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Abstract. The resource constraint job scheduling problem considered
in this work is a difficult optimization problem that was defined in
the context of the transportation of minerals from mines to ports. The
main characteristics are that all jobs share a common limiting resource
and that the objective function concerns the minimization of the total
weighted tardiness of all jobs. The algorithms proposed in the litera-
ture for this problem have a common disadvantage: they require a huge
amount of computation time. Therefore, the main goal of this work is
the development of an algorithm that can compete with the state of the
art, while using much less computational resources. In fact, our experi-
mental results show that the biased random key genetic algorithm that
we propose significantly outperforms the state-of-the-art algorithm from
the literature both in terms of solution quality and computation time.
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1 Introduction

The resource constraint job scheduling (RCJS) problem is an NP-hard schedul-
ing problem originally motivated by a mineral supply chain application. It
involves simultaneously solving multiple single machine scheduling problems sub-
ject to a shared resource constraint. In mining supply chains this arises when
multiple mines plan their production with a shared rail link that connects the
mines to an export port.

Due to the complexity of the RCJS problem, several methods have been
developed to solve it. Exact approaches such as integer linear programming [26]
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and constraint programming [15] have been attempted successfully [20,21]. How-
ever, these approaches are computationally expensive and can only solve rather
small instances. Hence alternatives such as metaheuristics [4] have been explored.
Overall, the most effective methods so far are hybrid approaches, e.g., combi-
nations of ant colony optimisation (ACO) and integer programming [22], ACO
and constraint programming [7,21], Lagrangian relaxation and particle swarm
optimisation (PSO) [9] and column generation and differential evolution [18].

Project scheduling [2,6,8,17], a very well-known class of problems, is closely
related to the RCJS problem. There are two main differences: (1) in RCJS jobs
must execute on the machine to which they are allocated, and (2) there is only
one common shared resource. In addition most variants of project scheduling
focus on minimising the makespan rather than tardiness. Brucker et al. [6] cat-
egorise project scheduling problem variants. Demeulemeester and Herroelen [§]
investigate different heuristic and meta-heuristic approaches for the problem.
Neumann et al. [17] tackle project scheduling with time windows and show that
genetic algorithms, simulated annealing and exact approaches can be effective.
Ballestin and Trautmann [2] explore a problem very similar to the RCJS problem,
in which the objective is to minimise the cumulative deviation from the desired
completion times of all the tasks. The approach they use is a population-based
iterated local search. The studies from [5,23,24] investigate resource constrained
project scheduling with the objective of maximising the net present value. Thiru-
vady et al. [23] show that a Lagrangian relaxation and ACO hybrid finds good
heuristic solutions and upper bounds. Brent et al. [5] improve the same hybrid
with a parallelisation in a multi-core shared memory architecture. Thiruvady et
al. [24] show that a matheuristic derived from construct, solve, merge and adapt
and parallel ACO improves upon previous approaches.

Unfortunately, current approaches require a substantial amount of compu-
tational resources, both in terms of computation time and in terms of parallel
computing facilities. With the aim of deriving a computationally less intensive
method, we tackle the RCJS problem in this work by means of a biased ran-
dom key genetic algorithm (BRKGA). This type of genetic algorithm [16] was
first introduced in [11]. Since then, BRKGAs have been shown to obtain excellent
results for a substantial range of combinatorial optimization problems, includ-
ing the maximum quasi-clique problem [19] and the project scheduling problem
with flexible resources [1], to name just a few of the more recent applications.
Furthermore, parallel and distributed versions of BRKGA have been investigated
[10,12]. Junior et al. [12] explore an irregular strip packing problem and the
study by Alixandre and Dorn [10] shows good performance on the CEC 2013
benchmark datasets.

2 Resource Constrained Job Scheduling

The RCJS problem consists of a number of nearly independent single machine
weighted tardiness problems that are linked by a single shared resource con-
straint. The problem can technically be described as follows. Each job from a
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given set J = {1,...,n} must execute in a non-preemptive way on one specific
machine from a set M of machines. Each job j € J has the following data asso-
ciated with it: a release time r;, a processing time p;, a due time d;, the amount
g; required from the shared resource during the jobs execution, a weight w;,
and the machine m; € M to which it belongs. The maximum amount of shared
resource available at any time is G. Precedence constraints C' may apply to two
jobs on the same machine: i — j € C requires that job ¢ completes before job j
starts. The objective is to minimise the total weighted tardiness. Note that this
problem is NP-Hard as the single machine weighted tardiness problem is already
NP-hard [13].

This problem can be expressed in terms of a time-discretized integer linear
program (ILP) as follows. Let T' = {1, ..., tmax } be the set of considered discrete
times (with tmax being sufficiently large), and let z;; be a binary variable for all
j € Jand t € T that takes value one if the processing of job j completes at
time ¢ or earlier. By defining the weighted tardiness for a job j at time ¢ as
wjs := max{0,w; (t — d;)}, the resulting ILP can be stated as follows:

min Zijt (zjt—2jt—1) (1)

jeJ teT
s.t. Zjtmax = 1 vjedJ (2)
2t — Zjt—1 = 0 Vied te{2,... tmax} (3)
zjt =0 vteTl :t<rj+p;, j€J (4)
2ot — Zajt—p, <0 Va,b)eC,teT t>r,+p, (5)
szﬂt-i-pj_zjtgl VieM, teT (6)

jeJi
Zgj (2 t1p; —2jt) <G VteT (7)
jeJ

zj € {0,1} Vjied teT (8)

Equalities (2) ensure that all jobs complete by t;.x. Inequalities (3) guarantee
that once a job completes it stays completed. Equalities (4) account for the
release times of jobs. Inequalities (5) ensure that precedence constraints are
satisfied and inequalities (6) make sure that at any time only one job is processed
on a machine. Inequalities (5) require that the resource constraint on the common
resource is satisfied at any time. There are many other ways to formulate this
problem, but this is one of the most computationally efficient formulations [20].

3 A BRKGA for the RCJS Problem

A biased random key genetic algorithm (BRKGA) is a steady-state genetic algo-
rithm. The main machinery of the algorithm is problem-independent. Individuals
are always coded in terms of random keys, that is, vectors of floating point val-
ues in [0, 1]. Moreover, the population management and the crossover operator
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Algorithm 1. BRKGA for the RCJS Problem
: input: a RCJS problem instance
: 1nput parameter values for psize, Pe, Pm and probelite
P := GeneratelnitialPopulation(psize )
: Evaluate(P)
while computation time limit not reached do
P. := EliteSolutions(P, pc)
P,, := Mutants(P, p,)
P, := Crossover(P, P., probelite)
Evaluate(P,, U F.) {NOTE: P. is already evaluated}
P=FPUP,UP,
: end while
: output: Best solution in P

.0931@9"“99‘\”“

—_ =
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are problem-independent as well. The only problem-dependent part is the way
in which individuals are translated into valid solutions for the specific problem.
The problem-independent part of the algorithm is shown in Algorithm 1. It
starts by a call to function GeneratelnitialPopulation(psi,e) in order to generate
a population P of pg,e random individuals. Hereby, each individual # € P is
a vector of length n (the number of jobs of the RCJS instance). The value of
each position j of m (denoted by m(j)) is randomly chosen from [0, 1]. Note that
7(j) is associated with job j of the RCJS instance. The next step consists of
the evaluation of the individuals from the initial population, that is, the trans-
lation of the individuals into valid schedules for the RCJS problem, which will
be explained in Sect. 3.1. As a consequence, each individual obtains its objective
function value denoted by f (7). After that, the following actions are performed
at each iteration of the algorithm’s main loop. First, the best max{|pe - Psize|, 1}
individuals are copied over from P to P, (function EliteSolutions(P,p.)). Sec-
ond, a set of max{|pm, * Psize], 1} so-called mutants—that is, randomly generated
individuals—are produced and stored in P,,. Next, a set P. of psize — |Pe| — | Pl
new individuals are generated by crossover (function Crossover(P, P, probeite))-
The generation of an offspring individual meg by crossover works as follows: (1)
an elite parent 7y is chosen uniformly at random from P, (2) a second parent
o is chosen uniformly at random from P\ P,, and (3) 7o is generated on the
basis of m; and my and stored in P.. Hereby, value mog (i) is set to mp (i) with
probability probejite, and to ma (i) otherwise, for all ¢ = 1,...,n. After generating
all new offspring in P,, and P., these new individuals are evaluated in function
Evaluate(P,, U P.). Remember that the individuals in P, are already evaluated.
Finally, the next generations’ population is obtained by the union of P, with P,
and P..

3.1 Evaluation of an Individual: The Decoder

The evaluation of an individual 7 (lines 4 and 9 of Algorithm 1) is the problem-
dependent part of the BRKGA. The function that evaluates individuals is called
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the decoder. In our BRKGA implementation for the RCJS problem, the decoder
involves the application of a greedy construction heuristic that was introduced
in [25]. This greedy heuristic works as follows. It chooses, at each construction
step, exactly one of the so-far unscheduled jobs, and provides it with a feasible
starting time and, therefore, also with a finishing time. Henceforth, let Jgone C J
be the set of jobs that are already scheduled, and let s; denote the starting time
of j € Jgone- At the start of the solution construction process it holds that
Jdone := 0. The process stops when Jyone = J.

Let max; := max_, r;j + Z?Zl p;j be a crude upper bound for the makespan
of any feasible solution. Moreover, let C; be the set of jobs that — -according to
the precedence constraints in C—must be executed before j, and let M,,, C J
be the subset of jobs that must be processed on machine my, € M. Furthermore,
given a partial solution, let gi"™ > 0 be the sum of the already consumed resource
at time ¢.

Given Jyone, the set of feasible jobs—that is, the set of jobs from which the
next job to be scheduled can be chosen—is defined as follows: J = {j € J\Jdone |
C; N Jaone = C;}. In words, the set of feasible jobs consists of those jobs that
(1) are not scheduled yet and (2) whose predecessors are already scheduled. A
time step ¢ > 0 is a feasible starting time for a job j € J, if and only if

1. t' > si + pg, for all k € Jyone NCy;

2. t" > sp+py, for all k € M,y,; N Jgone (remember that m; refers to the machine
on which job j must be processed); and

3. " +yg;, <G, forallt=1t,...,t" +p,.

Here T" is the set of feasible starting times for a job j € J and the earliest possible
starting time s?“in is defined as s;-ni“ :=min{t' | ' € T'}. Finally, for choosing a
feasible job at each construction step, the jobs from j € J must be ordered in
some way. In many scheduling applications, ordering the jobs according to their
earliest possible starting times (in an increasing way) is a powerful mechanism.
Therefore, our decoder combines the earliest starting time information with the
numerical values of 7 in the following way. It produces an ordered list L of all
the jobs j in J sorted according to increasing values of w(j) - (s;-nin + 1). Then,
the first job of L—Ilet us call this job j*—is chosen and added to Jyone, and its

starting time s;- is fixed to s7i™.

3.2 Applying the Decoder in a Rollout Fashion

Any constructive heuristic can be applied in a so-called rollout fashion [3]. In
the context of the decoder from the previous sub-section, this works as follows.
Instead of ordering the jobs j € J at each construction step according to their
w(j)- (s;-nin +1) values, the decoder is completely applied to each partial solution

JaoneU{j}, for all j € J. Hereby, the starting time of j is set to s;»“i“ in each case.
This provides us with |j | complete solutions whose objective function values—
henceforth called the rollout values—are then used for producing the ordered

list L of all jobs from J (in an increasing way). As in the standard decoder, the
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first job of L—Ilet us call this job again j*—is chosen and added to Jyone, and
its starting time s;« is set to s?ii“.

Even though applying the decoder in a rollout fashion provides better evalu-
ations of the individuals, the computational time needed for evaluating an indi-
vidual increases substantially. Therefore, we make use of the following techniques

for shortening the run time:

1. We use an explicit rollout width rowiqtn > 0. In those construction steps in
which rogwiqtn < |j |, the rollout is only applied to the first royiqsn jobs from list
L (when ordered according to the 7(j)- (st;nin +1) values). The remaining jobs
in L receive a rollout value of co. After that, the list L is reorderd according
to the rollout values, the first job from L is selected and used to extend Jyone,
before we proceed to the next construction step.
2. The decoder is only applied in a rollout fashion (with a rollout width of
TOwidth) after a number of nfﬁi’r‘npr > 0 consecutive BRKGA iterations without
an improvement of the best-so-far solution. After the execution of such a
BRKGA iteration in which the decoder is applied in a rollout fashion, the
counter for consecutive non-improving BRKGA iterations is re-initialized to
zero, as at the start of the BRKGA algorithm.

Clearly, rowiath and nggiy, . are two important algorithm parameters that control

to what extent the decoder is applied in a rollout fashion.

4 Experimental Evaluation

All experiments concerning BRKGA were performed on a cluster of machines with
Intel® Xeon® CPU 5670 CPUs with 12 cores of 2.933 GHz and a minimum of
32 GB RAM. As mentioned before, the current state-of-the-art results for the
RCJS problem were obtained by a recent hybrid algorithm labelled CG-DE-Ls
that combines column generation with differential evolution and local search
see [18]. Note that, while BRKGA was run in a one-threaded mode with a limit
of 3600s of CPU time for each problem instance, CG-DE-LS was implemented
in a parallel framework and each run (limited by 3600s of wall clock time) was
given 16 cores on the Monash University’s Campus Cluster. Each machine of
the cluster provides 24 cores and 256 GB RAM. Each physical core consists
of two hyper-threaded cores with Intel Xeon E5-2680 v3 2.5 GHz, 30M Cache,
9.60GT/s QPI, Turbo, HT, 12C/24T (120W). In summary, consider that a run
of Ca-DE-LS consumes at least one order of magnitude more computation time
than a run of BRKGA.

Problem Instances. The comparison of BRKGA with CG-DE-LS was conducted
on 36 instances from a dataset that was originally introduced in [20]. This dataset
consists of problem instances with the number of machines ranging from three
to twenty, and there are three instances per number of machines. Each machine
has to process, on average, 10.5 jobs; that is, an instance with three machines
has approximately 32 jobs. Further details concerning the problem instances and
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their job characteristics (processing times, release times, weights, etc.) can be
obtained from the original study.

Tuning of BRKGA. The proposed BRKGA approach has six parameters which
require suitable values. In this work we made use of the automatic configuration
tool irace [14] for finding such parameter values. More specifically, we aimed
at identifying one parameter setting that works well for all 36 test problem
instances. For this purpose, we selected six problem instances (having between
3 and 12 machines) from the additional instances provided in [20] which have
not been tested in [18]. In addition, we added instances 15-3 and 20-5 from the
36 instances that will be used for the final experimentation, because [20] does
not contain any other instances of that size. In total, this makes a set of eight
tuning instances. The following parameter value ranges were considered:

— psize € {10, 50, 100, 200, 500, 1000, 5000} .
— pe € {0.05,0.1,0.15,0.2,0.25}.

Pm € {0.1,0.15,0.2,0.25,0.3}.

— probeice € {0.5,0.6,0.7,0.8,0.9}.

— I'Owidth € {2, 3,5, 10, 20}

~ pmax e 190,50, 100, 200, 500}

noimpr

In total, we allowed a maximum of 5000 experiments—with a computation time
limit of 3600 s per run—for tuning. The results provided by irace were as follows:
Psize = 1000, p. = 0.25, p,,, = 0.15, probejite = 0.5, rowiath = 3, and Mnoimpr =
200. These parameter value settings were used for the final experimentation.
The parameter settings of CG-DE-Ls (for the same set of problem instances)

are described in [18].

4.1 Numerical Results

BRKGA was applied ten times to all 36 considered problem instances with a CPU
time limit of 3600s per run. The numerical results—in comparison to those of
Ca-DE-Ls taken from [20]—are presented in Table 1. The first column provides
the instance names. The following three columns show the results of CG-DE-
Ls in terms of the best solution found in 30 runs (column with heading best),
the average of the values of the 30 solutions found in 30 runs (column with
heading avg) and the corresponding standard deviation (column with heading
std). The same three columns (based on tens runs per problem instance) are
provided for BRKGA. Two additional columns provide information about the
average computation time at which the best solution of each run was found and
the corresponding standard deviation. Finally, note that values in columns avg
are marked in bold font when the corresponding result is better (with statistical
significance according to Student’s t-test with o« = 0.05) than the result of the
competing algorithm.

The results in Table 1 allow for the following observations:
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Table 1. A comparison of BRKGA with CG-DE-LS [18]. Both algorithms were run 30
times on each problem instance and allowed 3600 s of run-time. Statistically significant
results at a = 0.05 are shown in bold.

Instance | Ca-DE-Ls BRrRKGA
best avg std | best avg std time |std

3-5 505.00 | 505.00 0.0 505.00 | 505.00 0.0 2.5 0.5
3-23 149.07 | 149.29 0.7 149.07 149.07 0.0 13.2| 30.3
3-53 69.36 | 69.44 0.2 69.36 | 69.36 0.0 1.0 0.2
4-28 23.8123.91 0.1 23.81123.93 0.10| 221.5| 2984
4-42 66.73 | 66.92 0.3 67.64 | 67.64 0.0 4.4 1.1
4-61 45.96 | 45.98 0.1 45.96 | 46.47 0.3 | 696.5| 680.2
5-7 252.90 | 253.79 1.9| 253.38|253.69 0.4 |1827.8|1260.4
5-21 168.63 | 168.63 0.0 168.63|168.63 0.0 8.9 2.2
5-62 249.68 | 256.61 2.3 249.50 | 255.66 2.7 | 979.8/1016.9
6-10 812.90 | 822.45 6.7 817.10 | 828.09 6.9 |2209.2|1210.7
6-28 218.37 | 219.02 1.6 219.48|228.07 6.6 | 290.1| 556.5
6-58 238.84 | 242.89 3.3 238.84241.33 1.8 | 915.7| 697.2
7-5 418.06 | 426.96 7.6 418.06|430.15 10.1 | 961.7|1027.6
723 540.60 | 555.17 5.4 553.40|557.54 4.3 | 826.3| 843.6
747 404.09 | 420.63 7.7 412.41|418.46 3.9 |1356.8|1116.7
8-3 619.58 | 634.00 9.2| 618.50|629.76 8.8 11493.1|1116.6
8-53 449.40 | 459.16 6.7 442.18 452.84 7.4 |1345.7|1192.6
877 1175.56 | 1214.36 | 20.4| 1163.78 |1194.32 20.5 | 1583.0|1044.6
9-20 871.72 | 887.18 6.4 877.30 882.18 4.5 11626.4|1209.0
9-47 1189.14 | 1219.74 | 17.6| 1158.25|1185.53 17.4 11095.7 | 1148.8
9-62 1395.08 | 1449.99 | 17.5| 1382.63|1399.67 12.4 |1254.2| 964.6
10-7 2401.99 | 2471.82 | 32.8| 2384.04|2400.26 13.9 |1601.8|1230.1
10-13 2100.96 | 2148.57 | 22.1| 2082.71|2106.96 11.6 |1816.7| 944.3
10-31 577.54 | 595.37 8.9 572.03 586.76 11.2 |2146.8 | 1193.3
11-21 968.121001.94 | 33.2| 964.04|973.49 7.2 12037.4]1296.7
11-56 1748.48 | 1798.08 | 24.1| 1674.49|1694.78 15.9 |2147.0|1164.4
11-63 1963.26 | 1994.49 | 18.1| 1887.17|1912.81 16.5 |2004.2 | 1004.3
12-14 1670.97 1 1728.63 | 26.8| 1636.39 | 1658.02 13.0 |1693.3|1258.0
12-36 2799.20 | 2904.02 | 41.3| 2764.172796.94 | 28.5 |1644.7|1225.5
12-80 2319.92|2372.37 | 31.5| 2226.67|2258.13 20.6 |1673.1|1032.1
15-2 3797.59 | 3867.99 | 41.7| 3596.50 | 3627.43 19.8 |2191.4|1038.2
15-3 4174.87(4251.49 | 49.1| 3948.22|3994.25 | 40.3 |2060.4|1086.1
15-5 3378.38 | 3433.19 | 35.4| 3234.74|3275.01 35.5 |1805.3| 921.2
20-2 8243.78 1 8339.35 | 58.3| 7755.29 | 7890.49 | 66.8 |2090.9|1043.8
20-5 13818.30 | 14120.69 | 163.3 | 12899.17 | 13123.85 | 138.0 | 2446.2 | 988.6
20-6 7246.64 | 7347.18 | 52.6| 6907.80 | 6998.20 74.2 | 2243.1| T42.4
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— For the small-medium problem instances (see the first 14 rows of Table1)
there is no a clear pattern, with BRKGA outperforming CG-DE-LS in some
cases, and vice versa in others.

— Starting from instance 7-47 (i.e., and all larger instances with 8 machines
or more) BRKGA clearly outperforms CG-DE-Ls. Hereby, the advantage of
BRKGA over CG-DE-LS seems to grow with increasing problem instance size.
In the case of the largest 11 instances, for example, the average performance
of BRKGA is better than the best solution values found by Ca-DE-Ls.

In order to better understand the behaviour of BRKGA, we provide graphics
about the evolution of the best-so-far solution over time for four rather large
problem instances in Fig. 1. More specifically, the graphics show the mean per-
formance of BRKGA over 10 runs, while the grey-shaded area around the curves
show, for each time step on the y-axis, the performance of the worst run and
of the best run among the 10 runs. Furthermore, the dashed horizontal lines
indicate the value of the best solutions found by CaG-DE-LS within 30 runs,
where each run made use of 16 threads in parallel. Finally, the vertical bars
indicate the initiation of iterations with rollout evaluations (in any of the ten
runs). In those cases in which such a vertical bar has a white square head,
the rollout iteration was successful in the sense that the best-so-far solution was
improved. Otherwise—that is, in those cases in which such a bar has a black dia-
mond head—the rollout iteration was not successful. Note that in the context of
instances 11-63 and 15-2 (Fig. la and b) only the successful rollout iterations are
indicated, because showing all rollout iterations would have made these graphics
unreadable.

The graphics in Fig. 1 allow us to make the following conclusions:

— First, in all four cases all ten runs of BRKGA improve over the best solution
found by CG-DE-Ls after a few hundred seconds. This is despite the fact
that Cc-DE-LS makes use of 16 threads in parallel, while BRKGA is run in
one-threaded mode.

— Second, the best moment to make use of rollout iterations seems to be when
the algorithm is stuck for quite a while in a local minimum. Remember that
the parameter setting was determined by our tuning procedure with IRACE, as
described in the third paragraph of Sect. 4. The chosen settings are roywigth = 3

and nyt o, = 200, that is, a very narrow rollout-width and a rather high

number of consecutive non-improving iterations before a rollout iteration is
initiated. The effect of this can be nicely seen in the four graphics. In fact, the
first rollout iterations are—in all four cases—initiated after the algorithm has
already outperformed CG-DE-Ls. The reason for making use of rollout itera-
tion in this way is the significant difference in computation time requirements:

a standard iteration requires 0.157 s for instance 11-63, 0.34 s for instance 15—

2, 0.52 s for instance 20-2, and 0.64 s for instance 20-5. In contrast, a rollout

iteration requires 12.7 s for instance 11-63, 41.1's instance for 152, 89.3 s for

20-2, and 115.0s for 20-5. That is, a rollout iteration consumes about two

orders of magnitude more time than a standard algorithm iteration.
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Fig. 1. Evolution of the best-so-far solution of BRKGA for four large problem instances.
The curves show the mean performance over 10 runs, while the gray-shaded area behind
the curves shows the spread of the 10 runs. The dashed horizontal bars indicate the best
result of CG-DE-Ls after 30 runs. The vertical bars indicate the initiation of rollout
iterations.

Summarizing, we can say that our BRKGA algorithm significantly outperforms
the current state-of-the-art algorithm CaG-DE-LS, especially with growing prob-
lem instance size. Moreover, the algorithm requires much less computational
resources than its competitor from the literature.

5 Conclusions and Future Work

We considered the resource constraint job scheduling problem where multiple
single machine scheduling problems are linked by one limited shared resource.
The objective is to minimize the total weighted tardiness of all jobs. We tackled
this problem by means of a biased random key genetic algorithm, which is a
quite generic framework. For the problem dependent part of the algorithm—the
decoder—we apply a greedy construction heuristic which processes the jobs in
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an order determined by the jobs’ random keys in combination with the earli-
est starting times. The basic greedy heuristic is further substantially enhanced
by applying rollouts in a carefully controlled way in order to obtain a more
promising ranking of the jobs. As rollouts are time-expensive, they are only used
when the optimization gets stuck with the standard greedy criterion for a certain
number of iterations.

Our experimental results show that in particular with growing problem
instance size our approach significantly outperforms the leading column gener-
ation/differential evolution hybrid from the literature, both in terms of solution
quality and computation time.
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