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Chapter 8
Antibiotics Use in African Aquaculture: 
Their Potential Risks on Fish and Human 
Health

S. M. Limbu

8.1  �Introduction

It is globally undoubtedly accepted that antibiotics have saved many lives and eased 
the suffering of many millions of animals (Byarugaba 2004). However, antibiotics, 
of either natural or synthetic origin, are used abusively in human, livestock, agricul-
ture, and aquaculture both to prevent proliferation and destroy bacteria (Mehdi et al. 
2018). Consequently, antibiotics exist ubiquitously in the environment and are cur-
rently deemed as a global pandemic problem posing a health risk to aquatic animals 
and humans. Unfortunately, the risks caused by antibiotics globally are expected to 
continue because, between 2000 and 2015 their consumption increased 65% from 
21.1 to 34.8 billion defined daily doses (DDDs), and the antibiotic consumption rate 
increased 39% from 11.3 to 15.7 DDDs per 1000 inhabitants per day (Klein et al. 
2018). Astonishingly, the increase in consumption of antibiotics was driven by low- 
and middle-income countries (LMICs), a characteristic possessed by the majority of 
African countries.

The African continent poses peculiar features regarding antibiotics consumption. 
First, most  African countries are generally characterized by poverty, ignorance, 
poor sanitation, hunger and malnutrition, poor and inadequate health care systems, 
civil conflicts and bad governance (Byarugaba 2004), coupled with an inappropriate 
prescription as well as self-medication and free sale of antibiotics (Sanou et  al. 
2018). Secondly, most African countries have weak regulatory agencies and 
absence/weak regulations concerning antibiotics usage. Accordingly, antibiotics are 
indiscriminately given as over-the-counter drugs at community pharmacies 
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(Mukonzo et al. 2013), which have been strongly correlated with antibiotic-resistant 
bacteria (ARB) and antibiotics resistance genes (ARGs) in aquatic animals such as 
fish and humans in LMICs (Alsan et al. 2015). The lack of regulatory agencies in 
African countries have caused the indiscriminate use of antibiotics in human for 
disease treatments and as therapeutic and growth promoters in livestock, agricul-
ture, and aquaculture production. As growth promoters, antibiotics are believed to 
improve feed conversion, promote animal growth, and reduce mortality and morbid-
ity rates resulting from clinical and subclinical illnesses (Foka et al. 2018).

Moreover, antibiotics applied in fish are poorly absorbed in the intestine, and 
subsequently are released into the aquatic environments where they selectively 
cause ARB and ARGs (Fu et al. 2017). Thus, antibiotic resistance in bacteria and 
genes that cause diseases in man is an issue of significant concern, which is expected 
to become the leading global cause of death by 2050 (O’Neill 2016). Although the 
misuse of antibiotics in human medicine is the principal cause of ARB and ARBs in 
Africa, the use of antibiotics in food animals and their subsequent release into the 
aquatic environments are contributory factors (Barton 2000; Goutard et al. 2017; 
Adegoke et al. 2018). Apart from ARB and ARGs, antibiotics also cause human 
health risk due to their residue amounts in various contaminated foods consumed in 
Africa (Darwish et al. 2013).

The increasing human population in Africa has led to an increase in reliance on 
aquaculture to supply safe, reliable, and economical food, contributing 10% of the 
total global population engaged in fisheries and aquaculture, second only to Asia 
with 84% (FAO 2018). In some African countries such as Ghana and Sierra Leone, 
fish contributes or exceeds, 50% of total animal protein intake (FAO 2016). 
Aquaculture production, mainly from catfish and tilapia, accounted for 17–18% of 
total fish production in Africa (Fig. 8.1), with a general increasing trend (Fig. 8.2) 
(FAO 2018). The per capita fish food consumption for Africa was reported as 9.9 kg/
year in 2015, partly contributed by unreported data (FAO 2018).
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(2018)
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Although the available information suggests minimal use of antibiotics in aqua-
culture in African countries, potential contamination of fish from fertilizers used in 
animals treated with antibiotics is unavoidable (Shah et  al. 2012; Wamala et  al. 
2018), because most farmers fertilize their ponds. However, the effects of antibiot-
ics on fish anatomy and physiology from an African perspective are currently poorly 
understood, and information on ARB and ARGs in fish and humans due to fish 
exposure is currently scattered and unfocused. Furthermore, antibiotics are increas-
ingly used in humans and other food animals, with a concomitant prevalence of 
ARB and ARGs in LMICs (Bernabé et al. 2017). It has been shown that infections 
caused by ARB may increase health care costs due to patients’ need for more diag-
nostic tests, more extended hospitalization periods, and poor treatment outcomes 
(Nyasulu et al. 2012). Despite all these, little attention has been directed towards 
understanding the antibiotics residues in fish, other food animals, and humans in 
Africa (Adegoke et al. 2018).

For the first time, this chapter organizes and synthesizes the available informa-
tion in the literature on the potential risks of antibiotics on cultured fish and human 
health from Africa. The chapter assesses the effects of antibiotics on fish growth 
performance, feed utilization, hepatotoxicity and nephrotoxicity, and hematological 
parameters. It further evaluates the potential human health risks caused by the exis-
tence of ARB and ARGs in fish and other consumed foods, in addition to direct risks 
due to the consumption of fish products containing antibiotics residues. The infor-
mation generated informs policies to limit the use of antibiotics in food animals 
by enforcing policies, which regulate their use in Africa to safeguard human health.
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Fig. 8.2  Average annual growth rate of aquaculture production by volume (excluding aquatic 
plants). Source: FAO (2018)
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8.2  �Effects of Antibiotics on Growth Performance and Feed 
Utilization

Growth performance, feed utilization, survival rate, and body development are 
important production attributes to fish growers because they affect directly the yield 
and economics of an aquaculture enterprise. Thus, understanding the effects of anti-
biotics on these aspects in cultured fish deserves a peculiar consideration. In Africa, 
very few studies have currently used antibiotics to study growth and related param-
eters on fish. The literature visited indicated oxytetracycline studied in O. niloticus 
(El-Sayed et al. 2014), oxytetracycline and florfenicol in O. niloticus ♀ × O. aureus 
♂ hybrids (Reda et  al. 2013), and chloramphenicol researched in O. niloticus 
(Shalaby et al. 2006) and African catfish, Clarias gariepinus (Nwani et al. 2014) 
were the only antibiotics used. Results from these few studies indicated improved 
growth of treated fish compared to controls. For example, the growth performance 
of O. niloticus increased significantly with increasing levels of chloramphenicol 
(Shalaby et al. 2006). Moreover, feeding diets containing oxytetracycline and flor-
fenicol in O. niloticus ♀ × O. aureus ♂ hybrids (Reda et al. 2013) and O. niloticus 
(El-Sayed et al. 2014) resulted into faster growth performance in treated than con-
trol fish.

The precise reasons for the enhanced growth performance of fish after antibiotics 
administration are subject to scrutiny. Increased growth has been attributed to higher 
feed consumption and reduced feed conversion ratio. Indeed, the growth rate was 
increased in O. niloticus treated with chloramphenicol (Shalaby et al. 2006), oxytet-
racycline and florfenicol (Reda et al. 2013), and oxytetracycline (El-Sayed et al. 
2014), in which feed consumption and intake were increased, while feed conversion 
ratio was reduced. Moreover, apparent protein, lipid, carbohydrate, and energy 
digestibility were increased in O. niloticus fed on chloramphenicol (Shalaby et al. 
2006). These results should be interpreted with caution due to limited studies and 
the existence of contradicting results elsewhere. It has been recently shown that 
antibiotics, particularly oxytetracycline, do not cause growth promotion in finfish 
(Trushenski et al. 2018) and causes multiple effects in Nile tilapia including reduced 
nutrients digestibility and digestive enzymes (Limbu et al. 2018), growth perfor-
mance (Limbu et  al. 2019a; Limbu et  al.  (2019b), protein and feed efficiencies 
(Limbu et al. 2019b). 

Like growth performance, studies conducted on the effects of antibiotics on sur-
vival rate are also limited. The results obtained in the limited studies do not show 
any influence of antibiotics on fish survival rate. Exposure to dietary oxytetracy-
cline (El-Sayed et  al. 2014) and chloramphenicol (Shalaby et  al. 2006) both in 
O. niloticus and chloramphenicol in C. gariepinus (Nwani et al. 2014) did not sig-
nificantly influence survival rate of treated fish relative to control. Results detailing 
the effects of antibiotics on body development are based on C. gariepinus exposed 
to chloramphenicol baths (Nwani et al. 2014). In this study, treated fish had abnor-
mal behavioral changes at higher concentration of chloramphenicol. The fish swam 
near the water surface, lost equilibrium, swam erratically, had hyperactivity, and 
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stayed motionless on the bottom of the culture tank. Furthermore, exposed fish had 
clinical toxic signs such as lightening in skin color of the body surface, erosion of 
fins and tails, and increased mucus secretions from the whole body. These results 
indicate that antibiotics application on fish leads to body malformation and dam-
age, which may  lead to physiological and metabolic dysfunctions affecting 
fish health.

8.3  �Effects of Antibiotics on Fish Health

8.3.1  �Oxidative Stress, Hepatotoxicity, and Nephrotoxicity

Antibiotics used in fish production induce oxidative stress, which affects antioxi-
dant enzymes that protect fish body from reactive oxygen species (ROS) (Limbu 
et al. 2018). Changes in the activities of antioxidant enzymes indicate an imbalance 
in the ROS production in the body. Limited studies have been conducted in Africa 
to assess the antioxidant capacity of fish exposed to antibiotics. A study conducted 
by Olaniran et  al. (2018) indicated reduced glutathione S transferase (GST) and 
superoxide dismutase (SOD) activities in C. gariepinus exposed to tetracycline. The 
decreased antioxidants in fish treated with antibiotics may be caused by an excess 
accumulation of free radicals, such as superoxide anion and hydrogen peroxide 
beyond the antioxidant capacity to counteract (Yonar et  al. 2011; Yonar 2012; 
Oliveira et al. 2013; Wang et al. 2014). This may oxidize amino acids and cofactors, 
which may affect the general fish health. Malondialdehyde (MDA) is the main oxi-
dative product of peroxidized polyunsaturated fatty acids and is an important index 
of lipid peroxidation. The extent of lipid peroxidation is measured in tissues by 
quantification of thiobarbituric acid reactive substances (TBARS) expressed as 
MDA concentration (Nunes et al. 2015). Lipid peroxidation is the initial step of cel-
lular membrane damage caused by xenobiotics such antibiotics (Yonar et al. 2011; 
Yonar 2012). Limited studies have reported on lipid peroxidation using 
MDA. Reduced MDA level was reported in C. gariepinus exposed to tetracycline, 
indicating lack of lipid peroxidation (Olaniran et al. 2018).

The liver of fish and other vertebrates is known for its digestive, metabolism, 
storage, and detoxification functions. The introduction of antibiotics in fish body 
through medicated feeds may cause liver damage effects that might impair its func-
tions (Dobšíková et al. 2013). Limited studies have reported on the effects of antibi-
otics on the hepatosomatic index (HSI) as an indicator of hepatotoxicity in fish. The 
chloramphenicol medicated feeds used in O. niloticus did not cause significant 
variations in HSI in experimental compared to control fish (Shalaby et al. 2006). 
Few studies conducted limit the ability to draw logical conclusions. Studies con-
ducted in other parts of the world showed HSI was reduced (Refstie et al. 2006; 
Limbu et al. 2018) and increased (Topic Popovic et al. 2012; Nakano et al. 2018; 
Trushenski et al. 2018) in different fish species.
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The amount of circulating proteins reflects an organism’s physiology. Plasma 
proteins and glucose in the circulatory system transport lipids, hormones, vitamins, 
and minerals and regulate cellular activities, functioning of the immune system, and 
blood clotting. Imbalances in the plasma protein and glucose counts indicate liver 
damage, which interferes with its normal functions. A dose-dependent increase in 
plasma protein levels was reported in O. niloticus exposed to chloramphenicol diet, 
indicating osmoregulatory dysfunction, hemodilution, or tissue damage surround-
ing blood vessels (Shalaby et al. 2006). Moreover, plasma glucose increased signifi-
cantly with increasing levels of chloramphenicol (Shalaby et al. 2006). Although 
limited, this study indicated that antibiotic medications in cultured fish lead to dis-
turbances in plasma proteins and glucose, which indicate hepatotoxicity.

Except for plasma proteins and glucose, liver dysfunction is manifested by 
increased levels of specific serum enzymes activities, which signal cellular leakage 
and impaired liver cell membrane integrity and function. Alanine transaminase 
(ALT) and aspartate aminotransaminase (AST) are required in the metabolism of 
amino acids, and their change in activities reflect their leakage into the blood after 
cytolysis in the liver (Han et al. 2014). Thus, AST and ALT enzymes are commonly 
used to detect hepatotoxicity due to xenobiotics exposure (Saravanan et al. 2012). 
Studies from Africa assessing liver damage in cultured fish after antibiotics by using 
AST and ALT have reported contrasting results. The administration of florfenicol 
diet in O. niloticus did not alter ALT activity (Reda et al. 2013).

On the contrary, the activities of AST and ALT in plasma decreased significantly 
with increasing levels of dietary chloramphenicol in O. niloticus (Shalaby et  al. 
2006). The observed decrease in AST and ALT activities in fish is either due to 
insufficient detoxification mechanisms to prevent the toxicity action of antibiotics 
on these enzymes or failure of liver damaged cells to synthesize AST and ALT pro-
teins (Saravanan et  al. 2012). On the other hand, oxytetracycline-supplemented 
diets increased significantly ALT activity in O. niloticus (Reda et al. 2013). Increased 
ALT activity is due to the ability of antibiotics to accumulate or bind to different 
cells leading to damage and disintegration of cells, releasing ALT into blood circu-
lation, suggesting impaired liver function.

Histopathological effects provide a quick diagnosis to detect abnormalities in 
various fish tissues and organs after antibiotics exposure. Antibiotics use indicate 
species- and antibiotic-specific histopathological effects in the liver and kidney of 
treated fish. Feeding dietary oxytetracycline and florfenicol in O. niloticus (Reda 
et al. 2013) induced various pathological alterations in liver and kidney of treated 
fish. Moreover, both dietary oxytetracycline and florfenicol decreased creatinine in 
the treated O. niloticus than the control fish (Reda et al. 2013). The existence of 
several histopathological damages in the liver of treated fish is due to liver degen-
erations (Reda et al. 2013) and inhibition of somatic cells in mitochondrial protein 
synthesis by antibiotics resulting in lack of oxidative ATP-generating capacity, 
which causes proliferation arrest of normal and malignant epithelial cells (Bakke-
McKellep et al. 2007). These changes induce hepatotoxicity and nephrotoxicity.
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8.3.2  �Effects of Antibiotics on Hematological Parameters

Hematological parameters provide essential information on the health of cultured 
fish after antibiotics application. Results conducted in hematological parameters are 
still contrasting. Dietary chloramphenicol exposure did not affect mean corpuscular 
volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) in 
O. niloticus (Shalaby et  al. 2006) and monocytes, eosinophils, and basophils in 
C. gariepinus (Nwani et al. 2014). Moreover, florfenicol did not show significant 
differences in immunoglobulin M (IgM) total levels and phagocytic activity in 
O. niloticus when compared to the control fish (Reda et al. 2013).

However, a concentration- and time-dependent decrease in hemoglobin (Hb), red 
blood cells (RBC) counts, and MCV were detected in C. gariepinus exposed to 
chloramphenicol bath (Nwani et al. 2014). The different toxic effects of chloram-
phenicol bath on various organs caused the observed decrease  in  Hb, RBC, and 
MCV in fish. Chloramphenicol suppressed the production of hematological param-
eters caused by their toxic accumulation in lymphoid organs and pronephros (Nwani 
et al. 2014). The decreased RBC counts after exposure to antibiotics is due to swell-
ing of RBC, the release of immature erythrocytes, anemia caused by tissues dam-
age, damaged RBC, decrease in erythrocyte life span, and suppressive effects of 
antibiotics on erythropoietic tissues (Shalaby et al. 2006; Nwani et al. 2014). The 
deecreased Hb may limit the oxygen-carrying capacity of the fish blood (Nwani 
et  al. 2014) and affect their survival  rate. The inhibition of these hematological 
parameters may lead to sustained toxic effects caused by both dietary and bath 
exposure to antibiotics, resulting in tissue damage and immunity suppression with 
possible fatal outcomes.

Notwithstanding the above results, dietary chloramphenicol exposure in O. niloti-
cus increased RBC, Hb, and hematocrit (Shalaby et al. 2006) and its bath elevated 
WBC, neutrophil count, and lymphocytes in C. gariepinus (Nwani et al. 2014). The 
use of oxytetracycline diet increased lysozyme activity in O. niloticus (Reda et al. 
2013). Increased WBC count and lysozyme activity indicate a protective mecha-
nism of the fish body to antibiotics-induced stress, a condition termed as leukocyto-
sis, which signals a response of damaged tissues and immune system stimulation to 
counteract antibiotics toxicity (Ambili et al. 2013). An increase in RBC is due to a 
compensation mechanism for impaired oxygen uptake caused by tissue damages 
due to the presence of antibiotics in the fish body and high percentage of circulating 
immature RBC (Ambili et al. 2013). On the other hand, the increased lymphocyte 
count (lymphocytosis) and the formation of blood cellular components (hematopoi-
esis) are features of infection due to increased disease-fighting cells after antibiotics 
exposure in fish. In general, dietary and bath antibiotics exposure in cultured fish 
cause leukocytosis, hematopoiesis, and lymphocytosis, suggesting sustained toxic 
effects and compensatory responses to conciliate the fish body to normal 
health conditions.
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8.4  �Potential Human Health Risks from Consumption 
of Antibiotics-Cultured Fish

8.4.1  �Antibiotic-Resistant Bacteria and Antibiotic Resistance 
Genes

The widespread and indiscriminate use of antibiotics in different environmental 
compartments including fish, agriculture, and human health have led to the develop-
ment of ARB, ARGs, and transposons. Resistant bacteria and resistance genes may 
be horizontally or vertically transferred among bacterial communities, the environ-
ment, and finally human being via transposons (Biyela et al. 2004). The presence of 
ARB and ARGs in humans affects the ability of antibiotics to treat diseases and thus 
compromise their health. Thus, presently, the existence of ARB and ARGs in the 
environments, particularly those conferring resistance to antibiotics used to treat 
human diseases, is an issue of major global concern. Although the misuse of antibi-
otics in human medicine is the principal cause of the problem, ARB and ARGs 
originating from animals such as fish and agriculture production are also responsi-
ble (Barton 2000).

The literature shows that ARB and ARGs pose a human health risk in various 
African countries contributed by consuming contaminated fish, shrimp, vegetables, 
and various food sources as well as drinking contaminated water (Table 8.1). The 
human health risk posed by ARB from fish consumption appears to be widely spread 
because both cultured and wild fish have been shown to contain them. Various ARB 
have been isolated in cultured fish from Ghana (Agoba et al. 2017), Tanzania (Shah 
et al. 2012; Mhongole et al. 2017), and Uganda (Bosco et al. 2012; Wamala et al. 
2018). Moreover, wild fish from Uganda (Wamala et al. 2018), Algeria (Dib et al. 
2018), South Africa (Fri et  al. 2018), and Egypt (Ramadan et  al. 2018) were all 
shown to contain ARB. The ARB contained in fish in the different countries origi-
nate from various sources including animal-origin fertilizers (Shah et  al. 2012; 
Omojowo and Omojasola 2013), the aquatic environment (Stenstrom et al. 2016), 
and possibly fish feeds. It is possible that the ARB from the different compartments 
are transferred to humans in Africa. Indeed, ARB have been detected in humans 
from Ethiopia (Kibret and Abera 2014), Ghana (Obeng-Nkrumah et al. 2013), Ivory 
Coast (Moroh et  al. 2014), Libya (Mohammed et  al. 2016), and Morocco (El 
Bouamri et  al. 2015). This is an alarming situation because most of the bacteria 
isolated exhibited high resistance to common antibiotics used for treating frequently 
occurring diseases in humans in Africa and most of them had multiple antibiotic 
resistance (MAR) (Bosco et al. 2012; Omojowo and Omojasola 2013; Mohammed 
et al. 2016; Agoba et al. 2017; Apenteng et al. 2017; Wamala et al. 2018). Although 
correct and appropriate food cooking procedures may kill bacteria, contamination 
can occur through improper handling before cooking (Darwish et al. 2013) and pos-
sibly through bacteria-human contact because ARB are ubiquitous (Mhongole et al. 
2017). Indeed, high levels of antimicrobial resistance (AMR) were obtained in food 
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Table 8.1  Antibiotic-resistant bacteria isolated from fish and other environments in Africa

Resistant bacterial 
strain Resistance to antibiotic

Sample 
isolated Country Reference

Most isolated bacteria 
(≥70%)

Penicillin, ampicillin, 
flucloxacillin, and tetracycline

Catfish and 
tilapia farms

Ghana Agoba et al. 
(2017)

10% of isolates Resistant to all the nine tested 
antimicrobials (MAR)

Water, 
sediments, 
and fishpond

Tanzania Shah et al. 
(2012)

Pseudomonas 
aeruginosa

77.78% were MAR Fish ponds Ghana Apenteng 
et al. (2017)

Salmonella typhi 70% were MAR
Escherichia coli 66.67% Resistance to more 

than two classes
Salmonella spp. 82.7% Resistant to 

trimethoprim 
sulfamethoxazole

Human Uganda Bosco et al. 
(2012)

85.3% resistant to 
trimethoprim-
sulfamethoxazole

Animal-food 
origin

Salmonella spp. 94% Sulfamethoxazole, 61% 
streptomycin, 22% 
tetracycline, 17% 
ciprofloxacin and nalidixic 
acid, 11% trimethoprim, and 
6% gentamycin and 
chloramphenicol

Fish from 
pond and 
wastewater

Tanzania Mhongole 
et al. (2017)

Aeromonas spp. 100% Penicillin and 
ampicillin and 23.2% 
cefotaxime

Fish from 
pond and 
water from 
wild

Uganda Wamala et al. 
(2018)

Plesiomonas 
shigelloides

100% Penicillin and oxacillin

Escherichia coli 100% Ampicillin, amoxicillin, 
cephalothin, amikacin, 
kanamycin, gentamicin, 
neomycin, and tobramycin

Wild fish 
and shrimp

Algeria Dib et al. 
(2018)

Vibrio spp. 76.2% Amoxicillin, 67.5% 
ampicillin, 38.3% 
erythromycin, and 35.0% 
doxycycline

Wild fish 
and water 
from fish 
farms

South 
Africa

Fri et al. 
(2018)

Aeromonas hydrophila 100% Cefoxitin, 84% 
ampicillin, 56% ceftazidime, 
and 40% cefotaxime

Fish from 
market

Egypt Ramadan 
et al. (2018)

Escherichia coli, 
Aeromonas 
hydrophila, 
Salmonella typhi, 
Staphylococcus 
aureus, and Shigella 
dysenteriae

100% Tetracycline, 85.6% 
ampicillin, 83.3% amoxicillin, 
47.6% gentamicin, 66% 
chloramphenicol, 44.4% 
erythromycin, and 18.3% 
nalidixic acid

Cow dung 
fertilizer for 
fishponds

Nigeria Omojowo 
and 
Omojasola 
(2013)

(continued)
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animals including fish intended for human consumption in Nigeria (Oloso 
et al. 2018).

Consistent to the existence of ARB in fish from aquaculture and wild environ-
ments, their corresponding ARGs also have been detected in cultured fish from 
Tanzania (Shah et al. 2012) and wild fish from Tanzania (Moremi et al. 2016), Egypt 
(Ramadan et al. 2018), Algeria (Brahmi et al. 2018; Dib et al. 2018), and South 
Africa (Fri et al. 2018) (Table 8.2). Coherent to ARB, it is possible that the ARGs 
detected originate from the aquatic environment (Adesoji and Ogunjobi 2016; 
Lyimo et  al. 2016; Stenstrom et  al. 2016). In general, the human health risk 

Table 8.1  (continued)

Resistant bacterial 
strain Resistance to antibiotic

Sample 
isolated Country Reference

Acinetobacter spp. 30–100% Penicillin G, 
ceftriaxone, nitrofurantoin, 
erythromycin, and augmentin, 
10% oxytetracycline, and 9% 
minocycline

Freshwater 
and soil 
samples

South 
Africa

Stenstrom 
et al. (2016)

Escherichia coli, 
Klebsiella spp., and 
Proteus spp.

85.6% Erythromycin, 88.9% 
amoxycillin, and 76.7% 
tetracycline

Human Ethiopia Kibret and 
Abera (2014)

ESBL producers 92.6% Cotrimoxazole, 91.2% 
gentamicin, 44.8% amikacin, 
and 41.1% ciprofloxacin

Human Ghana Obeng-
Nkrumah 
et al. (2013)

Escherichia coli, 
Staphylococcus 
aureus, Klebsiella 
pneumoniae, and 
Enterobacter 
aerogenes

78.9% Amoxicillin, 73.1% 
tetracycline, and 81.8% 
trimethoprim/
sulfamethoxazole

Human Ivory 
Coast

Moroh et al. 
(2014)

Klebsiella oxytoca 64.5% MAR Human Libya Mohammed 
et al. (2016)Providencia rettgeri 63.2% MAR

Pseudomonas 
aeruginosa

52.1% MAR

Acinetobacter 
baumannii, 
Citrobacter freundii, 
and Enterobacter 
aerogenes

47.4% MAR

Enterobacter 
amnigenus biogroup 2

42.1% MAR

Enterobacter cloacae (40.8%) MAR
ESBL-producing 
Klebsiella pneumoniae 
strains

89% Trimethoprim–
sulfamethoxazole, 89% 
gentamicin, 84% 
ciprofloxacin, and 50% 
amikacin

Human Morocco El Bouamri 
et al. (2015)

Key: MAR multiple antibiotic resistance and ESBL Extended-Spectrum Beta-Lactamase 
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Table 8.2  Antibiotic resistance genes isolated from fish and other environments in Africa

Antibiotic resistance 
genes Resistance to antibiotic Sample isolated Country Reference

tetA(A) and tetA(G) Tetracycline Water, sediments, 
and fishpond

Tanzania Shah et al. 
(2012)sul1 and sul2 Sulfonamides

intl1 and int2 Transfer of genesa

dfrA1, dfrA7, dfrA12 Trimethoprim
strA-strB Streptomycin
cat-1 Chloramphenicol
blaTEM β-Lactam/amoxicillin
mefA Erythromycin
sul1, sul2 Sulfonamides Wild fish and 

water samples
Tanzania Moremi et al. 

(2016)tet(A), tet(B) Tetracycline
aac(6′)-Ib-cr, qnrS1 Fluoroquinolones
aac(3)-lld, strB, strA Aminoglycosides
dfrA14 Trimethoprim
blaCTX-M-15 β-Lactams
blaTEM, blaCTX-M, 
blaCMY, blaOXA

β-Lactams Fish from market Egypt Ramadan 
et al. (2018)

blaCTX-M-15 β-Lactams Wild fish and 
shrimp

Algeria Dib et al. 
(2018)

blaCTX-M β-Lactams Wild fish Algeria Brahmi et al. 
(2018)oqxAB Quinolones

Qnr, aac(6′)-Ib-cr Fluoroquinolones
blaOXA β-Lactams Wild fish and 

water from fish 
farms

South 
Africa

Fri et al. 
(2018)Tet(A), tet(M) Tetracycline

sul1, sul2 Sulfonamides
dfr1 Trimethoprim
ermB Macrolides, 

lincosamides, and 
streptogramin

strA Aminoglycosides
nptII Neomycin
SXT integrase Transfer of genesa

Tet(A), tet(E) tet(B), 
tet(M), Tet39

Tetracycline Treated and 
untreated water

Nigeria Adesoji et al. 
(2015)

Tet(A), Tet(B) Tetracycline Drinking water 
sources

Tanzania Lyimo et al. 
(2016)blaTEM-1, blaCTX-M β-Lactams

blaTEM, blaSHV, blaCTX β-Lactams Drinking water 
sources

Nigeria Adesoji and 
Ogunjobi 
(2016)

blaAIM-1, blaGES-21 β-Lactams Wastewater Burkina 
Faso

Bougnom 
et al. (2019)Enterobacteriaceae 

plasmid replicons
Transfer of genesa

(continued)
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associated with ARGs is not only contributed by fish. Reasonably, ARGs have also 
been found in drinking water in Tanzania (Lyimo et al. 2016) and Nigeria (Adesoji 
et  al. 2015; Adesoji and Ogunjobi 2016), Rhizospheres plants in South Africa 
(Adegoke and Okoh 2015), various foods in Egypt (Hammad et  al. 2018), and 
wastewater used for urban agriculture in Burkina Faso (Bougnom et  al. 2019). 
Accordingly, ARGs have been detected in the human body in Senegal (Diene 
et al. 2013).

Similar to ARB, the ARGs detected are those encoding resistance to common 
antibiotics used for the frequent treatment of human diseases in Africa. Thus, 
Africans are currently exposed to a double resistance to antibiotics due to the pres-
ence of ARB and ARGs. Indeed, transposons and plasmids for transfer of ARGs 
have been detected in wild fish and water from fish farms in Tanzania (Shah et al. 
2012) and South Africa (Fri et al. 2018), various foods in Egypt (Hammad et al. 
2018), and wastewater used for agriculture in Burkina Faso (Bougnom et al. 2019). 
Since antibiotics exist ubiquitously in the environment, Africans are exposed to high 
health risks due to their close interaction with livestock and the aquatic ecosystem 
(Wamala et al. 2018), which signifies increased morbidity and mortality (Gyansa-
Lutterodt 2013) due to the failure of antibiotics to treat bacterial diseases. The 
obtained results emphasize the need for policies and mechanisms to limit the use of 
antibiotics in food animals production in order to protect human health. Moreover, 
physicians should devise some methods to change patients’ treatment pattern 
depending on antibiotics susceptibility results. Antibiotics may also pose direct 
public health effects due to their residuals in different foods consumed by humans 
as detailed below.

Table 8.2  (continued)

Antibiotic resistance 
genes Resistance to antibiotic Sample isolated Country Reference

Tet(B), Tet(39) Tetracycline Freshwater and 
soil samples

South 
Africa

Stenstrom 
et al. (2016)

Sul 3 Sulfonamides Rhizospheres 
plant

South 
Africa

Adegoke and 
Okoh (2015)

blaCTX-M, blaTEM, β-Lactams Various foods Egypt Hammad et al. 
(2018)tet(A), tet(E) Tetracycline

intI1 Transfer of genesa

blaOXA-23, blaOXA-51 Carbapenems Human Senegal Diene et al. 
(2013)

Key: ESBL Extended-Spectrum Beta-Lactamases
aIndicates transposons responsible for the transfer of ARGs
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8.4.2  �Direct Potential Human Health Risk from Consumption 
of Fish

Globally, antibiotics residues in foods have attracted much attention in recent years 
because of growing food safety and public health concerns (Capita and Alonso-
Calleja 2011; Landers et al. 2012; Berendonk et al. 2015). Their presence in food 
animals represent socioeconomic challenges in global trade and consumed animal 
products (Okocha et  al. 2018). In most countries, the use of antibiotics for food 
animals production requires a withdrawal period before the product can be sold for 
human consumption. Despite this regulation, most antibiotics are used without 
observing such a regulation both in fish (Pham et  al. 2015) and other animals 
(Mubito et al. 2014). Consequently, high levels of antibiotics exist in food animals 
intended for human consumption, which pose a direct human health risk.

Limited studies have been conducted in Africa to detect antibiotics residues in 
fish and other foods. In Nigeria, Olatoye and Basiru (2013) found oxytetracycline 
levels in cultured C. gariepinus in the liver and fillets exceeded the Codex 
Alimentarius Commission established maximum residue limit of 600 and 200 μg/
kg, respectively (Table 8.3). Similarly, a study conducted by Olusola et al. (2012) in 
Nigeria also found tetracycline exceeded international limits of 200 μg/kg from 
fresh and frozen C. gariepinus and O. niloticus, while chloramphenicol, which has 
a zero tolerance level, was detected in Officers’ Mess. It has been reported that, in 

Table 8.3  Residues of antibiotics from fish and other environments in Africa

Antibiotic Residue amount Tissue/sample Country Reference

Oxytetracycline 875.32 ± 45 μg/kg Fish liver Nigeria Olatoye and Basiru 
(2013)257.2 ± 133 μg/kg Fish fillets

Tetracycline 2185 ± 412 μg/kg Fresh and frozen 
fish

Nigeria Olusola et al. (2012)
Chloramphenicol 837 ± 165 μg/kg
Ampicillin 0.36 ± 0.04 μg/L WWTPs Kenya Kimosop et al. 

(2016)0.79 ± 0.07 μg/L Hospital
Sulfamethoxazole 1.8 μg/L River water Kenya Ngumba et al. 

(2016)Trimethoprim 0.327 μg/L
Ciprofloxacin 0.129 μg/L
Sulfamethoxazole 0.02–38.85 μg/L River water Kenya K’Oreje et al. 

(2016)Trimethoprim 0.05–6.95 μg/L
Tetracycline 0.85 ± 0.06 μg/mL Surface water Nigeria Olaniran et al. 

(2018)0.23 ± 0.01 μg/mL Untreated effluent 
water

Sulfamethoxazole 34.50 μg/L WWTPs South 
Africa

Matongo et al. 
(2015)

Oxytetracycline 785.58 ± 210.80 μg/L Cow milk Tanzania Ridhiwani (2015)
Oxytetracycline 2604.1 ± 703.7 μg/kg Cattle muscle Tanzania Kimera et al. (2015)

3434.4 ± 606.4 μg/kg Cattle liver
3533.1 ± 803.6 μg/kg Cattle kidney

8  Antibiotics Use in African Aquaculture: Their Potential Risks on Fish and Human…



216

Africa, as in other parts of the world, antibiotic residues in animal-derived foods 
more commonly exceed the world health organization (WHO) threshold residue 
levels (Darwish et  al. 2013). This further highlights the high human health risk 
caused by antibiotics because they have also been detected in wastewater treatment 
plants (WWTPs) in Kenya (Kimosop et al. 2016) and South Africa (Matongo et al. 
2015), surface water in Nigeria (Olaniran et  al. 2018), hospitals (Kimosop et  al. 
2016) and river water (K’Oreje et al. 2016; Ngumba et al. 2016) in Kenya, cow’s 
milk in Tanzania (Ridhiwani 2015) and Algeria (Layada et  al. 2016), untreated 
effluent water from a cow market in Nigeria (Olaniran et al. 2018), and cattle mus-
cle, liver, and kidney (Kimera et al. 2015) in Tanzania.

In practice, the human health risk resulting from antibiotics in Africa may be 
much higher because of multiple sources. Antibiotics are widely abused by humans 
for therapy, sometimes without physicians’ prescription, and the quantity of antibi-
otics prescribed in African countries intended for the treatment of various diseases 
are high (Adegoke et al. 2018), contributing to elevated levels of residues. The anti-
biotic residues have been reported to spread rapidly, irrespective of geographical, 
economic, or legal differences in African countries (Darwish et al. 2013). This rep-
resents a serious concern because antibiotics, particularly chronic dietary oxytetra-
cycline used in fish production, have been recently reported to cause direct human 
health risk in children (Limbu et al. 2018). In general, despite the existence of lim-
ited studies on antibiotics residues from cultured fish, the results obtained from 
C. gariepinus and O. niloticus suggest a widespread human health risk because the 
two fish species are widely consumed in African countries. Thus, there is an urgent 
need to control the use of antibiotics in fish intended for human consumption in 
order to protect human health.

8.5  �Conclusion

It is clear that studies on antibiotics used in aquaculture production in Africa are still 
limited particularly on effects on fish anatomy and physiology. However, the exist-
ing limited data highlight toxic effects of antibiotics in the fish body and increasing 
prevalence of ARB and ARGs coupled with high residues of antibiotics in cultured 
fish, which pose a significant human health risk. The African countries require coor-
dinated actions to tackle the indiscriminate use of antibiotics in humans, livestock, 
agriculture, and aquaculture at its grassroots, because currently most of them are 
characterized by inadequate monitoring, surveillance and weak regulatory systems. 
Clear policy directions for prohibiting the use of antibiotics on food animals pro-
duction are urgently needed to protect human health. More studies should be con-
ducted on the potential risks of antibiotics on fish and human health resulting from 
multiple exposure scenarios.

S. M. Limbu
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