.L., Stonebraker, M.: Legacy Information Systems Migration: Gate-
ways, Interfaces, and the Incremental Approach. Morgan Kaufmann, San Francisco
(1995)

Brunner, E., Dette, H., Munk, A.: Box-type approximations in non parametric
factorial designs. J. Am. Stat. Assoc. 92, 1494-1502 (1997)

De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Developing legacy system
migration methods and tools for technology transfer Software. Pract. Exp. 38(13),
1333-1364 (2008)

Francese, R., Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Mobile app devel-
opment and management: results from a qualitative investigation. In: Proceedings
of the 4th IEEE/ACM International Conference on Mobile Software Engineering
and Systems, pp. 133-143. IEEE Press (2017)

Hossain, T.: Android Application Architecture. https://medium.com/oceanize-
geeks/android-application-architecture-189b4721c¢7chH

International Organization for Standardization: Ergonomics of human system
interaction - Part 210: Human-centered design for interactive systems (formerly
known as 13407). ISO FDIS 9241-210 (2009)

Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Guide to Advanced Empirical Software
Engineering. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-
5. Ch. Reporting Experiments in Software Engineering

Kaptein, M.C., Nass, C., Markopoulos, P.: Powerful and consistent analysis of
likert-type rating scales. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2391-2394. ACM, New York (2010)

Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Erlbaum, New York
(1996)

King, N.: Using templates in the thematic analysis of text. In: Cassell, C., Symon,
G. (eds.) Essential Guide to Qualitative Methods in Organizational Research, pp.
256-270. Sage, Thousand Oaks (2004)

Klima, P., Selinger, S.: Towards platform independence of mobile applications.
In: Moreno-Diaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013.
LNCS, vol. 8112, pp. 442-449. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-53862-9_56

Koelstra, S., et al.: Deap: a database for emotion analysis using physiological sig-
nals. IEEE Trans. Affect. Comput. 3(1), 18-31 (2012)

Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63-76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6
McKenzie, C.: What Java developers need to know about TypeScript
syntax. https://www.theserverside.com/tutorial/What- Java-developers-need-to-
know-about-TypeScript-syntax

https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/guide/topics/ui/look-and-feel/themes
https://developer.android.com/guide/topics/ui/look-and-feel/themes
https://angular.io
https://medium.com/oceanize-geeks/android-application-architecture-189b4721c7c5
https://medium.com/oceanize-geeks/android-application-architecture-189b4721c7c5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-3-642-53862-9_56
https://doi.org/10.1007/978-3-642-53862-9_56
https://doi.org/10.1007/978-3-540-89350-9_6
https://www.theserverside.com/tutorial/What-Java-developers-need-to-know-about-TypeScript-syntax
https://www.theserverside.com/tutorial/What-Java-developers-need-to-know-about-TypeScript-syntax

136

19.

20.

21.

22.

23.

24.

M. Caulo et al.

Romano, J., Kromrey, J., Coraggio, J., Skowronek, J.: Appropriate statistics for
ordinal level data: should we really be using t-test and Cohens d for evaluat-
ing group differences on the NSSE and other surveys? In: Annual Meeting of the
Florida Association of Institutional Research, pp. 1-3 (2006)

Stehle, T., Riebisch, M.: A porting method for coordinated multiplatform evolu-
tion. J. Softw. Evol. Process 31(2), e2116 (2019)

Vegas, S., Apa, C., Juristo, N.: Crossover designs in software engineering experi-
ments: benefits and perils. IEEE Trans. Softw. Eng. 42(2), 120-135 (2016)
Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Dordrecht (2001)

Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures ofpositive and negative affect: the panas scales. J. Pers. Soc. Psychol. 54(6),
1063-1070 (1988)

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer Publishing Company, Incorporated,
Heidelberg (2012)

)

Check for
updates

Software Knowledge Representation
to Understand Software Systems

Victoria Torres ™ , Miriam Gil®, and Vicente Pelechano

Universitat Politécnica de Valéncia, Valéncia 46022, Spain
{vtorres,mgil, pele}@pros.upv.es

Abstract. A software development process involves numerous persons,
including customers, domain experts, software engineers, managers, evaluators
and certifiers. Together, they produce some software that satisfies its require-
ments and its quality criteria at a certain point in time. This software contains
faults and flaws of different levels of severity and at different phases of its
production (specification, design, etc.) so maintenance is needed in order to
correct it. Perfective and adaptive maintenance is also needed to cope with
changes in the environment or with new requirements, e.g. new functionalities.
In this work, we introduce the Persistent Knowledge Monitor (PKM), which is
being developed within the DECODER H2020 project for handling (i.e. storing,
retrieving, merging and checking for consistency) all kinds of knowledge and
information related to a software project. The PKM will be part of a platform
capable of taking advantage of all the artefacts available in a software ecosys-
tem, not only the source code, but also its version control system, abstract
specifications, informal documents or reports, etc. for representing the software
knowledge and improving the workflow of software developers.

Keywords: Persistent Knowledge Monitor + Software engineering *
Traceability

1 Introduction

Software maintenance and improvement are very costly and consuming tasks espe-
cially when there is an intense use of legacy code or third-party libraries, which usually
lack of documentation or when available, it is out-of-date from the current version of
the associated piece of software. However, properly performing these maintenance and
improvement tasks requires a deep understanding not just of the source code but also of
the critical information bound to the code and the process that led to its production.
A key aspect to achieve such deep understanding is to discover knowledge by
analyzing all the available artefacts of a given software project. Then, based on the

This work has been developed with the financial support of the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 824231 and the Spanish State
Research Agency under the project TIN2017-84094-R and co-financed with ERDF.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 137-144, 2019.
https://doi.org/10.1007/978-3-030-35333-9_10

http://orcid.org/0000-0002-2039-2174
http://orcid.org/0000-0002-2987-1825
http://orcid.org/0000-0003-1090-230X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_10

138 V. Torres et al.

obtained knowledge, stakeholders can be provided with different views of the system at
different levels of abstraction that may be more appropriate to achieve the under-
standing of the underlying system. However, prior to the creation of such system views,
knowledge has to be properly represented according to a well-defined schema or meta-
model. Such meta-model must represent, in the most accurate way, all the elements that
conform to a software system and all the existing relationships between them.
Regarding these relationships, it is important to have a clear understanding at the most
fine-grain level, where specific sections or portions of a given artefact (e.g., class x
implementation in a java source file) may relate to a different one (e.g., class x defi-
nition in a uml class diagram).

In the literature we can find different meta-models targeted to represent the
knowledge that can be extracted from software artefacts. These include the Knowledge
Discovery Meta-model (KDM) [1] and Abstract Syntax Tree Metamodeling (ASTM)
[2] (specifications developed by the OMG ADM task force [3]), FAMIX [4], the
Pattern and Abstract-level Description Language (PADL) [5], or the OASIS Static
Analysis Results Interchange Format (SARIF) [6]. All these meta-models put their
focus on artefacts such as source code, models, and specifications to extract knowledge
from the software project. However, in addition to these artefacts, there are other less
formal sources that are not usually considered and that can be processed and analyzed
to get some extra knowledge about the software project being maintained or improved.
These include forum discussions, issue tracker items, reports, etc.

Therefore, taking as reference these meta-models, and considering these less formal
sources, in this work we present an overview of the meta-model of the Persistent
Knowledge Monitor (PKM), a central infrastructure to store, access, and trace all the
persistent data, information and knowledge related to a given software or ecosystem.
This PKM is being developed within the DECODER H2020 project', whose major
objective is to provide powerful tools for developers to get thorough understanding of a
given piece of software.

The remainder of the paper is organized as follows. Section 2 identifies the type of
sources considered in DECODER to populate the PKM. Section 3 provides an over-
view over the existing literature found regarding meta-models representing software
artefacts. Then, Sect. 4 provides an overview over the PKM meta-model, describing its
main components and the relationships among them. Finally, Sect. 5 provides some
conclusions and outlines future work.

2 Khnowledge Sources to Populate the PKM

One of the major functionalities of the PKM is storing the knowledge generated by the
DECODER toolset, toolset targeted to process/analyze the different software project
artefacts. Besides this storage functionality, the PKM should also provide the capa-
bilities to allow the DECODER toolset to query, update, and reason over the stored
knowledge. Specifically, the information that will be stored in the PKM includes:

! https://www.decoder-project.eu/.

https://www.decoder-project.eu/

Software Knowledge Representation to Understand Software Systems 139

e Some form of the abstract syntax tree (and concrete trees) related to the source code
and the libraries used.

e Some derived or normalized form of the code (after pre-processing, GIMPLE or
Generic/Tree internal representations provided by GCC, or CIL representation for
Frama-C [7]).

e Some generated or manually written annotations (e.g. in ACSL/ACSL++ for C or
C++ code, in JML for Java code).

e Natural language documentation or comments, related to some particular chunk of
source code or of a global nature.

e Historical information, extracted from version control systems and bugzillas.

e Information produced by static source code analysis, by optimization passes of
compilers, by natural language processing and machine learning techniques.

e Any other relevant information that contributes to enrich the system representation.

Examples of processing/analyzing activities performed by the DECODER toolset
are extracting features from source code, annotating code comments and issues with
entities, predicates, arguments, etc. Therefore, as Fig. 1 shows, the PKM is expected to
interact with several tools, some targeted to process different artefacts to generate
knowledge and populate the PKM and others to consume such knowledge and assist
stakeholders in their respective tasks within the process lifecycle.

Fig. 1. Interaction between the PKM and tools that generate and/or consume knowledge

140 V. Torres et al.

3 Meta-Models for Software Knowledge Representation

The knowledge extraction process refers to one of the major tasks of the reverse
engineering, which was defined by Chikofsky and Cross II in [10] as “the process of
analyzing a subject system to identify the system’s components and their interrela-
tionships and create representations of the system in another form or at a higher level of
abstraction”. Big efforts have been made in the area of Model-Driven software mod-
ernization where several works have been proposed in order to create a common
repository structure for representing information about existing software assets. The
OMG’s Architecture Driven Modernization (ADM) initiative [3] defines a set of
standard meta-models which represent the information normally managed in mod-
ernization tasks. Specifically, the Knowledge-Discovery Metamodel (KDM) [1] pro-
vides the ability to document existing systems, discover reusable components in
existing software, support transformations to other languages and MDA, or enable
other potential transformations. KDM is partitioned into several packages, each one
representing different kinds of software artifacts as entities (e.g., code entities, data
entities, Ul entities, environment entities). An implementation of this meta-model is
provided by MoDisco [11], an Eclipse-based framework that was developed to provide
support to the software modernization process. In addition, to better support source
code analysis activities, ADM also defined the Abstract Syntax Tree Metamodel
(ASTM) metamodel [2], to represent the Abstract Syntax Tree (AST) of any pro-
gramming language. This model defines a Generic ASTM (GASTM) with definitions
that apply to ASTs of most programing languages, and Specialized ASTM (SASTM)
with features specific to a single programming language. More recently, other meta-
models have been defined to support structured metrics (SSM) [8], or software patterns
(SPMS) [9]. Other meta-models focused specifically on the object-oriented languages
are FAMIX [4], which also allows representing procedural languages, and the Pattern
and Abstract-level Description Language (PADL) [5], which also focus on patterns,
allowing the description of motifs. Mainly conceived to detect software defects and
vulnerabilities, the OASIS Static Analysis Results Interchange Format (SARIF) [6]
defines a standard specification to capture the range of data produced by commonly
used static analysis tools.

In DECODER, for the definition of the PKM meta-model we will make
use/reference all those existing meta-models when possible. For example, GASTM and
FAMIX will be used to define the part of the PKM meta-model where the AST is kept.
However, in the PKM we consider other less formal sources of knowledge that are
poorly structured, incomplete, and sometimes incorrect. After a process of knowledge
extraction, this information will be stored in the PKM.

4 The PKM Meta-Model

The PKM provides the representation of a general and specific knowledge about the
artefacts of a software project. In order to manage the complexity of the PKM, it is
defined by a collection of meta-models according to the categories of the artefacts and a

Software Knowledge Representation to Understand Software Systems 141

core package that defines the general knowledge of them. The defined packages are the
following (see Fig. 2):

PKM Core package

’r
A N N N BN B

Abstract Extracted
Source code Configuration Structured data
specification Report package Model package
package
package

Image package information

package package package

Fig. 2. Organization of the PKM Packages

e Core package: it defines the core part of the PKM representing the concept of
artefact and its related concepts such as the project use case in which the artefact
belongs to, the tools that can manage the artefacts (specification and management
tools), the development phases in which artefacts are used during the development
process, and the stakeholders that are involved.

e Abstract specification package: it defines the meta-model elements of the formal
specification describing, by means of pre, post and invariants, the behavior of an
associated source code. This abstract specification can be automatically generated or
manually written by means of annotations (e.g., in ACSL, ACSL++, JML, etc.).

e Source code package: it defines the part of the meta-model that refers to the arte-
facts that list human-readable instructions written by a programmer with the
objective of being executed in a computing device. A source code artefact belongs
to one programming language, it relates to a set of referenced libraries and with
history data extracted from version control systems and bugzillas.

e Report package: it defines the part of the meta-model that represents the artefacts
containing a structured content in natural language, related to some particular chunk
of source code or of a global nature.

e Model package: it defines the part of the meta-model that represents abstract rep-
resentations of a specific aspect from a given domain (e.g., a uml class model
describes the structure — concepts, properties of the concepts, relationships between
concepts- of a specific domain).

e Configuration package: it defines the meta-model that represents artefacts
describing, in plain text, the parameters that define or execute a specific software
program.

e Structured data package: it defines the meta-model that represents artefacts that
store data structures and that are usually used as interchange format.

e [Image package: it defines the meta-model that describes binary representation of
visual information such as drawings, pictures, graphs, etc.

142 V. Torres et al.

e FExtracted information package: it defines the meta-model that represents infor-
mation produced by static source code analysis, by optimization passes of com-
pilers, by natural language processing or by machine learning techniques.

4.1 The PKM Core Package Overview

The PKM Core package, as shown in Fig. 3, is built around the artefact concept, which
is specialized into the different types of artefacts considered in DECODER use cases,
which are abstract specifications, source code, reports, models, configuration artefacts,
structured data, and images.

Artefacts are digital products or documents created during the software develop-
ment process. It can be presented in different formats (plain text, key-value structures,
markup documents), and levels of abstraction (high, medium, and low). Moreover,
artefacts can be related to other artefacts with the same (or similar) semantic intention
(e.g., a java file may be related to a uml diagram describing a class from a given
domain).

An artefact belongs to a project use case, which defines a set of artefacts of
different nature (source code, documents written in natural language, configuration
files, etc.) organized (or not) according to a logical structure (e.g., directories) and
provided (or not) as a compressed file. These artefacts are consumed or created during
the project development and maintenance process.

Project use case

Name: String
Company: String

1

Senior ng.
1
10 Developer
Artifact
Stakeholder E—
Name:String
Tool AbstractionLevel: absLevelType 1 Maintaner
Name: string sizelnBytes: Float
 Boolean format: String 1n Assessor
Specification tool toolProvider: String Structured: Boolean
type: SpecToolType license: LicenseType Author: string Development phase
1n 20| Version: String o
DI url:string 8 n .
sting LastModbate: Date name: sting
Eximtrype CreationDate: Date description: String
Mgt tool releaseDate: Date
targetTo: ArtMnmToolType Version: string 0
string Semantic ntention
memoryRequirements: Float
1
[abstract specification +——] Source Code [Report__] [woder] [Cconfiguration | [Structureddata | [image
[ty dngram | [Ol oo [ULt machine i] [Tevtr st e
History Data
Programming language Version: String
Pro—— Change: string o
releaseVersion: String)
releaseDate: Date <<enumeration>>
type: ProgrammingLangType ProgramminglangType
Interpreted: Boolean 8 Interpreted
on Compiled
Hybrid
1
= SourceFileType ExFmiType ArtMnmToolType AbsLevelType SpecToolType
HeaderFile ROF Analysis High Textual
e XL Mgm & evol WMedium Graphical
‘ | | Atom Configuration Low
JSON Reporting
[ovjectoriented || _tventoriented || _togic || _functional || _structured | vamL

Fig. 3. PKM Core Metamodel Package

Software Knowledge Representation to Understand Software Systems 143

Artefacts are managed by fools that are used by any stakeholder to analyze, trans-
form, refine, etc. them and produce new or modified artefacts. Tools can be categorized
into specification tools, which are tools that allow to create, modify, and refine artefacts,
and management tools, which are tools that assist/guide the stakeholder in the task of
analyzing, managing, evolving, and configuring a specific tool as well as tools that act as
back-ends to the previous tools categories to generate various kinds of reports.

Artefacts are related to development phases in which they are used during the
development process, i.e., requirements, design, implementation, testing, deployment,
maintenance. Finally, in each development phase, different stakeholders take part to
develop a specific task within the project. These stakeholders can be senior engineers,
developers, reviewers, maintainers, or assessors.

Dynamic and sftatic
A B automatic verification
Maintainer PrYEmeEes

decisions how to

. B SV x ¢
Reviewer Y e Developer

semantic verification precice APl documents

Fig. 4. An overview of the development life cycle

5 Conclusions and Future Work

As we have pointed out, the PKM has been built within the DECODER project with
the goal of store, access, and trace all the persistent data, information and knowledge
related to a given software project or ecosystem. This knowledge will be useful for the
different actors involved during the life span of a software, especially new persons, to
keep project information and knowledge in the most accessible and unambiguous way.
This living repository can be queried and enriched by the actors involved in the project,
in order to maintain consistency and keep the most updated and precise information
about it.

This work constitutes a first step in the formalization process of the PKM meta-
model, which will be in charge of gathering all the data, information and knowledge
that can be extracted from a given software project. As future work such meta-model
will be implemented as a database having in mind that the potential and diverse
processing tools that may interact with the PKM demands for a dynamic and flexible

144 V. Torres et al.

data schema that could be modified according to the new interaction needs. Such
flexibility would allow extending the schema with new types based on the processing
results produced by new interacting tools. For this reason, we are planning to use JSON
as the interchange mechanism between tools and the PKM. Once complete and
implemented, the PKM will be validated empirically with four different use cases
proposed in the DECODER H2020 project. These refer to OS drivers provided by
SYSGO (https://www.sysgo.com/), the openCV library commonly used by Tree
Technology (http://www.treetk.com/es/index.html) in its developments, general pur-
pose Java code hosted in the OW2 (https://www.ow2.0rg) open-source software
community, and My-Thai-Star showcase application, developed by CAPGEMINI
(https://www.capgemini.com/es-es/service/agile-delivery-center-valencia/).

In addition, the knowledge gathered in the PKM should be also used along the
different stages of the software lifecycle to improve and assist stakeholders in their
respective tasks. Figure 4 provides an overview over the different roles involved in
DECODER as well as their interaction with the PKM. First, developers will feed the
PKM with the bulk code and documentation of the use cases where they are involved.
Second, reviewers will write correct properties in ACSL, ACSL++ (the extension of
ACSL for C++) or JML with invariants and behaviors implicitly connected to a model
based on abstract state machines. Finally, maintainers will do the work of reviewing
and taking decisions on how to resolve inconsistencies. An online traceability matrix
will be used to control the consistency of these elements and to help deciding when the
software becomes ready for manufacturing and for being reused.

References

1. Object Management Group, Inc.: Knowledge discovery meta- model (KDM) (2012). http://
www.omg.org/technology/kdm/index.htm
2. Architecture-Driven Modernization: Abstract Syntax Tree Metamodel (ASTM), OMG
document formal/2011-01-05, OMG, January 2011. http://www.omg.org/spec/ASTM
3. ADM initiative website. http://adm.omg.org. Accessed 5 July 2019
4. Tichelaar, S., Ducasse, S., Demeyer, S.: FAMIX and XMI. In: Proceedings Seventh
Working Conference on Reverse Engineering, Brisbane, Queensland, Australia, pp. 296-298
(2000). https://doi.org/10.1109/wcre.2000.891485
5. Guéhéneuc, Y.G.: PTIDEJ: promoting patterns with patterns. In: 1st ECOOP Workshop on
Building Systems using Patterns, pp. 1-9 (2005)
6. Static Analysis Results Interchange Format (SARIF). https://www.oasis-open.org/
committees/sarif. Accessed 9 July 2019
7. Frama-C software analyzer website. https://frama-c.com/. Accessed 9 July 2019
8. Structured Metrics Meta-model (SMM): OMG document formal/2016- 04-04, OMG, April
2016. http://www.omg.org/spec/SMM/
9. Structured Patterns Metamodel Standard (SPMS): OMG document ptc/16-03-13, OMG,
March 2016. http://wwwomg.org/spec/SPMS/1.1
10. Chikofsky, E.J., James, H.: Cross II: reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13-17 (1990)
11. Bruneli¢re, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012-1032 (2014)

https://www.sysgo.com/
http://www.treetk.com/es/index.html
https://www.ow2.org
https://www.capgemini.com/es-es/service/agile-delivery-center-valencia/
http://www.omg.org/technology/kdm/index.htm
http://www.omg.org/technology/kdm/index.htm
http://www.omg.org/spec/ASTM
http://adm.omg.org
http://dx.doi.org/10.1109/wcre.2000.891485
https://www.oasis-open.org/committees/sarif
https://www.oasis-open.org/committees/sarif
https://frama-c.com/
http://www.omg.org/spec/SMM/
http://wwwomg.org/spec/SPMS/1.1

®

Check for
updates

When NFR Templates Pay Back?
A Study on Evolution of Catalog
of NFR Templates

Sylwia Kopczynska™) | Jerzy Nawrocki, and Mirostaw Ochodek

Faculty of Computing, Poznan University of Technology, Poznan, Poland
{sylwia.kopczynska, jerzy.nawrocki,miroslaw.ochodek}@cs.put.poznan.pl

Abstract. [Context] Failures in management of non-functional require-
ments (NFRs) (e.g., incomplete or ambiguous NFRs) are frequently iden-
tified as one of the root causes of software failures. Recent studies confirm
that using a catalog of NFR templates for requirements elicitation pos-
itively impacts the quality of requirements. However, practitioners are
afraid of templates as the return on investment in this technique is still
unknown.

[Aim] Our aim was to investigate how the usefulness of catalog of
NFR templates and its maintenance costs change over time.

[Method] Using 41 industrial projects with 2,231 NFRs, we simulated
10,000 different random evolutions of a catalog of NFR templates. It
allowed us to examine the distribution of catalog value, maintenance
effort, catalog utilization over a sequence of projects (a counterpart of
elapsing time).

[Results] From the performed analysis it follows that after considering
about 40 projects we can expect catalog value of 75% or more and main-
tenance effort of 10% or less. Then one could expect about 400 templates
in the catalog, but only about 10% of them would be used by a single
project (on average).

[Conclusions] Usefulness and maintenance costs of catalog of NFR
templates depend on the number of projects used to develop it. A cata-
log of high usefulness and low maintenance effort need to be developed
from about 40 projects. Since high variability of studied projects, this
number in practice might be lower. From the perspective of a large or
medium software company it seems not a big problem.

Keywords: Non-functional requirements - Templates - Catalog *
Empirical study - Simulation

1 Introduction

Non-functional requirements (NFRs) are those that state conditions under which
the functionality of a software product is useful (e.g., they describe how fast a

This work was partially supported by the Young Staff grant 09/91/SBAD/0683.

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 145-160, 2019.
https://doi.org/10.1007/978-3-030-35333-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_11

146 S. Kopczynska et al.

system shall work, the security rules, the environments in which the system is
expected to work).

NFRs are important not only in traditional approaches to manage software
projects, but also in agile ones, which has been confirmed in the recent studies,
e.g., by Kopczynska et al. [16] or by Alsaqaf et al. [3]. However, NFRs are often
neglected, especially those that are difficult to write or ostensibly obvious. It
is an important risk factor, as in many cases a project failure can be traced,
amongst others, to improper management of them (see e.g., [5,6,18,20]).

Several recent studies provide evidence that using a catalog of NFR templates
for requirements elicitation and specification results in requirements of higher
quality (e.g., [10,14,15,27]). Moreover, many experts recommend preserving the
best practices concerning requirements in the form of templates. According to
their experience, using templates improves consistency and testability of require-
ments, reduces ambiguity [4],[19], [30], makes elicitation and specification eas-
ier [30], and saves the effort of specification [22].

Using NFR templates seems simple. They are expressed in natural language
as statements with some gaps (parameters) to be filled in and optional parts to
select while formulating a requirement. During NFRs specification one can select
templates from a catalog and provide the values of the parameters they define,
which is called template-supported elicitation.

However, there exists a problem with applying templates in software projects.
We can hear the opinion of practitioners who are afraid of using templates (see
e.g., the study by Palomares et al. [21]). They perceive them as a complex
method and do not know what would be the return on investment. Thus, more
evidence is needed about benefits, costs, and effectiveness of the investment in
NFR templates.

We focused in the paper on how the characteristics of catalog change over
time. Since a catalog of NFR templates evolves, i.e., it is subject to change
resulting from the lessons learned from the past projects, it is practical to assume
that after each project some templates that have been found missing are added,
and others are modified. Dynamics of catalog characteristics is the process of
change of those characteristics over time, and we are interested in the following
research questions concerning the subject:

— RQ1. What is the dynamics of wvalue of catalog of NFR templates for a
project (i.e., the percentage of NFRs it can help to derive)?

NOTE: Initially the catalog is small and will cover only a small fraction of NFRs,
so its value for an analyst is low. It is interesting to know how many projects are
needed to make it cover a reasonable fraction of the NFRs.

— RQ2. What is the dynamics of maintenance effort the catalog of NFR tem-
plates needs after a single project (i.e., the percentage of NFR templates that
require to be added or modified to incorporate the lessons learned)?

NOTE: The actual maintenance effort strongly depends on a person performing
the task. To get free of this dependency, the maintenance effort is expressed as the
percentage of templates that must be added or modified.

When NFR Templates Pay Back? A Study on Evolution 147

— RQ3. What is the dynamics of wtilization of catalog of NFR templates (i.e.,
the percentage of NFR templates that get used in a single project to derive
NFRs)?

NOTE: The lower the utilization of the catalog the lower the speed of finding the
templates one really needs.

To answer the stated research questions, we decided to conduct an empirical
study. Using over 2,000 NFRs from 41 different industrial projects, we simulated
10,000 different random evolutions of a catalog of NFR templates. It allowed us to
examine the distribution of catalog value, maintenance effort, catalog utilization
over a sequence of projects (a counterpart of elapsing time). For the design of our
study see Sect. 4, and in Sect. 3 some definitions and terminology are provided.
The threats are discussed in Sect. 6, the results are reported in Sect. 5, while the
findings are summarized in Sect. 7.

2 Related Work

The works on NFR templates concern:

> Proposals of templates. The idea of using templates was proposed a long
time ago, e.g., in the famous book on Requirements Engineering from 1997 by
Somerville and Sawyer [29]. Since then, there have been proposed several types
of templates: (1) syntax templates that preserve a correct and common syntax
of a statement to express a requirement, e.g., Rupp’s [23], EARS [19]; (2) state-
ment templates that preserve small statements (parts) that can be combined
to build the full statement expressing a requirement, e.g., Denger et al. [8]; (3)
syntax and semantic templates that preserve a correct and common syntax of a
statement that can express a requirement and contain knowledge how to express
specific requirements, e.g., statements/words used to correctly state the maxi-
mum system response time, e.g., Hull et al. [12], Kopczynska et al. [14], and they
are also parts of the solutions proposed in the PABRE approach [26] and in the
approach by Withall [30]; (4) structure templates that preserve the attributes
that need to get assigned values to specify a requirement, frequently in the form
of a table, e.g., Volere Snow Card [28], use case template [2], Planguage [11].

> Reports on experience and research studies. From experience of some authors
we can learn that using templates improves consistency and testability of require-
ments, reduces ambiguity [4,19,30], makes elicitation and specification eas-
ier [29,30], and saves the effort of specification [22].

Worth attention are the empirical studies that deliver more specific obser-
vations. For example, Riaz et al. [27] conducted a series of experiments focused
on security requirements templates. They showed statistically significant results
regarding the increase of completeness, and better quality of NFRs elicited with
the use of the template-supported approach. Kopczynska et al. [15] conducted
an experiment in which they investigated templates concerning all ISO 25010
[13] characteristics. They also provided statistically significant results that using
catalog of NFR templates improves quality and completeness of requirements,

148 S. Kopczynska et al.

but do not speed up the elicitation process. Then, Doerr et al. [9] investigated
the IESE NFR method that utilizes templates in a structured elicitation app-
roach, which resulted in the conclusion on the improvement of completeness
of NFRs. Eckart et al. [10] showed that well-grounded templates can improve
the completeness of performance requirements meant as the completeness of all
necessary information in a single requirement.

> Maintenance of catalog of NFR templates. According to our up-to-date knowl-
edge, there is only one study that tackled the problems concerning the mainte-
nance of a catalog of NFR templates. Kopczynska et al. [15] carried out an early
investigation of one evolution of their catalog. Although this study provides some
idea of how characteristics of catalog of NFR templates might change over time,
the results might be biased by the order in which the projects were analyzed.
In this paper, we fill the gap by investigating how usefulness and maintenance
effort change over time in multiple different random evolutions.

3 Terminology

In this section the definitions used further on are stated. Although they were
given in the paper by Kopczynska et al [15], we provide them here so the paper
is self-contained.

We consider an NFR template as a regular expression over literals and
parameters that allows to derive a sentence which constitutes an NFR for some
software product.

The process of direct deriviation (deriving for short) an NFR from a tem-
plate comprises the following steps: (1) Derive a sequence of literals and param-
eters from the regular expression, e.g., decide which literal best suits the current
context, decide on the multiplicity of a parameter, adjust sentence structure;
(2) Replace all the parameters with their actual values, e.g., provide concrete
numbers and names. Such definition of an NFR template allows the flexibility
of choosing the notation to document templates, e.g., VOLERE Snow Card [28],
QUPER’s approach [25], the NoRT notation [14]. The latter, which aims at sup-
porting the NFRs documentation in the form of natural language statements, is
used in the paper. An example of an NFR template would be:

<type >) passwords shall be of length from <min. num-
ber> to <max. number> characters.

It consists of core which is stable during derivation (not taking into account
inflexion), parameters to be replaced with exact values (e.g., <min number>);
(options) to choose from (e.g., .

Then, by a catalog of NFR templates (‘catalog’ for short), further denoted
as K, we understand a finite set of NFR templates. Its size (|K|) is defined as
the number of templates it contains. In the paper the considered catalogs are
organized into categories using the ISO 25010 standard [13].

While an organization executes a sequence of software development projects
Py, Py, ..., its catalog evolves from K to K7, K, More precisely, lessons

When NFR Templates Pay Back? A Study on Evolution 149

learned from each consecutive project P; allow the owner to improve the tem-
plates transforming catalog from version K;_; to K;. For the sake of simplic-
ity we assumed that each project is viewed as a finite set of its NFRs, i.e.,
Po={rknr? .- ri"*}. Then, the process of considering these requirements, one
by one, and modifying or adding templates to the catalog whenever necessary
can be viewed as catalog maintenance. During the process we might meet the

following situations.

e Perfect match. If requirement rf (or its equivalent) can be directly derived
from template ¢ contained in catalog K;_1, no maintenance action is required.
One can say that there is a perfect match between requirement r! and tem-
plate t. Every such template will be included into new catalog K;.

o Template extension and indirect derivation. It can happen that no template
in old catalog K;_; perfectly matches requirement 7. Then template needs
extension e.g., add some parameters and modify the static text or the options
of template ¢’ in such a way that there is a perfect match between] and new
template ¢, and new template ¢ is backward compatible with the old one. We

say then that requirement r] can be indirectly derived from template ¢.

o Missing template. The third situation is when requirement rf (or its equiva-
lent) cannot be directly or indirectly derived from any of the templates con-
tained in old catalog K; ;. Then, the only solution is to add new template
to Kz

To characterize the catalog maintenance, it seems useful to split the templates
of new catalog K; into the following subsets:

— Perfect;: If template ¢ belongs to Perfect; then t belongs also to old catalog
K;_1 and in P; there is at least one requirement rf such that there is perfect
match between rf and ¢. In this case the maintenance effort is negligible.

— Modified;: Each template ¢ of the set is an extension of a template from old
catalog K;_1, i.e., there is requirement r of project P; that perfectly matches
t and there is no template ¢’ in old catalog K;_1 such that r perfectly matches
t.

— Added;: If template t belongs to Added; then there is requirement r in P; such
that r perfectly matches ¢ and there is no template ¢’ in old catalog K;_1
that 7 could be directly or indirectly derived from ¢’.

— Sleeping;: It contains all the templates from old catalog K;_; which are not
used to directly or indirectly derive any requirement of project P;. Those
templates are unnecessary for the current project, but they can prove use-
ful in the future. The maintenance effort associated with these templates is
negligible.

4 Method

To answer the research questions stated in Sect.1 concerning the dynamics of
three characteristics of catalog of NFR templates, we investigated random cata-
log evolutions. In each evolution we simulated as the catalog is maintained based

150 S. Kopczyniska et al.

on the lessons learned from a random sequence (permutation) of the industrial
projects described in Sect. 4.1. (We considered a sequence of projects as a coun-
terpart of elapsing time.) The catalog was maintained according to the procedure
presented in Sect. 4.2. In our study, we analyzed 10,000 catalog evolutions as the
order of project might impact the dynamics of the characteristics of catalog of
NFR templates.

4.1 Projects

We collected and analyzed NFRs from 41 sources (see Table 1 for a brief descrip-
tion of the projects). 40 of them were software development projects—26 of which
were industry projects whose stakeholders shared the data with the authors
(denoted as Ind), and 15 came from the projects shared in the Open Science
teraPROMISE repository [7] (denoted as Pro). Additionally, we included one
literature position claimed to be based on industry projects [28]. The major-
ity of the projects aimed at developing web applications (Web), some of them
concerned desktop applications (Desktop), and one project — an integrated infor-
mation system (ZSI) with many web applications and web services. Altogether,
we collected 2,231 NFRs. They concerned the development of business applica-
tions (B), i.e., software supporting some business processes in different domains.

For each project, we analyzed all the statements, but some which were not
NFRs such as definitions of some terms, schedules of transitions, functional
requirements, etc. (see the full list in [1]) were excluded.

4.2 Catalog Evolutions

The initial version of the catalog (K) was created based on the results of our pre-
vious study [14] and consisted of 83 templates. Together with the requirements,
they were uploaded into a web application that allowed their analysis according
to the following procedure. For each project P; and for each requirement r € P;:

1. The contents of catalog K, 1 was analyzed to find template ¢ that could be
used to derive r (perfect match) and if such ¢ was found, it was included into
the next version of the catalog, K;.

2. If such a template was not found, K;_; was searched for a template t that
could be modified (extended) to new version ¢ and ¢’ could be used to directly
derive »—then t was included into K.

3. Otherwise, a new template to catalog K; was added.

All the sleeping templates of K;_1 (i.e., not used, directly or indirectly, by
any r from P;) were included in K;. This procedure was first executed manually,
which we called initial evolution (see [15] for details). It allowed us to represent
each NFR template as a set of parts (core, parameters, alternatives) and each
NFR as composed of those parts. As a result, we could execute multiple evolu-
tions using the software application (see [1] for details) to minimize the influence
of the order of projects on the results.

When NFR Templates Pay Back? A Study on Evolution 151

7R}

Table 1. Description of the projects included in the study (means that the data
was not available, B — Business type of application, M — Multiple types of application).

=1 =1
8 S
+~ +
-) g - 0 « 8
S E 8 .8 g S & 8 - g
sk £ §f 28 g S £ § & =
= ° ~ > o < o = [o Y o]
SO) < <H A L FH ow < <H A
1 76 Lit Multiple M Multiple 22139 Ind Web B Banking
2 55 Ind Web B Administration||23 31 Ind Web B Banking
3 36 Ind Desktop B Services 23 37 Ind Web B Banking
.. . Education
4 24 Ind Web B Administration||24 641 Ind ZSI B . .
& Financial
5 100 Ind Web B Health Care ||25 33 Ind Web B Pharmacy
6 10 Ind Desktop B Services 26 65 Ind Web B Pharmacy
7 48 Ind Desktop B Services 27 15 Pro - B Media
8 32 Ind Desktop B Services 28 24 Pro Mobile B Real Estate
9 33 Ind Web B Oil and Gas (|29 25 Pro Web B Education
10 68 Ind Web B Financial 30 32 Pro Web B Trade
11 32 Ind Web B Banking 31 37 Pro Web B Insurance
12 41 Ind Web B Banking 32 47 Pro Web B Services
13 11 Ind Web B Education 33 11 Pro Desktop B Trade
14 60 Ind Web B Research 34 72 Pro Web B Entertainment
15 89 Ind Web B Banking 35 11 Pro - B Services
16 10 Ind Web B Banking 36 14 Pro Web B Entertainment
17 43 Ind Web B Banking 37 13 Pro Web B Communication
18 20 Ind Web B Banking |38 19 Pro - B Software
& Hardware
19 108 Ind Web B Banking 39 19 Pro Web B Services
20 18 Ind Web B Banking 40 15 Pro Web B Sport
41 16 Pro Web B Financial

To analyze the dynamics of variables in multiple catalog evolutions, we use
box plots (e.g., Fig. 1). Each chart has a set of boxes each with a band inside the
box which depicts the median value. The lower and upper “hinges” of the boxes
correspond to the first and third quartiles, the whiskers extend from the hinge
to the highest and lowest value that is within 1.5*IQR of the hinge, where IQR
is the inter-quartile range (roughly speaking, the whiskers correspond to the 5/
and the 95" percentiles [24]).

Moreover, to study how the diversity of projects influences the results of
our analysis, we performed additional analyses. In each one, we excluded some
projects which we called pseudo-outliers. Pseudo-outliers are those projects in
the pool that use the highest number of unique (specific) NFR templates (in that
sense each real outlier is also a pseudo-outlier but not vice-versa). To determine
pseudo-outliers first, we ranked the projects from the most specific to the least

152 S. Kopczyniska et al.

specific by determining the number of unique NFR templates (used only by a
given project).

Base on this ranking (see Table2) we generated 5 mutations of multiple
evolutions (each of size 10,000 as it was before). Each mutated multiple evolution
Evol; was base on 41 projects but first ¢ projects from the ranking were replaced
by copies of randomly chosen other projects from the pool.

Table 2. The ranking used to identify pseudo-outliers.

o g5 o g5

ER- ER:

: 5| 8 &

n n

5°% %815z 3¢
or— . '_Q: ,& . .g .® . a ,M . '9,
RN R

Z 2oz allnz 8z 2
6 40 2 3 27 2 14 -
20 19 2 3 7 1 19 -
22 17 2 3 9 1 12 -
2 15 3 5 12 1 8 -
11 15 3 5 6 1 10 -
25 13 4 7 17 1 18 —
15 11 4 7 23 1 16 —
1 10 5 9 ||12808 1 15 —
4 10 5 9 32 1 15 —
24 8 6 11 (|34 1 18 -
5 7 9 11 (137 1 17 -
10 6 7T - |41 1 12 -
13 4 6 - 19 0 20 -
18 4 &8 — 21 0 20 -
39 4 10 — |29 0 20 -
31 3 14 - (|30 0 20 -
33 3 9 — (136 1 20 -
35 3 7T - 383 0 20 -
8 2 11 - |40 0O 13 -
14 2 16 - [|42 0 20 -
26 2 13 -

5 Results

5.1 Dynamics of Catalog Value

Let us define Value of catalog K;_1 as the percentage of NFRs of project P; that
can be directly (perfect match) or indirectly (after extension of some templates)
derived from the templates of catalog K;_;. Using the subsets Perfect; and

When NFR Templates Pay Back? A Study on Evolution 153

Modified; of new catalog K;, one can define value of catalog K;_1 in the following
way:

| Perfect; U Modified,|
| Pl

As mentioned earlier, project P; is treated as a set of NFRs, thus |P;|, i.e., its

cardinality, denotes the number of NFRs of that project.

In practical terms, one can treat catalog value as the degree to which the
catalog is useful as a prompt list for a given project.

Value(i — 1) = * 100% (1)

Observation 1. After considering about 40 projects one can expect catalog value
of 75% or more.

Justification. The distribution of catalog value for multiple evolutions is depicted
in Fig. 1A as a box plot (a very brief explanation of the box plot representation
of data is presented in Sect.4.2). From the chart, it is pretty clear that for the
considered set of 40 projects, independently of their order, one can expect 75%
NFRs to be “covered” by templates of the catalog. Moreover, we fitted simple
linear regression models for each evolution. We found significant regression equa-
tions with positive slopes—the mean value of slopes was 0.58, the median equal
to 0.57, and min. and max. equal to 0.27 and 1.01, respectively (the p-value was
smaller than 0.05). The intercept ranged from 60.00 to 80.00, with the mean
value of 71.25 and median value of 71.27. The results indicate the increasing
tendency in the data.

A. Multiple simulations B. Frequency analysis 10 C. Pseudo-outliers analysis

:;M YYY!!nmmmmmmw1“: “m ‘ | |

10 20 30 40
Projects Value [%

~
o

a
o

Value [%]
Frequency(Value) [%]

N
o

Frequency(Value) [%]

#Excluded *he
pseudo-outliers: 8 ; ?1

Fig. 1. (A) Distribution of catalog value, (B) Analysis of frequency after considering
40 projects for catalog value, (C) Analysis of pseudo-outliers for catalog value.

Our observation is also supported by another analysis. Let Frequency(Value)
be a function describing the percentage of catalog evolutions for which catalog
value is not less than a given Value. The function is depicted in Fig. 1A. From the
chart presented in the figure, it follows that after considering all the 40 projects

154 S. Kopczyniska et al.

catalog value of at least 75% was achieved almost always. This chart also shows
what is the chance of obtaining other catalog values, e.g., the value of 80% or
more has been achieved in about 80% of cases (evolutions).

We have also examined the impact of pseudo-outliers on the catalog value,
i.e., on the Frequency function (see Sect.4.2 for the procedure of identifying
pseudo-outliers). In Fig. 1C, there are several charts of the Frequency function
for a given catalog value. Each of them corresponds to a different number of
pseudo-outliers excluded from the original set of projects. The general conclusion
is that the smaller the number of pseudo-outliers (i.e., projects that importantly
differ from the rest of the portfolio of projects) the greater the chance of getting
higher catalog value. What is perhaps more interesting, up to the catalog value
of at least 75% the impact of pseudo-outliers is almost negligible. In other words,
after considering about 40 projects the catalog value of 75% is very probable,
even in the presence of pseudo-outlier projects.

5.2 Dynamics of Maintenance Effort

When considering maintenance of a catalog of NFR templates two operations
seem the most important and time consuming: (1) adding new templates to the
catalog and (2) modifying (extending) the existing ones. The former requires
effort more or less proportional to the cardinality of the set Added; (i.e., the num-
ber of added templates), and for the latter the required effort is proportional to
the cardinality of Modified; which represents the number of modified templates.
Thus, one can assume the following indicator of maintenance effort ME(i — 1):

Added; U Modified,
ME(— 1) = [Added: ﬁHOd’ﬁedz' % 100% (2)

where K; denotes a new version of the catalog.

Observation 2. After considering about 40 projects one can expect mainte-
nance effort, ME, to amount up to 10% of catalog size.

Justification. The distribution of ME for 10,000 random evolutions is presented
in Fig.2A as a box plot (see Sect.4.2 for a description of how to read this
box plot). From the figure, it follows that there is a decreasing tendency in the
data. The simple regression models were fitted to confirm the observation. We
found significant regression equations with the negative slopes with the mean
value of —0.45, median equal to —0.44, and min. and max. equal to —0.17 and
—0.69, respectively (the p-value was <0.05). The intercept ranged from 11.63 to
22.13, with the mean value of 16.95 and median value of 16.99. Moreover, from
the chart in Fig. 2B, it is pretty visible that for the considered set of projects,
independent of their order, one can expect that less than 10% of NFR templates
require updates during maintenance process after a project.

Observation 2 is also supported by frequency analysis. Let Frequency(ME)
be a function returning percentage of catalog evolutions for which maintenance

When NFR Templates Pay Back? A Study on Evolution 155

A. Multiple evolutions B. Frequency analysis C. Pseudo-outliers analysis

60. 100. 100.

75 X 75 7
E § 50. §
= 0l g § 25.
- 25

— °

0. ““““““““ 0. ° l\}lg [%] 15 2
10 20 30 40 5 10 15 20
1

#Excluded _g:;:?1

Projects ME [% pseudo-outliers

Fig. 2. (A) Distribution of maintenance effort, (B) Analysis of frequency after consider-
ing 40 projects for maintenance effort, (C) Analysis of pseudo-outliers for maintenance
effort.

effort was MFE or less. This function is depicted in Fig. 2B. From the chart, it fol-
lows that after considering all the projects, maintenance effort of 10% or less was
achieved in 97.7% of evolutions. The chart also presents the frequencies for other
values, e.g., one might expect that there is 78% chances that the maintenance
effort would be up to 5%.

We have also examined the impact of pseudo-outliers on the value of the Fre-
quency function (see Sect. 4.2 for the procedure of identifying pseudo-outliers).
In Fig.2C, there are several charts of the Frequency function. Each of them
corresponds to a different number of pseudo-outliers excluded from the origi-
nal set of projects. The general conclusion is that the impact of pseudo-outliers
on maintenance effort is not very big and after considering about 40 projects
the maintenance effort of 10% or less is very probable, even in the presence of
pseudo-outlier projects.

5.3 Dynamics of Catalog Utilization

The simplest approach to NFRs elicitation in the presence of a catalog of NFR
templates is brute force, i.e., going from one template to another and checking if
a given template could be used to formulate an NFR for the project at hand. In
this context, the following question arises: what is the percentage of considered
templates that will be used to specify NFRs for a project P;? We will refer to this
percentage as catalog utilization and its precise definition is presented below:

) | Perfect; U Modified;|
Ui—1)= K|
i

+100% (3)

where K;_; denotes the old (previous) version of the catalog.

Observation 3. After considering about 40 projects one can expect catalog uti-
lization, U, to be below 10%.

156 S. Kopczyniska et al.

Justification. The distribution of catalog utilization for multiple evolutions is pre-
sented in Fig. 3A as a box plot (see Sect. 4.2 for a description of how to read this
box plot). From the figure, it follows that the expected value of Utilization (median
value) is below 10% for the considered set of 41 projects, independent of their order
(average ca. 7%, median ca. 6%, minimum ca. 1%, maximum ca. 38%).

A. Multiple evolutions B. Frequency analysis C. Pseudo-outliers analysis
30. 100. 100.
75) 9 75.
= = & 50.
= g 50, 5
< g z
=) g £ 25
] w
25.
0.
5 10 15 20
0. ‘ U [%]
10 20 30 40 5 10 15 20
ji #Excluded 0+3+5+7+9+11
Projects U[%] pszﬁ:o-eoutliers

Fig. 3. (A) Distribution of utilization, (B) Analysis of frequency after considering 40
projects for utilization, (C) Analysis of pseudo-outliers for utilization.

Observation 3 is also supported by frequency analysis. Let Frequency(U)
be a function describing percentage of the catalog evolutions for which catalog
utilization was less or equal U. The function is depicted in (Fig.2B). From the
chart, it follows that after considering all the projects, catalog utilization of
10% or less was achieved in 93.7% of evolutions. The chart also presents the
frequencies for other values, e.g., the utilization of 20% or less was practically in
all the observed evolutions of the catalog.

We have also examined the impact of pseudo-outliers on the value of the Fre-
quency function (see Sect. 4.2 for the procedure of identifying pseudo-outliers).
In Fig. 2C, there are several charts of the Frequency function. Each of them cor-
responds to a different number of pseudo-outliers excluded from the original set
of projects. The general conclusion is that the smaller the number of pseudo-
outliers (i.e., the projects that differ from each other) the greater the chance of
getting higher utilization.

6 Threats

In the following paragraphs, we discussed the threats to the validity of the study
according to the guidelines by Wohlin et al. [31].

Conclusion validity

Reliability of Measures. To minimize the influence of inherent ambiguity of nat-
ural language that might have been introduced during the identification of the
need of improvement of the catalog, the detailed procedure and definitions were
created and discussed beforehand.

When NFR Templates Pay Back? A Study on Evolution 157

While conducting the initial catalog evolution as well as representing each
NFR template and NFR as sets of parts (core, parameters, options) for multiple
catalog evolutions we could have introduced some errors, e.g., while identifying
parts of templates or identifying which part of a given template is present in a
given requirement. Next, it shall be taken into account that in the multiple evo-
lutions we used computer programs to simulate multiple maintenance processes,
which might have contained some errors. To mitigate the threats concerning
the multiple evolutions we also conducted simulation using the coarse-grained
approach. The approach is based on the following question: Is it true that a
requirement r (from a considered project) can be derived from template t of the
final version of the catalog resulting from the initial evolution?. Thus, it is based
only on the relationships between templates and requirements identified in the
initial catalog simulation. In report available at website on NFR templates [1] we
compared the results obtained using both the approach described in the paper
and the coarse-grained approach. Based on these results, we argue, that our
observations should not be visibly affected by the mentioned threats.

Fishing. To minimize the threat that the experimenters would search for a spe-
cific result when analyzing the data, the researchers did not see any information
on a project, the order number of each requirement, and values of the investi-
gated variables.

Internal Validity
Selection. The minimum requirement towards all NFRs’ sets was that they con-
tain requirements from industrial projects and most likely developing web busi-
ness applications. Although we selected the source organizations by convenience,
they represent a quite broad range of possible cases. Additionally, the NFRs
obtained by the authors were combined with the publicly available sets [7].
Another threat relates to the homogeneity of projects (and NFRs). Since
they were taken from different organizations, the abstraction levels vary, which
might have boosted the size of the catalog, e.g., some people specify only that
the Web Content Accessibility Guidelines (WCAG) shall be satisfied, while the
others, instead, list concrete guidelines.

Construct Validity

Design Threat. The researchers did not participate in the projects for which they

analyzed NFRs. Although they do have more than 5 years of experience in RE,

focusing on NFRs, they might have misinterpreted some parts of requirements.
Moreover, the analyzed NFRs satisfy the definition of an NFR from [15], and

we decided to use NFR templates as defined in Sect. 3. Since one might use other

existing definition of an NFR, their results might vary from ours. Also using an

approach that requires from an NFR to be documented with more extensive

information, e.g., Gilb’s Planguage [11] (it suggests that a requirement shall

have a scale, measure or authority) might also drive to other results.

External validity

Interaction of Setting and Treatment. In our study, we mimicked the behavior of

an organization that maintains its catalog of templates over time. The catalog

158 S. Kopczyniska et al.

maintenance procedure was aligned with the known industry practices that show
the steps towards systematic requirements reuse executed in Rolls Royce [17].
Thus, we perceive the settings as realistic-enough to generalize the conclusions.

Although our goal was to provide analysis independent of the domain, type
of application, we evaluated only 41 sets of requirements. Therefore, we need
to accept the threat that the conclusions might be true only for the analyzed
domains and types of applications.

7 Conclusions

Non-functional requirements (NFRs) are important not only when a software
product is developed using traditional but also agile approaches. Since, failures
in the management of NFRs, such as incomplete, ambiguous NFRs, etc., are
one of the root causes of failures in transitions of software products, elicitation
methods and techniques that help to overcome these issues are needed. However,
first, to apply any elicitation method, knowledge of benefits and costs associated
with using it must be known.

In this paper, we focused on the elicitation of NFRs using a catalog of NFR
templates. We investigated the issues of usefulness and maintenance cost that
are important from the perspective of the maintenance of such catalog measured
with catalog value, maintenance effort, and catalog utilization by a single project.
The study is based on 41 industrial projects with 2,231 NFRs (26 industry
projects whose stakeholders shared the data with us and 15 projects shared in
the Open Science tera-PROMISE repository [7]; Sect. 4 contains all the details).
To analyze the maintenance process, i.e., how catalog of NFR templates changes
using lessons learned from the previous project, we simulated 10,000 different
random evolutions of a catalog of NFR templates.

Here are the observations that follow from our study:

> (Observation 1.) After considering about 40 projects one can expect catalog
value of 75% or more.

> (Observation 2.) After considering about 40 projects one can expect main-
tenance effort (measured in number of updates) amounting up to 10% of
catalog size.

> (Observation 3.) After considering about 40 projects one can expect catalog
utilization to be below 10%.

The observations confirmed our initial investigation based on a single manual
evolution of a catalog and improved the generalizability of study [15].

It seems reasonable to assume that a catalog of NFR templates of catalog
value at the level of 75% (or more) and maintenance effort at the level of 10%
(or less) is attractive from the point of view of practitioners. As these values were
achieved in the study after about 40 projects this number of projects becomes a
kind of break-even point in which the investment in catalog development highly
pays back. It is worth to take into account that the projects were quite het-
erogeneous (e.g., they come from different organizations, describe systems from

When NFR Templates Pay Back? A Study on Evolution 159

different domains). However, if an organization works on much more homoge-
neous projects (e.g., it implements only e-commerce systems) it would require
fewer projects to achieve the benefits at the mentioned level.

From the perspective of a large software company, the requirement of con-
ducting about 40 projects seems not a big deal; it might be even achieved within
a year. For micro or small companies having such number of projects might be
more difficult. Then, it might prove valuable to share a catalog of NFR templates
between several companies, e.g., within a consortium or while cooperation with
a research institution.

Catalog utilization below 10% seems low from the perspective of elicitors,
especially in the context of catalogs containing about 400 templates. From our
study it follows that after considering about 40 projects it is quite probable that
the number of templates useful for a particular project will be 20 or even less.
It resembles looking for a needle in a haystack. Thus, a method of searching for
NFR templates faster than brute force executed manually would be valuable.

Acknowledgments. We would like to thank the companies that shared their data
with us especially ATREM S.A., Consdata Sp. z o0.0., Currency One S.A., IT Depart-
ment of Poznan City Hall, Roche Sp. z 0.0., TALEX S.A.

References

1. Website of NoRTs. http://norts.cs.put.poznan.pl

2. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases.
Addison-Wesley, Boston (2002)

3. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the
context of large-scale distributed agile: an empirical study. Inf. Softw. Technol.
110, 39-55 (2019)

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From Contract Drafting to Software
Specification: Linguistic Sources of Ambiguity. A Handbook. Ver 1.0. https://cs.
uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf. Accessed 07 Sept 2015

5. Boehm, B., In, H.: Identifying quality-requirement conflicts. IEEE Softw. 13(2),
25-35 (1996)

6. Breitman, K.K., Leite, J.C.S., Finkelstein, A.: The world sa stage: a survey on
requirements engineering using a real-life case study. J. Braz. Comput. Soc. 6(1),
13-37 (1999)

7. Cleland-Huang, J., Mazrouee, S., Liguo, H., Port, D.: Open-Science teraPROMISE
repository. http://openscience.us/repo/requirements/other-requirements/nfr.
(2010). Accessed 26 June 2017

8. Denger, C., Berry, D.M., Kamsties, E.: Higher quality requirements specifications
through natural language patterns. In: IEEE International Conference on Software:
Science, Technology and Engineering, pp. 80-90 (2003)

9. Doerr, J., Paech, B., Koehler, M.: Requirements engineering process improvement
based on an information model. In: 2004 Proceedings of 12th IEEE International
Requirements Engineering Conference, pp. 70-79. IEEE (2004)

10. Eckhardt, J., Vogelsang, A., Femmer, H., Mager, P.: Challenging incompleteness
of performance requirements by sentence patterns. In: International Requirements
Engineering Conference (RE), pp. 46-55. IEEE (2016)

http://norts.cs.put.poznan.pl
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://openscience.us/repo/requirements/other-requirements/nfr

160

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Kopczynska et al.

Gilb, T.: Competitive Engineering: A Handbook for Systems and Software Engi-
neering Management Using Planguage. Butterworth-Heinemann, Oxford (2005)
Hull, E., Jackson, K., Dick, J.: Requirements Engineering (2005)

ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. Technical report, ISO/TEC (2010)

Kopczynska, S., Nawrocki, J.: Using non-functional requirements templates for
elicitation: a case study. In: IEEE International Workshop Requirements Patterns
(2014)

Kopczynska, S., Nawrocki, J., Ochodek, M.: An empirical study on catalog of
non-functional requirement templates: Usefulness Maintenance Issues. Inf. Softw.
Technol. 103, 75-91 (2018)

Kopczyrniska, S., Ochodek, M., Nawrocki, J.: On importance of non-functional
requirements in agile software projects—a survey. In: Jarzabek, S., Poniszewska-
Maranda, A., Madeyski, L. (eds.) Integrating Research and Practice in Software
Engineering. SCI, vol. 851, pp. 145-158. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-26574-8_11

Lam, W., McDermid, T., Vickers, A.: Ten steps towards systematic requirements
reuse. In: Intenational Symposium on Requirements Engineering, pp. 6-15. IEEE
(1997)

Lindstrom, D.R.: Five ways to destroy a development project. IEEE Softw. 10(5),
55-58 (1993)

Mavin, A., Wilkinson, P.: Big Ears (The Return of “Easy Approach to Require-
ments Engineering”). In: Requirements Engineering Conference, pp. 277-282
(2010)

Nuseibeh, B.: Ariane 5: who dunnit? IEEE Softw. 14(3), 15-16 (1997)
Palomares, C., Quer, C., Franch, X.: Requirements reuse and requirement patterns:
a state of the practice survey. Empirical Softw. Eng. 22, 1-44 (2015)

Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, Heidelberg (2010)

Pohl, K., Rupp, C.: Requirements Engineering Fundamentals. Rocky Nook, San
Rafael (2011)

R Documentation: Box Plots. www.rdocumentation.org/packages/graphics/
versions/3.5.1/topics/boxplot. Accessed 28th Sept 2018

Regnell, B., Svensson, R.B., Olsson, T.: Supporting roadmapping of quality require-
ments. IEEE Softw. 25(2), 42-47 (2008)

Renault, S., Méndez Bonilla, O., Franch Gutiérrez, J., Quer Bosor, M.C., et al.:
A pattern-based method for building requirements documents in call-for-tender
processes. IJCSA 6(5), 175-202 (2009)

Riaz, M., et al.: Identifying the implied: findings from three differentiated repli-
cations on the use of security requirements templates. Empirical Softw. Eng. 22,
2127-2178 (2016)

Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right, 3rd edn. Addison-Wesley, Boston (2012)

Sommerville, 1., Sawyer, P.: Requirements Engineering: A Good Practice Guide.
Wiley, Hoboken (1997)

Withall, S.: Software Requirement Patterns (Developer Best Practices). Microsoft
Press, Redmond (2007)

Wohlin, C., Runeson, P., Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-030-26574-8_11
www.rdocumentation.org/packages/graphics/versions/3.5.1/topics/boxplot
www.rdocumentation.org/packages/graphics/versions/3.5.1/topics/boxplot
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

®

Check for
updates

Improving Quality of Data Exchange
Files. An Industrial Case Study

Giinter Fleck!, Michael Moser?®) | and Josef Pichler?

! Siemens Transformers Austria, 8160 Weiz, Austria
guenter.fleck@siemens.com
2 Software Competence Center Hagenberg, 4232 Hagenberg, Austria
{michael.moser, josef.pichler}@scch.at

Abstract. In the development of electrical machines users run a batch
of command line programs by providing text-based data exchange files as
input. The required structure and content of these files is often only infor-
mally documented and implicitly enforced by programs. Therefore, users
are forced to execute programs without prior syntactic and semantic ver-
ification. To improve the quality of data exchange files, users need editor
support that allows syntactic and semantic verification using grammar-
based analyzers. In order to reduce the effort for creating grammars,
we use grammar recovery which analyzes software artifacts and makes
the retrieved knowledge visible as a language grammar. The assess-
ment and completion of the extracted grammar requires both knowl-
edge in software-language engineering and in the application domain.
This paper examines whether the integration of grammar recovery with
domain-specific languages is suitable for creating editor support for data
exchange files. In particular, we are interested in whether we can recover
(1) a grammar and validation rules from documentation and a corpus of
example files. Furthermore, we are interested in whether (2) a domain-
specific language (DSL) allows domain experts to provide missing details
and evolve grammars. To answer these questions, we conducted an indus-
trial case study on three different types of data exchange files. Results
show that about 45% of the grammar rules could be recovered automat-
ically and that the completion of the extracted grammars by end-users
is a promising means to provide correct and maintainable grammars for
data exchange files.

Keywords: Software evolution - Data quality - Grammar recovery -
Domain-specific languages

1 Introduction

IT systems of various domains are traditionally designed following a batch archi-
tecture. Single programs in a batch fetch input data, process the provided data
and produce output data processed in turn by a subsequent program. In the

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 161-175, 2019.
https://doi.org/10.1007/978-3-030-35333-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_12

162 G. Fleck et al.

field of engineering software, we frequently encounter human-readable, semi-
structured data exchange files which are utilized as input for command-line-based
engineering tools. Human-readable text files using a non-standardized, propri-
etary file format have been introduced to facilitate both writing and reading
program input and output using common text editors and to avoid dependen-
cies to specific data formats or tools. The flexibility with respect to editing text
files goes along with the disadvantage that no validation on input files is done
prior program execution and even minor lexical or syntactical errors cause the
program to stop abnormally without delivering results. In the context of engi-
neering software, this is all the more problematic as engineers have to analyze,
extend, and manually forward the data output from an engineering tool as input
to other command line-based engineering tools.

To tackle these problems, engineers require tool support with adequate lex-
ical, syntactic, and semantic validation of text files for writing and reading
input/output files. As required tool support must be based on formal language
specifications such as context-tree grammars, one key question is how we can
efficiently create context-free grammars which correctly specify the structure
of existing data exchange files with respect to individual batch programs. Pre-
vious experiments [5] revealed that substantial parts of the required grammar
can be automatically inferred by means of a Minimal Adequate Teacher (MAT)
[2] method together with specific preprocessing. However, the inferred grammar
required refactoring towards a suitable and most important maintainable basis
for the desired editor support. Since this is not feasible for the targeted indus-
trial setting, we investigate whether a combination of grammar recovery [9] and
end-user driven development [8] using a domain-specific language (DSL) [13] is
suitable for data exchange files. Grammar recovery addresses the problem of
reconstructing a grammar by recovering language structure from existing soft-
ware artefacts. It is not only successfully applied to recover grammars of legacy
programming languages but as well of modern languages [10] or semi-formally
specified data structures [14].

In this paper, we investigate whether a development approach can be applied
that engages end-users and software developers not familiar with language engi-
neering in the creation and maintenance of editor support for data exchange files.
In particular we are interested in the following two research questions (RQs):

RQ@1: Can we automatically recover grammars and semantic validation from
documentation and a corpus of data exchange files?

RQ2: Can we present the extracted grammars and validation rules in a
domain-specific representation so that domain experts are in the position to
assess and complete grammars?

To answer these questions we conducted an industrial case study on three
different sets of data exchange files at Siemens AG Austria. The remainder of
this paper is organized as follows. In Sect.2 we present the industrial context,
in particular the characteristics and commonalities of data exchange files used
in engineering software. Section 3 gives and overview of our approach and selec-
tively shows recovery by example. In Sect. 4 we present the industrial case study

Improving Quality of Data Exchange Files 163

1 TEXT Input for winding calculation
2 NORM IEEE

3 ACEQ 1 80

4 BAST S 6 B 64.7 14.7

5 CLAC 15%12.0 13%3.0

6 COOL 10 3.4 12

7 BEGIN_WINDING HV

8 DISC 6%[6 A 6 B B 6]

9 DISC 6*[3 A 3 2xB B 3]

10 LOSS [12.0 15.0 15.0] [12 * 1.5]

11 TEXT ins-ax ins-rad ins(both sided)
12 WIRE A 14.5 20.65 1.1 7 6 1.6 0.01 2
13 WIRE B 16.5 17.7 1.3 7 7 1.32

14 END_WINDING

Listing 1.1. Example data exchange file of engineering software.

and discuss results therefrom. Section 5 lists related approaches and Sect. 6 lists
threats to validity. Section 7 concludes this paper.

2 Industrial Context

Siemens AG Austria, Transformers Weiz is a manufacturer of large power trans-
formers. To calculate the thermal, geometrical, mechanical, and electrical proper-
ties of a power transformer, 50 software programs are developed and maintained
at a single subsidiary. These engineering tools are generally available as com-
mand line tools and used by the company’s engineering departments around the
world. In the course of software modernization efforts, Siemens AG - Austria
identified data exchange between engineering software to be of high potential
for improving the quality of engineering software. Engineers calculate designs of
a power transformer by running a batch of engineering tools. Data output by one
engineering tool is typically extended and manually forwarded as input to other
engineers tools. This process is not fixed, neither in the order in which engineer-
ing tools are executed nor from which sources (e.g. other engineering tools or real
measurement data) input data are obtained. Data exchange is largely based on
semi-structured files using a non-standardized, proprietary file format. Engineers
create and evaluate data files using text editors. Therefore, input of engineering
software cannot be validated prior program execution. Consequently, even minor
lexical and syntactic errors cause software programs to terminate without deliv-
ering the desired results. Moreover, error reporting is highly program-specific
and tracing error messages from program output to data files is a challenge for
engineers. To uplift usability of engineering software, it was decided to develop
editor support with adequate lexical, syntactic and semantic validation. A basic
prerequisite for the development of state-of-the editing support is the availabil-
ity of language grammars, which facilitate the generation of adequate parsing

164 G. Fleck et al.

infrastructure. However, as the creation, maintenance and evolution of language
grammars is seen as a substantial effort, Siemens AG - Austria seeks to find ways
to automate this process.

Data FExchange Files. Files for data exchange are generally referred to as KEY-
WORD files. All 50 engineering tools support variants of this format. A concise
definition of the format does not exist. Developers of engineering software share
a common understanding of the basics of the format and adapt it to their needs.
Each engineering software provides its own implementation for reading and writ-
ing KEYWORD files. Listing 1.1 shows content of a KEYWORD file. KEYWORD is
a row based file format. Rows start with a keyword identifier followed by the
content part of an entry. Keyword identifiers are not fixed, vary across different
applications, and typically consist of 4 letters. The content part holds values of
type character, string, numeric or list. Numeric values are specified as integer or
real values. List of values are generally specified using square brackets ([1) as
shown in lines 8 and 9. However, this is not always necessary, as the keyword
CLAC in line 5 shows. Moreover, custom data encoding is used to provide input
in a compact way. These encodings come in different styles and are highly pro-
gram specific. An instruction which is recognized across most applications is the
expansion operator (*) as used in lines 5, 8, 9, and 10. The operator expands
the expression on the right side by the number on the left side. The operator
can be applied to numeric values, words, or lists. Depending on the keyword
the number of values per keyword is either fixed, bound by a minimum and
maximum number of values, or unbound as in the case of a list of values. Key-
word entries can be logically grouped within section. Section are opened with
a BEGIN <identifier> line and closed by an END_<identifier> line as shown
in lines 7 and 14. The same identifiers for keywords and groups of keywords
may appear in data exchange files of different engineering tools, usage however
is most likely to differ.

3 Approach

Our approach to create editor support for data exchange files is based on two
cornerstones. First, we automatically create parsing infrastructure from a lan-
guage model recovered from existing documentation and a corpus of example
files. Second, the extracted language model is assessed and completed by domain
experts, i.e. developers and power users of engineering software, using a textual
DSL. Figure 1 shows an overview of our approach. In short the process to create
and evolve editor support can be described as follows: (1) Recovery of an initial
language model from existing documentation. (2) Analysis of example input files
and update of the language model. (3) Generation of a context-free attributed
grammar, that is the foundation for (4) the generation of parsing infrastructure.
The parsing components are automatically deployed within a generic editor for
keyword files. (5) Iterative, end-user driven adaption, refinement and evolution of
the extracted language model using a DSL. End-users modify the language model

Improving Quality of Data Exchange Files 165
Keyword File Meta-Model
HTML Grammar
<table id> T faxg
1) Recover from
Documentation Language IDAYA 3) Generate Coco\R
- Model ALLG{ Code/Grammar
. InnerDiameter {
PG TE o ’ _ir:]l::ler, Parser Validation
CLAC2*15 1 1 _
wirea1s 2) Recover from [EL K BN /) Compile
Example Corpus ‘ ‘ Deployable
_—
5) End-User File
Programming J Parsing Fdjtor,
Engineering ® DLL oxe
Software.exe P evolves uses / analyses
- >

Fig. 1. Process to recover and maintain editor support

and generate updated versions of parsing components by executing step three
(i.e. regenerating production rules) and four (automatic generation and deploy-
ment of parsing infrastructure) of the presented process. Subsequent sections
provide details on prerequisites and technical details for our implementation.

3.1 Prerequisites and Foundations

A prerequisite to create editor support for a specific engineering software is to
collect existing documentation for data exchange files and collect example files.
Moreover, understanding basic concepts of the keyword file format is founda-
tional to our approach. We use that understanding to provide a generic meta-
model for capturing the essential concepts of keyword files. For the sake of brevity
we omit full details, however major abstractions are a Keyword having a set of
Properties reflecting the possible values of a line in a keyword file. Properties are
described by name, data type, unit, description, and whether they are required
or not. Supported data types are string, char, integer, float, and list.
For list types we distinguish several sub-types reflecting element data type, e.g.
string or float, and structural patterns like the usage of expansion separators as
shown in Listing 1.1. Moreover, we capture the usage of keywords within named
sections as a Keyword Group.

3.2 Recovery from Documentation

Documentation for input files is provided as a set of HTML documents and
has a similar structure across different engineering software. This is for two
reasons. First, department wide efforts to improve software quality led to a
standardization of software documentation. Second, creation of documentation
is typically done by clone-and-own of existing documentation. We exploit the
structural similarity between software documentation to extract grammar and

166 G. Fleck et al.

semantic validation rules from documentation. To identify descriptions of key-
words within documentation the extraction mechanism searches for table ele-
ments in HTML sources. Simple heuristics are applied to answer whether tables
contain keyword descriptions. Heuristics evaluate if (1) id attribute contains a
known identifier (e.g. legend), (2) column headers contain labels such as name,
unit, or description or synonyms thereof, or (3) table structure and content hint
documentation of keywords, for example, through the usage of units or geomet-
rical vocabulary like diameter, length, or width. For each keyword description
found, we extract name and general description of the keyword. Properties of
a keyword are extracted from table rows. For each keyword property we try to
extract index, name, description and unit. These attributes are either explicitly
stated within separate table columns or extracted from text within a general
description column. The thereby created keyword definitions are added to the
language model. Language models recovered from documentation are expected
to be incomplete, out-of-date, or missing at all. Therefore subsequent analysis
steps (e.g. the recovery from an example corpus) must not rely on the existence
of a language model.

3.3 Recovery from Example Corpus

To parse a corpus of data exchange files we implemented a generic parsing strat-
egy for keyword files. The strategy exploits common properties of the keyword
file format. Properties common to all input files of different engineering software
are, (1) line-based, (2) keyword identifier starts a line, (3) usage of begin and
end identifiers to mark a group of keywords, and (4) specification of keyword
properties by a space delimited list of values. Recovery from example corpus
contributes the following elements to the language model: (1) keywords not con-
tained within documentation, (2) keyword groups, (3) usage of keywords within
keyword groups, and (4) data type information. During the recovery process each
file in the corpus is analyzed line by line. Occurrences of keyword entries within
keyword groups are collected and used to model multiplicity constraints on key-
words. Moreover, for any keyword occurrence data types of keyword properties
are derived and updated from the comma separated list of input values. We apply
a pattern-based approach for the detection of list types. Patterns match expan-
sion separators (i.e. *) and structural patterns within a sequence of input values.
To update type information for existing keyword properties we apply a set of
update rules, which direct this process. E.g. integer data types must not over-
ride a previously detected float data type, or a detected list type must override
base data types. In general we rate correctness of data recovered from example
files better than correctness of data recovered from documentation. Therefore,
contradictory results (e.g. number of keyword parameters) are resolved in favor
of the recovery from example data exchange files.

Improving Quality of Data Exchange Files 167

1 WIREEntry<Entry entry> = (

2 CharProperty<out fcr> (. entry.Add(fcr);
3 NumeriProperty<out fdo> (. entry.Add(fdo);
4 NumberProperty<out fdo> (. entry.Add(fdo);
5 NumberProperty<out fdo> (. entry.Add(fdo);
6 NumberProperty<out fdo> (. entry.Add(fdo);
7 NumberProperty<out fdo> (. entry.Add(fdo);
8 NumberProperty<out fdo> (. entry.Add(fdo);
9 [NumberProperty<out fdo> (. entry.Add(fdo);
0

[IntProperty<out fun> (. entry.Add(fun);.)]1]1).

N S =

Listing 1.2. Grammar for the keyword WIRE in Coco/R input format.

3.4 Generation of Parsing Infrastructure

The recovered language model is input for the generation process. The generation
process creates production rules of a context-free grammar and code to validate
semantic correctness of keyword file data. To create an executable syntax ana-
lyzer for a given language model we utilize the compiler Coco/R!. Hence, the
grammar definition to be generated from a language model must conform to the
input format of Coco/R. We use .net T4 text templates to generate the gram-
mar definition. Templates contain a frame which already contains definitions of
generic tokens and production rules. For each keyword and keyword group the
generator adds new production rules. Listing 1.2 shows the production rule gen-
erated for the WIRE keyword. The token “WIRE” is expected to be followed by a
character value, 6 number values (i.e. float or integer), an optional 7th number
value and an optional 8th integer value. Using the generated grammar definition
as input, Coco/R generates C# source code for scanner and parser components.

Next to syntax validation our approach facilitates semantic validation of
keyword file data. From data constraints provided by end-users and the extracted
multiplicity model we generate C# code that validates minimum and maximum
occurrences of keywords within keyword groups and value ranges of numeric
keyword properties. Again, we use T4 to embed validation code within a template
holding the implementation frame of the validation component. As a last step,
we generate a plug-in component which provides convenient access to parsing
and validation facilities. All generated sources are compiled using csc.exe and
packaged and deployed as DLL component.

3.5 End-User Programming of Parser Component

The generated parsing infrastructure does not always handle syntax and seman-
tics of data exchange files correctly. This is due to missing or outdated docu-
mentation, an incomplete example corpus, and specifics in data exchange files

! http://www.ssw.uni-linz.ac.at/Coco/.

http://www.ssw.uni-linz.ac.at/Coco/

168 G. Fleck et al.

1 Keyword WIRE {

2 WireIdentifier {

3 Name = "Wire identifier"

4 Description = "Wire identifier (e.g. A)"
5 Type = character

6 }

7 InsulatedAdzialHetight {

8 Name = "Insulated Axial Height"

9 Description = "The axial height of..."
10 Type = float

11 Unit = "mm"

12 }

13

Listing 1.3. Definition of WIRE keyword in textual DSL

not handled by our extraction mechanism. To keep our approach as general as
possible and overcome shortcomings we let developers of engineering software
assess and complete the automatically recovered language model, see step 5 in
Fig. 1. Developers are experts in the domain of power transformers and typically
have a formal education in physics or mathematics. However, domain experts
are by no means language engineers. Therefore, we present language models in a
textual DSL that abstracts from language engineering specifics (e.g. creation of
production rules, or building a semantic model). Listing 1.3 shows a DSL snippet
of the recovered language model for the WIRE keyword. The textual DSL presents
the model in a declarative style allowing engineers to modify the provided model.

To further improve usability we integrated an editor component for the pre-
sented DSL with a generic editor for keyword files. The editor displays results
of syntactic and semantic validation of an keyword file. Moreover, the editor
can be used to start recovery of a language model by selecting example corpus
and documentation artifacts. As Fig. 2 shows, the automatically recovered lan-
guage model is presented in the textual DSL and can be displayed alongside
with a keyword file. By this, engineers can edit a language model using the DSL,
regenerate and compile parsing infrastructure, dynamically load the generated
DLL components, and explore the new behavior of the parsing component by
example.

4 Evaluation

In this section we present the evaluation of our approach. To evaluate recov-
ery of input grammars for data exchange files used in engineering software we
conducted an industrial case study at Siemens AG Austria, Transformers Weiz.

Improving Quality of Data Exchange Files 169

KFD-Keyw d File Edi Results Help Preview | Definition

Users\mmoser
Group general

META(1), NBWS(1), TYPO(1), NORM(1),

1 Elbegin_general
2 META 6700631
3 NBWS 3 2

Group cores

TYPO 1
NORM IEC

end_general Group operatingmode

ACEQ(1), TAMB(1), MEAT(1), GUAR(1),
8 Ebegin_windingdetail winding Q(1) (1) (1) (1)

Group equipmentsimple

BASB S § B 60 20 CMOD(1), TANK(1), ERRW(1), LOSC(1),

Group windingdetail
SPAC 111*30 8 109*4 8,

WIRE A 11.25 18.78 .7 27 5.19 1.17 2 @.1 Group lossdetail

DISC 110*([A5AS5AS5AS5ASA]))
EXT = Keyword ACEQ
{

[102.50 113.81 121.67 126.17 126.97 123.18]
LOSS [97.69 1@6.61 113.25 117.31 118.56 116.72] Lossmode
LOSS [94.38 101.29 106.90 110.64 112.36 112.33]
LOSS [91.79 97.31 102.04 105.55 107.74 108.96] Name = "Lossmode"™
LOSS [89.74 94.35 98.46 101.79 104.30 106.26] Description = "Loss mode”
LOSS [88.06 92.00 95.65 98.85 101.57 104.06] Type = float
LOSS [86.67 90.11 93.43 96.51 99.38 102.23] }
LOSS [85.52 88.59 91.64 94.63 97.59 100.70]
LOSS [84.57 87.35 90.19 93.10 96.13 99.41] Loadforlossmode
LOSS [83.77 86.33 89.01 91.85 94.91 98.32]

Name = "Loadforlossmode”
B ool v Description = "Load for lossmodi

Type = float
Error: value not expected in keyword (line:12 col:8)
Error: "(" expected (line:14 col:ll)

Error: "]" expected (line:14 col:23) 2 Pumpsonnumberofpumpson
Error: newline expected (line:141 col:@) j . - berdE .
Error: Section begin_cores is not properly closed. (line:143 col:1) 4; D:’::r;pti::"z“f}:::p:rgnp‘_’“':z:;el
a6 Optional = true
47 :

Fig. 2. Editor for end-user driven language evolution

4.1 Case Study Design

The objective of this case study is to explore and analyze the application of
grammar recovery to data exchange files used at Siemens AG Austria. Moreover,
we want to answer if a domain-specific language is a suitable mean to correct and
complement the automatically extracted grammars. This case study is driven by
the following two research questions (RQs):

RQ@1: Can we automatically recover language grammars from documentation
and a corpus of data exchange files? Moreover, to which extend is manual rework
required until a grammar suitable for building tool support exists?

RQ2: Can we present extracted grammars in a domain-specific representation
so that even domain experts are in the position to assess and complete grammars
without assistance from software language experts?

Units of Analysis. The units of analysis of this case study are three different
sets of data exchange files for engineering software P1, P2, and P3. Selection of
programs was mainly driven by a single engineering department. All engineering
software are actively used and evolved for more than 10 years. For each program
we collected an example corpus of data exchange files. Moreover, we collected
current versions of end-user documentation for all programs.

170 G. Fleck et al.

Table 1. Example Corpus and Results for Programs P1, P2, and P3.

Program P1 P2 P3
Keywords expected 39 26 10
Files in documentation 63 21 8
Files in example corpus 11 81 76
Keyword example in corpus | 9562 | 16044 | 1715
Infrastructure generated Yes Yes Yes
Keywords succ. recovered | 46.2% | 42.3% | 40.0%
E1: Missing properties 28.6% | 33.3% | 16.7%
E2: Optional properties 23.8% | 6.7% | 16.7%
E3: Invalid type info 47.6% | 26.7% | 0.0%
E4: Missing type info 80.9% | 26.7% | 33.3%
Manual changes/keyword 0.82 10.69 0.2

Data Collection. To answer RQ1 we applied steps 1 to 4 of our approach
as described in Sect. 3. The authors of this paper applied and evaluated recov-
ery of language grammars and generation of parsing infrastructure. We verified
the following: (1) on a coarse level we checked whether the generated parsing
components could be integrated with a generic editing component. This basi-
cally verifies that the generated production rules used by a parser generator,
i.e. CoCo/R, are correct and software integration is working. (2) On the level
of keywords we verified correctness of the recovered grammar by instructing
the generated parsing components to parse keywords found within the corpus
of data exchange files. Parsing errors indicated incorrect grammar recovery. (3)
To further classify errors the authors of this paper analyzed the causes of pars-
ing errors. By this a fine grained classification of errors in grammar rules could
be created. (4) Finally, to detect overly admissive grammar rules we manually
analyzed and evaluated production rules together with lead developers.

To answer RQ2 the lead developer of the components was asked to com-
plete and corrected invalid data using the declarative DSL integrated within the
generic keyword file editor as described in Sect. 3. The experiment was carried
out in collaboration with the authors of this paper.

4.2 Quantitative Analysis

Table 1 presents quantitative data on the three units of analysis. The number
of expected keywords was collected from latest versions of engineering software
and verified by lead engineers of software. Files in example corpus range from 11
to 81. Number of single keyword entries contained within all example files of a
corpus range from 1715 to 16044. Moreover, Table 1 presents quantitative result
for all three units. For all three programs a ready to use parsing infrastructure is
generated. Between 40% to 46.2% of keywords could be correctly recovered with-
out any manual completion and correction of grammars needed. The remaining

Improving Quality of Data Exchange Files 171

keywords contain errors which fall into four different error categories (i.e. E1-
E4). 16.7% to 28.6% of extracted keyword definitions miss specification of one
or more properties. Failing to recovery optionality of properties for a keyword
ranges from 6.7% to 23.8%. For P1 and P2 invalid recovery of type information
was the case in 47.6% and 26.7% of incorrectly recovered keywords. For 26.7% to
80.9% of incorrectly recovered keywords, type information is missing at all. To
quantify effort for completing incorrect grammar rules Table 1 lists the number
of changes experts provided manually. Manual changes range from 0.2 to 0.82
per keyword. The type of change depends on the type of error, e.g. missing prop-
erties were added or invalid type information was corrected. Changes to property
names, descriptions, and units were explicitly excluded from this evaluation.

4.3 Qualitative Analysis

RQ1: Can Automatic Grammar Recovery Be Applied and to Which
Extend Is Manual Rework Required? In general, we state that the pre-
sented approach for grammar recovery is applicable to data exchange files. As we
showed, for all three programs a ready to use parsing infrastructure is generated,
providing definitions for all expected keywords of the analyzed systems. Roughly
40% of recovered grammar rules can be integrated with editing support as is and
do not require manual completion or corrections. However, still the majority of
keyword definitions could not be successfully recovered. Missing property spec-
ifications are mainly due to invalid or outdated documentation (E1). Failing
to recover property specification from documentation leads to wrong assump-
tions during recovery from corpus data. To correctly recover optionality (E2) of
properties from software artefacts, a sufficiently rich and diverse set of example
data is needed. Our data sets failed to provide this diversity. A large part of
errors refers to invalid (E3) or missing type information (E4). Again, missing
type information can be traced back to incomplete example data. If a property
is recovered from documentation, outdated or not, and example data fails to
provide examples, our type inference mechanism cannot deliver results. Invalid
type information is mostly due to inefficiencies and generalizations of our type
inference. Especially structural patterns, e.g. line 4 in Listing 1.1, require specific
information for a single keyword.

RQ2: End-User Driven Grammar Completion. For answering RQ2 we
asked a lead developer to correct and complete the automatically recovered gram-
mars. The expert iterativley updated the language grammar until the grammar
could successfully parse all examples within the corpus. Completion of gram-
mars was carried out under supervision of the authors of this paper. Effort to
complete and correct generated production rules was in all three cases between
1to4h.

Feedback from domain experts revealed that the declarative presentation of
keyword definitions helped to read and update specifications. Moreover, domain
experts noted that editing grammar definitions in a DSL alongside with a running

172 G. Fleck et al.

example helped to understand concepts of the DSL. However, to further improve
acceptance the concrete syntax of the DSL should be redesigned together with
end-users.

In summary, we can state that semi-automatic recovery of grammar from
data exchange files is feasible. Using multiple sources as input for grammar
recovery, i.e. documentation and a corpus of examples files, is found beneficial
for our case. In all three cases the grammar of at least 40% of keywords could be
automatically recovered. Still, roughly 60% of keywords require manual adaption
and correction. This seems rather low when compared to results of approaches
in grammar inferences like [2]. However, approaches which fully automatically
infer grammars often yield overly complex grammars with many production
rules, which are therefore hard to understand and maintain [5]. In comparison,
production rules generated by our approach closely match the structure of a
keyword and therefore can be easily assessed and completed by domain experts.

5 Related Work

Improvement of data exchange, e.g. through standardization of exchange for-
mats, is the goal of many industrial initiatives. Recent advances in the automa-
tion industry resulted in approaches like AutomatationML? or OPC UA3. For
instance, AutomationML supports standardized data exchange in the engineering
process of production systems [12]. Obviously, in the presented case the support
of these standardized formats would require changes to engineering tools, which
is not desirable. Moreover, data exchange files as used in the presented indus-
trial context are analyzed, extended and manually forwarded by engineers as
command line input of another engineering tool.

Reverse engineering structure of input formats from examples is a well stud-
ied topic in research. [1,3,6], or [11] are only some examples to that. Fisher et
al. [6] for example present a system that automatically infers the structure of an
ad-hoc data source. The system creates format specifications in a data descrip-
tion language (PADS). From PADS descriptions a compiler generates .h and .c
files that together implement the data structures and operations to manipulate
declared types.

A grammar recovery approach used to recover grammar specifications of
online wikis is presented by [14]. Steps are reported to semi-automatically extract
a grammar from a community maintained semi-formal grammar definition using
different notations. Recovery of schema information from XML files is a topic
which is related to our use case. However, syntactic structure is far more stable
than in the presented case. [1] presents an inference approach to recreate XML-
schema definitions from examples. An alternative approach to grammar creation
from examples is the development of grammars by programming-by-example.
In [11] an programming-by-example environment is present that supports the

2 https://www.automationml.org.
3 http://www.opcfoundation.org.

https://www.automationml.org
http://www.opcfoundation.org

Improving Quality of Data Exchange Files 173

synthesis of parsers and lexers from examples. This clearly lowers the threshold
to grammar development, however would still be to high for our case.

6 Threats to Validity

A threat to internal validity is the selection of software systems for which gram-
mar of data exchange files is recovered. Selection was mainly driven by a single
engineering department. Obviously, this bears the risk that structure and con-
tent of data exchange files are more similar than compared to data exchange
files used in software from other engineering departments. We tried to mitigate
this risk by scanning structure of data exchange files from various other software
systems, however an in-depth analysis like presented in our industrial case study
is missing. Moreover, manual review of production rules bears the risk of being
incomplete or erroneous.

Evaluation of the presented DSL bears several risks. Studies on best practices
for DSL development [4] show that usability evaluations should be executed at
early design stages and involvement of end-users is recommended for the develop-
ment of a DSL. Evaluation of the presented DSL by end-users was only performed
during the course of this case study and no feedback has been incorporated into
language design. Experts to complete grammars using the DSL comprised users
which were involved during initial discussion of the approach. Therefore, biased
feedback of end-users is a risk.

7 Conclusion

In this paper we present our approach to improve quality of data exchange files
used in engineering software. To support the manual creation of data exchange
files, high quality editor support needs to provide syntactic verification by means
of language grammars. To lower effort for the creation of grammars of data
exchange file formats, we propose to create parsing infrastructure by a combi-
nation of semi-automatic grammar recovery [9] and end-user driven completion
of grammars.

Obviously, our approach is largely influenced by concepts and ideas of gram-
mar recovery [9]. In the presented industrial context, grammar recovery seems
promising for several reasons. First, the effort to manually create grammars
would overburden affected engineering departments. Moreover, software devel-
opers responsible for targeted programs are no experts in language engineer-
ing, and therefore the threshold to build infrastructure to parse end verify data
exchange files by means of context-free grammars seemed too high.

However, from previous experiments [5] we have learned that we need to
include software developers in the process of grammar creation. Approaches
which fully automatically infer grammars from existing software artefacts (e.g.
data, source code, documentation) exist, however often yield complex grammars,
which are hard to understand and maintain. In the presented industrial context
this was a show stopper for these approaches. To facilitate the maintenance and

174 G. Fleck et al.

evolution of grammars, we enable domain experts with no language engineer-
ing skills to actively contribute in the assessment and completion of recovered
grammars by means of a DSL.

The presented approach recovers grammars and validation code from a corpus
of example files and end-user documentation. Other sources information on the
structure of data-exchange files were not considered. For instance, the engineer-
ing tools itself could be used as a source for grammar recovery. As shown in [7] a
combination of static and dynamic analysis can be used to recover understand-
ing of legacy source code. For the presented context this would mean to analyze
fortran implementations of parsing components used in engineering tools.

The main reason to conduct this case study was to answer whether semi-
automatic grammar recovery could substantially lower the effort for gram-
mar creation and maintenance in the presented industrial context. Grammars
extracted from documentation and example input data are sufficiently rich and
correct to let domain experts assess and complete grammars. From the presented
cases and feedback from stakeholders in Siemens AG Austria we conclude, that
the approach is suitable to be rolled out to other engineering software. will be fur-
ther improved by including static analysis of source code, e.g. to derive property
types, within our automatic extraction process. Most importantly, we want to
pick up feedback from end-users to redesign concrete representation of the DSL
and include long-term evaluation of usage within the provided infrastructure.

Acknowledgment. The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry for
Digital and Economic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH.

References

1. Chidlovskii, B.: Schema extraction from XML data: a grammatical inference
approach. In: KRDB 2001 Workshop (Knowledge Representation and Databases
2001

2. élark? A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: Sempere, J.M., Garcia, P. (eds.) ICGI 2010. LNCS (LNAI),
vol. 6339, pp. 24-37. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15488-1_4

3. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: automatic
reverse engineering of input formats. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security, CCS 2008, pp. 391-402. ACM,
New York (2008). https://doi.org/10.1145/1455770.1455820

4. Czech, G., Moser, M., Pichler, J.: A systematic mapping study on best practices for
domain-specific modeling. Softw. Qual. J. (2019). https://doi.org/10.1007/s11219-
019-09466-1

5. Exler, M., Moser, M., Pichler, J., Fleck, G., Dorninger, B.: Grammatical inference
from data exchange files: an experiment on engineering software. In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 557-561, March 2018. https://doi.org/10.1109/SANER.2018.
8330259

https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1007/978-3-642-15488-1_4
https://doi.org/10.1145/1455770.1455820
https://doi.org/10.1007/s11219-019-09466-1
https://doi.org/10.1007/s11219-019-09466-1
https://doi.org/10.1109/SANER.2018.8330259
https://doi.org/10.1109/SANER.2018.8330259

10.

11.

12.

13.

14.

Improving Quality of Data Exchange Files 175

Fisher, K., Gruber, R.: Pads: a domain-specific language for processing ad hoc
data. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2005, pp. 295-304. ACM, New York
(2005). https://doi.org/10.1145/1065010.1065046

Kirchmayr, W., Moser, M., Nocke, L., Pichler, J., Tober, R.: Integration of static
and dynamic code analysis for understanding legacy source code. In: 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
543-552, October 2016. https://doi.org/10.1109/ICSME.2016.70

Ko, A.J., et al.: The state of the art in end-user software engineering. ACM Com-
put. Surv. 43(3), 21:1-21:44 (2011). https://doi.org/10.1145/1922649.1922658
Lammel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract. Exp.
31(15), 1395-1448 (2001). https://doi.org/10.1002/spe.423

Lammel, R., Zaytsev, V.: Recovering grammar relationships for the java language
specification. CoRR abs/1008.4188 (2010). http://arxiv.org/abs/1008.4188
Leung, A., Lerner, S.: Parsimony: An IDE for example-guided synthesis of lexers
and parsers. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, pp. 815-825. IEEE Press, Piscataway
(2017)

Liider, A., Schmidt, N., Drath, R.: Standardized information exchange within pro-
duction system engineering. In: Biffl, S., Liider, A., Gerhard, D. (eds.) Multi-
Disciplinary Engineering for Cyber-Physical Production Systems, pp. 235-257.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56345-9_10

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316-344 (2005). https://doi.org/10.1145/
1118890.1118892

Zaytsev, V.: Mediawiki grammar recovery. CoRR abs/1107.4661 (2011). http://
arxiv.org/abs/1107.4661

https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1109/ICSME.2016.70
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1002/spe.423
http://arxiv.org/abs/1008.4188
https://doi.org/10.1007/978-3-319-56345-9_10
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
http://arxiv.org/abs/1107.4661
http://arxiv.org/abs/1107.4661

)

Check for
updates

Containers in Software Development:
A Systematic Mapping Study

Mikael Koskinen'®? , Tommi Mikkonen? ,
and Pekka Abrahamsson’

! Faculty of Information Technology, University of Jyviskyld,
Jyviskyld, Finland
mikael. koskinen@student. jyu. fi,
pekka. abrahamsson@jyu. fi
2 Department of Computer Science, University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki. fi

Abstract. Over the past decade, continuous software development has become
a common place in the field of software engineering. Containers like Docker are
a lightweight solution that developers can use to deploy and manage applica-
tions. Containers are used to build both component-based architectures and
microservice architectures. Still, practitioners often view containers only as way
to lower resource requirements compared to virtual machines. In this paper, we
conducted a systematic mapping study to find information on what is known of
how containers are used in software development. 56 primary studies were
selected into this paper and they were categorized and mapped to identify the
gaps in the current research. Based on the results containers are most often
discussed in the context of cloud computing, performance and DevOps. We find
that what is currently missing is more deeply focused research.

Keywords: Containers - Software engineering * Systematic mapping studies

1 Introduction

Over the past decade, continuous software development has become a common place in
the field of software engineering. New toolchains have emerged to manage the com-
plexity in continuous deployment activity. Containers are a lightweight solution that
developers can use to deploy and manage applications [1]. Containers are often seen as
a more light-weight alternative to Virtual Machines (VMs) [2]. Virtual Machines
include the operating system where containers don’t, allowing the containers to provide
system resource usage advantages when compared against VMs [3].

The usefulness of containers is not limited to them being a more lightweight
version of Virtual Machines. One interesting feature of the containers is that they
provide portability [1] and thus modularity, making them suitable for working as
software components [4] or as autonomous microservices [5]. When software systems
grow, they encounter three problems:

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 176-191, 2019.
https://doi.org/10.1007/978-3-030-35333-9_13

http://orcid.org/0000-0003-2880-2809
http://orcid.org/0000-0002-8540-9918
http://orcid.org/0000-0002-4360-2226
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_13

Containers in Software Development: A Systematic Mapping Study 177

1. Maintaining the software becomes harder
2. Adding new features to the system slows down
3. The resource requirements for the software grow

One option to address these problems is to make systems modular [6]. In modular
systems software is split into smaller modules and the full software systems are built by
combining different modules [7]. Component-based software architecture and
microservice architecture allow developers to build more modular software [7, 8]. In
component-based architecture systems are created by connecting different software
components [9]. Components are required when the system is compiled, and they are
loaded when the system starts. Because of this, component-based systems don’t help
with the growing resource requirements, but it makes maintaining the software easier.

Similar to components, microservices are autonomous services that together fulfill a
business requirement [5]. Also, like component-based architecture, each microservice
is required for the system to be fully functional. Since containers are not compiled as
part of the software system, they could be used as way to build plug-in based archi-
tecture where containers-based plugins could provide new functionality into existing
software and they could be added and removed runtime [10-12]. Based on our
observation, containers are used to build both component-based architectures and
microservice architectures [1, 5]. Still, containers are often viewed as way to lower
resource requirements compared to Virtual Machines [3].

As using containers in software development is a new research area, the need for a
systematic mapping study is crucial in order to summarize the progress so far and
identify the gaps and requirements for future studies. In this paper we present a sys-
tematic mapping study of how containers are used in software development. In this
research, we conducted a systematic mapping study to find information for the key
question: What is currently known of how containers are used in software devel-
opment. This paper is the first part of a larger study. The aim of this study is to learn if
containers are used mainly as a lightweight replacement for the virtual machines or if
their portability and low resource usage is used to build container-based software
components. Next parts of this study will include a multi-vocal study [13] and a case-
study [14].

The rest of this paper is structured as follows. Section 2 introduces the research
methodology. Section 3 presents our key results. Section 4 provides discussion based
on the results. Section 5 presents threats to validity of this research. Section 6 draws
conclusions.

2 Research Methodology

Systematic Mapping Study (SMS) [15] is used in this paper to identify the gaps in the
literature and identify where new or better primary studies are needed for using con-
tainers. This paper follows systematic mapping guidelines provided by [15-18].

The process of systematic mapping study can be split into multiple phases:

1. Defining the research questions
2. Conducting search

178 M. Koskinen et al.

Study selection (Screening the papers)

Defining the classification scheme

Data extraction

Systematic mapping of the data using the classification scheme

AR

The following Fig. 1 illustrates the process of this systematic mapping study:

Fig. 1. Systematic mapping study process

The following sections are used to describe SMS from this study’s perspective.

2.1 Definition of Research Questions

First task was the definition of research question (RQ). The research questions are listed
in Table 1.

Table 1. Research questions

RQ Question Motivation

number

RQ 1 How Containers are used in Software | The question allows us to get the what is
Development? known of how containers are used in

software development. What
technologies are used and what software
development problems are containers
used to tackle

RQ 1.1 Are containers used to modularize Based on our observation, containers
software system, either through could be used to architecture software
component-based architecture or systems. Still, the practitioners mostly
through microservices architecture? seem to discuss containers as a

technology for handling software’s
infrastructure

RQ 1.2 Are containers used to provide Based on our observation, containers

plugin-support for software systems? | could be used to extend existing plugin-
architecture based software systems

2.2 Conduct Search

After defining the research questions relevant search terms and data sources were
defined.

Containers in Software Development: A Systematic Mapping Study 179

Search Terms. Without correct search terms correct literature and research cannot be
found. Table 2 lists the search terms used in this study. The following steps were used
to create the search terms, as defined in [19]:

e Derive major terms from the questions by identifying the population, intervention
and outcome.

Identify alternative spellings and synonyms for major terms.

Check the keywords in any relevant papers we already have.

Use the Boolean OR to incorporate alternative spellings and synonyms.

Use the Boolean AND to link the major terms from population, intervention, and
outcome.

Table 2. Search terms

“container” OR “containers” OR “docker” OR “Kubernetes”
AND

“software engineering” OR “software design”

Data Sources and Search Criteria. For this research only formal data sources were
considered. These included papers and journals from the four digital libraries:
IEEEXplorer, ScienceDirect, SpringerLink and ACM Digital Library. The reason for
selecting these sources is that they are important sources of computer science related
research. Search terms were matched against title, keywords and abstract.

The search was performed between 22th of May and 5™ of June in 2019. In total
3504 results were found. Results were exported into bibtex-format and loaded into
reference manager (Table 3).

Table 3. Results before study selection process

Library Results
IEEEXplorer 120
ScienceDirect 1095
SpringerLink 889
ACM Digital Library | 1400

Study Selection. After finding the initial results, the next phase of the SMS was study
selection. The main goal of the study selection is to find select relevant studies that
properly address the research questions. As displayed in Table 4, in this study 5
inclusion criteria and 7 exclusion criteria were used.

180 M. Koskinen et al.

Table 4. Study selection criteria

Inclusion criteria Exclusion criteria
« Studies that are presented as full « Studies that are duplicate
paper * Studies that are presented as short paper
* Studies that focus on using modern * Studies that do not provide abstract
containers in software development « Studies that are not peer-reviewed
* Studies that compare containers and * Studies that are not written in English
virtualization * Studies that are not related to the software
* Studies that are related to Docker engineering
* Studies that are related to Kubernetes |+ Studies that are not related to modern Docker-
style containers. For example, articles related to
Java containers or Inversion of Control Containers

Of the 3504 results, 60 were removed as duplicates. Two-step selection process was
used to filter out the irrelevant studies for this paper. First of each study the title was
reviewed using inclusion and exclusion criteria. Each excluded study was marked as
such. After this step, 3308 studies were filtered out and the second step was applied to
the remaining 136 studies. In this step of each study abstract was skimmed through. In
this second step, 80 studies were excluded.

In total, 56 studies [20—75] were selected as the primary studies of this paper.

Classification Schema. The selected primary studies and the research questions were
used to create the classification scheme for this study. Based on a qualitative assess-
ment, research classification approach from [76] was used to classify the papers. The
classifications are listed in more detail in Table 5.

Table 5. Research type facet adapted from [76]

Research type Description

Evaluation Type of paper which investigates a problem in practice

research

Solution A paper which presents a solution for a problem. Benefits of the solution

proposal are described

Validation Paper which investigates the properties of a solution that has not yet been

research implemented

Experience Paper based on work done in practice. Describes what and how something

report has been done personally by the author

Opinion Paper based on the opinion of the author. Opinion articles do not rely on
research methodology

Data Extraction. After using the primary studies and the research questions to create
the classification schema, relevant data was extracted from the studies based on the
classification schema. Title, author (first), year of publication, keywords, abstract and
research type were extracted from each paper.

Containers in Software Development: A Systematic Mapping Study 181

3 Results

In this section the results are presented found in this mapping study are presented. Of
the initial amount of 3504 papers, 56 were selected as the primary papers for this study.

25

15

23
13
11
10
3 3
- N
0]

2010 2015 2016 2017 2018 2013
Fig. 2. Articles by year
Papers were mapped into the classification schema presented earlier in this study.

The results presented in Fig. 3 of this mapping indicate that solution proposal is the
most common paper when containers are discussed.

25

10
5 3
: =

Experience Evaluation Solution proposal Opinion Validation
report research research

Fig. 3. Paper research types
Experience reports and evaluation research complete the top 3 of research types.

Also, few validation research and opinion papers were found. Next, results are vali-
dated against the research questions.

182 M. Koskinen et al.

3.1 RQ 1 How Are Containers Used in Software Development?

First research question was set to assess how containers are used in software devel-
opment. The initial opinion of this study was that containers are often used as a
lightweight alternative to virtual machines.

Keywords were extracted from each article’s title and abstract. These keywords
were then grouped together into different categories which were identified by gener-
alizing the keywords. Table 6 presents the list of generalized categories. Each study
belongs to one or more categories.

Table 6. Categories

Focus Keywords

Software Modules, Packages, Artifacts, Bundle, Component

components

Cloud Cloud, PaaS, SaaS, Cloud Infrastructure, Cloud environment, Cloud

computing platforms

DevOps DevOps, CI, CD

Performance Scalability, I/O, CPU, Scaling, Replication, resources, GPU, Resource
contention, performance

Security Security, Password, Secure

Microservices Microservice-architecture, Microservices, Micro-service

Legacy software

Modernization, Legacy

Orchestration Orchestration, Docker Swarm, Kubernetes
Testing Testing, Benchmark, Software Quality
IoT IoT, Internet of Things

Plugin Plugins, Addon, Extensions
Virtualization Virtualization, Virtual Machine, VM

Based on the results, containers are most often discussed in relation to cloud
computing, performance and devops (Fig. 4). More than 50% of the papers discussed
containers in context of cloud computing. Performance related aspects and devops
discussed in 45% of the papers. Most of the papers do not focus on a single category.
Instead, only 13 papers belong to a single category as shown in Table 7.

Table 7. Number of categories and number of papers

of categories | # of papers
2 14
3 14
1 13
4 8
6 4
5 3

Containers in Software Development: A Systematic Mapping Study

35
29
30
25 25
25
20
1 15 15
15 11
10 8
5 I 4 3 3
; I m n
P SC SR S S P T R B
S > N & 2 ' & & & &
&K ¥ 0«\\ & 3\& o"c < & & ‘,o\
g & & & & & &
R -\’écl N
<
O

Fig. 4. Articles by categories

183

If we look at specific technologies (Fig. 5) and companies discussed in the papers,
we can see that Docker dominates the field. More than 57% of articles mention Docker

in their abstract or in their title.

35 32
30

25
20
15

10

Fig. 5. Articles by container technology or organization

184 M. Koskinen et al.

3.2 RQ 1.1 Are Containers Used to Modularize Software System, Either
Through Component-Based Architecture or Through Microservices
Architecture?

The motivation of the first sub research question was to find out if containers are
discussed in relation of software architecture. 16 of the 56 papers discuss containers
from software component’s point of view. Also, microservices are discussed in 15
papers (Fig. 4). This clearly indicates that containers used to modularize software
system, either through component-based architecture or through microservices
architecture.

3.3 RQ 1.2 Are Containers Used to Provide Plugin-Support for Software
Systems?

The motivation of the second sub research question was based on our observation that
containers could be used to extend existing plugin-architecture based software systems.
Even though 20% of the articles mentioned software components, we didn’t find any
indications that containers are used to create plugin-based software architecture.

4 Discussion

The implications of this systematic mapping study are described in the following sub
sections.

4.1 Research in Using Containers in Software Development

Results indicate that the number of container related articles is growing (Fig. 2). 70%
of the studies have been released between 2017 and 2019. There are multiple indicators
that research on using containers in software development is a new research area:

1. First primary study found for this research is from 2010.

2. Number of research papers is rapidly growing.

3. Current research often covers multiple software development categories instead of
focusing into a single category.

4. Research papers often start by describing what software containers are. This is an
indication that the technology is seen as new by researchers and an introduction to
the technology is required.

5. Most of the research focuses on a single container technology, Docker.

In summary it can be said that containers are a new research area. The amount of
research has been growing steadily and there’s no indication that in 2019 research
related to containers is going to slow down (Fig. 6).

Containers in Software Development: A Systematic Mapping Study 185

9 9

cloud computing virtuaization

pE("CH“lE}ﬂIE — SOftware COMPONENTS e tESTNZ

e |egacy software e O Chestration — 0| N — SECUr Ty

Fig. 6. Trends of using containers in software development

4.2 More Focused Research

Only 13 of the selected 56 primary studies focus their research on one category. 52% of
the primary studies are related to three or more categories. It’s clear that there is room
for more focused research. Many of the categories are large topics and instead of
research covering multiple large categories, research could focus on a single category
like container security, container performance and using containers for devops.

4.3 Potential Research Avenues

As seen in Fig. 4, cloud computing, devops and performance related discussion are
most common in current container research. There are multiple gaps or less-researched
categories which provide potential research avenues:

e Container security
e Legacy applications and containers
e Container-based plugin technologies

Solution proposals, experience reports and evaluation research are currently the
most popular research types. Together they make 88% of the primary studies selected
for this research. This may indicate that containers are currently used to solve existing
problems related to software development. The lack of validation research supports this
as validation research could be used to test new ideas.

Figure 5 shows that Docker is the dominant technology used in research. Even
though there are studies like [74] which compare Docker to other container tech-
nologies, there’s room for more research. Best practices-based papers are helpful for
the industry: they help those organization who are already using containers and those
who are just starting to use them. Only [35] provides best practices of using containers.

186 M. Koskinen et al.

5 Threats to Validity

In this section the threats of validity of this research are discussed. Also selected
mitigation strategies are discussed. Three potential threats of validity were identified:

Search. This study is based on the search results provided by research databases and
their search engines. Because of this, the results are subject to the limitations of the
search engines. We mitigated this by using four different research databases.

The keywords selected for this study are subject to search term bias. Two different
container related technologies were named in the search terms and this may have
affected search results, causing these two technologies to be more prevalent in the
search results. Search term bias was mitigated by including generic search terms.

Identification of the Primary Studies. The selected inclusion and exclusion criteria
listed in Table 4 may have affected the identification of the primary studies. For
example, only papers written in English were selected. Also, not all the studies related
to containers in software development are available from the used research databases.
Risk of excluding primary studies was mitigated by using multiple research databases.

Data Extraction. Categories in chapter 7 were selected by the researcher after key-
words were extracted. Researcher acknowledges that if there are errors in keyword
extraction, this may invalidate the categorization of the keywords. To mitigate the
keyword extraction and categorization, keywords were extracted multiple times and the
selected categories were identified only after keyword extraction.

6 Conclusion

This paper is a part of larger study. The aim of the study is to learn if containers are
used mainly as a lightweight replacement for the virtual machines or if their portability
and low resource usage is used to build container-based software components. In this
paper a systematic mapping was performed to examine what is known of how con-
tainers are used in software development. The next part of this research is a multi-vocal
study. The research will conclude with a case study.

Four research databases were used to locate 3504 papers of which 56 were selected
as the primary studies. The results indicate that cloud computing, devops and perfor-
mance are the driving forces of container related discussion. Of the 56 primary studies
52% discussed cloud computing, 48% performance and 45% devops. Docker is cur-
rently the leading technology in container-based software development. 57% of the
papers mentioned Docker in their title or in their abstract. Other container related
technologies were mentioned at most in 7% of the papers.

As an answer to RQ 1.1, 55% of the primary studies mentioned software com-
ponents or microservices. This clearly indicates that containers are used to modularize
software system, either through component-based architecture or through microservices
architecture. As the examination of RQ 1.2 indicated, no papers discussing the usage of
containers for plugin-based architectures were found.

Containers in Software Development: A Systematic Mapping Study 187

The findings of this paper indicate that using containers in software development is

a new research area. Most of the studies don’t focus on a single software development
category. Instead, they often present introduction on what containers are, clearly
indicating that software containers are seen as a new technology. Also, best practices-
based research is not yet widely available.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Paraiso, F., Challita, S., Al-Dhuraibi, Y., et al.: Model-driven management of docker

containers, pp. 718-725. IEEE (2016)

. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs Containerization to support PaaS,

pp. 610-614. IEEE Computer Society, Washington, DC (2014)

. Hoenisch, P., Weber, L., Schulte, S., Zhu, L., Fekete, A.: Four-fold auto-scaling on a

contemporary deployment platform using docker containers. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 316-323. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0_20

. Lau, K.-K., Wang, Z.: Software Component Models. TSE 33(10), 709-724 (2007). https://

doi.org/10.1109/TSE.2007.70726

. Jaramillo, D., Nguyen, D.V., Smart, R.: Leveraging microservices architecture by using

Docker technology, pp. 1-5. IEEE (2016)

. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and comments

on program comprehension, pp. 215-223. IEEE Press, Piscataway (1981)

. Card, D.N., Page, G.T., McGarry, F.E.: Criteria for software modularization, pp. 372-377.

IEEE Computer Society Press, Los Alamitos (1985)

. Volter, M.: Pluggable component — a pattern for interactive system configuration
. Crnkovic, I.: Component-based software engineering? New challenges in software

development (2003)

Birsan, D.: On plug-ins and extensible architectures. Queue 3(2), 40-46 (2005). https://doi.
org/10.1145/1053331.1053345

Mayer, J., Melzer, 1., Schweiggert, F.: Lightweight plug-in-based application development.
In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 87-102.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-5_9

Marquardt, K.: Patterns for Plug-Ins. In: EuroPLoP (1999)

Garousi, V., Felderer, M., Méntyld, M.V.: Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering. Inf. Softw. Technol. 106,
101-121 (2019). https://doi.org/10.1016/j.infsof.2018.09.006

Eisenhardt, K.: Building theory from case study research. Acad. Manag. Rev. 14, 532-550
(1989). https://doi.org/10.2307/258557

Petersen, K., Feldt, R., Mujtaba, S., et al.: Systematic mapping studies in software
engineering, pp. 68-77. BCS Learning & Development Ltd., Swindon (2008)
Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical report EBSE-2007-01 (2007)

Kitchenham, B., Charters, S.: Systematic reviews (2009). https://www.york.ac.uk/crd/
guidance/

Kitchenham, B., Brereton, P.: Using mapping studies in software engineering. Inf. Softw.
Technol. 55(12), 2049-2075 (2013). https://doi.org/10.1016/j.infsof.2013.07.010

http://dx.doi.org/10.1007/978-3-662-48616-0_20
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1145/1053331.1053345
http://dx.doi.org/10.1145/1053331.1053345
http://dx.doi.org/10.1007/3-540-36557-5_9
http://dx.doi.org/10.1016/j.infsof.2018.09.006
http://dx.doi.org/10.2307/258557
https://www.york.ac.uk/crd/guidance/
https://www.york.ac.uk/crd/guidance/
http://dx.doi.org/10.1016/j.infsof.2013.07.010

188

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

M. Koskinen et al.

Kitchenham, B.A., Mendes, E., Travassos, G.H.: Cross versus within-company cost
estimation studies: a systematic review. TSE 33(5), 316-329 (2007). https://doi.org/10.1109/
TSE.2007.1001

Stillwell, M., Coutinho, J.G.F.: A DevOps approach to integration of software components
in an EU research project. In: Proceedings of the 1st International Workshop on Quality-
Aware DevOps, pp. 1-6. ACM, New York (2015)

Tuo, F., Bai, Y., Long, S., et al.: A new model of docker-based E-learning in Hadoop. In:
Proceedings of the 2018 International Conference on Distance Education and Learning -
ICDEL 2018, pp. 22-31. ACM Press, New York (2018)

Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based technologies
for the cloud. Future Gener. Comput. Syst. 68, 175-182 (2017). https://doi.org/10.1016/j.
future.2016.08.025

Telschig, K., Schonberger, A., Knapp, A.: A real-time container architecture for dependable
distributed embedded applications. In: 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE), pp. 1367-1374. IEEE (2018)

Syed, M.H., Fernandez, E.B.: A reference architecture for the container ecosystem. In:
Proceedings of the 13th International Conference on Availability, Reliability and Security,
pp- 1-6. ACM, New York (2018)

Rahman, M., Chen, Z., Gao, J.: A service framework for parallel test execution on a
developer’s local development workstation. In: Proceedings - 9th IEEE International
Symposium on Service-Oriented System Engineering, IEEE SOSE 2015, vol. 30, pp. 153-
160 (2015)

Kratzke, N.: About the complexity to transfer cloud applications at runtime and how
container platforms can contribute? In: Ferguson, D., Muiloz, V.M., Cardoso, J., Helfert, M.,
Pahl, C. (eds.) CLOSER 2017. CCIS, vol. 864, pp. 19-45. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94959-8_2

Song, M., Zhang, C., Haihong, E.: An auto scaling system for API gateway based on
Kubernetes. In: 2018 IEEE 9th International Conference on Software Engineering and
Service Science (ICSESS), pp. 109-112 (2018)

Cito, J., Schermann, G., Wittern, J.E., et al.: An empirical analysis of the docker container
ecosystem on GitHub. In: IEEE International Working Conference on Mining Software
Repositories, pp. 323-333. IEEE Press, Piscataway (2017)

Zhang, Y., Yin, G., Wang, T., et al.: An insight into the impact of dockerfile evolutionary
trajectories on quality and latency. In: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1, pp. 138-143. IEEE (2018)

Naughton, T., Sorrillo, L., Simpson, A., Imam, N.: Balancing performance and portability
with containers in HPC: an OpenSHMEM example. In: Gorentla Venkata, M., Imam, N.,
Pophale, S. (eds.) OpenSHMEM 2017. LNCS, vol. 10679, pp. 130-142. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73814-7_9

Naik, N.: Building a virtual system of systems using docker swarm in multiple clouds. In:
ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings Papers,
pp. 1-3 (2016)

Shah, J., Dubaria, D.: Building modern clouds: using Docker, Kubernetes & Google cloud
platform. In: 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), p. 184. IEEE (2019)

Klinaku, F., Frank, M., Becker, S.: CAUS: an elasticity controller for a containerized
microservice. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pp. 93-98. ACM, New York (2018)

http://dx.doi.org/10.1109/TSE.2007.1001
http://dx.doi.org/10.1109/TSE.2007.1001
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1007/978-3-319-94959-8_2
http://dx.doi.org/10.1007/978-3-319-94959-8_2
http://dx.doi.org/10.1007/978-3-319-73814-7_9

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Containers in Software Development: A Systematic Mapping Study 189

Kehrer, S., Riebandt, F., Blochinger, W.: Container-based module isolation for cloud
services. In: 2019 IEEE International Conference on Service-Oriented System Engineering
(SOSE), pp. 177-186 (2019)

Berger, C., Nguyen, B., Benderius, O.: Containerized development and microservices for
self-driving vehicles: experiences & best practices. In: Proceedings - 2017 IEEE
International Conference on Software Architecture Workshops, ICSAW 2017: Side Track
Proceedings, pp. 7-12 (2017)

Sharma, P., Chaufournier, L., Shenoy, P., et al.: Containers and virtual machines at scale: a
comparative study. In: Proceedings of the 17th International Middleware Conference, pp. 1—
13. ACM, New York (2016)

Révész, A., Pataki, N.: Continuous A/B testing in containers. In: Proceedings of the 2019
2nd International Conference on Geoinformatics and Data Analysis - ICGDA 2019, pp. 11—
14. ACM, New York (2009)

Barna, C., Khazaei, H., Fokaefs, M., et al.: Delivering elastic containerized cloud
applications to enable DevOps. In: Proceedings of the 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 65-75. IEEE Press,
Piscataway (2017)

Bahadori, K., Vardanega, T.: DevOps meets dynamic orchestration. In: Bruel, J.-M.,
Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 142—154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-06019-0_11

Dhakate, S., Godbole, A.: Distributed cloud monitoring using Docker as next generation
container virtualization technology. In: 2015 Annual IEEE India Conference (INDICON),
pp.- 1-5 (2015)

Naik, N.: Docker container-based big data processing system in multiple clouds for
everyone. In: 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 -
Proceedings, pp. 1-7 (2017)

Martin, A., Raponi, S., Combe, T., et al.: Docker ecosystem — vulnerability analysis.
Comput. Commun. 122, 30-43 (2018). https://doi.org/10.1016/j.comcom.2018.03.011
Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines for
container deployment. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pp. 5-10. ACM, New York (2017)

Fokaefs, M., Barna, C., Veleda, R., et al.: Enabling DevOps for containerized data-intensive
applications: an exploratory study. In: Proceedings of the 26th Annual International
Conference on Computer Science and Software Engineering, pp. 138-148. IBM Corp,
Riverton (2016)

Santos, E.A., McLean, C., Solinas, C., et al.: How does docker affect energy consumption?
Evaluating workloads in and out of Docker containers. J. Syst. Softw. 146, 14-25 (2018).
https://doi.org/10.1016/].jss.2018.07.077

Zhu, H., Bayley, L.: If Docker is the answer, what is the question?. In: 2018 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pp. 152-163. IEEE (2018)
Casalicchio, E., Perciballi, V.: Measuring Docker performance: what a mess!!!. In:
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineer-
ing Companion, pp. 11-16. ACM, New York (2017)

Guo, D., Wang, W., Zeng, G., et al.. Microservices architecture based cloudware
deployment platform for service computing. In: Proceedings - 2016 IEEE Symposium on
Service-Oriented System Engineering, SOSE 2016, pp. 358-364 (2016)

Shadija, D., Rezai, M., Hill, R.: Microservices: granularity vs. performance. In: Companion
Proceedings of the 10th International Conference on Utility and Cloud Computing, pp. 215-
220. ACM, New York (2017)

http://dx.doi.org/10.1007/978-3-030-06019-0_11
http://dx.doi.org/10.1016/j.comcom.2018.03.011
http://dx.doi.org/10.1016/j.jss.2018.07.077

190

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

M. Koskinen et al.

Naik, N.: Migrating from virtualization to dockerization in the cloud: simulation and
evaluation of distributed systems. In: Proceedings - 2016 IEEE 10th International
Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Environments, MESOCA 2016, pp. 1-8 (2016)

Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using
microservices: an experience report. In: Leitner, P. (ed.) Advances in Service-Oriented and
Cloud Computing. CCIS, vol. 567, pp. 201-215. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33313-7_15

Xu, T., Marinov, D.: Mining container image repositories for software configuration and
beyond. In: Proceedings of the 40th International Conference on Software Engineering: New
Ideas and Emerging Results, pp. 49-52. ACM, New York (2018)

Ferrer, A.J., Pérez, D.G., Gonzalez, R.S.: Multi-cloud platform-as-a-service model,
functionalities and approaches. Procedia Comput. Sci. 97, 63-72 (2016)

Zhang, Y., Vasilescu, B., Wang, H., et al.: One size does not fit all: an empirical study of
containerized continuous deployment workflows. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 295-306. ACM, New York (2018)

Yarygina, T., Bagge, A.H.: Overcoming security challenges in microservice architectures.
In: 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 11-20.
IEEE (2018)

Lv, K., Zhao, Z., Rao, R., et al.. PCCTE: a portable component conformance test
environment based on container cloud for avionics software development. In: 2016
International Conference on Progress in Informatics and Computing (PIC), pp. 664—-668
(2016)

Wang, B., Song, Y., Cui, X,, et al.: Performance comparison between hypervisor- and
container-based virtualizations for cloud users. In: 2017 4th International Conference on
Systems and Informatics (ICSAI), pp. 684-689. IEEE (2017)

Heinrich, R., van Hoorn, A., Knoche, H., et al.: Performance engineering for microservices:
research challenges and directions. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion, pp. 223-226. ACM, New York (2017)
Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microservice
applications. In: Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, pp. 25-32. ACM, New York (2019)

Siami Namin, A., Sridharan, M., Tomar, P.: Predicting multi-core performance: a case study
using solaris containers. In: Proceedings of the 3rd International Workshop on Multicore
Software Engineering, pp. 18-25. ACM, New York (2010)

Hassan, F., Rodriguez, R., Wang, X.: RUDSEA: recommending updates of dockerfiles via
software environment analysis. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 796-801. ACM, New York (2018)
Gogouvitis, S.V., Mueller, H., Premnadh, S., et al.: Seamless computing in industrial
systems using container orchestration. Future Gener. Comput. Syst. (2018). https://doi.org/
10.1016/j.future.2018.07.033

Goldschmidt, T., Hauck-Stattelmann, S.: Software containers for industrial control. In:
Proceedings - 42nd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2016, pp. 258-265 (2016)

Yin, K., Chen, W., Zhou, J., et al.: STAR: a specialized tagging approach for Docker
repositories. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC),
pp. 426-435. IEEE (2018)

http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1016/j.future.2018.07.033
http://dx.doi.org/10.1016/j.future.2018.07.033

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Containers in Software Development: A Systematic Mapping Study 191

Benni, B., Mosser, S., Collet, P., et al.: Supporting micro-services deployment in a safer
way: a static analysis and automated rewriting approach. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pp. 1706—-1715. ACM, New York (2018)
Ye, F., Jing, Z., Huang, Q., et al.: The research of a lightweight distributed crawling system.
In: 2018 IEEE 16th International Conference on Software Engineering Research,
Management and Applications (SERA), pp. 200-204. IEEE (2018)

Oh, J., Kim, S., Kim, Y.: Toward an adaptive fair GPU sharing scheme in container-based
clusters. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), pp. 79-85 (2018)

Lépez, M.R., Spillner, J.: Towards quantifiable boundaries for elastic horizontal scaling of
microservices. In: Companion Proceedings of thelOth International Conference on Utility
and Cloud Computing, pp. 35-40. ACM, New York (2017)

Morris, D., Voutsinas, S., Hambly, N.C., et al.: Use of Docker for deployment and testing of
astronomy software. Astron. Comput. 20, 105-119 (2017). https://doi.org/10.1016/j.ascom.
2017.07.004

Punjabi, R., Bajaj, R.: User stories to user reality: a DevOps approach for the cloud. In: 2016
IEEE International Conference on Recent Trends in Electronics, Information Communica-
tion Technology (RTEICT), pp. 658-662 (2016)

Senington, R., Pataki, B., Wang, X.V.: Using Docker for factory system software
management: experience report. Procedia CIRP 72, 659-664 (2018). https://doi.org/10.1016/
j-procir.2018.03.173

Knoche, H., Eichelberger, H.: Using the Raspberry Pi and Docker for replicable performance
experiments: experience paper. In: Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, pp. 305-316. ACM, New York (2018)
Morabito, R.: Virtualization on internet of things edge devices with container technologies: a
performance evaluation. IEEE Access 5, 8835-8850 (2017). https://doi.org/10.1109/
ACCESS.2017.2704444

Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization techniques compared: performance,
resource, and power usage overheads in clouds. In: Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, pp. 145-156. ACM, New York
(2018)

Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In: 2016
IEEE International Symposium on Workload Characterization (IISWC), pp. 1-10. IEEE
(2016)

Wieringa, R., Maiden, N., Mead, N., et al.: Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requir. Eng. 11(1), 102-107 (2005)

http://dx.doi.org/10.1016/j.ascom.2017.07.004
http://dx.doi.org/10.1016/j.ascom.2017.07.004
http://dx.doi.org/10.1016/j.procir.2018.03.173
http://dx.doi.org/10.1016/j.procir.2018.03.173
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1109/ACCESS.2017.2704444

Technical Debt

®

Check for
updates

Empirical Analysis of Hidden Technical
Debt Patterns in Machine
Learning Software

Mohannad Alahdab’2®) and Giil Calikli®®)

! Chalmers University of Technology, Gothenburg, Sweden
mohannad@student.chalmers.se
2 Cybercom Group, Gothenburg, Sweden
3 Chalmers | University of Gothenburg, Gothenburg, Sweden
gul.calikli@gu.se

Abstract. [Context/Background] Machine Learning (ML) software
has special ability for increasing technical debt due to ML-specific issues
besides having all the problems of regular code. The term “Hidden Tech-
nical Debt” (HTD) was coined by Sculley et al. to address maintainability
issues in ML software as an analogy to technical debt in traditional soft-
ware. [Goal] The aim of this paper is to empirically analyse how HTD
patterns emerge during the early development phase of ML software,
namely the prototyping phase. [Method] Therefore, we conducted a
case study with subject systems as ML models planned to be integrated
into the software system owned by Vasttrafik, the public transportation
agency in the west area of Sweden. [Results] During our case study,
we could detect HTD patterns, which have the potential to emerge in
ML prototypes, except for “Legacy Features”, “Correlated features”, and
“Plain Old Data Type Smell”. [Conclusion] Preliminary results indicate
that emergence of significant amount of HTD patterns can occur dur-
ing prototyping phase. However, generalizability of our results require
analyses of further ML systems from various domains.

Keywords: Machine learning - Software maintainability - Hidden
Technical Debt

1 Introduction

Machine Learning (ML) applications have become integral part of software prod-
ucts including recommender systems (e.g., Netflix [2], LinkedIn [3]) and speech
recognition systems (e.g., Apple Siri). Social media platforms such as Facebook
develop ML applications for ranking posts in the news feed, speech recognition,
text translation as well as real-time photo and video classification [4]. Since
ML algorithms are not only being implemented in research labs, it has become
obvious that it is not enough only to focus on prediction performance while
developing ML software [5].

© Springer Nature Switzerland AG 2019
X. Franch et al. (Eds.): PROFES 2019, LNCS 11915, pp. 195-202, 2019.
https://doi.org/10.1007/978-3-030-35333-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35333-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-35333-9_14

196 M. Alahdab and G. Calikh

Since ML software also follows a lifecycle as traditional software does, the
emergence of ML software, also brings maintainability challenges. Maintainabil-
ity of traditional software products is still a challenge, and technical debt is an
obstacle in the way of maintainability. However, existing practices, tools, and
techniques to tackle technical debt are not adequate to overcome the challenges
of ML software maintenance. This is due to the fact that implementation of
ML algorithms is quite different compared to how traditional software is imple-
mented. Traditional software mostly consists of a set of commands that are
implemented by the developer so that the computer can follow and execute
these instructions. On the other hand, ML systems learn what to do from data
input to ML algorithms. ML allows the developer to work fast and the results
can be delivered quickly, but in the long run, it becomes a challenge to maintain
ML software. Sculley et al. [1] coined the term “Hidden Technical Debt” (HTD)
to address challenges in the maintainability of ML software as an analogy to
the concept of technical debt in traditional software. If those HTD patterns are
detected in later stages of ML software development, it might be quite costly
and infeasible to remove them in order to ensure maintainability. Therefore, early
detection of HTD patterns in ML software systems is crucial.

The purpose of this paper is to empirically analyse HTD patterns during
prototyping phase. Empirical analysis of HTD patterns in ML prototypes pro-
vides information to develop methods to detect and remove them. Therefore, we
conducted a case study with subject systems being ML prototypes for empty
parking lots prediction to be integrated into the system owned by Vésttrafik. In
the framework proposed by Sculley et al. [1] there are also HTD patterns that
emerge in the final deployed ML system. However, in this paper, we focus on
HTD patterns with the potential to emerge during prototyping phase (Through-
out the paper, we call such HTD patterns “prototype-level HTD patterns). To
summarize, this paper aims to answer the following research question:

RQ1: Which (prototype level) HTD patterns emerge during prototyping
phase?

During the case study, we were able to detect all prototype-level HTD pat-
terns except for “Legacy Features”, “Correlated Features”, and “Plain Old Data
Type Smell”. Our results indicate that majority of these HTD patterns can
emerge even in less complex ML models that are built with small data size and
number of features.

As model complexity, number of features and data size increases, emergence
of these HTD prototypes become more likely, making maintainability issues in
ML software products inevitable. Therefore, detection of these HTD patterns as
early as possible in ML software development lifecycle (i.e., prototyping stage)
is crucial. However, our case study was conducted for a specific case. Therefore,
our results are preliminary and need to be supplemented by analyses of further
ML systems as well as conducting workshops and interviews with practitioners.

The rest of the paper is organised as follows: Sect. 2 mentions related work.
Research methodology is described in Sect. 3 and obtained results are explained
in Sect. 4. Finally, Sect.5 concludes and mentions future work.

Empirical Analysis of Hidden Technical Debt Patterns in ML Software 197

2 Related Work

As a result of the experience gained through development and deployment of
online advertising systems, D. Sculley and his colleagues at Google came up
with “Hidden Technical Debt” (HTD) framework [1], to address maintainability
issues of ML software. Definition of the HTD patterns that are the focus of
this paper can be found in our online repository' and also in the original paper
by Sculley et al. [1]. Referring to HTD patterns identified by Sculley et al. [1],
Agarwal et al. [6] proposed a solution to reduce “direct feedback loops”, which
is a HTD pattern that often occurs when the deployed ML software might bias
users’ feedback to the software itself. This in turn, directly affects the selection
of users’ data for future training of that ML software [1]. The solution proposed
by the authors is a complete loop for effective contextual learning consisting of
the phases of deployment, exploring, logging and learning.

Breck et al. [7] indicate that testing and monitoring are crucial in order to
detect and reduce HTD patterns. In order to quantify production readiness of
ML systems and reduce HTD, authors present an ML Test Score rubric based on
a set of actionable tests. There is also emerging research in testing Deep Learning
(DL) systems reducing “prediction bias”, which is a HTD pattern emerging due
to behavioural changes in data. One such study is generating test cases based on
a proposed a metric (i.e., Surprise Adequacy metric) that measures the distance
between the behaviour of the DL model for a test input and behaviour of that
model for inputs that belong to the training set [8].

3 Methodology

During the case study, we analysed prototype-level HTD patterns in ML models
that were developed for Visttrafik in order to predict empty parking lots. ML
models were already developed by the first author approximately two months
before this research study was initiated. Moreover, while developing ML mod-
els, he did not have any knowledge about HTD patterns or how they affect
ML software maintainability. The first author has 8 years of experience in soft-
ware development and he is employed by Cybercom Group, an IT consultancy
company. Vasttrafik had outsourced the development of empty parking lot pre-
diction prototypes to Cybercom Group. The prototypes will later be turned into
production code to be deployed as integral part of Vasttrafik applications.
Data analysed during this case study consists of artefacts such as ML models
developed, source codes written to pre-process input data and the input data
itself that is used to train and test ML models. Training/testing data contains
about 6 million events that took place between years 2014-2017. Time difference
between consecutive events is 15 min, and each event corresponds to a line in
the dataset that is represented by a set of features values. Information about
the features is given in Table 1. In order to make the features selection effective,
the first author organized the features into feature sets. For instance, features

! https://github.com/gulcalikli/ProfesShortPaper.

https://github.com/gulcalikli/ProfesShortPaper

198 M. Alahdab and G. Calikh

“Weather Temperature” and “Weather Situation” both belong to set A, while
features “Day after holiday” and “Day before holiday” belong to set G. Also,
day and time for each event are separate features and belong to the feature set
H. Each of the remaining features are assigned to a separate feature set.

Table 1. List features used in development of ML prototypes

Set | Feature name Range Categorical
A | Weather Temperature [—15,30] No
Weather Situation [1,30] Yes
B | Day type [0,1,2,3] Yes
C | % of free spaces during previous day [0,100] No
D | % of free spaces during previous week [0,100] No
E | % of free spaces during previous 2 weeks | [0,100] No
F | % of free spaces during the last 12 h [0,100] No
G | Day after holiday [0,1] Yes
Day before holiday [0,1] Yes
H | Day name for each event Monday..Friday] | Yes
Time for each event [00:00 .. 23:59] | Yes

In order to develop ML models, the first author employed boosted decision
tree regression, and forest decision regression, which are among the best per-
forming algorithms for empty parking lot prediction [9] . Sequential Forward
Selection (SFS) feature selection technique was used adding one more feature
set at a time, and this resulted in 16 prototypes, in total. Data corresponding to
years 20142016 and year 2017 were used for training and testing models, respec-
tively. Prediction performance of each prototype is shown in Table 2. In order to
develop prototypes of the ML software, as ML framework, the first author used
Microsoft Azure Machine Learning, which is a cloud-based service for predictive
analytics. During the case study, we also used the same ML framework, in order
to develop extra ML models to investigate existence of some HTD patterns. In
the near future, few ML intensive systems will implement ML algorithms from
scratch. Instead, for such systems training will take place in the cloud using
main API and libraries. Most companies do not have enough human resources
with skills required to design and implement ML algorithms. Therefore, there
is a need to provide developers with APIs that allow them to embed ML func-
tionalities into software applications. Moreover, ML systems in the cloud are
cheap to operate in terms of hardware and software. Hence, using a service such
as Microsoft Azure Machine Learning rather than implementing the ML algo-
rithms from scratch is a feature in the design and implementation of this case
study.

Empirical Analysis of Hidden Technical Debt Patterns in ML Software 199

Table 2. Prediction performance results for ML models developed by employing two
different regression algorithms with SFS feature selection technique (MAE: Mean Abso-
lute Error; RMSE: Root Mean Square Error; R%: Coefficient of Determination)

Features set Boosted decision tree | Decision forest
MAE | RMSE | R? MAE | RMSE | R?

A 27.80 | 37.60 | —0.090 | 27.90 | 40.57 | —0.270
AB 25.50 | 35.20 0.004 | 26.60 | 38.60 | —0.150
A,B,C 11.70 | 20.20 0.680 | 15.10 | 24.20 0.550
A,B,C,D 9.67 | 16.50 0.780 | 10.45 | 17.27 0.770
A,B,C.D,E 9.89 | 16.40 0.790 | 9.70 | 16.21 0.800
AB,C,D,EF 9.40 | 15.90 0.800 | 10.35 | 17.17 0.770
AB,C,D,EF,G 8.89 | 15.20 0.820| 9.23 | 15.60 0.810
AB,CD.EFGH| 6.3811.38 0.900 | 6.23 |12.05 0.880

4 Preliminary Results

This section aims to answer RQ1 by explaining HTD patterns that are discovered
in the ML models we developed, together with the data analysis techniques
we employed to discover those HTD patterns. Table 2 shows prediction results
for the ML models that are trained by incrementing number of features one
feature set at a time according to Sequential Forward Selection (SFS