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Abstract. Functional, structural and operational testing are three
broad categories of software testing methods driven by the product func-
tionalities, the way it is implemented, and the way it is expected to
be used, respectively. A large body of the software testing literature is
devoted to evaluate and compare test techniques in these categories.
Although it appears reasonable to devise hybrid methods to merge their
different strengths - because different techniques may complement each
other by targeting different types of faults and/or using different arti-
facts - we still miss clear guidelines on how to best combine them.

We discuss differences and limitations of two popular testing
approaches, namely coverage-driven and operational-profile testing,
belonging to structural and operational testing, respectively. We show
why and how test coverage and operational profile can cross-fertilize each
other, improving the effectiveness of structural testing or, conversely, the
product reliability achievable by operational testing.

Keywords: Software testing · Reliability · Structural testing ·
Operational testing

1 Introduction

Testing is an essential part of the software development and maintenance pro-
cesses. It consists of the dynamic assessment of software behavior on a finite
sample of executions. To make testing systematic and to measure progress while
tests are executed, some strategy is necessary. It will help testers to keep costs
within reasonable bounds and to identify those test cases deemed the most
effective.

Broadly speaking, systematic testing strategies are driven by three major
aspects of the software under test (SUT): (i) what it is expected to do, (ii) how
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Fig. 1. Test strategies and their potential relations.

it is implemented, and (iii) how it will be used. Such three aspects correspond to
three major categories of software testing techniques, namely functional, struc-
tural and operational testing (Fig. 1).

Each category relies on different assumptions and artifacts, and a broad vari-
ety of techniques and tools for each one has been proposed.

Since the early years of software testing discipline, researchers have conducted
analytical and empirical studies to evaluate and compare the effectiveness of the
different test techniques, in search for the most cost-effective approach.

From such studies we have learned that testing techniques may suffer from
saturation effects and from various other limitations, and that there exist no one
technique which best suits all circumstances. Different test techniques target
different types of faults and thus may complement each other. For this reason,
it is reasonable to invest resources by properly combining different techniques,
rather than employing all the testing budget in only one selected strategy.

However, there are not many proposals for hybrid techniques merging the
respective strengths of functional, structural and operational testing (examples
are [7,8,10]), and no widely accepted guidelines on how different methods could
be combined into one effective strategy are available. Further research is needed
to understand how such strategies could be combined, depending on the testing
purpose and the available artifacts.

As a step forward in this direction, we discuss the differences and respective
limitations of two popular testing approaches: techniques driven by code coverage
information, and techniques driven by the operational profile. Traditionally these
two test approaches are adopted to address different purposes: coverage-driven
testing aims at finding as many faults as possible, whereas operational-profile
driven testing aims at improving software reliability. So, apparently, they seem
to belong to two worlds apart, and in fact there is little overlap between research
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progresses. However, we have found that on the one side coverage criteria can be
made more effective if not all entities are considered equal, but software usage in
operation is referred to assign them different weights. On the other side, software
reliability testing can be made more effective as well if coverage information is
considered alongside the operational profile in selecting the test cases.

Our reported results provide only an incomplete vision of several other poten-
tial “hybridizations”. For instance, we have not considered yet the usage of
functional strategies where software specifications or models are available. In
presenting how coverage criteria and reliability improvement can benefit each
other our contribution is one step towards unleashing the potential of many
more useful combination of techniques.

The chapter is structured as follows. Section 2 describes the main concepts
of test coverage and related measures in debug testing. Section 3 presents the
rationale behind software reliability testing techniques. Section 4 discusses the
relationship between coverage and reliability, and how these can benefit each
other. Section 5 describes related work on combining white-box and operational
testing. Section 6 concludes the chapter.

2 On Test Coverage Measures

Software testing can pursue different goals. Along the development process, test-
ing may aim at detecting as many faults as possible so that these can be removed
before the software goes in production. For this reason, this type of testing is
referred to in the literature as debug testing [15].

Measures of effectiveness of debug testing techniques are related with its
faults finding capability. For example, a test technique would be evaluated more
effective than another if it detects the first fault by executing a lower number of
test cases, or otherwise if by executing an equal number of test cases the former
finds a higher number of faults than the latter.

Along such line of reasoning, measuring the coverage of which and how many
program elements are exercised during test execution is seen by many as an
appealing proxy for assessing fault finding effectiveness. The intuition is that if
a fault resides in a part of code that is never tested, such fault would never be
activated and hence would survive testing, probably remaining undetected until
the final user will eventually trigger it. In his seminal and highly-referenced
book on “Software Testing Techniques” [3], Beizer defined leaving parts of code
untested as “stupid, shortsighted and irresponsible”.

Depending on which elements of code are targeted, in the years a broad vari-
ety of test coverage criteria have been proposed [16,47]. All of them basically
share the following scheme: an element of the program source code is identified
as the type of entity to be covered. This element can be as basic as every state-
ment or every branch of the program control flow, or become more sophisticated,
such as for example every association between the definition of a variable and all
its potential usages, for every variable in the program (all definition-use associa-
tions [16]). Then the source code of the SUT is parsed and instrumented, so that
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the coverage of the targeted elements can be monitored during testing. While
test proceeds, a quantitative assessment of the thoroughness of testing is pro-
vided by the ratio between the number of entities that have been already covered
and the cardinality of the whole set of entities, expressed by the percentage:

Test coverage =
# of covered entities
# of available entities

· 100(%). (1)

The underlying idea of coverage criteria is that until there remain entities
that have not been exercised, the testing cannot be deemed complete, and more
test cases have to be executed that can increase the above ratio. Therefore,
coverage measures provide both a practical stopping rule (when a satisfying
coverage is achieved), and a guide for the selection of additional test cases (i.e.,
those covering yet uncovered entities).

There exist no proven direct relation, for any of the existing criteria, that
when complete test coverage is achieved, then the SUT can be guaranteed to
be defect-free. Since testing is essentially a sampling from a practically infinite
set of executions [4], it is obvious to everyone that no finite test campaign can
ensure correctness. Indeed, the most famous quotation about software testing is
probably Dijkstra’s aphorism that software testing can only show the presence of
bugs, but never their absence [13]. In search for more effective testing strategies,
the realistic goal is not to remove all faults, but rather to maximize the likelihood
of revealing potential failures.

Coverage criteria can be considered as belonging to partition testing strate-
gies that divide the input domain into equivalence classes (even though they
generally create overlapping subdomains and not true partitions), and ensure to
pick representative test cases (at least one) from each class. Theoretical analy-
ses of partition testing strategies [44] have early shown that their effectiveness
depends on how and where the failure-causing inputs are located, which is of
course beyond testers’ control and knowledge. The root of the problem is what
Roper called the “missing link”: we still cannot (will we ever be able to?) estab-
lish a logical or practical “link between the adequacy criteria and attributes of
the program under test such as its reliability or number of faults” [37]. Thus,
the only way to establish whether a relation exists between coverage of some
entity type and fault finding effectiveness is through empirical studies, and in
fact a series of such studies has been and continues to be undertaken by several
researchers, e.g., [23,43], but no definitive answers are available yet.

More properly, we must understand that what coverage measures provide us
is an assessment of a test suite thoroughness. At the same time, some researchers
have raised concerns against misusing coverage as the main goal of testing [18,27].
In such light, additional test cases that donot contribute to increase coveragewould
be considered “redundant” and not useful, however such test cases could indeed be
able to catch still undetected faults. We should also never forget the cost in terms of
time consumed in monitoring coverage, which makes white-box testing impractical
on large scales [21].
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In conclusion, coverage criteria provide a very useful and practical means
towards systematic thorough testing. However, “100% coverage should always be
the result of good testing but it makes few sense as a goal in itself ”[36].

3 On Software Reliability

Testing to find as many faults as possible may seem a good strategy. However,
in real-world production we have to face stringent time and budget constraints,
which make Herzig note that “There’s never enough time to do all the testing
you want” [20]. Henceforth, this strategy could not be the best choice.

The point is that debug testing targets all faults indiscriminately, without
considering the important difference between a fault (the cause) and a failure (its
manifestation), nor the likelihood and potential impacts of the failure originating
from a given fault. Indeed, not all faults are created equal. An early seminal
study by Adams [1] showed, for example, that the 30% of the faults found in the
systems he studied (at the time in IBM production) would each show itself less
then once every 5,000 years of operational use. Clearly any testing effort spent
to find these “tiny” faults would not be well employed.

This brings us to the fundamental concept of software reliability, which is
“the probability of failure-free operation for a specified period of time in a spec-
ified environment” [24]. When the SUT is not safety-critical, testing to improve
software reliability may be a more convenient aim than debug testing: in other
words, we acknowledge that we would never be able to find all faults, and aim
at focusing our efforts towards those ones whose removal mostly contributes to
increase reliability.

Pioneered in the 70’s by Musa [30], software reliability testing is based on the
notion of the operational profile [31,40], which provides a quantitative charac-
terization of how a system will be used in the field. In operational profile-based
testing (OP testing in the following), the SUT is thus tested by trying to repro-
duce how its final users will exercise it, so that the failures are detected with the
same likelihood they would be experimented by those users in operation.

The operational profile is normally built by associating the points in the
input domain D with values representing the probability to be invoked in opera-
tion. Making such association is a difficult task; the best case is when historical
data are available, otherwise this can be done by domain experts. Usually, D is
divided into M subdomains D1, . . . , Dm, so that the inputs within a partition
are estimated as having the same probability of occurrence in operation. The
operational profile is then defined by a probability distribution over the parti-
tions Di: a value pi denotes the probability that in operation an input is selected
from Di, with

∑M
i=1 pi = 1. The software reliability, R, can then be defined [15]

as:
R = 1 −

∑

t∈F

pt (2)

where F is the (unknown) set of failure-causing inputs and pt is the expected
probability of occurrence in operation of input t.
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OP testing has been shown to be an effective strategy, both in theory [15]
and in practice, e.g., [14,42]. With this strategy, when the test is stopped (for
instance because of imperative schedule constraints) and the software released,
testers are ensured that the most-frequently invoked operations have received
the greatest attention, so that the delivered reliability is at the maximum level
achievable under the given test resources [26].

However, OP testing faces difficult challenges that may hinder its broad take-
up: first, an operational profile may not be readily available and its derivation
can be costly and complex [22]; second, as more frequent failures are detected
and removed, the application of OP testing may progressively lose efficacy.

The latter problem is known as the saturation effect [22]. Actually, it is not
a prerogative of OP testing, but could affect any test technique. To counter-
act saturation, research has shown that it is convenient to always consider a
combination of different testing strategies, which target different types of faults
and can together achieve higher effectiveness than the individual application
of the most effective technique [25]. Considering specifically reliability improve-
ment, the authors of [11] suggest that the combination of techniques should aim
at exposing failures with high occurrence probability, but also as many failure
regions as possible.1

4 How Are Coverage and Reliability Related?

4.1 Ways of Combining Coverage Measures and Operational Profile

In the previous sections we have overviewed two widely used testing strategies,
which employ different techniques and pursue different goals. Indeed, coverage
testing and OP testing have formed two separate threads of the software testing
literature, with little overlaps (see Sect. 5).

In recent work, we have addressed the question whether and how coverage
and OP testing techniques could mutually benefit each other towards the goal
of increasing software testing effectiveness for reliability improvement. Indeed,
we have achieved encouraging results in either directions.

On the one hand, we have found that coverage testing can be made more
cost-effective if not all entities are indiscriminately targeted, but a subset of
entities is selected based on their relevance for the final user. In other terms, we
have somehow embedded a notion of operational profile within the definition of
coverage measures. This research has been presented in [29], and is summarized
in Sect. 4.2.

On the other hand, we have found that using coverage information can help
prevent the saturation effect of OP testing and achieve higher effectiveness in
reliability improvement. In other terms, to further improve reliability beyond a
certain point, within a selected input subdomain the testing should target those
entities that are the most rarely covered. This research has been presented in [5],
and is summarized in Sect. 4.3.

1 A failure region is the set of failure points eliminated by a program change [15].
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4.2 Mimicking Operational Profile by Means of Coverage Count
Spectrum

The leading idea of OP testing is exercising the SUT in similar way to how their
final users would do. OP testing is inherently a black-box technique, since it
disregards the SUT internal structure. Conversely, in coverage testing, a tester
tries to exercise the SUT thoroughly without leaving parts untested, no matter
of whether and how final users will exercise them. One attractive feature of
coverage testing is the availability of a simple and intuitive stopping rule, which
is provided, as said, by the coverage measure. On its side, OP testing lacks such
a straightforward adequacy criterion.

In traditional coverage testing, while testing proceeds each entity is marked
as covered or not covered, i.e., from monitoring code coverage testers derive
the so-called hit spectrum. In general, a program spectrum [19] characterizes
a program’s behavior by recording the set of entities that are exercised as it
executes. The hit spectrum, in particular, records if an entity is covered (“hit”)
or not. When used in operation, the different program entities will be covered
with different frequencies. Some entities will never be exercised, others will be
accessed only few times, and others will be covered very frequently. The hit
spectrum does not give any information about this varied usage of program
entities, beyond revealing that some entities have never been exercised and hence
are probably “out-of-scope”. Conversely, the count spectrum records how many
times an entity is exercised: by referring during coverage testing to the count
spectrum rather than to the normally used hit spectrum, we keep track of the
frequency with which each entity is covered.

As an example, Table 1 displays the branch-hit and branch-count spectra of
two test cases TC1 and TC2 exercised during a test campaign. Both TC1 and
TC2 cover the same set of branches, thus their hit spectra are identical. If we
look at their count spectra, we can notice that TC1 and TC2 exercise the SUT
quite differently.

Table 1. An example of branch-hit and branch-count spectra.

Branch ID Branch-hit spectrum Branch-count spectrum

TC1 TC2 TC1 TC2

b1 1 1 5 23

b2 0 0 0 0

b3 1 1 1 1

b4 0 0 0 0

b5 1 1 85 394

b6 1 1 9 42

b7 0 0 0 0

b8 1 1 28 129

b9 0 0 0 0
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Hence, the count spectrum could be used to obtain an approximate represen-
tation of how the final users behaviour impacts on the SUT code. Such intuition
inspired us the idea of “operational coverage”: using the count spectrum, it mea-
sures code coverage taking into account whether and how the entities are relevant
with respect to a user’s operational profile.

In principle, the notion can be applied to any existing coverage criterion. In
previous work [28,29], we studied operational coverage for three types of entities,
namely statements, branches and functions.

To measure operational coverage, we developed the following method. First,
program entities are classified into different importance groups based on the
count spectrum. Consider, for instance, three importance groups, denominated
high, medium, and low. To cluster entities into these three groups, the list of
entities is ordered according to their usage frequency; the first 1/3 entities are
assigned to the high frequency group; the second 1/3 entities to the medium
frequency group; and the last 1/3 entities to the low frequency group. Of course,
different grouping schemes could be adopted.

Then, different weights are assigned to the importance groups to reflect the
operational profile. We gave the highest weight to entities in the high group, and
the lowest weight to the low group. Entities that are never covered are assign a
zero weight (they are out-of-scope).

Finally, the operational coverage is computed as the weighted arithmetic
mean of the rate of covered entities according to the Equation:

Operational coverage =

3∑

i=1

wi · xi

3∑

i=1

wi

· 100(%) (3)

where: xi is the rate of covered entities from group i; wi is the weight assigned
to group i. Note that reducing the above formula to only one group we re-obtain
the formula of traditional coverage as per Eq. 1.

Operational coverage can be used both as an adequacy criterion and as a
selection criterion. In the former case, we use operational coverage for deciding
when to stop testing: intuitively, the coverage measure that we achieve during
testing gives a weighted estimation of how many of the entities that are more
relevant for the final users have been covered. The weights allow testers to take
into account if the not yet covered entities may have a large impact on the deliv-
ered reliability. For the same reason, using operational coverage in test selection
provides a criterion to prioritize the next test cases to be executed.

In [29], we performed some empirical studies to assess operational coverage
and the results confirmed the above intuition. Precisely, operational coverage is
better correlated than traditional coverage with the probability that the next
test case will not fail while performing OP testing. Regarding test case selection,
operational coverage on average outperforms traditional coverage in terms of
test suite size and fault detection capability.
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4.3 Boosting Reliability Improvement by Targeting the Lowest
Covered Entities

As described in Sect. 3, in OP testing the test cases are selected from the opera-
tional profile, aiming at finding the failure-causing inputs that have the highest
likelihood of being invoked in operation. However, as we already observed, due
to the saturation effect [22], after some testing campaign in which the most fre-
quent faults have been revealed and removed, continuing to perform OP testing
will progressively lose its efficacy.

Saturation is a well-known problem, and advanced approaches have been pro-
posed to counteract it. For example, Cotroneo and coauthors [11] have recently
developed the RELAI technique that uses an adaptive scheme for redefining
the operational profile, dynamically learning from the test outcomes. Indeed, to
continue improving reliability, at a certain point it becomes necessary to find a
proper strategy to move farther from the most frequently exercised operations
and start “digging” in less frequent zones of the input domain.

In line with [25] that suggests to combine different testing approaches, we
explored whether considering code coverage as an additional information to
the operational profile helps achieving higher reliability. The intuition is that
coverage-driven selection can point to parts of the program that have not been
exercised by the operational profile driven test cases and that may contain faults.
However, even so, we would like to take into account the user’s profile, because
the aim remains to improve reliability.

Along such line of reasoning, we have recently developed a hybrid approach
that relies on both operational profile and coverage information, the latter specif-
ically considering the above introduced count spectrum [5]. The approach, called
covrel, works in iterations: each iteration dynamically uses the test outcomes
from previous iteration to re-arrange the operational profile. This adaptation
is based on an inference method called Importance Sampling (IS) method [6],
which was previously used in the already cited work [11].

Each iteration consists of two steps. First, a partition of the input domain
into subdomains Di is dynamically redefined. In line with traditional OP test-
ing (see Sect. 3), this step allows to assign probability values to inputs. More
precisely, at each iteration the output of the first step is the number of test
cases to execute from within each partition (for more details we refer the reader
to [5]). In the second step, among all the inputs within a partition (i.e., having a
same occurrence probability), covrel selects those that exercise the least covered
entities according to the count spectrum. This is the novel aspect of covrel, in
comparison with the more usual approach of selecting such test cases in random
way. Of course, to do so covrel assumes that the SUT is instrumented and test
traces are tracked, as in any white-box testing strategy.

Note that similarly to operational coverage (Sect. 4.2), the covrel strategy
derives the count spectrum and classifies the entities into three different impor-
tance groups: high, medium, and low. However, differently from operational cov-
erage, in covrel we are interested in covering the most “hidden” entities. There-
fore, we assign the weights for the importance groups prioritizing the low group.
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Then, for each partition, we select the test cases with the highest ranks. The
two steps are repeated until the available budget of test cases exhausts.

In [5] we have evaluated covrel against traditional OP testing with controlled
experiments. The results showed that covrel can outperform OP testing and
achieve faster a given reliability value. The performance of covrel is better con-
sidering high values of reliability, confirming the intuition that the extra costs
it requires for coverage measurement do pay when a high value of reliability is
required.

5 Related Work

While a huge literature exists about the topics of coverage testing and OP test-
ing considered individually, here we are concerned with the interplay between
the two worlds. As anticipated in Sect. 4.1, there have been only few overlaps
between the two research communities. These overlaps have interested mostly
the investigation of the effectiveness of coverage testing in terms of reliability
improvement instead of fault finding, as, e.g., in [12,17] and the usage of coverage
information for refining software reliability growth models, as surveyed in [2].

Related approaches of interest are those exploring some direct or indirect
knowledge derived from the program code (i.e., white-box information) or from
the development process in order to either improve or assess reliability.

Smidts et al. consider operational testing as a means to corroborate (rather
than to assess) an already assessed reliability, by complementing evidences
gained in previous phases of the development process (e.g., by white-box testing)
[39]. This is a problem particularly felt in ultra-reliable systems, where no fail-
ures are observed during testing, making operational testing not able, by itself,
to give confidence about reliability.

Neil et al. propose to use Bayesian networks (BN) as a means to combine evi-
dences: in their example, many pieces of information coming from development-
time activities, including code coverage and operational profile, are used together
with test results as evidence to assess reliability [32]. A Bayesian approach is also
proposed by Singh et al., who use reliability prediction obtained from UML models
as the prior belief for reliability assessment in system operational testing [38].

In a PhD proposal by Omri [33], white-box information is used in combination
with the operational profile, again with the aim of estimating reliability; the
author applies symbolic execution combined with stratified sampling to derive
the most favorable partitions for minimizing the variance of the estimate. We
too have conjectured the usage of white-box information such as coverage as a
means to modify the belief about the partitions’ failure proneness, with the aim
of driving the profile-based test generation process [34,35].

All these approaches try to augment the profile-based testing with other
pieces of information so as to expose more reliability-impacting failing inputs.
None, however, directly embeds code coverage information into the test selection
or generation process like covrel [5].
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Our operational coverage and covrel approaches rely on the coverage count
spectrum. The idea of using program spectra to help software validation tasks
is not new: program spectra have been used, among others, for fault localiza-
tion [45] and regression testing [46]. To the best of our knowledge, however, we
are the first to compute coverage measures based on program count spectra, for
the purpose of reflecting the importance of program entities.

One more feature of our approaches is adaptivity. Many authors have
exploited adaptivity for improving testing. A noticeable example is the well-
known family of Adaptive Random Testing (ART) techniques by Chen et al.
[8], in which the intuition is to improve random testing by using test results
online in order to evenly distribute test cases across the input domain. ART is
aimed at debug testing; as such, it does not explicitly target reliability improve-
ment and/or assessment like OP testing. Adaptive testing, proposed by Cai
et al., uses the operational profile for reliability assessment and foresees adapta-
tion (via controlled Markov chains) in the assignment of test cases to partitions
[7]. Both these approaches use neither coverage nor any other development-time
information to boost reliability.

To implement adaptivity, we used Importance Sampling, a statistical sam-
pling method to approximate the true distribution of a variable of interest [6].
We used it to approximate the unknown distribution of the number of test cases
for each partition to maximize delivered reliability. While Importance Sampling
is successfully used in many fields, its usage for testing is limited to few papers:
Sridharan and Namin used it to prioritize mutation operators in mutation testing
[41]; we ourselves used it for test techniques selection [9].

6 Conclusions

A large part of software testing literature evaluates the effectiveness of testing
techniques based on the faults found, irrespectively of the potential likelihood
and impact of such faults. In this way, among several test techniques the one that
finds the highest number of faults would be considered the most effective, but
this might not correspond to reality. If the faults found are never experienced in
practice, the test technique would not be very effective.

In this work, considering that test effectiveness should be evaluated based
on the delivered reliability [15], we have discussed some results from combining
two usually separated test strategies: white-box coverage criteria and black-box
operational testing. The former exploits knowledge of program internals, the
latter of program usage.

We have overviewed two approaches that mix the two strategies following
two different intuitions. In operational coverage, we have augmented coverage
testing criteria with a notion of user’s relevance. The intuition is that if an entity
is rarely or never used in operation, coverage of this entity should contribute to
coverage measure with lower weight. On the contrary, entities that, based on
operational profile, are frequently covered, should be given higher weights. In
covrel, we have augmented OP testing with coverage information, targetting
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the selection of test cases within a domain partition towards those entities that
remain hidden, i.e. yielding a lower coverage count. The intuition here is that
monitoring coverage along OP testing may help increasing faster the reliability.

The approaches we have developed are just a first attempt to implement what
seems a very attractive perspective: by combining information from coverage and
operational profile we can achieve a stronger testing technique that yields both
a practical stopping rule and mitigates the inherent saturation problem.

Having opened a novel research thread, we are also aware that a myriad of
other potential techniques could be devised, only limited by creativity. For exam-
ple, we have considered coverage of only three more common entities, statement,
branch and function. Other entities could have been considered. Moreover, as
we hinted in the introduction, we could consider a model of software behaviour
and different combinations also involving functional testing strategies.
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