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Abstract. For the most part, the first instances of microservice architectures have
been deployed for the benefit of the so-called Internet-scale companies in contexts
where availability is a critical concern. Their success in this context, along with
their promise to be more agile than competing solutions in adapting to chang-
ing needs, soon attracted the interest of very diverse classes of business domains
characterized by different priorities with respect to non-functional requirements.
Microservices embraced this challenge, showing a unique ability to allow for a
plethora of solutions, enabling developers to reach the trade-off between consis-
tency and availability that better suits their needs. From a design point of view this
translates into a vast solution space. While this can be perceived as an opportunity
to enjoy greater freedom with respect to other architectural styles it also means
that finding the best solution for the problem at hand can be complex and it is
easier to incur in errors that can put a whole project at risk. In this paper we review
some possible solutions to address common problems that arise when adopting
microservices and we present strategies to address consistency and availability;
we also discuss the impact these strategies have on the design space.

Keywords: Microservices architecture · Service-Oriented · Architecture ·
Software architecture

1 Introduction

All architecture is design but not all design is architecture. Architecture represents the
significant design decisions that shape a system, where significant is measured by cost
of change (Grady Booch as cited in [1]).

This citation ties together software architecture and design decisions. Implicitly
it also ties together software architectures and non-functional requirements since it is
obvious to anyone who has been involved in software development that the decisions for
which the cost of change is higher are the ones made to address this class of requirements
(think about improving the scalability of a system that has not been designed from the
start to allow for that). In this respect we can say that non-functional requirements are the
main drivers behind the design choices that shape a software architecture [2]. Howdesign
decisions and non-functional requirements play together in microservice architectures
is the main topic of this paper.
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Microservices architecture (or, simply, microservices) represent an architectural
style.

Architectural styles are about constraints [3], whichmeans that when an architectural
style is adopted the design decision space is constrained.

Service-Oriented Architecture (SOA) represent an architectural style as well, a more
generic one with respect to microservices in which the latter impose more stringent
constraints on loose coupling, remarking that each service can be developed, deployed,
and scaled independently, which is somehow related to the “products not projects”
characteristic from the often cited list composed by Lewis and Fowler [4].

Other kinds of SOA exist, of course, one that is often compared to microservices is
what in this paper is referred to as Enterprise SOA (E-SOA). The word enterprise here
suggests we are addressing architectures designed to support non trivial non-functional
qualities, since most enterprise software has to cope with consistency, availability, data
integrity, robustness, security and so forth (notice that in this paper availability will often
be used as an umbrella term encompassing related qualities such as performance and
scalability, the same applies to consistency that encompasses also the likes of integrity
and durability).

Most E-SOA solutions adopt some kind of support to ease many of the recurring
problems that arise when building critical distributed systems so it is no wonder that
many of these solutions are built on top of large platforms like JEE and .NET and
adopt infrastructure software systems and middleware services, an example being the
ubiquitous Enterprise Service Bus (ESB). Some of these solutions go as far as loading
the ESB with too many concerns, even moving part of the business logic in it, a practice
that created a bad reputation for a software component that, in some shape, is still needed
in modern microservice architectures (this will be discussed more in depth later in this
paper).

Using these combinations of platforms and infrastructure services implies that a set
of architectural choices are already embodied in the environment hosting the application
logic.

This approach is unusual formicroservices-based solutions that leverage the large dif-
fusion of enterprise-grade open source software proposing frameworks for various pro-
gramming languages, data management systems (relational databases, graph databases,
document databases, message brokers, …) and infrastructure services and integrates
them in various ways. As a result this opens up an array of choices when composing a
microservices solution.

The CAP theorem [5] states that in a partitionable system it is not possible to
achieve full consistency and maximum availability. Consistency and availability are
in fact the most exemplary contrasting non-functional requirements that large, multi-
user, distributed applications struggle with. In practical terms there is a price to pay in
consistency to achieve better availability (for example by embracing relaxed consistency
models like eventual consistency) and there is a price to pay in availability to achieve
better consistency (just think about the contention caused by locking).

We can think about the trade-off between consistency and availability as a slider that
moves between best consistency, no availability and best availability, no consistency. A
peculiar characteristic of microservice is the ability to allow the slider to be moved in
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one direction or the other on a service-by-service or even request-by-request basis. This
is something that is also possible with different approaches but at the expense of basic
internal qualities such as simplicity, understandability and maintainability.

This paper presents a brief list of recipes that can be used in a microservices archi-
tecture to find the best balance between these two forces but also analyzes these recipes
with respect to the impact they have on the design space. The dimensions of this
space we are more interested in, in the context of this paper, are: governance, develop-
ment, language (polyglot programming), data management (polyglot persistence) and
platform/infrastructure. A detailed discussion of these dimensions is presented in Sect. 5.

We could argue that the array of choices allowed by microservices should not be
intended as freedom that is here for the developers to take because of their personal
preferences (a narration often supported in IT social media), rather as an opportunity
to compose the right mix able to face the non-functional requirements needed by the
application under development.

Which brings us back to the citation opening this section: architectural errors are the
most costly ones, a project building on wrong architectural assumptions is hardly going
to become a success story. Developers embracing microservices should be well aware
of how their choices impact the non-functional qualities of their application and not be
fascinated by IT social media articles.

This paper is structured as follows: in Sect. 2 a simple, yet paradigmatic and ubiqui-
tous problemofmicroservices-based systems is introduced and a list of possible solutions
to address the problem is presented. Section 3 contains an analysis of these solutions
with respect to availability and consistency and a set of recipes to improve their ability
to better address these concerns. Section 4 discusses relevant dimensions of the design
space for microservices and how the aforementioned solutions impact them. Section 5
concludes the paper.

2 The Chain of Calls

Many aspects of a microservices architecture are impacted by non-functional require-
ments, however this paper focuses on a very simple issue that has the merit of being easy
to understand, frequent to encounter and still triggering several of the pain points asso-
ciated with many relevant design decisions. For each of these points, the best practices
facing them will be presented along with a discussion on how these practices impact
software qualities and design space.

This issue is here called the chain of calls. That name does not imply an actual
cascade of invocations but refers to dealing with a request coming from a client that
cannot be fully served by a single (micro)service in the system. From a conceptual point
of view that means that service A needs a capability exposed by service B which, at its
turn needs a capability exposed C and so on.

While this could very well happen with other architectural styles, the frequency of
chains of calls is greatly magnified with microservices for the simple fact that they are
micro, i.e. more focused on specific aspects of the domain so it is more likely that a
single request needs the cooperation of multiple services to be served.
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This is summarized by the following image, popularly known as the Microservices
Death Star, a microservice dependency graph for Netflix’s microservices as of 2012
(Fig. 1).

Fig. 1. The Microservices Death Star.

In E-SOA solutions most of the requests coming from clients are fully served by a
single service and, for the rare cases in which a cooperation between multiple services
is needed, most best practices suggest alternative ways of dealing with them (based on
asynchronous messaging) instead of using a chain of calls (and we will see that these
solutions work just as well for Microservices).

The section that follows presents some possible design alternatives that can be
adopted. In the subsequent sections, following the rationale exposed in the introduc-
tion, these solutions are analyzed with respect to two different viewpoints: availability
and consistency. A set of recipes to improve these solution’s ability to better address
these concerns is presented as well.

Running Example: When possible, a reference to the following elementary example
will be used in this paper: an e-commerce application receives a request to retrieve infor-
mation about a product including its description, price andwhether it is available in stock
(we can assume that a webpage for that product has to be presented to a user). Among the
various microservices presented in the system are the productsmicroservice (dealing
with the domain of products: their description, their price, …) and the inventory
microservice (dealing with stock management).

2.1 Chain of Calls: Design Alternatives

As previously discussed, the chain of calls describes a set of cascading logical depen-
dencies between microservices. This does not necessarily turn into an actual sequence
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of direct invocations. In fact, several strategies can be adopted to implement a chain of
calls.

Here we distinguish between two main approaches: one in which actual invoca-
tions are performed and one in which the interactions between dependent services are
decoupled (usually by using an asynchronous messaging infrastructure).

When actual invocations are performed we can further distinguish between
choreography-based solutions and orchestration-based solutions.

Consider the example introduced in the previous section. In a choreography-based
scenario, the external request is routed (usually by an API Gateway) to a microservice,
possiblyproducts since it has access tomost of the information that has to be returned,
then products invokes inventory to retrieve stock availability information, packs
all the data in a response and returns it to the external client (via the gateway).

This simple scenario can be expanded at will: service A calls service B that calls
service C that, depending on some logic decides to either call service D or service E and
so forth. This is a choreography: it defines a coordination process between peers in the
form of (observable) message exchanges. Each peer is responsible for generating the
correct messages depending on the current state of the process.

Orchestration-based solutions, instead, make use of an additional component: an
orchestrator that acts as a communication hub managing the interactions between
services.

Digression 1, in the Appendix contains a discussion on configurable orchestrators.
In our example the external request is routed to the orchestrator that callsproducts

to retrieve the product-related information, then calls inventory to retrieve the stock-
related information for that product, packs all the data in a response and returns it to the
external client.

Let us now see what options are available when using messaging-based solutions.
A very naive approach is to use asynchronous messages, possibly via a message

brokering infrastructure, to decouple requests and responses from both a spatial (and
possibly also a temporal) perspective: direct invocations are transformed in the emission
of command messages from the caller and the emission of corresponding response mes-
sages from the callee. Service providers consume command messages while consumers
consume response messages.

A peer-to-peer or an orchestrator-based approach can be adopted in this case as well,
with the obvious additional indirection caused by the messaging infrastructure.

These solutions, however, are just removing the physical coupling while fully main-
taining the logical one: the use of command messages in our example turns out to be not
much different with respect to the naive approach previously discussed: when prod-
ucts receives a request it creates a command message asking for stock availability,
inventory listen di this message are creates a reply message that is then consumed
by products.

Digression 2, in the Appendix contains a discussion on messaging and coupling.
More articulated solutions based on asynchronous messaging exist, while they have

been around for many years now it is with the advent of domain-driven design (DDD)
[8] that they found a conceptual framing. In DDD bounded contexts are used to separate
the conceptual areas of an application domain; bounded contexts are then usually refined
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into the main components of the resulting application architecture, since DDD suggests
that systems should be organized in a way that reflects the conceptual structure of the
domain.

One of the possible ways to enable integration between these components is that of
using asynchronousmessaging in the form of events and commands, specifically domain
events signal relevant occurrence in a domain whereas command messages are requests
targeted to a domain.

Bounded contexts are not refined into microservices (although it is easy to read
someone affirming the opposite, which is obviously wrong because of a granularity
mismatch) but this integration mechanism naturally fits microservice architectures.

Let us consider our example again: each time a stock availability value changes in
the inventory database, a domain event is published; products can, by listening
to these events, keep a local copy of the availability information that is synchronized
with that of inventory. With this approach the external request can be fully served
by products and the chain of calls is actually avoided. This is not always possible, for
examplewhen serviceAneeds a specific business function from serviceB, careful design
of microservices and related bounded contexts should however limit this eventuality.
This is a well-known approach in the E-SOA community and is gaining adoption in the
microservices community as well.

To summarize, here are the available options to implement a chain of calls:

• CC1. Perform direct invocation

– CC1.1. Use a choreography-based approach
– CC1.2. Use an orchestration-based approach

• CC2. Use messaging

– CC2.1. Use a choreography-based or an orchestration-based approach
– CC2.2. Use a DDD-inspired solution and actually avoid chaining microservices

3 Chain of Calls: Analysis with Respect to Availability
and Consistency

Wenow analyze the impact of the solutions presented in the previous sectionwith respect
to availability and consistency.

From an intuitive point of view the aim of this section is to show how the quality
slider moves when adopting a specific solution.

We also present known strategies that are usually adopted to improve the lim-
ited quality that naive implementations can express with respect to consistency and
availability.

Our analysis starts with CC1 (we collapse CC1.1 and CC1.2 here since we discuss
overlapping concerns).
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In CC1 direct invocations (synchronous calls) betweenmicroservices are performed.
From an availability point of view the impact of this solution is easily recognizable: the
external request can be served only if all the services involved in the chain are available
(for simplicity here we assume that no fallback policies are available): if the average
chain size is N and the average availability of each service is A, the overall availability
of the system cannot be more than NA, being N minor than 1 this obviously means that
the system is less available than its services. For example: if the average availability for
the services is 99.999% (also known as five-nines, a measure usually perceived as very
good for a real-world system) and the average chain length is 5, the resulting availability
will be 99.995%. That means an increase in downtime from 5min 15 s per year to 26min
17 s per year (which, for some classes of applications, could be unacceptable).

This very preliminary aspect, however, is largely overshadowed by a considerably
more serious one: what happens in the presence of failures/delays.

It is well known that in an IP-based network a crashed process is indistinguishable
from a slow one [6], in this context this means that when a response is not received
after sending a request to a service that is part of a chain, there is no way to know if a
response will eventually arrive or if the called service has crashed. To avoid for requests
to be pending indefinitely, the usual approach is to assume a failure after a timeout. The
duration of a timeout is usually determined with an heuristic taking into account the
trade-off between the risk of considering crashed a service that is actually running (and
maybe just experiencing a transient issue) or that of delaying for a long time a request
that has no hope to be fulfilled (with obvious negative consequences on availability). The
presence of a chain of calls exacerbates the problem of setting a reasonable time out since
the slowness of a service impacts all the services that precede it in the chain, so perfectly
healthy services can be assumed as crashed only because they are stuck waiting for their
dependencies to produce a reply. The current best practice for microservice architectures
(which usually employ some kind of virtualized infrastructure), stemming from the
empirical observation thatmost invocation issues are due to transient problems (topology
reconfigurations, virtual machine migrations, containers’ virtual network modifications,
garbage collection, etc.), is to set relatively short timeouts and perform retries.

Notice that retries are acceptable only when a system is designed to handle them,
that usually means that services that are subject to retries should be idempotent: multiple
invocations of the same request must lead to the same result; this can be achieved by
designing requests to respect this semantic (do not allow requests like “decrement bank
account by 10” but only requests like “set bank account to 1234”, but then the service
is exposed to unordered delivery issues) or by using some de-duplication mechanisms
for incoming requests. The practice of setting relatively short timeouts and perform
retries usually goes hand in hand with another practice that says that a service should
be terminated as soon as it starts showing signs of erratic/slow behavior and replaced by
existing replicas or newly created instances, an option that has been made possible by
modern virtualized infrastructures and containers-based solutions in which the cost (and
the time) of creating new service instances is minimized. To implement this approach, a
health monitoring infrastructure has to be put in place, the infrastructure should gather
health information from the services and interact with the network and the virtualization
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infrastructure to deal with the rerouting of messages to other services and failed services
re-instantiation.

Since most invocation errors are due to transient issues, a simple retry usually solves
the problem. There is, however, a minor but not insignificant number of cases in which
the timeout is due to a service that is slowing down but still has not been identified by
the health monitoring infrastructure and thus terminated. It is very well possible that the
service is in a recoverable state and that the slowdown is due to transient overloading,
swapping, garbage collection or similar issues. In those cases, however, retries are equiv-
alent to punching a boxer trying to get back to his feet: the amount of requests arises,
the service tries to fulfill them and slows further down, because of that the clients enter a
timeout-retry loop until the service eventually fails under the overwhelming load. This
could easily start a cascading failure effect that propagates to most (otherwise perfectly
healthy) services in the system.

Basic mitigations include the use an exponential backoff algorithm to continually
increase the delay between retries until the maximum limit is reached and back-pressure
measures: when a service is on the verge of being overloaded it starts rejecting requests
and sends failure responses signaling that the failure is not due to an error but to overload
(however this requires cooperation from the calling services that have to delay their
request even further or direct them to other replicas).

Circuit breaker [7] is a pattern vastly employed to improve stability and resiliency
in microservice architectures in the presence of direct service-to-service invocation.

A circuit breaker acts as a proxy for operations that might fail. The proxy should
monitor the number of recent failures that have occurred, and use this information to
decide whether to allow the operation to proceed, or return a failure immediately.

The behavior of the proxy can be easily described as a state machine that can be
closed, open or half-open. Details can be found in the aforementioned reference.

Another problem that can arise when dealing with multiple microservices calling
each other is related to resources management. Shared resources (such as connection
pool, memory, and CPU) when allocated to troubling connections (that suffers from
long response times or are engaged in a retry loop) risk to starve other concurrent
workloads. Bulkhead [7] is a pattern that suggests to partition service instances into
different groups, based on consumer load and availability requirements (so, for example,
a specific connection pool is used when communicating with a specific service, instead
of using a single shared connection pool).

All these mitigations are usually mixed and require that all services in the system
adopt the same policies with respect to them (imagine what could result if some services
perform retries while others do not, only some adopt circuit breakers and so forth) so
this has a huge impact in terms of governance.

Since it is not reasonable that all microservices deal independently with these recur-
ring issues (otherwise most of the code will be filled with timeouts and retries instead of
focusing on business logic) the usual solution is to move all the mentioned mitigations
outside of the main code. This can happen with an in-process or with an out-of-process
approach.
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With the in-process approach a library is used to deal with service-to-service com-
munications. A notable example is Netflix’s Hystrix1 that mixes the circuit breaker and
the bulkhead pattern (and, indirectly, retries) but there are many others (e.g. Twitter’s
Finagle2). Of course a project could decide to implement its own library.

With the out-of-process approach an external, but colocated, proxy is used. The
sidecar pattern [8] uses this approach, the sidecar usually also takes care of logging,
monitoring and configuration issues which is pretty natural when we realize that all the
requests are routed through this component.

The disciplined, consistent use of the sidecar pattern is at the roots of what is called
a service mesh which is defined as a dedicated infrastructure layer for handling service-
to-service communication [9]. A service mesh usually needs a lightweight virtualization
infrastructure (i.e. containers) and a virtualization orchestrator (like Kubernetes3) to be
deployed. This obviously results in stringent constraints associated to infrastructural
choices.

Whether a system really needs all of these mitigation strategies mostly depends on
the quality of service requirements that are imposed. It is important, however, to stress
that software engineers should always have full command on the trade-offs between
availability, constraints relaxation, and complexity of the systems. This means they
should be aware of which solutions can be adopted and understand their impact on the
overall architecture (which includes several limitations to the design space).

We now analyze how consistency is addressed when the chain of calls turns into
a sequence of direct invocations. In this case, in general, when the involved services
modify data, we are dealing with a distributed transaction. The usual solution to address
consistency in distributed transactions is the adoption of mechanism based on the two-
phase commit protocol. However, as the data management needs of Web 2.0 companies
shifted the focus from SQL and ACID to NoSQL and BASE [13], the microservices
community ismore interested in trade-offs inwhich a price is paid in terms of consistency
in order to achieve better availability. Two-phase commit is thus reserved to a very limited
number of critical requests (if any) whereas most of the requests are served with relaxed
consistency. Notice that two-phase commit is also very rarely adopted in E-SOA too,
where messaging-based solution are usually preferred.

In order to guarantee some degree of consistency, microservices-based solutions, for
the most part, adopted ad hoc solutions. These are colloquially known as feral concur-
rency control [15], that is application-level mechanisms for maintaining data integrity.
At least this has been the case since recently, before finally realize that what has been
done for twenty years now with E-SOA,WS-BEL and BPMNwas often a viable option:
explicitly identify choreographies/orchestrations and adopt long running compensating
transactions (LTRs, which have now being re-popularized under the Distributed SAGA
name in the microservices community, which is slightly inappropriate since in the orig-
inal proposal [16] a SAGA has specific characteristics associated to interleaving). The
basic idea is to define amechanism to reach a relaxed form of atomicity by compensating
the already executed steps of a transaction when the transaction itself fails.

1 https://github.com/Netflix/Hystrix.
2 https://twitter.github.io/finagle/.
3 https://kubernetes.io/.

https://github.com/Netflix/Hystrix
https://twitter.github.io/finagle/
https://kubernetes.io/
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A long running transaction can make use of a coordinator (orchestration approach,
which would be a natural mapping for CC1.1) or use a choreography approach (like
in CC1.2). This second option, however, can result in some very complex issues that
have to be dealt with: the state of the transaction is now a distributed state, in case of
failures we must ensure its consistency (something that can be achieved using a robust
distributed logging infrastructure). That also means we have problems with visibility
and monitoring. This complexity usually leads to the adoption of orchestration-based
solutions when consistency is a concern. In order not to compromise the reliability and
availability of the system, the orchestrator, usually called the coordinator in this context,
should not be a single point of failure and should be highly available (which adds to the
overall complexity of the system).

See Digression 3 in the appendix for a discussion on configurable orchestrators and
compensating transactions.

To summarize: the CC1 solutions needs quite a lot of effort to address high avail-
ability, mainly in the form of mitigation strategies associated to the issues related to the
fail fast/retry policies. When this is done, microservice architectures have shown to be
able to achieve very high levels of availability when adopting this kind of solutions (this
is, for example, the case of Netflix).

On the consistency side, things are more blurred: strong consistency is expensive
and is reserved for a limited number of critical requests; a relaxed form of atomicity is
achievable by using long-running transactions (but with costs that are usually too high
to justify when adopting CC1.1).

We now put CC2 under our microscope: these are solution based on asynchronous
messages. The analysis of CC2.1 is quite straightforward: this is a solution of limited
applicability since it does not improve significantly over its synchronous choreography
or orchestration-based counterparts but it does add significant complexity, more so in the
choreography case, which really makes the orchestration-based approach the only viable
solution. In this setup the orchestrator becomes an asynchronous message coordinator
and, besides the obvious considerations related to this fact, the analysis presented for
CC1.2, from both a consistency and an availability perspectives, holds here too.

Much more interesting is the case of CC2.2. To better focus the problems raised by
this solution let us get back to the e-commerce example: the adoption ofCC2.2 in this case
corresponds to implementing the inventory microservice in such a way that, when
an availability update is persisted in its local database, a domain event is contextually
produced. The products microservice listens for these events and updates its own
copy of the stock availability accordingly.

With no further measures, this results in a system with no consistency guarantees
of any kind: if the inventory microservice crashes after updating the database but
before producing the domain event, the copy in products will not be reconciled.

Notice that this may very well be fully acceptable. A one-in-a-million error related
to stock availability for a B2C e-commerce site can be just fine. But the same could not
apply to a B2B site used by hospitals to acquire life-saving medicines.

Strong consistency, in this scenario, requires that whenever a domain event related
to the modification of some information is generated, the persisting of this modification
in the originating microservice has to be part of a distributed transaction in which the
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persisting of the local copies in all interested microservices participate. In general that
turns into a distributed transaction (the domain of two-phase commit), which would
impact availability (specifically performances and scalability) so severely to restrict
strong consistency to a very limited subset of selected operations. The highest level of
consistency for general operations in this scenario, in fact, is usually eventual consistency
which means that is assumed that, if no new updates are made to a given data item,
eventually all accesses to that item will return the last updated value [14].

While opting for a relaxed form of consistency can be perceived as just adding a
little more complexity, things can be more convoluted than that: to guarantee eventual
consistency the database update and the generation of the domain event in the inven-
tory microservice have to be atomic. There are a few solutions to achieve this, the
easier one is to let the local database and the message queue participate in a multi-party
atomic transaction (which is not necessarily a distributed one because they can both be
local to the node hosting the inventory microservice). This, however, requires that
the message broker supports atomic transactions, and the same applies to the database.

Enterprise-proof solutions to manage asynchronous messaging with transactional
support have been around for a long time, they usually take the form of products present-
ing themselves as message queues or message brokers. But a new class of messaging
management solutions is on the rise, an evolution that is similar TO the affirming of
NoSQL and BASE in the persistence management domain. An example of the new class
of messaging platforms is Apache Kafka [10], while other similar solutions are available
we will mainly refer to Kafka as a paradigmatic instance of this new class. Kafka is pre-
sented as a distributed streaming solution, what makes this different from usual message
queuing systems is persistence: events that are produced before a consumer is registered
can still be retrieved. The main design goal in Kafka is clearly scalability but its wide
adoption and its ease of use (along with its low cost, being an Open Source software
solution) is extending its application domain to areas characterized by a large amount
of events to process but also by stringent consistency requirements (like financial appli-
cations). Stringent consistency, however, usually implies integrity and atomicity and,
while Kafka does support transactions, these transactions can be used to guarantee an
exactly once delivery semantic but neither integrity nor atomicity (recovery logs are
written asynchronously and particular failure patterns can lead to data loss).

Similar considerations can be extended tomost NoSQL databases: ACID transaction
are usually not supported whichmeans that most combinations of messaging/persistence
solutions adopted in microservices does not allow multi-party atomic transactions.

Ad hoc solutions to guarantee atomicity without multi-party atomic transactions
do exist but are complex, brittle, need message deduplication support from listeners
and, of course, still need some kind of transactional support from the database and/or
the message broker. They are essentially an instance of feral concurrency control: for
example the database can be used to record the produced domain events in the same
transaction in which the update is performed (allowing the implementation of a form
of checkpointing) or, conversely, the message queue can be used to store updates and
let the service itself update the local database by consuming the same change events it
produced (notice however that these are no more domain events, since domain events



50 D. Rossi

refer to something that has already taken place in the domain, which breaks some of the
basic semantic assumptions in DDD).

From an availability point of view CC2.2 can be seen as an improvement over
CC1 solutions under most real-world circumstances: to refer to our example if read
requests are more frequent that write requests (i.e. users access product pages more
often than they finalize purchases) most request can be served by only interesting the
product microservice at the expenses of an event being generated by inventory
(and processed by product) at purchase time. Asynchronous messages also promote
decoupling between microservices easing the implementation of tailor-made scalability
policies.

To summarize: CC2.2 is possibly the best option to meet stringent availability con-
straints (at the expense of an added complexity due to the managing of an asynchronous
messaging infrastructure) but addressing consistency can be a problem: strong consis-
tency can be an option only when serving a minority of the received requests and even
eventual consistency adds relevant complexity and poses a relevant number of constraints
with respect to the choice of messaging and persistence management infrastructure.

An interesting point that deserves to be emphasized is that an application built on
microservices does not need to choose one of the CC solutions we presented but can
mix them together and decide to adopt different consistency models depending on the
specific task at hand, for example an e-commerce application can use a best effort
approach for stock availability (e.g. CC2.2 with no consistency guarantee) until the user
decides to finalize a transaction in which case strong consistency is used (e.g. CC1.1
with transactional guarantees) to verify the actual availability of the products.

It is also interesting to note that, as previously discussed, not all requests can be served
with relaxed consistency, even in contexts with a large amount of potential clients (and
thus with strong availability concerns). This is the case for domains like stock trading,
gambling, micropayments and so forth. A very active stream of research focuses on this
challenge, for example improving the availability of databases combining the ACID and
the BASE models with modular concurrency control, like the SALT proposal [11].

4 Design Space Dimensions and Solutions Impact

In this section we detail some of the axis related to the design decision space that
characterize the adoption of amicroservices architecture and analyzewhich is the impact
they have on the solutions presented in the previous sections. Of course there are other
dimensions that could be discussed but are not presented in this paper, the collection we
propose is mainly based on characteristics that are usually depicted as characterizing for
microservices.

Governance is about policies. Policies are pervasive and can touch almost every
aspect of software development and operations. E-SOA projects are usually charac-
terized by a strong governance in which several aspects of the services (from both a
design-time and a run-time point of view) are asserted and enforced. A bad manage-
ment of governance, focusing only on collecting the larger possible set of policies, can
actively inhibit change. Unfortunately far too many large E-SOA projects suffered from
this problem. Microservices bring the promise of decentralized governance: centralized
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governance is perceived as an overhead that should be avoided by supporting service-
specific governance and intra-service contracts (which can be promoted by using patterns
like tolerant reader and consumer-driven contracts).

Development: microservices and agile programming have always been tightly coupled.
The main reason behind that traces to the fact that to minimize the coupling between
microservices they are usually developed as separate products. That translates to separate
development projects and it is not unusual to have tenths if not hundreds ofmicroservices
in a single system. That calls for development methods with minimal overhead and agile
programming is undeniably the best option.

In this respect, when we discuss development freedom we do not intend the freedom
to choose between agile or structured approaches but the freedom to adopt different
practices within an agile context. Most notably these practices could change between
the projects of different microservices within the same application.

In this respect, then, the development category here is just a subset of governance. But
since it receives significant interests from the microservices community it is presented
separately.

Language: polyglot programming [6] has always been a strong selling point for
microservice architectures. Since each microservice is a separate product, it can be
developed with the language perceived as the most fitting to solve the specific problems
that microservice has to address. This could easily result in an application developed
with an array of different languages.

Data Management: just like polyglot programming, polyglot persistence [7] too has
always been linked with microservices. A basic characteristics in SOA is that services
should be autonomous and thus should take care of their own data. This is reflected
in microservices at the conceptual level, where each microservice defines its own data
model, but also at the implementation level, where it has the opportunity to select the
most appropriate data storage solution.

Platform/Infrastructure: JEE and .NET provide well-defined ecosystems composed by
libraries, frameworks and infrastructure services. Microservices can choose à la carte.
An array of options is available, which is also possible thanks to the wide diffusion of
enterprise-grade open source software.

It is easy to realize that most of the solutions (and mitigations) proposed in the
previous sections have a large impact on these design dimensions. What follow is a brief
analysis on what this impact is on a dimension by dimension basis.

Decentralized governance is affected by the adoption of policies to be applied to all
(or most of the) microservices. This is for example the case of the fail fast/retry practice
presented when analyzing CC1.1. We already discussed that it is not reasonable to think
that different microservices use different strategies in this respect. When adopting the
in-process solution this also immediately affects language: when libraries are used the
languages to develop themicroservices can only be the ones the libraries support. Human
factors affect the choice of languages too: it is not unusual for a microservices-based
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application to be composed by tens of different microservices. Each microservice has
its own development project with its development team. With disjoint teams this could
imply a number of developers that only the likes of Amazon and Google can afford.
In most circumstances development teams are not disjoint: it is usual for a developer
to be part of the teams allocated to four or five microservices. Having microservices
written in different languages limit the ability to allocate available developers since it is
not realistic to ask developers to wear the Java hat in the morning when they work on
microserviceA andwear the Python hat in the afternoonwhen allocated to service B. The
same applies to different software development practices like pair programming, code
reviews, coding styles and so forth. In this sense the human factor is what, in practice,
dooms most dreams of decentralized governance.

Datamanagement canbe impactedwhen consistency requirements need somekindof
transactional support, de facto excludingmostNoSQLdatabases.However, as previously
discussed, a single microservices application can adopt different consistency levels, thus
different data management solutions can indeed be mixed but great care has to be taken
to correctly identify whether a microservice is involved or not in requests with stringent
consistency requirements.

As for platform/infrastructure, considerations similar to the ones expressed in respect
to language can be proposed: it is not reasonable to think that eachmicroservice reinvents
the wheel and that infrastructure services are always written from scratch. The decision
to embrace a specific event-based framework rather than a specific message broker,
however, is not usually made (or at least it should not, to avoid the risk of having to
re-think that decision later) simply because of a preference in the programming model
or languages supported but first and foremost because of the guarantees that this solution
provides in terms of non-functional dimensions.

The adoption of a messaging middleware to support asynchronous message-based
solutions also impacts language: while database access drivers are usually available for
a plethora of languages, messaging solutions are often restricted to a few languages (or
even one).

Another impact of infrastructural decisions is due to the out-of-process mitigation
strategies exposed in Sect. 3, from the large impact due to the adoption of a service mesh
to the minor, but diffused impact of monitoring and logging solutions.

To summarize our analysis we could say that the design space for microservice
architectures is indeed a large one. However, as soon as we start introducing strate-
gies to improve availability and/or consistency, this space shrinks. This outcome is not
unexpected since we know that non-functional requirements are the main driver behind
software architectures.

The last part of this section deals with another aspect related to design space dimen-
sions: the social one. In the social network era it should be no surprise that software
developers tend to form an opinion on technological matters by reading IT social media.

But today’s IT social media is flooded with narrations of microservices being the
one solution that can bring freedom in software development when developing criti-
cal distributed applications, shadowing many of the complex issues that these systems
unavoidably embody.
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The scientific community is severely lagging behind in this evolution, while it is true
that most of the basic mechanisms in what are proposed as modern solutions to these
issues have been well known for dozens of years, it is also true that mixing the same
ingredients in different doses and with different seasonings can result in a completely
different experience. This results in insufficient support to practitioners who are left with
no authoritative references when gathering information meant to inform architectural
decisions.

Many of the solutions presented in this paper are complex. All this complexity should
be no surprise to anyone with a strong background on distributed systems. The real issue
is the number of developers with no, or very limited, distributed systems background
who joined the microservices bandwagon, fascinated by a narration of freedom and
complexity-free solutions. They design their systems without really understanding all
the intricacies of a distributed system and they do not realize about the problems until
they are in production. Finally, they understandwhy the very definition of an architectural
error is an error that is costly to fix.

5 Conclusions

Microservice architectures can be built on top of very diverse foundations: different
languages, different data management solutions, different interaction patterns and so
forth. From a software developer point of view this results in a large decision space,
allowing the design of applications able to meet a large spectrum of non-functional
requirements (summarized in this paper with consistency and availability). A peculiar
characteristic of microservices is the ability to adjust the availability/consistency slider
on a service-by-service or even request-by-request basis, something that is possible also
with different approaches but paying a price in terms of internal software qualities.
Unexpectedly, as soon as we start to improve availability and/or consistency our design
space dimensions are more and more constrained. Moreover, complexity creeps in, from
both a software design and a system maintenance point of view.

All modern software development methods underline the importance of a risk-driven
approach [12]: critical decisions should be taken as soon as possible during the develop-
ment process in order to avoid the need to reconsider them later, which is not just costly
but is something that can lead the whole project to a failure.

Developers adopting microservices should be very aware of that: the idea of starting
with “something that works” and later “add on top availability and/or consistency” is
always wrong.With microservices it is even worse. In practical terms this means that the
first thing to do in a microservices-based software project is to clarify the needs in terms
of non-functional requirements, decide the strategies to adopt to meet the requirements,
understand how the design space changes on the basis of this adoption and pick a solution
that is compatible with this design space.

At the end of the day non-functional requirements shape a software architecture. It
has been like that for the whole history of software engineering, it is not going to change
with microservices.
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Appendix

Digression 1: The orchestrator is a microservice, which translates in yet another devel-
opment project to maintain. Even with the minimal overhead imposed by agile meth-
ods the explosion of the number of projects can be troublesome. For this reason (and
to improve time-to-market) several approaches based on configurable microservices
orchestrators are starting to appear, in some sense we are witnessing the (dreaded)
orchestrationmiddleware fromE-SOAmaking its appearance in disguise in themicroser-
vices world. Examples include Netflix’s Conductor4 (which uses a proprietary DSL) and
Zeebe5 (which uses BPMN).

Digression 2: the indirection caused by a messaging infrastructure in often mistaken by
logical decoupling. It is true that with these solutions you could, for example, run each
component in isolation and that changes in a component providing a function through
messaging to another does not imply a change to the latter (which is an usual definition
of dependency) but still a malfunction is going to happen so a form of coupling is
present. This is because messaging based solution imply a form of hidden interfaces
in which a logical dependency still holds between components but interfaces cannot
be used as contracts to certify them. This could be summarized in the observation that
message-based solutions are more flexible but the price to pay for that is maintenance.

Digression 3: enhancing existing configurable orchestrators with long-running trans-
action support seems like a reasonable option. This would essentially result in BPEL
for microservices. To the best of the author’s knowledge no product able to do that is
currently available (albeit Zeebe seems a good candidate), it will be interesting to see
what the future holds in this respect.
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