
An Open Source Approach
for Modernizing Message-Processing

and Transactional COBOL Applications
by Integration in Java EE Application

Servers

Philipp Brune1,2(B)

1 Neu-Ulm University of Applied Science, Wileystraße 1, 89231 Neu-Ulm, Germany
Philipp.Brune@hs-neu-ulm.de

2 QWICS Enterprise Systems, Taunustor 1, 60310 Frankfurt, Germany
Philipp.Brune@qwics.de

https://qwics.de,

https://qwics.org

Abstract. Modernization of monolithic “legacy” mainframe COBOL
applications to enable them for modern service- and cloud-centric envi-
ronments is one of the ongoing challenges in the context of digital trans-
formation for many organizations. This challenge has been addressed for
many years by different approaches. However, the possibility of using
a pure Open Source Software (OSS)-based approach to run existing
transactional COBOL code as part of Java EE-based web applications
has just recently been demonstrated by the author. Therefore, in this
paper, an overview of the previously proposed Quick Web-Based Inter-
active COBOL Service (QWICS) is given and its new extension to run
message-processing COBOL applications via JMS is described. QWICS
runs on Un*x-like operating systems such as Linux, and therefore on
most platforms, but in particular on the mainframe itself. This enables
a mainframe-to-mainframe re-hosting, preserving the unique features of
the mainframe platform like superior availability and security.

Keywords: Web services · Message processing · Transaction
processing COBOL · Java EE · Open Source Software · Mainframe
computing

1 Introduction

In the recent and ongoing discussions about digital transformation and its impact
for companies, in particular in the banking and financial service industries, it
has been recently pointed out by various authors that the mainframe is by no
means an outdated technology and probably will remain an important part of
the entrprise IT landscape for a long time [16,28,42].
c© Springer Nature Switzerland AG 2019
M. J. Escalona et al. (Eds.): WEBIST 2018, LNBIP 372, pp. 244–261, 2019.
https://doi.org/10.1007/978-3-030-35330-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35330-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-35330-8_12

An Open Source Approach 245

However, the traditional monolithic “legacy” COBOL enterprise applications
are too inflexible and not open enough to fulfill the requirements of the digital
age [1,38]. And despite its age, COBOL still plays a major role in enterprise
application development on the mainframe [1,20,40] (with “mainframe” in this
paper denoting IBM’s S/390 platform and its descendants) and will continue to
do so for a long time due to various reasons [1,9,18,30,36].

Therefore, the challenge of modernizing the existing COBOL applications is
to convert them into service-oriented backends with well-defined APIs and using
open technologies [17,19] while preserving their inherent value, making them
accessible for cloud-based “Systems of Engagement” like mobile apps and web
frontends [12] or distributed big data processing applications [27,39].

Migrating to Open Source Software (OSS) has recently been suggested
as one approach for the banking industry to reach this goal [11]. Therefore,
the recently proposed Quick Web-Based Interactive COBOL Service (QWICS)
[6] discussed in this paper follows this direction. It is built on top of well-
established, enterprise-ready OSS components such as e.g. the PostgreSQL rela-
tional database1 [15].

Most of these legacy mainframe COBOL programs are online transaction-
processing (OLTP) applications, which require a so-called transaction process-
ing monitor (TPM) middleware to run in, like e.g. IBM’s CICS2 [25] or Fujitsu’s
openUTM3. Therefore, any modernization approach needs to take into account
the inherent dependency of the transactional COBOL code on these TPM envi-
ronments [6].

Most previous approaches [6] thus focus either on adding modern features
such as RESTful APIs or Java EE support to the mainframe TPM middleware
itselve, thus making use of the unique features of modern mainframes [9,30,40],
or on providing a complete (mostly proprietary) replacement or emulation for
the traditional mainframe TPM on other, non-mainframe platforms4 [37,41].

In contrast, QWICS adopts another perspective on modernizing transactional
COBOL applications, as it provides an open framework to run COBOL code in
the context of any modern Java Enterprise Edition (EE) application server5,
using the latter to provide the TPM functionality [6]. QWICS is built using
established OSS components and runs on Un*x and Linux derivates, in particular
on the mainframe itself. Therefore, it combines the unique features of the modern
mainframe with the platform independence and openess of Linux and OSS [6].

To further extend the capabilities of QWICS, in this paper its extension to
support transactional message-processing COBOL programs is described. This
is an important feature, as asynchronous, message-oriented data processing is

1 https://www.postgresql.org.
2 https://www.ibm.com/software/products/de/cics-tservers.
3 http://www.fujitsu.com/de/products/software/middleware/openseas-oracle/

openutm/.
4 See e.g. https://www.lzlabs.com/.
5 In this paper, for convenience still the term Java EE is used, despite it has been

officially re-labeled recently to Jakarta EE (see https://jakarta.ee/about/).

https://www.postgresql.org
https://www.ibm.com/software/products/de/cics-tservers
http://www.fujitsu.com/de/products/software/middleware/openseas-oracle/openutm/
http://www.fujitsu.com/de/products/software/middleware/openseas-oracle/openutm/
https://www.lzlabs.com/
https://jakarta.ee/about/

246 P. Brune

an important concept for many enterprise applications [4]. Consistent with the
original idea of QWICS, this is achieved by using the Java Message Service
(JMS)6 functionality of the Java EE application server.

The rest of this paper is organized as follows: In Sect. 2 the related work
is analyzed in detail, while the software architecture of QWICS proposed in
[6] is summarized in Sect. 3. Section 4 describes its new extension to support
message-oriented transaction processing in COBOL using JMS. The experimen-
tal evaluation of QWICS and its results are illustrated in Sect. 5. We conclude
with a summary of our findings.

2 Related Work

As described in [6], over the years the challenge of modernizing transactional
“legacy” COBOL applications by modularization and encapsulation [31] has
been addressed by numerous approaches, which my be classified into three major
categories:

– Modernization on the mainframe itself [32]: Making use of new technologies
such as web services and Java EE supported by the current versions of the
“classical” mainframe TPM products to wrap COBOL transaction programs
by web service facades or web user interfaces [19,22,35] and integrate them
into service-oriented architectures [7,10,26,29]. This is well supported by var-
ious software tools from the mainframe vendors [3] as well as by third parties,
and allows to make use of the unique features of modern mainframes such as
extremely high availability and outstanding transaction throughput [9,40].

– Migration to non-mainframe platforms (including cloud services) [17,21]:
Usually driven by the expectation to reduce the perceived high operating
costs of the mainframe platform and the related vendor lock-in [17,21], this
typically requires to use either the original mainframe TPM middleware [25]
on these non-mainframe platforms (which is the case for the major main-
frame TPM products) or an emulation mimicking the functionality of the
TPM [2,37]. In particular, the latter has been addressed over the years by
various hobbyist approaches7 as well as professional commercial offerings (See
footnote 4). However, these approaches have different drawbacks, since they
frequently do not achieve the same transactional throughput as the original
mainframes, rely on on proprietary emulation techniques (thereby creating
a new vendor lock-in) or may suffer from patent-related and licensing issues
[2,23,37,41].

– Conversion of the program code to other languages and platforms: This
involves either the (automatic) conversion of the COBOL code to other, more
modern programming languages and/or the extraction of the business rules
and logic from the existing code (e.g. by using special analysis tools) and
their subsequent re-implementation (either manually or by code generators)

6 https://javaee.github.io/jms-spec/.
7 http://www.kicksfortso.com.

https://javaee.github.io/jms-spec/
http://www.kicksfortso.com

An Open Source Approach 247

using other languages and platforms [5,8,13,21,24,34–36,43]. Being closely
related to model-driven development, this approach has gained wide interest
in the scientific community on legacy systems modernization, but has been
rarely used in practice since it may be too expensive or riskful for companies
in many cases [36].

Despite numerous attempts for re-writing [14] or re-hosting mainframe
“legacy” applications on other platforms, mainframe-based organizations after
various failed migration projects [1,9,40] realized that the mainframe platform
offers unique features like the support for high availability, vertical scalability
and security [40], which could not always be recovered on other platforms [28,42].
Therefore, to enable the digital transformation [38], in the last years the focus
shifted again to the first approach, namely the modernization on the mainframe
itself [42].

Since Java has overtaken the role of COBOL in enterprise application devel-
opment to a large extend, Java Enterprise Edition (EE)8 application servers for
the Enterprise Java Bean (EJB) components provide functionalities similar to
those classical TPM middleware does for COBOL [3,21]. These includes support
for distributed transactions and the 2-phase-commit (2PC) protocol through the
Java Transaction API (JTA)9 as well as transactional message processing via
Message-driven Beans (MDB) and JMS.

Due to this analogy between Java EE application servers and classical TPM
middleware, the previously proposed QWICS framework [6] demonstrated an
approach to execute transactional COBOL programs integrated in a Java EE
application server as part of a JTA transaction, such that the required TPM func-
tions (such as transaction handling, resource access, access to message queues,
user interfaces, etc.) are realized by the Java EE application server out of the
box.

QWICS has been implemented as pure OSS, built using mature, enterprise-
ready OSS components, since openess and OSS have been identified recently
as cornerstones for enterprise application modernization in the age of digital
transformation [11,15]. Since QWICS adds only a thin “glue component layer”
to the established OSS components to manage the native COBOL execution for
the Java EE application server [6], it is fully portable among various Un*x- and
Linux derivatives, with a strong focus on “re-hosting” COBOL applications to
Linux on the mainframe itself using OSS10 [6].

While the feasibility of this approach has been demonstrated already in [6],
QWICS so far lacked the support for transactional message-processing. Since
this is an important feature [4], in this paper together with a summary of its
previously described architecture and functionality the question is addressed,
how an extension of QWICS to support message processing in COBOL via JMS
could be designed and implemented.

8 http://www.oracle.com/technetwork/java/javaee/overview/index.html.
9 http://www.oracle.com/technetwork/java/javaee/jta/index.html.

10 https://www.openmainframeproject.org/.

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html
https://www.openmainframeproject.org/

248 P. Brune

3 Design of the Software Architecture

Figure 1 shows an overview of the software architecture of QWICS, which has
been presented in [6] and will be summarized in this section. Its full source code
is available as OSS on GitHub11.

As described in [6], QWICS is based on well-established, mature and
enterprise-ready OSS components selected following a “best of breed” strat-
egy: GnuCOBOL12 for compiling the COBOL sources on the respective target
platform, the PostgreSQL relational database system (See footnote 1) replacing
the original mainframe DBMS and the JBoss WildFly application server13 as
the Java EE runtime. Here, in particular PostgreSQL has a wide recognition by
practitioners as a reliable, scalable enterprise-quality OSS database management
system [15].

To execute the transactional COBOL programs in the context of the Java
EE container, as the core concept the integration by a special Java Database
Connectivity(JDBC)14-compliant driver is used. This QWICS JDBC driver pro-
vides Non-XA and XA datasources to handle distributed transactions. It acts
as a TCP client for the COBOL Transaction Server, which actually loads and
executes the COBOL binary programs, the so-called load modules. Thus, the exe-
cution of these COBOL programs is invoked and controlled from the Java code
(e.g. from an EJB) by special callable statements and result sets implemented
by the QWICS JDBC driver. Thus, in QWICS always a Java EE application
(e.g. consisting of EJB, servlets, JPA, Web Services, ...) is needed to call the
COBOL programs via the JDBC driver [6].

The COBOL Transaction Server itself is a separate program implemented in
C, which dynamically loads and executes the COBOL load modules created by
the GnuCOBOL compiler. It also serves as a client for the PostgreSQL database
to execute SQL statements embedded in the COBOL programs as well as those
directly send from the Java side via the JDBC driver, being able to mix both
in one transaction. The transaction server uses a slightly modified version of
GnuCOBOL’s libcob library, which has an intercept added to handle special
DISPLAY statements of the form DISPLAY "TPMI:... and call a function in the
transaction server for these. The necessary modification is shown in Fig. 2. This
mechanism allows to handle the original EXEC ... END-EXEC macros in the code
[25], which therefore have to be converted to these special DISPLAY statements
in a subsequent preprocessing step [6].

To keep track of the state of all running transactions, a TPM needs to han-
dle all input/output (I/O) operations performed by the programs it executes.
Therefore, transactional COBOL programs running inside a TPM may not use
the normal COBOL I/O statements. Instead, all necessary I/O operations (like
e.g. executing SQL statements, sending or receiving data from the screen, etc.)

11 https://github.com/pbrune1973/qwics.
12 https://sourceforge.net/projects/open-cobol.
13 http://wildfly.org.
14 http://www.oracle.com/technetwork/java/javase/jdbc/index.html.

https://github.com/pbrune1973/qwics
https://sourceforge.net/projects/open-cobol
http://wildfly.org
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

An Open Source Approach 249

Fig. 1. Overview of the software architecture of QWICS. The arrows denote
usage/invocation relationships. Yellow boxes describe the QWICS-specific components
and white boxes the application-specific COBOL or Java code. The integration between
the Java and the COBOL code is achieved using a specific JDBC driver calling the
COBOL server via its own protocol over a TCP connection. Reprinted from [6]. (Color
figure online)

are usually coded in COBOL (or that of any other supported language) by
using TPM- and SQL-specific EXEC ... END-EXEC macros. These macros are
then translated into TPM API calls in an additional preprocessing step before
actually compiling the COBOL code [25]. In addition, the terminal UI screen
definitions (so-called maps) referenced by these macros also need to be translated
to stored COBOL code fragments (called copybooks) containing the necessary
variable declarations. These copybooks are then inserted in the COBOL code
during preprocessing as well [6].

250 P. Brune

int (*performEXEC)(char*, void*) = NULL;

void display_cobfield(cob_field *f, FILE *fp) {

display_common(f,fp);

}

void

cob_display (const int to_stderr,

const int newline, const int varcnt,

...)

{

FILE *fp;

cob_field *f;

int i;

int nlattr;

cob_u32_t disp_redirect;

va_list args;

// BEGIN OF EXEC HANDLER

va_start (args, varcnt);

f = va_arg (args, cob_field *);

if (strstr((char*)f->data,

"TPMI:")) {

char *cmd

= (char*)(f->data+5);

if (varcnt > 1) {

f = va_arg (args,

cob_field *);

}

(*performEXEC)(cmd,(void*)f);

va_end (args);

return;

}

va_end (args);

// END OF EXEC HANDLER

Fig. 2. Necessary modification to termio.c of GnuCOBOL’s libcob runtime library.
Only the lines shown between // BEGIN... and // END ... need to be added, no
further modifications are necessary. This code adds an interception to DISPLAY state-
ments of the form DISPLAY" TPMI:..., which are used to execute the EXEC-macros in
the original COBOL source. Reprinted from [6].

This preprocessing needs to be mimicked by QWICS to allow to re-use the
unmodified COBOL source codes. In Fig. 3, the overall process implemented in
QWICS by two preprocessors written in C, cobprep for COBOL and mapprep for
the map definitions, is illustrated. After the preprocessing, the resulting COBOL
code is compiled to an executable load module using the GnuCOBOL compiler [6].

An Open Source Approach 251

Fig. 3. Process of preprocessing the original COBOL source files and map definitions
for use by QWICS. Reprinted from [6].

Last but not least a JavaScript Library has been implemented for QWICS,
which supports the (optional) implementation of web user interfaces by con-
verting the original TPM’s map defintions [25] to JavaScript Object Notation
(JSON) structures beforehand using the preprocessor [6].

4 Extension to Transactional Message-Processing

Asynchronous, transactional message-processing is an important concept of
large-scale enterprise applications [4]. In traditional mainframe applications this
functionality is typically provided by a message-oriented middleware invoked
from COBOL programs running in a TPM. A similar concept exists for Java EE
application servers through the Java Message Service (JMS).

Following the general approach of QWICS, transactional message-processing
was therefore implemented by using JMS from the COBOL code by extending
the QWICS JDBC driver. To do so, the COBOL program calls for getting and

252 P. Brune

// BEGIN OF CALL HANDLER
void* (*resolveCALL)(char*) = NULL;
// END OF CALL HANDLER

void *
cob_resolve_cobol (const char *name, const int fold_case, const int errind)
{

void *p;
char *entry;
char *dirent;

// BEGIN OF CALL HANDLER
p = resolveCALL(name);
if (p != NULL) {

return p;
}

// END OF CALL HANDLER

Fig. 4. Necessary modification to call.c of GnuCOBOL’s libcob runtime library.
Only the lines shown between // BEGIN... and // END ... need to be added, no
further modifications are necessary. This code adds an interception to COBOL CALL

statements, which executes the function denoted by the pointer resolveCALL(..) if it
is set.

putting messages from and into queues or topics [4] need to be intercepted by
the QWICS transaction server. Therefore, again a patch has been added to
the GnuCOBOL libcob library to intercept and redirect the respective CALL
statements to corresponding C functions provided by the transaction server.
Figure 4 shows the respective modification to the libcob library.

The transaction server communicates with the QWICS JDBC driver to send
and receive messages via JMS. Figure 5 shows a conceptual overview of the inter-
play between the components involved in this process. Since JDBC datasource
management, JTA and JMS are independent subsystems of Java EE, a JDBC
driver should not depend on any JMS API or call it directly. Therefore, the
integration of COBOL with JMS requires a custom Java EE application using
message-driven beans (MDB).

While the JDBC driver only offers interfaces representing abstract wrap-
pers for queues or topics (QueueWrapper) and a factory for creating them
(QueueManager), the Java EE application implements these interfaces to actu-
ally access the JMS functionality. It registers a QueueManager implementation
with the JDBC driver, so the latter could create instances of these classes. The
UML class diagram in Fig. 6 illustrates the relevant Java classes of the JDBC
driver and the example Java EE application and there relations.

For every JMS queue or topic for which messages should be processed within
a transaction by a COBOL program, a corresponding MDB needs to be imple-
mented, for which the example QwicsMDB may serve as a blueprint. When such a
MDB receives a message, its method onMessage(Message message) is invoked
by the EJB container, wrapped into a distributed JTA transaction. This method

An Open Source Approach 253

Fig. 5. Conceptual overview of the integration between COBOL and JMS via the
QWICS framework. The actual access to JMS is implemented within an EJB applica-
tion and not inside the QWICS JDBC driver to keep the different Java EE subsystems
independent from each other. A message-driven bean listens at a queue or topic and
upon reception of a message triggers the corresponding COBOL program using the
JDBC driver. The COBOL program accesses the JMS queues via the JDBC driver and
the EJB application.

now uses the QWICS JDBC driver via a XA datasource to trigger the respective
COBOL program.

Figure 7 shows an excerpt from the source code of the example QwicsMDB
to illustrate this. The COBOL program invoked here is a demo program called
QPUBCBL. By the statement maps.updateObject(‘‘QMGR’’, this);, the MDB
registers itself as the QueueManager implementation with the JDBC driver.

The invoked COBOL load module now may access the JMS queues
itself by executing CALL statements to the (emulated) routines “MQOPEN”,
“MQCLOSE”, “MQGET” and “MQPUT”. Intercepted by the transaction server
as described above, these calls are forwarded to the JDBC driver, which again
uses the implementation classes QwicsTopic or QwicsQueue provided by the
Java EE application to access the respective JMS artifacts.

With this mechanism, analogous to the previously described QWICS func-
tionality, COBOL programs will be triggered by JMS messages are able to send
and receive messages via JMS.

254 P. Brune

5 Experimental Evaluation

To evaluate the functionality and usefulness of QWICS, in a first step an existing
transactional COBOL application was ported to the QWICS evironment [6]. To
avoid a bias, a representative COBOL application written for training purposes
using the IBM CICS TPM a consulting company was used for this [33], since its
developers are not related or known to the author [6].

Fig. 6. UML class diagram describing the Java-side implementation of an exam-
ple Message-Driven Bean (QwicsMDB) using the newly added message-queueing func-
tionality of the QWICS JDBC driver. The MDB class listens for and reacts to
received messages from a JMS queue or topic and provides the driver with appropriate
QueueWrapper implementation classes (labeled QwicsQueue and QwicsTopic here) for
accessing the respective JMS objects.

An Open Source Approach 255

@MessageDriven (. . . ,
me s s ag eL i s t en e r In t e r f a c e = MessageListener . c l a s s)

pub l i c c l a s s QwicsMDB
implements MessageListener , QueueManager {
. . .
@Resource (mappedName=”java : j b o s s / datasource s /QwicsDS”)
DataSource datasource ;

p r i va t e Connection con ;
p r i va t e Cal lab leStatement c a l l ;
p r i va t e Resu l tSet maps ;
p r i va t e Message t r i gge rMessage = nu l l ;
. . .
pub l i c void onMessage (Message message) {

t ry {
t r i gge rMessage = message ;
con = datasource . getConnect ion () ;
c a l l = con . prepareCa l l (”PROGRAM QPUBCBL”) ;
maps = c a l l . executeQuery () ;
maps . updateStr ing (”QNAME” ,”MyQueue ”) ;
maps . updateStr ing (”ENVDATA” ,”MyStatQueue ”) ;
maps . updateObject (”QMGR” , t h i s) ;
maps . next () ;
t ry {

St r ing ac = maps . g e tS t r i ng (”ABCODE”) ;
throw new QwicsException (”ABEND ”+ac) ;

} catch (Exception e) {
}

} catch (Exception e) {
throw new QwicsException (e) ;

}
}

}

Fig. 7. Excerpt of the example Java EE message-driven bean (MDB) listening for mes-
sages on a JMS queue or topic. Upon reception of a respective message, the method
onMessage(Message message) is invoked by the container, wrapped into a distributed
XA transaction. The message is only removed from the queue of this transaction is com-
mited successfully. The method invokes a sample message-processing COBOL program
via the QWICS JDBC driver.

The original sources were passed through the preprocessors as described
above, compiled using GnuCOBOL and then run in the QWICS environment.
The screenshot shown in Fig. 8 illustrates how this COBOL application running
in QWICS may appear to user in a web browser window. This original evalu-
ation was repeated two times, first on an Apple MacBook Air laptop running
MacOS X 10.11.6 (thus, a BSD Un*x- derivative), and second on a IBM zBC12

256 P. Brune

mainframe computer running Linux on Z. Both tests worked smoothly, delivered
identical results regarding the functionality and thus demonstrate the feasibilty
of the approach in principle [6].

Subsequent to the original publication of these evaluation results [6], in a
second step a public community website (https://qwics.org) including a free
demonstration and testing environment for QWICS has been set up, to further
evaluate the QWICS framework and move it towards production readiness.

This website provides further information on QWICS, links to the source code
repository and after a free online registration offers everyone the possibilty to run
a personal QWICS environment in a Virtual Machine (VM) based on a Docker
container15. Besides the actual QWICS framework, this environment offers the
user a web-based administration console for the PostgreSQL database (using the
OSS phpPgAdmin16) and a web-based source code editor to write COBOL code
and edit UI screens online (using the Codiad IDE17). Figure 9 shows screenshots
of the dashboard and the online code editor of this environment. As can also be
seen from the screenshot, the QWICS online environment currently still runs on
an Intel x86-based server running Ubuntu Linux. It is planned also to provide a
demo running on the mainframe under Linux on Z in the future.

The QWICS server VM offered on https://qwics.org to the public already
contains a simple but ready-to-run transactional COBOL example written by
the author for demonstration purposes, in the form of a small guestbook web
app. This online version of QWICS not only allows to demonstrate and explore
the framework, but also may serve as an easy to use and free opportunity to
learn and practice transactional COBOL programming online.

The availability of this QWICS online trial has been promoted via a press
release and internationally via social media so far. Until now, a small number
of interested persons from different countries have registered, but it is yet too
early to obtain results from the analysis of user feedback.

It has been pointed out before that QWICS is different from other mainframe
modernization approaches with respect to its focus on using OSS to integrate
existing COBOL code into Java EE applications to use modern web technologies
with COBOL [6]. Therefore, it requires a partial adaption and recompilation of
the existing sources instead of achieving full binary18 or source-level compatibilty
[2,37] on other (commodity), non-mainframe platforms [6]. Instead, it enables
customers to modernize transactional COBOL applications on the mainframe
itself using Linux.

The next research steps will focus on evaluating the potentials of QWICS in
real-world case studies, on the one hand by an extended Proof-of-Concept using
a real “legacy” COBOL application in a company, on the other hand by further

15 https://www.docker.com/.
16 http://phppgadmin.sourceforge.net/doku.php.
17 http://codiad.com/.
18 https://www.lzlabs.com/

https://qwics.org
https://qwics.org
https://www.docker.com/
http://phppgadmin.sourceforge.net/doku.php
http://codiad.com/
https://www.lzlabs.com/

An Open Source Approach 257

Fig. 8. Screenshot of a map screen converted to JSON and displayed in web page by
the JavaScript library. Reprinted from [6].

exploring the use of the QWICS online platform for COBOL programming edu-
cation. The first will also need include an extended analysis of the performance
and scalability of the approach compared to the original mainframe TPM. As
described in [6], there definitely will be a performance tradeoff due to the design
of the used OSS components, but it remains an open issue how big it will be in
practice.

258 P. Brune

Fig. 9. Screenshots from the free QWICS online demonstration and testing environ-
ment: Admin Dashboard showing a running QWICS VM instance (above) and the
online source code editor showing a COBOL example (below).

6 Conclusion

In conclusion, in this paper the previously proposed Quick Web-Based Interac-
tive COBOL Service (QWICS) [6] was presented and its extension to support

An Open Source Approach 259

asynchronous, transactional, message-oriented communication in COBOL via
the Java Message Service (JMS) API was introduced. The latter is in particular
important for building large-scale enterprise applications.

Therefore, QWICS now allows to run the most relevant types of transac-
tional COBOL applications (synchronous and asynchronous) within the context
of a Java EE application server using a pure OSS stack. Therefore, it allows to
mix COBOL and Java code for extending and converting “legacy” applications
into web services. Its pure OSS stack runs on most Un*x and Linux platforms,
allowing in particular to modernize “legacy” applications on the mainframe itself
using Linux.

The feasibility of the approach has already been evaluated by porting a semi-
realistic third-party COBOL application to QWICS [6], as well as by making it
available for public use via an online demonstration and testing environment
at https://qwics.org. Also, meanwhile the community feedback received via the
GitHub source code repository of QWICS (See footnote 12) has been taken into
account as far as possible.

However, since QWICS is still a proof-of-concept implementation and thus
not feature-complete, or its production readiness further extensions and adapta-
tions may be necessary, which should be detected and addressed during migration
of a real-world application. Therefore, further research is needed to explore the
approach in a real industry case study.

References

1. Abbany, Z.: Fail by design: banking’s legacy of dark code. https://m.dw.com/en/
fail-by-design-bankings-legacy-of-dark-code/a-43645522 (2018). Accessed 05 Jan
2019

2. Apte, A., et al.: Method and apparatus for migration of application source code,
US Patent App. 15/397,473 (2017)

3. Bainbridge, A., Colgrave, J., Colyer, A., Normington, G.: CICS and Enterprise
JavaBeans. IBM Syst. J. 40(1), 46–67 (2001)

4. Banavar, G., Chandra, T., Strom, R., Sturman, D.: A case for message oriented
middleware. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 1–17. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9 1

5. Bodhuin, T., Guardabascio, E., Tortorella, M.: Migrating COBOL systems to the
WEB by using the MVC design pattern. In: Proceedings of the Ninth Working
Conference on Reverse Engineering, 2002, pp. 329–338. IEEE (2002)

6. Brune, P.: A hybrid approach to re-host and mix transactional cobol and java code
in java ee web applications using open source software. In: Proceedings of the 14th
International Conference on Web Information Systems and Technologies - Volume
1: WEBIST, pp. 239–246. INSTICC, SciTePress (2018)

7. Calladine, J.: Giving legs to the legacy–web services integration within the enter-
prise. BT Technol. J. 22(1), 87–98 (2004)

8. El Beggar, O., Bousetta, B., Gadi, T.: Getting objects methods and interactions
by extracting business rules from legacy systems. J. Syst. Integr. 5(3), 32 (2014)

9. Farmer, E.: The reality of rehosting: understanding the value of your mainframe
(2013)

https://qwics.org
https://m.dw.com/en/fail-by-design-bankings-legacy-of-dark-code/a-43645522
https://m.dw.com/en/fail-by-design-bankings-legacy-of-dark-code/a-43645522
https://doi.org/10.1007/3-540-48169-9_1

260 P. Brune

10. Ferguson, D.F., Stockton, M.L.: Service-oriented architecture: programming model
and product architecture. IBM Syst. J. 44(4), 753–780 (2005)

11. FinTech Futures: How open will your bank become?. https://www.bankingtech.
com/2018/11/how-open-will-your-bank-become/ (2018). Accessed 05 Jan 2019

12. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The
rise of “big data” on cloud computing: review and open research issues. Inf. Syst.
47, 98–115 (2015)

13. Huang, H., Tsai, W.T., Bhattacharya, S., Chen, X., Wang, Y., Sun, J.: Business
rule extraction techniques for COBOL programs. J. Softw.: Evol. Process 10(1),
3–35 (1998)

14. Kanter, H.A., Muscarello, T.J.: Reuse versus rewrite: an empirical study
of alternative software development methods for web-enabling mission-critical
COBOL/CICS legacy applications. Fujitsu Software, CICS Legacy Applications
(2005)

15. Karremans, J.: Postgres in the enterprise: real world reasons for adop-
tion. https://www.enterprisedb.com/blog/postgres-enterprise-real-world-reasons-
adoption (2018). Accessed 05 Jan 2019

16. Khadka, R., Batlajery, B.V., Saeidi, A.M., Jansen, S., Hage, J.: How do profes-
sionals perceive legacy systems and software modernization? In: Proceedings of the
36th International Conference on Software Engineering. pp. 36–47. ACM (2014)

17. Khadka, R., et al.: Does software modernization deliver what it aimed for? a post
modernization analysis of five software modernization case studies. In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
477–486. IEEE (2015)

18. Kiefer, C.: COBOL as a modern language. https://digitalcommons.northgeorgia.
edu/honors theses/17/ (2017). Accessed 27 July 2018

19. Knoche, H., Hasselbring, W.: Using microservices for legacy software moderniza-
tion. IEEE Softw. 35(3), 44–49 (2018)

20. Lämmel, R., De Schutter, K.: What does aspect-oriented programming mean to
COBOL? In: Proceedings of the 4th International Conference on Aspect-Oriented
Software Development, pp. 99–110. ACM (2005)

21. Lancia, M., Puccinelli, R., Lombardi, F.: Feasibility and benefits of migrating
towards JEE: a real life case. In: Proceedings of the 5th International Symposium
on Principles and Practice Of Programming in Java, pp. 13–20. ACM (2007)

22. Lee, M.S., Shin, S.G., Yang, Y.J.: The design and implementation of Enterprise
JavaBean (EJB) wrapper for legacy system. In: 2001 IEEE International Confer-
ence on Systems, Man, and Cybernetics, vol. 3, pp. 1988–1992. IEEE (2001)

23. Lymer, S.F., Starkey, M., Stephenson, J.W.: System for automated interface gen-
eration for computer programs operating in different environments, US Patent
6,230,117, 8 May 2001

24. Mainetti, L., Paiano, R., Pandurino, A.: MIGROS: a model-driven transformation
approach of the user experience of legacy applications. In: Brambilla, M., Tokuda,
T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 490–493. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31753-8 51

25. Malaika, S., Park, H.: A tale of a transaction monitor. IEEE Data Eng. Bull. 17(1),
3–9 (1994)

26. Mateos, C., Zunino, A., Misra, S., Anabalon, D., Flores, A.: Migration from
COBOL to SOA: measuring the impact on web services interfaces complexity. In:
Damaševičius, R., Mikašytė, V. (eds.) ICIST 2017. CCIS, vol. 756, pp. 266–279.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67642-5 22

https://www.bankingtech.com/2018/11/how-open-will-your-bank-become/
https://www.bankingtech.com/2018/11/how-open-will-your-bank-become/
https://www.enterprisedb.com/blog/postgres-enterprise-real-world-reasons-adoption
https://www.enterprisedb.com/blog/postgres-enterprise-real-world-reasons-adoption
https://digitalcommons.northgeorgia.edu/honors_theses/17/
https://digitalcommons.northgeorgia.edu/honors_theses/17/
https://doi.org/10.1007/978-3-642-31753-8_51
https://doi.org/10.1007/978-3-319-67642-5_22

An Open Source Approach 261

27. Moore, G.: Systems of engagement and the future of enterprise IT: a sea change
in enterprise IT. AIIM Whitepaper (2011)

28. Nelson, J.: Why banks didn’t ‘rip and replace’ their mainframes. https://www.
networkworld.com/article/3305745/hardware/why-banks-didnt-rip-and-replace-
their-mainframes.html (2018). Accessed 05 Jan 2019

29. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A., Campo, M.: Bottom-up and
top-down cobol system migration to web services. IEEE Internet Comput. 17(2),
44–51 (2013)

30. Sagers, G., Ball, K., Hosack, B., Twitchell, D., Wallace, D.: The mainframe is dead.
Long live the mainframe!. AIS Trans. Enterp. Syst. 4, 4–10 (2013)

31. Sellink, A., Sneed, H., Verhoef, C.: Restructuring of COBOL/CICS legacy systems.
In: Proceedings of the Third European Conference on Software Maintenance and
Reengineering, 1999, pp. 72–82. IEEE (1999)

32. Sellink, A., Sneed, H., Verhoef, C.: Restructuring of COBOL/CICS legacy systems.
Sci. Comput. Program. 45(2–3), 193–243 (2002)

33. SimoTime Technologies and Services: The CICS connection, sample programs for
CICS. http://www.simotime.com/indexcic.htm. Accessed 21 Feb 2018

34. Sneed, H.M.: Migration of procedurally oriented COBOL programs in an object-
oriented architecture. In: Proceerdings of the Conference on Software Maintenance,
1992, pp. 105–116. IEEE (1992)

35. Sneed, H.M.: Wrapping legacy COBOL programs behind an XML-interface. In:
Proceedings of the Eighth Working Conference on Reverse Engineering, 2001, pp.
189–197. IEEE (2001)

36. Suganuma, T., Yasue, T., Onodera, T., Nakatani, T.: Performance pitfalls in large-
scale java applications translated from COBOL. In: Companion to the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming Systems Languages and
Applications, pp. 685–696. ACM (2008)

37. Talati, K., Lackie, C.W.: Virtual software machine for enabling CICS application
software to run on UNIX based computer systems, uS Patent 6,006,277, 21 Decem-
ber 1999

38. The Financial Brand: The four pillars of digital transformation in bank-
ing. https://thefinancialbrand.com/71733/four-pillars-of-digital-transformation-
banking-strategy/ (2018). Accessed 05 Jan 2019

39. Tommy, R., Ravi, U., Mohan, D., Luke, J., Krishna, A.S., Subramaniam, G.: Inter-
net of Things (IoT) expanding the horizons of mainframes. In: 2015 5th Interna-
tional Conference on IT Convergence and Security (ICITCS), pp. 1–4. IEEE (2015)

40. Vinaja, R.: 50th aniversary of the mainframe computer: a reflective analysis. J.
Comput. Sci. Coll. 30(2), 116–124 (2014)

41. White, J.W.: Portable and dynamic distributed transaction management method,
US Patent 6,115,710, 5 September 2000

42. Wilkes, A.: The mainframe evolution: banking still needs workhorse tech. https://
www.finextra.com/blogposting/16067/the-mainframe-evolution-banking-still-
needs-workhorse-tech (2018). Accessed 05 Jan 2019

43. Zhou, N., Zhang, L.J., Chee, Y.M., Chen, L.: Legacy asset analysis and integration
in model-driven SOA solution. In: 2010 IEEE International Conference on Services
Computing (SCC), pp. 554–561. IEEE (2010)

https://www.networkworld.com/article/3305745/hardware/why-banks-didnt-rip-and-replace-their-mainframes.html
https://www.networkworld.com/article/3305745/hardware/why-banks-didnt-rip-and-replace-their-mainframes.html
https://www.networkworld.com/article/3305745/hardware/why-banks-didnt-rip-and-replace-their-mainframes.html
http://www.simotime.com/indexcic.htm
https://thefinancialbrand.com/71733/four-pillars-of-digital-transformation-banking-strategy/
https://thefinancialbrand.com/71733/four-pillars-of-digital-transformation-banking-strategy/
https://www.finextra.com/blogposting/16067/the-mainframe-evolution-banking-still-needs-workhorse-tech
https://www.finextra.com/blogposting/16067/the-mainframe-evolution-banking-still-needs-workhorse-tech
https://www.finextra.com/blogposting/16067/the-mainframe-evolution-banking-still-needs-workhorse-tech

	An Open Source Approach for Modernizing Message-Processing and Transactional COBOL Applications by Integration in Java EE Application Servers
	1 Introduction
	2 Related Work
	3 Design of the Software Architecture
	4 Extension to Transactional Message-Processing
	5 Experimental Evaluation
	6 Conclusion
	References

