
A Declarative Data Protection Approach:
From Human-Readable Policies

to Automatic Enforcement

Francesco Di Cerbo1(B), Alessio Lunardelli2, Ilaria Matteucci2,
Fabio Martinelli2, and Paolo Mori2

1 SAP Security Research, Sophia Antipolis, France
francesco.di.cerbo@sap.com

2 IIT-CNR, Pisa, Italy
{alessio.lunardelli,ilaria.matteucci,fabio.martinelli,

paolo.mori}@iit.cnr.it

Abstract. In recent years, almost any object we use in our lives is con-
nected and able to generate, collect and share data and information.
This leads to the need of having, on the one hand, legal regulations, such
as the new General Data Protection Regulation, able to guarantee that
privacy of humans is preserved within the sharing process, and on the
other hand, automatic mechanisms to guarantee that such regulations,
in addition to user privacy preferences, are applied. The goal of this work
is to propose an approach to manage data protection policy, from their
specification in a controlled natural language to their translation into an
automatically enforceable policy language, UPOL, for access and usage
control of personal information, aiming at transparent and accountable
data usage. UPOL extends and combines previous research results, U-
XACML and PPL, and it is part of a more general proposal to regulate
multi-party data sharing operations. A use case is proposed, considering
challenges brought by the new EU’s GDPR.

Keywords: Personal data protection · GDPR · Privacy · Security

1 Introduction

The increased adoption of cloud solutions to store and share data among entities,
companies and objects leads to the necessity of having a clear legal regulation for
personal data protection, in place in a transnational environment to regulate the
current practice for data exchanges among data producers, consumers and cloud
providers. This awareness has driven the advent of the new European General
Data Privacy Regulation (GDPR Regulation (EU) 2016/679) [8], entered in force
in May 2018. This regulation has a deep impact on the legal framework and the
requirements for data processing of European citizens because it is applicable to
all entities, all over the world, aiming at processing personal data belonging to
citizens of an European country.
c© Springer Nature Switzerland AG 2019
M. J. Escalona et al. (Eds.): WEBIST 2018, LNBIP 372, pp. 78–98, 2019.
https://doi.org/10.1007/978-3-030-35330-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35330-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-35330-8_5

A Declarative Data Protection Approach: From Human-Readable Policies 79

To be compliant with this regulation, all such entities need to perform a deep
revision of their data management processes and, consequently, of the software
deputed to manage them in order to be compliant with the new prescriptions.
In particular, we focus on a number of key requirements of GDPR formalised
in Articles 5 - Principles relating to processing of personal data - and 25 - Data
protection by design and by default - dealing with “lawfulness, fairness and
transparency”, “purpose limitation” and “data minimisation”.

The principle of “lawfulness, fairness and transparency” deals with require-
ments on how data must be processed from the owner of the personal data
prospective. The “purpose limitation” principle aims at linking the request of
data processing with the purpose of use of them that has to be explicitly accepted
by the data subject (explicit consent) with a contract prepared under the fairness
and transparency principles. “Data minimisation” imposes to data controllers,
such as, companies collecting personal data of customers, to reduce the amount
of collected data to the strict minimal necessary to carry out the requested ser-
vice, also reducing “the extent of processing, the period of their storage and their
accessibility”.

To guarantee these requirements, in this paper we propose a Data Protection
approach able to regulate both access and usage of data with an eye to the
GDPR regulation, i.e., to fulfill the data minimisation requirement in its part
referring to computation purpose verification, data retention and data access.
Access and usage of data are regulated by the definition of rules. In our approach,
we consider to have a unique document that collects both legal requirements and
user rules about access and usage control of a piece of data, i.e., we refer to the
concept of Data Sharing Agreement (DSA) associated to the target data. It is an
agreement among contracting parties regulating how they share data. A DSA
represents a flexible mean to assure privacy, in terms of GDPR directive, of
data exchanged on the Cloud. Here, we refer to the work in [11], in which the
authors introduced a Controlled Natural Language for DSA aiming at lowering
the barrier to adoption of DSA, and, at the same time, ensuring mapping to a
chosen enforceable language.

Our activity identified two solutions, whose combination would allow a data
controller to achieve a transparent usage of personal data. They are PPL [7,15]
and U-XACML [10]. The novelty of our proposal consists of an approach (policy
language and reference architecture) that unifies both benefits and allows to
achieve new results, namely:

R1. to meet GDPR’s transparency requirement by fully controlling informa-
tion processing operations. This is achieved through the full support of
the Usage Control model proposed by Park and Sandhu [13,16], achieved
through our contribution as simple extension to a well-known access control
standard, XACML [12].

R2. the control and tracking of processing purpose(s), for the operations
requesting an access to the protected pieces of information, both at the
moment of the access request and during their consumption. This aims at
meeting GDPR’s purpose limitation.

80 F. Di Cerbo et al.

R3. the support for GDPR’s data minimisation, considering for example data
retention conditions.

R4. to ease compliance audit of a solution integrating our approach, also consid-
ering the different stakeholders’ background involved in the audit process:
lawyers, software architects, public bodies but also citizens (data subjects).

The concepts presented here appeared in an earlier form in [6], however this
work extends them by:

– recalling the notion of Data Sharing Agreements as way to express and group
all security and data protection constraints expressed at high abstraction level
(human language) by different parties to regulate data sharing operations.

– recalling the CNL4DSA high level controlled natural language introduced in
[11], functional to the expression of Data Sharing Agreements.

– introducing a novel architectural component, named DSA Mapper, in charge
of automatically translating the security and data protection constraints
expressed in CNL4DSA to enforceable UPOL policies.

– combining all previously mentioned extensions to present an extended archi-
tecture and a complete data flow for regulated data sharing operations, cov-
ering data provisioning and consumption operations.

– achieving a new result, a simplification for conducting audit given by the
simplified understandability and transparency of the extended approach.

The paper is structured as follows: next section describes the motivation of
this work that is mainly part of a EU FP7 project named Coco Cloud about
the sharing of sensitive data through the Cloud, and how parts of this effort
are continued in project C3ISP. Section 3 briefly recalls the existing access and
usage control policy languages while Sect. 4 presents the new one, named UPOL
able to integrate and enhance in a unique language the expressiveness of both
languages. Section 5 presents a use case for an UPOL policy and finally Sect. 6
draws the conclusion of the paper and discusses about ongoing and future work.

2 Usage Control in Coco Cloud and C3ISP

The Confidential and Compliant Cloud (Coco Cloud) EU FP7 funded project
[4] proposes a data centric approach to enhance data security on the cloud. In
particular, the project is aimed at enabling its users to regulate the usage of
the data they share on the cloud, in order to increase their trust in, and conse-
quently their adoption of, cloud services. In the Coco Cloud scenario, multiple
subjects are involved in the data sharing, including companies, public bodies,
and citizens. Consequently, the data sharing must be automatically regulated
by digital contracts, called Data Sharing Agreements (DSA) [2], defined by the
sharing parties, which must be paired with the data when they are shared on
the Cloud and must be enforced every time such data are accessed and used
by the Cloud users [3]. A peculiar goal of the Coco Cloud project is to embed
in the DSA also a further set of constraints to allow a legally compliant data

A Declarative Data Protection Approach: From Human-Readable Policies 81

sharing in the cloud. Hence, the project places an early emphasis on understand-
ing and incorporating legal and regulatory requirements into the data sharing
agreements. The European data protection legal framework has been one of the
key legal focuses of our work.

To this aim, the first step consists in an automatic translation of both legal
and sharing parties constraints in a policy format that can be directly enforced.
In fact, DSA are automatically mapped into Usage Control Policies expressed
through the UPOL language. The Usage Control model [13] is adopted because
the factors that are taken into account to define constraints in the DSA are
mutable, i.e., they can change over time. As a matter of fact, one of the main
improvements introduced by the Usage Control model with respect to traditional
access control ones is the management of those user and resource attributes
which change their values over time, thus requiring the continuous evaluation of
the usage control policy to promptly react to changes. In particular, attribute
values could change in such a way that an access which was previously authorized
according to the previous attribute values and is now in progress should instead
be forbidden because of the new values of such attributes. Hence, the usage
control policy is continuously evaluated during the data access time, and the
access can be interrupted when the policy is not satisfied any more. For instance,
the physical position of a person is one of these mutable attributes because,
obviously, it changes when the person moves from one place to another. A DSA
could state that a critical document produced by a company can be read only by
the employees of such company when they are located within a given area (e.g.,
the building of a company). Hence, an employee could open the document on her
mobile phone when she is located within the company building but, as soon as she
exits the building, the usage control policy is violated and the countermeasure
defined in the policy is taken. For instance the policy could require to close such
document saving the unsaved changes in a temporary document copy).

Moreover, the Usage Control model also allows policy makers to express
that some actions, called obligations, must be executed as a consequence of the
execution of other actions or when certain events occur. For instance, the DSA
of a piece of data could include an obligation which requires that the related file
is deleted after a given date. This concept has clear application in expressing
a personal data retention period, according to the GDPR. Another example of
obligation recalling the previous DSA is the one that, when the user leaves her
country, deletes the document from her mobile device.

The usage control model allows to define very expressive data sharing agree-
ments which satisfies the requirements of many application scenarios. For exam-
ple, we applied it to e-government, corporate and healthcare [2] solutions. More-
over, part of the described approach is used in C3ISP1, an EU-funded H2020
project focussing on cyber security and in particular on the sharing of particu-
larly critical pieces of information, that are necessary for organising an effective
defense against online attacks but that may also be used, if in wrong hands,
to conduct malicious activities. This is the case of information describing cyber

1 Homepage: https://c3isp.eu/.

https://c3isp.eu/

82 F. Di Cerbo et al.

attacks trace logs: other defenders may tune up their countermeasures in order
to identify the latest attacks (malware received per email, specially crafted web
requests targeting a software’s vulnerability etc.) but on the other hand, an
attacker may get to know where and how a target system is vulnerable and may
be successfully breached. Specific extensions are being studied and they will be
discussed in the future.

This paper describes UPOL, the language we defined to express the enforce-
able version of the usage control policies representing the DSAs exploited in the
Coco Cloud and C3ISP European projects. We also describe how we automati-
cally obtain UPOL policies starting from DSAs in which the rules are expressed
in a Controlled Natural Language [11]. Such language has been introduced to
help the user to express in a natural language style yet controlled way not only
her own constraints on data but also legal regulations [9] on them.

3 Background

In this section, we recall some background notions about languages used for
expressing policies at both high level through a controlled natural language and
low level trough XACML-based languages.

3.1 Controlled Natural Language

The core of Controlled Natural Language named CNL4DSA [11] (CNL4DSA)
is the notion of fragment, a tuple f = 〈s, a, o〉 where s is the subject, a is the
action, o is the object. The fragment expresses that “the subject s performs
the action a on the object o”, e.g., “the doctor reads the medical report”. It
is possible to express authorisations, obligations, and prohibitions by adding
the can/must/cannot constructs to the basic fragment. Fragments are evaluated
within a specific context. In CNL4DSA, a context is a predicate c that usually
characterises factors such as users’ roles, data categories, time, and geographical
location. Contexts are predicates that evaluate either to true or false. To describe
complex policies, contexts must be combined. Hence, we use the Boolean con-
nectors and, or, and not for describing a composite context C which is defined
inductively as follows (Eq. 1):

C := c | C and C | C or C | not c (1)

The syntax of a composite authorisation fragment, FA, is as follows:

FA := nil | can f | FA;FA | if C then FA | after f then FA| (FA) (2)

with the following meaning:

– nil can do nothing.
– can f is the atomic authorisation fragment that expresses that f is allowed,

where f = 〈s, a, o〉. Its informal meaning is the subject s can perform the
action a on the object o.

A Declarative Data Protection Approach: From Human-Readable Policies 83

– FA;FA is a list of composite authorisation fragments.
– if C then FA expresses the logical implication between a context C and a

composite authorisation fragment: if C holds, then FA is permitted.
– after f then FA is a temporal sequence of fragments. Informally, after f has

happened, then the composite authorisation fragment FA is permitted.

The list of authorisations represents all the composite authorisation fragments
that define the access rights on the data.

Also, CNL4DSA has a specific syntax expressing composite obligation and
prohibition fragments. Similar to the authorisations, the obligation fragment
indicates that the subject s must perform the action a on the object o, while, for
the prohibition, the subject s cannot perform the action a on the object o.

of a composite obligation fragment, FO, is inductively defined as follows:

FO := nil | must f | FO;FO | if C then FO | after f then FO| (FO) (3)

The intuition is the same as for FA, except for must f that represents the atomic
obligation: the subject s must perform the action a on the object o. The atomic
obligation must f expresses that f is required.

Finally, the syntax of a composite prohibition fragment, FP , is as follows:

FP := nil | cannot f | FP ;FP | if C then FP | after f then FP | (FP) (4)

The atomic prohibition is represented by cannot f : the subject s cannot perform
the action a on the object o. The atomic prohibition cannot f expresses that f
is not permitted.

3.2 Enforceable Policy Languages

We identified the Usage Control model as the theoretical underpinnings for our
objective but we observed a number of limitations in the current approaches.
Essentially, we looked at a number of declarative solutions (i.e. controllable
through a configuration policy) and we concentrated on three technologies that
have available implementations:

– XACML: the eXtensible Access Control Markup Language [12] is a standard
produced by the OASIS Consortium which defines an XML based language
for expressing Attribute Based Access Control policies and a reference archi-
tecture for the enforcement of such policies. Several open source, academic
and commercial implementations of the XACML standard are currently avail-
able on the market. The main limitation is that it only covers access control
models and not usage control. XACML only partially fulfill R1, R2, and R3.

– U-XACML: the UCON XACML [10] is an extension of the XACML stan-
dard aimed at supporting usage control functionalities, most notably the
continuous policy evaluation during the access to the requested resources.
U-XACML extends both the XACML language, in order to introduce proper
constructs to express which XACML conditions must be satisfied at access
request time and which must be satisfied for the whole duration of the access,

84 F. Di Cerbo et al.

and the reference architecture, in order to introduce further components
devoted to the continuous policy evaluation and to the management of usage
sessions. U-XACML fulfills R1, partially R2 but not R3.

– PPL: as well extends XACML with the possibility to verify resource pro-
cessing purposes against a policy plus it caters the automatic execution of
obligations defined by a resource owner. It can be used to implement R3
especially with respect to data retention, R2 but not completely R1.

In order to achieve the fulfillment of requirements R1, R2, R3 starting
from the previously listed technologies, we defined a new concept, UPOL. In
other words, we extended the XACML standard by combining the advantages
brought in by two other extensions, U-XACML and PPL.We also extended all
previous approaches in order to fulfill R4, by designing a process for transforming
a human-readable set of directives into an actionable policy; this allows an easier
understandability of UPOL policies by non-technical stakeholders, considering
for example legal experts and citizens.

From the combination of the mentioned technologies, UPOL achieves new
capabilities as detailed in Sect. 4. It is the language we used to express DSAs
terms and conditions in a machine-enforceable manner. UPOL policies therefore
regulate the usage of the data they are paired with: following the sticky policy
model [14], each policy (that regulates the access to a resource) get attached to
a resource to form a bundle, normally protected by means of strong encryption.
This imposes that data can be processed only by means of special mechanisms
able to decrypt the bundle and to allow its access in accordance to the associ-
ated policy. Any attempt to consume arbitrarily a resource once it is protected
by such bundle, is destined to fail. The UPOL language is based on the Usage
Control model, which extends traditional access control model by dealing with
attributes related to the subjects and of the objects which change their values
over time. The Usage Control model allows to define policies which are con-
tinuously evaluated during the execution of an access, in order to revoke such
ongoing access when the corresponding policy is not valid any longer. In partic-
ular, the usage control policies define authorization and condition rules which
must be satisfied before and/or during the usage of such data (pre-/ongoing-
authorizations and pre-/ongoing-conditions), along with obligations (similarly,
pre-/ongoing-obligations). UPOL comprises all such categories, extending the
XACML capabilities with two new contributions the asynchronous and syn-
chronous obligations, normally implemented by a trusted third party. The asyn-
chronous obligations are usage control obligations which have to be fulfilled when
an event occurs. Events may used to model reactions to mutable attributes as
in Park and Sandhu model but, extending it, they may not be connected to
an access request, as such as when the retention period for a piece of data
expires (as requested for GDPR’s data minimization). The synchronous obli-
gations are again usage control obligations. For instance banners that appears
while one watches a streaming video, or logging of the exact consumption time
of a resource, for accountability purposes. Such kind of obligations may also be
considered as session obligations and can be used in order to pinpoint when an

A Declarative Data Protection Approach: From Human-Readable Policies 85

user starts and terminates to use a resource as well as when the user’s access
right to the resource is revoked.

In UPOL, the violation of pre-authorization or pre-condition rules prevents
the access to the protected data. Instead, when pre-authorization and pre-
condition rules are satisfied, the access to the data is allowed, and the ongoing-
authorization and ongoing-condition rules are enforced continuously while the
access is in progress. In this case, the violation of ongoing rules causes the inter-
ruption of the usage of the data. Session obligations may be associated to passed
or failed checks, in order to model a desired behavior.

3.3 U-XACML

The U-XACML language is an extension of the XACML language which includes
additional constructs to express Usage Control features. XACML is a standard
developed by the OASIS consortium for expressing and managing access con-
trol policies in a distributed environment [12]. Briefly, the XACML standard
defines a policy meta-model, syntax, semantics, and the related enforcement
architecture. The top-level element of a policy is <PolicySet>, which includes
a set of <Policy> elements (or other distinct <PolicySet>), each of which, in
turn, includes a <Target>, which denotes the target of the policy, and a set
of <Rule> elements which represent the authorization rules. A rule is defined
by three main components: the <Target>, the <Condition>, and the effect of
the rule which can be either Permit or Deny. The <Target> denotes the tar-
get of the rule, i.e., to which authorization requests the rule can be applied.
The <Condition> elements are predicates evaluating the attributes. A rule
can include the <ObligationExpressions> element, which, in turn, includes a
set of <ObligationExpression> elements. Each <ObligationExpression> element
includes the ID of the obligation and which effect will trigger its execution. A
rule is applicable to an access request if the target of the access request matches
the target of the rule and if all the conditions included in the rule are satisfied. If
a rule is applicable to an access request, the effect declared for the rule concurs
to determine whether the access request is permitted or denied, and the related
obligation must be executed. As a matter of fact, the effects of all the applicable
rule are combined to produce the effect to be actually enforced according to the
combining algorithm specified at the beginning of the policy. For instance, the
PERMIT OVERRIDE combining algorithm causes the policy to be evaluated
to permit if at least one applicable rule has been assigned permit as effect.

XACML allows to express traditional attribute based access control policies
dealing with immutable attributes and it does not have specific constructs to
deal with mutable attributes and to express the continuity of policy enforce-
ment. In particular, adopting a standard XACML system, the policy is evalu-
ated at request time only, and no further policy evaluation are executed while
the access is in progress. Consequently, once an access has been granted, if the
attributes values change in such a way that the policy is not satisfied any more,
no countermeasures are taken, and the ongoing access is not affected.

86 F. Di Cerbo et al.

The U-XACML language extends XACML with usage control constructs as
follows. To express the continuity of policy enforcement, the U-XACML language
introduces in the <Condition> element a clause, called DecisionTime, which
defines when the evaluation of this condition must be executed. The admitted
values are pre and on denoting, respectively, pre-decisions and on-decisions. In
this way, the conditions whose decision time is set to pre are the same as usual
XACML conditions, since they are evaluated at access request time only. On
the other hand, the conditions whose decision time is set to on must be con-
tinuously evaluated while the access is in progress. These conditions typically
involve mutable attributes, because their values change over time thus requiring
the re-evaluation of the condition. We recall that in U-XACML, XACML con-
ditions are exploited to represent both UCON authorizations and conditions.
In the same way, U-XACML extends the <ObligationExpression> element with
the DecisionTime clause to define when the obligation must be executed. In
this case too, the admitted values for the DecisionTime clause are: pre (pre-
obligations, i.e., usual XACML obligations) and on (on-obligations), and post
(post-obligations).

To deal with mutable attributes, U-XACML introduces a new element,
<AttrUpdates>, which represents the attribute updates in the policy. This
element includes a number of <AttrUpdate> elements to specify each update
action. Each <AttrUpdate> element also specifies when the update must be
performed through the clause UpdateTime which can have one of the follow-
ing values: pre (pre-update), on (on-update), and post (post-update). U-XACML
language, please refer to [5].

3.4 PPL

PPL (Primelife but also Privacy Policy Language) is another XACML extension
that allows to express policies for personal data processing, also including specific
credential capabilities. PPL directives refers to access and usage control security
properties. In particular it was designed for modelling personal data exchanges
between data subjects and data controller, according to definitions provided
by the European Data Protection Directive 95/46/EC, very similar to those
stated in GDPR. PPL adopts the “sticky policy” approach: a piece of data
gets associated, for example in a bundle, to its policy and they form a unit,
an atomic entity. Such approach is applied to regulate the exchange between
a data subject and controller: once personal data handling terms (the “terms
of use”) have been agreed between the two actors, such terms become a PPL
policy that gets associated to the personal data given to the data controller. By
definition, this policy cannot be detached from the data and regulates each usage
of the piece of information. One notable aspect is the expression of usage control
obligations. Normally in XACML, an obligation must be fulfilled by the actor
that issues an access request. In PPL, they are defined as “a promise made by a
data controller to a data subject in relation to the handling of his/her personal
data. The data controller is expected to fulfill the promise by executing and/or
preventing a specific action after a particular event, e.g., time, and optionally

A Declarative Data Protection Approach: From Human-Readable Policies 87

under certain conditions” [1]. PPL obligations may also apply to data processors,
i.e., entities authorized by data controller to carry out computations on the data,
under the responsibility of the data controller.

PPL obligations are expressed as in the following Eq. 5:

Obligation = Do Action when Trigger (5)

where
Trigger = Event ∧ Condition (6)

Obligations modeled in this way may or may not be dependent on access
requests and therefore, they differ from access control obligations. They can be
used to express a data retention period, e.g., data must be deleted by the data
controller after 30 days from their submission. As shown in [7], triggers may also
depend on contextual conditions like geographic location.

4 Our Data Protection Approach

Our data protection approach can be described as follows:

– specification of data protection requirements using a controlled natural lan-
guage, with CNL4DSA

– transformation of CNL4DSA directives in UPOL enforceable control policy
– association of the control policy to a piece of information
– enforcement of the policy by a dedicated UPOL-enabled mechanism

As part of our contribution, we propose a reference software architecture for the
materialization of our approach. The present section describes our architecture.

Once a data subject and controller agree on usage terms, they can express
them using CNL4DSA, for example by means of an authoring tool, such as,
the one briefly described in [9]. CNL4DSA terms can also be defined with a
negotiation-less model: the CNL4DSA terms may represent the requirements of
a subject and a controller can only decide to accept them to process the per-
sonal data, or the terms with which a controller can process a subject’s data.
The enforcement of CNL4DSA directives (i.e., the DSA) relies on their trans-
formation in a UPOL policy. Such transformation, for its complexity, is most
effective if performed automatically: to this extent, we foresaw a mapping func-
tion implemented by a specific software component, the DSA Mapper, and this
main functionality is described in Sect. 4.1. As already mentioned, the UPOL lan-
guage originates from XAMCL but adding statefulness to its interaction model.
To cater for that, a number of contributions are proposed, in terms of refer-
ence architecture and language syntax, explained respectively in Sect. 4.2 and
by means of an example in Sect. 5.

As a first step, we describe the mapping function we implement to auto-
matically transform rules expressed in CNL4DSA (that is, a simple controlled
natural language) to the UPOL language. Then, we describe the UPOL reference
architecture and a comparison with the existing UCON ABC.

88 F. Di Cerbo et al.

4.1 Mapping Function

As mentioned, the mapping function allows to convert DSA statements into
UPOL directives. The software component in charge of its implementation, the
DSA Mapper, takes as input am .xml file representing a set of DSA rules and
translates them in the UPOL language. The outcome of this tool is an enforceable
policy, that will be evaluated at each request to process the associated piece of
information.

An initial formulation for a mapping function has been presented in [11]. In
the current and newest version, presented in the following, we have updated and
simplified the process. In order to describe the mapping function, it is useful
to recall that CNL4DSA has been developed considering the design of XACML
constructs, thus it is possible to identify in each CNL4DSA statement the main
XACML elements:

– A subject element is the entity requesting the access. A subject has one or
more attributes.

– The resource element is a data, service or system component. A resource has
one or more attributes.

– An action element defines the type of access requested on the resource.
Actions have one or more attributes.

– An environment element can optionally provide additional information.

The mapping function implemented by the DSA Mapper is the results of two
sub-functions: the mapping function that considers all the rules in a DSA as
policies of a policy set, as it is defined in the standard XACML, and translate it
in UPOL language, and the BuildUPOL function that is able to build an actual
enforceable UPOL policy starting from the single policies output of the mapper
function.

The mapping function takes each basic fragment 〈s, a, o〉, where s identifies the
subject, a the action, and o the object (mainly the data which the DSA is referred
to), and puts each of this element into a UPOL policy by using the appropri-
ate tag, i.e., 〈subject〉 . . . 〈\subject〉, 〈action〉 . . . 〈\action〉, and 〈resources〉 . . .
〈\resources〉, respectively. These represent the elements of the UPOL target
(〈Target〉). All the contextual conditions expressed in CNL4DSA are mapped
into the tag 〈Condition〉. It is worth noting that even the attributes related to
both subject and resources are mapped into the tag 〈Condition〉, in such a way
to put all the contextual conditions under the same tag. This choice was made
because the executable policy structure reflects the one of the CNL4DSA state-
ment in which the conditions on subject, object, and environment are specified
all together into the context.

The BuildUPOL function takes in input the output of the mapping function,
i.e., the UPOL specification of each rule composing the DSA, to build a valid
UPOL policy. The BuildUPOL functionality is in charge of building the UPOL
policy skeleton, that represents the constant part of the UPOL policy. It is made
of:

A Declarative Data Protection Approach: From Human-Readable Policies 89

– the header of the policy comprehensive of:
• the namespace,
• the XML schema (version 3)
• name of the schema (XACML 3)
• name of the schema according to which the UPOL has to be validated
• the policy ID
• the combining algorithm (fist-applicable)
• version of the policy

– Three specific tags:
• 〈description〉, e.g., 〈xacml : Description〉 UPOL Policy 〈/xacml :

Description〉.
• 〈DSAID〉, e.g., 〈upol : DSA id〉 DSA-d75b9cbf-5893-4779-baf9 〈/upol :
DSA id〉.

• 〈Target〉, that is empty because each rule has its own target specification
with also the conditions (see below), e.g., 〈xacml : Target/〉.

– Default deny rule
– All the rules derived from the DSA. Note that rules are inserted into the

UPOL policy. According to the choice of applying the “first-applicable” com-
bining algorithm, the order in which rules are inserted into the UPOL policy
can follow a strategy. For example business reasons, regulations, personal
preferences.

4.2 UPOL Architecture

The UPOL reference architecture is depicted in Fig. 1. The figure shows how
the UPOL architecture interacts with a business software that involves the pro-
cessing of personal information, to offer its data protection functionalities. This
business software has at two main stakeholders of interest:

– a Data Owner that submits her/his personal data together with a DSA in
the controlled natural language CNL4DSA

– a Requestor that uses the functionalities of the business software and needs
to process a piece of information from the Data Owner.

The business software is only represented in its essential parts for the interaction
with the UPOL architecture:

– a Storage for storing personal information
– a component that is at the same time part of the business software and the

UPOL architecture, the PEP (later described).

UPOL originates from the XACML standard thus it inherits the XACML
main components for its reference architecture, however extending their func-
tionalities:

PEP. Policy Enforcement Point is part of a software system that intercepts any
requests to perform security relevant actions, thus triggering the autho-
rization decision process and enforces the results. In our UPOL design, it
is also in charge of retrieving the sticky policy bundle from the business
software storage (or data base) and to submit it to the PAP for reading
the contained policy.

90 F. Di Cerbo et al.

CH. Context Handler coordinates the communication and information
exchange among the components of the enforcement engine in order to
execute the policy evaluation process triggered by the PEP. In order to
deal with UPOL policies, this component has been enabled to manage
also the policy re-evaluation process which, instead, is triggered by a PIP
and involves also the SM component.

PDP. Policy Decision Point evaluates authorization requests according to the
applicable UPOL policies.

PAP. Policy Administration Point is in charge of retrieving applicable policies
for PDP evaluation. It is an important component especially when adopt-
ing the sticky policy approach, as it allows to read the policy included
in a bundle to permit its evaluation against the PEP request. It does so
by complementing the request, issued by the PEP, extracting the UPOL
policy from the bundle, and sending it to the CH.

PIP. Policy Information Point(s) retrieves all the necessary attributes of any
actor (subject, action, resource, environment) for enabling policy evalua-
tion. In order to evaluate UPOL policies, PIPs have been enabled also to
detect when the values of the attributes change for the purpose of calling
the CH to trigger the policy re-evaluation process.

The UPOL architecture also requires specific components, that are:

SM. Session Manager is responsible for tracking the usage sessions: a ses-
sion is established once an authorization request is permitted and the
associated operation is started. The session captures information about
the operation by storing all relevant meta-data. It allows the execution
of the continuous authorization phase, because it determines which ses-
sions need a re-evaluation of authorization policies as a consequence of
an attribute mutation, thus enabling the PDP to operate continuously.

OE. Obligation Engine is responsible for keeping track of obligation triggers
and executing the associated action(s).

MAP. The DSA Mapper is responsible for the transformation of a DSA
expressed in CNL4DSA format into a UPOL policy that is then asso-
ciated to a piece of information in the sticky policy bundle, and stored
in the business software storage according to its logic. Such bundle is
subsequently handled by the PAP when the piece of information is to
be used in order to extract such UPOL policy.

In our UPOL architecture, CH also implements an information exchange
between OE and SM, to enable the mentioned session obligations to be trig-
gered. The UPOL architecture is instrumental to the implementation of its new
obligations; they go beyond the capabilities of XACML/U-XACML and PPL.

Table 1 details the different types of obligations supported by our archi-
tecture: those defined by XACML/U-XACML, PPL and obviously, the newly
defined UPOL obligations.

The first row describes U-XACML obligations: they derive directly from the
standard XACML obligations and they are associated to an access request. They

A Declarative Data Protection Approach: From Human-Readable Policies 91

Fig. 1. The UPOL Reference Architecture, including the Mapper component to trans-
form CNL4DSA documents in UPOL policies. Information can be provisioned by the
Data Owner to the business software that uses the Mapper to obtain a sticky policy
bundle to be persisted. When a Requestor asks for a resource, the PEP issues a request
to the framework, in cooperation with the PAP that extracts the UPOL policy from
that resource bundle.

Table 1. Obligations part of an UPOL policy, as presented in [6].

Obligation type Reference event Obligation
action type

Obligation
enforcement

U-XACML pre- or post-
obligations

At the moment of
the request

Punctual
actions

PEP

PPL obligations Dependent or
independent from
access request

Punctual
actions

Trusted third party
(through UPOL
Mechanism)

UPOL session
obligations

At the beginning,
end or during data
consumption

Punctual or
continuous
actions

Trusted third party
(through UPOL
Mechanism) or
PEP

normally prescribe actions executed pre- or or post- an access request (“punctual
actions” in the table) and for this reason, they are normally referred as pre- or
post-obligations.

Second row is about PPL obligations. Differently from U-XACML, PPL obli-
gations are not (necessarily) associated to an access request (see Formula 5).
Their definition relies on triggers (see Formula 6) that may encompass a variety
of situations. Expiration of a retention period but also proximity to a specific
geographic location [7] are just initial examples of possible triggers. By defini-
tion, the enforcement of PPL obligations must take place reliably and certainly.
Considering this requirement, PPL states that a trusted third party, different
from Data Subject and Data Controller and trusted by both actors, is in charge
of automatic obligation enforcement.

92 F. Di Cerbo et al.

Lastly, the third row is about UPOL obligations. They can be defined
using the notion of session: UPOL defines three new event types StartAccess,
EndAccess and RevokeAccess that are part of UPOL triggers. Therefore, UPOL
obligations consider the different stages of a usage session work-flow to prescribe
the execution of specific actions. For example, a UPOL obligation can start at the
beginning of a data consumption operation and terminate at its end. We recall
that a (UPOL) session as managed by the Session Manager is created when an
access request is approved and the requestor (or an agent) notifies the begin-
ning of a resource consumption thus generating a session event StartAccess.
EndAccess obligations are triggered when the requestor interrupts a resource
consumption operation. RevokeAccess on the contrary occurs when a policy
violation is detected and a session is interrupted by initiative of the UPOL
mechanism (i.e., by initiative of the PDP).

As just presented, UPOL obligations differentiate from other obligations as
they can be used to execute continuous actions; they result effective for example
in streaming scenarios: showing banners during a video streaming, or to influence
Big Data streaming analytics computation. One last consideration about the
enforcement actor. XACML/U-XACML obligations are normally enforced at
the requestor’s end, by the PEP. PPL obligations, instead, are enforced by a
third party (for example, a cloud provider) trusted by data subject and data
controller. UPOL obligations are triggered by the Obligation Engine run by a
trusted third party but they may be also executed by the PEP, according to the
associated actions.

4.3 Comparison with the UCONABC Model

The UCON model defined by Park and Sandhu in [13] presents a number of
innovative features which enhances it with respect to traditional access control
models, namely:

1. the factors taken into account to carry out the decision process, besides tra-
ditional authorizations (A), include also obligations (B) and conditions (C).

2. the continuity of the decision: the policy can state that the access control
decision have to be made when the access request is received (like in tradi-
tional access control, pre), and/or have to be performed continuously during
object consumption (typical trait of UCON, ongoing).

3. mutability of attributes: are subject or object attributes changing following to
a decision? and when? This originates: immutable, pre − update, ongoing −
update or post − update models respectively for models where no attribute
changes are foreseen, updates takes place before, during or after an access
takes place.

We claim that the UPOL language proposed in this paper is capable of
implementing the typical features of the Usage Control model previously listed,
by leveraging:

A Declarative Data Protection Approach: From Human-Readable Policies 93

1. the native XACML constructs.
2. the constructs brought in by U-XAMCL.
3. the specific extensions offered by U-XACML combined with PPL: pre and

ongoing conditions can originate specific events to trigger the newly defined
UPOL obligations (synchronous and asynchronous).

Moreover, if used in conjunction with the sticky policy approach, UPOL
spans its scope beyond access and usage control, as UPOL obligations can be
triggered also without the reception of an access request. Such functionality is
particularly helpful in cases like GDPR’s data minimisation requirement, where
a piece of data may reside on the Data Controller cloud only for a limited amount
of time. Provided that a trusted third party runs a UPOL-aware enforcement
mechanism to control the UPOL-regulated data on the cloud, such requirement
may be fulfilled.

5 Use Case

Let us consider a simple e-commerce scenario involving three main actors: a
company, ACME, that plays the role of the data controller, as it is defined in
the GDRP, a customer of ACME, referred as Customer, that is the data subject,
and a third-party, a Marketing service, that is able to produce profiles of cus-
tomers and suggest marketing campaigns to ACME. The use case is depicted in
Fig. 2. The customer submits a set of personal data, such as, address, credit card
details, etc., needed by ACME to process her/his order. The treatment of such
personal data is regulated by a DSA expressed in CNL4DSA, stating precisely
data controller’s rights and obligations as well as the customer’s policies on her
data. Data submission and consent recording take place through a specific ser-
vice, called “Usage Control Service” (the proposed contribution, implementing
the UPOL reference architecture) in the figure, that:

– associates to the personal data, using the sticky policy model, a UPOL policy,
output of the DSA Mapper, that states in enforceable format the access and
usage terms defined in the Data Sharing Agreement;

– enforces the UPOL policy upon incoming personal data access requests;
– monitors usage of personal data, through interactions with the ACME infor-

mation systems, enforcing continuous authorizations as well as usage control
obligations.

When the third party uses the ACME information systems, they interact with
the enforcement system, creating requests to access the protected resources.
Information systems cater for a number of attributes that allow their requests
to be evaluated by the enforcement system, as well as providing indications about
the beginning and the end of information processing operations. The interaction
protocol between systems and enforcement also allows the interruption of an
operation, in case of changes in the evaluation conditions.

94 F. Di Cerbo et al.

Fig. 2. An e-commerce use case, extended from [6].

It is out of the scope of the current work to include a detailed analysis of the
interaction protocol and of the architecture of the enforcement system. Focus-
ing instead on the policy expression, it can be modeled as a (sticky) UPOL
Policy where a Rule with Target : subject role = marketing-third-party, contrac-
tor = ACME may access the data. The UPOL representation of (part of) such
policy can be found at Listing 1.1. Two conditions (pre and ongoing) control
the geographic location of the subject, provided by the information systems,
before and during the access in order to protect against data export clauses,
GDPR Article 49 (the UPOL policy in Listing 1.1 actually shows only the ongo-
ing condition, since the other is identical except for the value of DecisionT ime
that would be pre instead of ongoing). In CNL4DSA, these two conditions are
expressed through a CNL4DSA context hasLocation in case of pre condition
and hasContinuosLocation in case the context condition needs to be checked
ongoing. We can model the notification obligation by means of session obliga-
tions, triggered by StartAccess, EndAccess and RevokeAccess. In this way,
the beginning and the end of sessions can be recorded for future use. Last but
not least, each access of the third-party will trigger an email notification to the
data subject, in order to fully meet the transparent processing requirements. In
CNL4DSA, this rule is expressed as an obligation composed fragment in which
the simple fragment has as subject system and as action notifyByEmail. It
might be worth noting that other accesses performed by the data controller (as
the trigger of this obligation is on the fulfillment of the Rule that applies only
on requestors with role=marketing-third-party) will not trigger such notifica-
tion. Data minimization (with respect to retention directives) is also enforced by
means of a specific obligation to delete the data associated to the policy after 3
months from the moment when the personal data is received.

A Declarative Data Protection Approach: From Human-Readable Policies 95

Listing 1.1. UPOL Use Case.

1 <!−− DETAILS OMITTED −−>
2 <Rule RuleId=”Permission:Marketing−Third−Party” Effect=”Permit”>
3 <!−− XACML Target: ABAC check for attribute ’marketing−third−party’

↪→ of requestor

4 in the authentication system, i .e. role == ’marketing−third−party’
↪→ −−>

5 <Target>

6 <AnyOf>
7 <AllOf>

8 <MatchMatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
9 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#

↪→ string”>

10 marketing−third−party

11 </AttributeValue>

12 <AttributeDesignator
13 AttributeId=”urn:oasis:names:tc:xacml:2.0 :subject:role ”
14 Category=”urn:oasis:names:tc:xacml:1.0:subject−category:access−

↪→ subject”

15 DataType=”http://www.w3.org/2001/XMLSchema#string”

16 MustBePresent=”false” />
17 </Match>
18 </AllOf>

19 </AnyOf>

20 </Target>
21

22 <!−− Continuous Authorization: requestor must be in EU to process the
↪→ information −−>

23 <upol:Condition DecisionTime=”ongoing”>
24 <!−− Standard condition definition (with DecisionTime=”pre”) is identical

↪→ and thus omitted −−>

25 <xacml:Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−
↪→ equal”>

26 <xacml:Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−
27 one−and−only”>

28 <xacml:AttributeDesignator
29 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−

↪→ location”

30 Category=”urn:oasis:names:tc:xacml:1.0:subject−category:

31 access−subject”
32 DataType=”http://www.w3.org/2001/XMLSchema#string”

33 MustBePresent=”true”>
34 </xacml:AttributeDesignator>
35 </xacml:Apply>

36 <xacml:AttributeValue DataType=”http://www.w3.org/2001/
↪→ XMLSchema#string”>

37 EU</xacml:AttributeValue>

38 </xacml:Apply>
39 </upol:Condition>

40 <ob:ObligationsSet xmlns:ob=”http://www.primelife.eu/ppl/obligation”>

41 <ob:Obligation>

42 <ob:TriggersSet>

43 <!−− UPOL Session Obligations: trigger on each session event if

96 F. Di Cerbo et al.

44 evaluation result is ”Permit”−−>
45 <upol:TriggerRuleEvaluated FulfillOn=”StartAccess” Effect=”Permit

↪→ ” />
46 <upol:TriggerRuleEvaluated FulfillOn=”EndAccess” Effect=”Permit” /

↪→ >

47 <upol:TriggerRuleEvaluated FulfillOn=”RevokeAccess” Effect=”Permit”
↪→ />

48 </ob:TriggersSet>

49

50 <!−− Action : notify data subject to record an access for future
↪→ reference −−>

51 <ob:ActionNotifyDataSubject>

52 <ob:Media>Mail</ob:Media>

53 <ob:Address>customer.email@email.provider</ob:Address>
54 </ob:ActionNotifyDataSubject>

55 </ob:Obligation>
56 <!−− Obligation: delete after 3 months from information received −−>

57 <ob:Obligation>

58 <ob:TriggersSet>

59 <TriggerAtTime>
60 <!−− the trigger is set in 3 months time−−>
61 <MaxDelay>

62 <Duration>P0Y3M0DT0H0M0S</Duration>
63 </MaxDelay>

64 </TriggerAtTime>

65 </ob:TriggersSet>
66 <ob:DenyAllAndDeleteNow/>

67 </ob:Obligation>
68 </ob:ObligationsSet>
69 </Rule>

70 <!−− DETAILS OMITTED −−>

6 Conclusion

The attention given by online service operators to data protection, especially for
personal information, is constantly growing. Such trend can be explained also
by some recent changes in the legal framework that bring new requirements for
achieving full compliance. For example, the EU General Data Privacy Regulation
require significant changes in the way entities collect and process personal data of
EU citizens, anywhere in the world, but similar requirements are also requested
for operating in markets like Australia, China and Russia.

In this work we presented our proposal to address such new requirements.
It consists of an approach to data protection that uses data protection policies
to achieve such compliance, using as technical means, a combination of access
and usage control measures. Our approach foresees to facilitate the produc-
tion and human understandability of the data protection policies, by allowing
stakeholders to express them using a controlled natural language, subsequently
transformed into a new and automatically enforceable policy. To this extent, we
developed a new policy language, UPOL, as part of our commitments in the EU

A Declarative Data Protection Approach: From Human-Readable Policies 97

FP7 Coco Cloud project. Its main aim is to obtain a unique language that is
powerful enough to express legal, security, and privacy constraints in automati-
cally enforceable policies, focussed on the sharing and management of (personal
or otherwise sensitive) data over the Cloud. Now, our development continues
in the EU H2020 C3ISP project, extending data protection also to Big Data
analytics scenario, especially considering cyber security information sharing.

Our initial results count the implementation of a UPOL mechanism, capable
of enforcing automatically obligations as trusted element by data subjects, pro-
cessors and controllers. We managed to define UPOL policies that go towards
the fulfillment of some data controller obligations as stated by the GDPR. We
are currently working towards structuring and extending more our language, in
order to support more data protection use cases, looking at personal data but
also at more in general, confidential information especially in the cyber security
domain.

Acknowledgements. This work was partly supported by EC-funded projects Coco
Cloud [grant no. 610853] and by C3ISP [grant no. 700294].

References

1. Ardagna, C.A., et al.: Primelife policy language. In: W3C Workshop on Access
Control Application Scenarios. W3C (2009)

2. Caimi, C., Gambardella, C., Manea, M., Petrocchi, M., Stella, D.: Legal and tech-
nical perspectives in data sharing agreements definition. In: Berendt, B., Engel, T.,
Ikonomou, D., Le Métayer, D., Schiffner, S. (eds.) APF 2015. LNCS, vol. 9484, pp.
178–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31456-3 10

3. Carniani, E., D’Arenzo, D., Lazouski, A., Martinelli, F., Mori, P.: Usage control
on cloud systems. Fut. Gener. Comput. Syst. 63, 37–55 (2016). https://doi.org/
10.1016/j.future.2016.04.010

4. Coco Cloud Consortium: Coco Cloud website (2016). http://www.coco-cloud.eu
5. Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhanc-

ing XACML with continuous usage control features. In: Desprez, F., Getov, V.,
Priol, T., Yahyapour, R. (eds.) Grids, P2P and Services Computing, pp. 133–146.
Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6794-7 11

6. Di Cerbo, F., Martinelli, F., Matteucci, I., Mori, P.: Towards a declarative app-
roach to stateful and stateless usage control for data protection. In: Proceedings of
the 14th International Conference on Web Information Systems and Technologies,
WEBIST 2018, Seville, Spain, 18–20 September 2018, pp. 308–315 (2018). https://
doi.org/10.5220/0006962503080315

7. Di Cerbo, F., Some, D.F., Gomez, L., Trabelsi, S.: PPL v2.0: uniform data access
and usage control on cloud and mobile. In: Matteucci, I., Mori, P., Petrocchi, M.
(eds.) 1st IEEE/ACM International Workshop on TEchnical and LEgal aspects of
data pRIvacy and SEcurity, TELERISE 2015, Florence, Italy, 18 May 2015, pp.
2–7. IEEE Computer Society (2015). https://doi.org/10.1109/TELERISE.2015.9

8. European Parliament and Council: Regulation (EU) 2016/679 of the European Par-
liament and of the Council (General Data Protection Regulation) (2016). Accessed
27 Apr 2016. http://goo.gl/LfwxGe

https://doi.org/10.1007/978-3-319-31456-3_10
https://doi.org/10.1016/j.future.2016.04.010
https://doi.org/10.1016/j.future.2016.04.010
http://www.coco-cloud.eu
https://doi.org/10.1007/978-1-4419-6794-7_11
https://doi.org/10.5220/0006962503080315
https://doi.org/10.5220/0006962503080315
https://doi.org/10.1109/TELERISE.2015.9
http://goo.gl/LfwxGe

98 F. Di Cerbo et al.

9. Gambardella, C., Matteucci, I., Petrocchi, M.: Data sharing agreements: how to
glue definition, analysis and mapping together. ERCIM News 106, 28–29 (2016).
http://ercim-news.ercim.eu/en106/special/data-sharing-agreements-how-to-glue-
definition-analysis-and-mapping-together

10. Lazouski, A., Martinelli, F., Mori, P.: A prototype for enforcing usage control
policies based on XACML. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G.
(eds.) TrustBus 2012. LNCS, vol. 7449, pp. 79–92. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32287-7 7

11. Matteucci, I., Petrocchi, M., Sbodio, M.L.: Cnl4dsa: a controlled natural language
for data sharing agreements. In: Proceedings of the 2010 ACM Symposium on
Applied Computing SAC 2010, pp. 616–620. ACM, New York (2010). https://doi.
org/10.1145/1774088.1774218. http://doi.acm.org/10.1145/1774088.1774218

12. OASIS: eXtensible Access Control Markup Language (XACML) Version 3.0 (2010)
13. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM Trans. Inf. Syst.

Secur. (TISSEC) 7(1), 128–174 (2004)
14. Pearson, S., Casassa Mont, M.: Sticky policies: an approach for managing privacy

across multiple parties. Computer 44(9), 60–68 (2011)
15. Trabelsi, S., Njeh, A., Bussard, L., Neven, G.: PPl engine: a symmetric architec-

ture for privacy policy handling. In: W3C Workshop on Privacy and Data Usage
Control, vol. 4 (2010)

16. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy
specification of usage control. ACM Trans. Inf. Syst. Secur. 8(4), 351–387 (2005).
https://doi.org/10.1145/1108906.1108908. http://doi.acm.org/10.1145/1108906.1
108908

http://ercim-news.ercim.eu/en106/special/data-sharing-agreements-how-to-glue-definition-analysis-and-mapping-together
http://ercim-news.ercim.eu/en106/special/data-sharing-agreements-how-to-glue-definition-analysis-and-mapping-together
https://doi.org/10.1007/978-3-642-32287-7_7
https://doi.org/10.1145/1774088.1774218
https://doi.org/10.1145/1774088.1774218
http://doi.acm.org/10.1145/1774088.1774218
https://doi.org/10.1145/1108906.1108908
http://doi.acm.org/10.1145/1108906.1108908
http://doi.acm.org/10.1145/1108906.1108908

	A Declarative Data Protection Approach: From Human-Readable Policies to Automatic Enforcement
	1 Introduction
	2 Usage Control in Coco Cloud and C3ISP
	3 Background
	3.1 Controlled Natural Language
	3.2 Enforceable Policy Languages
	3.3 U-XACML
	3.4 PPL

	4 Our Data Protection Approach
	4.1 Mapping Function
	4.2 UPOL Architecture
	4.3 Comparison with the UCONABC Model

	5 Use Case
	6 Conclusion
	References

