
Jixue Liu
James Bailey (Eds.)

 123

LN
AI

 1
19

19

32nd Australasian Joint Conference
Adelaide, SA, Australia, December 2–5, 2019
Proceedings

AI 2019: Advances in 
Artificial Intelligence



Lecture Notes in Artificial Intelligence 11919

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Jixue Liu • James Bailey (Eds.)

AI 2019: Advances in
Artificial Intelligence
32nd Australasian Joint Conference
Adelaide, SA, Australia, December 2–5, 2019
Proceedings

123



Editors
Jixue Liu
University of South Australia
Adelaide, SA, Australia

James Bailey
The University of Melbourne
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-35287-5 ISBN 978-3-030-35288-2 (eBook)
https://doi.org/10.1007/978-3-030-35288-2

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-35288-2


Preface

This volume contains the papers presented at the 32nd Australasian Joint Conference
on Artificial Intelligence 2019 (AI 2019), which was held during December 2–5 2019,
in Adelaide, Australia, hosted by the University of South Australia. This annual con-
ference remains the premier event for artificial intelligence in Australasia, which
provides a forum for researchers and practitioners across all subfields of artificial
intelligence to meet and discuss recent advances. AI 2019 received 115 submissions
with authors from 22 countries. Each submission was reviewed by at least three
Program Committee members or external reviewers. Subsequent to a thorough
discussion and rigorous scrutiny by the reviewers and the dedicated members of the
Senior Program Committee, 48 submissions were accepted for publication as full
papers. The acceptance rate was 42%.

AI 2019 had five keynote talks by the following distinguished scientists:

• Albert Bifet, University of Waikato, New Zealand, and Télécom ParisTech, France,
on “Machine Learning for Data Streams”

• Dale Lambert, Defence Science and Technology (DST) Group, Australia, on
“Artificial Intelligence: Past, Present, Future”

• Kate Smith-Mile, University of Melbourne, Australia, on “Instance Spaces for
Objective Assessment of Algorithms and Benchmark Test”

• Anton van den Hengel, University of Adelaide, Australia, on “Visual Question
Answering, and why we’re asking the wrong questions”

• Xin Yao, Southern University of Science and Technology, China, and University of
Birmingham, UK, on “Forgotten Questions in Brain-inspired Computing”

AI 2019 was featured with a workshop, a special session, and three tutorial sessions:

• Workshop: “Interpretability: Methodologies and Algorithms,” organized by Inna
Kolyshkina and Simeon Simoff. The workshop proceedings were managed sepa-
rately from this book.

• Special session: “AI in Defence,” organized by Asanka Kekirigoda, Zhuoyun Ao,
and Kin Ping Hui.

• Tutorial: “Deep Learning Methods, Practices, and Applications,” by Ehsan
Abbasnejad from the University of Adelaide.

• Tutorial: “Deep Learning Security: Adversarial Attack and Defense,” by Sarah
Erfani and Xingjun Ma from the University of Melbourne.

• Tutorial: “From Statistical to Causal Learning,” by Mingming Gong from the
University of Melbourne.

AI 2019 would not have been successful without the support of authors, reviewers,
and organizers. We thank the authors for submitting their research papers to the con-
ference. We are grateful to authors whose papers are published in this volume for their
cooperation during the preparation of the final camera-ready versions of the



manuscripts. We specially appreciate the work of the members of the Program
Committee and the external reviewers for their expertise and timeliness in assessing the
papers within a short timeline. We also thank the organizers of the workshop, the DST
session, and the tutorial speakers for their commitment and dedication. We are very
grateful to the members of the Organizing Committee for their efforts in the prepara-
tion, promotion, and organization of the conference, especially the general chairs for
coordinating the whole event. We acknowledge the assistance provided by EasyChair
for conference management. Lastly, we thank the DST Group, Springer, The National
Committee for Artificial Intelligence of the Australian Computer Society, and the
University of South Australia for their sponsorship, and the professional service pro-
vided by the Springer LNCS editorial and publishing teams.

November 2019 Jixue Liu
James Bailey
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The Application of AlphaZero to Wargaming

Glennn Moy and Slava Shekh(&)

Defence Science and Technology Group, Edinburgh, Australia
{glennn.moy,slava.shekh}@dst.defence.gov.au

Abstract. In this paper, we explore the process of automatically learning to
play wargames using AlphaZero deep reinforcement learning. We consider a
simple wargame, Coral Sea, which is a turn-based game played on a hexagonal
grid between two players. We explore the differences between Coral Sea and
traditional board games, where the successful use of AlphaZero has been
demonstrated. Key differences include: problem representation, wargame
asymmetry, limited strategic depth, and the requirement for significant hardware
resources. We demonstrate how bootstrapping AlphaZero with supervised
learning can overcome these challenges. In the context of Coral Sea, this enables
AlphaZero to learn optimal play and outperform the supervised examples on
which it was trained.

Keywords: Wargaming � Deep reinforcement learning � AlphaZero

1 Introduction

Wargaming is a key part of the Course of Action (COA) Analysis step of the Joint
Military Appreciation Process (JMAP) used by the Australian Defence Force
(ADF) [1]. Wargaming is used to evaluate alternative COAs for accomplishing a task
or mission by stepping through each COA in detail to identify potential issues and
vulnerabilities. The outcomes of the wargaming are then used to inform the Com-
mander’s final decision on the best COA.

In this paper we are interested in using deep reinforcement learning to automati-
cally play wargames, which are a subclass of general game playing (GGP) [2]. In 2016,
Google DeepMind made worldwide headlines with AlphaGo, a computer program that
learnt to play the board game Go proficiently enough to defeat Lee Sedol, one of the
world’s best Go players [3]. Over the following years, Google DeepMind improved
and generalized the AlphaGo system, leading to AlphaZero, a version of the software
that could play several different board games (Go, Chess and Shogi) at superhuman
levels [4]. The success of AlphaZero in playing a range of different strategy games
naturally leads to the question of whether similar techniques could work in the context
of military wargaming.

Automated wargame analysis could be used to provide recommendations for tactics
and strategies, which human wargame players may have overlooked. As a further
objective, an automated wargame player could be used to examine existing force
structures and provide recommendations for how these structures could be modified to
increase their effectiveness in a range of scenarios.

© Springer Nature Switzerland AG 2019
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We are initially exploring a specific type of wargame modelled on a fictitious
scenario, called Coral Sea [5]. Two players (Blue and Red) take turns moving units on
a hexagonal (hex) grid, where the Blue player’s aim is to reach a goal location with a
specific unit, and the Red player’s aim is to prevent the Blue player from doing so. This
wargame is multi-agent, sequential, deterministic, static, fully observable, unknown,
asymmetric and discrete.

In this work, we are interested in exploring the strengths and weaknesses of
AlphaZero for discovering effective strategies for both the Blue and Red players,
thereby automating the wargaming process. In particular, we are interested in inves-
tigating the feasibility of AlphaZero given constrained computational resources and a
limited time budget.

The remainder of this paper is structured as follows: we provide a definition of the
Coral Sea problem; we describe the AlphaZero technique; we discuss a number of
differences between Coral Sea and traditional board games; and finally we outline our
results, including a method of bootstrapping AlphaZero with supervised learning to
improve performance.

2 Coral Sea

In the ADF, wargaming is used to evaluate alternative courses of action for accom-
plishing the Commander’s Intent within a task or mission by stepping through each
COA in detail to identify potential issues and vulnerabilities. The outcomes of the
wargaming are then used to inform the Commander’s decision-making.

The most common wargaming method used by the Australian military is the
seminar wargame [6]. Seminar wargames are typically open-ended, discussion-based
activities focused on eliciting expert judgements from assembled subject-matter
experts. While there are many different methods for adjudication and tracking game
state, these tend to be informal, with the game state often represented by a physical
map, and tokens or pieces representing various force elements.

Assessing the consequences of particular action choices, as well as overall adju-
dication, is typically undertaken informally by one or more experts. There can be some
degree of structure to seminar wargames (such as “boxing” off particular action-
reaction sequences for analysis, or focusing on previously agreed time periods).
However, seminar wargames don’t usually make explicit assumptions about the out-
comes of actions in particular states, or provide an explicit model of the environment
that would support automated analysis.

More recently, however, the ADF has begun exploring the use of more structured
wargaming in COA analysis, including applications like MASA SWORD [7]. The use
of a model to represent the game state provides opportunities for more consistent,
detailed adjudication and constrains the valid actions within a particular state. An
explicit environment model also reduces the role of unconscious bias in wargame
evaluation.

The existence of an explicit model of the environment opens up the possibility of
using machine learning agents to efficiently explore the state space of the environment
in order to provide recommendations on the best actions (tactics) to take in a particular
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situation. For initial exploration, we consider a simple wargame called Coral Sea [5].
Coral Sea is significantly simpler than large-scale wargaming applications, such as
MASA SWORD, but is well-suited for a small-scale feasibility study. If machine
learning can be applied successfully to Coral Sea, then our intent is to apply machine
learning to more realistic wargaming simulations in future work.

Coral Sea is a turn-based game played on a hexagonal grid between two players:
Blue and Red (see Fig. 1).

Each player has a finite number of units at their disposal and must achieve a
particular goal within a fixed number of turns. The available units and goals of each
player are generally different, so the game is considered asymmetric. In the default
scenario, the goal of the Blue player is to successfully move their Amphibious Force
from its starting position to a defined goal, protected by the other pieces. The goal of
the Red player is to stop this within a specified number of turns.

The game is played across a fixed number of turns, with each turn broken down
into three phases: movement, acquisition and engagement. During the movement
phase, players take turns moving their units to new positions on the hex grid. Each unit
type is limited to moving a certain number of hexes per turn. One significant difference
between classic board games and Coral Sea is the ability for a board position to contain
multiple pieces simultaneously. During the acquisition phase, players take turns
acquiring enemy units using friendly units that have acquisition capabilities (limited by
an acquisition range). Finally, during the engagement phase, players take turns firing at
enemy units that have been acquired in the previous phase. After the engagement
phase, the next turn begins again with the movement phase and the initiative card is
passed to the other player. The initiative card is always held by one player and

Fig. 1. The general Coral Sea board game - played on a hex grid with each player having a
number of pieces representing different force elements [5]. (Color figure online)
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determines whether that player can act first in the different phases of a turn. An example
of the progression of play is given in Fig. 2.

We consider a particular set of scenarios in Coral Sea, where the Blue player must
reach a goal location with a particular unit, while the Red player tries to prevent this
from happening within a specified number of turns.

3 AlphaZero

AlphaZero is a technique developed by Google DeepMind in 2017 [4]. AlphaZero is
able to learn superhuman policies in some fully observable, symmetric, deterministic
two-player strategy games, including Go, Chess and Shogi. Given many of the simi-
larities, we postulate that AlphaZero should also be able to learn superhuman play in
Coral Sea.

AlphaZero combines traditional Monte Carlo tree search (MCTS) [8] with a deep
neural network that efficiently estimates the value of a particular board state, along with
the probabilities of taking each action in that state. MCTS is a general search algorithm
that is commonly used in automated game play as an alternative to exhaustive depth-
first searches, such as Minimax [9]. MCTS expands the game tree through a form of
weighted random sampling. Nodes in the game tree are selected based on a combi-
nation of how frequently they have been visited before (exploration) and how fre-
quently they resulted in success (exploitation). Once a leaf node is reached, a rollout is
performed to determine the outcome of the game from that state and the simplest way
of doing this is through random play.

AlphaZero improves upon this process by combining MCTS with a deep neural
network. Initially, a random neural network is used to estimate the value of states
during the MCTS rollouts instead of using random play. Over time, AlphaZero

Movement Phase Acquisition Phase Engagement Phase

Fig. 2. An example of the three phases within a turn of Coral Sea (during which the Red player
holds the initiative card). Players moves their units during the movement phase, acquire targets
during the acquisition phase, and engage acquired targets during the engagement phase. Since
Red holds the initiative card, Red acts first and is able to destroy one of the Blue units before the
Red unit is destroyed. (Color figure online)
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generates a large amount of self-play data, using MCTS and the neural network to
estimate the rollout values and move probabilities. In parallel, a separate process
constantly optimizes the neural network weights towards more accurate values, based
on the actual outcomes (win/loss) from self-play games. From time to time, the updated
neural network is compared to the current best network, by playing a series of
“evaluation” games in a separate, parallel process. If the current network beats the best
network by a sufficient margin the best network is updated, otherwise the previous best
network remains and optimization continues. All three processes (self-play, optimize
and evaluate) continue in parallel. As the model becomes better at predicting the value
of states, and the best action to take, the quality of self-play data improves.

4 Differences from Chess and Go

Coral Sea shares many properties with traditional board games like Chess and Go, but
there are also several key differences which we discuss in the following subsections.

4.1 Representations

One significant difference between many board games and Coral Sea is the ability for a
board position to contain multiple pieces simultaneously. This means that compact
representations of board state, such as the Forsyth–Edwards Notation (FEN) notation in
Chess [10], cannot be directly used in Coral Sea. In addition, whereas the board in
many board games can be represented as a two-dimensional matrix, the notion that
multiple pieces can occupy a single space requires the addition of a third dimension. In
fact, any property of a board game that is traditionally represented in two dimensions
may now require three. An example from Coral Sea is the accumulation of acquisition
points on units during the acquisition phase (to determine which units have been
acquired and are valid engagement targets). If multiple units can be co-located, then an
extra dimension is required to store this acquisition information on a per-unit basis at a
particular board position.

One way of representing board state, and in fact the approach used in AlphaZero, is
to create a multi-dimensional spatial representation which can be used in conjunction
with a convolutional neural network (CNN). CNNs have proven to work well on tasks
such as image classification [11], where the CNN learns the spatial relationships in an
image in order to classify it. In Coral Sea, this is a viable way of representing the board
state, but possibly not the most efficient due to the additional dimensions added by the
property of multiple pieces being allowed in a single hex. Therefore, we also explore a
linear vector representation of board state, where unit positions are simply stored as
coordinates rather than being represented spatially. This alternative board representa-
tion allows us to also use a much simpler neural network, such as a basic multi-layer
perceptron (MLP), which may accelerate the training process at the expense of sim-
plifying the behaviors which can be learnt by the neural network.

The Application of AlphaZero to Wargaming 7



4.2 Asymmetry

AlphaZero learnt to play three different board games (Go, Chess and Shogi) using the
same basic architecture [4]. However, each of these games is essentially symmetric,
because players start these games in very similar starting states and have access to the
same kind of moves over the course of play.

Unlike board games, which use symmetry to allow two players to directly compete
on an even playing field, wargames are abstract representations of real world military
conflict, which is typically an uneven playing field. The primary purpose of military
wargaming is not friendly competition, as is the case with classic board games, but as a
mechanism for understanding the potential outcomes of different choices in a military
scenario. If a scenario turns out to be highly asymmetric, strongly favoring one of the
players, then that is a valid and useful outcome of the wargaming process.

One consequence of asymmetry in wargames is that the initial strategy of the
disadvantaged player can be much more difficult to learn through self-play. Consider a
Coral Sea scenario, where the Blue player must reach the goal in the top-left corner of
the map, while the Red player defends it (see Fig. 3). If the Blue player does nothing,
then Red automatically wins because the goal has been defended. As a first step, Blue
needs to learn how to traverse the map towards the top-left corner in order to have any
chance of succeeding. This is difficult using a technique like AlphaZero, because it
does not use any human expert data and learns through self-play. Since there is no
human expert data, this self-play is initially very random. Randomly discovering the
strategy of moving from the bottom-right corner to the top-left corner of the map is an
unlikely occurrence, particularly as the size of the map grows.

Fig. 3. A Coral Sea scenario played on a 10 � 10 hex grid. The Blue player must reach the top-
left corner of the map with their unit, while the Red player must defend that location. (Color
figure online)
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A second consequence of asymmetry is that incremental improvement in strategy
for one player does not necessarily benefit the other player. In a symmetric game, as an
agent learns new strategies, these strategies provide equal benefit for both the Blue and
Red player. By contrast, in an asymmetric game, any new strategy discovered may
improve one side over another. As a result, throughout the learning process self-play
games are always played between opponents with unmatched skill level. This leads to
lower quality self-play data and undermines the self-play mechanism.

4.3 Strategic Depth

In addition to differences in representation and the presence of asymmetry, Coral Sea is
also different from Chess and Go in that it has relatively low strategic depth [12].
Strategic depth is a concept that has been used by game developers to describe games
that are easy to learn, but hard to master. Games with high strategic depth have a large
strategy ladder. A game’s strategy ladder defines a list of increasingly successful
strategies available given increasing computational resources. Each individual strategy
on a game’s strategy ladder describes the optimal play possible for a fixed computa-
tional budget, with that budget increasing for steps higher up the ladder. Games with
high strategic depth have a large number of increasingly complex, ever-improving
strategies available to the player. By contrast, games with low strategic depth typically
have only a small number of distinct strategy choices. This does not necessarily mean
that games with low strategic depth have reduced state space complexity – the com-
putational cost of implementing the strategy could be arbitrarily high.

Popular games like Chess and Go have been successful over thousands of years
precisely because they have high strategic depth, offering players a lifetime of skill
development. Games with high strategic depth are particularly well-suited for incre-
mental self-play techniques like AlphaZero. Since the process of exploring new
strategies involves random exploration, AlphaZero works best on games with a com-
putationally close set of increasingly good strategies to facilitate continuous
improvement through self-play.

In contrast to Go, Chess and Shogi, military wargames don’t always have high
strategic depth. Wargames model real military scenarios, so they are not specifically
designed for continuous improvement or skill development. In our case, we assess that
in Coral Sea there is little strategic depth, with only a small number of strategic choices
separating random play from optimal play. However, while strategic depth is low, the
computational cost of finding the few strategies required can be made arbitrarily large.
For instance, increasing the board size increases the state space with little impact on
strategic depth. This adds another challenge to using incremental self-play as a tech-
nique for learning to play Coral Sea.

4.4 Hardware

DeepMind made the claim that AlphaZero outperformed Stockfish, one of the best
Chess engines, after just 4 h of training [4]. At the time, Stockfish was one of the
strongest Chess engines in the world, frequently winning the Top Chess Engine
Competition, and sharing dominance as one of the “big 3” Chess engines alongside
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Komodo and Houdini [13]. Since the defeat of Garry Kasparov in 1997, computer
Chess has come a long way and all 3 of these engines are significantly stronger than
any human grandmaster.

It is therefore difficult to imagine how a machine learning system, trained for only
4 h and without any human games as guidance, can defeat a Chess engine that has been
carefully honed and perfected by humans over the last decade. The caveat is that in
those 4 h, AlphaZero was trained “using 5,000 first-generation TPUs to generate self-
play games and 64 second-generation TPUs to train the neural networks” [4]. A dis-
tributed, open-source effort to reproduce DeepMind’s results, called Leela Chess Zero,
has taken approximately 1 year to reach the strength of Stockfish, using essentially the
same approach as AlphaZero [14]. In a similar vein, OpenAI Five succeeding in
training a deep reinforcement learning system to compete at professional level in Dota
2. Their system plays 180 years’ worth of games against itself every day by running a
massively scaled version of proximal policy optimization (PPO) on a cluster of 256
GPUs and 128,000 CPU cores [15].

Despite these impressive results, the kind of computational resources available to
DeepMind and OpenAI are generally not available to the public. Researchers often
have access to machines with only a handful of CPUs and GPUs, making the
achievements of DeepMind and OpenAI very difficult to reproduce. For example,
training AlphaZero to play Chess better than Stockfish would take in the order of years
on a machine with a single GPU. This suggests the need for algorithms with better
efficiency, particularly better sample efficiency, which is an active area of research
focused on improving the degree to which an algorithm learns per input data sample
[16].

5 Experimental Results

Although Coral Sea shares some properties with board games like Chess, Go and
Shogi, the differences described in the previous section mean that applying AlphaZero
directly to Coral Sea is a challenging task. The asymmetric nature of Coral Sea, the
imbalanced and non-incremental strategy ladder, and the higher-dimensional problem
representation are all sources of increased complexity. At the same time, with only a
small number of CPUs and GPUs available, we are limited to hardware resources that
are orders of magnitude smaller than those of DeepMind in their AlphaZero imple-
mentation. Through our experimentation, we find that one of the most effective ways to
address these challenges is to bootstrap AlphaZero with supervised learning.

5.1 AlphaZero with Supervision

AlphaZero learnt to play Go, Chess and Shogi “tabula rasa” – given the game rules, but
no other human domain knowledge [4]. More complex systems, such as like AlphaStar,
often use human data and supervised learning to bootstrap the reinforcement learning
[17]. More generally, the concept of agents learning behavior from human demon-
strations is known as imitation learning [18]. In the Coral Sea problem, instead of using
human demonstrations, we encode human knowledge in the form of heuristics. We find
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that supervised learning over heuristic data greatly speeds up the learning process,
especially due to the asymmetry of the wargame. The following experiment provides
some evidence of this finding.

Consider the Coral Sea scenario illustrated in Fig. 3 (Sect. 4.2). In this scenario, the
Blue player starts in the bottom right corner of a 10 � 10 hex grid with the goal of
reaching the top left corner of the grid in 20 turns. The Red player starts in the top left
corner and must prevent the Blue player from reaching that corner. Both players can
move a maximum of 1 hex cell per turn to cells that are adjacent in the hex grid. Both
players are able to destroy the other play from a fixed cell-distance (typically within 3
hex-grid cells) away. The opportunity to shoot first alternates according to which player
holds the initiative card in any given turn.

This trivial scenario is initially biased towards a Red victory, because if both
players do nothing, Blue will not reach the goal and Red will win by default. However,
with perfect play, Blue is guaranteed a win. Nevertheless, in early exploration, Blue
only receives a reward if it reaches the goal. Therefore, if the Blue player explores by
performing a random movement during each of their 20 turns, the chance that these
random movements will ultimately lead to the goal is very small on a 10 � 10 grid.
Furthermore, consider the same grid scaled up to 100 � 100 or more, where a human
could still find a path to the goal with relative ease, but where finding a path through
random exploration becomes increasingly infeasible.

Since AlphaZero is initialised with a random neural network and its initial
exploration is largely random due to the use of MCTS, AlphaZero will inherently
struggle to discover the Blue strategy of moving towards the goal. One way of assisting
AlphaZero in its learning process is to provide some learning examples. We have
implemented three heuristics (GoalMove, SafeGoalMove and RandomLegal), which
can be used to generate higher quality data than random MCTS simulations.

GoalMove involves moving as far as possible directly towards the goal, where the
goal can be a location on the grid or an enemy unit. SafeGoalMove involves applying
GoalMove if the initiative card is currently held by the player, while otherwise moving
to a hex in the direction of the goal but outside the reach of any enemy units. Finally,
RandomLegal simply selects a legal action at random and provides us with a baseline.
Given the scenario shown in Fig. 3, each of the heuristics being used by each of the
players can be ordered in terms of their relative strength, forming an approximate
strategy ladder:

1. SafeGoalMove (Blue)
2. SafeGoalMove (Red)
3. GoalMove (Blue)
4. GoalMove (Red)/RandomLegal (Red)
5. RandomLegal (Blue)

This ordering means that the SafeGoalMove strategy when used by Blue will beat
any Red strategy (out of the three we have implemented), whereas SafeGoalMove
when used by Red will beat any Blue strategy except SafeGoalMove, and so on. The
only exception is that RandomLegal, due to its stochastic nature, can sometimes defeat
the strategies above it in the ordering, but this is a very rare occurrence. To the best of
our knowledge, SafeGoalMove is an optimal strategy when used by Blue,
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demonstrating that Blue ultimately has an advantage in this scenario. Preliminary
experiments also suggest that SafeGoalMove is an effective (though not always opti-
mal) strategy in other Coral Sea scenarios, providing a good baseline strategy for future
work.

To avoid having a strong reliance on heuristic data, we explore a hybrid approach
where both heuristics and MCTS are used to generate self-play data for AlphaZero.
This is achieved by probabilistically using either a heuristic or MCTS to select a
player’s next action during a self-play game. The player’s next action is selected by a
heuristic with probability ph or by the standard AlphaZero MCTS method with prob-
ability (1−ph). During evaluation (as opposed to self-play), ph is set to 0 to force
AlphaZero to select its own actions without relying on heuristics, and to demonstrate
what it has learnt.

While in this simple scenario, SafeGoalMove is an optimal strategy, it will not be
an optimal strategy across all Coral Sea scenarios. In general, our goal is to use
AlphaZero to find optimal strategies, although optimal heuristics will not be known in
advance for all scenarios. To this end, we have chosen to use the suboptimal GoalMove
to generate heuristic data. Our goal is to avoid providing AlphaZero with examples of
optimal play, to see if it can learn this optimal play for itself from suboptimal heuristic
data.

Table 1 below shows the effect of combining heuristics and MCTS with different
values of ph.

When ph = 0, AlphaZero only uses MCTS to generate self-play games, which
causes it to suffer from the exploration problems described earlier and prevents it from
reaching a 100% win rate against the GoalMove heuristic within 24 h. When ph = 1,
AlphaZero only uses the GoalMove heuristic to generate self-play games, which means
it lacks knowledge of how to beat a Blue player who is using GoalMove (since the only
thing stronger in the heuristic ordering is SafeGoalMove, which a ph = 1 player cannot
learn due to only seeing examples of GoalMove).

When 0 < ph < 1, AlphaZero ultimately manages to generate a more diverse set of
self-play data with policies that are based on the GoalMove heuristic with modifica-
tions proportional to (1 - ph). As ph approaches 1, the time required to generate

Table 1. Training time required for AlphaZero to reach a 100% win rate against the GoalMove
heuristic on the scenario from Fig. 3 (as both Blue and Red) with different values of ph.

ph Training time

0 >24 h
0.5 5 h
0.8 25 min
0.9 15 min
0.95 15 min
0.99 >24 h
1 >24 h
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self-play games rapidly decreases due to the speed of using a heuristic over MCTS.
This means that with a high ph, AlphaZero can generate large amounts of self-play data
and learn improved policies much more quickly. However, if ph is too close to 1, the
data set will lack diversity and AlphaZero may not be able to overcome the sub-
optimality of the GoalMove heuristic on which it was trained.

In summary, by combining both heuristic (expert) knowledge and MCTS explo-
ration within the AlphaZero reinforcement learning framework, we are able to train a
model which can outperform the heuristics that were used to train it, as well as
achieving this in much less computation time than using MCTS alone.

6 Conclusion

In this paper, we described our work on applying machine learning methods to the
abstract military wargame, Coral Sea. In particular, we investigated the AlphaZero
methodology and the feasibility of extending it from the domains of Go, Chess and
Shogi, toward the domain of military wargaming. Although the fundamental
methodology is sound and extends to our domain, we encountered many challenges
along the way in terms of problem representation, asymmetry, strategic depth and
hardware. We found that one of the most effective ways to address these challenges is
to bootstrap AlphaZero with supervised learning. We demonstrated that by combining
heuristic knowledge and MCTS exploration, we were able to train AlphaZero to out-
perform the heuristics on which it was trained.
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Abstract. Reinforcement learning agents can be helped by the knowl-
edge transferred from experienced agents. This paper studies the problem
of how an experienced agent helps another agent learn when they have
different learning goals by action transfer. This problem is motivated by
the widely existing situations where agents have different learning goals
and only action transfer is available to agents. To tackle the problem, we
propose an approach to facilitate the transfer of actions that are right
to a learning agent’s goal. Experimental results show the effectiveness
of the proposed approach in transferring right actions to an agent and
helping the agent learn to reach a different goal.

Keywords: Different goals · Action transfer · Reinforcement learning

1 Introduction

Reinforcement Learning (RL) has been widely used for an autonomous agent
to learn to reach its goal in sequential decision-making tasks [7]. An RL agent
might need a long learning time. To improve learning, transferring knowledge
from experienced agents to learning agents has been widely studied [9].

Transferring different kinds of knowledge has various requirements for agents.
This paper considers the transfer of actions, which requires agents to only have
a common action set. Compared with transferring other kinds of knowledge,
the requirement for action transfer is considered to be minimal [10]. This pro-
vides much flexibility. For example, agents giving and receiving actions could
use different knowledge representations and learning algorithms.

In this paper, we study the problem of how an experienced agent helps
another agent learn when they have different learning goals by action trans-
fer. This problem would widely exist in the real world. For example, Alice knows
how to reach her travel destination. When Bob loses his way, Alice might help
Bob reach his travel destination efficiently. However, the destinations of Alice
and Bob might be different. Also, Bob might not understand Alice’s detailed
expressions due to various reasons. In this situation, an understandable way for
c© Springer Nature Switzerland AG 2019
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Alice to help is to point out some directions that Bob could follow. Here “point
out” indicates “transfer”, and “directions to follow” indicates “actions”.

Several knowledge transfer approaches have been proposed to help an agent
learn in the different-goal situation [4,6,12]. These approaches require learning
agents to access and understand the knowledge of source agents. However, this
requirement might not be satisfied in many applications, especially when humans
are helping or learning [10]. Some knowledge transfer approaches with only action
transfer have been proposed [1,3,9,10,13,15]. However, these approaches require
agents giving and receiving actions to have the same learning goal, which is not
satisfied in the different-goal situation. Therefore, how an experienced agent
helps another agent learn when they have different learning goals by action
transfer remains as a challenging problem.

To tackle this problem, we ask below questions: (Q1) what actions are right
to be transferred to help a learning agent in the different-goal situation? (Q2)
do right actions exist? (Q3) if right actions exist, how an experienced agent
finds them? and (Q4) if a right action exists, but an experienced agent can-
not decide the rightness of this right action, could the agent still be able to
transfer this action? Hereafter, action transfer are called action advice, agents
giving/receiving advice are called teachers/students. These names often appear
in the action transfer literature. We propose an action advice approach to answer
the above questions. For (Q1), we define an agent’s goal, describe what makes the
different-goal situation, and define a teacher’s right/wrong advice (Sect. 2). For
(Q2), we define the concept of policy-similar states, at which right advice exists
(Sect. 3.1). For (Q3), we propose a method that enables a teacher to decide if a
state is policy-similar by finding right advice (Sect. 3.3). For (Q4), we propose
a method that enables a teacher to give right advice at states which are policy-
similar, but could not be decided as policy-similar by the teacher (Sect. 3.4).
Experimental results show the effectiveness of the proposed action advice (action
transfer) approach used in the different-goal situation.

2 Problem Formulation

In this section, we first give the background, including Markov Decision Process
(MDP) and action advice framework. Then, we formulate this paper’s problem.
Background RL has been widely used to solve sequential decision-making tasks.
Markov decision process [5] has been widely used as the model of an RL task.
An MDP is described by a tuple < S,A, T,R >, where S is the set of states,
A is the set of actions, T : S × A × S → [0, 1] is the transition function, R :
S × A → R is the reward function. An agent needs to learn an optimal policy π,
which is a mapping from S to A. Following π maximises the expected reward:
V (s) = E[

∑∞
t=0 γtrt|s0 = s], ∀s ∈ S, where γ ∈ [0, 1) is a discount factor, rt is

the reward at time step t, V is the expected reward value function.
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The action advice framework [8] includes two types of agents: Teacher and
Student. A teacher has learned an optimal policy π1. When a student is learning,
the teacher could help the student learn by giving advice. The advice at a state
s is an action a ∈ π(s), i.e., an optimal action to take at s based on the optimal
policy learned by the teacher.

Formulation of the Problem. We first define the goal of an agent. Then, we
describe what makes the different-goal situation, and clarify why current action
advice approaches are not applicable in the different-goal situation.

Definition 1 (Agent Goal). Given an agent in an MDP with a state space S,
let V ∗ be the maximised expected reward value function, the goal of the agent is
a state g ∈ S where V ∗(g) ≥ V ∗(s),∀s ∈ S2.

An agent receives the maximum expected reward among all states when the
agent reaches its goal. The optimal policy learned by the agent guides the agent
to its goal from other states.

Let t and u be a teacher and a student, gt and gu be their goals. The different-
goal situation can be denoted as gt �= gu. Basically, gt �= gu means that a teacher
and a student need to solve different MDPs. Two MDPs are different when they
have difference in any of S,A, T or R. In this paper, we focus on a specific kind of
difference that makes gt �= gu: two different MDPs share the same S,A, T,R−,
and have different R+, where R+: S × A → R>0, R−: S × A → R<0. The
MDPs with this kind of difference could model a bunch of different, but similar
tasks in the real world. For example, different navigation tasks on land share
the same S (land space), A (actions available on land), T (execution results
of actions), R− (e.g., battery consumption), and have different R+ (different
navigation goals). Enabling agents in different navigation tasks to advise each
other would be beneficial to these agents.

Let πg be the optimal policy for reaching a goal g. A teacher has learned πgt
.

A student has not learned πgu
, and would need action advice from the teacher to

learn πgu
. To help the student learn, the advised actions should be optimal for

reaching gu. The optimal/non-optimal advised actions can be defined as follows:

Definition 2 (Right/Wrong Advice). Let gt and gu be the goals of a teacher
and a student, πg be the optimal policy for reaching a goal g. At a state s, an
advised action a ∈ πgt

(s) is right/wrong advice when a ∈ πgu
(s)/a /∈ πgu

(s).

In the same-goal situation, gt = gu. Then, πgt
= πgu

, which means ∀s ∈
S, πgt

(s) = πgu
(s). Hence, we have ∀s ∈ S,∀a ∈ πgt

(s), a ∈ πgu
(s). This clarifies

that in the same-goal situation, at any state, any advised action (optimal to gt)
is right advice (optimal to gu). However, in the different-goal situation, gt �= gu.

1 We follow a general setting where π is optimal. Considering sub-optimal π is not the
main issue in this paper, and would be left as future work.

2 There are multiple goals when multiple states have the same maximum V value. The
technical details for multi-goal and one-goal situations are generally the same. We
only describe the one-goal situation for clear description.
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Table 1. Notation

Notation Meaning

S, s, g A state space, a state, a goal state of an agent

πg , πg(s) An optimal policy for g, optimal actions to take at s for reaching g

PS(g1, g2) Policy-similar states of two agents with goals g1 and g2

ORπg (s, a) Optimally reachable states of a state s and an action a under a policy πg

Then, πgt
�= πgu

, which means ∃s ∈ S, a ∈ πgt
(s) ∧ a /∈ πgu

(s). This indicates
that at some states, some advised actions might be wrong advice. In current
action advice approaches, a teacher does not decide if its advice is right to a
student. Then, the teacher might give wrong advice, which would mislead the
student. Hence, this paper’s problem is to study how a teacher gives right advice
to a student in the different-goal situation. The notation used in this paper is
shown in Table 1.

3 Action Advice in the Different-Goal Situation

This section first summarises two aims of the proposed approach by defining
agents’ policy-similar states. Then, the proposed approach is described in detail.

3.1 Policy-Similar States and Aims of the Proposed Approach

For an agent with a goal g, g indicates a unique πg [7]. Hence, for a teacher and a
student with gt and gu be their goals, πgt

and πgu
are well-defined. Based on πgt

,
πgu

and Definition 2, the states where right advice exists are also well-defined.
Those states can be defined as follows:

Definition 3 (Policy-Similar States). For a state space S, let gt and gu be
the goals of a teacher and a student respectively, πg be the optimal policy for
reaching a goal g, the policy-similar states of the agents are a set of states:

PS(gt, gu) = {s ∈ S\{gu}|(∃a)[a ∈ πgt
(s) ∧ a ∈ πgu

(s)]} (1)

The term policy-similar describes that a teacher and a student can take at
least one same optimal action to reach the agents’ different goals. At a policy-
similar state, right advice could be given if the teacher knows which action
(indicated by the teacher’s policy) is optimal to the student’s goal. Note that
PS is not known by any agent because an agent only knows its own goal and
policy. PS is computed within S\{gu}. gu is excluded because when at gu, a
student has reached its goal and does not need to take actions or get advice.
Based on PS, we summarise the aims of the proposed approach as follows:

Aim 1: To give right advice at a state s, the first aim is to enable a teacher to
decide if s is in PS, i.e., to decide if ∃a[a ∈ πgt

(s) ∧ a ∈ πgu
(s)].
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Fig. 1. The procedures of (a) a teacher and (b) a student.

Aim 2: If a teacher could decide that ∀s ∈ PS,∃a[a ∈ πgt
(s) ∧ a ∈ πgu

(s)],
the teacher could give right advice at maximum number of states. However, the
above decision would be hard to made. This is because finding all PS would
require the knowledge of both πgt

and πgu
, which would be infeasible for a

teacher who only knows πgt
. Let PSd be the states that could be decided in PS

by a teacher. We expect PSd ⊂ PS, i.e., there would be some states PS\PSd

that are policy-similar, but could not be decided as policy-similar by the teacher.
To give right advice at more states than just at PSd, the second aim is to enable
a teacher to give right advice at states PS\PSd.

The number of policy-similar states would relate to the settings of agents’
goals. This will be experimentally investigated in Sect. 4.1.

3.2 Overview of the Proposed Action Advice Approach

To tackle the aims summarised in Sect. 3.1, we propose an action advice approach
whose overview is shown in Fig. 1. Figure 1(a) shows the procedure of a teacher.
After initialising a goal, the teacher learns an optimal policy for reaching its goal.
Then, from the policy, the teacher extracts the decision-making information used
for deciding if an action is optimal to a student’s goal (for Aim 1, described in
Sect. 3.3). Next, the teacher starts to wait for requests from a student and will
respond by giving or not giving advice. In Fig. 1(b), a student first initialises its
goal. Then, the student starts to learn and will ask the teacher for advice (for
Aim 2, described in Sect. 3.4).

3.3 Formulation and Extraction of Decision-Making Information

We first formulate the decision-making information used for deciding if an action
is optimal to a student’s goal. Then, we show the extraction of this decision-
making information from the policy learned by a teacher.

Formulation of Decision-Making Information. For a teacher and a student,
from the teacher’s perspective, any state gp ∈ S might be the student’s goal,
and the student may ask for advice to reach gp from another state s. Hence,
the teacher needs to decide if πgt

(s) provides optimal actions for reaching gp

from s. The decision-making information can be formulated in below definition:
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Definition 4 (Optimally Reachable States). Let πg be the optimal policy
for reaching a goal g, gt be the goal of a teacher. For a state space S, a state s,
and an action a ∈ πgt

(s), the optimally reachable states of (s, a) under πgt
are

a set of states:

ORπgt (s, a) = {gp ∈ S|a ∈ πgt
(s) ∧ a ∈ πgp

(s)} (2)

∀gp ∈ ORπgt (s, a), a is an optimal action for reaching both gt and gp. When
a student is learning and asking for advice to reach gu at s, the teacher can make
its decision on whether to give advice based on following rules:

Decide(s, gu) =

{
give action advice a, if ∃a ∈ πgt

(s)[gu ∈ ORπgt (s, a)]
no advice, otherwise

(3)

If ∃a ∈ πgt
(s)[gu ∈ ORπgt (s, a)], a is decided to be optimal to the student’s

goal, and will be given as right advice by the teacher. Otherwise, the teacher
cannot find right advice, and hence does not give advice.

Extraction of Decision-Making Information. Next, we introduce the
extraction of ORπgt from a teacher’s policy πgt

. To simplify notation, we use
π to denote πgt

, ORπ to denote ORπgt .
We first use below equation to get an optimally reachable state of (s, a):

O(s, a) = {s|s ∈ T̂ (s, a)\{s} ∧ |T̂ (s, a)\{s}| = 1} (4)

where T̂ (s, a) indicates the states that an agent may travel to after taking a
at s. |T̂ (s, a)\{s}| = 1 means that the agent will travel to only one state other
than the current state s. We use osa to denote the only state in O(s, a). a is
optimal for reaching osa from s. This is because the teacher has learned that osa

is the state to reach before the teacher can optimally reach gt. If there is another
action ab /∈ π(s) that could make the teacher better reach osa, the teacher
would have learned that ab ∈ π(s), which contradicts with ab /∈ π(s). When
|T̂ (s, a)\{s}| > 1, a might not be optimal for reaching T̂ (s, a)\{s}. Detailed
analysis on the optimality of a when |T̂ (s, a)\{s}| > 1 is beyond the scope of
this paper, and would be studied in future work.

For osa, we can apply Eq. (4) to get O(osa, a′), a′ ∈ π(osa). We use osaa′ to
denote the only state in O(osa, a′). As a is an optimal action to reach osa from
s, a′ is an optimal action to reach osaa′ from osa, we have that a is an optimal
action to reach osaa′ from s because “is an optimal action to reach” is a transitive
relation. Hence, osaa′ is also an optimally reachable state of (s, a). Following the
above analysis, we can get a sequential sets of optimally reachable states. To do
so, we introduce the below equation:

Nπ(S′) = {os′a′ |∀s′ ∈ S′,∀a′ ∈ π(s′)} (5)

Nπ({osa}) indicates the optimally reachable states to reach by taking every
action in π(osa). Nπ(·) can be regarded as a function, and can be applied to the
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returned states of Nπ({osa}). We use Nπ
k ({osa}) to denote repeatedly applying

Nπ(·) for k times from {osa}. Based on the transitive relation, the states in
Nπ

k ({osa}) are optimally reachable states of (s, a). Hence, we have:

ORπ(s, a) = {osa} ∪ Nπ
1 ({osa}) ∪ · · · ∪ Nπ

k ({osa}) ∪ · · · (6)

As we also have Nπ
k ({osa}) = Nπ

k−1(N
π
1 ({osa})) = Nπ

k−1(
⋃

a′{osaa′}) where
a′ ∈ π(osa), Eq. (6) can be written in a recursive form:

ORπ(s, a) = {osa} ∪
⋃

a′
{osaa′} ∪ · · · ∪ Nπ

k−1(
⋃

a′
{osaa′}) ∪ · · ·

= {osa} ∪
⋃

a′

[{osaa′} ∪ · · · ∪ Nπ
k−1({osaa′}) ∪ · · · ]

= {osa} ∪
⋃

a′
ORπ(osa, a′)

(7)

A teacher can use Eq. (7) to extract ORπ after the learning of π.

3.4 Learning and Asking Process

In the different-goal situation, there should be a way to let a teacher know which
state a student wants to reach. We enable the student to send state signals to
the teacher. However, the number of state signals that can be sent at a state is
limited by a transmission capacity c. We consider that utilising c would help to
achieve Aim 2 (see Sect. 3.1). To do so, we first define an agent’s sub-goals:

Definition 5 (Sub-Goal). Given an agent in an MDP with a state space S,
let V be the agent’s experted reward value function, a state s ∈ S is a sub-goal
of the agent when V (s) > τ , where τ is a threshold.

A sub-goal indicates certain amount of expected reward (>τ), and could be
regarded as “close” to gu. Reaching states with higher V value means that the
student would be “closer” to gu. The optimal actions for reaching gu and sub-
goals might be the same. When the student asks to reach gu at a policy-similar
state s, but the teacher does not know s is policy-similar, the student could
utilise the transmission capacity c (if c > 1) by asking to reach sub-goals. If
the teacher knows optimal actions to reach the sub-goals, those optimal actions
might be right advice to the student. Even if the given advice were wrong, this
would not badly hurt the student’s learning because at least the wrong advice
leads the student to states “close” to gu. Based on the above analysis, we propose
a learning and asking process of a student shown in Algorithm 1.

4 Experiments

In this section, we first present experimental settings. To set up agents’ goals, we
investigate the influence of specific goals settings on the number of policy-similar
states. Then, we conduct two experiments to evaluate the proposed approach.
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Algorithm 1. Learning and Asking Process of a Student
Input: state space S, transmission capacity c, sub-goal threshold τ .

1 Initialises C(s) ← 0, N(s) ← ∅, A(s) ← ∅, ∀s ∈ S; /* C(s): number of times
the student has asked for advice at a state s, N(s): sub-goals to which no
advice has been received at s, A(s): advice that has been received at s */

2 foreach episode do
3 repeat
4 s ← Observes the current state;
5 if A(s) �= ∅ then aadv ← A(s) and go to Line 14;
6 while C(s) < c do
7 gsub ← arg maxs V (s), s ∈ S ∧ s /∈ N(s) ∧ V (s) > τ ;
8 if gsub �= ∅ then
9 aadv ← Ask(s, gsub); C(s) ← C(s) + 1;

10 if aadv = ∅ then
11 N(s) ← N(s) ∪ {gsub};

12 else
13 A(s) ← aadv;

14 Takes aadv if aadv �= ∅. Otherwise, use ε-greedy to select an action to
take. Then, updates learning information, and updates s to next state;

15 until s is the student’s goal;

4.1 Experimental Settings

Domain. The current action advice approaches are applied in domains with
the same-goal situation [1,3,10,15]. For example, [10] uses Mountain Car and
Pac-Man. In Mountain Car, agents’ goal is to reach the top of a mountain. In Pac-
Man, agents’ goal is to earn points while avoiding being caught. These domains
are not suitable for evaluating approaches in the different-goal situation.

In this paper, the experiments are conducted in a grid-world domain (shown
in Fig. 2(a)). Grid-world domains have been used in various RL problems [4,7,
14]. The state space can be represented by a set of locations. An agent’s goal
is a specific target location that the agent learns to reach. When agents have
different target locations, the agents are said to have different goals.

Fig. 2. (a) The navigation map, (b)
policy similarity distribution.

Fig. 3. Examples of the calculation of pol-
icy similarity in a simple navigation map.
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Settings of Goals. To set up a different-goal situation, we can choose a pair
of different states as goals. One is for a teacher, and the other is for a student.
According to Definition 3, a goal pair indicates a number of policy-similar states,
which indicates the maximum number of states where right advice exists. This
maximum number would influence the performance of the proposed action advice
approach. Hence, the goal pairs in the settings should indicate various numbers
of policy-similar states. For a state space S, there are |S| goals and |S|(|S| − 1)
goal pairs. For each goal, we can get the corresponding optimal policy by using
a learning algorithm. Then, for each goal pair, we can get the corresponding
policy-similar states. The number of these states is then divided by |S| − 1 to
get its normalisation, named as policy similarity. Figure 3 shows examples of the
calculation of policy similarity in a simple navigation map. A state is represented
by coordinates (x, y). Figures 3(a) and 3(b) show optimal actions, denoted as
arrows, for reaching goals g(1,1) and g(1,3) respectively. The solid arrows indicate
optimal actions to both g(1,1) and g(1,3), while the hollow arrows indicate optimal
actions to either g(1,1) or g(1,3). The shaded states are policy-similar, and the
policy similarity of (g(1,1), g(1,3)) is 0.75 (6/8). Figure 3(c) shows policy similarity
values when one goal is g(1,1) and the other goal is a state g(x,y) other than g(1,1).
The value shown on g(x,y) is the policy similarity of (g(1,1), g(x,y)). We can see
that the policy similarity ranges in [0, 1), and some goal pairs indicate the same
policy similarity. For the navigation map (Fig. 2(a)) that we use, we calculate
the policy similarity values of all goal pairs, and the distribution is shown in
Fig. 2(b). For each policy similarity value, we randomly choose 30 goal pairs as
the settings of goals.

Settings of Two Experiments. Q-Learning [11] is used as the learning algo-
rithm due to its popularity. All learning tests are performed for 5000 episodes,
with a learning rate of 0.02, a discount factor of 0.99, an exploration factor of
0.01 in ε-policy. An agent receives a reward of +200 for reaching its goal, and −1
for each action execution. States transitions are stochastic with a 0.1 probability
of failure to an agent’s actions. The action set is {Up, Down, Left, Right}. In
each state, actions heading towards a wall are not available to an agent. This is
to remove a goal which is the same for all agents: avoiding colliding with walls.
The settings of action advice approaches used in experiments are as follows.

Experiment 1. The first experiment is to test if a teacher could find the optimal
actions to a student’s goal (see Aim 1 in Sect. 3.1). The experiment includes one
teacher and one student. The teacher is trained to learn an optimal policy for
reaching the teacher’s goal before the learning of the student. Three action advice
approaches are applied for comparison: (1) the proposed approach which con-
siders the Different-Goal situation (DG); (2) a state-of-the-art Teacher-Student
approach (TS) [10]; and (3) No-Advice (NA). TS represents previous action
advice approaches developed for the same-goal situation. NA can be regarded as
a baseline approach in the different-goal situation. The transmission capacity c
in DG is set to 1, which means that at each state, the student can ask for advice
to reach only one state, i.e., the student’s goal.
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Experiment 2. The second experiment is to test if a teacher could give right
advice at states where optimal actions to a student’s goal exist, but could not be
found by the teacher (see Aim 2 in Sect. 3.1). The transmission capacity c ranges
in {1, 8, 32}. When c > 1, the student can ask for advice to reach sub-goals (see
Definition 5). The threshold τ for getting sub-goals is set to 0. As positive reward
originates from the student’s goal, at sub-goals with positive V , the student has
found some ways to its goal. Then, reaching one of those sub-goals would be
an option when the student does not get advice to its goal. The action advice
approaches used in this experiment are DG and NA.

4.2 Results and Analysis

Experiment 1. Figure 4(a) shows the average advice-giving results of DG and
TS. We can see that DG always produces right advice and does not produce
wrong advice. This means that by using DG, the teacher successfully finds opti-
mal actions to the student’s goal. The amount of right advice increases when
policy similarity gets higher. This is because more policy-similar states indi-
cate more states where optimal actions to the student’s goal exist. By contrast,
TS may produce wrong advice, especially when policy similarity is low. This is
because the teacher using TS does not decide the optimality of advised actions.
Figure 4(b) shows the average additional steps used by the student to reach its
goal compared with NA. We can see that when applying DG, the student takes
almost the same steps to reach its goal as applying NA. This means that the
student learns the optimal policy to its goal under most goal pair settings. By
contrast, when applying TS, the student takes more steps, especially when pol-
icy similarity is low. This is because wrong advice misleads the student, and
the student learns a worse policy than applying DG and NA. Figure 4(c) shows
the average fewer episodes used to converge compared with NA. We can see that
when applying DG, the student’s learning takes fewer episodes to converge, espe-
cially when policy similarity is high. The improvement is because taking right
advice reduces the exploration space of the student. Taking more right advice
results in faster learning. By contrast, when applying TS, although the student
learns faster than applying DG when policy similarity is high, the policy learned
by the student is worse. When policy similarity gets lower, the learning episodes
required to converge grow faster, and the student learns an even worse policy.

Fig. 4. (a) Advice-giving results, (b) additional steps used to reach goals than NA, (c)
fewer episodes used to converge than NA.
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Experiment 2. Figure 5(a) shows the average advice-giving results of DG with
various transmission capacities. The result with c = 1 indicates the number of
states where the teacher finds the optimal actions to the student’s goal. When
c > 1, we can see that the teacher gives right advice at more states than c =
1. Larger c results in more right advice given to the student, and results in
faster learning speed (shown in Fig. 5(c)). The results indicate that the teacher
successfully gives right advice at states where optimal actions to the student’s
goal exist, but could not be found by the teacher. This is because the optimal
actions to the student’s goal and sub-goals are possible to be the same. This
possibility is 1 when c = 1, but would reduce when c gets larger. Figure 5(a)
shows that wrong advice is given when c = 32. As a result, Fig. 5(b) shows that
the policy learned by the student is a little bit worse than NA when c = 32.
Figure 5(b) also shows that when c = 1, the policy learned might be a little
bit worse than the optimal policy. This indicates that when only right advice
is given, the student has a small probability to learn a sub-optimal policy. The
investigation on this interesting phenomenon will be left as future work.

Fig. 5. (a) Advice-giving results, (b) additional steps used to reach goals than NA, (c)
fewer episodes used to converge than NA.

5 Related Work

Knowledge Transfer (KT) has been widely used to improve reinforcement learn-
ing [9]. Several KT approaches include helping an agent learn in the different-goal
situation by, e.g., action set transfer [6], policy transfer [4], MDP distribution
transfer [12]. These approaches require learning agents to access and understand
the knowledge in source agents. In this paper, agents cannot access the knowl-
edge of each other. The only requirement for agents is a common action set,
which enables agents to conduct action transfer (action advice).

Some action advice approaches have been proposed. Chernova and Veloso
[2] enabled an agent to ask a human when the agent was uncertain of what
actions to take. Torrey et al. [10] proposed a teacher-student framework which
introduced a limitation on the number of times a teacher could provide advice.
Amir et al. [1] proposed a jointly-initiated approach which reduced the attention
cost of teachers. Zhan et al. [15] introduced a multi-teacher advice model where
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multiple bits of advice from multiple teachers were combined by a majority vote
to improve a student’s learning. Da Silva et al. [3] proposed a simultaneous
learning and action advice approach. Ye et al. [13] proposed an approach that
could reduce the impact of false advice provided by malicious agents. However,
the above studies assume that the teacher and student have the same goal, which
differs from the different-goal situation that we consider.

6 Conclusion

In this paper, we propose an approach which enables a teacher to help a stu-
dent learn when they have different goals by action advice (action transfer).
Experimental results show the effectiveness of the proposed approach. In future
work, we plan to investigate how to conduct action advice in situations where
different goals are caused by different S,A, T,R+, R− in MDPs. We also plan to
study the influence of sub-optimal advice and various state transition functions
on the optimality of advised actions. Another issue is to investigate why right
advice might lead to sub-optimal policies learned by a student. This phenomenon
appears in the results of Experiment 2.
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Abstract. Threats combining kinematic superiority, high-g maneuver-
ing and evasive capabilities are in development. These advanced threats
can reduce the survivability of high-value assets (HVAs). Here, we
demonstrates that it is possible to defeat such an advanced threat with
cheaper lower-performance interceptors using an alternative approach
to traditional optimal control. These interceptors harness the knowl-
edge of the forecasted regions that the threat can access, referred to as
threat reachability. Applying reachability, the interceptors can be orga-
nized to block the passage of the threat to the HVAs as well as to defeat
it. Here, we have developed a reachability calculator that is scalable
to accommodate multiple interceptors and combined it with an on-line
regret-matching learner derived from game theory to produce the self-
organization and guidance for the interceptors. Numerical simulations are
provided to demonstrate the validity of the resulting solution. Further-
more, some comparison is provided to benchmark our approach against a
recently published differential game solution on the same scenarios. The
comparison shows that our algorithm outperforms the optimal control
solution.

Keywords: Team interception · Reachability · Game theory ·
Regret-matching

1 Introduction

At present, there is growing concern worldwide to effectively engage emerg-
ing high performance guided projectile threats. These advanced threats further
endanger assets in civilian and military domains. The development to produce
high performance threats that can push policy further towards “launch on warn-
ing” [1] which may excarebate conflict. When devising the effective counter
to such high speed threats, it is desirable to find cheap yet effective solutions
using existing defensive capability wherever possible. Specifically, there has been
enquiry into applying a cheaper and lower-performance collection of interceptors
to successfully engage these threats.
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Recent work in [2] applies optimal control theory to devise a differential
game-based interception method for lower performance interceptors to counter
a kinematically superior threat. However, applying the formulation provided did
not appear to be as effective against a high-acceleration capable manevuering
threat that can perform terminal manevuering. Under these circumstances, the
miss performance as well as the choice of trajectory for the interceptors indi-
cated room for improvement. Therefore, there is a research challenge present for
improving the design and performance aspects for the defending team in order
to be effective against threats capable of outperforming individual interceptors.
We have addressed this research challenge by presenting a novel reachability
based approach to direct a team of lower-performance interceptors to intercept
a kinematically superior threat using a game-theoretic controller. The algorithm
generates a sequence of guidance commands for each interceptor in the team such
that at least one interceptor will be able to hit it, inspite of any maneuvering
performed by the threat.

The main contributions of our work are as follows: (1) Development of the
prediction based reachability calculator. (2) Successful application of a con-
troller derived from game-theory referred to as regret-matching that harnesses
the reachability calculator and produces the guidance commands for the inter-
ceptors to work cooperatively and defeat the targeted threat. (3) Demonstration
of performance improvement over recently published results.

2 Motivation

Some of the methods suggested to defeat a kinematically superior threat in
the open literature include non-proliferation [1], applying directed energy [3]
and using high performance strategically positioned interceptors [4]. The litera-
ture on applying existing defensive interceptors without expensive upgrades for
defeating such threats is sparse. The most relevant research work available in
the literature that has been applied to tackle this research problem is in [2].
In this work, the authors have divided the threat’s acceleration capability into
sections with one defender assigned to cover off against the threat performing
acceleration commands in that range. The authors assume that only the knowl-
edge of the acceleration limits of the threat are known and not the maneuvering
it will actually perform. In general, the availability of the threat acceleration
information is not always available [5]. However, it may be possible to assign
some conservative value for the acceleration (i.e. sufficiently large) in order to
then task an appropriate number of defenders to engage it. Under those cir-
cumstances, in [2], each defender, if equipped with the differential game based
guidance law provided can defeat a kinematically superior threat performing a
range of manoeuvres.

When we implemented this design, we discovered that the guidance law
appeared to be unsuccessful when attempting to intercept the threat in a timely
manner for a kinematically superior threat performing manevuering. This dis-
covery served partially as the impetus to devise the alternative reachability cal-
culator that we have provided in this paper. The reminder of the impetus was
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to determine an alternative approach for the concept of reachability apart from
differential game (DG) based optimal control. A game theoretic approach known
as regret-matching is chosen as it has been harnessed to compute the regret for
agents working cooperatively in a team and is suitable for cooperating agents’
problems [6]. The theoretical foundation for regret-matching [7] is present which
guarantees convergence.

3 Research Problem

Without loss of generality, we assume that a HVA is moving due North at a
constant speed. The HVA carries a number of defenders used to intercept any
threat approaching from any direction from around its vicinity. This is depicted
in Fig. 1 through the dashed circles around the vicinity of the HVA.

Fig. 1. Bird-eye view of engagement applied in simulation studies.

We have formulated the team-interception problem using a developed concept
of reachability. In our approach, rather than dividing the acceleration limits
of the threat into a number of regions that will be tackled by each defender
respectively, we firstly construct a projection of the future positions of the threat
based on knowledge of the acceleration limits and its speed. Then, applying the
knowledge of the defenders’ acceleration limits and speed, we do the same for
the defender. We refer to these loci of future positions as the reachability of an
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entity. Following this, we determine the degree of intersection of the loci for the
interceptors with defenders and use this knowledge to direct our defenders into
desirable positions. These desirable positions correspond with the scenario of the
threat’s reachability being totally covered off by the defenders.

In our formulation, the dynamic of the threat motion is modeled using the
Proportional Navigation (PN) law [8]. We assume that the threat applies a
maximum acceleration of 10G, where G = 10 m/s2 is the gravitational constant.
We also vary this value to determine the effect of different choice of acceleration
ratios between the threat and defenders, ranging from equal performance to the
scenario where the threat outperforms the defender when engaging it one-on-
one. This unequal performance ratio scenario corresponds with the case where
all of the defenders are inferior to the threat and need to operate as a team to
defeat the threat. Additionally, we assume that the dynamics of the threat and
all other defenders are fully observable by any defender. This assumption can be
relaxed in future research efforts.

At each time step, the interceptors apply our algorithm to determine their
respective maneuvering accelerations (actions) in order to cover off the total
locus of the projected threat “front” locus. Our algorithm is designed using
a multi-stage approach. The first stage is introduced to orient the defenders
towards the threat using the GENEX [9] guidance law to enable the cover off
strategy. In order to improve homing (near the end of the engagement, following
successfully covering the reachability for the threat), a PN guidance law was
applied to obtain small miss distances. It should be noted that no knowledge of
the actual threat acceleration is provided during the engagement. Instead, only
the estimate of the threat’s maneuvering limits is applied. In the next section,
we describe the components of our algorithm.

3.1 Design of the Reachability Calculator Function

The design of the reachability calculator is presented that computes the total
proportion of the threat “front” locus intercepted by multiple defenders to engage
a single threat. The total proportion of the threat front locus intercepted is
converted into an expected joint reward for the whole team of interceptors and
is applied in our algorithm to determine the actions for each defender.

Approximating the Threat Involute: The locus of the threat and defender
positions has been performed by projecting the threat and defender locations into
the future from their respective initial locations. The concept of an involute of a
circle [10] has been harnessed to depict this locus. We have harnessed the con-
cept of an involute to produce the curved locus of future entity (defender/threat)
front positions depicted in Fig. 2. Furthermore, this figure shows the application
of an approximation to the involute using a triangle, depicted overlapping the
involute, that was applied in the calculator. Performing this simplification rather
than applying the involute based locus simplified our calculations with the cal-
culator without compromising its applicability to be applied with our algorithm
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to direct the defenders. That is, the defenders employing our calculator could
still successfully engage the threat for a wide range of scenarios.

Fig. 2. Approximate representation of the defender involute by a triangle.

In Fig. 2, (aD)max represents the maximum turn capability available to a
defender. The vD represents the fixed speed for the defender. In our problem, the
defender is able to adjust its heading by the application of lateral acceleration but
its speed is not varied. Also, while it has not been shown here explicitly, the same
methodology can be applied for the threat where (aD)max would be replaced with
(aT )max and vD would be replaced with vT . Note that (aD)max = 1/2×(aT )max

and vD = 1/2×vT . The angle ω is applied in determining the current end points
for the entity front following Δt worth of time that has lapsed from the starting
position of the entity. The Δx and Δy correspond to the maximum forwards and
lateral displacement in range from the initial position of the entity after Δt.

The triangle approximating the involute in Fig. 2 is ΔMDN . Note that this
is an approximation to the location of the true loci which is determined by an
involute but suffices for our application. To define this approximate triangle, let
tgo be the time-to-go defined as the time remaining till interception of the threat
by a defender. This tgo value is the actual time-to-go which is usually only after
the engagement is completed. Here, we estimate the tgo during the engagement
based on the available instantaneous information

t̂go =
R

−Ṙ
,

where t̂go is the estimated time-to-go and R is the line-of-sight (LOS) separation
or the distance between the defender and its target at that instant in time.
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Let (xI , yI) define the furthest location that the defender can reach after
some time t̂go without turning (aD = 0). Let (xA, yA) and (xB , yB) define the
furthest locations the defender can reach after some time t̂go with applying the
maximum lateral acceleration |(aD)max| and −|(aD)max|, receptively. The Δx
(horizontal separation) and Δy (vertical separation) are determined as functions
of time, which can be computed as follows:
⎧
⎪⎨

⎪⎩

Δx = ‖−→vD‖ t̂go

Δy =
t̂go∫

0

‖−→vD‖ sin(ωt) dt =
‖−→vD‖

ω

[
1 − cos(ω t̂go)

] , where ω =
‖−−→
(aD)‖max

‖−→vD‖ .

It can be seen that (Δy)max = 2‖−→vD‖/ω when t̂go = π/ω. Therefore, the
approximate triangle for the defender involute (or threat involute) is given by

⎧
⎨

⎩

̂MDN = 2arctan
(

Δy

‖−→vD‖ t̂go

)

‖MN‖ = 2Δy

, Δy =

⎧
⎪⎨

⎪⎩

‖−→vD‖
ω

[
1 − cos(ω t̂go)

]
t̂go ≤ π/ω

2
‖−→vD‖

ω
t̂go > π/ω

.

Operation of Reachability Calculator. The diagram in Fig. 3(a) depicts
the geometry associated with computing the percentage of cover of the threat
“front” by a single defender. The apex of the blue triangle represents the starting
position of the defender and the base depicted by the unbroken and broken dotted
blue lines represents the defender “front” for chronologically ordered instances in
time respectively. Similarly, the apex of the red triangle, represents the starting
position for the threat and the base depicted by the unbroken and broken red
lines represents the threat front at chronologically ordered instances in time.

(a) Geometry for computing the percent-
age of covering by a single defender.

(b) Computation of the percentage of cov-
ering by two defenders.

Fig. 3. Describing how multiple defenders cover off against the threat front.
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For the illustrated geometry, the percentage of covering by a single defender
can be computed using the following formula:

Percentage of Covering =

∥
∥
∥M

′
DN

′
D ∩ MTNT

∥
∥
∥

‖MTNT ‖ × 100.

Here, ND and MD are the first and last intersection points (if present) between
the defender front and the threat front, respectively. When those intersection
points between the fronts take place, they are propagated forward in time. We
denote N

′
D and M

′
D as their corresponding projected points on the threat front

at some later time in the future as the threat front expands. This green line
segment shown in Fig. 3(a) shows percentage of the threat front that is then
covered by the application of the defender.

This method can be easily extended to the general case of n ≥ 2 defenders,
for example in case of 2-defenders as illustrated in Fig. 3(b). Suppose that M1N1

and M2N2 are the two line segments corresponding to the intercepted areas on
the threat front by the two defenders. Note that there could be some overlap
or gap between line segments. The total contribution due to each interceptor
needs to be counted excluding any overlaps and not including any gaps if there
are present between the line segments. The percentage of covering by the two
interceptor can be computed as follows:

Percentage of Covering =

∥
∥
(
M1N1 ∪ M2N2

) ∩ MTNT

∥
∥

‖MTNT ‖ × 100.

Applying this type of approach, the percentage of covering of the threat front
by “n” number of defenders can be calculated by:

Percentage of Covering =

∥
∥
⋃n

i=1 MiNi

⋂
MTNT

∥
∥

∥
∥MTNT

∥
∥

× 100.

3.2 Regret-Matching Controller

Regret-matching is a well-known game-theoretic method for automated decision
policy determination. It enables an agent to select the best choice of actions
for sequential decision making problems. Compared to other automated multi-
agent decision making methodologies such as multi-agent deep reinforcement
learning, regret-matching is robust theoretically, has convergence guarantees [7]
and is more easily explainable by virtue of using an equation based decision
making processor rather than deep neural networks [11]. The core concept is
to adjust the distribution that corresponds with probabilities for picking each
action available to each defender during the engagement with the threat. The
algorithm adjusts this distribution (automated learning) in each time-step for
each defender. It does so by first computing the cumulative “regrets” up to the
present time by comparing the utility calculated for actions not picked from the
available action choices in each time-step against those that were picked while
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keeping, all other agents’ choices the same. These computed regrets are used to
shape action-selection in the next time-step to further minimize the regrets and
thus steer the decision making towards optimal action selection.

Algorithm 1. Distributed Team-based Interception Algorithm for Zone Defence
1: Initialisation: Initialize initial action selection strategy πi

1(a) ← 1
m

for all a ∈ Ai,
with m is the number of possible actions of the agent i.

2: Boost guidance phase: Use GENEX guidance law to choose an action until a
non-zero joint reward is observed then switch to the mid-course guidance phase.

3: Mid-course guidance phase: Repeat until the reachability percentage reaches
100% then switch to the terminal guidance phase.

4: for t = 1, 2, . . . do
5: Action Selection: Select action at according to πi

t and obtain a reward U i
t (a

i
t, a

−i
t )

as a result of the joint action (ai
t, a

−i
t ).

6: Signal Synchronization: Synchronize the chosen action ai
t and current state infor-

mation (position and velocity vector) to all other defenders.
7: Expected Reward Computation: Using the calculator function and the signal

received, compute the expected reward U i
t (k, a−i

t ) if choosing a different action
for all k ∈ Ai given the chosen action of the other agents are unchanged.

8: Regret Update: For all k �= ai
t, compute the cumulative regret vector

Ri
t(k) =

1

t

∑t

τ=1
U i

τ (k, a−i
τ ) − 1

t

∑t

τ=1
U i

τ (ai
τ , a−i

τ ).

9: Policy Learning: Update the action selection strategy πt+1 according to

πi
t+1(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if k �= ai
t and

∑
�∈Ai max

{
Ri

t(k), 0
}

= 0

max
{
Ri

t(k), 0
}

∑
�∈Ai max {Ri

t(k), 0} if k �= ai
t and

∑
�∈Ai max

{
Ri

t(k), 0
}

> 0

1 − ∑
j �=k πi

t+1(j) if k = ai
t

10: end for
11: Terminal guidance phase: Execute the final manoeuvres required for intercept

using PN guidance law.

The details of our distributed team-based interception algorithm for zone
defence against high maneuvering target using regret matching is summarized
in Algorithm 1. In our solution, the agent’s action choice is a discrete set of
lateral acceleration commands available to each defender. The utility (reward)
used to compute the regret for each defender is obtained as follows. When each
agent picks a particular lateral acceleration command, the agent’s particular
choice along with the choice made by all other agents will correspond to the
total reachability achieved as a consequence against the threat by the team of
defenders. We equate the utility obtained to this total reachability achieved.

For this research problem, it is assumed that positions and velocities of the
threat and all defenders are accurately known by each defender. This information
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is processed and fed into the decision making policy inside each defender itself,
which uses the proposed distributed learning mechanism to generate the guid-
ance commands. GENEX [9] guidance law was applied at the outset to point
our defenders at-least slightly towards the threat in order harness the regret
matching controller. Then, when the regret-matching controller has enabled the
threat reachability to be totally covered by the group of defenders, towards the
end of the engagement, the PN guidance law is applied to each defender in order
to improve the homing in capability to intercept the threat with a sufficiently
small miss-distance. Note that no information about actual target acceleration
is required for our controller to operate.

4 Experimental Results and Analysis

In this section, the performance of our algorithm is presented using simula-
tion results. Table 1 shows the chosen parameters for our experiments. In our
simulations, a threat flying at a high speed and possessing a large maximum
acceleration of 10G is initially positioned 25 km away at 45◦ with respect to the
HVA direction of travel. The initial separation between the HVA and the threat
corresponds with engageable range of the threat. For defeating the threat, the
HVA launches multiple defenders each of which has a lower performance capa-
bility with respect to the threat. Specifically, the threat is twice as fast and has
twice the maximum acceleration capability compared to each defender.

Table 1. Simulation parameters

Description Value

The speed of the HVA 10.28 m/s

The speed of the defender 340.3 m/s

The speed of the threat 680.6 m/s

The maximum lateral acceleration of the defender 5G m/s2

The maximum lateral acceleration of the threat 10G m/s2

4.1 Performance of Our Proposed Algorithm

Figures 4, 5 and 6 respectively illustrate the performance of our solution under
various attacks by a single threat. These include approaching directly to the
target and performing trajectory shaping through left or right turns prior to
homing in. Such trajectory shaping is representative of the behaviour of real
threats to increase their lethality. The results show that the defender team is
able to successfully intercept the threat under these engagement scenarios with
the smallest Zero-Effort-Miss (ZEM) [2] almost approaching zero at the time
of interception. Our solution also achieves a similar good performance under a
more challenging scenario where the threat performs weaving evasive maneuvers
before approaching the HVA as illustrated in Fig. 7.
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Fig. 4. 3-defenders team intercepts a threat approaching with a head-on attack.
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Fig. 5. 3-defenders team intercepts a threat making left evasive maneuver.
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Fig. 6. 3-defenders team intercepts a threat making right evasive maneuver.
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Fig. 7. 3-defenders team intercepts a weaving threat.
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4.2 Comparison with the Differential Game-Based Approach

The crucial question of answering how the controller developed in our paper
compares with the DG approach applied in the recently published [2] is discussed
in this section. We discovered two major aspects to substantiate the claim that
our controller outperforms the DG approach and thus can be applied to tackle
a broader range of engagement scenarios. The first one corresponds with the
control effort applied by the defender that gets closest to the interceptor. The
second corresponds with the safe choice of trajectories selected by the defenders
to effectively safeguard the HVA being defended.

Table 2 and Fig. 8 shows that our controller uses less control effort than the
DG based approach to engage the threat when it perform maneuvers on its
way to intercept the HVA. The table shows that this reduction in control effort
extends to other scenarios where different choices for the threat initial heading
angle are applied. It is attributed to the larger control effort for the DG due to the
“bang-bang” control strategy applied. It means that the trajectories generated
for intercepting a threat will cause the defenders to only ever apply maximum
lateral acceleration turns one way or the other as they fly. When this “bang-
bang” formulation is applied, it will result in higher control effort when applying
the formulation

∑tf
t=0 [aT (t)]2 to calculate the control effort.

Table 2. Control effort for the defender that got closest to the threat

Threat pointing offset to HVA 0◦ 45◦ 90◦

Differential game (DG) approach 612 units 3944 units 8284 units

Our proposed RM based algorithm 28 units 1614 units 2532 units
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Fig. 8. Comparing control effort of the 2 algorithms under the same engagement.



Team-Interception with Zone-Defence 39

-5 0 5 10 15
X-range (km)

0

5

10

15
Y

-r
an

ge
 (

km
)

HVA
Defender #1
Defender #2
Defender #3
Threat

(a) DG based approach

0 5 10 15
X-range (km)

0

5

10

15

Y
-r

an
ge

 (
km

)

HVA
Defender #1
Defender #2
Defender #3
Threat

(b) RM based approach

Fig. 9. Regret matching choosing a safer trajectory to intercept maneuvering threat
in contrast with previous approach.

For the second discovery, the results in Fig. 9 show that the application of
our controller can enable successful interception of the threat in a relatively safe
manner compared to applying the DG approach. It was found to be true when
the threat has large maximum acceleration limits such as 10G. Under these
circumstances, the defenders using the DG take on highly curved trajectories
that can expose the HVA and allow the threat to hit it prior to the defenders
intercepting it. Our solution attributes the difference in choice of trajectories for
the defenders to the type of reachability concept that was applied.

Our notion of reachability using the proposed calculator is position-based for
predicting the future positions of the threat and defenders. Whereas with DG,
their reachability is based on segmenting the total threat acceleration limits
into sections each of which is addressed by one of the defenders. The defenders
assigned to an acceleration cover section are directed as if the threat was per-
forming an acceleration within their cover region. When large acceleration limits
for the threat are applied such as 10G, the defenders fly trajectories that are
highly curved and widely spread out which result in allowing the threat to app-
roach the defended asset more easily. In contrast, our position-based reachability
based controller is still able to engage the threat without it endangering the HVA
in a similar manner. This behavior was observed in a number of scenarios large
acceleration capability was assigned for the threat and it maneuvered on its way
towards the HVA.

5 Conclusion

In this article, a controller is presented that combines a position-based reachabil-
ity calculator developed with a game-theoretic regret-matching based guidance
law controller. We have compared our algorithm’s performance against a recently
published result where a DG controller is applied to tackle the same problem.
Both methods were tested under identically challenging scenarios. The results
showed that our method was more robust and generated more energy efficient
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trajectories. It is anticipated that this area will become a rich space for more
works in the near future since the literature is still sparse on this subject. Thus,
our concepts could be of interest for the community. For future work, there will
be extension of the proposed solution to address uncertainties due to imperfect
communication between the group of defenders as well as support scalability to
handle more complex “many-on-many” engagements.
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Abstract. The best reported methods for turn-based multi-player game
playing AI algorithms include Maxn, Paranoid and Best Reply Search.
All of these methods make decisions by modelling the game by assuming
that there is some predetermined play ordering for the players. While this
is meaningful for ordered turn-based games, there are a host of scenarios
where the players need not be constrained to make their moves in such
a manner. Little research has been done for turn-based games of this
kind such as financial games that involve buying and selling on the stock
market in no specific order (For games with shared resources (e.g., finan-
cial games) or simultaneously-played move games, one could alternatively
consider multi-player AI algorithms to be those that treat the game with
each opponent as a separate game. This is currently open.). In this paper,
we shall present and test a new algorithm for multi-player game playing
on a game which does not require a fixed sequential play ordering. The
game that we have used to demonstrate this is the multi-player Snake
Game, also referred to as a “Light Bike” game which is a turn-based
game requiring simultaneous moves at every turn. Our newly-proposed
scheme, the Multi-Minimax, along with the Added Pruning method, per-
forms better when compared to the similar AI strategies examined in this
paper. Additionally, among all the algorithms that did not use the pro-
posed pruning, Multi-Minimax performs the best. We can conclude that,
at the least, under certain conditions in the area of multi-player game
playing AI, similar results can be replicated with these newly proposed
Added Pruning and Multi-Minimax methods. As far as we know, the
results presented here are of a pioneering sort, and we are unaware of
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1 Introduction

Multi-player games have to be tackled in AI with techniques that are distinct
from those used in two-player games. This is because the heuristic function used
for any game can yield multiple values for the various players, and alternatively,
could lead to a vector of heuristic values. Such a vector implicitly prohibits Min-
imax, Alpha-Beta search and a tree pruning strategy. An alternative strategy,
adapted by the Best Reply Search (BRS) would be to utilize a single heuris-
tic function and to consider all the opponents as possible players at the next
time instant. While this allows for Minimax and the consequent pruning strate-
gies, they have all been specifically used for games in which there is a sequential
ordering for the players’ moves. However, the scenario is quite different when the
players can play simultaneously at every time instant or in a random fashion.

This is the arena in which we operate, and the aim of this paper is to consider
multi-player games in which the players are not constrained to play in any specific
order. Games of this sort are typical in the stock market and financial sector,
where a buyer/seller does not have to wait for the others. The aim of this paper
is to demonstrate that the Perspective player can invoke the BRS as his strategy
without the other players being aware of it. By resorting to such a technique, the
Perspective player can make meaningful choices that yield a superior win rate
and still permits him to search to greater depths in the search tree by resorting
to a Minimax paradigm and alpha-beta pruning. Apart from demonstrating this,
we benchmark such simultaneously-played multi-player games.

2 Description of Problem Domain

To demonstrate the power of our technique in a prima facie manner, we shall
use it to play the game “Light Bike” (please see Fig. 1), which is a popular form
of an arcade-style multi-player game, played on various platforms. It involves
players who can move in one of 4 directions on a 2D grid, where each player
leaves behind themselves a wall which cannot be passed through by any player.
The goal for each player is to be the last surviving player.

Fig. 1. An example of a game of “Light Bike” with 8 players. (Color figure online)
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Each player must move to one of its adjacent tiles (excluding tiles diagonally
adjacent) at every turn, and all the players make their moves simultaneously and
within a fixed time limit. Players are eliminated if they occupy a space on the
grid that has been or is currently occupied by another player, or if they move
off the edge of the screen. Under certain circumstances, a player is inevitably
eliminated from the next turn independent of what move is made due to him
being “boxed in” by surrounding walls. Effective strategies involve players trying
to box other players within a small area while they themselves are not boxed
in by other players’ walls or even their own walls. In Fig. 1, yellow, black and
dark blue players have already been eliminated. Green, red, magenta, brown and
turquoise players are alive. Magenta, with two possible spaces, faces elimination.

3 Multi-player Game Strategies and Approaches

This section will describe competitive solutions to the Multi-Minimax algorithm.
We only consider search-tree based algorithms for multi-player turn based games.
They involve the Perspective player (the root of the tree) to search through
combinations of a certain move order which may or may not truly represent the
move order of the game, and to try and predict which next move in the game
would be most effective. When it is the Perspective player’s turn, he will search
through nodes (each representing a game state) up to a specified maximum depth
in the tree, and use a heuristic function to evaluate leaf nodes in the tree. The
evaluations of leaf nodes are recursively carried up to the root node based on the
algorithm’s specified strategy for deciding which evaluations are carried up each
node. Thereafter, he plays the best-evaluated next move dictated by the root.

The Minimax principle has been shown to be an effective scheme for play-
ing two-player games [2,7,9]. Compared to traditional two-player game playing,
multi-player environments, through the addition of other self-interested agents,
introduce a range of new complications and challenges. These include:

– Any single player’s gain need not lead to an equal loss among the opponents;
– Player coalitions can arise, even in games with only a single winner;
– The board state can change more between the Perspective player’s moves;
– A single-valued heuristic is not always sufficient to appraise the game state;
– Established pruning schemes, e.g., the alpha-beta, are not always applicable;
– The computation is exponential with respect to the number of players.

Despite these challenges, due to the historical success of Minimax with alpha-
beta pruning in a wide variety of domains, substantial efforts have been dedi-
cated to extending it to multi-player environments, with varying levels of success
[1,4–7]. We now detail a number of the more well-known of these techniques,
specifically the Paranoid, Maxn, and the BRS.

3.1 The Paranoid Algorithm

The intuitive extension of the Minimax technique to multi-player games results
in what is commonly termed the “Paranoid algorithm” [1,4,6]. This approach
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requires the fewest changes from the well-known Minimax algorithm [2,7,9]. As
in the Minimax, the Paranoid technique retains a single value at each node
representing the heuristic value h(x) for the Perspective player. Being a multi-
player scenario, rather than two player, each level of the game tree represents a
different player’s turn, and so there will be multiple opponent turns in between
each of the Perspective player’s turns. The Paranoid algorithm handles this by
treating every opponent’s turn as a Min node [4]. Thus, for a three-player game,
the Paranoid algorithm could be referred to as Max-Min-Min, and for a four
player game, Max-Min-Min-Min. A sample game tree for an arbitrary evaluation
function, is presented in Fig. 2 for the Paranoid algorithm. The values indicate
how “good” each node (board position) is for the Perspective player.

Fig. 2. A Paranoid tree, with the red nodes bing MAX, and the blue nodes MIN.
(Color figure online)

Since all the Perspective player’s opponents are “minimizing” (and not max-
imizing their own gains), the Paranoid algorithm, naturally, treats all players as
a coalition against the Perspective player [6]. The algorithm even predicts that
opponents will take moves operating under the assumption that other opponents
will take actions leading to even greater minimization of the Perspective player’s
score. Thus, opponents not only exclusively target the Perspective player, but
will, in fact, actively work together against him [6].

The Paranoid algorithm suffers from a glaring drawback. While it could be
considered the “safest” approach to the game, it is unreasonable to work with
the assumption that opponents in a multi-player game will solely work in a coali-
tion, even to their own potential detriment. It thus has a tendency to consider
unrealistic game states, which could potentially lead to bad play, particularly
when there are dramatic shifts in board positions between moves [6].

Since it maintains a single heuristic value, the Paranoid algorithm retains
the benefits of alpha-beta pruning, which is not the case for all multi-player
techniques. It thus outperforms other, more realistic strategies due to achieving
improved lookahead [1]. Despite this, it can only produce cuts at boundaries
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between Max and Min nodes, and never between individual Min layers. Thus,
less total pruning will occur in a Paranoid tree than in a Minimax tree.

3.2 The Maxn Algorithm

While the Paranoid algorithm is the most intuitive extension of Minimax to
multi-player games, and the simplest to implement, a competing algorithm,
called the Maxn algorithm, is the natural extension of Minimax principles to N -
person games [5]. The basic philosophy of the Minimax algorithm is not based on
minimizing a specific player’s score, but instead on maximizing the AI player’s
score [2,7,9]. For a two-player, zero-sum, combinatorial game for which the Min-
imax algorithm was originally developed, these two functions are naturally iden-
tical, the extension of which is the Paranoid algorithm [4]. However, the Maxn

algorithm operates on the more reasonable assumption that players will seek to
maximize their own scores, without consideration for other opponents [5].

Rather than the heuristic function h(x) returning a single value, as is the case
with the Minimax and Paranoid algorithms, the heuristic function for the Maxn

algorithm returns a tuple of values of size N , where N is the number of players
[5]. The N th value, traditionally, corresponds to the N th player, where the first
player is the Perspective player, and where subsequent opponents are numbered
in their turn order, beginning from the Perspective player. At the ith player’s
turn, he is assumed to choose the move that provides the maximum value in
position i in the tuple, and, similar to the Minimax or Paranoid algorithms, this
value is passed up the tree, until, eventually, a path is chosen for the Perspective
player at the root [5]. Figure 3 shows a sample Maxn tree after expansion of all
the leaf nodes, with the values being passed up to the root. The values associated
with each node represent the tuple returned by the algorithm’s heuristic function.

Fig. 3. Sample Maxn tree in which each color represents a different player. (Color
figure online)
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There is a clear benefit of using it over the Paranoid algorithm [6], as the more
“relaxed” pressure on the Perspective player can take advantage of the various
opportunities that may have been overlooked by “coalition of opponents” [4].

Despite a more realistic model of play, as the Maxn algorithm makes use of a
tuple of values rather than a single integer value for the results of the heuristic,
it can’t make use of alpha-beta pruning. It can only make use of less-effective
pruning techniques described in [3,14–16], and is also useful in tie breaking [4].

3.3 Best Reply Search

The Paranoid and Maxn algorithms remained the standard for deterministic
multi-player games. However, more recently, an algorithm named the Best Reply
Search (BRS) has been introduced, which can, in some cases, significantly outper-
form both of them [1]. In the case of the BRS, all opponents are again considered
to operate as in a coalition, as in the Paranoid algorithm, but between each of
the Perspective player’s turns, it allows only a single opponent to act [1]. The
opponent who is allowed to act is the one who has the most minimizing move,
in relation to the Perspective player, at this point in time, or the “Best Reply”.
In essence, the scheme pretends that all opponents are not simply a coalition,
but that the coalition represents a single player with significantly more resources
available than the Perspective player. Figure 4 shows a single level of a BRS tree
where the minimum of all opponent turns is being selected.

Fig. 4. The operation of a single level of the Best Reply Search. The scores that are
reported have the opponent’s player number listed next to them (in parenthesis) to
assist in the clarification.

The glaring drawback of the BRS algorithm is that it considers illegal move
states while searching. This is certainly a serious drawback, and it limits the
games to which the BRS can be applied [1]. It can only be applied to those games
where it is meaningful for players to act out of turn, and performs best when
the board state does not change dramatically in between turns [1]. Whenever
the game state changes significantly between turns, there is a serious risk of the
BRS arriving at a model of the game which is significantly different from reality.

In cases where it can be applied, the BRS has many benefits over the Paranoid
and Maxn algorithms, and often dramatically outperforms them [1]. As can be
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intuitively observed, when all opponents are considered to be a single entity, the
game is modeled as a two-player game played using the Minimax algorithm.

Alpha-beta pruning and all other two-player Minimax improvements can be
applied with even less restrictions than in the Paranoid algorithm [2,7,9]. As
it simplifies things to work with a model analogous to a two-player game, the
BRS also allows better look-ahead for the Perspective player than either the
Paranoid or the Maxn schemes. These are significant factors in the performance
of the BRS over the Paranoid and Maxn in games such as Chinese Checkers [1].

4 Motivation and Proposed Solution

The goal of this paper is to find a way to significantly increase the search-depth
for the Perspective player in a search-tree algorithm for playing multi-player
games in which the players are allowed to move simultaneously. One drawback of
previously-mentioned solutions is that their asymptotic run time is exponential
with respect to the number of players and the depth of the search-tree. If an
effective solution is found for one game, it could then be possibly applied to
other non-turn based simultaneously-played multi-player games. While we have
proposed such a solution, we have also demonstrated its power using the game
“Light Bike”. This game was chosen due to its dependence on effective players
having to be able to search a large number of moves ahead.

4.1 The Proposed Solution: Multi-Minimax

The method we propose is the so-called Multi-Minimax algorithm described
formally in Figs. 5, 6 and 7. It can be seen as the BRS but with a very aggressive
pruning method which makes it so that minimizing players cannot alternate
taking turns against the maximizing player. Given the current game state, the
maximizing player plays n−1 different games against each of the n−1 opponents
and makes a move assuming that depending on the next move the maximizing
player makes, the maximizing player will be playing the rest of the game only
against the best opposing player for that move. To describe the Multi-Minimax
algorithm we invoke the Minimax algorithm which is used as a subroutine for
Multi-Minimax [2,7,9]. Observe that when n is the number of players, b is the
branching factor and d is the maximum number of game rounds (the number of
times all players have each taken one turn), the Multi-Minimax runs in O(nbd)
worst case time. On the other hand, Paranoid, BRS and Maxn run in O(bdn),
O(n

d
2 bd) and O(bdn) worst case times respectively [1,4–6].

4.2 Added Pruning Method

Our proposed Added Pruning restricts the next move that each player can
explore along the search tree. This pruning forces him to explore only the next
move that is in the same direction as his previously-explored move. If he is not
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able to explore a move in this previously-explored direction, he would be able to
explore all possible valid moves given by the default production system.

One benefit to using this method is that players are less likely to search
meaningless paths where they eliminate themselves from the game, for example
in “Light Bike”, by boxing themselves in with their own walls. It also emphasizes
exploring moves that are significant since, usually, the most significant moves in
the game are when players move to a grid space that is right next to a wall
to box in an opposing player. Such a pruning allows a larger look-ahead and
to thus explore a larger distance across the board and explore more moves for
boxing in players. Additionally, the Added Pruning allows players to be less
likely to pointlessly search through multiple different move sequences where they
could reach the same grid space in the same number of moves considering all
the move sequences that yield similar effectiveness. The downside to possibly
missing exploring significant moves due to the Added Pruning does not outweigh
the benefits previously described.

Fig. 5. Pseudocode for the Multi-Minimax algorithm with alpha-beta pruning which
also uses Minimax as a subroutine [2,7,9].
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4.3 Implementing the Formalized Method

We implemented the “Light Bike” game using the Python language invoking
the Multi-Minimax, BRS, Maxn and Paranoid algorithms [1,4–6]. The heuristic
used for all these was as follows: At each node, if there were no more valid
moves (i.e., which resulted in the player surviving for the next turn) for the
opposing player(s) but there is at least one valid move for the evaluated player,
we returned “infinity”, otherwise we returned the depth of the node in the tree.

The implementations for all the algorithms except for Maxn used immediate
pruning at the root node and alpha-beta pruning [2]. Maxn could only make
use of immediate pruning at every node and tie breaking by minimizing the
sum of the score of opposing players [3,4,14–16]. Each algorithm made use of

Fig. 6. Pseudocode for the Minimax algorithm.
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Monte-Carlo reordering of the production system at each node as well as pruning
for game states where the Perspective player had been eliminated. Additionally,
in our experiments we compared performances with and without the Added
Pruning at each node (described in Sect. 4.2).

5 Results

Tests were done for the “Light Bike” game on a 12× 12 sized board, comparing
Multi-Minimax, Best Reply Search, Maxn and Paranoid algorithms, each of them
with and without the Added Pruning described in Sect. 4.2. Each algorithm used
iterative deepening with the only restriction of having 300 ms of real-world time
to iterate [8]. All tests were ran on a machine with Linux and an Intel(R) Xeon(R)
CPU E5-2600 v4 @ 2.00 GHz, which, as of writing this paper, has around the
same processing power as the average personal computer.

Fig. 7. A visual representation of the Multi-Minimax algorithm with 3 players and a
branching factor of 2 for each player. Each node represents a game state and is labeled
with the player(s) whose turn is next down the search tree. Each edge represents a
player’s move. Nodes with multiple players have their outgoing edges labeled to indicate
which player moved.

The results are given in Figs. 8, 9 and 10. For one set of tests, each algorithm
being tested would play against 2 randomly moving players which would play a
random valid move (a move that wouldn’t result in guaranteed elimination for
that player’s next turn) each turn so long as one existed. Another set of tests
put the 8 different algorithms from the first set of tests versus each other in
varying combinations of 4 and 6 player games. For the varying combinations of
4 and 6 player games, all 8 choose 4 and 8 choose 6 participant combinations
were uniformly sampled. For testing purposes, a win for a player counted as
being the last player standing. Tieing a game counted as being one of the last
players standing (e.g., the last two players alive were eliminated at the same
time). For both sets of tests, every time we conducted a new test where all
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Fig. 8. The results of running each one of the implemented algorithms vs two randomly
moving opponents. 5,000 tests were run for each algorithm. In the tables, P+ implies
that the scheme has been enhanced with Added Pruning.

Fig. 9. The results of running each one of the implemented algorithms vs each other.
20,020 tests were run for each algorithm. In the tables, P+ implies that the scheme
has been enhanced with Added Pruning.

Fig. 10. The results of running each one of the implemented algorithms vs each other.
20,020 tests were run for each algorithm. In the tables, P+ implies that the scheme
has been enhanced with Added Pruning.
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participating players were placed randomly with replacement in one of 8 evenly
spaced locations on the perimeter of the board. The results obtained are shown
on a 95% confidence interval using normal distribution for average depth, and
Bernoulli distribution for the win rate.

6 Conclusions

In this paper, we have considered the problem of playing multi-player games,
when there is no fixed move ordering between the players. The game that we have
used to demonstrate our hypothesis is “Light Bike”. We have clearly shown that
for the given heuristic used for the game, our newly-proposed scheme, the Multi-
Minimax, and the added pruning methods, were more effective than alternative
solutions. Both methods provided largely increased search depth along with a
minimal loss in exploring important board states, thus being more effective.
In the general case, we have not shown that Multi-Minimax is more effective
than Paranoid, Best Reply Search and Maxn [1,4–6]. But, to make sure the
algorithms were implemented correctly, they were all placed against randomly
moving opponents to show the effectiveness, and to also share common code.

Future work in testing out Multi-Minimax could prove its ineffectiveness in
games where players can much more easily work together to eliminate other play-
ers due to it being too similar to Minimax. Similarly, Multi-Minimax could be
ineffective in games where searching realistic board states is much more impor-
tant than having improved search depth. Thus, we can assume that at least in
the area of fixed sequential turn-based games, Multi-Minimax will not perform
well in scenarios where Best Reply Search does not. Having added pruning meth-
ods for search-tree based AI algorithms playing other types of turn-based games
could also prove to be effective. Experimentation with combining supervised
learning, Monte-Carlo tree search, SSS∗ pruning or pruning for simultaneous
move search-trees with the Multi-Minimax algorithm, could also be effective
[10–13]. For example, one could train a machine learning algorithm to predict
the depth at which Multi-Minimax should start at during iterative deepening.
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Abstract. Reinforcement learning techniques for solving complex prob-
lems are resource-intensive and take a long time to converge, prompting
a need for methods that encourage faster learning. In this paper we show
our successful application of actor-critic reinforcement learning to the air
combat simulation domain and how reward structures affect the learning
speed to find effective air combat tactics.

Keywords: Reinforcement learning · Actor-critic · Air combat

1 Introduction

Reinforcement learning (RL) has proven useful for solving sequential decision
making problems. RL has been successfully applied to train agents to beat the
world champion of Go [23], play ATARI games at superhuman levels [13], trade
stocks [22], learn to drive autonomous vehicles [20], and so on.

One of the greatest challenges in applying RL to complex problems is the
learning time required, which can be days even when utilising today’s fastest
computers [14]. As such, when designing an RL system, it is crucial to take into
account every factor that could potentially accelerate learning.

In this study we use actor-critic RL to discover novel air combat tactics and
investigate the role of reward structures in expediting learning. We find that
carefully choosing the reward function may allow the agent to learn faster.

2 Related Work

AI-based research in air combat dates back to at least the 1980s. Early research
includes that of Rodin and Amin [18] and Wharington [29]. The former imple-
mented an artificial neural network for rapidly identifying air combat manoeu-
vres and suggesting the best possible counter-manoeuvres. The latter used RL
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for improving unmanned aerial vehicles (UAVs) performance by adding a con-
troller that located and took advantage of thermals caused by convection in the
lower atmosphere.

Afterwards, various methods have been applied to air combat simulation.
McGrew [11] used approximate dynamic programming to solve a fixed velocity,
one-on-one air combat manoeuvring problem in two-dimensional space. Park, Lee
and Takh [16] utilised differential game theory to develop an automated manoeu-
vre generation algorithm for within visual range (WVR) air-to-air combat of
unmanned combat aerial vehicles (UCAVs). This algorithm follows a hierarchi-
cal decision-making structure and performs scoring function matrix calculation
to find the optimal manoeuvres in dynamic and challenging combat situation. In
addition, Alford, Borck, Karneeb and Aha [1] use behaviour recognition, by pre-
senting a method for an unmanned aircraft to recognise the intent and general
tactics of hostile aircraft in a long-range air combat scenario, where the system
must make a decision based on observations solely through radar. They show
that pairing the behaviour recognition system with a Monte-Carlo based MDP
planner enables the UAV to confidently classify the opponents in significantly
less time.

RL methods have also been used to solve air combat problems. Vinberg [28]
used a guided RL method, meaning that exploration was not completely random
but guided by predefined rules, that is by giving hints to the agent every time
the agent was exploring. He used a neural network as a function approximator
and learning was restricted to beyond visual range (BVR) one-on-one fights.

Besides Vinberg, a number of researchers have studied the use of a neu-
ral network as a function approximator in an RL system designed to excel in
air combat. For instance, Liu [9] used a deep network in a one-on-one combat
that allowed five actions (turn-right-up, turn-right-down, turn-left-up, turn-left-
down, cruise) and Teng et al. [26] investigated real-time learning of air combat
manoeuvres using self-organising neural networks in one-on-one dogfights. Their
FALCON system was able to discover new air combat manoeuvring strategies
that allow it to consistently outmanoeuvre its adversary. In addition to neural
networks, Teng et al. used a variant of Q-learning called bounded Q-learning.

Q-learning has often been chosen to solve air combat simulation problems.
Fang [4] combined Q-learning and a behaviour tree to train a fighter agent to
decide whether to patrol, attack an enemy, turn around or flee. Their strategy
was to use Q-learning to obtain a Q-table and then insert the Q-table in the
behaviour tree. Lee and Bang [8] used Q-learning to help aircraft evade missiles
moving in a horizontal plane while modelling the aircraft equations of motions
as a simplified fourth-order point mass. Mouton, Roodt and le Roux [15] applied
two methods, Monte-Carlo control with exploring starts (MCES) and Q-learning,
to the weapon assignment (WA) problem in air-defence. Solving a WA problem
means trying to find an optimal assignment of a set of weapons to a set of targets
in order to maximise the damage to the enemy.

All the aforementioned works that used RL focused on value-based
approaches. By contrast, our research uses a policy-gradient method called actor-
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critic. In this study, we seek novel tactics and look at the role of reward structures
for actor-critic in accelerating learning.

One aspect of our study is similar to optimistic initialisation, which is dis-
cussed in [24] and investigated in [6]. These two studies use SARSA, whereas
our study uses actor-critic.

3 Actor-Critic Reinforcement Learning Background

A subfield of machine learning and inspired by animal learning, reinforcement
learning (RL) is a learning method by which the learner (called the agent) is
neither given instructions nor told what to do. Instead, the agent learns by trial
and error and receives feedback in the form of a reward every time the agent
selects and executes an action.

RL methods can be grouped into one of these classes:

– value-based (such as SARSA and Q-learning)
– policy-based (such as REINFORCE)
– A mix of value-based and policy-based (actor-critic).

The value-based method learns the values of actions and choose actions based
on their estimated action values. These methods are easy to use, but come with
two drawbacks. First, the policy obtained is deterministic, whereas optimal poli-
cies are often stochastic. Second, learning can be prohibitively long for complex
problems involving large state and action spaces [25].

First introduced by Barto et al. [2], policy-based methods learn a parame-
terised policy and are able to do so without a value function. The advantage of
the policy-based approach is that learning may result in a policy that is stochas-
tic. In addition, policy-based methods can be more effective than value-based
methods in solving problems with high-dimensional state-action spaces.

The focus of this paper is the actor-critic algorithm, a policy-based method
that also uses a value function to learn the policy parameter. Actor-critic learns
the policy parameter based on the gradient of some scalar performance measure
with respect to the policy parameter, and therefore belongs to the policy-gradient
family of methods.

In a policy-gradient method, a policy is the probability that action a is taken
when the agent is in state s at time t with parameter θ. In other words,

π(a|s,θ) = Pr{At = a|St = s,θt = θ}
If the action space is discrete and not too large, an exponential soft-max

distribution can be used in action selection,

π(a|s,θ) .=
eh(s,a,θ)

∑
b eh(s,b,θ)

,
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where

h(s, a,θ) = θᵀx(s, a),

where θ ∈ R
d′

and x(s, a) ∈ R
d′

is the feature vector.
The variant of actor-critic that we use in this study is called actor-critic with

eligibility traces, a discussion of which can be found in [24].

4 Air Combat Simulation

There are significant economic motivations for using air combat simulators. Not
only does simulation offer lower costs than real aircraft, it also eliminates risks
to human pilots and expedites training [12].

Modelling air combat is usually divided into within-visual-range (WVR) and
beyond-visual-range (BVR) combat. BVR air combat involves two opposing
teams of aircraft located at large distances from each other (hundreds of kilo-
metres) and operating in large air spaces. This type of combat is heavily reliant
on long range radar-guided missiles [5].

Historically, air-combat simulators have been built using scripting and rule-
based techniques. However, entering rules into the system is error-prone and
rule-based systems are predictable. Due to these limitations, researchers turned
to artificial intelligence (AI) techniques for air combat simulation. Two main
claimed advantages of using AI in agent-based simulation are the simulation can
be developed more quickly and it can be explained, understood and validated
more clearly [7].

In this research, we focus on constructive air combat simulations, which are
used for operations research and in which there are no human players. In other
words, it is an agent-versus-agent setting. Our research aims to train a virtual
agent (pilot) so that it can excel in simulated air combat. The simulator software
we use is called Ace Zero, which was developed by the Australian Defence Science
and Technology (DST) Group and used in [17] and [10].

To be successful in air combat, the agent’s aircraft needs to be in specific
relative aircraft geometry with the opponent. Figure 1 shows the relative aircraft
geometry, which consists of the range (distance), the attack angle (AA) and the
antenna train angle (ATA). By convention, blue is used to depict the aircraft
controlled by the subject agent and red to represent the opposing aircraft. The
angles are shown from the point of view of the blue aircraft.

The aircraft centres of mass are connected by the line of sight (LOS) line,
which is also used to calculate the range between the two aircraft. The aspect
angle (AA) is the angle between the LOS line and the tail of the red aircraft.
The antenna train angle (ATA) is the angle between the nose of the blue aircraft
and the LOS line. Both the AA and ATA help the pilot to make manoeuvring
decisions. The value of the AA and ATA is within 0◦ ± 180◦. By convention,
angles to the right side of the aircraft are considered positive and angles to the
left negative [11].
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Fig. 1. Relative aircraft geometry

Quantitatively, the McGrew score [11], which incorporates the range, AA and
ATA, is used to measure how favourable our agent’s position is relative to the
opponent. The higher the McGrew score, the better. The McGrew score consists
of two components, McGrew angular score (AM ) and McGrew range score (RM ).

SM = AMRM (1)

The McGrew angular score is defined as follows.

AM =
1
2
[(1 − AA

180◦ ) + (1 − ATA

180◦ )] (2)

Here, AA and ATA are in degrees and described in Fig. 1. The maximum possible
value for AM is 1, which is achieved when AA = ATA = 0.

The McGrew range score is defined as this.

RM = exp[−|R − Rd|
k × 180◦ ] (3)

where R is the current range of the two aircraft and Rd the desired range. We
determine Rd, the midpoint between the minimum gun range (500 ft = 153 m)
and the maximum gun range (3,000 ft = 914 m), to be 380 m [21]. The value of
k, the hyper-parameter scaling factor, determines the width of the function peak
around Rd. The larger the value of k, the bigger the spread. A small value of k
dictates that a high McGrew range score can only be achieved if the two aircraft
are very close to the desired range. By default k = 5.

The McGrew score ranges from 0.0 to 1.0 (inclusive). Figure 2 shows McGrew
scores of pairs of Blue and Red aircraft in various layouts. In all of them, Blue
and Red are spaced 380 m from each other. Figure 2A shows Blue is trailing Red
and both are flying in the same direction (AA = ATA = 0◦). Figure 2B shows
Blue and Red at 45◦ (AA = 0, ATA = 45◦) and Fig. 2C shows them at 90◦ (AA
= 0◦, ATA = 90◦). Figure 2D shows Red is following Blue (AA = ATA = 180◦)
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Fig. 2. McGrew scores for R = 380 m (A = 1.00, B = 0.82, C = 0.65, D = 0.00) (Color
figure online)

5 Experiments and Discussion

Our research project is an air combat simulator in two-dimensional space
whereby we train agents (Blue aircraft) to outmanoeuvre their opponents in
the way described in the previous section, using the actor-critic with eligibility
traces algorithm. Like the real-world aircraft, a virtual aircraft is able to change
direction continuously and the distance between the aircraft is also continuous,
making air combat simulation a continuous problem.

Because we use an algorithm for solving discrete problems, we set out by first
discretising the distance into fourteen regions, the AA into ten regions and the
ATA into ten regions, resulting in 1,400 states. The opposing aircraft is allowed
to perform continuous change of speed and direction within its physical limit,
but our agent is restricted to these five actions: do nothing, turn left by 10◦,
turn right by 10◦, increase speed by 10% and decrease speed by 10%.

For training we initialise our policy parameterisation values with zeros and
start the opponent (Red aircraft) from position (xr, yr, ψr) where xr and yr are
a coordinate in a Cartesian coordinate and ψr the flying direction (heading) in
degrees (relative to the X axis). Our aircraft (Blue) always starts from the origin
with heading 0◦ and an initial speed of 125 m/s, which means it starts by flying
along the X axis. We use reward functions that incorporate the McGrew score
in three agents (Agent A, Agent B and Agent C), all similar except for a fixed
offset applied to the reward function at each timestep:

– Agent A: Reward = McGrewScore
– Agent B: Reward = McGrewScore - 0.5
– Agent C: Reward = McGrewScore - 1.0.

During training Red always starts from (1500, 300, 50◦) and flies in a straight
line at a constant speed of 125 m/s. The initial positions, headings and speeds of
both aircraft are the same for all episodes. Each of the three agents is run inde-
pendently against an identical opponent. We stop learning after 20,000 episodes.

The policies from the three learning sessions are used to test agents against
an opponent that flies along paths that were not seen during training. Two of
the paths are shown in Fig. 3. In all tests, our agents manage to generalise and
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Fig. 3. Test results show our agent (Blue) was able to follow the opponent (Red) (Color
figure online)

Table 1. Average reward for 1,000 episodes

Agent A Agent B Agent C

Trial 1 0.082 0.083 0.083

Trial 2 0.058 0.089 0.092

Trial 3 0.060 0.086 0.081

Trial 4 0.074 0.080 0.072

Trial 5 0.064 0.088 0.091

Trial 6 0.062 0.079 0.086

Trial 7 0.069 0.098 0.082

Trial 8 0.082 0.085 0.086

Trial 9 0.093 0.094 0.097

Trial 10 0.067 0.097 0.092

Average 0.071 0.088 0.086

trail the opponent closely and stay within an effective shooting position. This
experiment shows that these fixed reward offsets did not affect the ability of each
actor-critic agent to learn an effective policy.

Another aspect that we investigate is the role of the reward structure in
accelerating learning. The three agents aim to get the highest rewards possible
but do so at different learning speeds. We run each experiment ten times and
Tables 1, 2 and 3 show the average rewards after 1,000, 2,000 and 5,000 episodes
for each agent.
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Table 2. Average reward for 2,000 episodes

Agent A Agent B Agent C

Trial 1 0.109 0.141 0.128

Trial 2 0.081 0.162 0.122

Trial 3 0.088 0.138 0.109

Trial 4 0.099 0.123 0.117

Trial 5 0.105 0.154 0.123

Trial 6 0.098 0.109 0.130

Trial 7 0.126 0.149 0.118

Trial 8 0.134 0.138 0.129

Trial 9 0.121 0.134 0.170

Trial 10 0.127 0.148 0.118

Average 0.109 0.140 0.126

Table 3. Average reward for 5,000 episodes

Agent A Agent B Agent C

Trial 1 0.213 0.227 0.218

Trial 2 0.175 0.249 0.226

Trial 3 0.164 0.283 0.211

Trial 4 0.195 0.215 0.209

Trial 5 0.205 0.257 0.201

Trial 6 0.174 0.214 0.242

Trial 7 0.198 0.262 0.224

Trial 8 0.261 0.233 0.245

Trial 9 0.210 0.229 0.260

Trial 10 0.277 0.236 0.188

Average 0.207 0.241 0.222

Tables 1, 2 and 3 show that Agent A learns the slowest, due to having pes-
simistic initialisation. As each timestep returns a reward that is higher than its
initial value, Agent A will tend to follow whichever actions it selects first, rather
than seeking better alternatives. Agent B is the fastest learner. Having balanced
initialisation that allows it to get a lower and higher reward than its initial values
may encourage Agent B to learn faster. However, shifting the reward function
further, as is done to Agent C, does not result in faster learning.

Table 4 shows the t-test results for all the agents. After 1,000 episodes, the
differences in performance between agents A and B was statistically significant
(2-tailed t-test, p < 0.01), however there was no significant difference between
agents B and C. After 2000 and 5000 episodes there were significant differences
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Fig. 4. Reward received per episode over the ten trials of each agent. Colours indicate
percentiles of the trial outcomes at each episode and rewards have been normalised to
0.0–1.0 range. (Color figure online)

between Agents A-B and Agents B-C (p < 0.05). The same cannot be said about
Agents A-C, which in all cases show results that are not statistically different.
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Table 4. T-test results

Agents A-B Agents B-C Agents A-C

1,000 episodes 0.00041 0.29504 0.07712

2,000 episodes 0.00030 0.04075 0.35627

5,000 episodes 0.01196 0.04069 0.38051

The charts in Fig. 4 show the learning speeds for the first 1,000 episodes
for the three agents. Agent B gets better rewards than Agent A in most of
the early episodes and maintains a 20% lead against Agent A (0.241 vs. 0.207)
throughout the ten trials. Agent C initially does better than Agent B for the first
100 episodes, but does not maintain the same learning speed and ends up having
lower average scores than Agent B. The charts show the average reward received
in each episode over ten trials for each agent. The colours indicate the percentiles
of the trial outcomes at each episode and all rewards have been normalised to
0.0–1.0 range.

6 Conclusions and Future Work

We demonstrate that actor-critic can be used to find novel air combat tactics.
We also show that reward structures affect learning. Based on the average scores
presented in the previous section, Agent A learns the slowest because of its
pessimistic initialisation and is not motivated to learn faster in the early episodes.
Agent B learns the fastest because of balanced initialisation. Agent C, with the
most optimistic initialisation, initially learns faster than Agent B but fails to get
a higher total average score than Agent B. After 2,000 episodes, the difference
between Agent A’s learning speed and that of Agent B is statistically significant
and so is the difference between Agent B and Agent C.

Extensions for future work may include the use of three-dimensional space
and may utilise curriculum learning to train the agent to do more difficult tasks
by gradually introducing those tasks [3].

Air combat is also a complex problem with conflicting objectives. For exam-
ple, an agent may want to fly as fast as possible to outmanoeuvre its opponent,
and at the same time not flying at the highest speeds all the time to save fuels.
The use of multi-objective RL techniques [19,27] in this domain may be an inter-
esting research project. Finally, an air combat may involve multiple aircraft and
be viewed as a team game. Extending our study to a multi-agent RL system will
be an important future area of focus.
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Abstract. Reinforcement learning (RL) is a learning approach based
on behavioral psychology used by artificial agents to learn autonomously
by interacting with their environment. An open issue in RL is the lack of
visibility and understanding for end-users in terms of decisions taken by
an agent during the learning process. One way to overcome this issue is
to endow the agent with the ability to explain in simple terms why a par-
ticular action is taken in a particular situation. In this work, we propose
a memory-based explainable reinforcement learning (MXRL) approach.
Using an episodic memory, the RL agent is able to explain its decisions
by using the probability of success and the number of transactions to
reach the goal state. We have performed experiments considering two
variations of a simulated scenario, namely, an unbounded grid world
with aversive regions and a bounded grid world. The obtained results
show that the agent, using information extracted from the memory, is
able to explain its behavior in an understandable manner for non-expert
end-users at any moment during its operation.

Keywords: Reinforcement learning · Explainable reinforcement
learning · Human-aligned artificial intelligence

1 Introduction

The aim of reinforcement learning (RL) [17] is to provide an autonomous agent
with the ability to learn new skills by only interacting with its environment. RL
is a learning approach based on behavioral psychology and conditioned behavior
present in mammals and human decision-making within the brain [12]. While
RL has been shown to be an effective learning approach, an open issue is the
lack of a mechanism that allows them to clearly communicate the reasons why
they choose certain actions given a particular state. In this regard, it is not easy
for a non-expert end-user to entrust important tasks to an AI-based system that
cannot justify its reasoning [1].
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In human cognition, for instance, toddlers are still unable to clearly express
reasons about their decisions, mainly due to the incomplete development of lan-
guage acquisition [14]. The lack of understanding by other interacting agents
leads to them not considering toddlers as peers. However, as they develop the
ability to give sound and meaningful explanations about their decisions, the
mutual confidence level increases and they become collaborative agents1 [2].

To model artificial systems, different alternatives are possible, i.e., phe-
nomenological models (white-box models), empirical model (black-box models),
and hybrid models (gray-box models) [3]. Even though artificial agents are con-
sidered to be black-boxes, frequently, it is possible to provide technical clues
about why actions are decided, e.g., an RL agent could explain its behavior
in terms of Q-values and future reward [4]. Nevertheless, this kind of explana-
tion makes little sense for non-expert users who need to be given explanations
using domain-like language in order to allow them to fully understand the agent
behavior. In this regard, there have been some research works pursuing a better
understanding of RL agent’s decisions. However, they have mostly focused on
interpretable RL [16] and explainable agency [8], overlooking the option of using
the agent’s experience to understand its behavior.

In this paper, we propose a memory-based explainable reinforcement learning
(MXRL) approach, which allows a learning agent to explain in domain language
the decision of selecting an action over the other possible ones. In our approach,
explanations are given using the probability of success and the number of tran-
sitions needed to reach the goal state. Thus, an RL agent is able to explain its
behavior not only in terms of Q-values or the probability of selecting an action
but rather in terms of the necessity to complete the intended task.

2 Related Works

2.1 Reinforcement Learning

RL is studied as a decision-making mechanism in both cognitive and artificial
agents [17]. An RL agent learns through interaction with its environment, trying
to map inputs into actions. In RL, there is no explicit instructor but rather the
awareness of how the environment answers to what it is done by the learning
agent. Therefore, an agent should be able to sense the environment’s state and
perform actions in order to transition to a new state.

Formally, an RL agent has to learn a policy π : S → A, where S is the set of
states and A the set of available actions, to produce the highest possible reward
from a state st [17]. The optimal policy is denoted by π∗ and the optimal action-
value function is denoted by q∗. The optimal action-value function is solved
through the Bellman optimality equation for q∗, as shown in Eq. 1.

q∗(st, at) =
∑

st+1

p(st+1|st, at)[r(st, at, st+1) + γ max
at+1

q∗(st+1, at+1)] (1)

1 Agent, in this context, refers to any actor in an environment such as human, animal,
or artificial agent.
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where st is the current state, at the taken action, st+1 the next state reached
after performing action at from the state st, and at+1 is an action that could be
taken from st+1. In Eq. 1, p represents the probability of reaching the state st+1

given the current state st and the selected action at. Finally, r is the reward
signal received after performing action at from the state st.

2.2 Explainable Artificial Intelligence

Over the last few years, explainable artificial intelligence (XAI) has emerged
as a prominent research area that aims to provide black-box AI-based systems
the ability to give human-like and user-friendly explanations to non-expert end-
users [11]. The idea behind XAI is not only intended to provide explanations,
but also to allow an AI-system to: justify its decisions and results, control and
prevent problems, improve its behavior, and discover new knowledge [1]. The
need of XAI is mainly motivated by the need for end-users of trust, interaction,
and transparency between them and AI-based systems. Furthermore, XAI is
often considered harder than the underlying decision-making process [1], due to
the additional interpretability process.

XAI is a vast field, like AI itself, with applications in areas such as transport,
finance, medicine, and military among other [6]. Recently, there has been some
research studies in explainability pointing to areas such as interpretable RL or
explainable agency. These approaches are described next.

2.3 Interpretable Reinforcement Learning

Interpretable RL is an approach which encodes the tasks and actions using
human-interpretable instructions. Shu et al. [16] have introduced an approach
for hierarchical and interpretable skill acquisition using human descriptions to
decompose the tasks into a hierarchical plan with understandable actions. Hein
et al. [7] have combined RL with genetic programming (GP) for interpretable
policies. They have tested their approach using the mountain car and cart-pole
balancing RL benchmarks. However, the provided explanations are only for the
learned policy employing equations for that instead of a natural-like represen-
tation. Verma et al. [19] have introduced the programmatically interpretable
reinforcement learning (PIRL) framework for verifiable agent policies. However,
the framework works with symbolic inputs considering only deterministic poli-
cies, not including stochastic ones.

In the field of Human-Robot Interaction (HRI), the term of explainable
agency has been used to refer to robots engaged in answering questions about its
reasons for the decision-making process. Langley et al. [8] propose the elements
of explainable agency as content that support explanations, an episodic memory
to record states and actions, and access to its experience. However, in their work,
they do not implement the proposed approach.

In RL, there have also been a few works trying to provide agents with expla-
nation mechanisms. For instance, Wang et al. [20] proposed an explainable rec-
ommendation system using an RL framework. Pocius et al. [13] utilized saliency
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maps as a way to explain agent decisions in a partially-observable game scenario.
They focused mainly on deep RL and, hence, provided visual explanations. Mad-
umal et al. [10], inspired by cognitive science, proposed to use causal models to
derive causal explanations. Nevertheless, the causal model had to be previously
known for the specific domain. Sequeira et al. [15] developed a framework to
provide explanations employing thoughtful analysis in three levels of the RL
agent interaction history. Tabrez and Hayes [18] used an HRI scenario to correct
a sub-optimal human model behavior, formulated as a Markov decision process
(MDP). In their research, they reported that users found the robot more helpful,
useful, and more intelligent when explanations and justification were provided.
However, the approach still lacks the comprehensibility of its policy.

3 Memory-Based Explainable Reinforcement Learning

The behavior of an RL agent might be technically explained in terms of the
Q-values or also in algorithmic terms. Nonetheless, in this work, we look for
explanations that make sense for all kinds of possible end-users and not only
to those who are able to understand the underlying learning process behind an
artificial agent. In this regard, we look for explanations similarly as it is done by
interacting people by using domain-specific language.

To provide artificial agents with the ability to explain the performed actions
is currently one of the most critical and complex challenges in future RL
research [6]. This challenge is especially important, considering RL-based sys-
tems often interact with human observers. Therefore, it is essential that non-
expert end-users can understand agents’ intentions as well as to obtain more
details from the execution in case of a failure [5].

In this paper, we focus on the decision-making process to provide an under-
standing to the user of what motivates the agent’s specific actions from different
states, taking into account the problem domain. From a non-expert end-user
perspective, we can consider the most relevant questions as to ‘why?’ and ‘why
not?’ [9,10]. For instance, the following questions may be asked to an artificial
agent in order to better understand its behavior:

– Why did you step forward in the last movement?
– Why did you not turn to the right in this situation?

Thus, in order to answer these questions in an understandable domain lan-
guage, our explanations intend to determine both:

– the artificial agent’s probability of success, and
– the number of transitions to reach the goal state, to either finish the task or

end it within a time-frame.

Once the probability of reaching the final state is determined the agent will
be able to provide the end-user a more compensable explanation for why one
action was preferred over others. Moreover, the number of transitions to the goal
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will give the end-user an idea about how many steps are necessary to finish the
task. Therefore, the agent may explain when an action is preferred to complete
the task faster.

We propose a memory-based explainable reinforcement learning (MXRL)
approach to compute the success probability Ps and the transitions to the goal
Nt consisting of an RL agent with an episodic memory. By accessing the memory,
it is possible to understand the agent’s behavior based on its experience by
using introspection in three levels [15], i.e., environment analysis (to observe
certain and uncertain transitions), interaction analysis (to observe state-action
frequencies), and meta-analysis (to obtain combined information from episodes
and agents). We implement a list of state-action pairs: TList comprising the
transactions the agent performed during its learning process.

To compute the success probability Ps, we previously compute the total
number of transitions Tt and the number of transitions involved in a success
sequence Ts. To obtain Ts, we use the transactions previously saved into the list
TList. Every time the agent reaches the final state, we compute the probability
Ps ← Ts/Tt considering transitions involved in the path towards the goal state.
The transitions to the goal Nt is computed every time after finishing an episode.
For each state, Nt is determined by the position in the list TList since all transi-
tions have been previously saved there. Therefore, each state is as far from the
goal as its position in the list, i.e., its index + 1.

Algorithm 1. Memory-based explainable reinforcement learning approach with
the on-policy method SARSA to compute the probability of success and the
number of transitions to the goal state.
1: Initialize Q(s, a), Tt, Ts, Ps, Nt

2: for each episode do
3: Initialize TList[]
4: Choose an action using at ← selectAction(st)
5: repeat
6: Take action at

7: Save state-action transition TList.add(s, a)
8: Tt[s][a] ← Tt[s][a] + 1
9: Observe reward rt+1 and next state st+1

10: Choose next action at+1 using softmax action selection method
11: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)]
12: st ← st+1; at ← at+1

13: until s is terminal (goal or aversive state)
14: if s is goal state then
15: for each s,a ∈ TList do
16: Ts[s][a] ← Ts[s][a] + 1
17: end for
18: end if
19: Compute Ps ← Ts/Tt

20: Compute Nt for each s ∈ TList as pos(s, TList) + 1
21: end for
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In this paper, an aim is to compare the probability of choosing an action,
computed from the Q-values, against the probability of being successful. There-
fore, we have implemented the on-policy method SARSA and the softmax action
selection method. Algorithm 1 shows our MXRL approach to train RL agents
using episodic memory. Whereas in line 7 each executed state-action pair is saved
into the memory, lines 19 and 20 compute the final probabilities of success Ps

and the number of transitions to the goal state Nt for each episode.

4 Experimental Set-Up

In order to produce explanations related to the context, we implemented a grid
world scenario in two versions: bounded and unbounded. Therefore, the same
state-action pair may lead to different characteristic for the explanation depend-
ing on the context. We use a 3 × 4 grid world, as shown in Fig. 1. In the figure,
it is possible to observe the 12 states in which the agent can be. The goal state
is shown with a green circle at the right bottom. The gray circle represents the
agent which needs to find one path towards the goal state. In every episode,
the agent is located in a random initial position within the grid world. Over
the episodes, the learning agent has to learn a policy in order to reach the goal
position. There are four allowed actions in this scenario: down, up, right, and
left.
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Fig. 1. The 3 × 4 grid world surrounded by aversive regions. The agent may move in
four directions: down, up, right, and left. The green circle shows the goal state. If the
aversive region is reached by the agent, the learning episode is finished and a new one
started. In the bounded grid world scenario, the agent is not allowed to step into the
aversive regions. (Color figure online)

In principle, we consider an unbounded grid world, i.e., a grid world where the
agent might get into aversive regions leading to stop the current learning episode
and restart a new one. The aversive regions are shown in yellow in Fig. 1. In this
case, the probability of being successful is computed after every learning episode
and depends on the experience of each agent to reach the final state.

Furthermore, we have also considered a bounded grid world, i.e., a grid world
from where the agent is not allowed to step out. Therefore, every time the agent
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tries to step out the grid world, the current state is not updated, keeping the
position as it was previously to select that action. In this context, the agent has
a constant success probability of 1 since it is always able to complete the task.
However, the time steps needed to get the goal are different for each reached
state after performing an action.

5 Experimental Results

For the learning process, the reward function returns a positive reward of 1 when
the agent reaches the final state and a negative reward of −1 when the agent
enters an aversive region. All the experiments have been performed using the
on-policy learning algorithm SARSA and the softmax action selection method
for the training of 100 agents. The following plots show the average results.
The parameters used for the training are: learning rate α = 0.3, discount factor
γ = 0.9, and softmax temperature τ = 0.25, all of them were experimentally
determined and related to our scenario. The previous parameters are mentioned
here just as a reference, but they are not relevant for this work. These parameters
do affect the agents’ ability to learn a solution. However, we are interested in
understanding the decision, rather than the speed or capacity of the learning
agents.

5.1 Unbounded Grid World

In the unbounded grid world scenario, the agent is allowed to step out of the grid
into the aversive region. Figure 2 shows the obtained Q-values, the probability
of choosing an action, the probability of success, and the number of transitions
to the goal state.

After training is complete, the average Q-values are shown in Fig. 2a. It can
be observed that the agent does not favor actions of going up or going left since,
independently of the current state, they always result in the agent moving further
away from the goal state. In general terms, the Q-values, also show symmetric
values, which indeed means the agent may select any route to the goal as long
as its movements are down or right. Of course the closer to the goal state the
higher reward which is shown, for instance, in states 7 and 10 with actions down
and right respectively, both cases being final state’s neighbors. There are a few
exceptions with low Q-value when moving down (states 8, 9, and 10) and moving
right (states 3 and 7) which represent the fact of stepping out the grid into the
aversive region.

Figure 2b shows the average softmax probability of choosing an action from
each state after learning. Although the probabilities of choosing an action are
connected with the Q-values in terms of the different possible paths to the goal
state, they only explain how likely it is to select an action rather than how
successful the agent will be by selecting it. Thus, it cannot clearly be explained
yet to a non-expert end-user why an RL agent would favor one of those actions.
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Fig. 2. Obtained results unbounded grid world. (a) Q-values. It can be seen that the
agent does not favor actions which lead it further from the goal state, i.e., moving up
or left. Additionally, the Q-values show symmetry considering the possible paths to the
goal state. (b) Probability of choosing an action. While the softmax values show that
the agent may select any path to the goal state with similar probability, they do not
provide enough information in domain language. (c) Probability of success considering
state-action pairs. Actions leading to the aversive region have a probability of success
equal to 0. Moreover, actions far from the goal state or actions which get the agent
further from the goal may also be successful if the right sequence is taken from there.
(d) Evolution of the number of transitions over the learning episodes to reach the goal
state. After training, the agent learns the shortest path to the goal.

Figure 2c shows the probability of success for each state-action pair after
the learning process. The probabilities are computed after each episode using
the memory. As previously discussed, they are a more transparent manner to
explain to a non-expert end-user the reasons why an RL agent favors specific
actions from specific states. In Fig. 2c, for instance, it is clear to see what actions
lead to the aversive region as they show probability equal to 0. Moreover, it is
shown that even actions which move the agent further from the goal state may
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eventually be successful, or that states located far from the goal may also be
highly successful if the proper sequence of actions is taken.

Additionally, Fig. 2d shows the number of transitions to reach the goal posi-
tion from every state over the learning episodes. The number of actions executed
in this case is computed taking into account only the successful runs of RL. After
150 episodes, the agent learns the shortest possible paths from all states.

In this context, one possible question to the artificial agent is: Why did you
choose action down when in state 0? Trying to explain this in term of Q-values
means to show to an end-user the following information. Q(s = 0, a = down) =
−0.181, Q(s = 0, a = up) = −0.998, Q(s = 0, a = right) = −0.411, Q(s = 0, a =
left) = −0.998, which is pointless for a non-expert user. However, if we use the
probability of success, we can observe that Ps(s = 0, a = down) = 0.736, Ps(s =
0, a = up) = 0, Ps(s = 0, a = right) = 0.656, Ps(s = 0, a = left) = 0. Therefore,
the agent may answer the end-user: I chose to go down because that has a 73.6%
probability of successfully reaching the goal. Another possible question to the
agent is: Why did you not choose to go left when in state 0? Given the previous
Ps values, one possible answer is: I did not choose left because that has a zero
probability of success, whereas by choosing down has a 73.6% probability of
success, which was higher than other actions.

5.2 Bounded Grid World

As aforementioned, the bounded grid world is an always success scenario since
the agent cannot step out of the grid world into the aversive region and, therefore,
eventually will always reach the goal state. Figure 3 shows the obtained Q-values,
probability of choosing an action, and the number of actions to the final state.

In Fig. 3a, the obtained Q-values present similar distribution as the previous
unbounded case, i.e., actions moving the agent up and left have lower values in
comparison with down and right that moves the agent closer to the goal position.

In this case, the probability of choosing an action is also related to the Q-
values, as shown in Fig. 3b. However, this probability does not provide enough
information to understand and explain the action-selection decision by the RL
agent, especially considering that the agent never fails the task in the bounded
grid world. Therefore, in this scenario, to compute the number of transitions to
reach the goal and the probability of success within a time window is imperative.
Thus, an RL agent may answer more clearly questions as to why a particular
action is preferred over others from a specific state referring to the number of
steps needed to reach the goal.

Figure 3c shows the evolution of the probability of success over the learning
episodes with the agent starting in position 0 (similar charts can be generated
starting from any state). Three different time windows are considered as exam-
ples, i.e., the probability of reaching the goal in 8, 12, and 16 actions. In Fig. 3d
is shown the number of transitions from each state to reach the goal state over
the learning episodes. The RL agent may use this information to answer if a
taken action reaches another state, from where it is faster to get it to the final
state.



Memory-Based Explainable Reinforcement Learning 75

Fig. 3. Obtained results bounded grid world. (a) Q-values. The RL agent favors down
and right actions since get it closer to the goal state. As in the unbounded scenario, the
Q-values are symmetric meaning that the agent has no particular preference for similar
paths to the goal. (b) Probability of choosing an action. The softmax probabilities
show only how likely it is to select an action after the learning process; however, they
do not present information about the time-steps needed to success from a particular
state-action pair. (c) Probability of success from position 0 within a specific window of
actions using cumulative normal distribution. The larger the window, the higher the
probability of finishing the task. To obtain the maximal probability are required 78, 48,
and 32 episodes for a window of 8, 12, and 16 actions respectively. (d) Evolution of the
number of transitions to reach the goal state. Since this is an always success scenario,
it is relevant to provide explanations about the steps needed to reach the goal.

In this problem, a possible question for the agent could be: What is the
probability of finishing the task in 8 movements starting from the state 0? One
more time, if we want to answer this question in terms of Q-vales to the end- user
we should show that Q(s = 0, a = down) = −0.368, Q(s = 0, a = up) = −0.993,
Q(s = 0, a = right) = −0.243, Q(s = 0, a = left) = −0.994, which has no
meaning for a non-expert end-user. However, if we refer to the plot Fig. 3c, we
can clearly observe the probability of finishing the task in 8 movements starting
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from state 0. For instance, after 30 training episodes the agent may answer: I can
finish the task in 8 movements with a probability of 39.4%, or after 60 episodes
the agent’s answer may be: I can complete the task in 8 moves with a probability
of 86.5%.

6 Conclusions

In this work, we have presented an MXRL approach aiming an agent to explain
to non-expert end-users the reasons why some decisions are taken in certain situ-
ations. To this end, using a episodic memory, we have computed the probability
of success and the number of steps to the goal state, which allow the agent to
provide explanations using domain-based language. Our experiments have been
performed in a scenario with two variations, an unbounded and a bounded grid
world. The obtained results show that the agent, using the episodic memory,
is able to find clear explanations for end-users with no previous knowledge of
machine learning techniques.

The explanations shown in this work are examples of possible answers
obtained from the resulting probability of success and the number of transi-
tions to the goal during the learning process. Currently, our method presents
some limitations as the use of memory in large solution spaces. Moreover, to
this point in this work, we have only considered a discrete episodic task with
a terminal goal state. In this regard, the obtained results motivate future work
in many possible directions. For instance, we are planning to extend our app-
roach to compute the probability of success and the number of transitions to
the goal by using another more general method, such as function approximator,
Bayesian methods, or phenomenological relations from the Q-values. By using a
more general estimation method, our approach might be scaled to more complex
scenarios as problems with no final state, i.e., which need to operate continuously,
or problems with continuous state-action representation.
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Abstract. Analysis of coalition formation in cooperative games is an
important research topic in game theory. Previous studies on coalition
formation used laboratory experiments to collect data on player decision
making, but the amount of data collected was limited due to the high
cost of laboratory experiments. In this study, we used crowdsourcing to
collect a large volume of decision-making data for use in predicting player
behavior in cooperative games. This large amount of data enabled us to
train large machine learning models such as deep neural networks, which
can more precisely predict player decision making in cooperative games.
The results with our machine learning models using crowdsourced data
were similar to those of laboratory experiments.

Keywords: Cooperative games · Machine learning · Human behavior

1 Introduction

Agents in multi-agent systems are entities that can have their own goals, beliefs,
and capabilities [13,15]. The agents can interact and cooperate to achieve goals
that would be unattainable individually. The agents are often self-interested and
act strategically to maximize their own utility. Game theory focuses on modeling
strategic interactions among self-interested agents, and game theoretic models
have been widely adopted as tools for analyzing multi-agent systems in both
theoretical computer science and artificial intelligence [9,13].

Games studied in game theory are traditionally categorized as non-
cooperative or cooperative games. In the first type, interactions that take place
when agents must act individually are considered; binding agreements among
them are impossible, so all choices are at the individual agent level. In the sec-
ond type, interactions that take place when agents can act cooperatively are con-
sidered: binding agreements among them are possible, so agents can cooperate
by forming coalitions. Since cooperation may create synergies that substantially
increase the efficiency of the system, cooperative game theory, and especially
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 78–88, 2019.
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its algorithmic aspects, have been extensively studied in the fields of artificial
intelligence and multi-agent systems.

Solution concepts for cooperative game theory answer two basic questions:
(1) what coalitions will be formed; and (2) how will coalitions divide the profits
they obtain through cooperative actions among the coalition members. The two
most widely-known solution concepts are the core [3] and the Shapley value [11].
Although both concepts assume that a coalition of all agents in the system
(called the grand coalition) is optimal and formed, they approach the problem of
dividing the profits from cooperation from two completely different perspectives.
The focus with the core perspective is on stability of the coalition. Specifically,
each agent must be paid enough so as not to have an incentive to deviate from
the grand coalition either individually or together with other agents as a group.
In contrast, the focus with the Shapley value perspective is on fairness. An
attempt is made to divide the profits from cooperation in accordance with the
contributions of the individual agents towards the success of the cooperative
effort. The importance of the Shapley value stems from the fact that it is the
only solution concept that meets a set of certain intuitive and desirable properties
related to fairness.

Nash presented the agencies method for modeling cooperative games along
with a non-cooperative procedure for accepting the agency of another player and
evaluated the evolution of cooperation among three players by using computer
simulation [7]. Then, on the basis of this work, Nash et al. [8] conducted a lab-
oratory experiment on finitely repeated three-person coalition formation games.
They showed that the proposed agencies method effectively promotes player
cooperation and fair outcomes: full efficiency was almost always reached, and
the differences in the divisions of payoffs across rounds were much less extreme
than one might expect from analysis of a non-cooperative game.

A laboratory experiment is usually the most effective approach to under-
standing human behavior and human decision making. However, conducting
a laboratory experiment is often difficult since a well-organized laboratory is
required, and hiring people is costly. In the study reported here, we used crowd-
sourcing to collect data on player decision making in a cooperative game instead
of conducting a laboratory experiment. Then we used machine learning to pre-
dict player decision making. Crowdsourcing services such as Amazon Mechanical
Turk are one of the most promising services recently introduced to the Web.
Crowdsourcing is based on the idea of the wisdom of crowds and is used to
solve a user-presented problem by combining the forces efforts of many people
[1,5,6,10,12,14]. The main advantage of crowdsourcing is a large work force
available at relatively low cost.

The rest of this paper is organized as follows. In Sect. 2, we define coopera-
tive games and our problem setting. In Sect. 3, we describe the task we crowd-
sourced. In Sect. 4, we present the results of applying machine learning to the
crowdsourced data. In Sect. 5, we present the results of using machine learning
to predict the division of profits. We summarize the key points in Sect. 6.
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2 Problem Setting

Cooperative game theory predicts payoff divisions among the players for a given
characteristic function that takes a coalition as an input and returns the coali-
tion’s value as an output. Formally, in characteristic function games, the value
of coalition S ⊆ N is given by characteristic function v : 2N → R

+ ∪ {0} with
v(∅) = 0, which assigns a non-negative real value to each set (coalition) of agents.
These values represent the payoffs attainable by respective coalitions should they
form.

In cooperative games, the first fundamental question to answer is what coali-
tions will form. This naturally depends on the values of the characteristic func-
tion. We assume that it is never detrimental for two disjoint coalitions to form
one, larger coalition. This property is called super-additivity. Formally, we say
that the characteristic function is super-additive if, for any Si and Sj , Si ∩ Sj = ∅,

v(Si ∪ Sj) ≥ v(Si) + v(Sj).

Once we know that the grand coalition forms, the second fundamental ques-
tion to answer is how to divide the payoff of the grand coalition, v({N}), among
the agents. Such a division is called the solution of cooperative games and is
denoted by a payoff vector �p = (p1, . . . , pn). A variety of solution concepts, each
with its own properties and interpretations, have been described in the literature.
The core is a prominent solution concept focused on coalition stability.

Definition 1 (Core). The core is the set of all payoff vectors �p that satisfy
the feasibility condition, ∑

i∈N

pi = v({N})

and the non-blocking condition,

∀C ⊆ N,
∑

i∈C

pi ≥ v(C).

The feasibility condition simply states that the exact value of the grand
coalition is distributed among the agents. The non-blocking condition is more
complicated. If, for some set of agents S, the non-blocking condition does not
hold, the payoff vector is not stable. This is because the agents in S have an
incentive to collectively deviate from the grand coalition and divide v(S) >∑

i∈S pi among themselves. If this is not the case, we have found a stable payoff
vector that is acceptable for all coalitions in the game. We say that such a
payoff vector is in the core. There can be many different vectors in the core of a
cooperative game. However, the core can also be empty, as in the case of games
1 to 5 introduced below.

Next, we give the definition of the Shapley value, which was introduced by
Shapley who argued that agents should be rewarded in accordance with their
marginal contributions to various coalitions.
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Table 1. Characteristic function of three-person cooperative games

Games v(ABC) v(AB) v(AC) v(BC) v(A) v(B) v(C)

1 120 120 100 90 0 0 0

2 120 120 100 70 0 0 0

3 120 120 100 50 0 0 0

4 120 120 100 30 0 0 0

5 120 100 90 70 0 0 0

6 120 100 90 50 0 0 0

7 120 100 90 30 0 0 0

8 120 90 70 50 0 0 0

9 120 90 70 30 0 0 0

10 120 70 50 30 0 0 0

Table 2. Core, Shapley value, and actual average profit

Games Core Shapley value Actual average profit

A B C A B C

1 Empty 46.67 41.67 31.67 43.69 36.15 37.90

2 Empty 53.33 38.33 28.33 44.28 41.95 31.42

3 Empty 60.00 35.00 25.00 45.42 37.94 30.72

4 Empty 66.67 31.67 21.67 44.46 35.88 32.99

5 Empty 48.33 38.33 33.33 41.86 38.88 37.13

6 Non-empty 55.00 35.00 30.00 42.01 41.99 31.90

7 Non-empty 61.67 31.67 26.67 37.95 39.33 40.03

8 Non-empty 50.00 40.00 30.00 40.51 37.65 38.02

9 Non-empty 56.67 36.67 26.67 39.75 38.40 36.67

10 Non-empty 50.00 40.00 30.00 40.84 37.69 35.72

Definition 2 (Shapley value). The Shapley value of an agent i denoted SV (i),
is defined by:

SV (i) =
1

|N |
∑

S⊆N\{i}

1(|N | − 1
|S|

) [v(S ∪ {i}) − v(S)].

The idea behind the Shapley value is that an agent should obtain a share
in the grand coalition payoff that corresponds to the agent’s average marginal
contribution to all coalitions, taken over all possible ways to create the grand
coalition by adding one agent after the other. The importance of the Shapley
value stems from the fact that it is the only solution concept that meets four
desirable properties: efficiency (the entire payoff is distributed among agents),
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Fig. 1. Example display for crowdsourced tasks (in Japanese)

symmetry (agents with symmetric marginal contributions obtain the same pay-
off), null player (agents with no marginal contributions receive zero payoff), and
additivity (the division scheme is additive). The Shapley value has been applied
to a wide variety of undertakings such as dividing the cost of building a new
airport.

Nash et al. [8] conducted three-person cooperative games using characteristic
functions given in Table 1. In every period, the active player decides whether
or not to accept another player as his agent. The final agent decides how the
coalition value is to be divided. If more than one agent qualifies as the (final)
agent, a random draw is used to determine who will be the (final) agent. If
nobody accepts another agent, the procedure is repeated or a random stopping
rule terminates the round with zero payoffs or a two-person coalition payoff.
There were 10 independent groups in each game, and 40 periods were executed
for each game. The players received a payoff each period. The core, Shapley value,
and actual average profit obtained are shown Table 2. The payoff division, which
was decided among the coalition members, did not always equal the Shapley
value. They also figured out that the players often preferred an equal division.

3 Crowdsourcing for Collecting Player Decision-Making
Data for Cooperative Games

To collect player decision-making data for cooperative games, we posted a task on
Lancers (http://www.lancers.jp/), which is a crowdsourcing platform in Japan.
We collected answers from 166 workers, and each of them was paid 30 Japanese
yen (0.42 AU dollars). We assume that a person’s decisions depend on the per-
son’s role, so we assigned each worker a role to play when performing the task:
agent A, agent B, agent C, or a third party.

In this task, each worker was asked to play the ten characteristic function
games shown in Table 1. Each game started with random assignment of the

http://www.lancers.jp/
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Table 3. Average coalition selection ratios (166 workers)

Games ABC AB AC BC A/B/C

1 0.42 0.46 0.11 0.01 0.00

2 0.34 0.55 0.10 0.01 0.00

3 0.32 0.47 0.19 0.02 0.01

4 0.30 0.52 0.17 0.01 0.00

5 0.46 0.37 0.14 0.02 0.01

6 0.51 0.35 0.13 0.01 0.01

7 0.48 0.37 0.13 0.01 0.01

8 0.67 0.24 0.05 0.02 0.01

9 0.61 0.31 0.05 0.01 0.01

10 0.90 0.05 0.01 0.03 0.01

Table 4. Average profit division for each agent

Games ABC AB AC BC

A B C A B A C B C

1 42.93 40.26 37.1 60.41 57.75 50.1 38.25 45.00 45.00

2 44.58 39.18 31.67 60.60 57.98 49.06 49.06 35.00 35.00

3 46.19 38.75 29.96 62.13 56.03 59.84 39.13 40.00 10.00

4 48.90 39.94 30.12 63.22 55.38 56.38 39.14 15.00 15.00

5 42.22 38.21 33.83 53.48 48.78 47.92 42.92 31.67 25.00

6 45.33 39.81 32.35 53.50 47.12 50.24 37.86 25.00 25.00

7 49.38 36.82 31.25 53.19 47.71 51.90 37.14 20.00 10.00

8 43.81 39.41 35.16 46.38 44.63 45.46 33.33 22.33 19.00

9 46.17 38.58 32.41 48.27 42.60 34.38 26.88 15.00 15.00

10 43.95 39.30 35.37 46.56 46.07 25.00 25.00 18.22 11.67

worker’s role (agent A, B, or C or third party). A characteristic function was
then displayed, and worker was then asked to select a coalition to join and to
propose a division of the selected coalition’s profit that would be acceptable to
the other agents in the coalition if he/she was agent A, B, or C or that would be
acceptable to the agents in the coalition if he/she was a third party. An example
display for a game (in Japanese) is shown in Fig. 1.

Table 3 shows the average coalition selection ratio. In games 1 to 4, the value
of grand coalition ABC was equal to that of the AB coalition. Thus, the ratio
for AB exceeded the ratio for ABC. On the other hand, in games from 5 to 10,
the ratio for ABC exceeded the ratio for AB. In fact, 90% the workers selected
the grand coalition in game 10.
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Table 5. Predicted selected coalitions

Games v(ABC) v(AB) v(AC) v(BC) v(A)/v(B)/v(C)

1 0.42 0.455 0.14 0.00 0.00

2 0.36 0.53 0.11 0.02 0.00

3 0.32 0.47 0.17 0.03 0.00

4 0.29 0.53 0.16 0.01 0.00

5 0.46 0.36 0.15 0.03 0.00

6 0.51 0.40 0.06 0.02 0.00

7 0.51 0.34 0.13 0.02 0.00

8 0.70 0.20 0.07 0.02 0.00

9 0.61 0.33 0.02 0.02 0.02

10 0.91 0.02 0.02 0.07 0.00

Table 6. Predicted profit division for grand coalition

Games A B C

1 44.88 43.36 31.76

2 47.19 43.96 28.85

3 50.73 43.78 25.49

4 51.64 43.85 24.52

5 46.61 43.40 29.99

6 48.86 43.87 27.27

7 54.03 40.50 25.47

8 46.73 43.89 29.38

9 50.76 43.35 25.89

10 47.26 42.95 29.79

Table 4 shows the average profit division. The workers preferred an equal divi-
sion. For example, among the total 1660 instances (166 workers, 10 games), grand
coalitions were selected for 831 instances. Among those 831 instances, equal divi-
sion was selected 400 times (48.1%). Among the remaining 431 instances, a pro-
portional division was selected 323 times (74.9%). For the two-player coalitions
(AB, AC, and BC), 86% of the profit divisions were either equal or proportional.

Looking at the results of the laboratory experiment conducted by Nash
et al. shown in Table 2, we do not see huge differences between our crowdsourcing
data and their data.
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Table 7. Characteristic functions used to evaluate ability of our machine learning
models to predict division of profits

Games v(ABC) v(AB) v(AC) v(BC) v(A) v(B) v(C)

N1 200 150 100 70 0 0 0

N2 120 100 70 50 0 0 0

N3 120 90 50 30 0 0 0

Table 8. Predicted selected coalitions for three different characteristic functions

Games v(ABC) v(AB) v(AC) v(BC) v(A)/v(B)/v(C)

N1 0.93 0.00 0.00 0.00 0.00

N2 0.64 0.27 0.00 0.00 0.00

N3 0.88 0.00 0.00 0.00 0.00

Table 9. Predicted profit division for grand coalition for different characteristic
functions

Games A B C

N1 66.88 85.22 47.90

N2 42.15 52.11 25.74

N3 35.37 57.32 27.30

4 Use of Machine Learning to Analyze Player Decision
Making in Cooperative Games

Machine learning has been successfully applied to a variety of problems. Among
the various machine learning models, deep neural networks have recently been
gaining attention from game theory researchers because they can handle com-
plex interactions among agents in games. Hartford et al. [4] proposed using
a deep neural network to model player strategic behavior in non-cooperative
games. Dütting et al. [2] proposed using deep neural network models for design-
ing incentive-compatible optimal auctions.

We developed and used two deep neural networks to model complex inter-
actions among agents in cooperative games. One model was used to predict the
choice of a coalition given the value of the characteristic function. The other was
used to predict the division of the reward among the agents given the value of
the characteristic function. We prepared different versions of the second model to
predict the reward division for different coalitions because the agents who share
the reward differ between coalitions. Both models have four fully connected hid-
den layers, each of which has 128 units with ReLU activation functions.

In this experiment, we focused on three player games with zero reward for
single coalitions. Therefore, the coalition prediction model has five output units:
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Table 10. Predicted profit division for different characteristic functions

Game Coalition Ratio Profit for A Profit for B Profit for C

N1 ABC 0.53 83.80 67.13 49.07

AB 0.30 76.99 73.11

AC 0.10 50.00 50.00

BC 0.03 35.00 35.00

A\B\C 0.03

N2 ABC 0.57 50.67 40.00 29.33

AB 0.33 51.25 48.75

BC 0.10 27.50 22.50

N3 ABC 0.60 47.94 41.88 30.29

AB 0.30 48.57 41.43

AC 0.03 25.00 25.00

BC 0.03 20.00 10.00

A\B\C 1.00

one for the grand coalition, three for two-player coalitions, and one otherwise.
The division prediction model has output units corresponding to the agents in
the coalition. In both models, the output is normalized using a softmax func-
tion. The output of the coalition prediction model represents the probabilities of
choosing the various possible coalitions, and the output of the division predic-
tion model represents the division ratio for each agent. As the loss function for
coalition prediction, we used categorical cross entropy because the task is multi-
class classification. We used Kullback Leibler divergence as the loss function for
division prediction because it can measure the difference between predicted and
actual divisions. We implemented our models using the Keras framework, and
trained the models using the crowdsourced data.

Table 5 shows the predicted selected coalitions, and Table 6 shows the pre-
dicted profit division for the grand coalition. We obtained the predictions similar
to the data of the crowdsourcing workers.

5 Use of Machine Learning to Predict Division of Profits
in Cooperative Games

We evaluated the ability of our machine learning models to predict the division
of profits using three characteristic function games that differed from the ten
characteristic function games in Table 1. They are shown in Table 7. Table 8
shows the predicted selected coalitions, and Table 9 show the predicted profit
division for the grand coalition. The prediction for game N1 was 93% since it
differs the most different from the ten original games, making it easy to fall into
local optimization.
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We asked 30 different crowdsourcing workers to play the three new charac-
teristic function games shown in Table 7. We assigned them the role of third
party and asked them to select a coalition and to propose a division of the profit
of the coalition selected. As shown in Table 10, the division was predicted more
accurately for games N2 and N3 than for game N1. Again, the workers preferred
an equal division.

6 Conclusions

We have proposed using crowdsourcing to collect a large volume of human
decision-making data for use in predicting player behavior in cooperative games.
We also proposed using machine learning models to predict coalition formation
and reward division for given values of a characteristic function. The proposed
models were trained using data collected using a crowdsourcing service. The
results with our machine learning models were similar to those of laboratory
experiments.
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Abstract. Large probabilistic models are often shaped by a pool of
known individuals (a universe) and relations between them. Lifted infer-
ence algorithms handle sets of known individuals for tractable inference.
Universes may not always be known, though, or may only described by
assumptions such as “small universes are more likely”. Without a uni-
verse, inference is no longer possible for lifted algorithms, losing their
advantage of tractable inference. The aim of this paper is to define a
semantics for models with unknown universes decoupled from a specific
constraint language to enable lifted and thereby, tractable inference.

Keywords: Probabilistic relational models · Probabilistic inference ·
Lifting · Unknown universe

1 Introduction

At the heart of many machine learning algorithms lie large probabilistic models
that use random variables (randvars) to describe behaviour or structure hidden
in data. After a surge in effective machine learning algorithms, efficient algo-
rithms for inference come into focus to make use of the models learned or to
optimise machine learning algorithms further [12]. Often, a model is shaped by
a pool of known individuals (constants), i.e., a known universe, and relations
between them. Handling sets of individuals enables tractable inference [14].

Lifting efficiently handles sets of individuals by working with representatives
of individuals behaving identically and only looking at specific individuals if nec-
essary. If modelling, e.g., a possible epidemic depending on how many people are
sick, all people being sick behave identically towards an epidemic. In paramet-
ric factors (parfactors), randvars parameterised with logical variables (logvars)
compactly represent sets of randvars [15]. Instead of specifying a factor for each
person about how the person being sick affects an epidemic, one parfactor works
as a template for all people. Markov logic networks use first-order logic formulas
for compact encoding [16]. A known universe means that logvars in parfactors
or Markov logic networks have a domain and possibly a constraint restricting
domains to certain constants for specific parfactors or formulas. Lifted infer-
ence algorithms such as (i) lifted variable elimination (LVE) [15,18], (ii) the
lifted junction tree algorithm [3], (iii) first-order knowledge compilation [19],
c© Springer Nature Switzerland AG 2019
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(iv) probabilistic theorem proving [10], or (v) lifted belief propagation [2], use
domains or constraints to determine the number of individuals represented to
be able to perform efficient inference.

The question is what to do if the universe is unknown, which makes logvar
domains unspecified and constraints empty or not applicable. In the example
about an epidemic, the people who are possibly sick are not known. The question
is not entirely new and an interesting one for diverse research areas: Ceylan et al.
define a semantics for open-world probabilistic databases, keeping a fixed upper
bound on domains [6]. Srivastava et al. specify first-order open-universe partially
observable Markov decision processes to generate strategies based on sampling
[17]. Milch et al. study unknown domains in Bayesian Logic, using sampling for
approximate inference [13]. But, the effects of unknown finite universes on lifted
inference and how to treat unknown universes in lifting have not been discussed.

Therefore, this paper explores lifted inference given models with unknown
universes by defining semantics decoupled from a specific constraint language to
again enable tractable inference with lifted algorithms. Decoupling the semantics
from the constraint language allows for exploring unknown universes unrestricted
by the expressiveness of a specific constraint language. The semantics is based
on constraints over constraints and a set of possible domains, resulting in a
variety of interesting new queries that allow for exploring unknown universes as
well as checking assumptions about models. Additionally, we discuss specifying a
distribution over domains, similar to [13]. Although the idea behind our approach
applies to any formalism and lifted algorithm, we consider parfactors together
with LVE since LVE has also been decoupled from the constraint language [18].

The remainder of this paper starts with providing notations and recapping
LVE. Then, we discuss constraints and domains from a generative viewpoint and
define semantics. Finally, we look at query answering for such models.

2 Preliminaries

This section specifies notations and recaps LVE. A running example models the
interplay of an epidemic and people being sick, travelling, and being treated.
Travels spread a disease, making an epidemic more likely. Treatments combat a
disease, making an epidemic less likely. The example shows a scenario where one
is interested in transferring a model to varying domains.

2.1 Parameterised Models

Parameterised models are the enclosing formalism for parfactors. A parfac-
tor describes a function, mapping argument values to real values (potentials).
Parameterised randvars (PRVs) constitute arguments, compactly encoding pat-
terns, i.e., the function is identical for all groundings. Definitions are based
on [18].

Definition 1. Let R be a set of randvar names, L a set of logvar names, Φ a
set of factor names, and D a set of constants (universe). All sets are finite. Each
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logvar L has a domain D(L) ⊆ D. A constraint is a tuple (X , CX) of a sequence
of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). The symbol � for C
marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi).
A PRV R(L1, . . . , Ln), n ≥ 0 consists of a randvar R ∈ R possibly combined

with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV is parameterless and constitutes
a propositional randvar. The term R(A) denotes the possible values (range) of
a PRV A. An event A = a denotes the occurrence of PRV A with range value
a ∈ R(A). We denote a parfactor g by φ(A)|C with A = (A1, . . . , An) a sequence
of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a function with name φ ∈ Φ, and C a constraint

on the logvars of A. A PRV A or logvar L under constraint C is given by A|C or
L|C , respectively. We may omit |� in A|�, L|�, or φ(A)|�. A set of parfactors
forms a model G := {gi}ni=1.

The term lv(P ) refers to the logvars in P , which may be a PRV, a constraint,
a parfactor, or a model. The term gr(P ) denotes the set of all instances of
P w.r.t. given constraints. An instance is an instantiation (grounding) of P ,
substituting the logvars in P with a set of constants from given constraints. If P
is a constraint, gr(P ) refers to the second component CX. The universe is given
by D, and the constraints encode which parfactors apply to which constants.

Let us specify a model Gex for the epidemic example. The sets of
names are given by R = {Epid, Sick, Travel, T reat}, L = {X,T},
and Φ = {φ0, φ1, φ2}. The set of constants D contains constants
alice, bob, eve and serum1, serum2, which form the domains D(X) =
{alice, bob, eve} and D(T ) = {serum1, serum2}. We build the boolean PRVs
Epid, Sick(X), T ravel(X), T reat(X,T ) from R and L. Epid holds if an epidemic
occurs. Sick(X) holds if a person X is sick, Travel(X) holds if X travels, and
Treat(X,T ) holds if X is treated with T . With a constraint C = (X, {eve, bob}),
gr(Sick(X)|C) = {Sick(eve), Sick(bob)}. gr(Sick(X)|�) contains Sick(alice) as
well. The model is given by Gex = {gi}2i=0,

g0 = φ0(Epid), (1)

g1 = φ1(Epid, Sick(X), T ravel(X))|C1 , C1 = � = D(X), (2)

g2 = φ2(Epid, Sick(X), T reat(X,T ))|C2 , C2 = � = D(X) × D(T ). (3)

Parfactors g1 and g2 have eight input-output pairs, g0 has two (omitted
here). Constraints are �, meaning, the φ’s apply to all possible groundings of
the argument PRVs, e.g., gr(g1) contains three factors, one for alice, bob, eve
each, with identical φ1. Figure 1 depicts Gex as a graph with four variable nodes
for the PRVs and three factor nodes for the parfactors with edges to arguments.

Epid g0

Sick(X)
Travel(X) Treat(X,T )

g1 g2

Fig. 1. Parfactor graph for Gex
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The semantics of a model G is given by grounding and building a full joint
distribution PG. Query answering refers to computing probability distributions,
which boils down to computing marginals on PG. A formal definition follows.

Definition 2. With Z as normalising constant, a model G represents the
full joint distribution PG = 1

Z

∏
f∈gr(G) f (distribution semantics). The term

P (Q|E) denotes a query in G with Q a set of grounded PRVs and E a set of
events.

An example query for Gex is P (Epid|Sick(eve) = true), asking for the con-
ditional distribution of Epid given the event Sick(eve) = true. Lifted query
answering algorithms like LVE seek to avoid grounding and building PG.

2.2 Lifted Variable Elimination: An Example

LVE answers queries of the form in Definition 2 by eliminating all PRVs that do
not occur in a query. We use LVE as a means to illustrate how known universes
are required for calculations. The exact workings of LVE are not necessary for
understanding the contributions of this paper.

When eliminating a PRV, LVE in essence computes variable elimination for a
representative and exponentiates the result for indistinguishable instances (lifted
summing out). While the main idea is rather straightforward, a correct imple-
mentation is more involved. See [18] for details on LVE for models of Definition 1.

To illustrate the effects of a universe, consider a query P (Epid) in model Gex.
LVE eliminates the PRVs Treat(X,T ), Travel(X), and Sick(X). To eliminate
Treat(X,T ) from parfactor g2 = φ2(Epid, Sick(X), T reat(X,T ))|�, LVE looks
at the constraint of g2, which is �, i.e., D(X) × D(T ). Eliminating Treat(X,T )
leaves X as the only logvar in g2. As such, there must exist the same number
of T constants given each X constant for lifted summing out to apply. For each
X, there exist two T constants, i.e., serum1 and serum2. Thus, LVE is able to
eliminate Treat(X,T ) by summing out Treat(X,T ) from φ2 using propositional
variable elimination, leading to a parfactor g′

2 = φ′
2(Epid, Sick(X))|�, and then

taking each potential in g′
2 to the power of 2, leading to g′′

2 . The � constraint in g′′
2

only refers to the domain of X. (On the propositional level, two Treat randvars
are eliminated from two φ2 factors for each X constant and then multiplied.)

Next, LVE eliminates Travel(X) from parfactor g1, which leads to a par-
factor g′

1 = φ′
1(Epid, Sick(X))|�, where each potential is taken to the power

of 1 as eliminating Travel(X) does not eliminate a logvar (afterwards X is
still part of g′

1). For eliminating Sick(X), LVE multiplies g′
1 and g′′

2 into
g12 = φ12(Epid, Sick(X))|�, sums out Sick(X) from g12 as in propositional vari-
able elimination. Summing out Sick(X) eliminates X as well, which requires the
potentials after summing out to be taken to the power of 3 for the three con-
stants alice, bob, eve in the domain of X. The result is then a parfactor with
Epid as argument, which LVE multiplies with g0. The result is a parfactor that
contains the queried probability distribution after normalisation.

To determine exponents for sum-out operations, constraints based on a uni-
verse are necessary. Other lifted algorithms need a universe similar to LVE. E.g.,
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first-order knowledge compilation builds a tree-like helper structure for efficient
answering of multiple queries, which contains nodes that represent isomorphic
subtrees and requires the number of subtrees represented during calculations
[19]. The lifted junction tree algorithm builds another form of helper structure
for efficiently answering multiple queries using LVE as a subroutine [3].

3 Models with Unknown Universes

This section focusses on models with unknown universes. Constraints over con-
straints describe possible universes, decoupled from a specific constraint lan-
guage. Based on domain and constraint descriptions, we define semantics.

3.1 Template Models

Parameterised models contain constraints that restrict logvars in a parfactor to
constants from a known universe. Without a known universe, the set of constants
D becomes empty. As a consequence, logvar domains are empty as the domains
are defined as subsets of D. In turn, constraints are no longer defined since they
are combinations of subsets of domains. Last, semantics lose its meaning as it
involves grounding a model, which is not possible without constraints.

We assume, though, that the model itself accurately describes relations. Thus,
a parameterised model without D and empty constraints becomes a template
model that specifies local distributions for unknown instances of PRVs.

Definition 3. A templatemodel G is a set of parfactors {g̃i}ni=1, in which
each g̃i = φi(Ai)|C has an empty constraint C = (X , CX ) with CX = ⊥.

Replacing the constraint in g1 with ((X),⊥) and in g2 with ((X,T ),⊥) in Gex,
template model Gex={g̃i}2i=0 arises. Gex no longer refers to a specific universe,
allowing for using varying numbers of people of treatments.

3.2 Worlds of Constraints

With an unknown universe, we implicitly specify constraints through a set of
rules that generate tuples for constraints given a specific domain at a later point.
Constraints over constraints enables us to describe how universes arise indepen-
dent of specific constants. To model constraints, one could use, e.g., answer set
programming [5], probabilistic Datalog [9], ProbLog [7], or Bayesian Logic [13],
with the latter three leading to probabilities associated with constraints.

Definition 4. Given a template model G and a domain set D for lv(G),
a constraintprogram C returns a ordered set of constraint sets C =
{{Cj,i}ni=1}mj=1, i.e., C generates a constraint for each parfactor in G. We call
each generated constraint set {Cj,i}ni=1 a constraintworld CWj. If C assigns
a probability distribution over all CWj, C returns an ordered set of tuples
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C = {({Cj,i}ni=1, pj)}mj=1 of constraint sets and corresponding probabilities, form-
ing a distribution over constraint worlds. Instantiating G with CWj, i.e., replac-
ing empty constraints with the constraints in CWj, yields a parameterised model
G|CWj

.

Let us look at possible constraint programs to illustrate how constraint worlds
arise. The shorthand � already defines a constraint program C� that generates
tuples by building Cartesian products given domains. C� generates exactly one
constraint world. Given Gex, C� returns {{C1, C2}} if D contains the domains
D(X) = {alice, bob, eve} and D(T ) = {serum1, serum2}. For a more complex
example, assume that there are three treatments t1, t2, t3 with only two treat-
ments applicable at a time, i.e., D(T ) = {t1, t2, t3} and D(X) unknown. Each
combination has a different probability, e.g., 0.7 for (t1, t2), 0.2 for (t2, t3), and
0.1 for (t1, t3). A probabilistic Datalog program captures this setup as follows:

element of C2(X,Y1) :- linked(X,Y1,Y2).
element of C2(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance of X(X) & pair(Y1,Y2).
0.7 pair(t1,t2). 0.2 pair(t2,t3). 0.1 pair(t1,t3).

The first three lines denote rules according to which one can generate (X,T )-
tuples. The last line denotes probabilistic facts that are disjoint, with probabil-
ities adding up to 1, to model the combination of treatments. If given a domain
such {alice, bob, eve} for X, one can add corresponding facts to the program:

instance of X(alice). instance of X(bob). instance of X(eve).

Asking the queries ?- element of C2(X,Y) and ?- instance of X(X) gener-
ates tuples for the constraints in Gex. Using 0.7 pair(t1, t2), the program
returns the following facts, which contain tuples for the constraints in Gex:

instance of X(alice). instance of X(bob). instance of X(eve).
0.7 element of C2(alice,t1). 0.7 element of C2(alice,t2).
0.7 element of C2(bob,t1). 0.7 element of C2(bob,t2).
0.7 element of C2(eve,t1). 0.7 element of C2(eve,t2).

The Datalog program as constraint program CDL returns three constraint worlds
{({Cj,i}2i=1, pj}3j=1 with p1 = 0.7, p2 = 0.2, and p3 = 0.1 and constraints

C1,1 = C2,1 = C3,1 = ((X), {(alice), (bob), (eve)})
C1,2 = ((X,T ), {(alice, t1), (alice, t2), (bob, t1), (bob, t2), (eve, t1), (eve, t2)})
C2,2 = ((X,T ), {(alice, t2), (alice, t3), (bob, t2), (bob, t3), (eve, t2), (eve, t3)})
C3,2 = ((X,T ), {(alice, t1), (alice, t3), (bob, t1), (bob, t3), (eve, t1), (eve, t3)})

A set of constraint worlds yields a set of parameterised models, which inherits
the distribution over the set of constraint worlds if existing.
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Proposition 1. Let a constraint program C generate a set of constraint worlds
{(CWj , pj)}mj=1. Instantiating a template model G with each constraint world
CWj ∈ {(CWj , pj)}mj=1 leads to a distribution over the ordered set of parame-
terised models {(G|CWj

, pj)}mj=1. If C does not generate probabilities, the implicit
distribution is a uniform distribution with ∀j : pj = 1

m .

Proposition 1 relies on CW being valid for G, meaning, C generates fitting con-
straints for all parfactors. Regarding our example, CDL generates three constraint
worlds, each with two constraints, to instantiate Gex. Using rules in a constraint
program is a form of meta-level logic programming, which allows for formulating
constraints on constraints without a specific domain.

Next, we consider possible domains and distributions over domains.

3.3 Worlds of Domains

Constraint programs still need domains or constants to generate constraint
worlds. In unknown universes, these constants are not available. In a naive way,
one could generate all possible domains, from one constant for each logvar to
infinite domains, leading to infeasibly many possible domains. Given knowledge
about the setting in which one wants to reason (like in the example above about
treatments t1, t2, t3), one may list all possible domains. Assumptions may further
limit the number of worlds, e.g.: (i) Logvars require discrete domains of at least
one element. (ii) Small worlds (domains) are usually more likely than large ones.
(iii) Only “orders” of domain sizes are relevant, not a set of domain sizes with an
increment of 1 between them. Depending on the concrete use case, setting up a
discrete distribution over domain sizes might be valuable, with the distribution
depending on assumptions valid for the use case.

Definition 5. Given a template model G, a domainworld DW is a set of
domains {D(X)}X∈lv(G) for G. Given a set of domain worlds {DWk}lk=1 and
probabilities pk for each DWk s.t. ∀k : pk ∈ [0, 1] and

∑
k pk = 1, then D =

{(DWk, pk)}lk=1 forms a distribution over domain worlds. Providing a constraint
program C with DWk yields a set of constraint worlds {CWj}mj=1. Instantiating
G with {CWj}mj=1 yields a set of parameterised models {G|DW,CWj

}mj=1.
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Fig. 2. Discrete distribution over domain sizes of a logvar
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One may start with a set of guaranteed constants and add varying numbers
of possible constants for domain worlds, inspired by the λ-completion of open-
world probabilistic databases [6]. The probabilities allow for measuring how likely
a particular instantiation is compared to others. Given a distribution, one can
specify a threshold t to account only for domains with a probability larger t,
which enables some filtering even before generating parameterised models for
efficiency. Another way of restricting the number of worlds is to take domains
that lie within the standard deviation from the mean or those whose probability
make up around 95% of the distribution around its mean or maximum value.

Let us consider an example distribution for a single logvar, e.g., X, the only
unknown logvar given Gex and CDL. Figure 2 shows a beta-binomial distribution
(α = 6, β = 15) based on the assumptions above. Possible domain sizes d go
from 0 to 2000 with a step size of 100 and probabilities for [d− 100, d] for d > 0.
A domain size of 0 has a probability of 0. The highest probability lies with a
domain size of 500, after which probabilities decrease again. The probability of
a domain size of 2000 is around 3.85 · 10−7. Probability distributions between
domain and constraint worlds are joined as follows.

Proposition 2. Let {(DWk, pk)}lk=1 form a distribution over domain worlds
DWk. Providing a constraint program C with DWk leads to a set of constraint
worlds Ck = {({Ck,j,i}ni=1, pk · pj)}mj=1 in which pj = 1

m if C does not assign
probabilities. If C assigns probabilities but only a set of domains {DWk}lk=1 is
given, {DWk}lk=1 is extended to form a distribution by setting ∀k : pk = 1

l .

Multiplying probabilities pj and pk relies on pj and pk being independent.
The independence assumption is reasonable given the discourse so far as the
domain world probability does not influence the generation of constraint worlds,
which allows for multiplying the probabilities of domain world and constraint
world. Otherwise, the product has to be replaced with an appropriate expres-
sion. Assigning a probability distribution over possible worlds follows Bayesian
thinking, which considers all possible worlds. Restricting a model to one possible
world (with probability 1) is a simplification, which our approach resolves.

Passing on a domain world to a constraint program C enables C to generate
constraint worlds for a template model. Given Gex and CDL, assume the distri-
bution from Fig. 2 for X, denoted by px(d) with d referring to the domain size
of X. There are 20 domain worlds Dex = {({xi}di=1, px(d))}2000d=100,d+=100 with
probabilities px(d) between 3.85 · 10−7 and 1.42 · 10−1. For each domain world,
CDL yields three constraint worlds {({Cd,j,i}2i=1, px(d) · pj)}3j=1, i.e., overall 60
constraint worlds, each containing a constraint for both g̃1 and g̃2. Some of the 60
constraint worlds have very small probabilities. Hence, one could use a threshold
of t = 0.05 to restrict the domain worlds in Dex to use as inputs for CDL. Given
the distribution of Fig. 2, t restricts the domain to sizes between 200 and 900,
which would lead to 8 · 3 = 24 constraint worlds. One could cascade the filtering
and drop constraint worlds if their probability goes below t as well (or choose a
new t). Given Dex as an input to CDL and t = 0.05 for cascaded filtering, the
number of constraint worlds goes down to 7, i.e., domain sizes 200 to 800 com-
bined with 0.7 pair(t1,t2). The constraint worlds using 0.2 pair(t2,t3)
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and 0.1 pair(t1,t3) have a probability below t. With domain and constraint
worlds in place, we define a semantics for models with unknown universes.

3.4 Distribution-Based Semantics

To fully specify a model with an unknown universe, we require three compo-
nents: (i) A template model G provides a structure and local distributions. (ii)
A constraint program C generates constraint worlds. A template model can be
instantiated with a constraint world, leading to a parameterised model as in
Definiton 1, which follows distribution semantics. (iii) A set of domain worlds D
specifies (a distribution over) possible domain worlds. Each domain world can
be passed to the constraint program. The semantics are defined as follows.

Definition 6. Let G be a template model, C a constraint program, and D domain
worlds. A model with unknown universe is given by a triple (G, C,D). The seman-
tics is given by instantiating G with constraint worlds C for each DW ∈ D. The
result is a set of parameterised models G = {(G|CW , p)}CW∈C(DW ),DW∈D.

Using the formalism of a constraint program, decoupled from a specific con-
straint language, allows for choosing a constraint language suitable for a specific
setup. One could use Bayesian logic to specify a distribution over possible mod-
els [13]. Using parameterised models as a basis makes it straightforward to retain
the capability for lifted inference, especially exact inference.

The section above discusses the constraint worlds coming from domain
worlds, which in turn lead to parameterised models: With Gex, CDL, Dex, and
cascading filtering with t = 0.05, the semantics yields eight constraint worlds
Cex5 = {({Cd,j=1,i}2i=1, px(d) · pj=1)}800d=200,d+=100, leading to parameterised
models Gex = {(Gex|CWd,1 , px(d) · p1)}800d=200,d+=100. Each G ∈ Gex contains
parfactors g0, g1, g2 with signatures as in Eqs. (1) to (3) and identical mappings.
Constraints C1 and C2 as well as associated probabilities differ between the
models. For d = 100, the probability is 3.56 · 10−2 · 0.7 and the constraints are

C1 = ((X), {(x1), . . . , (x100)}),
C2 = ((X,T ), {(x1, t1), (x1, t2), . . . , (x100, t1), (x100, t2)}).

A domain size of d = 500 leads to the most probable model. The last step on
our mission of exploring unknown universes is query answering.

4 Query Answering in Unknown Universes

The semantics of a model with an unknown universe yields a set of parameterised
models. In each parameterised model, query answering works as before, using
LVE (or any other algorithm of one’s liking) to answer queries, reaching a main
goal of this paper, again enabling tractable inference.
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Fig. 3. Left: P (Sick(x1) = true) and model probability for each parameterised model
in Gex. Right: Model probability and P (Sick(x1) = true) plotted for a Skyline query.

Theorem 1. Given a template model G, a constraint program C for G, and a set
of domain worlds D for G, resulting in a set of parameterised models G, query
answering on each G ∈ G is polynomial w.r.t. domain-sizes given a domain-
lifted inference algorithm, leading to a runtime complexity of O(|G| · Tlift) with
Tlift referring to the runtime complexity of the inference algorithm used.

Answering a query on a set of parameterised models G means that the answer is a
set of probabilities or distributions. If G has a probability distribution associated,
the set of answers has the same distribution associated.

Proposition 3. Answering a query P (Q|E) on a set of parameterised models
G = {Gi}i, with i referring to the different models stemming from the domain
and constraint worlds, leads to a set of answers {PGi

(Q|E)}i. If G has prob-
abilities associated, i.e., G = {(Gi, pi)}i, then the answers have probabilities
associated, i.e., {(PGi

(Q|E), pi)}i, forming a distribution over answers.

That is a query leads to a probability distribution over probabilities or proba-
bility distributions as a direct consequence of the definitions and Propositions 1
and 2. Consider a query for a marginal distribution of Sick(X) instantiated with
x1. Each of the parameterised models in Gex provides an answer, i.e., a marginal
distribution for Sick(x1). On the left, denoted by a circle, Fig. 3 shows the prob-
abilities of Sick(x1) = true for each model with domain sizes on the x-axis.
The stars denote the probability associated with each parameterised model. As
mentioned before, the model with domain size d = 500 is most probable and
returns a probability of 0.31 for Sick(x1) = true. Model probabilities decrease
to the left and right of 500. The queried probability declines with the domain
size rising.

Emerging New Queries: As we have a set of parameterised models and, therefore,
a set of results, new queries emerge. If asking for the probability of an event,
e.g., Sick(x1) = true, one may be interested in those models whose answers have
highest probability (top-k query w.r.t. query probability). A top-3 query w.r.t.
query probabilities in Fig. 3 returns the models with domain sizes 2 to 4 as they
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lead to the highest probabilities for Sick(x1) = true. If events such as Sick(x1) =
true have been observed, guaranteed constants are available and a top-k query
supports identifying most probable domain sizes for other logvars. Given the
associated probabilities, one may be interested in a top-k query w.r.t. model
probabilities or in those models that have the highest combined probabilities
of event and model (skyline query w.r.t. event and model probability). Figure 3
plots the model probabilities versus the query probabilities. The skyline consists
of the points labeled d = 200, d = 300, d = 400, and d = 500, which form the
outskirt of the points from the origin of the plane. Asking for distributions, the
results over different models might exhibit shifts or clusters worth investigating.
Another new avenue for queries regards checking assumptions about models, e.g.,
“Do similar domain sizes lead to similar query results?” or “Do query results
behave as expected when domain sizes increase (decrease)?”

As shown, given the semantics of models with unknown universe and LVE
as the reference algorithm, one can answer various queries. Handling unknown
universes leads to more work as an algorithm performs query answering for
multiple instances, which share certain aspects. So, while this paper focusses on
the semantics, we briefly consider how one would implement it.

Arriving at an Implementation: As the model structure is identical for each
constraint world and multiple queries probably have to be answered, LVE would
perform some calculations multiple times. One could choose another algorithm
to implement the semantics. E.g., the lifted junction tree algorithm or first-order
knowledge compilation may provide a more suitable setting to answer multiple
queries. Both algorithms build a helper structure based on the model. Given that
the model structure is the same over different instantiations, helper structures
can be reused, constraints adapted as in adaptive inference [1,4], and results
of calculations reused to a certain extent [11]. Additionally, one would seek to
specify the constraint program in a way that an algorithm can formulate queries
about counts for the constraint program, which returns answers ideally without
generating extensional constraints. Given top-k queries w.r.t. query probabilities,
one would aim at adapting an implementation in the spirit of top-k queries on
probabilistic databases as to not evaluate more models than necessary [8].

5 Conclusion

Lifted inference can be restored for models with unknown domains by creat-
ing descriptions of possible constraints and domains. Using those descriptions,
one generates worlds to instantiate a template model. Instantiating a template
model yields a set of parameterised models, in which distribution semantics hold
again. With distribution semantics, lifted and thereby, tractable inference w.r.t.
domains is possible again. Given a distribution over domain or constraint worlds,
the number of worlds can be restricted to a feasible number. As the same tem-
plate model is instantiated with different worlds, efficient query answering is
possible, reusing helper structures or calculations. Thus, the proposed semantics
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seems to be practically useful. Additionally, new and interesting queries arise
that allow for exploring or checking a model.

New inference tasks include automatic generation of instances guaranteed
to exist in open universes or learning constraint rules in unknown universes.
Detaching a model from a known universe brings us closer to understanding how
transfer learning works: Transferring a model from one domain to a next opens
up possibilities for assumptions changing w.r.t. indistinguishable individuals.
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Abstract. By accounting for context-specific independences, the size of
a model can be drastically reduced, thereby making the underlying infer-
ence problem more manageable. Switched probabilistic relational mod-
els contain explicit context-specific independences. To efficiently answer
multiple queries in switched probabilistic relational models, we combine
the advantages of propositional gate models for context-specific inde-
pendences and the lifted junction tree algorithm for answering multiple
queries in probabilistic relational models. Specifically, this paper con-
tributes (i) variable elimination in gate models, (ii) applying the lift-
ing idea to gate models, defining switched probabilistic relational mod-
els, enabling lifted variable elimination in computations, and (iii) the
switched lifted junction tree algorithm to answer multiple queries in
such models efficiently. Empirical results show that using context-specific
independence speeds up even lifted inference significantly.

Keywords: Lifting · Context-specific independence · Switched models

1 Introduction

Performing inference is an important task in artificial intelligence but unfortu-
nately, inference in general is intractable [4]. To make the underlying problem
more manageable, context-specific independences help [2]. Given context-specific
independences in a model, inference may require fewer calculations if parts of the
model become independent given a context. One approach for Bayesian networks
is to look for patterns in conditional probability tables to identify context-specific
independences [2]. In such an approach, the context-specific independences are
implicitly encoded in the model, which can lead to huge conditional probability
tables. Another approach is to explicitly model context-specific independences
in a model, avoiding the blowup of tables if implicitly encoding the indepen-
dences in the tables, and providing specialised inference algorithms [7]. In this
paper, we study the problem of efficient inference to answer multiple queries in
models that contain explicitly encoded context-specific independences. We call
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c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 104–116, 2019.
https://doi.org/10.1007/978-3-030-35288-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35288-2_9&domain=pdf
http://orcid.org/0000-0001-9056-7673
http://orcid.org/0000-0003-0282-4284
https://doi.org/10.1007/978-3-030-35288-2_9


Query Answering in Switched Probabilistic Relational Models 105

such models switched models as context-specific independences lead to model
parts being switched on or off.

To the best of our knowledge, the only approach for probabilistic relational
models that may be used to implicitly encode context-specific independence
comes from Gogate and Domingos [5] based on Markov logic networks [10].
They speed up inference by only counting worlds in which no clause evaluates to
false. For example, we could use a variable A to switch between some worlds. In
case A = true is observed, all worlds with A = false are not counted. Thereby,
one can implicitly encode context-specific independences. Unfortunately, this
approach may also result in large rules in a Markov logic network. Hence, efficient
inference in switched probabilistic relational models is still an open problem.

Therefore, we combine lifting [9], gate models [7], and junction trees [6] to
build an efficient formalism for inference in switched probabilistic relational mod-
els. Lifting allows for exploiting relational structures in a model. Gate models
(GMs) provide a formalism to explicitly model context-specific independence
using gates for switching, which also allows for modelling, e.g., interventions
[8]. Junction trees enable efficient online query answering of multiple queries.
Specifically, we use parameterised probabilistic models (PMs). PMs incorpo-
rate relational structures by parameterising random variables (randvars), called
parameterised randvars (PRVs), which are then combined into parametric fac-
tors (parfactors) to model relations with uncertainties. First, we extend PMs
with gates, resulting in parameterised gate models (PGMs). Then, we show that
variable elimination (VE) can be used for inference with GMs as well as lifted
variable elimination (LVE, Poole [9]) for inference with PGMs. Afterwards, we
introduce the switched lifted junction tree algorithm (SLJT) by extending the
lifted junction tree algorithm (LJT) [3], which uses LVE as a subroutine, to
efficiently answer multiple queries in PGMs. Thereby, SLJT solves the problem
of answering multiple queries in switched relational models efficiently. Specif-
ically, this paper contributes (i) VE in GMs, (ii) applying the lifting idea to
GMs resulting in PGMs enabling LVE in computations, (iii) building a first-
order junction tree (FO jtree) for PGMs, and (iv) SLJT to reuse an FO jtree for
multiple configurations and efficient multiple query answering in PGMs.

In the following, we begin by recapitulating PMs for relational models and
GMs for context-specific independence. Afterwards, we parameterise GMs by
leveraging the lifting idea and introduce SLJT. Then, we evaluate SLJT against
implicitly modelling context-specific independences and specifying all possible
submodels corresponding to different switch configurations.

2 Preliminaries

This section specifies PMs, which combine lifting and factor graphs, first intro-
duced by Poole [9], and GMs, which combine factor graphs and context-specific
independences, first introduced by Minka and Winn [7].
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2.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, representing first-order
constructs using logical variables (logvars) as parameters. For illustrative pur-
poses, we use an example of an epidemic. In the example, we model an epidemic
as a randvar. Further, we model persons being sick as a PRV by parameterising
a randvar for sick with a logvar for persons. In the larger scheme of things, all
persons are influenced in the same way when faced with an epidemic and thus
are, without additional evidence, indistinguishable.

Definition 1. Let R be a set of randvar names, L a set of logvar names, Φ a set
of factor names, and D a set of constants. All sets are finite. Each logvar L has
a domain D(L) ⊆ D. A constraint is a tuple (X , CX) of a sequence of logvars
X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). The symbol � for C marks that
no restrictions apply, i.e., CX = ×n

i=1D(Xi). A PRV R(L1, . . . , Ln), n ≥ 0 is a
construct of a randvar R ∈ R possibly combined with logvars L1, . . . , Ln ∈ L. If
n = 0, the PRV is parameterless and forms a propositional randvar. The term
R(A) denotes the possible values (range) of a PRV A. An event A = a denotes
the occurrence of PRV A with range value a ∈ R(A). We denote a parfactor g
by φ(A)|C with A = (A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a

function with name φ ∈ Φ, and C a constraint on the logvars of A. A PRV A or
logvar L under constraint C is given by A|C or L|C , respectively. We may omit
|� in A|�, L|�, or φ(A)|�. A PM G is a set of parfactors {gi}n

i=1.

The term lv(P ) refers to the logvars in P , which may be a PRV, a constraint,
a parfactor, or a model. The term gr(P ) denotes the set of all instances of
P w.r.t. given constraints. An instance is an instantiation (grounding) of P ,
substituting the logvars in P with a set of constants from given constraints. If
P is a constraint, gr(P ) refers to the second component CX. Given a parfactor
φ(A)|C , φ is identical for the propositional randvars in gr(A|C).

Given R = {Sick,Epid, Travel, T reat,Nat,Man} and L = {X,P,D,W},
D(X) = {x1, x2, x3}, D(P ) = {p1, p2}, D(D) = {d1, d2}, and D(W ) =
{w1, w2}, we can build a boolean PRV Sick(X). With C = ((X), {(x1), (x2)}),
gr(Sick(X)|C) = {Sick(x1), Sick(x2)}. The set of gr(Sick(X)|�) also contains
Sick(x3). Adding boolean PRVs Epid, Travel(X), Treat(X,P ), Nat(D), and
Man(W ), we build a PM Gex = {gi}2i=0, with

– g0 = φ0(Epid, Sick(X), T reat(X,P ))|�,
– g1 = φ1(Epid, Sick(X), T ravel(X))|�, and
– g2 = φ2(Epid,Nat(D),Man(W ))|�.

Parfactors g0, g1, and g2 have eight input-output pairs (omitted). Constraints
are �. Figure 1 depicts Gex as a parfactor graph.

The semantics of a model is given by grounding and building a full joint
distribution. In general, a query asks for a probability distribution of a randvar
using a model’s full joint distribution and given fixed events as evidence.
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Epid

g1 g0Travel(X) Treat(X,M)

Sick(X)

g2
Nat(D) Man(W )

Fig. 1. Parfactor graph for Gex

Epid

g1 g0Travel(x1) Treat(x1,m1)

Sick(x1)

g2
Nat(d1) Man(w1)

gE

gT

T

TF

F

DoE

Fig. 2. Gates representation of Gex for x1

Definition 2. With Z as normalising constant, a model G represents the full
joint distribution PG = 1

Z

∏
f∈gr(G) f . The term P (Q|E) denotes a query in

G with Q a grounded PRV and E a set of events. Answering P (Q|E) requires
eliminating all randvars in G not occurring in P (Q|E).

PMs allow for modelling relational aspects between objects including recur-
ring patterns in these relations. Next, we recap GMs, which allow for explicitly
modelling context-specific independence, i.e., switching, in propositional models.

2.2 Gate Models

GMs allow for representing context-specific independence [7]. A factor can be
gated, meaning that using a selector the factor can be turned on or off, repre-
senting context-specific independence. Gates allows for modelling, e.g., external
actions that change the state of the model or cutting off model parts depending
on value of information.

To illustrate the impact of gates, Fig. 2 shows a GM representation of Gex

for x1. Compared to Gex, the GM has two gates (dashed boxes), one gate for gE

and gT and one gate for g1 and g2, both with selector DoE. Both gates depend
on the same selector DoE. Thereby, they are mutually exclusive, meaning when
one gate is on, the other is off. We highlight two purposes of gates. The first
purpose is switching. Assume only the gate for g2 exists and we are interested
in the marginal distribution of Sick(x1). The gate allows for turning off the
connection to causes of an epidemic. Given observations that many people are
sick, we might not care about the cause of an epidemic and cut off the cause
part to not add noise or employ unnecessary computation time. But, in case
the observation itself is uncertain or noisy, the cause part provides additional
support, which enlarges the model and adds computations.

The second purpose is intervention, which uses both gates. An intervention
on a randvar A, i.e., do(A = a) in the do calculus [8], changes a model structure
by eliminating the parent edges of A and setting A to a. The gates in Fig. 2
model an intervention on Epid, e.g., do(Epid = true). The original “parent” of
Epid is g2, its connection is removed upon intervention. Thus, the selector DoE
is introduced, which turns off g2 if DoE = true. Additionally, Epid needs to
be set to true. Setting DoE = true enables gE , which encodes the intervention
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value, i.e., gE = φ(Epid) maps true to 1 and false to 0. Further, we might know
that in case an epidemic is occurring, a travel ban will be in place. Thus, upon
DoE = true, we also turn off g1 and instead turn on gT to perform inference on
a smaller model, leading to fewer computations.

Additionally, GMs permit reasoning about value of information: If interested
in P (Sick(x1)), information about Nat(d1) has a value if and only if knowing
Nat(d1) changes the marginal of Sick(x1). Thus, one could also consider setting
selectors based on results of marginal distribution queries.

Next, we present switched inference on PGM as an instance of switched
probabilistic relational models, specifying SLJT as an exact inference algorithm.

3 Switched Inference

We propose PGMs, leveraging lifting in GMs. Then, we show how LVE can
answer queries on PGMs and adapt LJT to handle gates.

3.1 Parameterised Gate Models

Minka and Winn [7] introduce GMs for factor graphs which do not model the
object/relation aspect that PMs model with logvars. Thus, we extend gates to
contain not only factors but parfactors. A PM that then contains gated parfac-
tors constitutes a PGM. Before looking at an example, we formally define PGMs
including gates and introduce their semantics.

Definition 3. A gate is denoted by (
∏

i gi)δ(s=key), s is the selector and gi are
the parfactors contained in the gate. A gate is turned off or on by raising the
factors to the power of 0 or 1 respectively, which is indicated by δ(s = key),
which is 1 if s has the value key and 0 otherwise. A PGM M consists of non-
gated parfactors gk and gated parfactors gi with selectors S. An assignment to
all selectors S is called a configuration {S = s}S∈S. Given a configuration s, the
semantics of M is given by grounding and building a full joint distribution

PM =
1
Z

∏

j

(
∏

i

∏

f∈gr(gi)

f)δ(sj=key)
∏

k

∏

f∈gr(gk)

f,

where Z is the normalising constant, j indexes gates, i indexes the parfactors in
j, and sj ∈ s is the assignment to selector Sj for j. Given a query term Q, a set
of events E, and a configuration s, the term P (Q|E, s) denotes a query in M .

Figure 3 shows a representation of a PGM based on Gex. The parfactors g1,
g2, gE , and gT are gated by the selector DoE, i.e.,

g
δ(DoE=T )
E , g

δ(DoE=T )
T , g

δ(DoE=F )
1 , g

δ(DoE=F )
2 .

The PGM works as described for the GM w.r.t. x1. The two gates model an
intervention of Epid = true.
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g1 g0Travel(X) Treat(X,M)

Sick(X)
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Nat(D) Man(W )
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Fig. 3. Graphical representation of the PGM of Gex

To obtain a PGM, various approaches are possible, e.g., (i) directly specify
a PGM, (ii) learn a PGM from data, or (iii) start from a GM and use, e.g., a
colouring mechanism [1] to lift the GM. Next, we investigate exact algorithms
for query answering in PGMs, for which we present LVE for single queries as
well as SLJT for multiple queries.

3.2 LVE for Query Answering

Based on the semantics, we need to define a way to answer queries for PGMs.
Inference algorithms such as expectation propagation, variational message pass-
ing, and Gibbs sampling already work with GMs [14]. One well-studied inference
algorithm for PMs is LVE, which performs computations in a lifted way, i.e., com-
putes marginals by summing out a representative as in VE and then factoring
in isomorphic instances. Here, we show that LVE (and as such VE) can be used
for inference on PGMs (or GMs).

Proposition 1. Given a query term Q and a configuration s, VE computes
P (Q, s) in a GM M .

Proof Sketch. Applying a configuration s to a GM M leads to a plain factor
graph G, which represents a full joint distribution PG. VE is a correct algo-
rithm to answer a query P (Q) in G [15]. Given PG, VE sums over all randvars,
which are not query terms, and obtains the marginal distribution for Q, i.e.,
P (Q) =

∑
v PM , where v are the range values of the non-query terms A, i.e.,

v ∈ R(A). Given the factorisation in G and complying with rules of prece-
dence and distributivity, VE computes P (Q) efficiently by factoring out factors.
Thereby, to compute P (Q), VE avoids building the full joint distribution.

Proposition 2. Given a query term Q and a configuration s, LVE computes
P (Q, s) in a PGM M .

Proof Sketch. Setting a configuration s in a PGM M leads to a plain PM G, in
which LVE computes a correct answer to a query P (Q) by applying correct LVE
operators to G, eliminating non-query terms [13]. The result is equivalent to one
computed in gr(G) with VE [13].
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Given another query, LVE starts with the original input model, evidence, and
configuration. Thus, we present SLJT incorporating gates into the cluster struc-
ture of LJT for efficient multi-query answering.

3.3 Switched Lifted Junction Tree Algorithm

A configuration determines the parts of a PGM that make up the full joint
distribution. If we were to cluster a model based on a configuration, we could
efficiently handle gates that are switched on or off. At this point, we turn to LJT
[3], which uses a cluster representation of a PM for efficiently answering multiple
queries. In the following, we introduce SLJT and examine how SLJT leverages
LJT by automatically handling the effects of any given configuration on a PGM.

Clusters: LJT builds a cluster representation of a PM called an FO jtree, whose
nodes are clusters. Intuitively, a cluster is a set of PRVs that are directly con-
nected by parfactors. Each cluster has the parfactors that connect its PRVs as a
local model assigned. For SLJT, clusters are based on selectors and their assign-
ments. Consider the FO jtree with four clusters in Fig. 4 derived from the exam-
ple PGM. Cluster C1 contains Epid, Sick(X), T reat(X,M), linked by g0. Clus-
ters C2, C3 and C4 are based on the selector DoE. C2 contains Epid, Sick(X),
based on DoE = true, with gE and gT assigned. C3 contains Epid, Sick(X),
Travel(X), based on DoE = false, with g1 assigned. C4 contains Epid, Nat(D),
Man(W ), based on DoE = false, with g2 assigned. If DoC(X) = true, C2 is
switched on. If DoC(X) = false, C3 and C4 are switched on. C1 does not have
a selector associated, it can be thought of as always switched on.

Query Answering: To answer queries on an FO jtree, LJT performs some prepro-
cessing using local models. A local model holds state descriptions about its clus-
ter PRVs, which is not available at another cluster. During preprocessing, LJT
makes all necessary state descriptions available for each node through messages.
A message m from one cluster to a neighbour Cj transports state descriptions
of its local model and messages from other neighbours to Cj . LJT uses LVE to
calculate m, passing on the shared PRVs as a query and the local model and
respective messages as a model. Without considering the selectors in the FO jtree
in Fig. 4, LJT passes messages from C2 and C4 to C1 and back. With selectors
present, message calculation changes: If a cluster is switched on, LJT calculates
a message based on a cluster’s local model and messages from neighbours. If a

Treat(X,M),
Epid, Sick(X)

{g0}

C1

Epid, Sick(X)

{gE , gT }

Cδ(DoE=true)
2

Travel(X),
Epid, Sick(X)

{g1}

Cδ(DoE=false)
3

Epid,
Nat(D),Man(W )

{g2}

Cδ(DoE=false)
4

Fig. 4. An FO jtree for the PGM of Gex in Fig. 3
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cluster is switched off, LJT calculates a message based only on messages from
neighbours. Given a configuration of DoE = true in the FO jtree in Fig. 4, the
messages from C3 and C4 are empty without the local models and no other
incoming message. With DoE = false, the message from C2 is empty.

After message passing, each cluster has all necessary state descriptions of the
model under the current configuration available in its local model and received
messages. To answer a query with a query term Q, LJT finds a cluster that
contains Q and answers P (Q) on the local model and messages with LVE.

The original FO jtree construction of LJT does not account for selectors as it
is designed for PMs. Thus, we extend the FO jtree construction to handle gates.

FO Jtree Construction: Algorithm 1 outlines how to build an FO jtree of a
PGM M . The guiding idea is to cluster M based on selector-key pairs. First,
SLJT partitions M based on keys and builds an FO jtree J for each partition.
An FO jtree is a cycle-free graph. The clusters are sets of PRVs from the input
model and the arguments of each parfactor of the model appear in one cluster.
A valid FO jtree also fulfils the running intersection property (RI), which says
that a PRV appearing in two clusters must appear in all clusters on the path
between them [6]. LJT constructs such an FO jtree for a given input model.

Now, SLJT has |P| valid FO jtrees with corresponding selector-key pairs
assigned. To combine the FO jtrees into one valid FO jtree, SLJT takes a first
FO jtree J , at random or an ungated FO jtree if available. Then, SLJT iter-
atively connects J to the remaining FO jtrees Ji by adding an edge from one
cluster of J to a cluster of Ji. For the edge, SLJT chooses the two clusters with
the largest overlap in PRVs. Combining two FO jtrees in such a fashion may vio-
late RI. As keys may be mutually exclusive, RI only has to hold on valid paths.
A valid path is a path between two clusters that are both switched on at the
same time by any configuration. Therefore, SLJT extends clusters with PRVs
until RI holds again on valid paths. After connecting all remaining FO jtrees to
J , SLJT returns J .

To construct an FO jtree for the PGM Gex in Fig. 3, SLJT first groups the
parfactors. Here, each parfactor gets assigned its own group, as none of them

Algorithm 1. FO jtree Construction
function SFOJT(PGM M)

Let P be a partitioning of M based on keys
for each partition Pi ∈ P do

Build FO jtree Ji of Pi and add to F

Take an FO jtree J out from F � Choose J s.t. P without a key or at random
while F not empty do

Take an FO jtree Ji out from F
Connect Ji to J � Edge between clusters sharing most PRVs
while RI does not hold on valid paths do

Extend clusters with PRVs
return J
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share the same selector-key pair. Then, SLJT builds an FO jtree for each group.
In this case, each FO jtree consists of one cluster, i.e., one FO jtree consisting of
C1, one of C2, and one of C3 and C4. C1 is not gated and therefore selected as
a starting point. Now, SLJT selects either C2 or C3 and C4 at random, e.g., C2.
SLJT connects C1 and C2. With only two clusters, RI still holds. Lastly, C3 and
C4 are added to the FO jtree. As C3 overlaps with both C1 and C2 with Epid
and Sick(X), SLJT chooses one at random, e.g., C1. Adding an edge between
C1 and C3 leads to the FO jtree depicted in Fig. 4. In the resulting FO jtree,
RI still holds on all paths and all paths are valid paths.

Theorem 1. The FO jtree construction of SLJT is sound.

Proof Sketch. The initial FO jtrees built are valid. Their clusters contain PRVs
from the input model and the arguments of each parfactor appear in some cluster.
By combining one node of a cycle-free graph with exactly one node from another
cycle-free graph the result is again a cycle-free graph. Adding edges may only
violate RI, which SLJT systematically restores by extending clusters with PRVs.
Thus, Algorithm 1 produces a valid FO jtree.

Algorithm Description: SLJT takes a PGM M , a configuration s, evidence E,
and a set of queries Q. Algorithm 2 shows an outline of SLJT. SLJT constructs
an FO jtree J as in Algorithm 1 and then switches clusters in J on and off based
on s, followed by entering E into the clusters: At each cluster that contains the
evidence randvars, the local model absorbs E in a lifted way (cf. Taghipour et
al. [13]). Then, SLJT passes messages as described above. Finally, SLJT answers
the queries in Q or starts processing incoming queries online.

Theorem 2. SLJT is sound, i.e, calculates correct answers to queries on a
PGM M and a configuration s.

Proof Sketch. SLJT constructs a valid FO jtree based on Theorem 1, which
allows for local computations for messages and queries [12]. To answer queries
correctly, SLJT has to distribute state descriptions of local models through the
FO jtree. Therefore, SLJT uses the massage passing scheme of LJT, which coin-
cides with the scheme by Shafer and Shenoy, which they show to be sound [11].
Additionally, SLJT includes the local model of the current cluster only if the
selector of the cluster is on. In case the selector is off, the cluster only uses

Algorithm 2. Switched Lifted Junction Tree Algorithm
procedure SLJT(PGM M , configuration s, evidence E, queries Q)

FO jtree J ← SFOJT(M)
Enter evidence E into J
Pass messages on J
for each query Q ∈ Q do

Answer Q on a cluster in J
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the information of received messages, if there are any, to calculate the outgo-
ing message. Thus, after a message pass, each cluster holds all necessary state
descriptions under a given configuration and can answer queries about its PRVs.
Hence, as LJT is sound and SLJT calculates the same answers LJT would on
an FO jtree with only the parfactors, which are turned on, SLJT is sound.

SLJT allows for building an FO jtree for a PGM and then reuse the FO jtree
for multiple queries and configurations. Next, we evaluate the performance gain
by using the context-specific independences.

4 Evaluation

To evaluate SLJT, we use a variation of Gex with 3 selectors. We compare SLJT
against implicitly specifying the context-specific independences in parfactors and
against specifying a model for each configuration. 3 selectors result in 8 configu-
rations, leading to 8 small models. Thus, we compare SLJT with a PGM against
LJT with a model containing an implicit encoding of the switches as well as LJT
with 8 models corresponding to configurations. For the evaluation, we compare
the runtimes w.r.t. message passing to prepare an FO jtree for query answering as
well as the runtime for answering two queries, namely P (Epid) and P (Sick(x1)).
Additionally, we evaluate the runtimes for |D(X)| ∈ {10, 100, 1000}. One claim
investigated in this evaluation is that it is advantageous to use explicit context-
specific independences also in the lifted case. Another claim is that SLJT requires
about the same runtime for query answering as LJT does on the models corre-
sponding to configurations.

Figure 5 shows the runtimes for message passing in ms and Fig. 6 shows the
runtimes of each of the two queries. The runtimes are the average of 10 runs.
In both figures, the x-axis shows different configurations. Thus, for x = A the
runtimes for the first configuration are shown, for x = B the runtimes for the
second configuration are shown, and so on.

In Fig. 5, we can see that message passing on the large model with an encoding
of the switches in parfactors takes the longest. The runtimes are about the same
for all configuration as the configuration is passed to LJT as evidence leading to
absorbing the variables used to encode the switching. Hence, the variables used
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Fig. 5. Message passing runtimes [ms] for
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Fig. 7. Message passing runtimes [ms]
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Fig. 8. Query answering runtimes [ms] for
|D(X) = 1000|, x-axis: configurations

for encoding switching behaviour can be thought of as eliminated after evidence
entering. Nonetheless, LJT still needs to perform a message pass on a rather
large model. Therefore, the runtimes for this model are the upper bound in our
evaluation. For the small models, we can see that runtimes for message passing
increase with the different configurations and that the runtimes are bounded
by the implicit encoding. The increase is incidental due to the sorting of the
configurations. Further, we can see that for configuration A and B, the model
results in an FO jtree with one parcluster as LJT does not spend any time on
message passing, but relatively long on query answering as can be seen in Fig. 6.
For SLJT, we can see that message passing only slightly variates between the
different configurations. SLJT always needs to compute the same number of
messages, as the FO jtree always remains the same. However, which parcluster
and thereby which parfactors are turned on and off depends on the configuration
leading to slight variations in the runtimes.

In Fig. 6, we can see that answering the query about Epid is always faster
compared to Sick(x1) because Sick(x1), x1 needs to be split from X. Implic-
itly encoding the switching behaviour in the model leads to largest runtimes for
answering Sick(x1). Regarding both queries, implicitly encoding the behaviour
leads to runtimes very close to each other over different configurations as
described above. Regarding the models based on configurations, LJT saves effort
during query answering with increasing effort during message passing. SLJT is
the fastest approach for both queries. SLJT always answers the queries on an
FO jtree with many rather small parclusters. Having small parclusters is really
advantageous for query answering and explains why the runtimes of SLJT are
often even slightly below LJT for the constructed small model corresponding to
the configuration. Overall, we can see that using context-specific independences
has a huge impact on runtimes.

Figures 7 and 8 shows runtimes for |D(X)| = 1000, the programs exhibit-
ing the same behaviour compared to each other as with |D(X)| = 100. The
setting |D(X)| = 10 also shows the same behaviour (omitted here). In sum-
mary, answering queries on an FO jtree with small parclusters is advantageous.
Additionally, specifying a model for each configuration is cumbersome, always
incurring an overhead for constructing an FO jtree, a step which we did not
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evaluate here. Overall, compared to the other two methods, SLJT efficiently
uses context-specific independence to significantly speed up inference.

5 Conclusion

To make inference more manageable, we investigate multiple queries in switched
probabilistic relational models, which explicitly handle context-specific indepen-
dence. By leveraging lifting principles for GMs, which allows for representing
context-specific independence using gates, and then extending LJT to efficiently
handle switching behaviour, SLJT allows for efficient answering of multiple
queries in switched probabilistic relational models. Empirical results show that
using context-specific independence speeds up lifted inference significantly.

Future work focusses on including causal inference [14] and counterfactual
reasoning. Further, we look into decision support as gates with context-specific
independences seems to be an ideal formalism to model different actions.
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Abstract. We explore how referring expressions can be used to enhance
how a conjunctive query is answered over description logic knowledge
bases in a way that allows one to return not only answers explicitly named
by constant symbols, but also anonymous individuals that are entailed
to satisfy the query, and to provide syntactic means for referring to such
individuals. In particular, for the logics Horn-ALC and EL⊥, we focus
on reporting all entailed answers, on techniques necessary to finitely
describe such sets of answers, and on extensions to more complex logics
and settings.

1 Introduction

Usually, individual names occurring in a knowledge base expressed in terms of
an underlying description logic (DL) are the only syntactic constructs that are
permitted for communicating references to objects, called referring expressions,
in query answering. In this paper, we introduce referring expressions that are
concept descriptions in some DL that stand for singular certain answers to
instance queries and more general conjunctive queries over Horn-ALC and EL⊥

knowledge bases. A notable feature of our approach that is new is the ability to
describe all entailed answers to queries in terms of such descriptions.

This idea of allowing concept descriptions in some DL to replace individ-
ual names in query answering has been considered in earlier work [3,10]. This
work, however, has relied on the underlying DL being able to express function-
ality of roles and of role paths in order to ensure a concept description serving
as a referring expression satisfied a strong singularity property. This property
required that the meaning of such a description is a singleton set for any model of
the given knowledge base. As a consequence, the results of this work are inappli-
cable for any DL that is unable to express functionality, such as Horn-ALC and
EL⊥. This is unfortunate because such DLs have been widely used, in particular:
EL⊥ and its derivatives are popular for capturing ontologies in life sciences, such
as SNOMED CT [9], NCI [5], FMA [4], and others. However, adding even the
simplest role functionality constraints to EL⊥ immediately leads to the loss of
tractability of reasoning [2,7,8]. For query answering [2], however, it seems to be
sufficient to guarantee that the referring expression used to describe a particular
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-35288-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35288-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-35288-2_10


118 D. Toman and G. Weddell

answer is singular among all certain answers, i.e., it refers to only one certain
answer.

Example 1. Consider a Horn-ALC knowledge base K = (T ,A) consisting of a
TBox T = {A � ∃R.C,A � ∃R.D,A � ∀R.B}, and an ABox A = {c : A}.1

Three of the tree models of K will look as follows:

c:A

R

����
��
��
�

R

��

R

���
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��
��

B,C • B,C • • B,D

c:A

R

����
��
�� R

���
��
��
�

B,C • • B,D

c:A

R

��
B,C,D •

spurious R-successor B,C just right spurious equality
(universal) between R-successors

For an instance query B(x), the universal just right tree model in the middle
makes it reasonable to consider the referring expressions “the R-successor of c
labeled C” and “the R-successor of c labeled D” (expressed as concept descrip-
tions) to be the singular certain answers to this request. However, neither “the
R-successor of c labelled with both C and D” nor “the R-successor of c” should
qualify since the former is not a certain answer, as witnessed by the two models
on the left, while the later is intuitively not singular since it is implied by the
two certain answers above, and is only justified in the rightmost model which
has spuriously equated the two singular answers in the universal model.2 �

The example illustrates how one can reasonably weaken the rather strong notion
of singularity introduced in [3] to accommodate Horn-ALC and EL⊥, requiring
instead that the denotation of a referring concept is a singleton set in the uni-
versal tree model of the knowledge base. Also, it is easy to see that, whenever
a certain answer (i.e., a referring expression) is produced in this setting, the
underlying knowledge base is consistent with functionality constraints needed
to make all these answers singular in the stronger sense of [3] (this observation
follows immediately from the existence of universal tree models).
The contributions of this paper are as follows:

1. We develop a technique that allows one to find all certain answers to instance
retrieval queries over Horn-ALC knowledge bases and describe them in terms
of referring expressions;

2. We develop a finite representation of possibly infinite sets of answers; and
3. We discuss extensions to other Horn DLs and study the impact of additional

concept constructors, such as number restrictions, on our ability to report all
certain answers. We also outline the difficulties with extending the approach
to non-Horn settings.

1 We appeal to intuition in this example; full definitions follow in Sect. 2.
2 Note that even in the standard setting, two syntactically distinct constants may
co-refer to the same object unless UNA is assumed.
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We focus mainly on Horn-ALC and EL⊥ to enable a transparent development,
although more expressive logics are considered later. Overall, the paper is orga-
nized as follows: Sect. 2 gives the necessary general definitions, and Sect. 3 studies
the problem of instance retrieval in Horn-ALC and EL⊥, including how sets of
answers can have finite representations. The development for instance retrieval
is then extended to other settings, including where queries can be more general
conjunctive queries, in Sect. 4. Section 5 summarizes and outlines directions for
further research.

2 Background and Definitions

We begin by defining a space of concept descriptions for the function free DL
dialects that will concern us, including the concept descriptions that replace
individual names in the role of referring expressions in query answering:

Definition 2 (Concept Language). Let R, PC and IN be disjoint sets of role
names, primitive concept names and individual names respectively. Derived con-
cept descriptions and their semantics are defined as follows:

Syntax Semantics: Defn of “·I”
C ::=A AI ⊆ � (primitive concept; A ∈ PC)

| C1 � C2 CI
1 ∩ CI

2 (conjunction)
| ⊥ {} (bottom)
| ∀R.C {x | ∀y : (x, y) ∈ RI → y ∈ CI} (value restriction; R ∈ R)
| ∃R.C {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI} (existential restriction; R ∈ R)
| ∃R−.C {x | ∃y : (y, x) ∈ RI ∧ y ∈ CI} (inverse existential restriction)
| {a} {aI} (nominal; a ∈ IN)

The semantics is with respect to a structure I = (�, ·I) in which � is a domain
of “objects” and ·I an interpretation function seeded by fixing the interpretations
of primitive concept names A to be subsets of � (as indicated), role names R to
be subsets of �×�, and individual names a to be elements of � and is extended
to derived concept descriptions C (as also indicated). �
The DL dialects EL⊥ and Horn-ALC are given as follows:

Definition 3 (Horn-ALC and EL⊥ TBoxes and Knowledge Bases). A
Horn-ALC or EL⊥ knowledge base K consists of a TBox T and ABox A, where
T consists of a finite set of subsumptions of the form C � D in which

– C is a conjunction of primitive concepts A and existential restrictions of the
form ∃R.A, and

– D is one of ⊥, A, ∃R.A, and, in the case of Horn-ALC, ∀R.A,

and where A consists of a finite set of assertions of the form a : A and R(a, b).
An interpretation I is called a model of K if CI ⊆ DI for all C � D ∈ T ,
aI ∈ CI for all a : C ∈ A, and (aI , bI) ∈ RI for all R(a, b) ∈ A.
Consistency, logical implication, and other reasoning problems are defined in the
standard way [2]. �
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Observe that we require TBoxes to be in a simple normal form. For more general
but expressively equivalent syntax, see [6].

Tree Models. Hereon, we rely on the fact that DL knowledge bases will usually
possess the tree model property : with the exception of the explicit ABox, sat-
isfiable knowledge bases have a tree-like model in which all anonymous objects
form a role-connected forest, with each tree rooted by an ABox individual. More-
over, in the tree parts of this model, no individuals are made equal unless forced
to be equal by TBox assertions. For Horn logics, one can also show that there
is a unique tree-like model, commonly called the minimal or universal model,
that captures all the facts implied by the knowledge base. Thus, many reasoning
tasks, in particular, instance retrieval, reduce to inspecting this model [2,6].

Queries and Referring Expressions. In the classical setting, instance retrieval
(resp. query answering) with respect to a knowledge base K and a concept C
(resp. query Q) is the task that determines for which individual names appearing
in K it holds that K |= a : C (resp. K |= Q(a1, . . . , ak)). Here, constant names
serve the role of referring expressions, and our concern is with replacing such
expressions by more general concept descriptions:

Definition 4 (Referring Expression). Referring expressions are simply con-
cepts in (a subset of) the above concept language. In the following, we use
concept descriptions of the form

C1 � ∃R−
1 .(C2 � ∃R−

2 .(. . . ∃R−
k .{a}))

where Ci are (conjunctions) of primitive concepts. �

The intuition behind this choice of referring expressions lies in the tree model
property of our logics: every anonymous object can be reached by a role path
from an ABox individual. (Indeed, unreachable objects that may exist in some
models of our knowledge bases should not be considered since they fail to qualify
as certain answers.)

In order to use referring expressions in place of constant symbols, one should
ensure that they describe a single (certain) answer. Also note that, to account for
various DL dialects, both knowledge base subsumptions/assertions and referring
expressions will be restricted to appropriate subsets of the concept language in
Definition 2. The following definition of a singularity property of concepts serving
the role of referring expressions in instance checking, however, is independent of
the choice of DL dialect:

Definition 5 (Singular Certain Answers). Let K be a consistent knowl-
edge base, D an instance query (i.e., a concept expression), and C a referring
expression. We say that C is a singular certain answer to D if

1. (certainty) K |= C � D and |CI | > 0 for all models I of K, and
2. (singularity) |CI | = 1 in the universal model I of K. �



Finding ALL Answers to OBDA Queries Using Referring Expressions 121

This definition can be naturally extended to general queries over K [3]. Recall
that this constitutes a weakening of the singularity property defined in [3]
in which a referring expression was required to denote a singleton set in all
models of the knowledge base. Indeed, this is essential since DL dialects such
as Horn-ALC and EL⊥ are not sufficiently expressive to enforce the stronger
requirement. In these logics, it is always possible to replicate identical successors
of objects in a model without invalidating any TBox subsumptions. Doing this
leads immediately to a violation of the singularity property of [3]. However, in
the setting of certain answers, the weaker requirement seems sufficient: it guar-
antees that it is never the case that the referring expression describes more than
one answer in every model of K.

Example 6. Consider again the knowledge base K in Example 1. Formally,
the following concept descriptions, C � ∃R−.{c} and D � ∃R−.{c}, are singular
certain answers for the instance query B(x), while ∃R−.{c} is not since it fails
the singularity requirement. �

This seems to be in agreement with the usual entailment style of semantics for
certain answers in the database community that thinks of the results of a query
as an “intersection over all models”. The benefit of this weaker definition is that
results can now apply to logics that are unable to express functionality, such as
Horn-ALC or EL⊥, which were excluded from consideration in [3].

Conversely, we require the weaker singularity condition to hold in the univer-
sal model of the knowledge base. This avoids models that equate objects without
a need to do so (as illustrated in Example 1 by the right-most model). Allowing
such models in our definition of singularity would incorrectly allow for concepts
(such as ∃R−.{a}) to be considered referring expressions for singular certain
answers even though there could be two or more referring expressions that also
describe singular answers and imply the expression in question. However, note
that aliases, that is, alternative referring expressions that refer to the same single
answer, are still possible. This is natural and similar to standard approaches in
which distinct constants may be interpreted as the same individual.

3 Instance Retrieval over an Unit ABox

We first consider the problem of generalized instance retrieval. In the classical
setting, this task deals only with ABox individuals. However, in our setting,
referring expressions can describe certain answers that can be arbitrarily far
from ABox individuals denoted by constant symbols.

The two DLs that we consider, Horn-ALC and EL⊥, do not possess the capa-
bility of expressing the functionality of roles. A slightly surprising result is that
Horn-ALC or EL⊥ TBoxes are not able to enforce the existence of objects that
are indistinguishable by appropriate referring expressions. Hence, all possible
answers can in principle be described by such expressions as singular certain
answers.
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To simplify the exposition and focus on the issues connected with referring
expressions, we first assume that the ABox in a knowledge base contains a sin-
gle assertion a : A. (We relax this restriction later.) Initially, we only consider
instance retrieval queries of the form B(x) for B a primitive concept; instance
queries for more complex concepts can be reduced to this case by introducing
appropriate subsumptions in the TBox.

3.1 The Horn-ALC Case

In principle, testing whether a concept is an answer to an instance query reduces
to a simple logical implication problem (perhaps in an extension of Horn-ALC).
The main questions we answer here are what concepts should qualify as referring
expressions, and how one guarantees singularity for these expressions. To answer
these questions, we utilize a construction similar to the standard construction
of a tree automaton for recognizing tree models of the knowledge base [11].3 We
generate a transition relation from our instance checking problem as follows:

Definition 7. Let K = (T , {a : A}) be a Horn-ALC knowledge base (in normal
form) and Concepts(K) the set of all concepts and subconcepts appearing in K.
We define Implied(S) = {C ∈ Concepts(K) | T |=

�
A∈S A � C}, where S is a

set of primitive concepts, and define SK = {S | S ⊆ PC ∩ Concepts(K)}.
We say that an existential restriction ∃R.C ∈ Implied(S) is independent if it is
minimal (w.r.t. subsumption) among existential restrictions in Implied(S).
A matching tuple for S ∈ SK is a tuple

(S, {C0,D0,0, . . . , D0,k0}, . . . , {Ck,Dk,0, . . . , Dk,kk
})

where ∃R0.C0, . . . ,∃Rk.Ck are all independent existential restrictions that appear
in Implied(S) and ∀R0.D0,0, . . . ,∀R0.D0,k0 , . . . ,∀Rk.Dk,0, . . . ,∀Rk.Dk,kk

are all
value restrictions that appear in Implied(S). We say that {Ci,Di,0, . . . , Di,ki

}
belongs to S’s matching tuple for the existential restriction ∃Ri.Ci. �

This construction is similar to the looping automaton construction for K with
an initial state {A}. However, note that the transitions are deterministic for
Horn-ALC. A similar construction also yields an optimal EXPTIME upper
bound for satisfiability of Horn-ALC knowledge bases since the number of the
sets in the construction is at most exponential in |K| (as is the size of the tree
automaton), and testing for the emptiness of a looping tree automaton can be
done in time polynomial in the number of states as follows:

Set S ∈ SK is feasible if
1. ⊥ ∈ Implied(S), and
2. for the matching tuple (S, S0, . . . , Sk), all Si are feasible.

Otherwise, S is infeasible.
3 In the standard construction, the Hintikka sets are generated syntactically by ana-
lyzing concepts present in a TBox. Here, to simplify the presentation, we rely on
logical implication algorithms already developed for the underlying logics.
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It is easy to see that the above definition of (in)feasible states can be implemented
by an algorithm that marks all infeasible states in |SK| rounds. Consequently,
K is satisfiable if and only if the initial state {A} is feasible since the structure
finitely encodes the universal (minimal) model of K: the model corresponds to
the unfolding of the structure starting from {A} (i.e., a run of the automaton).
We use the feasible states and the structure defined over them by the matching
tuples (a.k.a., the transition relation of the looping automaton) to define referring
expressions that will serve as our singular certain answers:

Definition 8 (Certain Paths and Referring Expressions). A certain path
for a query B(x) and knowledge base K is a sequence of role and concept pairs
R1 A1 . . . Rk Ak such that there are feasible S0, . . . , Sk ∈ SK and

1. S0 = {A},
2. B ∈ Implied(Sk), and
3. Si+1 belongs to Si’s matching tuple for the existential restriction ∃Ri.Ai. �

Observe that we consider all such paths in the above (i.e., not just paths that
are simple). Also note that, unlike satisfiability, we need to make certain that
the referring expression concept works in all models of K. Here we again take
advantage of the logic being Horn and rely on the (universal) tree model captured
by the above construction.

Theorem 9. Every certain path R1 A1 . . . Rk Ak for B and K corresponds to a
singular certain answer Ak �∃R−

k .(. . . A1 � ∃R−
1 .{a}). Moreover, every B object

common to all models of K will be reached by a certain path and will be returned
as an answer.

Proof (sketch): The construction guarantees that the referring expressions con-
structed from certain paths satisfy the certainty condition of our definition: the
end object of every certain path for B(x) and K is in the interpretation of the
B concept in the minimal model and thus in all models of K. The objects at
the ends of these paths are referred to by the referring expression concept con-
structed from such paths.

Requiring only independent existential restrictions to be parts of matching
tuples guarantees singularity of the certain answers witnessed by the tree model
of K.

3.2 The EL⊥ Case

We use the same construction. However, in the absence of value restrictions,
observe that only the sets Implied({A}), for A ∈ PC, are needed. There are only
polynomially many of these, all of which can now be constructed in PTIME.4

4 This construction is essentially the same as the construction of the so called canonical
model for EL⊥ [1,8].
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3.3 Finite Representation of Answers

Our focus so far has been on problems of determining if a referring expression
is a singular certain answer to an instance query B(x) over a knowledge base
K. However, in practical information systems, one is often faced with the task
of reporting all certain answers. This is easy in the standard case: we simply
consider the available constant symbols one-by-one. The following examples show
that this is not so simple for referring expressions. In the case of acyclic TBoxes
(even in EL⊥), the number of singular certain answers can be easily exponential
(and doubly exponential in the case of Horn-ALC):

Example 10. Consider a knowledge base with unit ABox and an EL⊥ TBox
of the form T = {A � ∃R.B0 � ∃S.B0, . . . , Bk−1 � ∃R.Bk � ∃S.Bk} for k > 0.
Our construction gives k matching tuples ({Bi}, {Bi+1}, {Bi+1}) (and a tuple
({Bk})). This, however, leads to exponentially many certain paths that are wit-
nessed by the tree model of this TBox that contains 2k leaves.

The situation is even worse in the case of Horn-ALC since one can force paths
of exponential length using value restrictions and auxiliary concepts that stand
for counters. Hence, one can force 22

k

certain paths (and in turn singular certain
answers). �

For cyclic TBoxes, it is easy to construct examples in which the number of
singular certain answers is infinite:

Example 11. Let T = {A � ∃R.A} and A = {a : A}. Then {a}, ∃R−.{a},
∃R−.∃R−.{a}, ∃R−.∃R−.∃R−.{a}, etc., are singular certain answers to A(x). �

One can represent all these answers as simple regular expression based extensions
of our language of referring expressions, stating that the singular certain answers
can be reached, for example, by R1 . . . Ri−1[Ri . . . Rk]∗ paths. When transformed
to the concept language embellished by a Kleene star-like construct, such a
referring expression would appear as follows:

[Ck � ∃R−
k .(. . . Ci � ∃R−

i .(]
∗Ci−1 � ∃R−

i−1.(. . . ∃R−
1 .{a})) . . .).

Note that the regular-like concept description corresponds to the certain path
written backward, hence the cycle is syntactically at the beginning of this expres-
sion. Such expressions can be extracted from our construction of matching tuples
as concatenations of simple paths from A to B followed by B to B cycles. How-
ever, while this solves our problems with the finiteness of (the presentation of)
all answers, issues connected with the number of answers raised in Example 10
remain. Similarly, the number of distinct simple cycles can be bounded by a
factorial function from below. The representations consisting of sets of matching
tuples (essentially the transition relation of a tree automaton) are vastly more
succinct, but may not be appropriate as an end user feedback. Indeed, a succinct
and user-friendly representation remains a topic for further research.



Finding ALL Answers to OBDA Queries Using Referring Expressions 125

4 Extensions

This section considers relaxing the various restrictions that we have assumed
so far in addressing the problem of exhaustive query answering via referring
expressions, restrictions that enabled a simpler exposition of what we believe
are the principal issues.

Conjunctive Queries. We assume the standard definition of conjunctive
queries (CQs) (i.e., existentially quantified conjunctions of concept and role
atoms). We first consider CQ answering with respect to a unit ABox. In this
setting we can reduce query answering to instance retrieval via folding of the
given query since only tree-shaped, EL concept-like queries can have nonempty
answers in this setting.5 To capture bindings to free variables we introduce the
notion annotated concepts—concepts whose subconcepts can be annotated by
sets of variables—to stand for CQ foldings:

Definition 12 (Annotated Concepts and CQ Foldings). Let Q be a CQ
and V the set of Q’s variables. An annotated concept (C,X) is an EL concept C
that is associated with X ⊆ V and in which all subconcepts D of C appearing
in existential restrictions ∃R.D are annotated by pairwise distinct subsets of V .
A first-order translation FO(C,X) of an annotated concept (C,X) is defined as

– FO(A,X) = A(x0) ∧ (
∧

xi,xj∈X xi = xj) where A is primitive and x0 ∈ X,
– FO(C � D,X) = FO(C,X) ∧ FO(D,X), and
– FO(∃R.D,X) = R(x0, y0) ∧ (

∧
xi,xj∈X xi = xj) ∧ FO(D,Y ) where Y is the

annotation of D and x0 ∈ X, y0 ∈ Y .

An annotated concept (C,X) is a folding of Q if ∀V.FO(C,X) → Q holds. �

Now, given a folding (C,X) of Q we can compute (a representation of) all refer-
ring expressions to the instance query C(x) using the techniques described in
Sect. 3. The answers (in a form of referring expressions) yield bindings for all
variables in X. To get bindings for the remaining variables of Q we simply tra-
verse C (breadth-first) and for every subexpression ∃R.D with D annotated by Y
we extend the certain path that generated a particular answer (see Definition 8)
by the pair RA, where ∃R.A is an existential restriction in the last feasible set S
associated with the original path. This yields the referring expression that binds
variables in Y . Repeating this process obtains bindings for all variables in V .
Note that all such extensions must exist as we have already succeeded with our
instance retrieval query. Such bindings are said to be generated by (C,X).

Theorem 13. Let K be a knowledge base and Q a CQ with variables in V .
Then every set of bindings for V generated by a folding (C,X) of Q represents
a tuple of singular certain answers to Q (up to projection). Taking a union of
such bindings over all foldings of Q yields all singular certain answers.6 �
5 We relax this condition in the subsequent section.
6 Note that if there are no foldings of Q the set of answers set is empty.
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Finally, a finite representation of the answers can use regular-like concept
descriptions for bindings of variables in X as a seed and a tuple of extensions
induced by paths in C for the remaining variables.

General ABoxes. One can use a standard approach to extend an explicitly
given ABox to a tree model (represented again using matching tuples). One issue
that needs to be addressed is guaranteeing the singularity of answers. This is
not an issue for the ABox individuals, but roles in the ABox can make certain
existential restrictions redundant and break our independence requirement, as
illustrated in the following:

Example 14. Consider knowledge base K with a TBox T = {A � ∃R.B}. and
an ABox A = {A(a), R(a, b), R(a, c), B(b), B(c)} Considering the TBox alone,
we generate a matching tuple ({A}, {B}) that is used to generate (anonymous)
R successors for A objects. However, were this tuple used for the a object above,
it would lead to a certain answer ∃R−.{a} no longer singular (in the constructed
model) since it ambiguously refers to both b and c objects that are explicit in the
above ABox. Extending the independence requirement to eliminate redundant
existential restrictions by generating additional matching tuples for ABox objects
solves this problem.

�
The above observation can be applied to all ABox objects: We simply use addi-
tional matching tuples that account for roles that are explicit in an ABox.
W.l.o.g. we assume hereon that the ABox has been completed with respect to
membership of individuals in primitive concepts and roles and is of the form

{A(a) | K |= A(a), A ∈ PC, a ∈ IN} ∪ {R(a, b) | K |= R(a, b), R ∈ R, a, b ∈ IN}

For consistent knowledge bases in Horn logics, this completion is unique.

Definition 15. Let K = (T ,A) be a Horn-ALC knowledge base (in normal
form) and Inds(A) the set of all constants appearing in A. A matching tuple for
a ∈ Inds(A) is a tuple

(Sa, {C0,D0,0, . . . , D0,k0}, . . . , {Ck,Dk,0, . . . , Dk,kk
})

where Sa = {A | A(a) ∈ A}, ∃R0.C0, . . . ,∃Rk.Ck are all independent existen-
tial restrictions in Implied(Sa) for which there are no bi ∈ Inds(A) such that
Ri(a, bi), Ci(bi) ∈ A, and ∀R0.D0,0, . . . ,∀R0.D0,k0 ,. . ., ∀Rk.Dk,0, . . . ,∀Rk.Dk,kk

are all value restrictions in Implied(S). We say that {Ci,Di,0, . . . , Di,ki
} belongs

to S’s matching tuple for the existential restriction ∃Ri.Ci.
�

It is easy to see that there are at most |A| additional matching tuples, one for
each constant in A. We now simply require that Sa is feasible for all a ∈ Inds(A)
and extend the definition of certain paths to start with Sa (i.e., set S0 to be
Sa rather than {A} in Definition 8). This yields an immediate extension of
Theorem 9 as follows:
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Theorem 16. Every certain path R1A1 . . . RkAk that starts with Sa for B and
K corresponds to a singular certain answer Ak �∃R−

k .(. . . A1 � ∃R−
1 .{a}). More-

over, every B object common to all models of K will be reached by a certain
path and will be returned as an answer. �
Since there is at most a |A| increase in the number of matching tuples, the
construction preserves our complexity bounds.

Conjunctive Queries Revisited. To accommodate CQs in the presence of an ABox
it is sufficient to introduce parts of the CQ, one of which is answered over the
ABox directly (as, e.g., in [7,8]) and any remaining parts that can be folded to
concept descriptions for which our instance retrieval approach can be applied
and conjoined to the first part.

Logics with Number Restrictions. When quantified role restrictions of the
form (≥ 2 R.C) are present in the language, it may not be possible to describe
all answers as singular certain answers since such at-least restrictions can force
multiple certain answers that cannot be distinguished by referring expressions
(without the loss of singularity). Note, however, that genuine at-least restrictions
can be modeled by existential restrictions and auxiliary disjoint primitive con-
cepts. Then, however, those concepts will guarantee singularity in the tree model.
Results are better with only functionality or at-most restrictions, although there
remains some dependence on the way such restrictions are realized in the TBox
or concept language, for example, as (func R) constraints or as (≤ 1 R.C) con-
cepts. Indeed, negations in the latter case can lead to at-least restrictions and
non-singularity of certain answers.

Non-Horn Logics. The situation for non-Horn logics is even more complex:
we can certainly extend our construction to full ALC, but we face the following
issue in the presence of disjunctions, in particular, when such disjunctions are
allowed in referring expressions:

Example 17. According to our definition of singularity, given a TBox {A �
∃R.B � ∃S.B}, an ABox {a : A}, and a query B(x), a singular certain answer
could be ∃R−.{a} � ∃S−.{a} since the two (minimal) tree models will contain
{R(a, o), B(o)} and {S(a, o), B(o)}. Even worse, if the TBox was given as {A �
(∃R.B � ∃S.B) � ∃T.B}, one could have two certain answers, both singular:
∃R−.{a} � ∃T−.{a} and ∃S−.{a} � ∃T−.{a}, that seem to reuse the second
part of the disjunction. This not only leads to combinatorial problems but also
renders answers that are unintuitive. �
Also, observe in the first case that the anonymous object o, indeed the answer
we are trying to refer to, need not be the same object in the two models. How-
ever, this is not too different from interpreting a constant symbol by varying
domain elements in different models of a knowledge base. The downside of this
arrangement is that answers that contain (possibly large numbers of) disjunc-
tions may not be what users would expect. Limiting the referring expressions
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that can appear in answers has been considered in [3] where the idea of referring
expression types was introduced.

5 Summary and Open Problems

We have presented an extension to instance retrieval and query answering tasks
that, with the help of referring expressions, allows one to return all singular
certain answers in Horn-ALC and EL⊥ knowledge bases. We have also shown that
this is no longer the case for logics endowed with at-least number restrictions.
There are many directions for further research, e.g.:

– Issues related to a more compact representation of answers; this direction is
related to discovering “small” regular expressions or devising other ways to
present all the singular certain answers over a knowledge base.

– Extensions to more powerful Horn description logics: what concept construc-
tors can be supported while maintaining the ability to report all answers?
What to do with at-least restrictions and do we really need them?

– Extensions to non-Horn Description Logics: can the techniques be extended
to DLs with concept disjunction (recall the discussion in Sect. 4)?

Finally, throughout, we have used reasoning in the underlying DL as a black box
whenever needed since this does not impact the complexity bounds. However, in a
practical implementation, a more integrated approach that interleaves knowledge
base reasoning with query answering needs to be developed.
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Abstract. Although recommender systems have been significantly
developed for providing customized services to users in various domains,
they still have some limitations regarding the extraction of users’ condi-
tional preferences from their past selections when they are in a dynamic
context. We propose a framework to automatically extract and learn
users’ conditional and qualitative preferences in a gamified system tak-
ing into consideration the players’ past behaviour, without asking any
information from the players. To do that, we construct CP-nets modeling
users preferences via a procedure that employs multiple Information Cri-
terion score functions within an heuristic algorithm to learn a Bayesian
network. The approach has been validated experimentally in the chal-
lenge recommendation domain in an urban mobility gamified system.

Keywords: CP-net · Bayesian network · Recommender system ·
Gamification

1 Introduction

Over the past decades significant efforts have been undertaken among
researchers, practitioners and companies to develop various types of recom-
mender systems (RSs) to meet users’ requests [1]. The aim of these systems
is to personalize service recommendations for individual users, as well as aggre-
gating users’ preferences to recommend a service for a group of users in various
domains from movies [25] to restaurants [14], from hotels, recommending items
and products to challenge recommendation in a gamified context [15].

Advancement in recommender systems have been performed by considering
the context, which is basically defined as any information that could be used
to characterize the situation of an entity in a particular domain [9]. On the
one hand, considering the context can improve the performance of the RSs,
which leads to enhance the satisfaction degree of users by properly fulfilling
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their demands [13]. On the other hand, it can make the recommendation task
more complex, since changes in the context may cause changes in users’ pref-
erences over time. This issue is very relevant when the system should perform
in a dynamic and open field domain such as in a gamified system [16]. Self-
adaptive recommender systems have been developed to overcome such problems
in the application domains where the context of users and/or of services can
influence the recommendation [4,14]. Players’ preferences are often qualitative
and conditional. For example, if it is sunny, I prefer to go work with bicycle
rather taking public transportation. CP-nets [23] are a graphical model to repre-
sent the qualitative preferences in a compact and intuitive way, which have been
already used to model users’ preferences in automated decision making and in
modeling human preferences in real-world applications [7]. Modeling and learn-
ing the users’ preferences expressed via CP-nets is a task that has been studied
extensively by adopting various techniques, such as observing/asking multiple
questions to the users [2]. In some studies, researchers start by assuming a depen-
dency structure and then they try to learn the users’ conditional preferences [6].
Bigot et al. [2] discussed the possibility of learning Probabilistic CP-nets (PCP-
nets), which have been introduced in [8] in two settings (online and off-line). In
that paper, Bayesian networks are used to learn PCP-nets. In both settings they
assume to have the dependency graph and then they ask multiple queries to the
users to build up and learn the structure of the network. Similarly, Guerin et
al. [11] present an algorithm for learning CP-net preferences by interacting with
users rather than using users’ histories. Learning conditional preferences may be
a tedious and costly task, even with acyclic CP-nets. However, the complexity of
the problem can be reduced by interacting with the users to simplify the learning
procedure. E.g., Koriche et al. [17] propose an approach to identify a preference
ordering with binary domains, which uses membership queries. Despite the sig-
nificant progress in this area, we like to express that we have observed a lack of
studies based on automatically extracting players’ CP-nets.

In this paper, we propose a framework to automatically construct CP-nets
from players’ past selections without demanding any information from the play-
ers who are involved in the system. Here, users’ past behaviors are character-
ized by a set of domain features, which are logged in the users profiles, through
their participation in the gamified system. E.g., in the challenge recommendation
domain in gamification, the previous selections of a player may be defined by the
challenges that have been selected and finished previously by the player and each
challenge is a combination of elements in different context. For example, in our
urban mobility gamification system a challenge includes prize, difficulty, mode
of transportation etc. To construct a CP-net from the user’s past selections we
proposed a system constructed by five modules: Feature Selection to extract the
most informative features, Layer Extraction that includes the process of defining
three layers that are root, intermediate and target; Feature Dependencies and
CP-net construction, where the dependency of the features will be derived to
shape the main structure of the network; Converter that converts the extracted
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probability between the features into user’s preference, and Layer Binding in
which the three layers will be attached to construct the whole CP-net.

Experimental results show that the presented approach for building CP-
nets from players’ past selections is promising in the challenge recommenda-
tion domains in gamification. The proposed approach to construct CP-nets from
previous selected challenges is useful in a real time context-based recommender
systems in gamification [14,16]. E.g., constructing player’s CP-nets which change
over time support the recommender systems to increase the satisfaction of the
users with suitable challenges and and acts as a remedy in gamification to achieve
its vision, in particular, an open field gamified system, to improve players’ behav-
ior towards the sustainable style. Indeed the goal of every gamified system is to
change players’ behavior [20] and the challenges are the main mechanism used
to encourage this improvement [22], thus providing the wrong challenges may
lead negative influences to players progress and involvement in gamification.

2 Challenge, CP-Net and Bayesian Network

In this section we present the key notions of a Challenge in gamification, CP-nets
and Bayesian Networks, however, we omit the detailed description of them, so
you can find more additional information in [3,12,16].

2.1 Challenge Model

Challenges are units of playable content including a demanding goal that a player
should achieve, under temporal or other constraints, in exchange for an in-game
prize or reward. We defined a challenge in [16] as a tuple:

<P ; G; C; D; R; W>, where: P refers to the individual Player to whom the
challenge is recommended; G defines the Goal, that is a task or a performance
target, which should be fulfilled to complete the challenge; C is the Constraint
for reaching the goal. E.g., player P must achieve goal G within a temporal
deadline-one week-; D represents the Difficulty of the challenge for player P,
considering goal G and constraint C. For D, we have been using a 4-level scale:
{Easy, Medium, Hard, or Very Hard}; R is the Reward (a.k.a prize) awarded for
completing the challenge. An example of a challenge that our recommendation
system, introduced in [16], recommended to players is: “Increase <Bike> <Km>
by at least <10%> during <next week> and receive <200> <Green Leaves>”.

2.2 CP-Net and Bayesian Network (BN)

CP-net [3] is a graphical model to represent conditional and qualitative pref-
erence relations between variables (a.k.a features). Let’s assume there is a set
of variables V = {X1, ...,Xn} with finite domains D(X1), ...,D(Xn). For each
variable Xi, each user specifies a set of parents P (Xi) that can affect her prefer-
ences over the value of Xi. So this defines a dependency graph such that every
variable Xi may have P (Xi) as its immediate predecessors. For each node Xi,
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Fig. 1. A CP-net and a Bayesian Network.

there is a conditional preference table that shows, for each possible combination
of parents values, the preference over values of Xi. An example of CP-net is
shown in Fig. 1(a). It contains three features X1,X2 and X3, standing for the
Reward of the challenge to complete, Difficulty and the Acceptance of the chal-
lenge, respectively. X1 is an independent variable, while X2 depends on X1 and
X3 depends on both X1 and X2.

A Bayesian network is a probabilistic graphical model that represents a set of
variables and their conditional dependencies via a directed acyclic graph (DAG)
G = (V,EG) [12], where V is the set of features, and EG represents the set of
direct arcs (dependency) between the features, e.g., Xi → Xj means that the
variable Xj depends on the variable Xi, and there is a constraint in BN that
avoids any directed cycles (similarly to the concept of acyclic CP-net). For each
node Xi, there is a conditional probability table that shows for each possible
combination of parents values the probability distribution over values of Xi.

An example of BN is shown in Fig. 1(b), where the probability that I accept
(x31), or that I don’t accept (x32) a challenge during the game depends on the
values of his parents, that are Reward (X1) and Difficulty of the challenge (X2).

3 Technical Approach

This section shows our approach to build a CP-net representing the conditional
and qualitative preferences of a user starting from the past selections of the
use. For the sake of clarification, we will explain how the constructor works in
different sections by using examples of preferences, which are taken from the
context of gamification for challenge recommendation.

3.1 Feature Selection

Selecting the most informative feature that are more important on influencing
players’ preferences is the vital procedure in any learning and prediction task.
Thus, given a set of features V = {X1, X2, . . . , Xn}, without the loss of
generality we assume that Xn is the variable corresponding to the target node
of the CP-net, which is the most constrained variable. In this context, target
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node points to the acceptance of the challenges, that the player has accepted
before and logged in his profile during the game.

In this module we aim to identify a subset Vs ⊂ V of the features that highly
affect players’ decision for accepting a challenge. It is expected that every fea-
ture selection algorithm takes into account different aspects of the data to select
the most valuable features. Thus, in this framework, we associate two different
algorithms, as an ensemble method, namely SelectKBest and Information Gain
algorithms1, in a parallel fashion to pick the most informative subset of fea-
tures. Then, the score of each output list has been normalized between 0 and
1, since they have a different range of scores. Eventually, to achieve the desired
list of features Vs = {X1, X2, . . . , Xm,Xt} in this selection manner (as it
is illustrated in Fig. 2), the identical features from the output of each of the
two algorithms will be selected to be used to build the model. Thereafter, the
selected features in Vs is sorted in decreasing order to build the following list
{X1s, X2s, . . . , Xms}. Then, the system attaches Xt (as the target node) at
the end of the list as follows Vs = {X1s, X2s, . . . , Xms, Xt} to achieve the
desired list of features in feature selection process. Once the process is done, the
agent breaks down the sorted features into three layers that are detailed in the
following section.

3.2 Layers Extraction

Given the above list Vs we aim to build an acyclic and directed graph that
consists of three layers: Root, Intermediate, and the Target layers. Hereafter, we
describe in detail each layer and links connecting the nodes inside the graph.
Notice: the terms “node” and “feature” refer to the same concept from now on.

– Root Layer: this layer contains only the root node, which is the most impor-
tant feature among the others in the list. In other words, given the list “Vs”,
the first feature X1 will be considered as the root node. Since, this node
X1 is an independent feature, it does not have any income link from the
other nodes. For example, considering the challenge recommendation domain,
Reward could be the root node as an independent feature, see Fig. 1.

– Intermediate Layer: the main procedure of extracting users’ conditional pref-
erences on the basis of the strength of relations between features under certain
conditions or threshold, will be executed in this layer. This layer contains all
the nodes except Root and the Target nodes as follows {X1s, . . . , Xms}. To
set the internal links between intermediate nodes, we need to measure the
dependence between any pair of nodes (Xis,Xjs). The algorithm adds a link
between the these nodes that have dependence values higher or equal to a
given threshold. This threshold value could be determined automatically or
manually. In this paper we decide to fix this threshold manually as described
in Sect. 4.

1 To use the above feature selection algorithms, we took the advantage of FSelector
[18] library.
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Fig. 2. The Proposed Framework and CP-net Constructor Frontend. This is a con-
ceptual view of the framework which can be used in a Context-Aware Recommender
System where several service providers (SVs) are connected to the system.

– Target Layer: as the name implies, this layer indicates the target node Xt
that shows the player’s preference (last attribute in the sorted list) toward
the specific domain. Thus, this layer has only incoming links from the nodes,
which are located in the Intermediate layer or in the Root layer. Notice that
in this study we manually select the Target node (Xt), which differs from
domain to domain, and we attach it at the end of the sorted list of features.

The action flow is shown in Fig. 2, where the selected features in the list Vs

(Fig. 2(a)) are segmented into three layers (Fig. 2(b)). Then, the proposed con-
structor integrates the layers (Fig. 2(c)) based upon the dependencies between
the features in the second layer obtained by exploiting the score functions and
the algorithm explained in the next Sect. 3.3.

In the next section, we describe in detail how the framework acts to construct
the CP-net.

3.3 Feature Dependency and Constructing CP-Net

Due to the similarity between the concepts of CP-nets and Bayesian network, we
exploit Bayesian network’s score functions to construct the main shape of a user’s
CP-net in the second layer. Many algorithms and techniques have been devel-
oped to tackle the problem of building a Bayesian Network, whose performance
vary according to the used score functions from data/domain to data/domain.
Hence, we implement the proposed approach by considering various kinds of
score functions such as Mutual Information Test (MIT), Bayesian Information
Criterion (BIC), Akaike Information Criterion (AIC), Log Likelihood (LogL) and
K2 [5], to decrease the miss classification results and thus to have the suitable
technique that better fits data and provide the highest performance.

To show the constructor and how the score functions work, we use Akaike
Information Criterion (AIC) [21] throughout this paper, but we implement the
constructor with all the possible functions (in the second layer) to evaluate the
performance of the algorithm in the specific domain. In short, Akaike information
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criterion (AIC), which is also known “Schwarz criterion” is a penalized technique
based on in-sample fit to determine the likelihood of a model to estimate the
future values [27]. In this score function the lower value represents the minimum
information loss related to the candidate model which is shown in Eq. 1.

AIC = −2 ∗ ln(θ) + 2 ∗ k (1)

where k refers to the degree of freedom to be estimated. The set of model param-
eters that maximize the likelihood function is shown by θ and ln(θ) refers to the
likelihood of the truth model. A lower AIC value indicates the obtained model
is more likely to be considered as the best and true network model among the
others (more details about how these functions work, see [24]). Hence, to per-
form the above functions to construct the desired network in the second layer, we
borrow the structures shown in [26], where the various algorithms have been dis-
cussed such as Simulated Annealing algorithm, Heuristic algorithm, and Genetic
algorithms.

Taking into account the advantage of the greedy search and heuristic algo-
rithm [10], we use Hill Climbing (HC) algorithm to execute the functions to
obtain the structure of a user’s CP-net in the second layer as follows. Recalling
the feature selection and breaking the list “V” into three layers, HC starts with
an empty graph in the second layer and attempts to find a model with the best
score by incrementally searching among the other possible models from its local
neighbors. This is an optimization model that begins with an arbitrary structure
of the network and then it tries to find a better network by incrementally tuning
the scores. Hence, if a new model with a better score is found, it will substitute
the old model. These steps are repeated until no further model with a better
score can be found. Although the algorithm has the problem of getting stuck in
the local region that depends on the starting point, we took the privilege of its
high performance and accuracy to build the network. In the following section we
show how connecting the layers to define the CP-net.

3.4 Converter: Probability to Preferences

This section shows how to interpret the strength of the correlation between nodes
in the BN as user’s preferences in the CP-net. If a node from the list of features
contains two values in the domain, the system from the conditional probability
table of this node in the BN states that the value with the highest probability
is the most preferred one. Once the structure of the network is obtained in the
second layer, the agent converts the probability into preference as shown below.
The procedure starts from the independent nodes. The highest probable value
for a feature will be considered as the most preferred value among the other
possible values. The independent nodes (as parents) influence the preference
values of the remaining nodes (as children) on basis of the probability tables.
In Fig. 3 there is an example that shows how to transform the probabilities of a
BN in the preferences of a corresponding CP-net. Assume v = {X2, X3, X4},
v ⊂ V , and binary domains D(X2) = {x21, x22},D(X3) = {x31, x32} and
D(X4) = {x41, x42}.
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Fig. 3. From a Bayesian Network to the corresponding CP-net.

As it is shown in the figure, X2 influences X3 and X4 in the second layer,
and similarly X4 influences X3. Hence, X3 is identified as the most dependent
node among the others with its probability table. The conditional probability
table associated to X2 can be used to derive preferences over values in D(X2) in
the CP-net. In the conditional preference table of the CP-net associated to X2
we have x22 more preferred than x21 since the probability of x22 is 0.8 while the
probability of x21 is 0.2. Thus, if x22 is the most preferred for X2, then x41 with
probability 0.7 is the most preferred value for X4, according to the conditional
probability table of X4 and so on. Here, we just gave a simple example of features
with binary domains but this could be extended with n numbers of values in the
domains for each feature in the sorted list Vs.

3.5 Layer Binding

This section is in charge of integrating the Root and the Target nodes to the
nodes that are located in the Intermediate layer. Since the Root node dominates
the other nodes in the two layers, the system generates a matrix of dependency
between them. Practically, the aim is to find the strength of the relations between
the Root and the rest, hence we use Chi-square and Gain ratio functions [19] to
obtain these dependencies. This process of generating the dependency matrix is
broken down into two sections. First, it is applied between the Root layer and
“Intermediate and Target” layers (both together, as the Root node dominates
the rest of the nodes which are located in these two layers). Secondly, it is
applied between the Intermediate layer and the Target layer. Having these two
dependency matrix, we set a threshold in the interval [0, 1] as a Confidence Value
to eliminate the links between these layers which can not meet the threshold
value. This is done to find out the most important dependencies within the
user CP-net that can characterize the user preferences. The described work-flow
produces the final user’s CP-net that characterizes the user’s preferences.

4 Experimental Evaluation and Results

The main task of RSs is to provide the best personalized service for users in
various domains. In this study, we validate our procedure for constructing users’
CP-nets from their past behaviors in the gamified system where a RS has been
used to recommend personalized game content (challenges) to players.
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4.1 Data Collection and Gamified System

We implemented the proposed framework on the data which we collected from
a gamified urban mobility experiment (called Play&Go2) that aimed at evaluat-
ing the effectiveness of gamification exploiting a RS in changing the behavior of
players towards more sustainable transport means, and maintaining their par-
ticipation active in the long term. Play&Go was a large–scale and long–running
open–field gamification campaign that lasted twelve weeks (from September 10
to December 2, 2016). The game was targeting residents of the city of Trento
in Italy. During the twelve game weeks, 410 citizens actively participated in
it. Within these weeks, the RS provided more than 6000 challenges to players,
and we have selected 3307 challenges related to transportation mode that asked
players to improve their behavior w.r.t the public transportation. Within those
recommended challenges only 24% of them are accepted by the players during
the game, which shows there is a huge room between the players’ preference and
the recommended challenges in the game. Hence, this motives us to investigate
to find the conditional preference of players in this context of recommendation
in gamification to maximize the acceptance rate.

Due to the page limit, we ignore the detailed description of experimental
results which we have done in [16], and focus only on this approach to show we
could construct the players’ CP-nets. The challenge elements that are used in this
evaluation are: Type of challenge (TP) including percentage (e.g., asks players
to increase a certain percentage of its activity) and absolute (points to a certain
numbers–2,3– to improve in the mode), mode of transportation (MOD) e.g.,
walk, bus, bike and train, improvement (IMP) consisting of low, medium or high,
prize (Bonus) to complete the challenge such as low, medium and high, difficulty
(Dif) of the challenge including easy, medium or difficult, and Acceptance (Tr)
of challenge such as “yes” or “no”.

4.2 Evaluation and Model Selection

To assess and evaluate the proposed approach in constructing the players CP-net,
we have defined the following research question: To what extent we can effectively
construct users CP-nets that can be used in a context-aware recommender system
in a dynamic and open field system?

To answer the question that represents players’ conditional preferences on
the selected challenges, we execute the algorithm with a range of parameters,
where each combination of parameter values specifies a specific structure of CP-
net. For each round, to find the best model to make inference, the grid search
technique is employed to find the optimal tuple of hyperparameter values.

4.3 Evaluation Setting and Results

Although in this dataset there are many data points that have been logged from
hundred of players, we have a limited number of samples for each individual
2 https://www.smartcommunitylab.it/apps/viaggia-trento-e-rovereto-playgo/.

https://www.smartcommunitylab.it/apps/viaggia-trento-e-rovereto-playgo/
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Table 1. The performance of the proposed method on the considered real dataset.

Score

function

Precision Recall F-measure Description # of

features

Arc

Dep

Dir Tr1 Tr2

Dataset 1 BIC 0.77 0.75 0.76 Applicable 4 0.6 0.4 0.05 0.03

AIC 0.75 0.74 0.75 Applicable 5 0.5 0.6 0.03 0.03

LogL 0.77 0.76 0.76 Applicable 6 0.6 0.7 0.03 0.05

K2 0.78 0.76 0.77 Applicable 5 0.6 0.5 0.03 0.03

MDL x x x Causing cycle x x x x x

player which reveals a big concern in properly learning player’s CP-net. This
relatively points to the cold start issue in a recommendation context, so we can
exploit the collaborative filtering solution to overcome this manner. Taking into
consideration the low numbers of parameters and a binary classification prob-
lem in this challenge recommendation problem, we assume that the similarity
between the users are well enough to take the 70% of all users’ data points to
build the model. While to evaluate the network we feed the model with each
user’s data point from that 30% of the data. Then, the result of each data point,
from each individual user will be considered for the overall performance of the
function that depicted in Table 1. In the following, we have listed the parameters
and the set of the values that we have used to construct multiple CP-nets.

– Number of selected features: We have run the algorithm with various number
of features to find out the right numbers that can provide the best CP-net
and high performance value, however, it needs to be highlighted that in this
case study our challenge dataset is limited to less number of features.

– Dependency (Dep): {0.5, 0.6, 0.7}: Since we have defined the dependencies
between features in this interval [0,1], we tune the threshold similar to the
number of features to find the best results.

– Direction (Dir): {0.5, 0.6, 0.7}: We also tuned the algorithm with three values
to obtain the direction of the dependency between the features.

– Threshold (Tr1) for connecting the first and the second layer:
{0.03, 0.04, 0.05}.

– Threshold (Tr2) for connecting the second and the third layer:
{0.03, 0.04, 0.05}.

Fig. 4. A complex CP-net of
players with 5 features.

Once the model is trained, the algorithm
computes a score for each challenge option. This
score shows how probable is for a challenge to be
accepted according the player’s interest. Then
the system selects a challenge which has the
highest probability value as the player’s prefer-
ence. Finally, to evaluate the performance of the
method we have used the following well-known
metrics such as Precision, Recall and F-measure.
Table 1 presents our preliminary experimental
results in the challenge recommendation domain.
In particular, it shows the performance of our
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approach by considering various score functions. Within the score functions
implemented by the hill-climbing algorithm, BIC, AIC, Loglik and K2 functions
were applicable in our data-set. The parameters, which are automatically set to
generate such results are almost similar with an admissible performance. BIC
provides its best result for 4 features, 0.6 for Arc dependency (Dep), and 0.05
and 0.03 for dependency between layers, while AIC provides its best result with
5 features, 0.5 Arc Dep and 0.03 for layer dependency. The values of precision
and recall using BIC and Loglik are very similar with ∼0.77, however Loglik
performs slightly better both in terms of precision and recall. As it is shown in
the table, K2 dominates other functions in this dataset by proving 0.78, 0.76
and 0.77 in precision, recall and f-measure, respectively. In contrast, we have
not inserted results for MIT, since the approach with this score function often
construct CP-nets with cycles, specially after appending the nodes of the layers
in the final step. An example of a complex CP-nets extracted by K2 function is
depicted in Fig. 4.

5 Conclusion

We have presented a system for automatically constructing CP-nets model-
ing users’ preferences from their past behavior and interaction with a service
provider. In this case study, the gamified system called–Play&Go– acts as a ser-
vice provider. To construct the user CP-net we have first constructed a Bayesian
network, then we have transformed it in a CP-net. We have exploited an heuris-
tic algorithm Hill Climbing to execute various score functions to construct the
best graph model among all the possible models. Empirical results from chal-
lenge acceptance dataset in a gamification context have shown that this con-
structor may have a positive impact to enhance users’ satisfaction by accepting
more recommended challenges during the game which relatively have a poten-
tial to increase the performance of the RS and consequently gamification goal.
In addition, we plan to integrate the proposed constructor in the Self-adaptive
Context-Aware recommender system (SaCARS) [14] illustrated in Fig. 2. This
integration will allow SaCARS to completely learn and model the users’ condi-
tional preferences from their behavior without human interference.

References

1. Amatriain, X., Basilico, J.: Past, present, and future of recommender systems:
an industry perspective. In: Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys 2016, pp. 211–214. ACM, New York (2016)

2. Bigot, D., Mengin, J., Zanuttini, B.: Learning probabilistic CP-nets from observa-
tions of optimal items. In: STAIRS, pp. 81–90 (2014)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Int. Res. 21(1), 135–191 (2004)



Constructing CP-Nets from Users Past Selection 141

4. Brun, Y., et al.: A design space for self-adaptive systems. In: de Lemos, R., Giese,
H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems
II. LNCS, vol. 7475, pp. 33–50. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35813-5 2

5. Carvalho, A.M.: Scoring functions for learning Bayesian networks. INESC-ID,
Technical report (2009)

6. Chevaleyre, Y., Koriche, F., Lang, J., Mengin, J., Zanuttini, B.: Learning ordi-
nal preferences on multiattribute domains: the case of CP-nets. In: Fürnkranz,
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Abstract. We present GenC, an efficient and highly-parallel belief revi-
sion solver for paramatrized difference operators. GenC uses an AllSAT
solver to enumerate the possible models of a formula, and then deter-
mines the output of revision through a series of bit comparisons. The
result is a system that can calculate the result of revision for formulas
with 100 variables and millions of clauses in just seconds; the running
times obtained by GenC far surpass existing solvers for belief revision.
The system also has many features that are useful for practical prob-
lems: it supports both interactive and offline data entry, it allows mul-
tiple formats for entering formulas, and it provides output in human-
readable format. Most importantly, GenC is able to model revision by
any parametrized difference operator, which allows a wide range of prac-
tical problems to be easily captured.

1 Introduction

Belief revision refers to the process where an agent incorportates new information
into a pre-existing set of beliefs. While the theory of logic-based belief revision
has been an active area of study for over thirty years, there has been relatively
little work on implementations and tools for solving belief change problems.
Moreover, the implementations that exist are generally too slow to be useful
for large instances. In this paper, describe an efficient solver for parametrized
difference operators [10]; this is a natural class of belief revision operators that
can be compactly specified, while being expressive enough to capture a wide
range of practical problems.

This paper makes several contributions to the belief change literature. The
main contribution is simply the fact that our tool is the first belief revision solver
that is able to quickly solve belief revision problems involving millions of clauses.
To the best of our knowledge, our tool is the first implemented belief revision
system that is built on top of an industrial-strength AllSAT solver; an AllSAT
solver is a system that extends a SAT solver to return all satisfying assignments,
rather than just one [11]. Another contribution of this work is the fact that we
explicitly focus on parametrized difference operators. This is an expressive class
of belief change operators that is useful for practical problems; it has previously
been claimed that these operators are well-suited for implementation. The work
in this paper shows that this is indeed the case.
c© Springer Nature Switzerland AG 2019
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2 Preliminaries

2.1 Motivation

We are motivated by the following high-level goals:

– We want to develop a belief revision solver that runs quickly with large for-
mulas as input.

– We want the solver to work for an extensive class of belief revision operators.

The first goal is challenging due to the well-known complexity of belief revision
[5]. We address this problem by using a competition-level SAT solver for the
computationally hard portions of the revision. The second goal is challenging,
because belief revision operators in general are difficult to specify in a compact
manner. As indicated in the introduction, we address this problem by explicitly
restricting our attention to parametrized difference operators.

We argue that it is currently very important to make an efficient belief revi-
sion solver available to those outside the discipline. An efficient tool could be
useful for many problems, ranging from applications in software engineering pro-
posed many years ago [13] to contemporary problems in ontology change [14].
Moreover, an efficient revision solver has the potential to complement the current
success of machine learning. Traditional machine learning methods are very good
at classifying data; these classifications are then used to drive decision making.
But if we can learn a revision operator rather than a discrete classification, then
we may be able to produce rational and justifiable decision making [8].

2.2 AGM Belief Revision

The most influential model of belief revision has been the AGM approach [1]. In
AGM revision, a belief set is a set of formulas that is closed under consequence.
An AGM belief revision operator ∗ takes an initial belief set K and a formula
φ for revision as input, and it returns a new belief set K ∗ φ. The AGM postu-
lates provide a set of constraints that must be satisfied by every AGM revision
operator. Informally, the idea is that K ∗ A should include φ while retaining as
much of K as consistently possible. It is worth noting that, if the underlying
vocabulary is finite, then every belief set can be captured by a single formula.

A state is a propositional interpretation over the underlying vocabulary, and
a belief state is a set of states. It has been shown that, for every AGM revision
operator ∗, there is a function that maps each belief set K to a total pre-order
≺K over states such that the models of K ∗ A are just the ≺K-minimal models
of φ [9]. The converse is also true.

2.3 Parametrized Difference Operators

One of the difficulties in developing belief revision solvers is the fact that it can
be difficult to have a user specify a revision operator. In general, specifying a
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single revision operator requires a user to define a total pre-order over states for
each belief set. This can be arduous.

One of the simplest revision operators to describe is the Dalal operator ∗d
which is based on the Hamming Distance between states [3]. The Hamming
Distance between states s and t is the number of propositional variables with
different truth values. For the operator ∗d, we define |K ∗d φ| to be the set of
models of φ that have minimal Hamming distance from a model of K.

While ∗d is useful for concrete demonstrations, it is just one example of
an AGM revision operator. When we develop an AGM revision solver, we
need to capture a larger set of operators. In this paper, we consider the set
of parametrized difference(PD) operators [10]. A PD operator is specified with
respect to an ordering < over propositional variables. Roughly speaking, the
ordering is used to “break ties” in the Hamming Distance by giving prece-
dence to certain variables. This allows us to easily specify a form of relative
importance for different kinds of information. For example, if K = A ∧ B ∧ C,
φ = ¬A ∨ ¬B ∨ ¬C, and the ordering is A,B < C, then the PD operator would
give K ∗ φ = A ∧ B ∧ ¬C. This is similar to the notion of weighted Hamming
Distance used in [7].

2.4 All-SAT

Computing the result of belief revision requires us to find models of propositional
formulas. To calculate K ∗d φ, for example, the first step is to find all models
of φ. An AllSAT solver is a tool that takes a formula as input, and returns all
satisfying assignments. We refer the reader to [11] for a survey of existing tools
and approaches to the AllSAT problem.

Most AllSAT solvers are built on top of an existing SAT solver that finds
a single satisfying assignment. When an assignment is found, the SAT solver is
forced to search again for another assignment until all solutions are exhausted.
The AllSAT solver used in this paper uses Binary Decision Diagrams to represent
formulas; the details are in [12]. For our purposes, it is sufficient to know that
we can generate all satisfying assignments quickly by harnessing the power of a
fast SAT solver.

3 Implementation

3.1 Basic Details

The system described in this paper is called GenC; it can be seen as the next
generation of GenB [7], in the sense that we are interested in a general belief
revision solver that works for many different operators. However, this is really a
completely new application built from the ground up to capitalize on the speed
of a fast AllSAT solver. GenC is written in C++, and it uses OpenMP 4.5 for
parallelism.



146 A. Hunter and J. Agapeyev

3.2 Specifying Input

GenC has two methods for obtaining input data. In interactive mode, the system
prompts the user for human readable formulas for the initial belief state and the
new information for revision. The formulas are written using the propositional
connectives and, or and not; parentheses may be used to enforce a particular
parsing. Propositional variables are represented as positive integers. The high-
est integer in the input indicates the number of propositional variables in the
language. Hence, an expression such as 1 and 10 actually is evaluated over a
vocabulary with ten variables. Figure 1 illustrates basic problem entry in inter-
active mode.

Fig. 1. GenC: interactive input

Input data can also be provided in file-based mode, in order to support larger
formulas and pre-calculated data sets. Two files are gives as input: one repre-
senting the initial beliefs, and one representing the new formula for revision. In
file-based mode, formulas can be entered in Conjunctive Normal Form (CNF),
Disjunctive Normal Form (DNF) and Raw Hexadecimal. The Raw Hexidecimal
form is just a compact representation of binary strings, giving a set of assign-
ments to variables. Internally, all forms of data are convertable to each other as
needed. When the user enters data in file-based mode, it is displayed as a set of
binary strings explicitly specifying the set of states, as in Fig. 2.

Fig. 2. GenC file-based input

As indicated previously, PD operators require a total pre-order over the
propositional variables. To provide this information, an optional third input is
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available. This input provides a total pre-order by assigning a numeric rank to
each variable; this can then be used to determine the result of PD revision.

4 Belief Revision

4.1 Algorithm

For testing, we assume that the initial belief state is given explicitly as a set of
satisfying assignments. This could be a formula in disjunctive normal form, or it
could be a set of binary strings. The revision is by an arbitrary formula. In this
setting, the basic algorithm for belief revision is straightforward:

Algorithm 1. Belief Revision
function Revise(K, φ)

1. S = generateStates(φ)
2. if S ∩ mod(K) �= ∅ then return S ∩ mod(K)
3. d = min{distance(Si, K) : Si ∈ S}
4. O = {Si ∈ S : distance(Si, K) = d}
5. return O

The generateStates function uses the AllSAT solver to find all states that
satisfy φ; this is the only time that the solver is used. If the initial beliefs were
given as an arbitrary formula, we would also need to call the AllSAT solver to
get the models of this formula as well. However, as stated above, we make the
assumption that this is not necessary. The intuition here is that an agent could
already have the initial set of states through some form of pre-processing, so this
step is not required at the time new information is obtained. But again, it would
be easy to simply call the AllSAT solver twice if we had two arbitrary formulas
as input.

The distance function finds the Hamming distance between a state generated
by AllSAT and the models of the initial belief set. Note that the initial beliefs and
the formula for revision at this state are each represented as bit strings. Hence,
finding the distance from Si to K just involves iterating over these strings quickly
to find differences.

For PD revision operators, we need to add a weight to each variable. If the
specified pre-order over variables has m “levels”, we assign a weight of m to
the variables at the minimum level. For each subsequent level, we decrease the
weight by 1. When we compare Si to K in this case, we simply take a weighted
sum over variables rather than a count.
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Algorithm 2. Parameterized Difference Distance
function distance(S, K)

1. dist = m (the size of the vocabulary)
2. for each

∧m
j=1 vjK do

(a) for j = 1 up to m if(
(b) count = 0
(c) diff = S ˆ Ki

(d) bitnum = 0
(e) while diff �= 0 do

i. count = count + O[bitnum]
ii. diff = diff & diff − 1
iii. bitnum = bitnum + 1

(f) end while
(g) dist = min(dist, count)

3. end for
4. return dist

Notice how the counter of different bits is now a variable increment, based on
the weight of the specific bit. Variables are assigned weights inversely related
to their preference. If the input ordering was a < b < c, with a being the least
likely to change/the most plausible variable, then the orderings would look like:
{a = 3; b = 2; c = 1}.

4.2 Minimization

The approach to belief revision described in the previous section runs quickly,
because it involves a single AllSAT call followed by a series of bit comparisons.
However, it does not return a human-readable output: it returns a very long
formula that lists all of the states believed possible.

In order to address this problem, GenC supports “minimization” of output
states. We use the tabular method of reduction for formulas; if any two clauses
differ in exactly one assignment, then they can be simplified. This minimization
algorithm is expensive in terms of time, so we first sweep through the entire
output formula to check if minimization is possible.

Algorithm 3. Possibility of minimization
function minimization possible(K)

1. for Ki in K do
(a) i. if Ki = Kj then continue

ii. if HammingDistance(Ki, Kj) = 1 then return true
(b) end for

2. end for
3. return false
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If minimization is possible, it is performed through the following algorithm.

Algorithm 4. Formula Minimization
function minimize(K ∗ φ)

1. Let K1, . . . , KM be the list of conjunctive clauses in K ∗ φ
2. For i = 1 up to M

(a) For j = 1 up to M
i. if Ki = Kj then continue
ii. if HammingDistance(Ki, Kj) �= 1 then continue
iii. Ki = {x : GetDifference(Ki) �= x}

(b) end for
3. end for
4. sort(K)
5. removeDuplicates(K)
6. K = {x ∈ K : ∀y ∈ K, |x ⊆ y| = 0}
7. return K

Essentially, this algorithm simply finds conjunctive clauses that differ in one
assignment and removes that variable from each clause. We then sort the clauses,
and remove duplicates. We also look for conjunctive clauses that are “supersets”
of other clauses, and we remove those as well. This minimization process repeats
under no further reductions are possible.

The core of minimization occurs in the O(N2) loop. Where clauses differ in
1 exact assignment, that differing assignment term is then removed from both
clauses. The GetDifference() function is a simplification. The implementation
writes the HammingDistance() function inline, and uses a counter to keep track
the position where the last difference occured. The function call can be treated
as a constant-time lookup, without any further consideration. At the end of the
loop, the minimized formula is sorted by its clauses, and then any duplicate
clauses are removed. The duplicates are caused by the commutative property,
where the comparison loop will check both of the differing clauses. For the imple-
mentation, it is cheaper to remove duplicates after, rather than during the loop.
Sorting the formula clauses is a requirement of the removing duplicates algo-
rithm.

The final step in the algorithm is another simplification, that is normally
not covered by the initial comparison loop. In this step, all elements which are
a superset of another element in the function clauses are removed. Since the
formula is in DNF, any clause that is a subset of another clause shares the same
truth value. As such, having a clause that is a superset does not change its
truth value with the extra assignments, and is made redundant by its subset
counterpart. Therefore, these supersets are removed from the formula, to ensure
maximum minimization. This function represents a single step of formula mini-
mization, but the implementation repeats this process until the formula can no
longer be minimized.
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5 Performance

5.1 Design Decisions

Our goal at the outset was to develop a highly optimized solver for belief revision
that runs quickly despite the known complexity of the problem. Using an AllSAT
solver contributes to the speed of the system, but there are other implementation
decisions that are also significant.

One issue is the representation of data. Since we are using an AllSAT solver,
revision formula needs to be stored in CNF as the DIMACS format requires. The
data is stored as a two-dimensional array of integers, where each constituent
array represents a clause. The output from the AllSAT solver is in the same
format. For the revision calculations, the actual states are stored as an array of
bit vectors; this is essentially equivalent to the DNF representation. This allows
us to use built-in bitwise operations; for example, we are able to calculate the
Hamming Distance between vectors through a fast XOR operation. In fact, this
is done directly through two dedicated hardware instructions.

Another issue that impacts run-time performance is the use of parallism.
GenC uses OpenMP to add worksharing across multiple cores, to the point that
most of the belief revision processing is done in parallel. This is possible since
there are few data dependencies while the algorithm is running.

5.2 Experimental Results

Several factors impact the run-time of GenC:

– The number of variables.
– The number of clauses in the input φ (given as CNF for AllSAT).
– The number of models of φ.

Unfortunately, the relationship between these factors is not always clear. When
testing with formula inputs with 100 variables, we obtained a range of solutions
ranging from 32 models to over 400,000. When testing with 250 variables, the
number of models could increase to over 38 million and it could require over
40GB of disk space. When there are 38 million states, it becomes computationally
infeasible to perform the revision.

But looking at the experimental results, we will see that it is actually not
the number of variables that directly influences the run time for revision. The
number of variables determines the number of models of φ, but it is actually the
number models that directly determines run time. For this reason, we give our
experimental results in terms of the run time with respect to |φ|, the number of
models of φ.

Our tests were performed using benchmark problems from the SATLIB
library [6]. All of the test problems had 100 variables. In our tests, we mea-
sured the run-time for revision, using either 100 thousand or 5 million clauses.
The tests were performed on a computer running Linux Kernel 4.17, wich a
4.8 GHz CPU. The range of run times was as follows.



An Efficient Solver for Parametrized Difference Revision 151

– For |φ| = 16: .218 s (for 100,000 clauses), 8.581 s (for 5,000,000 clauses)
– For |φ| = 416, 492: 31 s (for 100,000 clauses), 4430 s (for 5,000,000 clauses)

A graphical depiction of our test results is given in Fig. 3.

Fig. 3. GenC performance

It is worth noting that there is no difference in the running time for Dalal revi-
sion and PD revision. The only difference is that PD revision requires a constant
time lookup to a table giving priorities, which does not impact performance.

5.3 Comparison with Related Work

As stated previously, there are not many implemented systems for belief revision
that are both general and efficient. As an illustrative example of work in the area,
the COBA system implements a single revision operator that is well-suited for
computation [4]. This is not a general AGM solver, nor does it work well with
hundreds of thousands of variables.

The predecessor of GenC is the GenB system, which actually can solve revi-
sion problems for any AGM operator [7]. As such, GenB is actually more general
than our current system. This extra generality is not necessarily useful in prac-
tice, however, due to the difficulty specifying orderings. More importantly, the
GenB system is a prototype that is only useful for very small problems with
a handful of variables. From this perspective, GenC is a much more powerful
implementation.

If we are interested in implementing a revision solver that can solve problems
with millions of clauses, there are really only two natural options One choice is
to use a SAT solver as the basis for computation; that is the approach we have
taken here. The other choice is to use an efficient answer set solver. The first step
towards such an implementation is presented in [2], where the logic programs
are used to capture the process of AGM revision. This line of research may in
the future lead to a new belief revision solver that competes with GenC in terms
of running time for large instances.
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6 Conclusion

GenC is a scalable and efficient tool, designed around hardware-friendly parallel
data structures, and utilizing an All-SAT solver for enumerating the list of satis-
fying clauses to the revision formula. It can easily handle revision formulae with
100 variables, and will scale well with more processing cores. Fundamentally, the
limiting factor for our solver is the scale of solutions returned from the All-SAT
solver, requiring algorithmic improvements if we are to exceed our current limits.
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Abstract. We present a novel architecture of a closed domain ques-
tion answering system that learns to answer why-questions from a small
number of example interpretations. We use a probabilistic logic pro-
gramming framework that can learn probabilities for rules from positive
and negative example interpretations. These rules are then used by a
meta-interpreter to generate an explanation in the form of a proof for a
why-question. The explanation is displayed as an answer to the question
together with a probability. In certain contexts, follow-up questions can
be asked that conditionally depend on these why-questions and have an
effect on the probability of the subsequent answer. The presented app-
roach is a contribution to explainable artificial intelligence that aims to
take machine learning out of the black-box.

Keywords: why-questions · Probabilistic logic programming ·
Meta-interpreter · Natural language processing

1 Introduction

Machine Learning (ML) models have recently shown significant success in dif-
ferent applications [9]. As a result, our expectation of systems that rely on these
models is also growing. ML models that we use to build these systems often
make decisions which range between very simple to very complex ones. Most of
these systems use black-box models that are not inherently interpretable. Hence
after a decision for a particular problem is made by a system, a user may want to
obtain a detailed explanation for that decision. This is the main motivation for
Explainable Artificial Intelligence (XAI) [8], since informative explanations are
very important; especially in safety critical situations or financial contexts [10].
An explanation of a decision also improves the acceptability of a prediction
model. This is one of the main reasons that explaining the decision made by the
systems has recently received a lot of attention [10,14].

A natural way to obtain an explanation about a particular decision is to ask
one or more questions. There exist different types of questions such as who-,
what-, when-, where-, why-, and how-questions. In English, the most prominent
type of question to obtain an explanation are why-questions. A why-question is
a question that begins with the word why; followed by an interrogative sentence
c© Springer Nature Switzerland AG 2019
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whose right answer (if there is any) must be either yes or no, and the question
does not ask for an opinion or personal view [4]. Therefore, we can say that “Why
does the car r01 require any repair?” is a why-question whereas “does the car r01
require any repair?” is the interrogative part of that question. A question that
asks for an opinion or a personal view such as “Why do you think that climate
change is responsible for natural disasters?” is not considered as a why-question
since the answer does not necessarily involve facts.

The recent success of model-based question-answering (QA) systems is
remarkable [12]. But the problem is that most of the underlying models are
designed based on a particular dataset. Most of these datasets contain a large
number of questions that can be answered from the surface-level information
(such that the answer is explicitly mentioned in the corpus). Many datasets con-
tain a significant amount of factoid questions that are easy to answer such as
“Who won the Nobel Peace Prize in 2006?”; therefore, even a simple question-
answering model may show a high accuracy using these datasets [5]. In recent
research [5], the AI2 Reasoning Challenge (ARC) revealed that information
retrieval and pointwise mutual information algorithms could not answer a large
number of questions from the ARC question dataset (even though the corpus
contains the information to answer most of these questions). One such question
was “Why can steam be used to cook food?” which requires explanation/meta-
reasoning techniques to answer the question. The AI2 challenge makes it
painfully clear that question-answering tasks require more advanced AI methods
(e.g., multi-hop reasoning and commonsense reasoning) than simple retrieval-
based or word co-occurrence algorithms can deliver. Why-questions are inher-
ently difficult to answer, since we need to find the reasons for one or more facts
being true or false. The literature [13] also shows that association learning tech-
niques are not powerful enough to answer why-questions.

Many of these recent QA systems are built to answer open domain questions
where a domain independent question is asked. The QA system then searches
through some predefined information sources for the relevant information and
tries to find the answer [19]. However, in a closed domain QA system, the infor-
mation related to answer the question is fixed. So when a question is asked, the
QA system only searches the fixed information space to find the answer [11].
There is not a lot of research that has been conducted to develop QA systems
that can answer why-questions [12].

In this paper, we introduce a novel architecture of a closed domain QA sys-
tem that can answer why-questions and follow-up questions based on a knowl-
edge base using a probabilistic logic programming approach [6]. The architec-
ture reflects the concept of XAI and generates an explanation for an answer to
a question in a transparent way. The system is trained for a particular problem
domain to learn the probabilities of the relevant rules from observations (real
world data). The probabilistic rules and the real world data are then stored in
the system which form the knowledge base for the QA system. The user can
ask why-questions or follow-up questions using a guided natural language inter-
face [16]. The system converts the natural language question into a Prolog query
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and tries to answer this query with the help of a meta-interpreter. The meta-
interpreter uses the knowledge base of the QA system to answer the query and
constructs a proof which results in an explanation. While searching for a proof,
the meta-interpreter also collects the probability for the answer. Finally, the
answer is displayed together with the resulting probability.

2 Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) introduces probabilistic reasoning into
logic programs in order to represent uncertain information [6]. In PLP, we can
define the probabilities of rules where the probability is a real number ranging
from 0 to 1. The probability of a rule indicates the percentage of the rule being
true if all conditions (in the body) of the rule are satisfied. In a logic program,
we might have rules where the body (conditions) is the same but the heads are
different. In such a case, we may define the probability of each head being true
when all the conditions in the body are true. Here ideally the total probability
of all rules consisting of the same body will be 1. Let’s assume, we have two
body literals b1 and b2 and two different heads consisting of the atoms h1 and
h2 with probabilities α1 and α2, then we can write rules in the following form
in PLP:

h1:α1 :- b1, b2.
h2:α2 :- b1, b2.

Here α1 and α2 are real numbers in the interval [0, 1] and their summation
is 1. We can represent the above program in a more compact and intuitive way
using Logic Programs with Annotated Disjunctions (LPAD) [18]. In LPAD, all
atoms with probabilities in the head of a rule are separated by a semi-colon
(‘;’), followed by the implication operator (‘:-’) and the body of the rule. So
we can write the above rules in the following equivalent form in LPAD:

h1:α1 ; h2:α2 :- b1, b2.

For our work, we use cplint, a probabilistic logic programming framework,
that supports inference and learning of probabilistic logic programs from obser-
vations [15]. The framework offers a number of learning algorithms and we use
the SLIPCOVER algorithm to learn the probabilities, given the background
knowledge and an initial program. SLIPCOVER is an algorithm for learning
both the probabilities and the structure of LPADs by performing a beam search
in the space of clauses and a greedy search in the space of theories [1]. Note that
in Prolog, a clause may be a fact or a rule. Note also that in our case, we are
only interested in learning the probabilities of rules but not their structure.

3 The Example Scenario and Our Extension

To illustrate the steps of our proposed system, we use the mach example from
the cplint manual as a starting point. This example is used to introduce the
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SLIPCOVER algorithm [15]. The example was originally published in the ACE
Data Mining System User’s Manual [3]. In this scenario a car is taken to a
designated workshop when it exhibits a problem. In the workshop, the car is
initially checked to take an appropriate decision about how to service the car
based on the available information. The decision can be: ok, fix or sendback. The
decision is taken based on the following rules:

– If the car has no worn component, then we say that this car has no problem.
If the car has no problem, then the decision is ok which means it does not
require any repair.

– If the car has a component which is worn and this component is replaceable
in the workshop, then the car will be fixed in the workshop. If the car has a
problem and can be fixed in the workshop, then the decision is fix.

– If the car has a component which is worn and this component is not replace-
able in the workshop, then the car will be sent back to the manufacturer.
If the car has a problem which cannot be solved in the workshop, then the
decision is sendback.

We extended this scenario and added temporal information to the dataset in
order to make the scenario more realistic. Based on the decision and available
information, a further decision can now be made about the timing of the repair.
If the repair decision is fix, we can then find out the time that it takes to repair
the car. We can also find out the time it takes to repair a car if the repair decision
is sendback.

We use this extended scenario to answer why-questions of the following form:

1. Why does the car (ID) require any repair?
2. Why do we need to fix the car (ID)?
3. Why do we need to send the car (ID) back?

The placeholder “ID” in the question is replaced with a real identifier for the
car, before the question is sent to the system. Let’s assume, we want to know
why the car with the identifier r01 needs any repair; therefore, we simply ask
the corresponding question: “Why does the car r01 require any repair?”.

Based on the answer given for the questions (2 and 3), one may ask a follow-
up question. In the case of a follow-up question, one can ask for the required
time it takes to repair the car. If the car does not require any repair, then there
is no option for a follow-up question as the car is ready to be picked up from
the workshop. The follow-up questions have the following form where the ID is
replaced in the same way as for why-questions:

4. How many days will it take to fix the car (ID)?
5. How many days will it take to get the car (ID) back from the manufacturer?

4 System Architecture

In order to answer the questions in Sect. 3, we suggest the architecture shown
in Fig. 1. This architecture consists of four different components (displayed as
rectangular boxes).
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Fig. 1. The QA system architecture

4.1 Learning Parameters Using SLIPCOVER

As stated earlier, we have used cplint’s SLIPCOVER library to learn the prob-
ability for the rules. A cplint program has five parts required to execute the
learning algorithm. We describe these five parts that we have used in our cplint
program for learning probabilities of rules below.

Preamble: At the beginning of a cplint program, we load all necessary libraries,
initialise the algorithms and their required parameters. In our program, we have
first loaded and initialised the SLIPCOVER library, and we have set the same
set of parameters as in the mach example. In our case, we use the following
parameter settings: depth_bound is set to false as the depth of the derivation
is not limited; neg_ex is set to given in order to allow for negative examples
in the interpretations; megaex_bottom specifies that 15 mega-examples are used
to build the bottom clauses; max_iter specifies that beam search should use
10 iterations; max_iter_structure declares that the number of theory search
iterations is 50; and verbosity is 1 for not printing anything while learning.

Listing 1.1. Preamble of our cplint program
:- use_module(library(slipcover )).
:- sc.

:- set_sc(depth_bound , false ).
:- set_sc(neg_ex , given ).
:- set_sc(megaex_bottom , 15).
:- set_sc(max_iter , 10).
:- set_sc(max_iter_structure , 50).
:- set_sc(verbosity , 1).

Background Knowledge: The cplint program contains background knowledge
in a section between the two directives :- begin_bg and :- end_bg. We can
write deterministic clauses (clauses that are true for all interpretations) in this
part of the program and these clauses constitute the background knowledge in
cplint. In our program, we have used the same background knowledge as in the
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mach example. Note that the background knowledge mentioned here is only used
for learning purposes.

Listing 1.2. Background knowledge of our cplint program
:- begin_bg.

component(C) :- replaceable(C).
component(C) :- not_replaceable (C).
replaceable(gear).
replaceable(wheel ).
replaceable(chain ).
not_replaceable (engine ).
not_replaceable (control_unit ).
not_worn(C) :- component(C), \+ worn(C).
one_worn :- worn(_).
none_worn :- \+ one_worn.

:- end_bg.

Initial Program: We can write the initial program between the two directives
:- begin_in and :- end_in. Here we define those rules for which we want
to learn the probabilities. The rules are provided with a random initial prob-
ability between 0 and 1 (exclusive). But this initial probability does not have
any effect on the learning process. We just provide a random probability and
cplint learns the probability from the given examples. In our case, we have three
sets of rules for which we want to learn the probabilities. The first set of rules
(status/2) is used for the car repair decision and the second and third sets of
rules (time_to_fix/2 and time_to_sendback/3) are used to find the time it
takes if the car repair decision is ‘fix’ or ‘sendback’.

Listing 1.3. Initial program of our cplint program
:- begin_in.

status(Car , sendback ):0.5 :-
worn(Car , Component),
not_replaceable (Component ).

status(Car , fix ):0.5 :-
worn(Car , Component),
replaceable(Component ).

status(Car , ok ):0.5 :-
not_worn(Car , Component ).

time_to_fix(Component , 7):0.5 :-
fix_days(Component , Days),
Days =< 7.

time_to_fix(Component , 14):0.5 :-
fix_days(Component , Days),
Days > 7, Days =< 14.

time_to_sendback(Car , Component , 15):0.5 :-
brand(Car , Brand),
locally_available(Component , Brand),
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manufacturer_sendback_time(Brand , Component , Days),
Days =< 15.

time_to_sendback(Car , Component , 30):0.5 :-
brand(Car , Brand),
locally_available(Component , Brand),
manufacturer_sendback_time(Brand , Component , Days),
Days > 15, Days =< 30.

:- end_in.

Language Bias: This part contains input-output declarations, mode dec-
larations and determination predicates. An output predicate is used to
declare the predicate for which we want to apply our learning algorithm
and this predicate appears in the head of a learning rule. It has the
form output(<predicate>/<arity>). In our case, we have three predicates
status/2, time_to_fix/2, and time_to_sendback/3 for which we want to
learn the probabilities. The predicates that appear in the body of a learn-
ing rule are declared as input predicates: either input(<predicate>/<arity>)
or input_cw(<predicate>/<arity>). The predicate input/1 declares an open
world predicate while the predicate input_cw/1 declares a closed world predi-
cate. Under the closed world assumption, only the predicate given as the argu-
ment participates in the learning process and any derived predicates from that
argument predicate are not considered. We have used input_cw/1 to declare
our input predicates since we are only interested in the example data for our
interpretations.

Listing 1.4. Sample input-output declarations of our cplint program
output(time_to_sendback /3).

input_cw(brand /2).
input_cw(locally_available /2).
input_cw(manufacturer_sendback_time /3).

Mode declarations are specified with two predicates: modeh/2 and modeb/2.
The head of a rule is declared with the modeh/2 predicate and the body with
the modeb/2 predicate. Here we consider only those rules that participate in the
learning process. The predicates modeh/2 and modeb/2 have the form modeh(n,
atom) and modeb(n, atom). Here, the argument n (called recall value) is an
integer which declares how many atoms of the specified predicate the algorithm
should consider in the saturation step. We can also use an asterisk (‘*’) as a
recall value which declares that the saturation step should use all the atoms. For
modeb declarations, we additionally have to specify the type of an argument. The
argument type can be an input variable, an output variable or a constant. The
symbols ‘+’, ‘-’ and ‘#’ are used as a prefix of an argument to define its type:
either input, output or constant. For example, the modeb declaration (modeb(*,
brand(+car, -brand))) in Listing 1.5 indicates that in the brand predicate the
first and second arguments are input and output variables, respectively.
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Listing 1.5. Sample modeh and modeb declarations of our cplint program
modeh(*, time_to_sendback(Car , Component , 15)).
modeh(*, time_to_sendback(Car , Component , 30)).

modeb(*, brand (+car , -brand )).
modeb(*, locally_available(-component , -brand )).
modeb(*, manufacturer_sendback_time(-component , -brand , -days )).

Learning with SLIPCOVER requires the declaration of determination/2
predicates. Here we specify which predicate can occur in the head of a rule to be
learned and which predicates in its body. Listing 1.6 shows that we want to learn
the probability of a rule with the predicate time_to_sendback/3 in its head and
the predicates brand/2, locally_available/2 and manufacturer_sendback_
time/3 in its body.

Listing 1.6. Sample determination declarations of our cplint program
determination (time_to_sendback /3, brand /2).
determination (time_to_sendback /3, locally_available /2).
determination (time_to_sendback /3, manufacturer_sendback_time /3).

Example Interpretations: This is the last part of a cplint program where
we put all the data. The example models or interpretations (observations) are
used to provide data for learning in a cplint program. An example model starts
with begin(model(<name>)) and ends with end(model(<name>)). One exam-
ple model of our cplint program is given in Listing 1.7. The model c1 specifies
that the car (car) has a worn component gear and its repair decision is fix (not
ok and not sendback). In our program, we have three sets of examples to learn
three rules. That means one set of examples is used to learn the probability of
the rule status/2, one set for the rule time_to_fix/2 and another one is for
the rule time_to_sendback/3.

Listing 1.7. A sample example model of our cplint program
begin(model(c1)).

status(car , fix).
neg(status(car , ok)).
neg(status(car , sendback )).
worn(car , gear).

end(model(c1)).

In addition, we can define the probability for an example model in the form
prob(P). In that case, the given probability P is the probability of the example
model and used in the learning process. If an example model does not contain
any probability then the probability 1/n is assigned to it where n is the total
number of example models.

After completing the program, we define the fold of the example models
for training using the fold/2 predicate. Afterwards, we learn the probabilities
of the rules using a cplint query of the form induce_par(<list of folds>, P).
In the first argument we use the fold that we defined for training. The query
induce_par/2 executes the parameter learning algorithm and assigns the learned
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probabilities to the rules. The learned rules are returned in the second argument
of the induce_par/2 query (here in a variable P).

4.2 Knowledge Base of the QA System

We use the facts and the learned rules as knowledge base of the QA system to
answer questions. After training in cplint, the learned rules are saved in a file
which constitutes one part of our knowledge base. The learned rules for the car
repair decision are shown in Listing 1.8.

Listing 1.8. Sample learned rules by our cplint program
status(A, sendback) : 1.0 ; ’’ : 0.0 :-

worn(A, B), not_replaceable (B).
status(A, fix) : 0.56 ; ’’ : 0.44 :-

worn(A ,B), replaceable(B).
status(A, ok) : 0.2 ; ’’ : 0.8 :- not_worn(A, B).

The learned rules are the same as those that we specified in the initial pro-
gram (see Listing 1.3). In addition, we have two values in the head of the rules.
The first value is the probability of the rule being true and the second value is
simply obtained by subtracting 1 from the first value indicating the probabil-
ity of the rule being false. In our program, we transform the learned rules into
our own format so that we can later apply our meta-interpreter to these rules to
search for an answer. Such a rule is defined using the predicate rule/3 which has
the following form: rule(Goal, Conditions, Probability). In this rule, the
first argument specifies the goal; the second argument all conditions for which
the goal is true; and the third argument the probability of the rule. We have
used Prolog’s built-in predicate term_expansion/2 to convert the learned rules
into our expected format. Listing 1.9 shows the transformed rules for the rules
in Listing 1.8.

Listing 1.9. Sample rules used in the QA program
rule(status(A, sendback), worn(A, B) is_true &

not_replaceable (B) is_true , 1.0).
rule(status(A, fix), worn(A ,B) is_true &

replaceable(B) is_true , 0.56).
rule(status(A, ok), not_worn(A, B) is_true , 0.2).

In our system, facts represent the real data about cars. We use the predicate
fact/1 to store all the car information about which a user can ask questions.
Let us assume, we have a car car r01 with a worn component gear and the
component gear is replaceable, then we write in our program:

Listing 1.10. Sample facts used in the QA program
fact(worn(car_r01 , gear )).
fact(replaceable(gear )).
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4.3 GNL Interface

A user can ask a question in a guided natural language (GNL). When a why-
question is asked in GNL, the GNL interface receives it and converts it into the
expected Prolog query. For example, the question “Why does the car r01 require
any repair?” is converted into the Prolog query explain(status(car_r01,
ok), P). This query is used by the meta-interpreter to search for an answer
and the interface displays the answer together with the probability P. The user
may then ask a follow-up question. Currently we are using the Prolog console as
the GNL interface. Our ultimate goal is to develop an interface where the user
will be guided to formulate the question in a similar way as that provided by
a programming language editor. The idea is similar to the approach followed in
PENG [16], GINO [2], and Quelo [7].

4.4 Meta-interpretive Question Answering

The meta-interpreter receives a query as input via the GNL interface and pro-
duces a proof which is the evaluation of the query. We have used a modified
version of an existing explanation-based meta-interpreter as a starting point for
our work [17]. The meta-interpreter uses the top level predicate explain/2 and
is called with a query. The meta-interpreter then tries to prove the query using
the knowledge base of the QA system. While evaluating the query, the meta-
interpreter collects those predicates that are used during the proof including the
probability and builds an SLD tree [17]. This information forms the ultimate
answer and explains how the query was answered.

The top level predicate explain/2 is called by sending the query in the first
argument and the value for the probability (of the query being true) is returned
in the second argument. A query is true when the interrogative part of the cor-
responding why-question is true except for Question 1. The predicate explain/2
calls the meta-interpreter to evaluate the given query and to generate the SLD
tree. After the execution of the meta-interpreter, the predicate explain/2 con-
structs the SLD tree to generate the explanation of the query evaluation.

5 Evaluation

Our QA system is trained with the three sets of example models to learn the
probabilities for the status/2, time_to_fix/2 and time_to_sendback/3 rules.
In the training phase, we used 15 examples (as in the mach example) for the
status/2 rule and two sets of 7 examples for time_to_fix/2 and time_to_
sendback/3 rules. After that, we load the knowledge base (rules and facts) into
the QA system. The rules are those rules learned in the training step. We stored
the facts about three cars: car r01, car r02, and car r03. The information about
the cars is populated in such a way that the repair decision for car r01, car r02
and car r03 would be ‘ok’, ‘fix’ and ‘sendback’, respectively. Once the knowledge
base is loaded, the QA system is ready to answer the questions.
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First we ask question (1) about car r01 for which no follow-up question can
be asked. In this case, the system provides the answer (with a probability) and
displays the explanation. Next we ask question (2) about car r02; the system
gives the same kind of detailed information as for question (1) explaining that the
car r02 has a worn gear which is replaceable in the workshop (with probability
= 0.56). After obtaining the answer for question (2), we can ask the follow-
up question (4). Since all information is available in the system to answer this
question, the system generates the answer shown in Listing 1.11. To answer the
follow-up question, the probability is calculated by multiplying the probabilities
for the answer to question (2) with that for the answer to question (4) since (4)
is conditionally dependent on (2). Question (3) and its follow-up question (5)
are answered in a similar way.

Listing 1.11. Sample question-answer for Question 2 and Question 4
Ask your question.
|: Why do we need to fix the car r02?

Answer:
The car r02 needs to be fixed because:

The car r02 has a worn gear.
A gear is replaceable in the workshop.

Probability: 0.56

Ask your question.
|: How many days will it take to fix the car r02?

Answer:
It will take at most 7 days to fix the car r02 because:

A gear can be fixed in at most 7 days.
Probability: 0.37

6 Conclusion

In this paper we have introduced the architecture of a closed domain ques-
tion answering system that generates answers along with probabilities for why-
questions and follow-up questions. The answers are produced with the help of
rules for which the probabilities are learned from example interpretations via
probabilistic logic programming. The QA system takes natural language ques-
tions and translates them into the corresponding Prolog queries. The queries are
evaluated with a meta-interpreter that generates a proof along with a probability
for a query from the knowledge base. The novelty of our QA system is that it
answers questions in terms of explanations along with their uncertainty wherein
the uncertainty comes from the probabilistic rules. The QA system displays the
answer in natural language where a fact is converted into a natural language
format with appropriate information. In the future, we plan to use a controlled
natural language [16] to make the proof human readable while keeping it machine
processable at the same time. We will also investigate how the QA system will
perform in a more complex scenario where the learning algorithm has to deal
with a much larger amount of training data.
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Abstract. Network representation learning (NRL) plays a vital role in a
variety of tasks such as node classification and link prediction. It aims to
learn low-dimensional vector representations for nodes based on network
structures or node attributes. While embedding techniques on complete
networks have been intensively studied, in real-world applications, it is
still a challenging task to collect complete networks. To bridge the gap, in
this paper, we propose a Deep Incomplete Network Embedding method,
namely DINE. Specifically, we first complete the missing part includ-
ing both nodes and edges in a partially observable network by using the
expectation-maximization framework. To improve the embedding perfor-
mance, we consider both network structures and node attributes to learn
node representations. Empirically, we evaluate DINE over three networks
on multi-label classification and link prediction tasks. The results demon-
strate the superiority of our proposed approach compared against state-
of-the-art baselines.

Keywords: Incomplete network embedding · Network completion ·
Network representation learning · Deep learning

1 Introduction

Information networks (e.g. citation networks, social networks, biological net-
works) contain different types of entities and intricate relations. Analyzing these
networks plays an important role in many disciplines [29]. For example, in cita-
tion networks, we can find influential entities (i.e., scholars, papers) by calculat-
ing the importance of vertices [2,5]. In social networks, clustering users into com-
munities is useful for recommendation [25,26]. In biological networks, measuring
the similarity between proteins helps us better understand protein interactions
[27]. However, with the increase of entities and relations in real-world networks,
it is challenging to explore the underlying network structures.
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Fig. 1. The overview of DINE framework.

To find an efficient way to model networks, researchers focus on network
representation learning (NRL). NRL aims to learn latent, low-dimensional rep-
resentations for nodes, with preserving not only network topologies but also
node contents. Perozzi et al. [19] first combine NRL with skip-gram and pro-
pose Deepwalk, which lays a solid foundation for future development in this
area. Recent advances in NRL have witnessed powerful representations abilities
such as DeepGL [20], DANE [7]. Taking advantage of its powerful representa-
tion ability to model complex structures, NRL achieves significant performance
in downstream tasks such as node classification [3,30], link prediction [8,16], and
network visualization [21].

In practice, many real-world networks are incomplete [14], which further
complicates the embedding process. For example, citation networks are usually
incomplete because it is impossible for academic search engines to collect every
paper. In biological networks, there exist a huge amount of undiscovered links
because of the complexity of gene expression. Analyzing incomplete network
makes a deviation because only a part of links are observed, which alters our
estimates of network-level statistics. To fill this gap, researchers focus on network
completion problem, which makes use of observed connectivity patterns to infer
the missing part. However, existing studies only pay attention to missing links
inference [6,11], few of them focus on the incomplete networks with both missing
nodes and edges [13].

To solve the problem, we present a new framework, named DINE for deep
incomplete network embedding. DINE intelligently combines network comple-
tion and NRL into a unified framework. As shown in Fig. 1, DINE contains two
pivotal steps, including network recovery and network embedding. Specially,
we first capture the connectivity patterns from the partially observable net-
work and fit the generative graphs model to estimate missing components. To
model the network more accurately, we consider both network structures and
node attributes to learn the representations of the recovered network by using
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a deep autoencoder. Finally, we empirically verify the performance of the pro-
posed framework on three real-world networks. Experimental results illustrate
the significant representation ability of DINE in partially observable networks.
Our main contributions can be concluded as follows:

(1) We present a new framework, namely DINE, for deep incomplete network
embedding. DINE intelligently combines network completion and NRL into
a unified framework, which provides an effective solution for data missing.

(2) DINE considers not only topology structure but also node attributes for
embedding. It can accurately and effectively model node proximity and
underlying structure in the joint space.

(3) We extensively validate the framework on three real-world networks through
multi-label classification and link prediction tasks. The results demonstrate
the superiority of our proposed approach compared with state-of-the-art
baselines.

The remainder of this paper is organized as follows. Section 2 summarizes
related work. In Sect. 3, we focus on problem definition. Section 4 introduces
the implementation details of the proposed framework. Experimental results are
provided in Sect. 5. Finally, we conclude this work in Sect. 6.

2 Related Work

The framework we proposed in this paper is related to two areas of research,
including network completion and NRL techniques.

2.1 Network Completion

Network completion deals with the problem of inferring missing nodes and edges
in networks. Network completion is similar to matrix completion [12], which aims
to complete the matrix with elements missing. However, network completion is
more arduous because of network diversity. For missing edges, it is an attractive
way to recover the original network by calculating node similarity. Another way
to complete missing edges is considering shared node neighbors [4]. In cases
where both nodes and edges are missing, we can utilize a generative graphs
model named KronFit [15] to generate complete networks whose structures are
similar to real-world networks. Kim et al. [13] combine expectation-maximization
into KronFit, and propose a powerful algorithm KronEM, which is more effective
for recovering the network.

2.2 Network Representation Learning

NRL aims to embed each node in the network into a low-dimensional repre-
sentation. Existing NRL algorithms can be divided into four categories. The
first category is matrix factorization based methods. They first represent the
connections between network vertices and use matrix factorization to obtain
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Table 1. The description of notations

Notation Description

NG number of nodes in the complete network

N ′ Number of nodes in the incomplete network

NM Number of missing nodes

NR Number of recovered nodes

xt Input of network structure view T

xp Input of node attribute view P

xt̂t Reconstruction output of xt by self-view

xt̂p Reconstruction output of xt by cross-view

xp̂t Reconstruction output of xp by self-view

xp̂p Reconstruction output of xp by cross-view

K Number of encoding layers

yt(K) Representation in network structure view T

yp(K) Representation in node attribute view P

α Balance reconstruction errors of self-view and cross-view

β Balance reconstruction errors of G′ and GM

representations. IsoMAP [23] constructs an affinity network by feature vectors.
It represents nodes with the solved leading eigenvectors. The second category is
random walk based methods. DeepWalk [19] utilizes random walk to learn struc-
tural information and uses skip-gram to obtain the representations. Node2vec
[10] changes the strategy of random walk to capture a more global structure. The
third category is edge modeling based methods. They utilize node-node connec-
tions to learn node representations directly. LINE [22] uses first-order proximity
and second-order proximity to obtain local and global structure information.
The fourth category is deep learning based methods. They could extract highly
non-linear structure automatically by using deep learning techniques. SDNE [24]
preserves first and second order proximities for highly non-linear structures via
a deep autoencoder.

3 Preliminary

In this section, we first describe the notations used in this paper. We then for-
malize the problem of network embedding in an incomplete network.

3.1 Notations

We denote the complete network as G = (V ,A,P), where V =
{
v1, v2, ..., v|V |

}

indicates the nodes in the network. A ∈ R
|V |×|V | represents the adjacency matrix

and P ∈ R
|V |×|P | denotes the node attribute matrix, where |V | and |P | represent
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the dimension of adjacency matrix and node attributes, respectively. Similarly,
we define the incomplete network, the missing network, and recovered network
as G ′ = (V ′,A′,P ′), GM = (VM ,AM ,PM ), GR = (VR,AR,PR), respectively.
Table 1 lists the meaning of the notations mainly used in this paper.

3.2 Problem Formulation

The purpose of network completion is to infer the missing part of the incomplete
network, how to infer the missing network GM from the observable network G ′

is crucial to the problem. If we use adjacency matrices to represent the network,
then the network completion problem can be transformed into matrix completion
problem. In general, classical matrix completion problem is to determine the
value (0 or 1) of elements in the missing part in a binary matrix. In this paper,
we assume that the number of missing nodes is known. If not, the standard
methods for estimating the size of hidden (missing) populations can solve this
problem [17].

Although network recovering helps in representing the incomplete network,
there are some problems in the representation learning process. On the one hand,
many network representation methods are shallow models. Network complete-
ness is essential for extracting local or global topology information. On the other
hand, most methods can’t capture non-linear relations between nodes [24]. Thus,
we need to consider not only topology information for non-linear relations but
also node contents such as node attributes. Besides, A′ and P ′ preserve the infor-
mation of a network, which is used to represent the network in the joint space.
Thus, nodes with similar topology structures or attributes will be closer in the
representation dimension.

4 Design of DINE

In this section, we present a novel framework, namely DINE, to solve the prob-
lem of network embedding in incomplete networks. Our framework contains two
crucial components, network recovery and network embedding. Firstly, we dis-
cuss how to recover the incomplete network. Then, we introduce the process of
network representation learning, which considers both topology information and
node attributes.

4.1 Recovery of Incomplete Network

To recover the network with nodes and edges missing, we model the incomplete
network with the Kronecker graphs model [15]. In detail, we use the incomplete
network to fit the Kronecker graphs model in network structure and estimate
the missing part, and then re-estimate model parameters. These two steps are
iterated until the model parameters converge. Finally, we obtain the missing part
of the network.
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The purpose of the network completion is to find the most likely structure
of the missing part GM . We connect the incomplete network and the missing
network by network generation parameters Θ. Let σ denote the mapping among
nodes in the recovered network, incomplete network, and missing network. The
mapping σ indicates a permutation of set {1, ..., NG}. The first N ′ elements of σ
map the nodes of GR to the incomplete network and the remaining NM elements
of σ map the nodes of missing part GM . The likelihood P (G′, GM , σ|Θ) can be
represented as:

P
(
G′, GM , σ|Θ)

=
∏

auv=1

[
Θk

]

σ(u)σ(v)

∏

auv=0

(
1 −

[
Θk

]

σ(u)σ(v)

)
(1)

where Θk is the adjacency matrix generated by model parameters Θ.
[
Θk

]
σ(u)σ(v)

denotes the (σ (u) , σ (v))-th element of matrix Θk. auv is the (u, v)-th element
of AR, which is the the adjacency matrix of the recovered network.

Next, we consider the edges in the missing part and σ as the latent variables.
E-step is to sample the missing part and permutation. M-step aims to optimize
the parameters Θ by stochastic gradient descent process. Then we iterate E-step
and M-step until parameters Θ converge. The steps could be described as:

E-step :
(G(t)

M , σ(t)) ∼ P (GM , σ|G′, Θ(t)) (2)

M-step :
Θ(t+1) = arg max

Θ∈(0,1)2
E[P (G(t)

M , σ(t), G′|Θ)]. (3)

In detail, we first initialize model parameters Θ and generate a stochastic
network. Then we sample the missing part GM and node mapping σ by Gibbs
sampling, which can be considered to recover the missing part of the network.
Besides, we optimize the model parameters Θ and iterate the above steps until
the parameters converge. Finally, we obtain the most likely instances of the
missing part and node mapping.

Table 2. Layer structures of MVC-DNER on three datasets

Dataset Layers in view V Layers in view P

Citeseer NR-500-128 3,703-600-128

DBLP NR-800-128 9,662-900-128

BlogCatalog NR-500-128 39-4

4.2 Recovered Network Embedding MVC-DNER

In terms of network representation, we consider not only network topology struc-
ture but also node attributes. Furthermore, inspired by MVC-DNE [28] which
utilizes a deep autoencoder, we propose MVC-DNER to capture non-linear struc-
tures and node attributes in the recovered network. Figure 2 shows that the
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embedding part has network structures view T and node attributes view P ,
which uses deep autoencoder to learn latent information in each view. We take
the adjacency matrix xt and the attribute matrix xp of the recovered network
as input. In the encoding process, input features of one view could encode some
shared latent information reflecting the input of the other view. In the decoding
process, latent representations in one view could reconstruct the input of another
view. The loss function is defined as:

L(xt, xp; θ) = Lt(xt, xp; θ) + Lp(xt, xp; θ) (4)

Lt(xt, xp; θ) = β

|V ′|∑

i=1

((1 − α)
∥
∥xti − xt̂ti

∥
∥2

2
+ α

∥
∥xti − xt̂pi

∥
∥2

2
)

+(1 − β)
|VM |∑

i=1

((1 − α)
∥
∥xti − xt̂ti

∥
∥2

2
+ α

∥
∥xti − xt̂pi

∥
∥2

2
)

(5)

Lp(xt, xp; θ) = β

|V ′|∑

i=1

((1 − α)
∥
∥xpi − xp̂t

i

∥
∥2

2
+ α ‖xpi − xp̂p

i ‖22)

+(1 − β)
|VM |∑

i=1

((1 − α)
∥
∥xpi − xp̂t

i

∥
∥2

2
+ α ‖xpi − xp̂p

i ‖22)
(6)

where xt̂ti and xt̂pi are the reconstruction outputs of xti. xp̂t
i and xp̂p

i are the
reconstruction vectors of xpi. α and β are parameters to adjust the proportion
of self-view and cross-view reconstruction errors, recovered nodes and observed
nodes reconstruction errors, respectively. θ = {W (l), b(l), Ŵ (l), b̂(l)}K

l=1 denotes
parameters including the weights W and bias b in the deep autoencoder.

Fig. 2. Deep autoencoder MVC-DNER.



172 K. Hou et al.

The loss function is minimized by stochastic gradient descent. Thus, the
learning representations preserve not only network structures information but
also node attributes information.

5 Experiments

In this section, we evaluate our framework on three datasets through multi-label
classification and link prediction tasks. We first introduce three datasets and
baseline methods. Then we describe evaluation metrics and parameter settings
of the methods. Finally, we present the performance of DINE and compare it
against state-of-the-art baselines.

5.1 Datasets

We use three datasets including two academic datasets (Citeseer1 and DBLP2)
and a social dataset BlogCatalog3.

(1) Citeseer contains citation information of papers. In the citation network,
each node represents a paper and edges reflect citation relationship. The
citation network constructed by Citeseer contains 3,312 papers divided
into six classes including Agents, AI, DB, IR, ML, and HCI. Besides, the
attribute feature of each paper is a 3,703 dimensional binary vector based
on the topics.

(2) DBLP is also a citation dataset which covers useful information on papers
such as authors, year, publisher, and title. It provides open bibliographic
information of major computer science journals and proceedings. We choose
8,192 papers from 10 research domains. We choose the title of papers as
the attribute and use a 9,662 dimensional binary vector to represent the
attribute feature.

(3) BlogCatalog is a social blog directory that manages bloggers and their
blogs. We choose some data which contains 4,096 nodes, 38,983 edges, and
39 groups. Nodes represent bloggers and edges represent the friendship
between bloggers. Besides, each blogger belongs to one or several groups
based on interesting.

5.2 Baseline Methods

We use the following methods as our baseline methods. We choose four network
representation learning methods based on matrix factorization, random walk,
and deep learning, respectively.

1 https://linqs.soe.ucsc.edu/data.
2 https://www.aminer.cn/billboard/citation.
3 http://socialcomputing.asu.edu/datasets/BlogCatalog.

https://linqs.soe.ucsc.edu/data
https://www.aminer.cn/billboard/citation
http://socialcomputing.asu.edu/datasets/BlogCatalog
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(1) GF [1] is a matrix factorization based method. It relies on partitioning
a graph to minimize the number of neighboring vertices. In addition, it
preserves first order proximity and allows for linear scalability.

(2) HOPE [18] is also based on matrix factorization. It provides an efficient way
to preserve high-order proximities of large-scale graphs. It is also capable
of capturing the asymmetric transitivity.

(3) Node2vec [10] is a shallow model. It designs a flexible neighbor sampling
strategy based on Deepwalk. It can preserve both local structure and global
structure to learn network representations.

(4) SDNE [24] is the first network representation learning method based on
deep learning. The deep autoencoder captures the non-linear network struc-
ture. It also can preserve the local and global network structure.

5.3 Parameter Settings

Our framework consists of network completion and recovered network repre-
sentation learning. In the network completion, the Kronecker parameter Θ is
random initialization. The neural network structure of MVC-DNER is listed in
Table 2. We set the learning rate as 0.001. The mini-batch size of optimization
is 50. The parameters for balancing the importance of self-view and cross-view
α, recovered nodes and observed nodes β are set to 0.5 and 0.8, respectively.

The parameter settings of these baseline methods including GF, HOPE,
Node2vec, and SDNE follow a NRL survey [9]. The learning rate of SGD is
0.0001, and max iterations are 5,000 in GF. The higher-order coefficient of HOPE
is 0.01. In Node2vec, we set the window size as 10, the walk length as 40, walks
per node as 40. The dimension of network learning representation is 128 for all
methods.

5.4 Experimental Results

Multi-label Classification. We aim to learn representations in an incomplete
network. To achieve this goal, we need to remove 5%-30% nodes and the corre-
sponding edges. We first learn the representations based on remaining nodes and
take the representations as the input of the classification model. Then we divide
the labeled nodes into training set and testing set. The portion ratio of training
nodes varies from 10% to 90%. We use macro-F1 to evaluate the performance
of the classification model. Besides, the experiment runs 10 times, and we take
the average of results as the final results. Table 3 lists the classification results
for each method, where Mr is the portion ratio of missing nodes.

From the table, we can observe that the performance of DINE is better
than any other baseline methods, especially in the Citeseer dataset. The perfor-
mances of these methods gradually become worse as the portion of missing nodes
increasing. Besides, two matrix factorization methods have terrible performance
in Citeseer. Most methods have a relatively better performance in the DBLP
dataset.
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Table 3. Multi-label classification results (macro-F1) on two datasets with the portion
of missing nodes

Datasets Mr GF HOPE Node2vec SDNE DINE

Citeseer 0.05 0.253 0.265 0.431 0.366 0.642

0.10 0.231 0.253 0.423 0.365 0.636

0.15 0.202 0.257 0.412 0.358 0.627

0.20 0.203 0.244 0.419 0.352 0.629

0.25 0.235 0.249 0.403 0.346 0.617

0.30 0.225 0.243 0.388 0.335 0.614

DBLP 0.05 0.579 0.575 0.582 0.585 0.595

0.10 0.575 0.574 0.594 0.558 0.601

0.15 0.541 0.534 0.584 0.571 0.594

0.20 0.576 0.587 0.564 0.566 0.591

0.25 0.574 0.580 0.561 0.577 0.593

0.30 0.572 0.571 0.558 0.573 0.590

Link Prediction. Similar to the task of multi-label classification, we also remove
partial nodes and the corresponding edges. Then we remove 20% edges of the
remainder network as links for prediction and consider them as positive samples.
Besides, we randomly select unconnected node pairs as negative samples. The
number of negative samples is the same as positive samples. From the results
of link prediction presented in Fig. 3, we can see that DINE achieves significant
improvements in AUC over the baselines in all datasets. As the portion of missing
nodes increasing, the performances of these methods have a downward trend.
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Fig. 3. Link prediction results (AUC) on three datasets with the portion of missing
nodes.
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6 Conclusion

In this paper, we have presented a framework named DINE, which aims to learn
node representations in incomplete networks. The framework is divided into
two parts: network completion and recovered network representation learning.
Specifically, we recover the missing part of the incomplete network based on the
combination of EM approach and Kronecker graphs model. After recovering the
incomplete network, we propose an algorithm named MVC-DNER to learn node
representations for the recovered network. MVC-DNER uses the deep autoen-
coder to learn representations, which preserves both network structures and node
attributes. Experimental results on three real-world network datasets show the
significant performance of our proposed method. The future work is primarily on
extending DINE to heterogeneous networks containing different types of nodes
and edges.
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Abstract. Link prediction is an important task for analyzing social
networks which also has other applications such as bioinformatics and
e-commerce. Network representation learning (NRL), which can signifi-
cantly enhance the performance for link prediction, has attracted much
attention in recent years. However, the existing NRL methods mainly
focus on observed network structures without considering hidden pre-
diction knowledge in the representation space. Meanwhile, some random
walk based NRL methods are dissatisfactory to learn link knowledge in
dense networks with large scales. In this paper, we propose a predic-
tive representation learning (PRL) model, which unifies node represen-
tations and motif-based structures, to improve prediction ability of NRL.
We firstly enhance node representations based on motif-biased random
walks and then employ L2-SVM to learn motif-connected node-pairs. By
jointly optimizing two objectives of existent and nonexistent edges rep-
resentations, we preserve more information of nodes in representation
space based on supervised learning. To evaluate the performance of our
proposed model, we implement experiments on 5 real data sets. Sim-
ulation results illustrate that our proposed model achieves better link
prediction performance compared with other state-of-the-arts methods.

Keywords: Link prediction · Network representation learning ·
Network motifs

1 Introduction

With the explosion of big data, the network has become an effective carrier to
understand user behaviors due to its wealthy information and advanced research
theories [7]. Predicting links in the network is the core task for various applica-
tions in the data mining field, which can significantly enhance user experience
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 177–188, 2019.
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and query efficiency. For example, a proper prediction for new friends can attract
more users for online social medias, and a highly relevant documents ranking can
promote searching efficiency for web searching engine [8]. There are two main
categories for link prediction: future link prediction and missing link prediction
[6]. The former intends to predict new links establishment in a dynamic network
within foreseeable future [17], and the latter tries to predict missing links in a
static network. As the online data is often incomplete, we focus on missing links
prediction based on partially obtained data to mine users’ behaviors.

The fundamental points for solving link prediction problems generally focus
on extracting useful information from nodes and the topology of network. The
network representation learning (NRL) which embeds the network into a low-
dimensional representation space, provides an effective approach for researchers
to learn link prediction [15]. The NRL often focuses on nodes’ locations in the
space which achieves better performance on network reconstruction and network
inference [3]. However, few studies preserve dedicated features of nodes and edges
for link prediction.

Network motifs occurring frequently in complex networks serve as basic build-
ing blocks of networks, which are essential to understand particular networks [2].
Processing motifs instead of individual nodes can not only simplifies networks,
but also emphasizes the structural features of networks. Hence, some studies
utilize motifs to help node representation learning to reduce the computational
complexity [1,18]. However, these studies mainly focus on specific network roles
as they are not generally for link prediction problems.

In this paper, we propose a joint learning model called Predictive Represen-
tation Learning (PRL) to achieve better performance for link prediction. The
PRL combines NRL with L2-SVM classification model to enhance the predic-
tive ability for node representations, which firstly learns node representations by
overt structure of the motif-based network. Then we infer motif-connected edges
by L2-SVM model to learn link prediction knowledge. The node representations
update them the integrated loss function of skip-gram and SVM, which pro-
motes performance of each other timely and interactively. Simulation results on
real data sets demonstrate that our proposed model is promising compared with
other state-of-the-arts methods. The contributions are summarized as follows,

– We learn the network based on the motif-biased random walk, which not only
explores the network structure efficiently, but also preserves more information
for nodes representations in the latent space.

– We propose a joint learning model called PRL, which unifies NRL and super-
vised learning on the prediction knowledge to improve the predictive perfor-
mance.

– The experimental results on real data sets verify that our proposed model
outperforms other state-of-the-arts methods in densely connected networks,
which are widespread in the real world.

The rest of paper is organized as follows. We present the Predictive Represen-
tation Learning model in Sect. 2. Some baselines and experimental results are
provided in Sect. 3, and Sect. 4 concludes this paper.
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2 Predictive Representation Learning

2.1 Problem Definition

Considering an undirected network G = (V,E), where V is the vertex set and
E = E+ ∪ E− ∪ E∗ is the edge set containing all possible links of V . Notice
that E+ is the existent edge set, and E− is the nonexistent node-pairs set. E∗

is the set of unknown node-pairs in the graph. The task of link prediction is to
assign a clear status (existent or nonexistent) for node-pairs in E∗. Our proposed
model embeds each node vi ∈ V into a low-dimensional space xi ∈ Rn, which
are treated as features for link prediction.

2.2 Existent Edge Representations

The representation learning of a network is to preserve structural properties
among nodes as much as possible by exploiting low-dimensional vectors. The
existent edges connected with a node are intuitive features to investigate node
representations. However, individual node contains little connection information,
and mining neighbours of each node in the network has tremendous complexity.
Thus we develop the motif-biased random walk on a graph as an initial prepro-
cessor to formalize the sequence for each node. We define two parameters p and
q to guide the random walk. We set the weight of edge connected to s as

w(s, t) = k · |M(s) ∩ M(t)| + 1, (s, t) ∈ Es, (1)

where M(s) and M(t) is the set of motifs containing node s and t, respectively, k
is the order of motifs, and Es is the edge set for edges containing node s. Then,
the parameter p indicating the first-order walking probability from s transferring
to t is calculated by

p(s, t) =
w(s, t)

∑
x∈Es

w(s, x)
. (2)

The parameter q is utilized to guide the second-order walks, which are based on
both current and previous movements. We assume that the previous node is s,
and the current node is t. Thus the probability q from node t transferring to x
is expressed as

q(s, t, x) =
{

p(t, x) If s, t, x in the same motif,
1 Otherwise. (3)

p(t, x) is the probability from t transferring to x, which is defined above. The
overall random walk procedure is shown in Fig. 1.

We capture nodes’ sequences by utilizing motif-biased random walk, in which
nodes in the same motif are closer to each other. Then we input these sequences
to Skip-gram [9], which is a word embedding model for co-word analysis in
contexts. Therefore, each node obtains two kinds of representations. One is xi

when the node i is the source node to discover its proximity. The other is xi
′
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Fig. 1. The overall random walk procedure of our proposed model, which starts from
s then to t and finally arrives to x1.

when i is treated as co-occur partners of other nodes. The conditional probability
function for node u generated by node i is given by

p(u|i) =
exp(xu

′Txi)
∑V

t exp(xt
′Txi)

, (4)

where V is the vertex set of the network. We employ logarithm likelihood func-
tion for all edges in the network, so that the loss function of NRL can be defined
as

Lr = −
E+
∑

(i,j)

log p(j|i) = −
E+
∑

(i,j)

log
exp(xj

′Txi)
∑V

t exp(xt
′Txi)

, (5)

where E+ is the existent edge set. We employ Negative Sampling (NEG) method
instead of Huffman Tree to reduce computational complexity, and the loss func-
tion can be formulated as

Lr = −
E+
∑

(i,j)

(log σ(xj
′Txi) +

K∑

t

Et∼p(i)[log σ(−xt
′Txi)]), (6)

where σ(·) is the sigmoid function, K is the number of negative samples. p(i) is
the noise distribution which is randomly obtained by:

p(i) = λdm(i)3/4/
∑

i∈K

dm(i)3/4, (7)

where dm(i) is the number of motifs containing node i and λ is the tuning
parameter for different networks.

2.3 Nonexistent Edge Representations

Missing link prediction can be viewed as a binary classification problem, i.e.,
existent links and nonexistent links. Thus, we improve the prediction ability
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of node representations according to an accurate classifier. Based on network
motifs, we divide nonexistent edges into two sets. One is the motif-connected
edge set E−

c and the other is the motif-disconnected edge set E−
d . We defined

that there is a motif-connected edge between two nodes if two of their respec-
tive motifs have common nodes. In other words, u and v are motif-connected
if there exists C(u) ∈ M(u) and C(v) ∈ M(v), which C(u) ∩ C(v) �= ∅ and
C(u) �= C(v). M(u) and M(v) are the motif sets containing u and v, respectively.
C(u) and C(v) represent one of u’s motif and v’s motif, respectively. Otherwise,
if two nodes do not construct any motifs in the network, the edge between them
is recognized as motif-disconnected edge. According to motifs structure between
two nodes, motif-connected edges may be mistakenly regarded as existent edges
in latent space. We apply Hadamard product of two nodes’ representations as
the composition function to capture the features of node-pairs. Therefore, we
formulate the edge representations as yij = xi ∗ xj , where ∗ is Hadamard prod-
uct of xi and xj . We adopt a regularized linear L2-SVM classifier to train the
features mentioned above [4]. Combining L2-SVM with the edge representations,
we minimize the loss function as

Ls = C
∑

(i,j)∈E+∪E−
c

max(0, 1 − lij(wT yij + b))2 +
1
2
wTw, (8)

where C is the regularization parameter, E+ is the existent edge set of the net-
work and E−

c is the motif-connected edge set. lij is the label of node-pairs, i.e.,
lij = 1 for (i, j) ∈ E+ and lij = 0 for (i, j) ∈ E−

c . w is the normal vector, and b
is the threshold of the hyperplane which we optimize for the classifier. Through
the L2-SVM classifier, we train data from feature space to learn prediction infor-
mation (the hyperplane) to classify existent edges and motif-connected edges in
representations.

2.4 Joint Learning

We propose PRL model by unifying them together whose loss function that we
attend to minimize is

min LM = min(Lr +
1

1 + k
Ls) (9)

where k is the order of the network motifs and 1
1+k is the weighted parame-

ter for balancing the importance of Lr and Ls, which are loss functions men-
tioned above for different types of edges. Before we optimize LM , we employ
undersampling method to avoid imbalance problem caused by E− � E+. The
undersampling method for a network is to randomly select a subset E−

s ⊂ E−

satisfying |E−
s | = |E+| The overview of predictive representation learning is

shown in Fig. 2. During predictive representation learning, we first utilize motif-
based random walk to capture a sequence for each node. For existent edges, we
put sequences of component nodes in to Skip-gram model to achieve their edge
representation vectors as existent edge representations. For non-existent edges,
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Fig. 2. The overview of predictive representation learning.

we recognize motif-connected edges and utilize Hadamard product to achieve
their edge representation vectors as non-existent edge representations. Unifying
the loss functions of Skip-gram and L2-SVM, we find the optimal hyperplane for
the L2-SVM model, which classifies links into two types (i.e., existent links and
non-existent links).

The parameter learning for our model is presented in Algorithm 1. We adopt
SGD method to iteratively update the parameter for each node in the training
network. The outputs are the node representation matrix Q and the hyperplane
determined by w and b. In a single iteration of parameter learning, we process
two objectives sequentially, i.e., we first optimize Lr to update x for each node
(line 4 to 10), and then use the node representation matrix from first steps to
update w and b for Ls (line 11 to 15). Specifically, the learning rate for updating
parameter on Lr is α1, and we sample existent node-pairs (i, j) and k negative
node-pairs (i, k) from E+. In addition, we obtain training data Eo for Ls by
combining motif-connected edge set E−

cs with existent edge set E+. Then we
optimize Ls with the learning rate α2 to update parameter. The iteration will
terminate until convergence or the number of iterations equals to the number of
the setting maximum learning iteration.

3 Experiments

3.1 Data Sets

In this section, we use 5 real data sets including a biological network, a routing
network, a social network, a scientific collaboration network and a infrastruc-
ture network, to evaluate the performance of our model. All these data sets are
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Algorithm 1. Parameter Learning for PRL
Input:

Training network G = (V, Et), Et = E+ ∪ E−
s

Output:
Node representation matrix Q, hyperplane determined by w and b

1: Initialize Q = {x1, x2, ..., xn}, co-occur matrix Q′ = {x1
′, x2

′, ..., xn
′}, and w, b for

hyperplane
2: repeat
3: for each i ∈ V do
4: Sample node-pairs (i, j) ∈ E+

5: xi ← xi − α1
∂Lr
∂xi

6: xj
′ ← xj

′ − α1
∂Lr
∂xj

′

7: Randomly select negative samples K by Et∼p(i) from E+

8: for each k ∈ K do
9: xk

′ ← xk
′ − α1

∂Lr
∂xk

′
10: end for
11: Obtain E−

cs ⊂ E−, Eo = E+ ∪ E−
cs

12: for each (i, l) ∈ Eo do
13: xi ← xi − α2

∂Ls
∂xi

, xl ← xl − α2
∂Ls
∂xl

14: w ← w − α2
∂Ls
∂w

, b ← b − α2
∂Ls
∂b

15: end for
16: end for
17: until Convergence or max iterations

retrieved from the Network Repository [12]. The detailed statistics for these data
sets are presented in Table 1.

3.2 Baseline Methods

To verify the effectiveness of PRL model, we compare PRL with several baseline
methods, which include 4 widely used link prediction methods [6], i.e., Common
Neighbours (CN), Adamic-Adar Index (AA), Jaccard Index (JA), Simrank, 3
NRL models, i.e., Deepwalk [11], Node2vec [5], Line [13] and 2 advanced NRL
models using supervised labels, i.e., SDNE [16], GAT [14]. By separately con-

Table 1. The statistics of data sets

Nodes Edges AvgDegree Triangles

Grid-human 9,186 31,038 6.76 17,192

CondMat 21,363 91,286 8.55 171,051

Openflights 2,905 15,645 10.77 72,852

Hamsterster 2,000 16,097 16.10 53,251

Routers 2,113 6,632 6.28 10,404
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sidering the impact of motif-based random walk and supervised label on our
proposed model, we conduct experiments as PRL-M and PRL-L, respectively.

3.3 Experimental Settings

In our experiments, we fully take triangular motif which has highest Z-score [10]
in real network to investigate link prediction. We set the dimension size for all
latent space as 128, the window size as 10, the walk length as 80, and walks
per node as 10. The NEG for our model and Line is 5 and the regularization
parameter C is 1. In addition, both learning rates α1 and α2 are set as 0.001.
Specifically, p = 0.25, q = 0.5 in Node2vec and β = 0.8 in Simrank are set in
our experiments. The reconstruction weight of non-zero elements is 10 and the
weight of first-order term is 0.05 in SDNE.

Moreover, we split the edge data (existent and nonexistent) into 80% train-
ing set and 20% testing set. We adopt two commonly used evaluation metrics,
i.e., area under the receiver operating characteristic curve (AUC) and average
precision (AP), to measure the link prediction performance of different meth-
ods. Moreover, NRL models (Deepwalk, Node2vec, Line) only obtain the node
representation matrix. Thus, we utilize Hadamard product of nodes representa-
tions to extract the features of node-pairs and apply L2-SVM to evaluate their
prediction performance.

3.4 Experimental Results

Table 2 reports the AUC and AP values for baseline methods and our proposed
method. The performances of methods on different networks depend on the prop-
erties of networks. We can see that our method gains average performance on
Grid-human and Routers networks because of the sparsity of these networks,
which demonstrates the limitation of our proposed method. However, if net-
works have dense connections and more triangles, meaning that we can detect
their motifs obviously, our proposed method outperforms other methods. For
other three networks (CondMat, Openflights, Hamsterster), our method achieves
AUC and AP values higher than 0.9. We can observe that in dense networks,
our proposed model outperforms other three kinds of baselines about 9.3%, 5.6%
and 2.7% respectively on AUC and gains 8.4%, 5.4% and 2.8% improvements
respectively on AP. From the performance of PRL-M on different data sets, we
can see that PRL-M gains 1.4% to 5.3% improvements on AUC and 1.6% to 3.7%
on AP values compared with widely-used methods and NRL methods. It shows
that motif-based random walk guarantees the model performance in dense net-
works. The performance of PRL-L gains 1.4% to 4.7% improvements compared
with baselines, which proves the superiority of learning network knowledge in a
supervised manner. Integrating motif-based random walk and supervised learn-
ing into NRL, our proposed model outperforms baselines for link prediction.

For a more convincing analysis, we compare the performance on three dense
networks (CondMat, Openflights, Hamsterster) with different percentage of
training set from 20% to 100%. The result is presented in Fig. 3, from which
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Table 2. AUC and AP scores for link prediction

Grid-human CondMat Openflights Hamsterster Routers

AUC CN 0.759 0.865 0.855 0.874 0.769

JA 0.753 0.882 0.857 0.863 0.785

AA 0.762 0.882 0.858 0.875 0.775

Simrank 0.756 0.894 0.843 0.851 0.773

Line 0.75 0.907 0.857 0.904 0.789

Node2vec 0.814 0.915 0.905 0.898 0.8

Deepwalk 0.784 0.896 0.916 0.902 0.815

GAT 0.749 0.856 0.901 0.892 0.798

SDNE 0.842 0.962 0.932 0.925 0.824

PRL-M 0.765 0.931 0.92 0.923 0.745

PRL-L 0.838 0.923 0.915 0.907 0.796

PRL 0.803 0.984 0.958 0.955 0.804

AP CN 0.756 0.859 0.853 0.868 0.815

JA 0.746 0.882 0.854 0.859 0.816

AA 0.762 0.882 0.858 0.874 0.825

Simrank 0.744 0.881 0.812 0.838 0.831

Line 0.741 0.905 0.886 0.832 0.804

Node2vec 0.799 0.888 0.905 0.889 0.824

Deepwalk 0.759 0.894 0.879 0.876 0.838

GAT 0.756 0.865 0.879 0.847 0.799

SDNE 0.823 0.916 0.932 0.926 0.824

PRL-M 0.759 0.902 0.91 0.903 0.765

PRL-L 0.795 0.915 0.915 0.897 0.849

PRL 0.765 0.974 0.932 0.948 0.815

we can observe that the PRL outperforms than other baselines. We can see that
when training models with only 20% data set, all methods are not strong enough
for link prediction. Meanwhile, the increasing number of training sets promotes
the performance of methods on link prediction. However, the performance almost
unchanged while varying the percentage of training set from 80% to 100%. The
GAT is relatively stable on different percentages of training sets by leveraging
masked self-attentional layers. The random walk based methods are sensitive
for different percentages of training sets, however, enough training data makes
them perceive network comprehensively. Furthermore, methods learning network
knowledge in supervised manners achieve higher values of AUC and AP when
providing enough training data for them.
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(a) CondMat

(b) Openflights

(c) Hamsterster

Fig. 3. AUC and AP Performance on three dense networks for link prediction.
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4 Conclusion

In this paper, we propose the PRL model to learn the network representation
based on motifs, which simplifies the network structure and preserves more infor-
mation for nodes in the latent space. In addition, PRL is a joint learning model
to unify NRL and supervised learning (L2-SVM) to improve predictive ability on
inferring latent links. Compared with the state-of-the-arts methods, the simula-
tion results on 5 real data sets demonstrate that our proposed model is promising
in densely connected networks. The superior performance for our model would
provide high-quality service for users while inferring usefulness information in
searching tasks and recommending proper friends in social medias. In the future
work, we will incorporate social theories and user characteristics (i.e., age, gender
and personal interests) in our model, which will enhance searching experience
for various users.
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Abstract. Coresets are representative samples of data that can be used
to train machine learning models with provable guarantees of approx-
imating the accuracy of training on the full data set. They have been
used for scalable clustering of large datasets and result in better cluster
partitions compared to clustering a random sample. In this paper, we
present a novel approach of constructing lightweight coresets on subsets
of data that can fit in memory while performing a streaming variant of
k-means clustering known as online k-means. Experimental results show
that this approach generates cluster partitions of comparable accuracy to
the regular online k-means algorithm in less time, or superior partitions
in comparable time.

Keywords: Clustering · Cluster analysis · Coresets · K-means

1 Introduction

Clustering, or cluster analysis, is a form of unsupervised machine learning and
exploratory data analysis that aims to group similar objects and separate dis-
similar objects in a dataset [27]. These objects can vary in different problem
domains, but are generally represented as vectors or points.

Lloyd’s algorithm [19], also know as the k-means clustering algorithm, is a
popular choice to cluster data sets in the real world [27]. The algorithm aims to
minimize the k-means clustering objective function, which is an NP hard problem
[2]. Let X be a dataset of p dimensional vectors. Given a set of k clusters,
C = {C1,C2, ...,Ck}, we want to identify k centroids m = {m1,m2, ...,mk},
such that the sum of squared difference between each point in a cluster to the
mean of that cluster is minimized. The objective function can be described as
follows:

min
C

J(C) where J(C) =
k∑

i=1

∑

xj ∈Ci

|| xj − mi ||2 (1)

There is an increasing volume of data being generated in the world today, in
various domains such as IoT, social media, financial transactions and customer
click streams [18]. Furthermore, some of this data is generated in a streaming
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 191–202, 2019.
https://doi.org/10.1007/978-3-030-35288-2_16
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fashion, where the available memory is much smaller than the data, and the
data can only be accessed in a single pass [12]. Online k-means (OKM) [16] is
a variation of k-means that is designed to handle streaming data. OKM runs
k-means multiple times on subsets of data that can fit into memory, as they
are being streamed. Intuitively, methods of improving k-means cluster quality
on subsets of data can be used to improve the k-means clustering component of
OKM.

Coresets [10] are summaries of massive datasets that provide provable guar-
antees of the quality of machine learning models trained on these summaries
compared to training on the full dataset. In this paper, we aim to improve OKM
using lightweight coresets (LWCS) [5], a fast coreset construction algorithm for
k-means. To the best of our knowledge, previous use of LWCS has been to accel-
erate the running of k-means on the whole dataset. In contrast, our work is
the first instance of constructing lightweight k-means coresets from subsets of
the whole dataset that are delivered in a streaming fashion. Our experimental
results show that this method, which we term lightweight coreset online k-means
(LWCS-OKM), results in competitive cluster partitions with reduced runtime,
or superior partitions with slightly increased runtime.

The paper is structured as follows. In Sect. 2, we introduce some preliminary
concepts essential for understanding the rest of the paper. In Sect. 3, we discuss
some related work on clustering big data, streaming algorithms for clustering and
coreset construction algorithms for k-means. In Sect. 4, we explain in detail our
proposed LWCS-OKM method. Section 5 details our experimental methodology
as well as our results, while Sect. 6 gives the conclusion.

2 Preliminaries

In this section, some preliminary concepts used in the rest of the paper are
explained.

2.1 Data Stream Model

There are various models of data streams in the literature. The model we use
for this paper is as described in [23]. We assume the data arrives in chunks at
discrete time steps, i.e., n1 points arrive at time t1, n2 points arrive at time
t2 and so on. Running clustering algorithms on each chunk results in cluster
summaries, i.e., a set of cluster centers φ and weights ω from each chunk. After
L time steps, a final clustering is performed on the stored cluster summaries.
Given a dataset X of size N ,

∑L
l=1 nl = N . Since the data is being streamed, it

may never stop, so we can view N as the size of the data when we choose to do
our final clustering, after L data chunks have been seen.

2.2 K-Means++

The k-means algorithm is a common heuristic for solving the k-means objective
function. However it suffers from arbitrarily poor cluster partitions when seeded
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Algorithm 1. D2 seeding
Input: X - dataset of points

k - number of clusters
Output: Initial cluster centroids m

1 Choose first centroid m1 by random sampling
2 while less than k centroids chosen do

3 Pick next centroid mi ← x′ ∈ X with probability D(x ′)2
∑

x ∈X D(x)2
where

D(x) is the distance of x to the nearest centroid

4 end
5 return m = {m1,m2..mk}

randomly [3]. The k-means++ (KM++) algorithm [3] is an alternative to the
k-means algorithm that uses a distance based sampling algorithm known as D2

seeding described in Algorithm 1, to choose a better set of initial centroids. While
other alternative seeding strategies exist, they either do not perform as well as D2

seeding in terms of leading to better partitions [9], or have theoretical speedups
that do not fundamentally change the runtime of the k-means algorithm because
the runtime is dominated by the distance calculations after the seeding takes
place [4]. This seeding strategy has become a widely used way of seeding k-means
[22]. For these reasons, we choose D2 seeding to perform all initial seedings of
k-means in this paper.

The seeding step requires k distance calculations. Let d be the runtime of
a single distance calculation. The seeding step then has time complexity of
O(kNd). Given i iterations of computing Nk distances, KM++ has an over-
all complexity of O(kNid).

2.3 Online K-Means

OKM is a crisp version of the online fuzzy c-means (OFCM) algorithm that was
introduced in [16]. It should not be confused with the online stochastic gradient
descent (SGD) variant of k-means that computes a gradient descent step for one
point at a time [8]. It is known as STREAM k-means in [23]. While the fuzzy
c-means (FCM) algorithm [7] allows for degrees of membership of a single point
to various clusters, the k-means algorithm allows a point to be assigned to only
one cluster. Therefore, OKM is a special case OFCM, which only allows a single
cluster assignment for each point.

The algorithm assumes a streaming model mentioned in Sect. 2.1 [23]. At each
discrete time step, the data subset is clustered with k-means clustering. Centroids
are initialized with D2 seeding on the first chunk. To speed up the processing of
each subsequent chunk of data, the k-means algorithm on each subsequent chunk
is initialized with the centroids learned from clustering the previous chunk. After
each time step, the learned centroids are compressed and stored in memory into
k weighted samples, each sample being the learned centroid, weighted by the
number of points assigned to the centroid. The final step of the algorithm is
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running weighted k-means (WKM) on the stored weighted samples, to obtain
the final set of centroids.

There can be various numbers of clusters in each chunk. The authors of [16]
always set the value of k for each chunk to be the value of k assumed for the
whole dataset. In the event that a chunk contains fewer than k clusters, there
would be no information loss.

The complexity of the algorithm is as follows. Let iavg be the average num-
ber of iterations it takes for k-means to terminate on one chunk, and navg be
the average number of points in a chunk. The complexity of running k-means
on that chunk would be O(knavgiavgd). For all chunks, the runtime would
be O(kNiavgd). Weighting each point takes negligible time, as the points are
labelled during the running of the k-means algorithm. In a practical implemen-
tation, at most a linear pass over each chunk would be needed to count the
weights, which would take O(N) time in total. The final clustering involves
running WKM on Lk points. Let if be the number of iterations of this final
clustering, then the final clustering has O(k2Lifd) time complexity. Therefore,
OKM has a time complexity of O(kNid+k2Lifd). Since N is generally going to
be more than kLif , the overall runtime can be simplified to O(kNid). This com-
plexity is identical to k-means, but the advantage of OKM is its disk awareness,
making it feasible on unloadable data.

2.4 Lightweight Coresets

Coresets are summaries of large datasets with provable guarantees that the
results of running machine learning algorithms on the coreset will approximate
the results of learning on the full dataset, with some bounded error, depending
on the size of the coreset [10]. LWCS for k-means are introduced in [5]. They
empirically match the performance of previous k-means coresets at a fraction of
the construction time complexity.

The construction has a preprocessing stage and an importance sampling
stage. The preprocessing stage begins by calculating the mean, μ, of the data.
Then, a constant δ is calculated by summing the distance of every point in the
dataset to μ. For the importance sampling stage, a probability distribution q(x)
is calculated, as shown in Algorithm 2. Let α be the proportion of N that we want
to sample. �αN� points are then sampled with probability q(x). Each sampled
point has a respective weight 1

�αN�q(x) , so the weights and points collectively
form coreset.

Once the coreset is created, WKM or weighted k-means++ (WKM++) can be
run on the coreset. In this paper, we term those two lightweight coreset k-means
(LWCS-KM) or lightweight coreset k-means++ (LWCS-KM++) respectively.

The time complexity of LWCS-KM++ is as follows. The coreset construction
requires two passes through the data on which we are performing the construc-
tion, to calculate μ and q(x) for all x ∈ X. The weighted random sampling takes
negligible time compared to these two passes, so the construction takes O(Nd)
time. Let i be the number of iterations of WKM++ on the coreset, which has size
αN . The clustering step has O(kαNid) time complexity. The summation of the
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Algorithm 2. Lightweight coreset construction
Input: X - dataset of points

α - proportion of size of X, to be used as size of coreset
Output: Λ - lightweight coreset

1 μ ← mean of X
2 δ ← ∑

x∈X D(x, μ)
3 N ← |X |
4 for x ∈ X do

5 q(x) ← 1
2

1
N

+ 1
2

D(x ,μ)2

δ

6 end
7 Λ ← sample �αN� weighted points from X where each point has weight

1
�αN�q(x)

8 return Λ

runtime of the construction and clustering steps is O(Nd(1 + αik)). LWCS-KM
would have the same complexity owing to the negligible runtime of D2 seed-
ing. With high values of α and a large number of iterations in LWCS-KM++,
LWCS-KM++ can potentially take a longer time than regular k-means cluster-
ing. However, with very small values of α, LWCS-KM++ will take a shorter
time.

2.5 Very Large Datasets

We define very large datasets as datasets that cannot fit into the main memory
of a computer. While there exist some definitions of the exact size of what
constitutes “big data” [15], the actual size is not important when creating new
algorithms for big data because there will always exist data that is larger than
the main memory of a computer.

Clustering algorithms that can only be deployed on loadable data can be
called literal algorithms [15]. Algorithms that work on unloadable data make
the processing of such data possible, as literal algorithms cannot be deployed
on unloadable data. However, even for loadable data, algorithms for unloadable
datasets can be viewed as a way of accelerating the processing of loadable data.
It should also be noted that streaming algorithms can be used to accelerate the
processing of static datasets, where the partitioning of the data into separate
chunks to be processed sequentially can be viewed as a data stream in which the
velocity and volume of the incoming data are controlled.

3 Related Work

There is much work in the literature on running literal clustering algorithms on
subsets of data, rather than the whole dataset, to overcome the long runtimes of
clustering big datasets. The authors of [15] draw a random sample, then cluster
it with a fuzzy version of k-means clustering, and then extend classification
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to all unlabelled points using nearest centroid classification. The authors of [20]
overcome the issue of potentially poor quality seeds in seeding the random sample
by using D2 seeding on the random sample before performing k-means clustering,
then extending the labelling via nearest centroid classification.

Minibatch k-means (MBKM) is an algorithm that clusters batches of points
instead of the whole dataset [26]. The centroid update step in MBKM is per-
formed via some learning rate in a convex combination equation. MBKM can
be seen as an improvement to the earlier online SGD k-means [8], which can
perform k-means with only one point stored in memory at a time, but results
in lower quality clusters due to stochastic noise. MBKM can easily be used for
streaming data if each chunk of data that comes in is treated as a batch.

K-means# is a modified version of KM++ that chooses a subset of size
O(k log(k)) points that gives a constant approximation of the k-means objective
[1]. This algorithm can be applied in a divide-and-conquer strategy that yields
a single pass streaming algorithm. The algorithms introduced in [28] incorpo-
rate coreset construction on small chunks data from the data stream. Multiple
coresets are merged recursively into higher-level coresets, forming a coreset tree.
While building the coreset tree, they use a caching strategy that reuses prior
computed coresets to accelerate the construction of a new coreset.

The iVAT family of algorithms [25] construct representative subsets using a
technique called maximin sampling, then performs single linkage clustering on
the samples. Extending the labelling to every other points is done using nearest
neighbours classification.

Prior to the identification of LWCS, previous k-means coreset construction
methods include an algorithm based on exponential grids [14] and lines [13]. In
[11], a coreset algorithm is introduced that preserves differential privacy for k-
means clustering while having an approximation error that depends sub-linearly
on the dimension of the dataset. The authors applied it to create differentially
private location data from GPS databases.

4 Proposed Method

To increase the quality of cluster partitions on each chunk of data when running
OKM, we propose running LWCS-KM instead of the regular k-means algorithm.
For each chunk, after the coreset construction and clustering step has occurred,
the weights for the final clustering are calculated by the number of points from
the coreset assigned to each centroid, rather than points from the chunk. We call
this approach lightweight coreset online k-means (LWCS-OKM).

The clustering takes into account the weights from coreset construction on
each chunk, which leads to better cluster partitions than if we cluster a blind
random sample. To the best of our knowledge, this is the first application of
LWCS on subsets of streaming data rather than the whole dataset. The details
of our new LWCS-OKM method are illustrated in Fig. 1 and detailed in given in
Algorithm 3.
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Fig. 1. Workflow of proposed LWCS-OKM algorithm

Algorithm 3. Lightweight coreset online k-means
Input: X - dataset of points

k - number of clusters
α - proportion of each chunk as our coreset size

Output: Learned cluster centroids m
1 for every chunk we want to cluster do
2 Create lightweight coreset Λ using Algorithm 2
3 if first chunk then
4 Initialize m with D2 seeding using Algorithm 1
5 end
6 m ← centroids returned by running WKM on Λ with m as the seeds
7 Add m to our final point set φ
8 Weigh each centroid in m by the number points in Λ assigned to that

centroid, add that weight to final weight set ω

9 end
10 m ← Learned centroids from running WKM++ initialized on m with φ as

points and ω as weights
11 return m

From our earlier analysis of LWCS-KM, the coreset construction and clus-
tering of each chunk would take O(knavgd(1 + αiavg)) time on average. Doing
this for every chunk would take O(kNd(1 + αiavg)) time.
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5 Experiments

In this section, we empirically compare our proposed algorithm, LWCS-OKM,
to KM++, LWCS-KM++ and OKM in terms of cluster quality and runtime.

5.1 Evaluation Criteria

To measure cluster quality, we use adjusted Rand index (ARI) [17] and sum of
squared error (SSE). ARI values range from 0 to 1, with 0 being the result of
random labels and 1 being perfect labels matching the ground truth. We take
advantage of the ground truth of our datasets to measure how well our proposed
approach can recover the ground truth structure of a dataset as well as show that
it generates similar partitions to the benchmark algorithms, especially KM++
which is commonly used by practitioners. We are not using ARI as a measure
for how good a clustering algorithm is as a classification tool.

SSE is essentially the objective function of k-means clustering. While we
cannot easily compute the true optimal value for the objective function due to
it being an NP hard problem, we can compare the values obtained by different
clustering algorithms.

5.2 Datasets

We utilize datasets that fit into main memory with the aim of comparing the
performance of our algorithm against the performance of literal algorithms. This
is not possible if our datasets are actually unloadable. For our streaming algo-
rithms, we enforce a single pass rule over the data, with only a segment of the
data available for access at any given time.

For our synthetic datasets, we generate clusters from fixed Gaussian distri-
butions. The vectors in these clusters have dimensions p ranging from 100 to
300. The first three datasets have three clusters while the second three have four
clusters.

The first real world dataset we use is the KDD Cup 99 dataset (KDD dataset)
[6]. It contains 4,898,431 vectors of 41 dimensions, each vector being an attack
type or normal data. The second real world dataset is the IoT Botnet dataset [21].
This dataset has 835,876 vectors, each representing the features of an Ecobee
thermostat. Each vector has 115 dimensions, with the class being whether the
device is benign, or affected by one of 10 possible attacks from 2 types of botnets.

5.3 Experimental Setup

There are multiple ways to decide when to terminate a k-means clustering algo-
rithm. This parameter has to be set for KM++, LWCS-KM++ as well as the
clustering components of both online algorithms. In every experiment we run, we
terminate k-means if the labels of every point do not change after an iteration,
or the centroid movement after an update is smaller than some small threshold
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ε < 0.01. We also set the maximum number of iterations to be 100 for all our
k-means algorithms. For OKM and LWCS-OKM, we choose to have 10% of the
data in memory. To match this, we set α = 0.1 for LWCS-KM++. For α in
OKM-KM++, our results are robust for a variety of values but we only record
α = 0.1 for brevity. All result values of ARI, runtime and SSE are an average of
30 runs with identical parameters on the same datasets.

For synthetic data, we choose k to be the true number of clusters created. For
the KDD dataset, we choose k = 3 because the majority of points fall into one of
the 3 following classes: the two attacks, Neptune and Smurf, or a point that does
not represent an attack. For the IoT botnet dataset, we choose k = 11, because
the class of vectors in this dataset is either normal, or one of 10 different attacks
from the botnets. The attributes of all datasets are normalized to be between 0
and 1 and the non-numeric KDD features are removed.

We implement KM++ using the implementation in the Scikit-Learn Python
module [24], every other algorithm was implemented by modifying the Scikit-
Learn module. The experiments were conducted on a Windows 10 (64 bit) PC
with 8 GB RAM and Intel i7.28 GHz processor.

5.4 Synthetic Datasets

As can be seen from Table 1, between the two online algorithms, LWCS-OKM
creates better partitions in terms of recovering the ground truth, because the
coresets created at each chunk are more representative of the whole dataset
than a blind random sample. For every synthetic dataset, LWCS-OKM creates
the best partitions in terms of recovering the ground truth. Based on the overall
similarity in ARI of partitions generated by LWCS-OKM and KM++, we can
conclude our algorithm generates partitions similar to KM++.

In terms of CPU runtime, our algorithm performs the best in four out of
six scenarios. It is up to 3.88 times faster than KM++. As expected from our
complexity analysis, OKM and LWCS-OKM do not have a significant difference
in terms of runtime. It should be noted that even when the runtime of LWCS-
OKM is not the best, it is still faster than the two literal algorithms and is
at most 1.10 times slower than OKM, the only other algorithm that works on
unloadable data, but results in better ARI.

5.5 Real Datasets

For the KDD dataset, our LWCS-OKM algorithm results in the best average
ARI, but only the second best runtime, being slower than OKM. However, it
notably has an SSE lower than OKM, so it took slightly longer to achieve a
partition that has higher ARI and a better value in terms of optimizing the
k-means objective function (Table 2).

The IoT dataset does not seem to have a structure that allows a variation
of the k-means algorithm to easily recover the ground truth, with the ARI of
LWCS-KM++ being 0.40 and the ARI of the others being slightly better at
0.42. However, our proposed method reduces runtime by 67.17% compared to
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Table 1. ARI, runtimes and SSE for synthetic datasets for KM++, LWCS-KM++,
OKM and our LWCS-OKM algorithms. Bold face numbers show the best results.

Dataset Information KM++ LWCS-KM++ OKM LWCS-OKM

No. of Points p ARI Time ARI Time ARI Time ARI Time

4,000,000 100 0.99 2.88 0.94 2.45 0.99 1.95 1.00 2.15

4,000,000 200 1.00 4.98 0.94 4.79 0.96 4.40 1.00 4.30

4,000,000 300 0.96 15.77 0.91 7.46 0.98 5.67 1.00 6.14

5,000,000 100 0.91 11.64 0.91 3.35 0.95 4.05 1.00 3.00

5,000,000 200 0.97 12.30 0.95 6.12 0.94 8.25 1.00 5.57

5,000,000 300 0.95 25.91 0.89 8.97 0.97 8.30 1.00 8.03

Table 2. ARI, runtimes and SSE for KDD dataset for KM++, LWCS-KM++, OKM
and our LWCS-OKM algorithms. Bold face numbers show the best results.

Algorithm ARI Time (s) SSE

KM++ 0.91 11.14 2,485,573.98

LWCS-KM++ 0.63 10.61 3,208,873.91

OKM 0.84 8.31 2,671,638.73

LWCS-OKM 0.93 9.24 2,323,473.10

Table 3. ARI, runtimes and SSE for IoT dataset for KM++, LWCS-KM++, OKM
and our LWCS-OKM algorithms. Bold face numbers show the best results.

Algorithm ARI Time (s) SSE

KM++ 0.42 16.57 174,827.54

LWCS-KM++ 0.40 6.33 171,632.15

OKM 0.42 7.58 172,847.93

LWCS-OKM 0.42 5.44 166,883.47

KM++, 14.06% compared to LWCS-KM++ and 28.23% compared to OKM. It
also has the lowest SSE (Table 3).

6 Conclusion

In this paper, we modify an online variant of the k-means algorithm to incorpo-
rate lightweight coreset constructions on subsets of data that fit in memory. We
call this approach lightweight coreset online k-means (LWCS-OKM). To the best
of our knowledge, this is the first time lightweight coresets have been applied
to chunks of streaming data rather than a whole static dataset. Experimen-
tal results show comparable cluster partitions on various benchmarks with a
reduction in runtime, or superior cluster partitions with a marginal increase in
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runtime. In future work, we aim to make this algorithm robust to time series
streaming data and evolving data streams.
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Abstract. An agent that learns by interacting with an environment
may find unexpected solutions to decision-making problems. This solu-
tion can be an improvement over well-known ones, such as new strate-
gies for games, but in some cases the unexpected solution is unwanted
and should be avoided for reasons such as safety. This paper proposes
a Reinforcement Learning Ensemble Framework called ReLeEF. This
framework combines decision making methods to provide a finer grained
control of the agent’s behaviour while still letting it learn by interacting
with the environment. It has been tested in the safety gridworlds and
the results show that it can find optimal solutions while fulfilling safety
concerns described for each domain, something that state of the art Deep
Reinforcement Learning methods were unable to do.

Keywords: Reinforcement Learning · Ontology · Safety

1 Introduction

The Reinforcement Learning (RL) framework has been used to model the inter-
action between agents and complex domains such as Atari 2600 games [13] and
Go [15,16]. The development of Deep Reinforcement Learning (DRL) methods
has shown that when an agent learns a representation for a problem along its
solution, it can use the same internal architecture to solve different problems
(e.g., the various games in the Atari Learning Environment) while still maintain-
ing the RL property of being able to learn optimal solutions (e.g., new strategies
for games [15,18]). These solutions may come from the exploration of the envi-
ronment (e.g., the RL agent finds bugs in a game that leads to a higher score) or
the influence of the value of future states in the current one, making the agent
search deeper in a decision tree than a human being [15,16,18].
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Although DRL has shown such exceptional performance in different domains,
a problem that has been discussed lately is the safety, which arise from the fact
that the agent can learn to behave optimally and solve problems in an unexpected
or undesired way. The reward signal given to an RL agent may be so simple that
it cannot describe in details the expected behaviour for the agent or it can be
so complex that loopholes in it can lead to an unexpected solution.

This paper proposes an agent model (Sect. 4) that can combine different
decision making methods (e.g., RL (Sect. 3.1)) with Ontology (Sect. 3.2), so that
the agent learns to choose actions that are safe, making it behave as a human
expects during and after the learning process. This new agent is tested in safety
related domains (Sect. 5) and results show that the agent behaves as proposed
for each domain by executing the optimal, safe, actions (Sect. 6).

2 Related Work

This section presents work related to the research described in this paper. Specif-
ically, we describe literature that focus on enhancing Reinforcement Learning
through the incorporation of other Artificial Intelligence techniques.

The work by Leonetti et al. [8] presents a combination between Answer Set
Programming (ASP) and RL, using ASP as a tool to represent models and to
allow reasoning and planning, while RL is used to allow the interaction between
the agent and the environment in an adaptive way. Another method that uses a
similar approach is oASP(MDP) by Ferreira et al. [3], in which ASP is used to
represent an MDP and to restrict forbidden actions and states.

Garnelo et al. [5] use a Neural Network to find the representation of a set of
states that can be described as rules to a probabilistic logical program. D’Avila
Garcez et al. [4] include commonsense reasoning to a Deep Reinforcement Learn-
ing (DRL) system to further improve the learning process, offering a better
tradeoff between generalisation and specialisation than Garnelo et al. [5]. In
D’Avila Garcez et al. [4], symbols are used to represent the states to allow a
more abstract representation of the domain and the creation of new states from
specific inputs. Lyu et al. [11] also present a system that uses symbolic planning
to tackle the interpretability issue in the DRL context.

Yang et al. [20] present PEORL, that integrates Symbolic Planning with
Hierarchical Reinforcement Learning. The symbolic plans are used to guide the
learning and can be improved by using past learned experiences. Zamani et
al. [21] also present a hybrid system that uses symbolic representation to lever-
age a Deep Q-Network. Predicates are used to represent the environment by
describing either spatial relations of objects or the state of a particular object.

Another work that uses obtained knowledge to guide the learning process is
the work by Lu et al. [10], which combines Logic-Probabilistic Knowledge Rep-
resentation and Reasoning with Model-Based RL so that the agent is can reason
with declarative knowledge provided by a human and learn through experience.

Bougie et al. [1] present the DRL-EK framework, focusing on the combination
of DRL with external knowledge. The external knowledge is used to provide
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information from human expertise and, consequently, to supervise the learning
process and enhance the information given to the decision-making agent. The
DRL-EK uses a Duelling Network architecture that decomposes the action-value
function in two separate functions that can learn different aspects of the problem
in order to find an optimal solution. This division is related to the one proposed
in our approach, but the way the RL Framework is used, or the way the agent
is organised, is the fundamental difference between DRL-EK and ReLeEF.

Besides the works highlighted above, the work by Garnelo and Shanahan [6] is
a survey that presents some problems with DRL, focusing on how the community
is including the ideas of Symbolic AI to tackle these problems.

3 Background

This section presents the Reinforcement Learning framework that is the basis of
the method proposed in this article and the Suggested Upper Merged Ontology
(SUMO) that is used as part of the agent.

3.1 The Reinforcement Learning Framework

The Reinforcement Learning (RL) framework is a Machine Learning (ML) tech-
nique in which the learning process happens through the interaction between an
agent and the environment [17]. In this framework, an agent executes an action
in the environment and the environment provides the state that is the conse-
quence of executing that action in the previous state along with a reward signal
that is used to direct the agent to the optimal solution.

Markov Decision Process (MDP) is a formalism that can be used describe
such kind of problems. It is composed of the tuple 〈S,A, T ,R〉 such that S is the
set of states of the environment that the agent can be in at any time and A is the
set of actions that the agent can perform. The transition function T describes
the probability of visiting a state after executing an action in the current state
and the reward function R describes the reward that the agent receives.

The MDP and RL Framework are commonly used in problems that an agent
interacts with the environment to learn how to best solve a given sequential
decision-making problem. An agent may have only knowledge about the set of
states S and actions A. While the agent explores the environment by performing
actions a ∈ A in states s ∈ S, it updates its internal representation of the world,
for example, in the form of an action-value function Q(s, a) that maps a value for
each possible state-action pair. This iterative process to find the optimal solution
can be done with Reinforcement Learning methods such as Q-Learning [19].

Recently, the RL Framework has been used for its ability to learn the solu-
tion of problems starting with little a priori knowledge about the environment.
Nevertheless, this a priori knowledge can be useful for various reasons such as
guiding the learning agent to a possible solution, avoiding some state-action pairs
that is known to be harmful or useless to the agent or bootstrapping the action-
value function values. The next section presents an ontology which is the method
chosen for this work to describe high-level knowledge about the environment that
is used to help guiding the learning agent to the solution.
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3.2 Ontology and SUMO

Given a set of concepts and relations (i.e., subclassing and instantiation), an
ontology is a schema that uses relations to link concepts such that inferences
can be made about the concepts [14]. Consider, for example, the concepts of
robot, metal and water and the relations of is bad for and is made of. If
we describe in an ontology that the robot is made of metal and water is
bad for metal, it is possible to infer that water is bad for robot and this
new knowledge can be used as part of an ontology for new inferences, reason
about the world and choose actions when interacting with an environment.

The Suggested Upper Merged Ontology (SUMO) is a formal ontology that
uses the Standard Upper Ontology Knowledge Information Format (SUO-KIF)
to describe its concepts and relations. The Upper Ontology of SUMO can rep-
resent abstract concepts such as time, set and class theory and others, allowing
first-order inference by using these concepts and its relations.

Since an ontology can be used to describe the world around an agent, it can
reason about consequences of actions that it can execute. From the example of
water is bad for robot, consider a robot that, while exploring its surround-
ings, senses water in its front. This robot can infer from the ontology that water
is bad for robot and thus going forward should be avoided. With this new
information the robot reduces its action choices to any other action that does
not make it fall into the water, thus, it explores more safely its surroundings.

In this work, SUMO and RL are combined to construct an agent that can
more safely interacts with its environment, which is described in the next section.

4 RL Ensemble Framework

Each combination of RL with a distinct method, as presented in Sect. 2, may
provide a gain in a certain aspect when solving a problem but it may also be
incapable of solving various distinct problems. Furthermore, when using DRL
methods, the solution to the problem can be learned but it is difficult to analyse
which properties of the method are the ones that make the learning of the opti-
mal solution possible and if a simpler representation, using only the important
properties, can achieve the same performance [9].

Thus, we propose the Reinforcement Learning Ensemble Framework
(ReLeEF) which uses a combination of decision-making methods in the same
spirit of ensemble methods [2] in which a set of methods are used to learn the
solution to a problem and the output of the ensemble (the solution to the prob-
lem) is a combination of the solution found by each method. Thus, the ReLeEF
framework proposed here is a generalization built on top of other ensemble meth-
ods and methods that combine a set of RL approaches to solve a single problem.

In the ReLeEF, the environment remains the same as in the RL framework.
It receives an action from the agent and it provides a new state and a reward
signal depending on the action executed by the agent. Thus, modifications occur
only in the agent side of the RL framework.
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The agent’s architecture we propose differs from other approaches (such as
Zamani et al. [21] and Lyu et al. [11]) in the way that it combines methods for
sequential decision-making problems. Instead of using the output of one method
as the input to another, in a serial manner, we use a parallel architecture in
which different modules provide independent decisions for the same state and
the decision of each module is considered when choosing the action that will be
executed in the environment. We call this the ensemble agent.

As in the RL framework, the ensemble agent receives from the environment
a state and a reward value. That information is passed to each module, indepen-
dently of how it is going to be used, and each module is responsible for providing
a value for each action that can be performed in the current state. The Action
Selection is responsible for collecting the value from every module for each
action in the current state and, using all values, chooses which action the agent
executes in the environment. Different methods can be used to choose an action
(e.g., weighted sum of Q(s, a) values or Pareto frontier).

An important aspect of the ReLeEF is the fact that it can be used with
any method that can provide an action to be executed in a given state. Thus,
any RL method that has already been proposed or that will be proposed can
be used, making the ReLeEF not a competitor to any RL method, but a way
of combining these methods to provide an agent that can solve a problem even
better (as it is done in ensemble methods).

Furthermore, non-RL methods can also be used. For example, if a planner
provides an action for a given state, independently of it not using the reward
value provided by the environment, this action can be considered when the agent
selects an action to be executed in the environment. Thus, planning and RL can
be used together to solve a problem that RL or planning alone are unable.

In the next section, we present experiments with the ensemble agent, that
combines Q-Learning and ontology, to solve some of the safety problems [7].

5 Experiments in the Safety Gridworlds

To test ReLeEF, we used three of the gridworlds proposed by Leike et al. [7].
These gridworlds are at most 10 × 10 and allows the agent to perform only 4
actions, namely up, down, left and right. The three chosen gridworlds are:

1. Self Modification (Fig. 1a): one of the cells of the world has a whisky bottle
that makes the agent changes its exploration/exploitation rate to 0.9/0.1, thus
the agent performs more random actions. In this world, the goal is to learn
to avoid the whisky and go to the goal state;

2. Safe Exploration (Fig. 1b): this gridworld has water in its sides and the
agent must find the goal without ever entering any state with water. As the
name implies, the goal of this world is for the agent to safely explore its
surroundings to find the goal without destructing itself;

3. Distributional Shift: this is a non-stationary environment in which the
agent learns in one configuration (Fig. 1c) of the world and acts in another
configuration of the world (Fig. 1d). The goal of this world is to check if the
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agent can find the optimal solution in a slightly variation of the world used
for training.

(a) Self Modification (b) Safe Exploration (c) Distributional
Shift initial version

(d) Distributional
Shift final version

Fig. 1. Gridworlds used. The goal state is represented in green, lava is red, water is
blue, whisky is brown, dark grey are walls and light grey are spaces. The agent’s initial
position is represented by light blue. (Color figure online)

In these gridworlds, the agent receives a reward of +50 when it reaches the goal
state and −50 when it visits a state that ends the episode (i.e., states with lava
or water). In any other case, the agent receives −1 as a reward.

A change from Leike et al. [7] is the state representation. In this experi-
ment, the environment provides to the agent its (X,Y ) coordinates in the grid-
world along with a high-level information about the surroundings. For example,
consider the state between the goal and the lava in the Distributional Shift
(Fig. 1c) that can be represented using a dictionary stating that {Position:
6, 1; Left: Lava; Right: Goal; Up: Wall; Down: Space}. The high-level
information of a state presents what is the type of object around the agent and
also a form of reasoning about the consequence of actions in the environment.

5.1 An Ensemble Agent for Safety Domains

For the three gridworlds presented previously, the agent uses the ensemble frame-
work (Sect. 4) with two modules, although more modules can be added if deemed
necessary. The first is a tabular Q-Learning [17,19] that has as state represen-
tation the (X,Y ) coordinates of the agent in the environment and can select
any of the four actions allowed. This module is responsible for learning the best
action to be performed in the environment for each state.

The second module uses an ontology defined in SUMO [14]. Although we use
SUMO in this paper, it is important to notice that other methods can be used.
SUMO was chosen because it provided a easy way to reason about the safety
of the environment surrounding the reinforcement learning agent. This module
receives as state a high-level description of the agent surroundings (i.e., just as
the one presented by the end of the previous paragraph).

SUMO than reasons about this state and provides a relation of the action
to the expected result, informing the agent if the expected consequence of per-
forming an action is good, bad or neutral (e.g., walking into lava has a bad
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consequence while walking towards the goal has a good consequence). This infor-
mation is than used to define a value for each action so that if an action is good
for the agent (e.g., it leads to the goal) the action has a positive value of +10,
if the action leads to the end of the episode (e.g., falls into lava or water) or if
it is bad for the agent (e.g., drinking the whisky or hitting a wall) this action
receives a negative value of −∞. In any other situation, the action receives the
value of zero so that it does not interfere with the action selection.

When the agent needs to select an action to perform, it adds the values for
every action for each module and removes the actions that have −∞ as value,
applying the ε-greedy strategy in the resulting set of actions. For example, using
the same state s presented before and considering that the Q-Learning module
has all values of zero, this agent would have the action-value function as:

– Up: Q(s, ↑) = QRL(s, ↑) + QSUMO(s, ↑) = 0 + (−∞) = −∞;
– Down: Q(s, ↓) = QRL(s, ↓) + QSUMO(s, ↓) = 0 + 0 = 0;
– Left: Q(s,←) = QRL(s,←) + QSUMO(s,←) = 0 + (−∞) = −∞;
– Right: Q(s,→) = QRL(s,→) + QSUMO(s,→) = 0 + (+10) = +10.

Thus, the agent would remove the actions Left and Up and choose among Right
and Down. If ε-greedy is used, when exploring the agent randomly chooses one of
this two actions, but when exploiting the agent chooses the action Right that
leads to the goal if the difference between Right and Down values is less than the
+10 given by the ontology.

Using this architecture, the agent is capable of learning the action-value
function using Q-Learning, while the exploration of the environment is guided
by the ontology that describes parts of the environment. Thus, while RL is
responsible for choosing the best action for each state, the ontology is responsible
for constraining the action set by removing actions that should be avoided or
indicating the action that should be performed.

5.2 Experiment Configuration

All experiments were performed with the same configuration. For the Q-Learning
module, the learning rate was α = 0.2 and the discount γ = 0.9, the explo-
ration/exploitation rate8 was ε = 0.1 and the maximum number of steps for
each episode was 100. Each experiment consisted of 30 trials. For the Safe Explo-
ration and Self Modification, 1,000 episodes were performed for each trial and
for the Distributional Shift, 1,000 episodes were performed in each configura-
tion of the environment in a total of 2,000 episodes per trial. In this simulated
environment, we disregard the time needed to identify the composition of the
sorroundings of the agent and consider that this would be done in a parallel to
the action execution, thus not interfering with the agent’s performance.

For these experiments a Docker container running Alpine Linux 3.8 with
Python 3.6 was produced. Agent and environment were executed in different
containers and the interaction was done by exchanging messages with PyZMQ
17.0.0. The source code along container’s building files will be freely available in
a hosting service upon acceptance.
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6 Results

This section presents the results from the three experiments described in the pre-
vious section. Since the values were measured differently from the ones presented
by Leike et al. [7], we do not provide a direct comparison in the form of graphs,
but we use the data presented by Leike et al. [7] to compare the behaviour of
the agents. We compare ReLeEF’s results with RainbowDQN and A2C, but for
the lack of space we direct the reader to Leike et al. [7] for an overview of these
DRL methods applied to the same set of gridwords.

(a) Self Modification – visits (b) Self Modification – return

(c) Safe Exploration – visits (d) Safe Exploration – return

(e) Distributional Shift – visits (f) Distributional Shift – return

Fig. 2. Number of visits and return for each gridworld. (Color figure online)
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Figure 2 presents the number of visits and in each state of the three gridworld
and the return obtained for each environment. It is important to notice that the
last gridworld is non-stationary, but we present the results in only one map, thus
the visit in some of its states can happen in only one of the configurations of the
world. For the hexbin map used to present this data, the darker the cell, more
values appear in the region, while the lighter the cell, less values appear. This
type of plot can show the learning process along with the expected behaviour
of the agent after learning, how many episodes were necessary for the agent to
learn to solve the problem and how exploration/exploitation happened.

6.1 Self Modification Gridworld

In this gridworld, the agent must avoid visiting the state with the whisky bottle
since it changes the rate of random actions that the agent performs. As seen in
Fig. 2a, the ensemble agent never visited the state with whisky, meaning that
the goal proposed by Leike et al. [7] for this world is achieved. Furthermore,
the graph in Fig. 2b shows that the agent needs fewer than 50 episodes (5,000
steps at maximum) to learn to walk around the whisky and reach the goal as
is shown by the darker region of the graph that is right below the red line that
represents the maximum possible return of 47 (agent goes to the whisky by each
subsequent action leads it directly to the goal) and around the light grey line
representing the expected return of 45.

Compared to the results presented by Leike et al. [7], the ensemble agent
converges with the expected return of 45 after 5,000 steps (maximum), while
Rainbow DQN has a mean return well below the maximum (about 20) and
Rainbow SARSA’s mean almost reach the expected return, converging with the
return of 40 after 25,000 steps.

6.2 Safe Exploration

In this problem the agent must avoid falling in the water while still exploring
the world. As can be seen in Fig. 2c, the ensemble agent never falls in any state
that has water in it, since the ontology forbids it to do so, thus, behaving as
expected by Leike et al. [7]. Considering the return in Fig. 2d, the ensemble
agent is capable of acting optimally since the beginning of the learning process,
as can be seen by the darker region along the expected return line. For this
problem, the expected return of 47 is achieved when the agent reaches the goal
with the minimum number of steps.

The other blue lines in the graph shows the exploration done by the agent.
For each action that made the agent go away from the goal state, another action
must be taken to make the agent go towards the goal state, so that each non-
optimal action made increases the number of steps by 2, thus the return obtained
by the agent is not continuous.

Comparing the proposed ensemble agent with Rainbow DQN and A2C, it
is possible to see some advantages of the ensemble agent. While the ensemble
agent behaved optimally since the beginning of the interaction, Rainbow DQN



212 L. A. Ferreira et al.

needed about 700,000 episodes to reach the same behaviour, and A2C needed
about 500,000 episodes. Besides, Rainbow DQN and A2C fell in the water hun-
dreds of times while the learning process was executed, not exploring safely the
environment and, consequently, not behaving as expected by Leike et al. [7].

6.3 Distributional Shift

For the last domain, the agent learns in a configuration of the environment and
is tested in a different configuration. In this situation, the expected behaviour is
to learn to reach the goal with the minimum number of steps without falling in
lava. When the change occurs, the goal is to use the same action-value function
as before to solve the new problem configuration.

Figure 2e shows that the ensemble agent never fell in the lava of the states
in the top of the map. For the other three states with lava, those are the ones
that change in the second configuration of the environment. Because of the
lack of space, we do not provide the map for each configuration of the world,
but since the same ontology is used for any state with lava despite its position
in the grid, we can assure that the agent never visited a state with lava but
only visited that state when the lava was not there. Thus, the ensemble agent
behaves as expected by Leike et al. [7]. Figure 2f shows that the ensemble agent
quickly learns to solve the problem having the return of 43 for each episode.
The 1,000th episode presents a spike in the return, since this is when the change
in the environment happens. In this episode the agent avoids falling in the lava
(although the action-value function still has the maximum action of doing it,
the ontology forbids this action to be executed) and its interaction with the
environment makes it learn the new optimal policy while still using the action-
value function from the previous domain. Since agents need to take one more
Down action and another Up action after the lava, the new expected return has
the value of 41.

Compared to the results presented by Leike et al. [7], Rainbow DQN is capa-
ble of achieving the expected return after 800,000 steps and A2C oscillates below
the expected return in the last 200,000 steps of their experiment but, as discussed
by Leike et al. [7], neither is capable of avoiding the lava after the environment
has changed. Thus, the ensemble agent not only does not fall in the lava but
also learns to do so in less than 100 episodes.

6.4 Discussion

With the ensemble agent, proposed in this work, we were capable of solving part
of the safety problems proposed by Leike et al. [7] by presenting an agent that is
capable of learning the optimal solution to a problem and also that solves some
of the questions discussed for each of the environments.

Considering the What would constitute solutions to our environments? [7],
our agent does not overfit to a specific domain, since the same agent was used
to solve each of the three experiments, in which the different behaviour needed
for each experiment was provided by the influence of the ontology. While the
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safety problems presented are difficult to describe in low-level representation of
RL, doing it in high-level can be easily achieved and the combination of these
two approaches gives an effective solution to some of the safety problems.

An interesting aspect of the ensemble agent is related to interpretability
and explainability. We understand interpretability as the ability for a human to
understand the internal state representation of an agent and explainability as
the ability for a human to explain why the agent has chosen such an action for
a given state. While DRL expects the agent to learn a representation and the
optimal solution for the environment allowing it to find features that are hard
for a human to grasp, interpreting this internal representation and explaining
which features made it choose an action becomes difficult. In the ensemble agent
used in this work, the Q(s, a) table gives a simple description of the world but
the value itself only presents to us which action is expected to give the maximum
return for the episode. Nevertheless, ontology provided a partial explainability
of the behaviour of the agent since it became possible to understand why some
actions are avoided by the agent and this can only be done since we can interpret
the description of the state that is used by the agent.

7 Conclusion

This paper presented the RL Ensemble Framework (ReLeEF) and the ensemble
agent that can be used to learn from the environment in a similar way that is
done with RL. The ensemble agent is not a RL method by itself but rather an
architecture that allows the combination of various decision-making methods in
a way that may improve the overall performance of the agent.

Experiments in three of the safety gridworlds domains [7] show that an ensem-
ble agent that combines Q-Learning with ontology can solve some of the problems
regarding the specifics of the domain while still being able to learn the optimal
solution. When compared with two DRL methods [7], the ensemble agent learned
quicker than DRL the optimal solution and is more general since the same agent
with access to an ontology was capable of solving each of the problems presented.
Furthermore, since ontology provides high-level knowledge that can express and
be modified to take into consideration new information with no interference in
the agent configuration, the property of elaboration tolerance [12], which is the
ability to work with changes in the environment without the need to be rewrit-
ten, can be seen in the ensemble agent.
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Abstract. Incomplete data are quite common which can deteriorate
statistical inference, often affecting evidence-based policymaking. A typ-
ical example is the Business Longitudinal Analysis Data Environment
(BLADE), an Australian Government’s national data asset. In this
paper, motivated by helping BLADE practitioners select and implement
advanced imputation methods with a solid understanding of the impact
different methods will have on data accuracy and reliability, we imple-
ment and examine performance of data imputation techniques based on
12 machine learning algorithms. They range from linear regression to
neural networks. We compare the performance of these algorithms and
assess the impact of various settings, including the number of input fea-
tures and the length of time spans. To examine generalisability, we also
impute two features with distinct characteristics. Experimental results
show that three ensemble algorithms: extra trees regressor, bagging
regressor and random forest consistently maintain high imputation per-
formance over the benchmark linear regression across a range of per-
formance metrics. Among them, we would recommend the extra trees
regressor for its accuracy and computational efficiency.

Keywords: Supervised machine learning · Missing values ·
Imputation · Government administrative data

1 Introduction

On a daily basis, a multiplicity of important decisions affecting human lives
are made. However, in nearly all instances, real-world data are incomplete and
suffers from varying degrees of sparsity. This can deteriorate statistical infer-
ence and affect evidence-based policymaking. This is traditionally addressed by
dropping missing data, but this leads to unreliable outcomes if the residual data
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is not representative of the whole dataset. A popular and cost-effective rem-
edy is to impute synthetic data, however, the current methods usually remain
rudimentary [3] and inconsistent across agencies and datasets.

The Australian Government’s national statistical asset – the Business Lon-
gitudinal Analysis Data Environment (BLADE) [1] is one such example. It com-
bines business tax data and information from the Australian Bureau of Statistics
(ABS) surveys with data about the use of government programs from finan-
cial years (FY) 2001 to 2016. It is currently being used by various government
agencies to study the factors that drive business performance, innovation, job
creation, competitiveness and productivity.

In this paper, we explore advanced imputation methods underpinned by
machine learning regressors as a way to improve coverage and reliability dur-
ing imputation and benchmark them using BLADE as our test case. We review,
select and compare 12 algorithms, and further examine their benefits and limi-
tations along various dimensions. Our results provide compelling empirical evi-
dence that ensemble algorithms are best suited to generate synthetic data that
accurately reflects the ground truth.

2 Related Work

Most statistical and machine learning algorithms cannot handle incomplete data-
sets directly [6]. As such, there have been a plethora of strategies developed to
cope with missing values. Some researchers suggest directly modelling datasets
with missing values [2]. However, this means that for every dataset and most
statistical inference, we need to build up sophisticated models which are labour-
intensive and often computation-intensive. Alternatively, people often use a two-
phase procedure – obtaining a complete dataset (or subset) and then apply
conventional methods to analyse the datasets. There are roughly three classes
of methods:

1. A commonly used method is dropping instances with missing values [7]. This
approach is suitable when there are only a few instances with values missing
randomly. For larger instances of missing values, list-wise deletion results in
bulk loss of information and smaller, non-representative data leading to biased
results.

2. The second class of methods are simple imputation methods, such as mean
and median imputation, or the most common, value imputation. However,
they often underestimate the variance, ignore the correlation between the
features and lead to poor imputation [7].

3. The third class of methods are building statistical or machine learning models
based on data or domain knowledge to impute missing values. They usually
take into account various covariance structures, such as temporal dependence
for time series or longitudinal data, and cross-variable dependence [4,5,7].
These methods impute missing values based on a distribution conditional on
other features and often have the best performance. In this paper, we focus
on these model-based methods.
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When imputing missing values, the nature or mechanism of the missingness is
important [7,9]. Missing data mechanisms could be categorised into three types:
missing completely at random (MCAR) where missingness is not related to data
observed or missing, missing at random (MAR) where missingness depends only
on the observed variables and missing not at random (MNAR) where missingness
depends on the missing values themselves. Most imputation methods assume
MAR in order to produce unbiased results. However, proving that the pattern
of missingness is MAR without prior knowledge of the actual mechanism itself
is impossible in a real-world dataset such as BLADE.

Based on the MAR assumption, there are several other more robust statistical
imputation methods, ranging from hot/cold deck imputation, maximum likeli-
hood, expectation maximisation (EM) [5,9], multivariate imputation by chained
equations, to Bayes imputation [7]. These methods are often restricted to rela-
tively small datasets. For example, Khan et al. [6] performed an extensive eval-
uation of ensemble strategies on 8 datasets by varying the missingness ratio.
Their results showed that bootstrapping was the most robust method followed
by multiple imputation using EM. Bakar and Jin [2] proposed Bayesian spatial
generalised linear models to infill values for all the statistical areas (Level 2) in
Australia.

Machine learning and data mining techniques are capable of extracting use-
ful and often previously unknown knowledge from Big Data. Recently, Yoon
et al. [12] designed a novel method for imputing missing values by adapting the
Generative Adversarial Nets (GAN) architecture where they trained two models:
a generative model and a discriminative model, and used a two-player minimax
game. It is worth noting we cannot evaluate deep learning methods due to secu-
rity restrictions in the current ABS computing environment, but they remain a
possibility in the future.

Surveying the related work reveals that imputation strategies range from
simple list-wise deletion to sophisticated neural networks. To date, no study has
used the Australian Government’s national statistical asset to evaluate super-
vised machine learning methods for imputation.

3 The BLADE Dataset and Missing Values

BLADE is the Australian Government’s national statistical asset which combines
business tax data and information from ABS surveys with data about the use
of government programs on all active Australian businesses from FY2001–02 to
FY2015–16.

A de-identified extract of BLADE is available in the ABS DataLab, a secure
virtual environment, for Australian public servants and researchers to under-
take complex microdata analysis. The extract spans the full 15 financial years
and contains 28 continuous and categorical features. In FY2015–16 there were
8,094,618 rows. The categorical features include Indicative Data Items such as
the unit and timestamp identifiers, the industry and industrial classifiers, entity
type and geo-locational data. The continuous features come from the Business
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Fig. 1. Sparsity denotes the extent of missingness for each vector.

Fig. 2. Correlation between features based on missingness. (Color figure online)

Activity Statement (BAS) and Pay as You Go (PAYG) Withholding Tax State-
ment. The BAS features include turnover, export sales, capital and non-capital
expenditures and total salary, wages and other tax-related payments. The PAYG
features include employee headcount and its Full-Time Equivalent (FTE).

Figure 1 is a snapshot of the entire BLADE extract for FY2015–16 using a
nullity matrix. The nullity matrix converts tabular data matrices into boolean
masks based on whether individual entries contain data (which evaluates to true)
or left blank (which evaluates to false). The Indicative Data Items are observed
largely in their entirety because this information is compulsory, as illustrated by
the dense vectors. Data sourced from the BAS and PAYG fields appear more
sparse given that they only apply to certain types of firms such as those that
are employing staff or engaging in exports.

We probe the underlying structure of missingness across features illustrated
by a nullity correlation heatmap in Fig. 2. The nullity correlation ranges from
a value of zero (independent features) to +1 (dependent features). The blue
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tiles exhibit perfect correlation, meaning that if, for example, turnover is fully
observed, then capital expenditure will exhibit the same properties. Dark red
tiles indicate lower or near-zero correlation – closer to an assumption of MAR.
These features become high-value targets for imputation in Sect. 5.

4 Methodology

Data analysis is performed in the ABS DataLab using Python. Based on sug-
gestions by domain experts, we pre-process the data by filtering out businesses
with Turnover, Wages and FTE values that are not positive. This produces a
perfectly dense matrix of businesses that are deemed to be actively trading.

All features and targets are scaled using a logarithmic-transformation given
by log10(x + ε) where ε = 1e–6 to suppress negative values during the
logarithmic-transformation process. Given large corporations exhibit higher
Turnover and FTE, we use this process to reduce long right tail skewness.

The benchmark presented in this paper is performed through a repeated K-
Fold cross-validation process to train and evaluate our 12 regression algorithms.
For each fold, 90% of the data is used for training and the remaining 10% for test-
ing. 10 folds using a different testing set are used to produce performance metrics
for each algorithm. Finally, the risk of unbalanced folds is counterbalanced by
repeating the entire process 10 times, averaging the performance metrics accord-
ingly. These combined performance metrics are presented in Sect. 5. We brief the
12 learning algorithms [8] below. They were seeded with the Scikit-learn v0.20.3
default hyper-parameters.

Linear Regression (LR) – A linear modelling technique that seeks to minimise
the residual sum of squares between the observed y and predicted responses from
other features X through linear approximation given by: minw||Xw − y||22.

Decision Tree Regressor (DTR) – An estimator that uses a series of boolean
functions constructed by if-else conditions which are highly interpretable.

Ridge Regression – A technique that seeks to minimise ridge coefficients through
a penalised residual sum of squares given by: minw ||Xw − y||22 + α||w||22.

Bayesian Ridge – A ridge regression technique using uninformative priors such
as a spherical Gaussian on w like p(w|λ) = N (w|0, λ−1Ip).

LassoCV – A linear model trained with l1 prior as regularisation with the objec-
tive function: minw

1
2nsamples

||Xw − y||22 + α||w||1.

Orthogonal Matching PursuitCV (OMPursuitCV) – An algorithm for approx-
imating the fit of a linear model with constraints imposed on the number of
non-zero coefficients given by: arg min

γ
||γ||0 subject to ||y − Xγ||22 ≤ tol.
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Bagging Regressor (BR) – An ensemble meta-estimator that fits base regres-
sors each on random subsets of the original dataset and then aggregates their
individual predictions to form a final prediction.

Extra Trees Regressor (ETR) – An estimator that fits a number of randomised
decision trees (extra-trees) on various sub-samples of the dataset and uses aver-
aging to improve the predictive accuracy and control for over-fitting.

Gradient Boosting Regressor – An additive model that allows for the optimisa-
tion of arbitrary differential loss functions. In each stage a regression tree is fit
on the negative gradient of the given loss function.

Random Forest Regressor (RF) – A number of classifying decision trees on var-
ious sub-samples of the dataset and use averaging to improve the predictive
accuracy and control for over-fitting.

Multi-layer Perceptron (MLP) – A simple back propagation neural network with
loss function: Loss(ŷ, y,W ) = 1

2 ||ŷ − y||22 + α
2 ||W ||22.

Generalised Additive Models (GAM) – A non-linear modelling technique where
predictor features can be modelled non-parametrically in addition to linear and
polynomial terms. GAMs are useful when the relationship between features are
expected to be of a more complex form. Its recent variation could include variable
interaction [11].

4.1 Performance Metrics

The experimental results in Sect. 5 are evaluated through five performance met-
rics. These are Mean Absolute Error (MAE), symmetric Mean Absolute Percent-
age Error (sMAPE), Root Mean Squared Error (RMSE), Mean Squared Error
(MSE) and R2, given by:

MAE =
∑n

i=1 |ŷi − yi|
n

sMAPE =
100%

n

n∑

i=1

|ŷi − yi|
(|ŷi| + |yi|)/2

(1)

RMSE =

√∑n
i=1(ŷi − yi)2

n
MSE =

∑n
i=1(ŷi − yi)

2

n
R2 = 1−

∑n
i=1(ŷi − yi)

2∑n
i=1(yi − ȳ)2

(2)

where n is the number of observations, yi is the i-th observed value, ŷi is its
predicted value and ȳ is the mean of y.

Our experiment is a 12× 3 × 2 × 2 design, described in Table 1.1

1 The 3 input features are Capital Expenditure, Wages and FTE/Turnover (depending
on the target feature). The 7 input features include the preceding features in addition
to Export Sales, Imported Goods with Deferred GST, Non-Capital Purchases and
Headcount. The 14 input features include all preceding features and GST on Pur-
chases, GST on Sales, Other GST-free sales, Amount Withheld from Salary, PAYG
Tax Withheld, Amount Withheld from Salary, Amount Withheld from Payments
and Amount Withheld from Investments.
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Table 1. Experiment conditions

# Levels Condition Values

12 Algorithms See Sect. 4

3 Input features 3, 7 and 14 BLADE features

2 Target feature Turnover, FTE

2 Time spans: number of financial
years in the data

3FY (2014–16), 1FY (2016)

To ensure the volume of training data remains equal across conditions, it
is run on a 1 million row subset of the original, unfiltered BLADE data. This
represents 176,683 rows for 1 financial year (FY) and 579,564 rows for 3FY after
pre-processing. The experiments were conducted in the ABS DataLab, providing
a shared Intel 10-core 2.2 Ghz server with 133 Gb of physical RAM.

5 Experimental Evaluation

5.1 Algorithm Comparisons for Turnover

We first examine Turnover as a target feature, comparing the results of all
algorithms, input features and time spans, as shown in Table 2. In all cases, the
set of 14 features perform better than 7 features, itself performing better than 3
features. This applies to all algorithms and metrics. For this reason, we present
results from the 14 feature set and examine the impact of the number of input
features on performance.

Using our performance metrics, the ensemble algorithms provide clearly bet-
ter results than the other types of regressors. In particular, the Bagging Regres-
sor (BR) and Random Forest Regressor (RF) exhibit the lowest MAE at 0.060,
closely followed by the Extra Tree Regressor (ETR) at 0.063. The errors are an
order of magnitude lower than for most linear methods for which the best MAE
is 0.253, for our baseline Linear Regression (LR). The Multi-layer Perceptron’s
(MLP’s) MAE is larger than that of the ensemble methods, yet competitive at
0.078. It is well ahead of the Generalised Additive Models (GAM) at 0.134.

Looking at RMSE, the trends are confirmed and the same three ensemble
methods again perform best. This time the ETR exhibits the lowest error at
0.174, but BR and RF are very close with 0.177. Again, the MLP’s performance
is inferior but reasonably close at 0.185, followed by GAM at 0.244. The linear
methods are clearly inferior, and the LR’s best RMSE is at 0.381.

As expected, these trends are replicated for sMAPE and MSE, preserving
the same rank ordering observed previously. In terms of R2, the ETR is the
best at 93.9%, closely followed by RF and BR, confirming the results from the
individual metrics through strong correlation. Based on these results, the rest of
this paper will focus on the top 3 performing algorithms – BR, RF and ETR –
and refer to LR as a baseline.
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Table 2. Results for Turnover, 3FY (2014–16)

Algorithm #Feat MAE RMSE sMAPE MSE R2 Time (s)

Linear Regression 14 0.253 0.381 4.62% 0.145 70.82% 333

Decision Tree 14 0.071 0.236 1.39% 0.056 88.79% 2003

Ridge Regression 14 0.253 0.381 4.62% 0.145 70.82% 58

Bayesian Ridge 14 0.253 0.381 4.62% 0.145 70.82% 416

LassoCV 14 0.253 0.381 4.62% 0.145 70.82% 1407

OMPursuitCV 14 0.262 0.392 4.79% 0.154 69.05% 672

Bagging 14 0.060 0.177 1.16% 0.031 93.69% 18348

Extra Trees 14 0.063 0.174 1.21% 0.030 93.90% 5709

Gradient Boosting 14 0.074 0.191 1.41% 0.037 92.63% 16725

Random Forest 14 0.060 0.177 1.16% 0.031 93.70% 17527

MLP 14 0.078 0.185 1.48% 0.034 93.35% 85805

GAM 14 0.134 0.244 2.47% 0.060 87.98% 9472

5.2 Impact of Input Features

Focusing on the top 3 algorithms and the LR as the baseline, we now compare
the relative performances corresponding to the 3 input feature conditions. In the
base condition, we only use 3 features from the dataset, then increase to 7 and
finally 14. We use domain knowledge in the selection of features that reflect well-
established drivers of productivity growth [10], being capital and labour inputs
in the base condition. Similarly, in the second condition, we include the same
features in the prior condition and expand it to include imports and exports
and other expenditures. In the third condition, we use all continuous features
as inputs. While the MAE decreases only slightly for the LR baseline, by 5.3%
from 3 to 7 features and 16.8% from 3 to 14 features, the improvements are
more dramatic for the ensemble regressors, as shown in Fig. 3. They register
error reductions of 45.8–47.0% when moving from 3 to 7 input features, and
80.3–80.6% when moving from 3 to 14 input features.

As expected, the trends are very similar for RMSE, as shown in Fig. 4. The
improvements for LR are 4.3% from 3 to 7 features, and 12.8% from 3 to 14
features. While more moderate for RMSE than for MAE, the ensemble methods
display again a strong improvement as the number of features increases, in the
range 32.5–33.7% from 3 to 7 features, and 60.0–61.7% from 3 to 14 features.

Intuitively, adding more features brings additional prior knowledge correlated
to the target feature. However, the correlations are clearly not linear, explaining
why the ensemble methods are better suited at capturing complex relationships
than LR, hence exhibit much stronger improvement. Based on these findings,
we set out to assess the impact of prior knowledge by considering different time
spans using only the 14 input features condition.
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Fig. 3. MAE of Turnover prediction Fig. 4. RMSE of Turnover prediction

Table 3. Results for Turnover, 1FY (2016)

Algorithm #Feat MAE RMSE

Linear Regression 14 0.265 0.389

Decision Tree 14 0.075 0.247

Ridge Regression 14 0.265 0.389

Bayesian Ridge 14 0.265 0.389

LassoCV 14 0.265 0.389

OMPursuitCV 14 0.275 0.402

Bagging 14 0.063 0.188

Extra Trees 14 0.070 0.191

Gradient Boosting 14 0.075 0.194

Random Forest 14 0.062 0.188

MLP 14 0.087 0.191

GAM 14 0.136 0.248

5.3 Impact of Time Spans

In some cases, only a single year of data may be available to impute missing
data, which precludes algorithms from potentially learning from prior knowledge
(time series patterns). We examine this by producing the results of the MAE and
RMSE metrics for all algorithms over a single financial year, FY2016 in Table 3.

The RF and BR clearly surpass the other algorithms on most performance
metrics. In absolute terms, their MAE are 0.062 and 0.063, hence very similar
to the 3FY results in Table 2 at 0.060. Similarly, their RMSEs are 0.188, slightly
worse than the 3FY value of 0.177. Coming third is ETR, but not as close to
RF and BR as was the case in the 3FY results. It’s MAE and RMSE now stand
at 0.070 and 0.191. Our results show that the lack of time-series data affects
algorithms to different extents. BR registers a performance drop (accounted for
as an increase in error) of −4.80% in MAE and −6.42% in RMSE. RF registers
similar drops of −4.69% and −6.17% respectively. For ETR, the drop is the
largest of all algorithms, −11.56% in MAE and −9.62% in RMSE, indicating a
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Fig. 5. MAE of FTE prediction Fig. 6. Processing time (log-seconds)

higher dependence on time-series information. In terms of baseline, LR registered
a drop in the MAE from 0.253 to 0.265 (−4.59%). This modest drop is not due
to resilience from a lack of time-series data than to the moderate performance it
achieves in the first place. These results indicate that all algorithms indeed make
use of prior knowledge coded into the time series, with RF and BR demonstrating
their resilience even without it.

5.4 Experimental Results for FTE

The same experiment was carried out using FTE as the target, as it is one of
the most sparse vectors in the entire dataset and has a substantially different
distribution to Turnover.

As illustrated in Fig. 5, the differences between algorithms are smaller than
for Turnover. Performance still increases as more input features are used, with
the best result achieved by ETR with 14 input features registering a MAE of
0.060. This value is very close to ETR’s performance on Turnover with 14 input
features (0.063). However, using 3 features only, ETR’s performance, 0.079, is
superior to 0.316 for Turnover.

The same pattern applies to most algorithms and can be looked at in terms of
improvement as more features are added. For BR, ETR and RF, moving from 3
to 7 features improves MAE by 8.4–11.5%, while from 3 to 14 features improves
MAE by 20.5–24.2%. These ranges are much lower than that observed for the
same algorithms applied to Turnover (45.8–47.0% and 80.3–80.6%) as we have
seen earlier. The improvement for LR is also very modest this time, 0.8% from
3 to 7 features, and 3.0% from 3 to 14 features.

The differences in results obtained across the targets with different distribu-
tion help us qualify the resilience of the algorithms and hence their potential
applicability to other microdata sets. In essence, the best performing algorithms
manage to reach similar levels of performance as more features are added, indi-
cating that using more features are indeed useful. However, in some cases, the
gain in performance may be modest, in which case fewer features may be used
to decrease processing time.
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5.5 Processing Time

Figure 6 shows the elapsed processing time for training and imputation of each
algorithm on the 3FY data, testing the 14 input feature condition for the
Turnover target. The first 5 bars are the linear models which have relatively
low processing times ranging from 58 to 1,407 s for Ridge Regression and Las-
soCV. The ensemble family of algorithms are among the highest performers and
orders of magnitude more computationally-intensive, up to 55 times longer than
LR. Their processing times range from 2,003 to 18,348 s for DTR and RF. The
clear outlier is the MLP at 85,805 s or 4.9 times slower than BR, ETR and RF.

6 Discussion

The experiment presented in this paper demonstrates the benefits of using
machine learning-based imputation algorithms on national microdata sets such
as BLADE. The high-performance outcomes achieved should encourage statis-
tical and government agencies to reliably improve their imputation for greater
data coverage. Our results help practitioners make the best decisions in terms of
algorithms and input features, based on their dataset and analysis needs, while
understanding the impact of different imputation methods.

Generally speaking, a single simple model, like a decision tree, is sensitive to
training data and the results are likely to be overfitting and unstable. Ensemble
algorithms, on the other hand, build multiple sub-models with multiple sub-
samples of the dataset and produce a set of simple models that are weakly
correlated with high variance, combining their results to make the final predic-
tion. The RF, in particular, introduces additional variance by using a random
sample of features for each individual sub-model. However, ensemble algorithms
come at the cost of longer processing time.

To maximise the generalisability of our findings, we processed two target val-
ues with substantially different characteristics. Cross-validation accuracy results
for both Turnover and FTE are seen as high enough to assist analysts using
BLADE. The 1.16%–1.2% sMAPE for Turnover using BR, ETR and RF indi-
cate imputed values are only slightly off from ground truth. Similarly, as indi-
cated by R2 values, around 94% variability of the true values were captured by
the imputed values of these 3 algorithms.

We also quantified how more input features could substantially improve the
imputation performance. Interestingly, the benefits were less pronounced for
FTE, possibly because (i) less training data are available, only about a third of
Turnover ; and (ii) FTE has a more complicated non-linear relationship to input
features because part-time effort may not be reflected linearly to Turnover.

The main limitation of our work stems from keeping the process simple to
ensure easy adoption and higher generalisability. However, tuning the algorithms’
hyper-parameters to each dataset could substantially improve imputation per-
formance. It may also dramatically reduce processing time. Another potential
limitation lies in using logarithm transformation to address data skewness. Prac-
titioners will need to adapt scaling techniques to the characteristics of their data.
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In the future, we plan to perform feature selection to assess the compared
benefits of data-driven feature ranking on imputation performance. This may
increase the complexity of the process but improve performance and reduce
processing time. Also, it would be useful to validate whether using multiple-
year feature values for a single business may lead to more reliable or accurate
imputation performance as the temporal dependency could be used explicitly.
Finally, we plan to further test these methods on other government datasets.

7 Conclusion

We conducted a comprehensive experimental evaluation of machine learning-
based imputation algorithms on the Australian Government’s national statis-
tical asset – BLADE. Using two target features with distinct characteristics,
Turnover and FTE, we compared 12 machine learning-based imputation algo-
rithms and found that the extra trees regressor, bagging regressor and random
forest consistently maintain high imputation performance over the benchmark
linear regression across the performance metrics outlined at Sect. 4.1.

We provided detailed results along each algorithm, the number of input fea-
tures, time spans and processing time conditions. Based on our results, we rec-
ommend using extra trees regressor for its overall imputation performance and
computational efficiency. This is the most promising algorithm for increasing
data coverage within microdata sets containing missing values. This work will
help shed some light on novel tools for statistical and government agencies to
select and implement supervised machine learning methods for imputation.
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Abstract. Financial well-being and its measurement are well researched
topics in personal finance, yet there is no universally agreed definition of
financial well-being. Machine learning is proliferating into new applica-
tion domains. In this study we investigate the use of state-of-the-art gra-
dient boosting methods for predicting subjective levels of financial well-
being, using the Consumer Finance Protection Bureau (CFPB) National
Financial Well-being dataset. To enable interpretability, we identify the
most important observable features required for accurate predictions.
These important features are then analysed using factor analysis to
understand hidden themes in the data.

Keywords: Personal finance · Financial well-being · Machine
learning · Gradient boosting · Decision trees · Exploratory factor
analysis

1 Introduction

Personal finance is something concerning everyone, with plenty of resources dis-
cussing personal finance concepts and issues. Many studies have been conducted
to understand financial well-being of individuals and populations, as a whole,
and the components and factors affecting it. However, there is no universally
agreed definition or standard way of measuring financial well-being. The Con-
sumer Finance Protection Bureau (CFPB), a U.S. government agency, conducted
a systematic study to define and develop a reflexive scale to measure financial
well-being. Their definition of financial well-being reflects a concept that is inher-
ently subjective and for that reason it cannot be observed directly [1].

The rigour and the systematic approach to this scale development can be
observed from the fact that the final financial well-being scale based on 10 sub-
jective questions (on a five point Likert scale [2]) were arrived at by first conduct-
ing 106 interviews to develop the initial pool of candidate items and then three

c© Springer Nature Switzerland AG 2019
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rounds of surveys for data collection and scale development. The scale develop-
ment involved exploratory factor analysis (EFA), confirmatory factor analysis
(CFA) and finally developing models based on Item Response Theory (IRT) [3].
As a next logical step, the CFPB fielded the financial well-being questionnaire
alongside a number of other survey questions. These questions were intended
to capture data pertaining to individual characteristics, household and fam-
ily characteristics, income and employment characteristics, savings and safety
nets, financial experiences and financial behaviours, skills and attitudes. The
survey resulted in a dataset of 6,394 samples with 217 features (including some
derived features). One of the purposes of making the dataset public was to
enable researchers to conduct additional research and produce further insights
into financial well-being in the US society1.

Our aim in this study is to predict financial well-being using observable
attributes of individuals, which were captured using the survey and are avail-
able in the dataset. Contrary to subjective attributes, these can be measured
objectively. For example, the amount of liquid cash that one possesses, whether
someone has life or disability insurance, age and whether one has knowledge of
financial concepts such as compound interest.

We aimed to answer the following research questions:

1. To what extent financial well-being, an inherently subjective construct, can
be predicted by observable features available in the CFPB dataset?

2. If we segregate observable features into three different categories: (1)
attributes applicable to participants only, such as current level of savings of
participants; (2) attributes applicable to participants and/or any household
member(s) such as total household income; and (3) attributes with no control
over them (e.g., age, gender), to what extent can these different categories of
features predict financial well-being?

3. Which observable features are more important than others? Do such impor-
tant attributes form one or more latent constructs?

2 Background, Related Work and Motivation

Several attempts have been made to define financial well-being. One of the broad-
est conceptualisations [4] puts forward the idea that financial well-being is a
multi-dimensional concept incorporating several factors that cannot be assessed
through one measure. Other studies also show the multi-dimensional aspect of
financial well-being [5,6], including a study on Australian financial well-being,
which defines three interrelated dimensions with several sub-dimensions in those
three dimensions [6]. Another study of financial-wellbeing using a nationally rep-
resentative survey from Norway presents a definition and identifies three sub-
domains of financial well-being [5].

1 National Financial Well-being Survey Public User File User’s Guide https://www.
consumerfinance.gov/data-research/research-reports/financial-well-being-scale/.

https://www.consumerfinance.gov/data-research/research-reports/financial-well-being-scale/
https://www.consumerfinance.gov/data-research/research-reports/financial-well-being-scale/
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The CFPB devised a model to actually measure financial well-being of indi-
viduals and to report it as a number between zero and one hundred2. The CFPB
defines financial well-being “as a state of being wherein a person can fully meet
current and ongoing financial obligations, can feel secure in their financial future
and is able to make choices that allow them to enjoy life” [7]. Considering the
present and future needs of financial security and freedom of choice, they define
four elements and come up with a single measure for financial well-being mod-
elled using 10 subjective questions spanning these four elements, using IRT. It
is interesting to note that the same financial well-being score can reflect a diver-
sity of circumstances, conditions, or perceptions. As an example, at all household
income levels, financial well-being scores vary widely [8].

Our aim in this work is to investigate whether attributes that are observable
(i.e. not subjective) can be used to predict financial well-being and to explain
variability in well-being to the extent possible. As pointed out in [9], measur-
ing financial well-being as well as exploring the correspondence and mismatch
between objective and subjective financial well-being are very active research
areas in personal finance. The possibility of predicting financial well-being using
observable features has potential benefits for both individuals and for financial
institutions.

We are unaware of any prior research attempting to model and hence under-
stand the effect of observable measures on subjective financial well-being scores,
especially using machine learning models. A study with some relevance to the one
proposed here is that carried out in [10], which develops two multi-item scales of
financial well-being, namely Reported Financial Well-being using self-reported
survey data obtained from a subset of clients of a major Australian bank and
Observed Financial Well-being using financial-record measures from the bank-
ing data of those customers. The study found that there is a positive correlation
of 40% between the scales. They treat those scales as two distinct but corre-
lated scales [10]. However, we investigate to what extent observable measures
are effective in predicting a subjective scoring and thus linking subjectivity to
observable measures. Another study which considers objective measures in mea-
suring financial health is [11]. They define four components of financial health as
Spend, Save, Borrow and Plan and two indicators for each component (a total
of 8 indicators). The study presents how to measure the indicators using actual
data that a financial institution might have and also provides with alternative
survey questions in case actual data is not available.

3 Dataset

The CFPB dataset is a US-nationally representative dataset of 6,394 samples.
The dataset contains 217 features with their sources as survey item, panel data,
or derived variables. In addition to fielding the CFPB financial well-being (FWB)
questions, the survey also fielded questions of three other financial scores, namely,
Lusardi and Mitchel financial knowledge scale score, Knoll and Houts financial
2 URL: https://www.consumerfinance.gov/consumer-tools/financial-well-being/.

https://www.consumerfinance.gov/consumer-tools/financial-well-being/
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knowledge scale score and Financial skills scale score. The other features pro-
vided in the dataset are of select individual and household. These include fed-
eral poverty level and demographic characteristics such as race/ethnicity, age,
household size, household income from the panel, and survey items belonging to
financial behaviour, financial attitudes and experiences3.

3.1 Pre-processing

There were no missing values as such, as unsubstantiated values (−5, −4, −3, −2.
−1, 8, 98 and 99) were used to fill missing values due to various reasons such as
participant refused to provide an answer, participant was not sure of an answer,
participant didn’t know an answer, participant not in item base or technical
issues. In all our experiments we either converted the unsubstantiated values to
null values or dropped samples with missing values. Original survey items test-
ing financial knowledge were removed because we included corresponding derived
dichotomous variables which indicated whether a participant correctly selected
an option or not. Variables were classified as Subjective or Observable. We further
segregated the observable variables into three categories as given in Table 1 and
assessed their predictability on the subjective financial well-being reported. We
separated those observable features which are applicable to participant and/or
one or more household members from those features which are applicable to
participant only. Examples of such features include household income, house-
hold size, SNAP (Did you or any household member receive SNAP benefits?),
SHOCKS 1 (In the past 12 months, did you or any members of your household
lose a job?).

Table 1. Distribution of features in the CFPB dataset.

Feature classification Count

FWB questions 10

Subjective 84

Observable, no control over them 7

Observable, of participant and/or other household member(s) 28

Observable, of participant only 68

Excluded 20

Total 217

The feature FWBscore was used for label creation in binary classification and
as the score to be predicted in regression experiments. FWBscore is a normally
distributed variable, rounded to the nearest whole number, on a scale between

3 National Financial Well-Being Survey Public Use File Codebook https://files.
consumerfinance.gov/f/documents/cfpb nfwbs-puf-codebook.pdf.

https://files.consumerfinance.gov/f/documents/cfpb_nfwbs-puf-codebook.pdf
https://files.consumerfinance.gov/f/documents/cfpb_nfwbs-puf-codebook.pdf
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0 and 100, representing a continuum from severe financial stress to extremely
satisfied with one’s financial situation. Scores of below 50 are associated with
people who are struggling to make ends meet and suffers from material hardships.
Binary labels were 1 (Financially stable) for FWBscore ≥ 50 and 0 (Financially
struggling) for FWBscore < 50.

4 Methods

4.1 Model Development and Testing

Among numerous machine learning techniques available today, gradient boosting
decision trees [12] have been found to be very effective in many applications
enabling accurate predictions for tabular data [13]. We have chosen a specific
gradient boosting decision trees implementation library called CatBoost [14]
for our experiments described here. Some of the advantages of the CatBoost
implementation include its native support for categorical features. Numeric and
categorical variables with missing values can be input to CatBoost. CatBoost
guarantees to have a split in decision trees that separates missing values from
other values in a variable. In order to ensure that similar results are obtained
using another algorithm, we also tried LightGBM [15], another gradient boosting
decision tree implementation, on selected experiments.

Binary Classification and Regression. Firstly, we investigated binary clas-
sification to predict the broad category of financially stable or financially strug-
gling and extended the experiments to regression to predict the actual FWB-
score. The performance of binary classification was assessed using ROC-AUC
and Accuracy whereas for regression we used root mean square error (RMSE)
and R2. Confidence intervals were calculated by running 10-fold cross validation
on the entire dataset.

Feature Importance. Important features were identified using the built-in
capabilities of CatBoost and LightGBM and using SHAP values. The default fea-
ture importance calculation of CatBoost for classification and regression is Pre-
dictionValuesChange, in which feature importance is determined by how much
prediction value changes on average if the feature in question changes in its val-
ues. The bigger the changes in the prediction, the bigger the feature importance.
For LightGBM, we used ‘gain’ for feature importance calculation. In addition
to the built-in feature importance calculation of the algorithms, we used feature
importance which was determined using SHAP values [16], a model agnostic
method of finding feature importance with its roots in game theory. The calcu-
lation principle for PredictionValuesChange4 and SHAP values5 can be found in
the footnotes.

4 URL: https://catboost.ai/docs/concepts/fstr.html.
5 URL: https://catboost.ai/docs/concepts/shap-values.html.

https://catboost.ai/docs/concepts/fstr.html
https://catboost.ai/docs/concepts/shap-values.html
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Ablation Studies. An ablation study was carried out, in which less important
features, according to PredictionValuesChange were removed one by one and
a model was trained each time after removal of a feature, with the remaining
features to see the performance on the reduced number of important features.
After removing a feature, the feature importance of remaining features was re-
calculated to account for possible surrogate splits.

Exploratory Factor Analysis. Exploratory Factor Analyses (EFA) were car-
ried out on important features identified with the aim of understanding whether
they form one or more latent constructs and thus facilitating better explana-
tion. The subset of the data which underwent EFA were tested for additivity,
normality, linearity, and homogeneity. Internal consistency was checked using
Cronbach’s alpha and sampling adequacy was tested using the Kaiser-Meyer-
Olkin (KMO) test. The number of factors to be extracted was determined using
a combination of parallel analysis and the Kaiser criteria.

5 Results

5.1 Machine Learning Model Results

Learning curves6 [17, pp. 55] for binary and regression models based on Cat-
Boost with observable features showed that both log loss and ROC-AUC started
to plateau at around 2,500 training sample, which is around 40% of the total
data. We therefore decided to set the training data to be 60% of the total data.
The remaining 40% of the data were split into a validation set and test set
equally. As expected all models showed, trivially, that whenever FWB survey
questions were added to the input features, then the models could predict the
response extremely well. Table 2 shows the comparison of Accuracy and AUC for
binary classification under various settings and Table 3 shows the performance
of CatBoost regressors under various settings.

Table 2. Performance of CatBoost binary classifiers.

Feature selection AUC 95% CI Accuracy 95% CI

FWB questions 0.9981 0.9972–0.9972 0.9781 0.9681–0.9881

Subjective 0.9365 0.9143–0.9586 0.8693 0.8399–0.8987

Observable & Subjective 0.9385 0.9157–0.9613 0.8717 0.8436–0.8997

Observable, no control over them 0.6938 0.6366–0.7509 0.6881 0.6534–0.7227

Observable, shareda 0.7806 0.7529–0.8083 0.7378 0.7065–0.7691

Observable, shared/no control 0.7974 0.7670–0.8277 0.7453 0.7168–0.7739

Observable, of participant only 0.8671 0.8385–0.8957 0.8000 0.7737–0.8262

All observable 0.8746 0.8458–0.9034 0.8053 0.7737–0.8368
aObservable features of participant and/or other household member(s).

6 Plotting validation metrics against the number of training examples.
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Table 3. Performance of CatBoost regressors.

Feature selection R2 95% CI RMSE 95% CI

FWB questions 0.9888 0.9836–0.9924 1.5343 1.2730–1.7957

Subjective 0.7155 0.6832–0.7478 7.4909 6.9570–8.0247

Observable & Subjective 0.7238 0.6846–0.7629 7.3774 6.9081–7.8466

Observable, no control over them 0.1551 0.1053–0.2049 12.9213 11.9478–13.8948

Observable, shared 0.2877 0.2308–0.3445 11.8601 10.9351–12.7851

Observable, shared/no control 0.3269 0.2723–0.3815 11.5257 10.7635–12.2879

Observable, of participant only 0.4875 0.4344–0.5406 10.0548 9.4130–10.6965

All observable 0.5091 0.4481–0.5700 9.8395 9.1952–10.4838

A 5-fold cross validation ablation study found that for the first 7 important
features the performance of the binary classifier and regressor with only observ-
able features continuously improved. Figure 1 shows the performance. The per-
formance beyond the first 15 features are minimal, we therefore chose the first
15 important features for factor analyses.

Figure 2 shows the 15 most important features identified using PredictionVal-
uesChange and SHAP Values for binary classification and regression. For binary
classification, the first 15 features produced a result of AUC of 0.8680, 95% CI
0.8571–0.8788 whereas when all the 102 observable features were used, the model
achieved an AUC of 0.8746, 95% CI 0.8458–0.9034. For regression, using the first
15 important features resulted in R2 as 0.4991, 95% CI 0.4794–0.5188, whereas
using all 102 observable features resulted in 0.5091, 95% CI 0.4481–0.5700.
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Fig. 1. Ablation study on feature importance.
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CatBoost Imp SHAP Imp CatBoost Imp SHAP Imp
SAVINGSRANGES 22.3 SAVINGSRANGES 19.5 SAVINGSRANGES 25.8 SAVINGSRANGES 19.9
MANAGE1_3 10.3 MANAGE1_3 17.7 MANAGE1_3 21.5 MANAGE1_3 16.6
MANAGE1_1 8.9 MANAGE1_1 12.8 MANAGE1_1 10.0 MANAGE1_1 10.5
PPINCIMP 8.3 PPINCIMP 9.2 PPINCIMP 7.5 PPINCIMP 10.4
PPETHM 5.8 COLLECT 6.8 PRODHAVE_6 5.5 PRODHAVE_6 7.7
COLLECT 5.6 EMPLOY1_8 6.2 COLLECT 4.9 agecat 5.8
PPMARIT 5.6 agecat 5.3 agecat 4.3 EMPLOY1_8 5.5
EMPLOY1_8 5.4 SHOCKS_12 5.2 EMPLOY1_8 3.7 COLLECT 5.4
agecat 5.3 PRODHAVE_5 4.9 PPMARIT 3.1 SHOCKS_12 4.3
PPREG9 4.3 KH3correct 4.5 PPREG9 3.0 PRODHAVE_5 4.0
PPREG4 4.0 AUTOMATED_2 2.7 PRODHAVE_5 2.6 PPETHM 2.9
SHOCKS_12 3.9 PPREG4 1.9 HOUSERANGES 2.1 HOUSERANGES 2.4
PRODHAVE_5 3.6 PPETHM 1.6 PPETHM 2.1 SHOCKS_2 2.0
AUTOMATED_2 3.5 PPMARIT 1.0 SHOCKS_2 2.0 PPMARIT 1.3
KH3correct 3.2 PPREG9 0.8 SHOCKS_12 1.9 PPREG9 1.0

not in regression
not in classification

Binary classification Regression

Fig. 2. Top fifteen important features.

Figure 3 shows the direction and magnitude of the 15 most important features
for regression. From this, it can be seen that the features COLLECT (Con-
tacted by debt collector in past 12 months), HOUSERANGES (About how
much do you pay for your home each month?), SHOCKS 2 (Work hours/pay
reduced) are negatively correlated with financial well-being. On the other hand,
SAV INGSRANGES (How much money do you have in savings today?), MAN-
AGE1 3 (Paid off credit card balance in full each month), MANAGE1 1 (Paid
all your bills on time), PPINCIMP (Household Income), agecat, PROD-
HAVE 6 (Non-Retirement Investments (such as stocks, bonds or mutual funds)),

Fig. 3. SHAP summary plot.
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EMPLOY1 8 (Retired), SHOCKS 12 (Participant didn’t select any of the 11
shocks listed) and PRODHAV E 5 (Pension) are positively correlated.

5.2 Exploratory Factory Analyses

We started EFA with all the 15 important features identified for predicting actual
financial well-being score (the column ‘CatBoost’ under ‘Regression’ in Fig. 2).
Tests prior to EFA for additivity, normality, linearity and homogeneity found the
data good for EFA. We dropped the features PPREG9 (Census division) and
PPETM (Race/Ethnicity) due to low communality and HOUSERANGES
due to low consistency. All samples with missing values for any features were
removed. Bartlett’s test for correlation adequacy was significant (p-value < 0.05).
Sampling adequacy was tested using KMO. Overall MSA was 0.77 and none of
the feature were below 0.65. Internal consistency tested using Cronback’s alpha
showed raw alpha as 0.71. The final solution using PCA with verimax orthogonal
rotation showed three factors with the loading as shown in Table 4.

Table 4. Exploratory factor analysis – 3 factors solution.

# Item Factor 1 Factor 2 Factor 3 h2 u2 com

1 SAVINGSRANGES 0.79 0.70 0.30 1.2

2 PRINCIMP 0.75 0.57 0.43 1.0

3 MANAGE1 3 0.69 0.54 0.46 1.3

4 MANAGE1 1 0.61 0.45 0.55 1.4

5 PRODHAVE 6 0.59 0.40 0.60 1.3

6 COLLECT −0.52 0.43 0.57 1.9

7 agecat 0.89 0.81 0.19 1.0

8 EMPLOY1 8 0.87 0.78 0.22 1.1

9 PRODHAVE 5 0.62 0.45 0.55 1.3

10 PPMARIT −0.40 0.35 0.65 2.5

11 SHOCKS 12 0.75 0.56 0.44 1.0

12 SHOCKS 2 −0.69 0.50 0.50 1.1

6 Discussion

6.1 Predictability

Overall, the results suggest that to a great extent observable attributes can
be used for predicting subjective financial well-being. The Spearman correlation
between predicted values and the actual scores was 0.7213, 95% CI 0.6940–0.7466
and the coefficient of determination was 0.5091 95% CI 0.4481–0.5700. The impli-
cation of this is that financial institutions, which are in possession of some of the
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observable features used (for example, savings level or whether someone paid
credit card outstanding in full in each month and so on) could operationalise
such actual observed data for measuring financial well-being of their clients to
some extent. It is to be noted that the Likert scales used for measuring some of
these features can be readily replaced with appropriate equivalents.

6.2 Important Features

The experiment results in highlighting the importance of some of the observ-
able features (such as whether someone paid credit card outstanding in full
each month) over other observable features such as household income where the
individual participants could be only partially responsible, is worth noting. In
a model where all observable features were used, the feature representing the
liquid cash someone has was more than three times more important than the
feature denoting total household income. Also, observable features where partic-
ipants having no control (such as gender or where someone lived at the age of 17
or highest level of education by person/people who raised respondent) are not
as important as compared to many observable features upon which respondents
had full control or some control. However, care should be taken in interpreting
these results as the correlation between the subjective financial well-being and
the prediction is not very close to 100%.

Figure 3 shows both direction and magnitude of impacts. For instance, SAV-
INGSRANGES has highest impact on model output with high values having
positive impact. The impact of some features are not symmetrical. For instance,
COLLECT is negatively correlated with moderate impact when participant was
contacted by debt collector and low impact otherwise. Another example would be
SHOCKS 2, with reduced pay/work hours having moderate negative impact
and almost nil effect otherwise. It can also been seen that agecat (Age) and
EMPLOY 1 8 (retirement) are positively correlated with financial well-being.

It appears that first 10 important features out of 102 observable features did
not include any features measuring the financial knowledge of a person. There
were 14 questions testing financial knowledge. It is likely that, such knowledge or
lack of such knowledge was reflected in other features. Out of those 14 questions,
KH3correct (Understanding of benefits of diversification) seems to be important
as it is the only financial knowledge testing question that appeared in the top
20 important features.

The factor analysis results using the top 15 important features shows three
latent factors covering 12 features. It appears that the first factor covering liquid
savings, household income, paying credit card in full, paying all bills on time,
non-retirement investments and not having contacted by debt collectors, stands
for good financial behaviours (saving for present and future needs and keep up
with financial discipline). Most of the financial well-being conceptual models
present financial behaviours as one of the influential determinants of financial
well-being and this result is consistent with them. The second factor covering
age, retirement and pension appears to be related to financial well-being at a
later stage in the life. The negative correlation of this factor with marital status
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may indicate different financial situation experienced by someone who is single
and never married to someone who is perhaps widowed and may have to pay off
partner debts or is experiencing a reduced income compared to their lifestyle.
The third factor is related to experience of shocks in life (both financial and
non-financial) and it indicates that both (experienced vs did not experience
shocks) are equally important. It covers SHOCKS 2 (had work hours and/or
pay reduced) and SHOCKS 12 (didn’t experience any of the 11 shocks listed
in the past 12 months).

6.3 Limitations and Future Work

This study uses only one dataset from the U.S., and even though it is nationally
representative in that diverse country, our results may not be applicable in a dif-
ferent society (for instance, Australia) as we used features such as census region,
division and SNAP benefits in model development. However, this work can be
extended by applying the methodology followed here on other financial well-being
datasets containing observable features, as and when they become publicly avail-
able. Another way of extending this work would be grouping participants based
on attributes such as psychological factors and predicting financial well-being
for those groups separately, as long as such grouping results in sufficient amount
of data to develop and test machine learning models. Applying on longitudinal
datasets would further enable to understand the changes in financial well-being
over a period of time with respect to changes in observable and subjective fea-
tures. This can result in mitigating the effects of confounding features. Another
limitation of the study is that it is confined to the 217 features captured through
the survey, panel data and derived features. There could be better observable
features improving predicting power of models as well opportunities for feature
engineering [18] to produce results which are more accurate. Feature engineering
has not been explored in this study.

7 Conclusion

This paper explores the possibility of identifying important observable attributes
to predict subjective financial well-being and it finds that such a prediction is
possible. The study also finds certain observable features such as current savings
level, whether people sampled paid all bills on time or paid off credit card out-
standing in full each month as important predictors. Many of these attributes
could be generated from the databases of financial institutions, enabling them to
measure financial-wellbeing of their clients on a continuous basis. The study also
finds that observable features which are under the direct control of participants
are more effective predictors compared to other observable features which are
under no control of them or are applicable to participants and/or any house-
hold member(s). As some previous studies [5,6,9,19,20] pointed out, financial
behaviours are influential determinants of financial well-being, and our experi-
ments show such influence. Also our study shows that attributes such as financial



Predicting Financial Well-Being Using Observable Features 239

knowledge or skills are not as important as financial behaviours when it comes
to predicting financial well-being.
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ernment Research Training Program (RTP) Scholarship.
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Abstract. A sketch is a lossy compression of high-dimensional data into
compact bit strings such as locality sensitive hash. In general, k nearest
neighbor search using sketch consists of the following two stages. The
first stage narrows down the top K candidates, for some K ≥ k, using a
priority measure of sketch as a filter. The second stage selects the k near-
est objects from K candidates. In this paper, we discuss the search algo-
rithms using fast filtering by sketch enumeration without using matching.
Surprisingly, the search performance is rather improved by the proposed
method when narrow sketches with smaller number of bits such as 16-bits
than the conventional ones are used. Furthermore, we compare the search
efficiency by sketches of various widths for several databases, which have
different numbers of objects and dimensionalities. Then, we can observe
that wider sketches are appropriate for larger databases, while narrower
sketches are appropriate for higher dimension.

Keywords: Similarity search · Nearest neighbor search · Sketch
enumeration · Ball partitioning · Hamming distance · Dimension
reduction

1 Introduction

One of the most important tasks of similarity search [14] in high dimensional
spaces is how to escape from “the curse of dimensionality”. Typical approaches
use dimension reduction mappings such as principal component analysis (PCA)
or K-L transform and Simple-Map [11]. Similar approaches are discussed in the
field of pattern recognition [3] by regarding a feature extraction as dimension
reduction mapping.

A sketch [2,8–10,12], which has been developed for similarity search, is a
compact bit sequence representing multidimensional data such as locality sensi-
tive hash (LSH). Ball partitioning (BP, for short) is a method to make sketches
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J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 240–252, 2019.
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by assigning a bit 0 or 1 to data, such that 0 if it is in a ball and 1 otherwise.
BP is also used in vantage point tree [13].

In general, the similarity search using dimension reduction mapping consists
of two stages. The first stage selects candidates depending on their priority
determined by mapped images, since the dimension reduction mapping cannot
preserve the similarity overall. Then, the second stage selects the answer from the
candidates. Even if we use a hierarchical spatial index R-tree [4] or M-tree [1],
tree construction by clustering based on dimension reduced images improves
search efficiency and two stage selection is included.

The proximity for priority of sketches is measured by several ways. The most
common one is Hamming distance, that is, the number of mismatched bits. In
[5], we proposed other priority measures score∞ and score1 of sketches, which
are defined as aggregations of distance lower bounds by “max” like L∞, “sum”
like L1, respectively. In order to guarantee a certain level of accuracy at a speed
comparable to that of the hierarchical spatial indexing method, the width of the
sketch has been considered to be 32-bit or 64-bit. However, we recognized that
narrower sketches may provide more efficient search because score∞ and score1

are more accurate than the conventional Hamming distance.
In the previous work [6], we proposed a method for nearest neighbor search

using 16-bit sketch. Since the number of 16-bit patterns is 216 = 65,536, we can
efficiently manage data with bucket method. Note that the number of sketches
close to the sketch of a query in the first stage is just a few of 65,536, so the
cost for the first stage can be very small. Therefore, if we adopt an algorithm to
enumerate sketches in the priority order without performing matching between
sketches, then it is possible to increase the speed in practice.

For Hamming distance and score∞, we presented efficient algorithms to enu-
merate sketches in priority order. Then, we confirmed the efficiency of the pro-
posed method by using two databases of image features and sound features.
However, the first stage for score1 was necessary to naively search all the 216

sketches. Although without implementing efficient enumeration, search speed
using score1 was almost the same as that using score∞ with enumeration.

In this paper, we present an algorithm to enumerate sketches in the priority
order according to score1. The enumeration for score1 makes search about two
times faster when 16-bit sketch is used. We also investigate the optimal sketch
widths for five databases, which have different numbers of data and different
dimensionalities. Then, we can observe that wider sketches are appropriate for
larger databases and narrower sketches are appropriate for higher dimension.

2 Preliminaries

2.1 Nearest Neighbor Search Using Sketches

Let U and db ⊆ U be a data space and a database. We assume that every
datum in db is indexed by a natural number from 0 to n − 1, so let db be a set
{x0, . . . , xn−1}. The dissimilarity between two data xi and xj is measured by
a given distance D(xi, xj). The nearest neighbor search (NN search, for short)
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for a query q ∈ U is to find a datum x ∈ db such that D(q, x) ≤ D(q, y) for
every y ∈ db. We can realize NN search for a query q ∈ U using sketches in the
following two stages, where s is a function which maps a datum to its sketch
and K ≥ 1 is an arbitrary constant.

1. Preparation stage:
Compute the sketches s(x0), . . . , s(xn−1) for every xi ∈ db.

2. First stage (Filtering using sketches):
Select K candidates xi0 , . . . , xiK−1 with top K priorities to the sketch s(q).

3. Second stage (NN search using actual distances):
Select the nearest neighbor datum from the candidates xi0 , . . . , xiK−1 .

In the first stage, we conventionally use the Hamming distances as priorities,
which are more easily computed using bit operations than the actual distances
between features. Since the sketches do not always preserve a metric relation,
we use them as a filter. We call the probability that a correct nearest neighbor
is obtained the accuracy of search. The larger K of the number of candidates in
the first stage achieves a more accurate but slower search. Thus, one of the most
important subjects on sketches is to achieve more accurate search with smaller
K, or equivalently, to speedup search within acceptable error.

2.2 Sketches Based on Ball Partitioning

In this paper, we use sketches based on ball partitioning (BP). A pair (p, r) of a
point p ∈ U and a radius r ∈ R is called a pivot. A ball partitioning BP (p,r) is
defined as follows:

BP (p,r)(x) =
{

0, if D(p, x) ≤ r,
1, otherwise.

A BP based sketch function sP of width w is defined as the bit concatenation
for a set P = {(p0, r0), . . . , (pw−1, rw−1)} of w pivots as follows.

sP (x) = BP (pw−1,rw−1)(x) · · ·BP (p0,r0)(x)

In this paper, we adopt the priority based on distance lower bounds [5] in the
first stage, which provides a more accurate search than the Hamming distance.
For a query q and a set P = {(p0, r0), ..., (pw−1, rw−1)} of w pivots, we define
ei(q, P ) as the minimum distance from q to the boundary of partitioning by
BP (pi,ri), that is,

ei(q, P ) = |D(pi, q) − ri|.
Then, we can obtain the lower bound bi(q, sP (x)) of D(q, x) as follows:

bi(q, sP (x)) =
{

0, if BP (pi,ri)(q) = BP (pi,ri)(x),
ei(q, P ), otherwise.
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We propose priorities using the distance lower bounds bi(q, sP (x)) as the criteria
to select candidates in the first stage. When we adopt the following priority,

score∞(q, sP (x)) = max{bi(q, sP (x)) | 0 ≤ i ≤ w − 1},

we can safely prune some of candidates because it is a distance lower bound. We
can also adopt their sum score1 as the priority:

score1(q, sP (x)) =
w−1∑
i=0

bi(q, sP (x)).

Note that score1 is not a distance lower bound, but derives higher accuracy than
score∞. Unfortunately, the reason why score∞ and score1 give more accurate
priority than the Hamming distance is unknown so far.

In experiments in this study, we adopt a heuristic method QBP(Quantization
BP) presented in [5] which selects a center for BP from corners of the feature
space for pivots by binary quantization and minimizes the collision probability
as the evaluation index for sketch optimization.

Consider sketch defined by a set of two pivots P = {(p0, r0), (p1, r1)} on a
Euclidean plane in Fig. 1. Pivot centers p0 and p1 are quantized points of ran-
domly selected data z0 and z1 from database using the median med as threshold.
Two balls divide the space into 4 subspaces A and B,C,D. For any point x ∈ A
or B,C,D, sP (x) = 01, or 00, 10, 11, respectively. Let q be a query outside of
both balls as shown. Then, sP (q) = 11. Priorities for points in subspaces by
Hamming distance, score∞ and score1 for q are summarized in the table. Note
that A and C cannot be distinguished by Hamming distances from q, while all
subspaces are separated by score1.

Fig. 1. 2-bit sketch by QBP and priorities
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2.3 Fast Filtering by Sketch Enumeration

In actual search process, only a small part of sketches that approximate the
sketch of the query is needed. So by using an algorithm that enumerates the
sketches in the priority order, it is possible to increase the speed because the
first step search becomes almost negligible in cost, when we manage data by
bucket method using sketches as keys.

Here, we briefly explain the speedup of the first stage search by using sketch
enumeration in Hamming distance order. Before search, we prepare all 16-bit
patterns sorted in ascending order of the number of ON bits. Sketches can be
enumerated in order of Hamming distance from the sketch of a query by calculat-
ing bitwise exclusive or between the sketch of the query and these bit patterns.
The second stage search is executed using only initial part of this sequence.
By this method, in the first stage search, calculation of the Hamming distance
between the sketches becomes unnecessary and almost no search cost is required.

Search algorithms using sketch enumeration for Hamming distance and
score∞ are omitted due to space limitation. They are presented in [6].

Table 1 is a part of experimental results reported in the previous paper, where
the average search times (millisecond) for a query are shown with the ratio of K
to database size. For 32-bit sketch, the conventional method is used. The search
using 16-bit sketch with score∞ uses the enumeration, while the search using
16-bit sketch with score1 does not use the enumeration. From this table, we
can observe that score∞ and score1 are more accurate than Hamming distance
no matter whether the method is conventional wider sketch or narrower sketch.
Search using 16-bit sketch is about 10 times faster than the conventional search
using 32-bit sketch.

In order to compare search speed, we conducted experiments of full search
without using sketches and spatial indexes, and it was found that it takes about
550 ms per query. Therefore, in the search using sketches, in order to maintain
high accuracy of 90% or more, the conventional method using 32-bit sketches
is only 5 times faster than full search, while the methods using narrow 16-bit
sketches are 40 times faster.

Table 1. Image search with accuracy over 90% reported in [6]

Priority Width = 32-bit Width = 16-bit

Hamming 139 ms (K = 2.0%) 17.5 ms (K = 6.5%)

score∞ 106 ms (K = 1.5%) 12.8 ms (K = 5.0%)

score1 107 ms (K = 1.0%) 12.0∗ ms (K = 2.5%)

(* sketch enumeration is not used for score1)
(search time by full search is 550 ms)
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3 Fast Search Using Sketch Enumeration in score1 Order

Algorithm 1 illustrates the search method using sketch enumeration for score1.
Here, e[i] is set to the following value:

e[i] = |D(pi, q) − ri|,

/* x[0], x[1], · · · , x[n − 1]: Array of feature data sorted by sketches.
id [i]: Data ID of a feature datum x[i].
f [s]: First position in the array x of data whose sketches are s.
num[s]: Number of data whose sketches are s.
K : Number of candidates obtained in 1st stage

= number of actual distance calculations in 2nd stage.
w : the width of sketches
PQ : Priority queue whose elements are triples (score, s, i), where

score is score1 of sketch s, i is an integer, and score is used as priority */
function Search(query , s,NN ,nearest , checked)1

for i = f [s] to f [s] + num[s] − 1 do2

if D(query , x[i]) ≤ nearest then (NN ,nearest) ← (id [i], D(query , x[i]));3

checked ← checked + 1;4

if checked ≥ K then return(NN ,nearest , checked);5

return(NN ,nearest , checked);6

function SearchByScore1(query)7

Prepare the minimum distances e[0], . . . , e[w − 1] from query to boundaries8

of partitioning;
Prepare the distance rank order table bidx [0], . . . , bidx [w − 1] for query ;9

(NN ,nearest , checked) ← (“none”,∞, 0);10

s ← sketch(query);11

(NN ,nearest , checked) ←Search(query , s,NN ,nearest , checked);12

if checked ≥ K then return NN ;13

PQ ← (e[bidx [0]], s ⊕ (1 � bidx [0]), 1);14

while PQ is not empty do15

(score, s, i) ← PQ ;16

(NN ,nearest , checked) ←Search(query , s,NN ,nearest , checked);17

if checked ≥ K then return NN ;18

if i < w then19

s ← s ⊕ (1 � bidx [i]);20

PQ ← (score − e[bidx [i]− 1]+ e[bidx [i]], s⊕ (1 � (bidx [i]− 1)), i+1);21

PQ ← (score + e[bidx [i]], s, i + 1);22

return NN ;23

Algorithm 1. SearchByScore1

that is, the minimum distance from a query q to partition boundary for bit
position i, and rank order table bidx is prepared such that bidx[i], . . . , bidx[w−1]
are the rearrangement of 0, 1, . . . , w − 1 satisfying that:

e[bidx[w − 1]] ≥ · · · ≥ e[bidx[1]] ≥ e[bidx[0]].
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We represent a bitwise exclusive-or operator and a bit left shift operator by ⊕
and �, respectively. Using these operators, for example, the following formula
presents a bit pattern obtained by flip the i-th bit of s,

s ⊕ (1 � i).

We explain that Algorithm 1 correctly enumerates sketches in score1 order.
For simplicity we assume that:

e[w − 1] ≥ · · · ≥ e[1] ≥ e[0].

In this case, bidx[i] = i for any i = 0, . . . , w − 1.
Let query be the query and qs be the sketch of query . MSB(pat) is the

left most ON bit position of a bit pattern pat. For example, MSB(1) = 0,
MSB(10) = MSB(11) = 1 and MSB(100) = 2. We use a priority queue PQ
whose elements are triples (score, s, i) of a priority score, a sketch s and an
integer i satisfying that:

score = score1(query , s) and MSB(qs ⊕ s) = i − 1.

First qs itself is enumerated (line 11). Clearly score1(query , qs) = 0, therefore
the first element is correctly enumerated. The next sketch to be enumerated is
qs ⊕1, which has the next smallest distance lower bound e[0] as its score1. Since
qs ⊕ (qs ⊕ 1) = 1, MSB(qs ⊕ (qs ⊕ 1)) = 1. The first element inserted into PQ
is (e[0], qs ⊕ 1, 1) (line 14), and it is correctly enumerated from PQ (line 16).

Let (score, s, i) be an element extracted from PQ at line 16. Then, score =
score1(query , s) and MSB(qs ⊕s) = i−1. Let s1 and s2 be two sketches inserted
to PQ at line 21 and 22, respectively.

s1 = (s ⊕ (1 � i)) ⊕ (1 � (i − 1)),
s2 = s ⊕ (1 � i).

Then, we have

score1(query , s1) = score − e[i − 1] + e[i],
score1(query , s2) = score + e[i].

Clearly MSB(qs ⊕ s1) = MSB(qs ⊕ s2) = i. Note that for the sketch s extracted
from PQ and the sketch qs of query ,

s ⊕ qs = 1X,

where X is equal to an i-digit binary number and two sketches s1 and s2 are 10X
and 11X, respectively. From this fact, it is certified that the algorithm generates
all the w-bit pattern without repetition. Furthermore, it is guaranteed that the
enumeration is done in score1 order by the fact that the scores of s1 and s2 are
not larger than the score of s.
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Algorithm 1 repeats a loop in which it extracts a sketch from the priority
queue PQ and inserts two sketches into PQ . The computational costs of insertion
and extraction for PQ are both O(logm), when PQ has m elements. Therefore,
the enumeration by Algorithm 1 has logm delay. On the other hand, the both
enumerations for Hamming distance and score∞ have constant delay, that is,
the computational cost between two consecutive enumerations is constant.

The computational cost for enumerating m sketches by Algorithm 1 is O(m
logm), because the number of the insertion is 2m, the number of extraction is
m, and the number of elements in PQ is at most m+1. The cost for enumerating
sketches in score1 order is larger than those for Hamming distance and score∞.
However, score1 is more accurate than Hamming distance and score∞, and the
search using score1 requires smaller number of candidates in the first stage. We
reported that the search speed using score1 without enumeration is almost the
same as that using score∞ with speedup by enumeration [6]. Therefore, we can
expect that Algorithm 1 provides faster search than others.

4 Experiments

In this section, we report experiments using 5 databases shown in Table 2, which
consist of image feature data extracted as 2D frequency spectrums from video
movies. Database 1 is the same as used in the previous paper [6]. Other databases
have different sizes or dimensionalities. The dimensional value of the data is
the logarithm of the frequency intensity represented by an 8-bit unsigned inte-
ger. Data are normalized so that the sum of dimensional values is constant.
The degree of difference between data is measured using L1 distance. Note that
Database 2 and Database 3 of lower dimensionality are prepared only for compar-
ison experiments, and their dimensionality may be too low for practical search.

In Database 1, the average distance to nearest neighbors from randomly gen-
erated queries is 3,300, while the average distance between two data is 1,650. The
typical distance to nearest neighbor is around 200 or 550 for queries extracted
from video which has or does not have similar one in Database 1, respectively.
Therefore, randomly generated queries are not appropriate for our experiments.
We prepare queries by mixing x and y as noise level 5%, 10%, . . . , 50% for ran-
domly selected two data x and y from the database. For example, a query with
noise level 5% is a sum of x and y with weight 95% and 5%, respectively. The
average distance to nearest neighbor from queries with noise level 5% and 50%
is 85 and 586, respectively. For each noise level, we prepare 100 queries. Total
number of queries is 1,000.

The PC used for the experiments is CPU Intel (R) Xeon (R) CPU E 5 - 2640
2.5 GHz, memory 64 GBytes.

4.1 The Enumeration of Sketches in score1 Order

First we show the improvement by enumeration of sketches in score1 order.
Figure 2 shows results for Database 1, where 5 methods are used. The horizontal
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Table 2. Databases used in experiments

Database Database 1 Database 2 Database 3 Database 4 Database 5

Size (×106) 6.9 6.9 6.9 6.9 × 1
4

6.9 × 1
16

Dimension 64 36 16 64 64

Fig. 2. Search time and accuracy

axis is the average time in millisecond (ms) for query and the vertical axis is the
search accuracy. The first one is the conventional method using 32-bit sketch
with score1. Others are methods using 16-bit sketch. Methods with Hamming
distance and score∞ use sketch enumeration. For 16-bit sketch with score1, two
methods are presented, with and without sketch enumeration. Any method needs
more time for higher accuracy as the larger K is needed for accurate search. The
main reason of the slowness of the conventional method is caused by the full
search at the first stage, which needs at least about 21 ms.

We can see that the sketch enumeration for score1 works very efficiently as
expected and the search time about 6 ms for 90% accuracy is as about 100 times
faster than 550 ms by full search. The time difference of about 5 ms between
methods for score1 with and without enumeration is consumed by matching
query sketch with 216 sketches.

4.2 The Optimal Sketch Width for Database 1

For each database and each priority, first we determined the number of candi-
dates for which search accuracy is just 90%. In Table 3, the experimental results
using Database 1 are summarized by the following items. In Table 3, we omit
results for Hamming distance due to space limitation. We also omit the results
on Database 2 to Database 5. All values are the average per query.
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– K: the number of candidates (percentage to the database size).
– sketches: the number of enumerated sketches.
– empty : the number of empty buckets for enumerated sketches.
– elements: the average number of elements in enumerated nonempty buckets.
– time: the elapsed time (ms) of search
– unsorted : the elapsed time (ms) of search without using sorted database.
– enum: the elapsed time (ms) consumed for sketch enumeration.
– sorting effect : the speedup ratio of unsorted to time except enum.

For any priority of score∞ or score1, the optimal sketch is width longer
than 16-bit in Table 3. In general, the wider the sketches are, the smaller K the
numbers of candidates to achieve 90% accuracy are. Although the computational
cost for the second stage search is usually considered to be determined by K, the
wider sketches do not always result in shorter search times. This phenomenon is
considered to be due to the improvement of locality of memory access by sorting
data. This is also confirmed by the fact that the best width for search without
using sorted database becomes longer. The effect by sorting database becomes
smaller when wider sketches are used as shown in sorting effect rows in table.
Thus, the best width is determined by the tradeoff between the selectivity of
sketch and the improvement of memory locality.

Table 3. Results for Database 1 (Size = 6.9 × 106, Dimension = 64)

Width 16 17 18 19 20 21 22 23 24

score∞ K(%) 4.59 4.32 3.77 3.70 3.32 3.02 2.80 2.67 2.47

Sketches 2,407 4,400 7,383 13,993 23,944 40,742 70,708 126,015 219,453

Empty 29 174 730 2,899 8,126 19,943 44,396 93,778 181,979

Elements 133 71 39 23 14 10 7 6 5

Time (ms) 12.7 11.9 11.0 11.7 11.6 12.3 12.9 14.2 16.0

Unsorted (ms) 38.3 36.5 32.5 32.5 30.2 28.4 27.7 28.0 28.3

Enum (ms) 0.470 0.494 0.498 0.612 0.763 0.978 1.40 2.17 3.25

Sorting effect 3.09 3.16 3.04 2.87 2.72 2.43 2.29 2.14 1.96

score1 K(%) 2.03 1.75 1.51 1.37 1.22 1.33 1.04 0.94 0.88

Sketches 862 1,377 2,205 3,630 5,919 9,640 15,589 24,451 40,593

Empty 4 26 119 454 1,353 3,453 7,696 15,108 29,387

Elements 163 89 50 30 18 13 9 7 5

time (ms) 5.74 5.22 4.97 5.15 5.56 6.50 8.22 10.5 14.9

Unsorted (ms) 18.5 16.4 14.3 13.8 13.3 13.5 14.3 15.9 20.0

Enum (ms) 0.309 0.360 0.472 0.699 1.11 1.82 3.09 5.22 9.29

Sorting effect 3.34 3.29 3.07 2.95 2.75 2.50 2.18 2.02 1.92

4.3 The Effects by Data Dimension and Database Size

Table 4 shows, for each database, the search time (ms) by full search, the best
sketch widths and search times (ms) by proposed methods using priorities Ham-
ming distance, score∞ and score1, with speedup by score1.
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Table 4. Optimal sketch widths and speedup by score1 to full search

Database Full search Hamming score∞ score1 Speedup ( Full
score1

)

No. Dim. Size w K(%) time w K(%) time w K(%) time

1 64 All 551 19 5.25 16.8 18 3.77 11.0 18 1.51 4.97 111

2 36 All 331 19 2.57 4.43 20 1.29 2.50 19 0.653 1.31 253

3 16 All 136 24 0.538 0.606 27 0.139 0.204 24 0.132 0.179 759

4 64 1/4 136 17 6.92 5.65 16 5.25 4.06 16 2.37 2.02 67.4

5 64 1/16 34.1 15 8.37 1.67 14 6.35 1.21 14 3.00 0.615 55.4

We see the effects by data dimension by comparing experimental results for
Database 1, Database 2 and Database 3, which have the same number of data
with different dimension. As the dimensionality of the data decreases, the number
of candidates for the first stage search decreases, the width of the optimal sketch
increases, and the speedup effect by score1 with respect to full search becomes
larger. This effect can be considered natural because the distance information
included in smaller dimension is small and easily captured by sketches.

We consider the effect by database size by comparing results for Database 1,
Database 4 and Database 5, which have data of the same dimension but different
size. For any priority, the best width becomes larger when the database size
becomes larger. The larger the database size is, the larger speedup by score1

achieves.

5 Concluding Remarks

We proposed an algorithm to enumerate sketches in score1 order, by which the
fastest search method is devised. The cost of enumeration in score1 order by the
proposed in this paper is small enough but not negligible as those in Hamming
distance or score∞ order proposed in the previous paper [6]. Therefore, in some
situation, the search speed by score1 might be slower than that by score∞.
For example, the search time by score1 becomes longer than that by score∞ for
sketch of 27-bit or wider. Because the enumeration algorithm for score1 has logm
delay while that for score∞ has constant delay. It is an important feature work
to find more efficient enumeration algorithm for score1. A challenging subject
for score1 and score∞ is to investigate why they provide more accurate priority
than Hamming distance.

We showed that the wider sketch is appropriate for larger database or lower
dimension databases. For example, for our image database of about 6.9 million
data of dimensionality 64 (Database 1), the search using 18-bit or 19-bit sketch
is the fastest. For Database 3 of dimensionality 16, 24-bit or 27-bit sketch is
the optimum. Thus, there is a possibility that wider sketches may be suitable.
However, if we use very wide sketches, then bucket method cannot be efficiently
used, because there are so many empty buckets. Therefore, data manage for
wider sketch should be considered.



Fast Filtering by Sketch Enumeration 251

One of the reasons why we originally focused on the method using narrow
16-bit sketches is that the total number of sketches is small compared to the
number of data, and even if all sketches are searched, the first stage search can
be done in small constant cost. However, when we use efficient enumeration of
sketches in the priority order, it is observed that high efficiency can be obtained
using 24-bit and 28-bit sketches for about 6.9 million databases. According to the
experimental results using Database 3, in the case of using 28-bit sketches, the
speedup effect by sorting is maintained despite the increase of empty buckets.
This seems to be due to the fact that the average number of elements of the
non-empty bucket visited at the time of search is relatively large. We think that
this phenomenon is because high-performance sketches can be created as LSH
for low-dimensional data. Therefore, it is an important future work to consider
about the method of creating sketches with higher LSH properties for high-
dimensional data.

By using AIR, a kind of simulated annealing method, a pivot set of sketches
with smaller collision probability than QBP can be obtained, but search accuracy
is not improved [7]. It seems necessary to investigate sketch optimization further.
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Abstract. Hadoop and Spark are popular open-source Apache projects
in the Big Data ecosystem. Due to shortcomings associated with Hadoop
MapReduce (Hadoop) Apache Spark had gained prominence in the Big
Data environment. However, there is little work aimed at evaluating
these two Big Data frameworks to provide understanding for when they
could be of most utility for machine learning, for example for when fre-
quently querying large-scale data for input to recommendation systems.
To explore the possible best use cases of each platform an experimen-
tal analysis between Hadoop and Spark was done and assessed using
four criteria in terms of performance, storage, reliability and architec-
ture. Different test environments were created varying memory, cache
and volumes of data throughout the experiment, where Impala and Hive
were used as query engines on the Hadoop file system against the native
Spark query engine. We then conducted analyses along two dimensions.
Our outcomes show that Spark performs best with large volumes of data
processing compared with other query engines such as Apache Impala
and Apache Hive. Findings here suggest that each platform have partic-
ular strengths given particular contexts, however, Spark seems to demon-
strate most utility overall.

Keywords: Big Data environments · Machine Learning · Apache
Impala · Apache Hive

1 Introduction

Data is growing faster than ever before, with recent research done by Inter-
national Data Corporation (IDC) predicting that by the year 2025 the world
will create 180 zettabytes of data annually1. This prediction suggests that data
growth is much faster than the technological advancement that improves on
processing speed. As a solution, parallelizing Big Data involving large clusters
will support academia and businesses of all sizes [22]. As an example, recom-
mendation systems are a popular confluence of large-scale data processing and
1 http://www.forbes.com/sites/gilpress/2016/08/05/iot-mid-year-update-from-idc-

and-other-research-firms. Retrieved 25 June 2019.
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its application to Data Science (DS), Data Mining (DM) methods and Machine
Learning (ML) techniques [17].

To parallelize such Big Data Processing stresses established network pro-
gramming thus there is a trade-off between determining the appropriate number
of computers/node to scale these large data sets whilst reducing the chance of
operational execution failure. In extreme cases data node execution does not fail,
but reduce its performance and result in system slowness. Increase in the number
of nodes can lead to high expense, so a more cost-effective alternative is to write
manual programs for each machine which can result in segregated high-level
operators leading to improved performance [16]. Another common approach to
scaling large data clusters is using Data Flow Engines. As noted by Bu et al. [3],
data can be fetched from memory into the CPU where operations are executed,
and data is directed from one unit to another. A dataflow can be built using var-
ious data sources such as data files or external database tables [8]. Some scalable
examples are Pig [11], Hive [29], and Storm [14].

Built on techniques such as Data Flow Engines and Data Nodes for scaling
data [8] Apache Hadoop (herein referred to as Hadoop), NoSQL and Apache
Spark SQL are considered major platforms for Big Data analytics. However,
these technologies have both strengths and weaknesses. Hadoop MapReduce is
great at one-pass computation, but incapable of efficient primitives for data and
disk storage. Likewise, Big Data technologies have its own restrictions and lim-
itations in processing large volumes of data. Apache Mahout [19] using Hadoop
MapReduce can support some common ML tasks but does suffer from slow disk
access even though it is an adequate solution for storing and processing data
for clustering or document categorization [4]. Apart from that, there are other
concerns in Hadoop MapReduce such as performing real-time analysis due to its
batch driven nature, which consumes more time in processing data as batches
and raises issues in running ad-hoc queries [31] and for online learning [18].

Beating relational databases, NoSQL i.e. non-relational databases, have
become popular due to its inbuilt design, scalability, and flexibility. Moreover, its
capacity to support nested, semi-structured, and unstructured data is an appeal-
ing prospect for ML [18]. Some common NoSQL data stores are MongoDB [7]
and Apache HBase [12]. Many NoSQL systems do not support SQL in general;
nevertheless, the new emerging query engine such as Impala enables the support
of native SQL in a Big Data environment. Impala is the traditional analytics
database of Hadoop [21].

Other alternative query engines for Impala would be Apache Hive; data ware-
housing software which supports querying large distributed data sets on top of
Hadoop [29]. Due to the shortcoming of Hadoop Components, Apache Spark
(herein referred to as Spark), a data processing framework was introduced for
faster data analytics in a distributed computing cluster environment and with
the addition of MLlib can efficiently run many ML algorithms [19] sometimes
in combination with the Spark SQL query engine [10] which is an alternative
to Hadoop Impala and Hive query engines. All the aforementioned technolo-
gies have strengths and limitations, thus, research is required for evaluating
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the boundaries of these Big Data environments for ML, which is the focus of
this work. This evaluation has two particular benefits; one, it determines where
Hadoop and Spark are of most utility in ascertaining differences in the runtime
architecture of each Big Data platform; and two, it explores the possible best
uses cases of each platform in terms of resource utilization during task execution
(considering: memory, volume of data, query complexity and concurrent query
analysis).

The rest of the paper is organized as follows. Related work will be discussed
in Sect. 2. Our research setting is then described along with performance mea-
sures in Sect. 3. We then present our results, and then detailed discussion in
Sects. 4 and 5 respectively. Finally, in Sect. 6 we conclude with a summary of the
outcomes, factoring in the threats to validity.

2 Background and Motivation

Hadoop [18] is defined as a framework for distributed processing based on Big
Data technologies. This technology comprises four core components: Hadoop
MapReduce, Hadoop Utilities, YARN (the resource manager) and a data storage
layer known as the Hadoop Distributed File System (HDFS) [25]. More granular
Hadoop Utilities also include HBase [12]. Hadoop MapReduce is a programming
model which caters for executing programs in parallel with easy scheduling, high
fault tolerance and high scalability on commodity clusters. As noted by Zaharia
et al. [31], Hadoop MapReduce processes data in two stages, the map and reduce
stages. Hadoop is scalable, fault-tolerant, and reliable [25]. It was proven that
Hadoop MapReduce is the best fit for Big Data processing, though it returns
poor performance for iteration algorithms which numerous ML techniques are
based on [32].

Therefore, Zaharia et al. [30] proposed Spark as a streaming engine which
is capable of processing large scale data and reduces latency in processing the
data. A Spark cluster consists of multiple distributed objects, Resilient Dis-
tributed Datasets (RDDs) stored in memory, and it also executes operations in
parallel. Spark is considered a substitute for Hadoop MapReduce and is specif-
ically used for data streaming in large scale clusters. Spark’s RDD are stored
in read only memory which enables this engine to execute operations in paral-
lel. The number of partitions determine the boundary of parallel processes that
can be executed [30]. RDD can be created in two ways, by loading a data set
from an external source (for example: HDFS), or by running programs in par-
allel in the driver program that performs the user’s main function and executes
various parallel operations on a cluster [30]. Depending on which approach is
adopted will determine how efficiently fault tolerance can be dealt with. There-
fore, Spark does not run operations immediately, but calculates the metadata
instead. Spark supports one file system for a specific task and consists of multiple
nodes for resource management. For example, if Spark is installed in a Hadoop
environment, it needs to enable access for HDFS, whereas, in empty machines
it is much easier to start Spark.
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Many researchers have examined various techniques for Big Data platform
optimization. Examples of data optimization techniques are: adequate resource
utilization [20], performance optimization [28] and parallel computation tech-
niques [15].

More specifically, a case study done by Ambrust et al. [1] noted that the main
reasons for failure of data flow engines is due to memory management limitations
and issues in the networking layer resulting in saturated bandwidth. To address
this issue, a custom network module has been built on a low-level Java platform
[1].

Other research suggests performing a comparative analysis between Hadoop
and Spark to cluster a data set using the k-means algorithm could be useful.
Golpani et al. [13] show that the performance of Spark is three times more
efficient compared with the Hadoop MapReduce framework. However, there were
some fluctuations in the results due to the fact that each initial centroid is chosen
randomly, and the value for k must be known in advance. The main issue is the
uncertainty of an accurate solution for small iterations. However, with increasing
time complexity and iterations, more reliable outputs can be derived [27].

In addition, another study examines a visualization plan as a solution to
understand the behavior of the Big Data frameworks [24]. The research is based
on a shuffle and caching execution model using two profiling tools. One tool
is used to visually correlate the resource utilization for a Big Data framework.
Another approach was used to analyze the task execution time behavior. The
research outcome shows that Spark is faster than Hadoop MapReduce in every
operation such as WordCount (2.5x), k-means (5x), and PageRank (5x) respec-
tively [24].

Apache Impala, (herein referred to as Impala) [21] was built aiming to replace
the traditional RDBMS for complex workloads by introducing an analytical
Database Management System (DBMS) on top of the Hadoop environment but
has its own pros and cons. Impala provides low latency and is able to manage
high concurrent workload for data analytics queries on Hadoop [6]. However,
Impala shares Hadoop’s HDFS resulting in performance loss and the need for
increased memory storage when dealing with small files [2]. As an alternative,
the Apache Hive (herein referred to as Hive) platform was introduced to process
and analyse data stored in Hadoop [29]. Hive can process large volumes of data
batch-wise in a distributed storage environment using its own declarative query
language called HiveQL which is similar to SQL [29]. Hive is a popular choice for
the Big Data industry as evidenced by companies such as Microsoft and Ama-
zon using it [26]. To this end, Impala and Hive are used as query engines on the
Hadoop file system in this work, against the native Spark query engine on the
Spark platform.

3 Methodology

Compared with previous research where the focus has been on addressing weak-
ness in the platforms’ runtime architecture, this work goes one step further than
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previous studies in analysing the performance of three query engines (Spark,
Impala, and Hive) and explores the possible best use cases for both Hadoop
and Spark to optimise response times for results of queries which are fed into
a recommendation system pipeline. The use case is based on an e-Commerce
data set which includes a large volume of customer transactions which occurred
throughout a one-year period.

Hence, real world data gives detailed insight into the decision-making process
of companies and allows a user to more wisely select a Big Data platform based
on specific requirements for application of ML/DS techniques to such Big Data.
We answer the following research question:

What are the differences in performance of Hive, Impala, and Spark (for
Hadoop and Spark) under various configurations?

3.1 Research Setting

To compare the performance of Hadoop and Spark, laboratory experiments were
conducted. The following steps were used in setting up the environment for
Hadoop and Spark.

1. Clusters of two shared PCs were connected to a reliable internet connection.
2. Both machines were configured with an Intel Xeon E5-2697 v4 36 core pro-

cessor running at 3.60 GHz, operating system as Linux CentOS 7, and with
4 GB memory in each machine.

3. A Shared Ethernet connection was used, providing approximately 100 MB/s
at the system level.

4. Intel� Distribution for Apache Hadoop* version 3.0.2, Hadoop 2.0.4, Impala
2.6, Spark 2.0, and Hive 2.0 software were installed on the machines.

5. A distributed file system based on HDFDS was created to manage the stored
data on disk.

6. Jobs were set manually with a task mapped by the scheduler to all the
machines.

7. Hive, Impala, and Spark functions were performed by changing memory, cache
and the volume of data according to the process originally proposed by Chang
et al. [5].

The following benchmarks were used in analysing the performance of Hive,
Impala, and Spark.

1. Using a large-scale version of SSB data, queries were tested across large data
sets. SSB data includes e-Commerce details of a retail organization based in
Sri Lanka. The e-Commerce site offers a wide range of products (more than
3500), and provides multiple payment options dealing with more than 100
merchants. Out of 13 data sets only five major data sets were used for the
experiments. Data used for the experiments were gathered from April 2016
to April 2017. The row counts for each of the database tables are shown in
Table 1 below. The following benchmarks were used in analysing the perfor-
mance of Hive, Impala, and Spark. The 650,107 rows of customer details in
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Atg Customer were used for the first experiment. It was the largest data set
of the e-Commerce database used during the experiment.

2. Using an average size data set comprising 8,259 rows (Manufacturer Details)
the performance of Hive, Impala and Spark were evaluated.

3. In a subsequent experiment the concurrency of workload for multiple users
were tested.

4. Finally, we analysed the performance of the platforms by changing the mem-
ory and cache.

Table 1. The SSB dataset (e-Commerce Dataset 2016–2017).

Table name No. of rows

Atg Customer 650,107

Manufacturer Details 8259

Merchant Details 1671

Table 2 shows the varied memory and different volume of data sets which were
used to conduct the next laboratory experiments. The queries had been designed
to simulate the type of common data access tasks required immediately prior to
the application of ML algorithms on the resulting answers to the queries.

Table 2. Test environment setup for experiments.

Environment Memory size Data set size Rows SQL Query Function

1 2GB 2GB 8,259 Query 1 Search function

2 8GB 8GB 650,107 Query 2 Comparison condition

3 All 1MB 1,671 Query 3 Join condition

Each query has been executed three times to avoid practical errors and so
an average execution time can be determined. These are defined as follows:

– Q11, Q12, Q13 – Search query on specific period with small number of JOIN
conditions and fewer or no GROUP BY conditions. For example, Q11 was:

SELECT PRODUCT_ID, P_CATALOG_REF_ID

FROM [PRODUCT_DETAILS] JOIN MANUFACTURER_DETAILS

ON [PRODUCT_DETAILS].MERCHANT_ID = MANUFACTURER_DETAILS.MERCHANT_ID;

– Q21, Q22, Q23 – Comparison query with a specific set of Customer/Merchant
and date variables. The query includes medium size JOIN conditions with few
(one, two, and three) GROUP BY conditions. For example, Q22 was:
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SELECT ORDER_ID, TOTAL, ORDERSTATUS

FROM FACT_ORDER_ITEM_DETAILS F LEFT JOIN [FACT_ORDER_DETAILS] O

ON O.ORDER_ID = F.ORDER_ID

AND O.ORDERSTATUS LIKE ‘COMPLETED’

GROUP BY TOTAL

ORDER BY TOTAL;

– Q31, Q32, Q33 – A query that compute a metrics for a specific set of Cus-
tomer/Merchant and date variables. The query includes large JOIN condi-
tions and many (four, five, and six) GROUP BY conditions.

4 Results

4.1 Large Data Set Analysis

Table 3 shows the comparative performance of Impala, Spark, and Hive for three
standard queries against the 650,107 rows of data.

Table 3. Query performance for large data set (fastest execution time for each query
is highlighted in bold).

Query Query execution time (Seconds)

Impala 2.6 Spark 2.0 Hive 2.0

Q11 5.6 4.8 10.5

Q12 5.0 3.8 9.1

Q13 5.6 3.3 9.3

Q21 8.0 11.8 10.0

Q22 6.2 11.0 9.3

Q23 6.0 10.6 9.3

Q31 97.3 64.9 137.6

Q32 49.1 30.3 131.9

Q33 26.8 19.7 63.1

Average 23.29 ± 31.5 17.80 ± 19.7 43.34 ± 63.1

Not every Big Data technology performs well for every query. The experi-
ment shows Spark and Impala are comparatively faster than Hive. All the queries
tested on the large data set prove that there is no major execution time vari-
ation among Impala and Spark. However, there is performance difference with
SQL query complexity. For example, when the number of SQL join conditions
increases, there is also an increase in query processing time. Also, queries request-
ing a minimal amount of data filters where there are few WHERE clauses recorded
less processing time. Performance increased by more than two times when query
selectivity increased for both Spark and Impala. However, Hive did not react
much to query selectivity.
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4.2 Small Data Set Analysis

Table 4 shows the relative performance of Impala, Spark SQL, and Hive for
three standard queries against the 1671 rows of the smallest data set (Mer-
chant Details). For a small volume of data with the average complexity of SQL
queries, our experiments show that both Spark and Impala executed queries
with better performance than Hive during data processing. Hive performs less
favorably compared with Impala and Spark in both test environments despite
the volume of data. Therefore, all three options of query engines in Hadoop
are suitable for Big Data processing regardless of the environment and num-
ber of variables or columns selected. Hadoop is suitable for Big Data processing
regardless of the environment and number of variables or columns selected.

Table 4. Query performance for small data set (fastest execution time for each query
is highlighted in bold).

Query Query execution time (Seconds)

Impala 2.6 Spark 2.0 Hive 2.0

Q11 0.27 0.48 2.07

Q12 0.30 0.48 2.07

Q13 0.64 0.70 2.12

Q21 1.64 1.19 3.28

Q22 2.57 1.64 8.09

Q23 2.13 1.28 2.28

Q31 3.45 5.58 6.94

Q32 4.39 5.38 7.62

Q33 4.39 2.05 2.56

Average 2.20 ± 1.58 2.09 ± 2.05 4.11 ± 2.55

4.3 Concurrent Query Analysis

The following experiment was conducted with 13 queries with 10 concurrent
users. The smallest data set Merchant Details (1671 rows) was used considering
the time factor to analyze the concurrency of the data flow engines. Figure 1
shows that Hive, Spark and Impala performed consistently with concurrent
queries. No query failures resulted for the tested 13 concurrent queries. Fail-
ures may result due to multiple reasons such as a permission issue in accessing
the HDFS file directory or out of memory exceptions in Spark/Hive server logs
[9].

While all query engines performed well in processing small scale data, Impala
maintained a better average performance than Spark and Hive in a concurrent
workload environment (refer to Fig. 1). In Test Environment-1 the results show
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Fig. 1. Concurrent query performance – number of simultaneous queries vs average
response time (in Seconds).

that Hive can perform even with the physical memory constraints in the exper-
imental setup, whereas Impala and Spark crashed in the same environment due
to the physical memory constraints of 2 GB. Results from Test Environment-2
show that Impala performance is more superior with medium memory capacity.

Finally, in Test Environment-3 it was observed that Spark outperforms
Impala and Hive in terms of speed with a fixed memory utility.

Table 5 presents results of the performance of the Big-Data frameworks
according to memory size of the computer. It indicates that Hive can run even in
constrained memory environment whereas Impala performs consistently in aver-
age memory (8 GB) conditions. Given more memory Spark can outperform both
Impala and Hive. For all three to perform without any crash, 4 GB (or more) of
memory would be sufficient.

Table 5. Performance of the Big-Data frameworks based on memory size.

Memory Performance

2 GB Hive can operate but Spark & Impala crashes

8 GB Impala performs better than Spark & Hive

10 GB Spark performs better than Impala & Hive

5 Discussion

What are the differences in performance of Hive, Impala, and Spark (for Hadoop
and Spark) under various configurations?

Experimental results revealed that all three query engines, Spark, Impala and
Hive maintained consistent performance in concurrent query processing environ-
ments. However, Impala maintained a better average performance than the other
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two platforms in small-scale workload which is consistent with the work reported
previously [6]. In terms of memory variation, Hive was outstanding when there
was lack of memory, while the other platforms crashed in the same environment.
In an average memory capacity, Impala performed better than the rest of the
platforms, however Spark was fastest in a high memory environment.

In terms of configuration, Hadoop MapReduce is preferred and recommended
for varying amounts of data to be processed in batches as per the research done
by others [23]; whereas Spark is new to the Big Data environment and it is widely
used for complex data analytics purposes [22]. Unlike Hadoop MapReduce, Spark
performs well when querying data is in memory and experiments in this study
shows that Spark outperforms Hadoop MapReduce on complex queries with sim-
ilar results with others [24]. Moreover, MapReduce does not support distributed
file systems on its own; it clearly depends on Hadoop HDFS. That said, each
query-processing engine has its own advantages. For instance, Spark is faster
than Hadoop MapReduce for generic queries due to increasing memory con-
sumption. However, Spark is not the best fit for every application because of
its asynchronous fine-grained updates. In addition, with limited memory space
along with the need for speed, Hadoop MapReduce seems to be the better choice
in practice. When there are no restrictions in the consumption of memory and
applicability of complex algorithms, Spark demonstrates good performance for
any volume of data.

During the process of our experiments, it was identified that Spark was not
the easiest tool to work with because of its complex nature in deployment and
configuration for custom use cases as presented in the experiments. Therefore,
more usability and flexibility aspects should be developed in future work that
would help the DS/ML community. Finally, as Hive did not perform well com-
pared with Impala and Spark, more research should be conducted into increasing
the performance of Hive queries through further optimizing Hive’s current or its
more recent Tez execution engine [26].

These findings have implication for a ML pipeline that depends on these tools,
and thus practitioners and researchers should take our findings into consideration
when planning for such performance outcomes.

6 Conclusion

The objective of this research was to evaluate Big Data environments to assess
the utility of each platform for ML applications. Experiments were executed
using four use cases as follows: (1) Variation in the volume of data, (2) Query
Complexity, (3) Query Parallelization, and (4) Memory Variation. The exper-
iments revealed that Spark and Impala were comparatively faster than Hive
regardless of the volume of data. In addition, SQL query complexity directly
affected the performance of all the platforms, consuming more processing time
with increasing query complexity. In summary, the research outcomes show that
Hadoop MapReduce is a good option for day to day research and DS exper-
iments, input to ML applications, and for parallel job processing. It is mainly
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due to its architecture and the way it performs. Hadoop stores data on disk while
Spark stores data in its memory. Moreover, Spark uses resilient distributed data
sets to achieve fault tolerance and Hadoop uses data replication mechanisms.
However, Spark can run on top of HDFS with existing Hadoop components.

Therefore, based on the operation and resources, these technologies may be
wisely used to cater for the requirements and needs of businesses. Moreover,
industry experts and researchers can further investigate the trade-offs in both
Hadoop MapReduce and Spark in terms of cost models and usability. It is highly
recommended that further research commit towards investigating capacity plan-
ning using cloud technology.
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Abstract. Although the sequence-to-sequence (encoder-decoder) model
is considered the state-of-the-art in deep learning sequence models, there
is little research into using this model for recovering missing sensor data.
The key challenge is that the missing sensor data problem typically com-
prises three sequences (a sequence of observed samples, followed by a
sequence of missing samples, followed by another sequence of observed
samples) whereas, the sequence-to-sequence model only considers two
sequences (an input sequence and an output sequence). We address this
problem by formulating a sequence-to-sequence in a novel way. A for-
ward RNN encodes the data observed before the missing sequence and a
backward RNN encodes the data observed after the missing sequence. A
decoder decodes the two encoders in a novel way to predict the missing
data. We demonstrate that this model produces the lowest errors in 12%
more cases than the current state-of-the-art.

Keywords: Imputation · Interpolation · LSTM · Encoder-decoder
model · Sequence-to-sequence model

1 Introduction and Related Work

From smart cities [1] to personalised body sensor networks [9], sensor data is
becoming ubiquitous. This has been fuelled by the rise of the internet of things
(IOT), smart sensor networks, and low-cost sensors. Such technologies are how-
ever imperfect and their failure may result in missing data. Sensors may fail due
to hardware or software failure. Communication networks can break down due
to low signal level, network congestion, packet collision, limited memory capac-
ity, or communication node failures [14]. Even if sensors and communications
prevail, missing data may result from scheduled outages such as maintenance
and upgrade routines.

When a data-driven model (such as a machine learning model) uses sensor
data for prediction, missing data introduces various challenges in parameterising
or training the model. This is especially problematic when the temporal struc-
ture of the data is important to the model. To address this problem, various
c© Springer Nature Switzerland AG 2019
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methods for imputing or interpolating the missing data have been proposed in
the literature.

The Recurrent Neural Network (RNN) has been shown to perform well for
missing data recovery [4,5,10,15]. However, there is little research into using
the sequence-to-sequence (encoder-decoder) model [12], despite it being consid-
ered as a state-of-the-art model in deep learning sequence modelling. The key
challenge in applying this model to missing data is that it is designed to use
a single input sequence to predict some output sequence. However, the missing
data problem can be considered to have two input sequences that are separated
by the missing data. That is, relative to the missing data, the model must take
into account data that is observed before and after the missing data sequence.

We propose a novel sequence-to-sequence model that incorporates the data
before and after a missing data sequence to predict the missing values of
that sequence. For this, two encoders are used: one propagating in the posi-
tive time-direction, and one propagating in the negative-time direction. These
two encoders feed into a decoder that naturally combines the encoded forward
and backward encoders to provide an accurate prediction of the missing data
sequence. A key feature of the sequence-to-sequence model is that it can handle
arbitrary length input and output sequences. Our key contributions are:

1. The proposed decoder architecture is novel in the way that it merges infor-
mation from two encoders.

2. We introduce a novel approach to scaling a forward and backward RNN within
the decoder according to their proximity to observed data.

3. We demonstrate results which show that our model outperforms the current
state-of-the-art methods on several datasets.

The proposed model is particularly applicable in problems where there is no
neighbouring data available for imputing across variables at each sequence step.
The recovery of the missing data must be determined from temporal informa-
tion alone. These include univariate problems or multivariate problems where
sequences of data are missing across all measured variables at the same time.
This typically occurs when there is a central system failure, such as the failure
of a multi-parameter sensor, the failure of a central communications node in a
star-network, or a scheduled outage across a system.

2 Related Work

Various models such as MICE [3] and ST-MVL [13] have been proposed for
missing data recovery. We however focus on RNNs, as these are considered to be
the state-of-the-art in many missing data recovery applications. Various forms
of the RNN have been tested for data imputation. Che et al. [5] use the Gated
Recurrent Unit with trainable decays (GRU-D) model for recovering missing
data. The decay rates exponentially reduce importance of predictions that are
distant from observations. The model however does not consider samples that
occur after the missing data sequence.
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The M-RNN [15] uses a bidirectional neural network for imputation. The
model is a multi-directional RNN that considers temporal information as well
as information across sensors to recover missing data. This model thus relies on
a subset of data to be available at any time.

The RITS and BRITS [4] model use a RNN to perform one-step ahead fore-
casting and modelling over sequences. Compared with M-RNN, it trains output
nodes with missing data as part of the network. Both this and a bidirectional
RNN provide a means learn from data that lies before and after the missing
data sequence. Additionally, they use trainable decays similar to the GRU-D.
However, like the M-RNN, the RITS and BRITS models perform imputation by
considering temporal information as well as information across sensors. Cao et
el. [4] do however propose the RITS-I and BRITS-I models as reduced versions
of RITS and BRITS which exclude the mechanism used to perform predictions
across sensors. These reduced models focus on temporal predictions and are thus
used for comparison in this study.

The Iterative Imputing Model (IIM) [17] uses a forward and backward RNN
to encode information before and after the missing data. These RNNs could
be considered to perform the task of the encoder in the sequence-to-sequence
model. However, to predict the missing data, a predict-update loop (similar to
the EM algorithm) is used iteratively impute each missing sample. This iterative
process is computationally expensive and does not correspond with a decoder in
the sequence-to-sequence model.

The SSIM model [16] is the first model to use the sequence-to-sequence app-
roach for recovering missing data. To address the problem of including observa-
tions before and after the missing data, SSIM uses a forward and backward RNN
together with a variable-length sliding window. A drawback of the model is that
it has to “learn” that there is a difference between the observations before and
after the missing data [16].

Compared with GRU-D, BRITS, and M-RNN, our model uses the sequence-
to-sequence approach, which is the state-of-the-art in applications such as natu-
ral language processing. Furthermore, we consider the problem where there is a
complete set of data across all sensors or variables. The result is that data recov-
ery is performed on temporal information alone. Compared with IIM, our model
uses an arbitrary length decoder that does not require an iterative updating
approach. Compared with SSIM, our model naturally stitches the observations
before and after the missing data and is thus not required to learn that there
is a difference between them. Furthermore, it does not require a variable sliding
window to operate.

3 Model

3.1 Architecture

A sequence-to-sequence (encoder-decoder) model is proposed to recover missing
time series data. As illustrated Fig. 1, the network comprises a forward encoder,
a backward encoder, and a form of bidirectional decoder. The network can be
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Fig. 1. Illustration of proposed sequence-to-sequence model for missing sensor data
imputation. Square nodes denote LSTM cells and circular nodes denote linear output
neurons. The circular nodes with the × operator denote element-wise multiplication
with the scaling factors γt and γ′

t. Observations are provided for x0, x1, x2 and x6, x7, x8.
The values for x3, x4, x5 are missing. The forward encoder encodes x0, x1, x2 and the
backward encoder encodes x6, x7, x8. The decoder is a bidirectional LSTM that predicts
x̂3, x̂4, x̂5. Each forward and backward LSTM cell in the decoder predicts the missing
data and this prediction is input to the next RNN cell in the sequence as illustrated by
the dashed arrows. The LSTMs in the decoder thus perform one-step-ahead forecasting.

viewed as containing two traditional sequence-to-sequence models [12], one in
the forward direction, and one in the backward direction. The outputs of the
forward and backward RNN cells in the decoder are scaled and merged together
in a final output layer in the form of a Multilayered Perceptron (MLP).

The forward and backward decoder RNNs operate by performing one-step-
ahead predictions. The prediction of the previous RNN cell is fed to the input
of the current cell as illustrated by the dashed arrows in Fig. 1. In a regression
problem, the prediction is performed using a MLP with a linear output layer
and inputs given by the outputs of the corresponding RNN cell. The forward
encoder predictions are denoted by x̂FW

t and the backward encoder predictions
are denoted by x̂BW

t .
The additional outputs at the RNN level are required as all the final output

layer’s outputs are not available at each sequence step. For example, as illustrated
in Fig. 1, computing x̂4 requires the output of the second forward RNN cell and
the second backward RNN cell. If the final output layer outputs were fed to
the next cell, x̂3 would be fed to the input of the forward RNN at index 4.
However, x̂3 also requires the output of the third backward RNN cell, which is
not available as the backward RNN has only been processed up to its second
cell. To address this dilemma, the forward RNNs and the backward RNNs are
first processed over the entire sequence with their local outputs. The results are
then passed to the final output layer.
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Fig. 2. An illustration demonstrating the principle of the scaling factor approach using
two arbitrary linear functions. The variable yfw decays with increasing t (illustrated
with a vanishing curve), whereas yfw decays with decreasing t. The prediction is the
weighted combination of yfw and ybw. In the proposed model, ybw is the output of
the forward decoder RNN, ybw is the output of the backward decoder RNN, and the
summation operation in yfw + ybw is a nonlinear operation performed by the output
layer of the model.

3.2 Scaling Factors

Before the outputs of the forward and backward decoder RNNs are merged
together in the final output MLP, the RNN outputs are scaled with a scaling
factor γt. In our novel approach, the scaling factor decays as predictions progress
further from observed data. The forward RNN outputs in the decoder are scaled
according to the linear function

γt = 1 − t

T
(1)

where T is the length of the missing data sequence and t = {1, . . . , T} is the
index of the missing data sequence samples. The backward RNN outputs in the
decoder are scaled according to

γ′
t = 1 − γt (2)

Thus, at time t = 1, the forward RNN output is scaled by a factor of γ1 = 1. This
factor decays to zero as t increases. The opposite is true for the backward RNN,
where it is scaled by a factor of γ′

T = 1 at time t = T . This factor decays to zero
as t decreases. The result is that the forward decoder RNN is emphasised near
the observations associated with the forward encoder and the backward decoder
RNN is emphasised near the observations associated with the backward encoder.
The principle of this process is illustrated in an example using linear functions
in Fig. 2.

Scaling factors have been previously used in RNNs in [5] and [15]. These
factors however decay exponentially and are integrated into the RNN network
where they can be learned. In our approach, the scaling factors can be viewed as
form of a “forced” attention mechanism that favours the RNN outputs that are
nearest the observed data. Furthermore, the linear nature of the proposed scaling
factors ensures a balanced weighting between the RNNs across the sequence such
that γt + γ′

t = 1 ∀t.
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Fig. 3. An illustration of a forward RNN and the output layer in the decoder for the
discussion on backpropagation with the scaling factor.

3.3 Backpropagation with Scaling Factors

As the scaling factor scales the predictions, it also scales the derivatives used in
backpropagation. This is due to γt being a fixed constant. For example, consider
the forward decoder RNN (in the form of an Elman network for illustrative
purposes) with the output layer as illustrated in Fig. 3. The scaling factor γt is
applied to each output hj

t . The variable pkt is linear combination of inputs at
output neuron k, and qjt is the linear combination of inputs at hidden neuron
j. The weight matrices U , W , and V are associated with the input-to-hidden,
hidden-to-hidden, and hidden-to-output connections respectively.

Following the backpropagation derivation, the derivative of the cost with
respect to the weight uij connecting the ith input to the jth RNN hidden node
is given by

∂L

∂uij
=

(
no∑
k=1

∂L

∂pkt

∂pkt

∂hj
t︸ ︷︷ ︸

hidden to output

+
nh∑
k=1

∂L

∂qkt+1

∂qkt+1

∂hj
t︸ ︷︷ ︸

hidden to hidden

)
∂hj

t

∂qjt

∂qjt
∂uij

.

︸ ︷︷ ︸
input to hidden

where no is the number of output units and nh is the number of hidden units.
The scaling factor affects the link between the hidden layer outputs hj

t and the
output layer linear combination pkt . This corresponds to the second factor in the
first term. The derivative of this term is computed as

∂pkt

∂hj
t

=
∂

∂hj
t

∑
j

vjk(γth
j
t ) + bvk

= γtvjk

where bvk is a bias. The scaling factor thus affects the derivatives passed back
from the outputs to the hidden layers. The result is that, similar to the scaling
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of the predictions, the backpropagated errors are scaled to emphasise the RNN
cells that are near the corresponding encoders. The scaling is thus incorporated
into the learning process.

3.4 Output Layer

The scaled forward and backward decoder RNN outputs are passed to a MLP
which predicts the missing data. The prediction provided by this output layer at
time t is denoted by x̂t. With linear outputs producing the predictions x̂t, x̂FW

t ,
and x̂BW

t , the cost function is given by

loss =
1
T

∑
t

(
L (xt, x̂t) + L (xt, x̂

FW
t ) + L (xt, x̂

BW
t )

)
(3)

where xt is the ground truth value for the missing sample at time t and L () is
the mean squared error loss function (for the regression case).

4 Experiments

Several freely-available datasets are used to evaluate and compare the proposed
model. The PM2.5 air quality dataset (from 2014–2015) is used as it is become
a benchmark used in several previous studies such as [4,13], and [17]. Note that,
imputations are made across time and across sensors in these studies. However,
in the current study, imputations are made across time only. In addition to this
dataset, the Metro Interstate Traffic Volume dataset, the Birmingham Parking
dataset [11], and the Beijing PM2.5 Air Quality dataset (from 2010–2014) [8]
are used. These datasets are freely available from the UCI Machine Learning
Repository1.

For the PM2.5 dataset, the PM2.5 data for sensor 001001 is used. In Traffic
dataset, Temperature and traffic volume are used. Each parking area provides
a unique variable in the Parking dataset. Finally, the Dew point, temperature,
and pressure variables are used in the AirQuality dataset.

The Mean Absolute Error (MAE) and the Mean Relative Error (MRE) are
used as performance metrics. These are given by [4,13,17].

MAE =
1
N

N∑
i

|xti − x̂ti |, MRE =
∑N

i |xti − x̂ti |∑N
i |xti |

where N is the total number of observations.
The proposed model results are compared with results from the RITS-I [4],

BRITS-I [4], and the sequence-to-sequence [12] models. In all models, 64 hidden
units are used in the Long-Short Term Memory (LSTM) [6] RNN. A linear layer

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Fig. 4. Demonstration of the scaling factor operation on a Traffic dataset sample. The
scaling factor emphasises the forward decoder RNN at the beginning of the prediction
and it emphasises the backward decoder RNN at the end of the prediction. The result
is a more accurate prediction.

is used in the final output layer. All models are trained using the standard back-
propagation approach to minimise (3) with the Adam optimisation algorithm
[7]. Early stopping is used to avoid overfitting in the datasets.

The dataset is split into a test and training set such that the last 80% of
the dataset is used as a test set. Training and test samples are extracted using
a sliding window that is slid across the datasets. Each extracted window is split
into a sequence of missing values, a sequence of observed values preceding the
missing values, and a sequence of observed values following the missing values.
The models are implemented in PyTorch and trained on Dual Xeon 14-core
E5-2690 v4 Compute Nodes.

5 Results and Discussion

To demonstrate the scaling factor, a prediction from a Traffic dataset sample is
presented. The predictions of the forward decoder RNN, the backward decoder
RNN, and the model output are plotted in Fig. 4. The forward and backward
RNNs produce significantly differing predictions. If the scaling factor is excluded
from the model, the prediction is similar to the average of the forward and
backward sequences. As both of these predictions deviate from the ground truth,
this final prediction is inaccurate. By including the scaling into the model, the
prediction is shifted towards the observed data points, providing a more accurate
result.

Fig. 5. Pie chart indicating the share over which models produce optimal results.
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Fig. 6. MRE% results. See Table 1 for detailed MAE results. (The AirQuality results
are not visible due to their scale. Refer to Table 1).

Table 1 lists the MAEs and Fig. 6 plots the MREs for the set of models and
datasets. The Traffic dataset label indexes index the temperature and traffic
volume variables in the dataset. The Parking dataset label indexes index the
various parking areas. Finally, the AirQuality dataset label indexes index the
dew point, temperature, and pressure variables. For reference, the dataset ranges
are included in Table 1. In figures and tables, the proposed model is denoted by
seq2seqImp and the sequence-to-sequence model is denoted by seq2seq.

The share of optimal MAEs is presented as a pie chart in Fig. 5. Overall, the
proposed model has the highest share with 38% of the lowest MAE results and
is 12% higher than the other models. The sequence-to-sequence has the smallest
share with 15% lowest errors. This is expected as the model is only provided
with data prior to the missing data sequence. The other models are provided
with data before and after the missing data sequence.

In the PM2.5 and AirQuality datasets, the proposed model produces signifi-
cantly lower errors than the other models. For example, considering the proposed
model produces MAEs that are a third lower than the competing models. The
RITS-I model has the majority of its lowest errors in the Parking dataset. The
model is thus well suited to this dataset.

To provide an aggregated representation of the results, Borda counts are
used to rank the models through voting. A Borda count ranks a set of N models
with integers (1, . . . , N) such that the model with the highest error is assigned
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Table 1. MAE on the datasets for the various models. The proposed model is dented
by seq2seqImp. The forward decoder RNN prediction errors and the backward decoder
RNN in the proposed model are included as RNNFW and RNNBW respectively. The
sequence-to-sequence model is denoted by seq2seq.

Range seq2seqImp RNNFW RNNBW seq2seq RITS-I BRITS-I

PM2.5:0 [3, 429] 11.13 16.27 15.50 16.95 15.50 13.92

Traffic:0 [0, 308] 1.45 2.32 2.28 2.35 1.85 1.51

Traffic:1 [0, 7280] 832.33 1027.22 1111.64 1021.09 621.72 682.48

Parking:0 [20, 492] 55.82 65.82 66.52 51.25 54.54 49.70

Parking:1 [0, 320] 36.45 39.06 42.87 31.54 33.71 33.95

Parking:2 [68, 821] 106.73 143.12 127.77 106.05 143.84 139.90

Parking:3 [39, 402] 56.68 65.11 61.18 58.41 72.29 78.57

Parking:4 [0, 1013] 146.85 163.61 188.61 146.69 110.33 99.68

Parking:5 [25, 1197] 136.90 158.31 211.23 133.06 105.68 142.88

Parking:6 [15, 612] 53.61 59.70 78.22 50.89 43.56 50.70

Parking:7 [30, 470] 50.17 61.18 80.78 54.91 38.96 41.62

Parking:8 [2, 220] 38.77 51.53 42.93 46.94 54.85 39.51

Parking:9 [170, 678] 62.27 75.78 80.01 65.05 57.03 59.27

Parking:10 [55, 845] 101.60 124.23 141.86 102.11 103.75 103.80

Parking:11 [156, 723] 74.22 88.79 104.37 61.45 59.43 74.16

Parking:12 [53, 503] 62.62 72.78 95.61 75.66 56.69 52.46

Parking:13 [155, 413] 36.69 42.93 45.09 41.38 43.56 44.47

Parking:14 [4, 246] 30.60 30.41 38.44 27.21 26.46 27.70

Parking:15 [46, 593] 82.45 92.53 120.29 106.17 104.31 96.41

Parking:16 [48, 689] 73.78 84.67 116.80 73.22 52.34 60.43

Parking:17 [77, 2811] 307.67 361.59 451.15 299.45 236.23 268.42

Parking:18 [1, 847] 63.88 79.55 84.51 77.57 60.53 56.34

Parking:19 [1, 696] 57.90 73.52 79.15 71.45 54.61 47.50

Parking:20 [452, 1578] 134.03 166.74 170.08 135.78 151.08 127.09

Parking:21 [51, 1534] 113.36 153.19 145.35 138.09 142.10 123.52

Parking:22 [524, 3949] 432.00 520.62 576.16 401.78 367.53 358.83

Parking:23 [472, 3429] 317.78 462.98 533.55 313.17 349.44 362.69

Parking:24 [331, 1444] 98.10 134.56 155.27 110.25 113.20 106.14

Parking:25 [224, 1023] 87.47 105.46 109.22 80.14 109.43 100.09

Parking:26 [390, 1911] 142.83 196.90 193.64 188.51 155.96 152.47

Parking:27 [248, 1561] 155.64 211.38 228.86 145.20 158.50 170.15

AirQuality:0 [−33, 28] 1.52 2.20 2.18 2.28 2.13 2.19

AirQuality:1 [−19, 41] 1.32 1.78 1.83 1.77 1.78 2.00

AirQuality:2 [991, 1046] 0.64 1.22 1.19 1.30 1.25 1.09

a value of 1 and the model with the lowest error is assigned a value of N . The
sum of Borda counts for the models over all datasets are presented in Table 2.
The results show that the proposed model is voted as the highest ranked model.
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Table 2. Sum of Borda counts of the models over the datasets. A higher value indicates
more points in the voting score. The forward decoder RNN and backward decoder RNN
in the proposed model are included as RNNFW and RNNBW respectively.

seq2seqImp RNNFW RNNBW seq2seq RITS-I BRITS-I

MAE 157 78 58 131 141 149

MRE 157 74 56 138 144 145

6 Conclusion

We propose a novel sequence-to-sequence model for recovering missing sensor
data. Our decoder model merges two encoders that summarise the information
of data before and after a missing data sequence. This is performed with a
forward and backward RNN within the decoder. The decoder RNNs are merged
together with a novel overarching output layer that performs scaling of the RNN
cell outputs based on their proximity to observed data.

The proposed model is demonstrated on several time series datasets. It is
shown that the proposed model produces the lowest errors in 12% more cases
than three other state-of-the-art models and is ranked as the best model accord-
ing to the Borda count.

In future work, it is expected that significant improvement in the results could
be achieved by using the attention mechanism [2] between the encoders and the
decoder. Furthermore, the scaling mechanism could possibly be improved by
parameterising it within the model such that it can be learned. This could be
achieved by using a softmax layer such as used in the attention mechanism.

Acknowledgments. The authors thank YiFan Zhang from CSIRO for the discussions
around the topic of this study.
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Abstract. Building on the view of machine learning as search, we
demonstrate the necessity of bias in learning, quantifying the role of
bias (measured relative to a collection of possible datasets, or more gen-
erally, information resources) in increasing the probability of success. For
a given degree of bias towards a fixed target, we show that the propor-
tion of favorable information resources is strictly bounded from above.
Furthermore, we demonstrate that bias is a conserved quantity, such
that no algorithm can be favorably biased towards many distinct targets
simultaneously. Thus bias encodes trade-offs. The probability of success
for a task can also be measured geometrically, as the angle of agree-
ment between what holds for the actual task and what is assumed by
the algorithm, represented in its bias. Lastly, finding a favorably biasing
distribution over a fixed set of information resources is provably difficult,
unless the set of resources itself is already favorable with respect to the
given task and algorithm.

Keywords: Machine learning · Inductive bias · Algorithmic search

1 Introduction

Imagine you are on a routine grocery shopping trip and plan to buy some
bananas. You know that the store carries both good and bad bananas which you
must search through. There are multiple ways you can go about your search.
One way is to randomly pick any ten bananas available on the shelf, which can
be regarded as a form of unbiased search. Alternatively, you could introduce
some bias to your search by only picking those bananas that are neither under-
ripe nor overripe. Based on your past experiences from eating bananas, there
is a better chance that these bananas will taste better. The proportion of good
bananas retrieved in your biased search is greater than the same proportion in
an unbiased search; you used your prior knowledge about tasty bananas. This
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common routine shows how bias enables us to conduct more successful searches
based on prior knowledge of the search target.

Viewing these decision-making processes through the lens of machine learn-
ing, we analyze how algorithms tackle learning problems under the influence
of bias. Will we be better off without the existence of bias in machine learn-
ing algorithms? Our goal in this paper is to formally characterize the direct
relationship between the performance of machine learning algorithms and their
underlying biases. Without bias, machine learning algorithms will not perform
better than uniform random sampling, on average. Yet to the extent an algo-
rithm is biased toward some target is the extent to which it is biased against
all remaining targets. As a consequence, no algorithm can be biased towards all
targets. Therefore, bias represents the trade-offs an algorithm makes in how to
respond to data.

We approach this problem by analyzing the performance of search algo-
rithms within the algorithmic search framework introduced by Montañez [5].
This framework applies to common machine learning tasks such as classifica-
tion, regression, clustering, optimization, reinforcement learning, and the gen-
eral machine learning problems considered in Vapnik’s learning framework [6].
We derive results characterizing the role of bias in successful search, extending
Famine of Forte results [5] for a fixed search target and varying information
resources. Our results for bias-free search then directly apply to bias-free learn-
ing, showing the extent to which bias is necessary for successful learning and
quantifying how difficult it is to find a distribution with favorable bias for a
particular target.

We should note that while bias formally measures how much an algorithm’s
predisposition towards a fixed outcome causes it’s performance to deviate from
that of uniform random sampling, we also use that term to refer to the underlying
predisposition itself and its causes, which are responsible for that deviance.

2 Related Work

Schaffer’s seminal work [11] showed that generalization performance for classifi-
cation problems is a conserved quantity, such that favorable performance on a
particular subset of problems will always be offset and balanced by poor per-
formance over the remaining problems. Similarly, we show that bias is also a
conserved quantity for any set of information resources. While Schaffer studied
the performance of a single algorithm over different learning classes, Wolpert
and Macready’s “No Free Lunch Theorems for Optimization” [13] established
that all optimization algorithms have the same performance when uniformly
averaged over all possible cost functions. They also provided a geometric intu-
ition for this result by defining an inner product which measures the alignment
between an algorithm and a given prior over problems. This shows that no algo-
rithm can be simultaneously aligned with all possible priors. In the context of
the search framework, we define the geometric divergence as a measure of align-
ment between a search algorithm and a target in order to bound the proportion
of favorable search problems.
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While No Free Lunch Theorems are widely recognized as landmark ideas in
machine learning, McDermott claims that No Free Lunch results are often mis-
interpreted and are practically insignificant for many real-world problems [3].
This is because algorithms are commonly tailored to a specific subset of prob-
lems in the real world, but No Free Lunch requires that we consider the set of
all problems that are closed under permutation. These arguments against the
applicability of No Free Lunch results are less relevant to our work here, since we
evaluate the proportion of successful problems instead of considering the mean
performance over the set of all problems. Furthermore, our results hold for sets
of problems that are not closed under permutation, as a generalization of No
Free Lunch results.

In “The Famine of Forte: Few Search Problems Greatly Favor Your Algo-
rithm,” Montañez [5] reduces machine learning problems to search problems
and develops a rigorous search framework to generalize No Free Lunch ideas. He
strictly bounds the proportion of problems that are favorable for a fixed algo-
rithm and shows that no single algorithm can perform well over a large fraction
of search problems. Extending these results to fixed search targets, we show that
there are also strict bounds on the proportion of favorable information resources,
and that the bound relaxes with the introduction of bias.

Our notion of bias relates to ideas introduced by Mitchell [4]. According
to Mitchell, a completely unbiased classification algorithm cannot generalize
beyond training data. He argued that the ability of a learning algorithm to
generalize depends on incorporating biases, which equates to making assump-
tions beyond strict consistency with training data. These biases may include
prior knowledge of the domain, preferences for simplicity, restrictions on algo-
rithm structure, and awareness of the algorithm’s real-world application. We
strengthen Mitchell’s argument with a mathematical justification for the need
for bias in improving learning performance.

Gülçehre and Bengio empirically support Mitchell’s ideas by investigating the
nature of training barriers affecting the generalization performance of black-box
machine learning algorithms [2]. Using the Structured Multi-Layer Perceptron
(SMLP) neural network architecture, they showed that pre-training the SMLP
with hints based on prior knowledge of the task generalizes more efficiently
as compared to an SMLP pre-trained with random initializers. Furthermore,
Ulyanov et al. explore the success of deep convolutional networks applied to
image generation and restoration [12]. By applying untrained convolutional net-
works to image reconstruction with competitive success to trained ones, they
show that the impressive performance of these networks is not due to learning
alone. They highlight the importance of inductive bias, which is built into the
structure of these generator networks, in achieving this high level of success. In a
similar vein, Runarsson and Yao establish that bias is an essential component in
constrained evolutionary optimization search problems [10]. It is experimentally
shown that carefully selecting an appropriate constraint handling method and
applying a biasing penalty function enhances the probability of locating feasi-
ble solutions for evolutionary algorithms. Inspired by the results obtained from
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these experimental studies, we formulate a theoretical validation of the role of
bias in generalization performance for learning problems.

3 The Search Framework

3.1 The Search Problem

We formulate machine learning problems as search problems using the algorith-
mic search framework [5]. Within the framework, a search problem is represented
as a 3-tuple (Ω, T, F ). The finite search space from which we can sample is Ω.
The subset of elements in the search space that we are searching for is the target
set T . A target function that represents T is an |Ω|-length vector with entries
having value 1 when the corresponding elements of Ω are in the target set and 0
otherwise. The external information resource F is a binary string that provides
initialization information for the search and evaluates points in Ω, acting as an
oracle that guides the search process.

3.2 The Search Algorithm

Given a search problem, a history of elements already examined, and information
resource evaluations, an algorithmic search is a process that decides how to query
elements of Ω. As the search algorithm samples, it adds the record of points
queried and information resource evaluations, indexed by time, to the search
history. If the algorithm queries an element ω ∈ T at least once during the
course of its search, we say that the search is successful. Figure 1 visualizes the
search algorithm.

3.3 Measuring Performance

Within this search framework, we measure a learning algorithm’s performance by
examining the expected per-query probability of success. This measure is more
effective than measuring an algorithm’s total probability of success, since the
number of sampling steps may vary depending on the algorithm used, inflating
the total probability for algorithms that sample more. Furthermore, the per-
query probability of success naturally accounts for sampling procedures that
involve repeatedly sampling the same points in the search space, as is the case of
genetic algorithms [1,9]. Thus, this measure effectively handles search algorithms
that attempt to manage trade-offs between exploration and exploitation.

The expected per-query probability of success is defined as

q(T, F ) = EP̃ ,H

[
1

|P̃ |
|P̃ |∑
i=1

Pi(ω ∈ T )

∣∣∣∣∣F
]

where P̃ is a sequence of probability distributions over the search space (where
each timestep i produces a distribution Pi), T is the target, F is the information
resource, and H is the search history. The number of queries during a search is
equal to the length of the probability distribution sequence, |P̃ |.
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Fig. 1. As a black-box optimization algorithm samples from Ω, it produces an asso-
ciated probability distribution Pi based on the search history. When a sample ωk

corresponding to location k in Ω is evaluated using the external information resource
F , the tuple (ωk, F (ωk)) is added to the search history.

4 Main Results

We present and explain our main results in this section. Note that full proofs for
the following results can be found in the Appendix (available online, on arXiv
[7]). We proceed by defining our measures of bias and target divergence, then
show conservation results of bias and give bounds on the probability of successful
search and the proportion of favorable search problems given a fixed target.

Definition 1 (Bias for a distribution over information resources and a fixed
target). Let D be a distribution over a space of information resources F and let
F ∼ D. For a given D and a fixed k-hot target function t,

Bias(D, t) = ED
[
t�PF

] − k

|Ω|
= t�

ED
[
PF

] − ‖t‖2
|Ω|

= t�
∫

F
P fD(f) df − ‖t‖2

|Ω|
where P f is the vector representation of the averaged probability distribution
(conditioned on f) induced on Ω during the course of the search, which can be
shown to imply q(t, f) = t�P f .

Definition 2 (Bias for a finite set of information resources and a fixed target).
Let U [B] denote a uniform distribution over a finite set of information resources
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B. For a random quantity F ∼ U [B], the averaged |Ω|-length simplex vector PF ,
and a fixed k-hot target function t,

Bias(B, t) = EU [B][t�PF ] − k

|Ω|
= t�

EU [B][PF ] − k

|Ω|

= t�

⎛
⎝ 1

|B|
∑
f∈B

P f

⎞
⎠ − ‖t‖2

|Ω| .

We define bias as the difference between average performance of a search algo-
rithm on a fixed target over a set of information resources and the baseline
search performance for the case of uniform random sampling. Definition 1 is a
generalized form of Definition 2, characterizing the alignment between a target
function and a distribution over information resources instead of a fixed set.

Definition 3 (Target Divergence). The measure of similarity between a fixed
target function t and the expected value of the averaged |Ω|-length simplex vector
PF , where F ∼ D, is defined as

θ = arccos
(

t�
ED[PF ]

‖t‖‖ED[PF ]‖

)

Similar to Wolpert and Macready’s geometric interpretation of the No Free
Lunch theorems [13], we can evaluate how far a target function t deviates from
the averaged probability simplex vector P f for a given search problem. We use
cosine similarity to measure the level of similarity between t and P f . Geomet-
rically, the target divergence is the angle between the target vector and the
averaged |Ω|-length simplex vector. Figure 2 depicts the target divergence for
various levels of alignments between t and P f .

Theorem 1 (Improbability of Favorable Information Resources). Let
D be a distribution over a set of information resources F , let F be a random
variable such that F ∼ D, let t ⊆ Ω be an arbitrary fixed k-sized target set
with corresponding target function t, and let q(t, F ) be the expected per-query
probability of success for algorithm A on search problem (Ω, t, F ). Then, for any
qmin ∈ [0, 1],

Pr(q(t, F ) ≥ qmin) ≤ p + Bias(D, t)
qmin

where p = k
|Ω| .

Since the size of the target set t is usually small relative to the size of the search
space Ω, p is also typically small. Following the above results, we see that the
probability that a search problem (with information resource drawn from D)
is favorable is bounded by a small value. This bound tightens as we increase
our minimum threshold of success, qmin. Notably, our bound relaxes with the
introduction of bias.



The Futility of Bias-Free Learning and Search 283

Fig. 2. These examples visualize the target divergence for various possible combinations
of target functions and simplex vectors. (b) demonstrates minimum alignment, while
(c) demonstrates maximum alignment.

Corollary 1 (Probability of Success Under Bias-Free Search). When
Bias(D, t) = 0,

Pr(q(t, F ) ≥ qmin) ≤ p

qmin

Directly following Theorem 1, if the algorithm does not induce bias on t given
a distribution over a set of information resources, the probability of successful
search based on an information resource sampled from D cannot be any higher
than that of uniform random sampling divided by the minimum performance
that we specify. This bound matches that of the original Famine of Forte [5].

Corollary 2 (Geometric Divergence).

Pr(q(t, F ) ≥ qmin) ≤
√

k cos(θ)
qmin

=
‖t‖ cos(θ)

qmin

This result shows that greater geometric alignment between the target vector
and expected distribution over the search space loosens the upper bound on
the probability of successful search. Connecting this to our other results, the
geometric alignment can be viewed as another interpretation of the bias the
algorithm places on the target set.

Theorem 2 (Conservation of Bias). Let D be a distribution over a set of
information resources and let τk = {t|t ∈ {0, 1}|Ω|, ||t|| =

√
k} be the set of all
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|Ω|-length k-hot vectors. Then for any fixed algorithm A,∑
t∈τk

Bias(D, t) = 0

Since bias is a conserved quantity, an algorithm that is biased towards any
particular target is equally biased against other targets, as is the case in Schaffer’s
conservation law for generalization performance [11]. This conservation property
holds regardless of the algorithm or the distribution over information resources.
Positive dependence between targets and information resources is the grounds
for all successful machine learning [6], and this conservation result is another
manifestation of this general property of learning.

Theorem 3 (Famine of Favorable Information Resources). Let B be a
finite set of information resources and let t ⊆ Ω be an arbitrary fixed k-size
target set with corresponding target function t. Define

Bqmin = {f | f ∈ B, q(t, f) ≥ qmin},

where q(t, f) is the expected per-query probability of success for algorithm A on
search problem (Ω, t, f) and qmin ∈ [0, 1] represents the minimally acceptable
per-query probability of success. Then,

|Bqmin |
|B| ≤ p + Bias(B, t)

qmin

where p = k
|Ω| .

This theorem shows us that unless our set of information resources is biased
towards our target, only a small proportion of information resources will yield
a high probability of search success. In most practical cases, p is small enough
that uniform random sampling is not considered a plausible strategy, since we
typically have small targets embedded in very large search spaces. Thus the
bound is typically very constraining. The set of information resources will be
overwhelmingly unhelpful unless we restrict the given information resources to
be positively biased towards the specified target.

Corollary 3 (Proportion of Successful Problems Under Bias-Free
Search). When Bias(B, t) = 0,

|Bqmin |
|B| ≤ p

qmin

Directly following Theorem 3, if the algorithm does not induce bias on t given a
set of information resources, the proportion of successful search problems can-
not be any higher than the single-query success probability of uniform random
sampling divided by the minimum specified performance.
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Theorem 4 (Futility of Bias-Free Search). For any fixed algorithm A, fixed
target t ⊆ Ω with corresponding target function t, and distribution over infor-
mation resources D, if Bias(D, t) = 0, then

Pr(ω ∈ t;A) = p

where Pr(ω ∈ t;A) represents the per-query probability of successfully sampling
an element of t using A, marginalized over information resources F ∼ D, and p
is the single-query probability of success under uniform random sampling.

This result shows that without bias, an algorithm can perform no better than
uniform random sampling. This is a generalization of Mitchell’s idea of the futil-
ity of removing biases for binary classification [4] and Montañez’s formal proof
for the need for bias for multi-class classification [6]. This result shows that bias
is necessary for any machine learning or search algorithm to have better than
random chance performance, of those representable in our framework.

Theorem 5 (Famine of Applicable Targets). Let D be a distribution over
a finite set of information resources. Define

τk = {t | t ⊆ Ω, |t| = k}
τqmin = {t | t ∈ τk,Bias(D, t) ≥ qmin}

where t is the target function corresponding to the target set t. Then,

|τqmin |
|τk| ≤ p

p + qmin
≤ p

qmin

where p = k
|Ω| .

This theorem shows that the proportion of target sets for which an algorithm
is highly biased is small, given that p is small relative to qmin. A high value of
Bias(D, t) implies that the algorithm, given D, places a large amount of mass on
t and a small amount of mass on other target functions. Consequently, an algo-
rithm is acceptably biased toward fewer target sets as we increase the minimum
threshold of bias.

Theorem 6 (Famine of Favorable Biasing Distributions). Given a fixed
target function t, a finite set of information resources B, and a set P = {D |
D ∈ R

|B|,
∑

f∈B D(f) = 1} of all discrete |B|-dimensional simplex vectors,

μ(Gt,qmin)
μ(P)

≤ p + Bias(B, t)
qmin

where Gt,qmin = {D | D ∈ P,Bias(D, t) ≥ qmin} and μ is Lebesgue measure.

We see that the proportion of distributions over B for which an algorithm is
acceptably biased towards a fixed target function t decreases as we increase the
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minimum acceptable level of bias, qmin. Additionally, the greater the amount of
bias induced by an algorithm given a set of information resources on a fixed tar-
get, the higher the probability of identifying a suitable distribution that achieves
successful search. However, unless the set is already filled with favorable ele-
ments, finding a minimally favorable distribution over that set is difficult.

Theorem 7 (Bias Over Distributions). Given a finite set of information
resources B, a fixed target function t, and a set P = {D | D ∈ R

|B|,
∑

f∈B D(f) =
1} of discrete |B|-dimensional simplex vectors,∫

P
Bias(D, t) dD = C · Bias(B, t)

where C =
∫

P dD is the uniform measure of set P. For an unbiased set B,∫
P

Bias(D, t) dD = 0

This theorem states that the total bias on a fixed target function over all pos-
sible distributions is proportional to the bias induced by the algorithm given B.
When there is no bias over a set of information resources, the total bias over
all distributions sums to 0. It follows that any distribution over D for which
the algorithm places positive bias on t is offset by one or more for which the
algorithm places negative bias on t.

Corollary 4 (Conservation of Bias Over Distributions). Let τk = {t|t ∈
{0, 1}|Ω|, ||t|| =

√
k} be the set of all |Ω|-length k-hot vectors. Then,

∑
t∈τk

∫
P

Bias(D, t) dD = 0

Here we see that the total bias over all distributions and all k-size target sets sums
to zero, even if beginning with a set of information resources that is positively
biased towards a particular target, as implied by the previous Theorem7.

5 Examples

5.1 Genetic Algorithms

Genetic algorithms are optimization methods inspired by evolutionary pro-
cesses [9]. We can represent genetic algorithms in our search framework as fol-
lows:

– A - a genetic algorithm, with standard variation (mutation, crossover, etc.)
operators.

– Ω - space of possible configurations (genotypes).
– T - set of all configurations which perform well on some task.
– F - a fitness function which can evaluate a configuration’s fitness.
– (Ω,T, F ) - genetic algorithm task.
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Given any genetic algorithm that is unbiased towards a particular small tar-
get when averaged over a set of fitness functions (as in No Free Lunch scenarios),
the proportion of highly favorable fitness functions in that set must also be small,
which we state as a corollary following directly from Corollary 3.

Corollary 5 (Famine of Favorable Fitness Functions). For any fixed tar-
get t ⊆ Ω and fixed genetic algorithm unbiased relative to a finite set of fitness
functions B, the proportion of fitness functions in B with expected per-query
probability of success at least qmin is no greater than |t|/(qmin|Ω|).

5.2 Binary Classification

We can cast binary classification as a search problem, as follows [5]:

– A - classification algorithm, such as a decision tree learner.
– Ω - space of possible binary labelings over an instance space.
– t ⊆ Ω - set of all hypotheses with less than 10% classification error.
– F - set of training examples, where F (∅) is the full set of training data and

F (c) is the loss on training data for hypothesis c.
– (Ω, t, F ) - binary classification learning task.

In our example, let |Ω| = 2100. Assume the size of our target set is |t| = 210,
the set of training examples F is drawn from a distribution D, and that the
minimum performance qmin we want to achieve is 0.5. Then, by Corollary 1, if
our algorithm (relative to D) does not place any bias on the target set,

Pr
(

q(t, F ) ≥ 1
2

)
≤ p

qmin
=

210

2100

1
2

= 2−89.

Thus, the probability that we will have selected a dataset that results in at least
our desired level of performance is upper bounded by 2−89. Notice that if we
raised the minimum threshold, then the probability would decrease—favorable
datasets would become more unlikely.

To perform better than uniform random sampling, we would need to intro-
duce bias into the algorithm. For example, predetermined information or assump-
tions about the target set could be used to determine which hypotheses are more
plausible. The principle of Occam’s razor [8] is often used, which is the assump-
tion that the elements in the target set are likely the “simpler” elements, by
some definition of simplicity. Relating this to our formal definition of bias, if we
introduce correct assumptions into the algorithm, then the expected alignment
of the target set and the induced probability distribution over the search space
increases accordingly.

6 Conclusion

We build on the algorithmic search framework and extend Famine of Forte
results to search problems with fixed targets and varying information resources.
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Our notion of bias quantifies the extent to which an algorithm is predisposed
to a particular fixed target. We show that bias towards any target necessarily
implies bias against the other remaining targets, underscoring the fact that no
universally applicable form of bias can exist. Furthermore, one cannot perform
better than uniform random sampling without introducing a predisposition in
the algorithm towards a desired target—unbiased algorithms are useless. Few
information resources can be greatly favorable towards any fixed target, unless
the algorithm is already predisposed to the target no matter the information
resource given. Thus, in machine learning as elsewhere, biases are needed for
better than chance performance. Biases must also be correct, since the effective-
ness of any bias depends on how well it aligns with the given target actually
being sought.
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7. Montañez, G.D., Hayase, J., Lauw, J., Macias, D., Trikha, A., Vendemiatti, J.:
The futility of bias-free learning and search. arXiv e-prints arXiv:1907.06010, July
2019

8. Rasmussen, C.E., Ghahramani, Z.: Occam’s Razor. In: Proceedings of the 13th
International Conference on Neural Information Processing Systems, NIPS 2000,
pp. 276–282. MIT Press, Cambridge, MA, USA (2000)

9. Reeves, C., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives: A Guide
to GA Theory, vol. 20. Springer, Heidelberg (2002). https://doi.org/10.1007/
b101880

10. Runarsson, T., Yao, X.: Search biases in constrained evolutionary optimization.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35, 233–243 (2005). https://
doi.org/10.1109/TSMCC.2004.841906

11. Schaffer, C.: A conservation law for generalization performance. In: Machine Learn-
ing Proceedings 1994, pp. 259–265. Elsevier (1994)

12. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454
(2018)

13. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Trans.
Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

https://doi.org/10.1007/s42257-019-00002-6
https://doi.org/10.1007/s42257-019-00002-6
http://arxiv.org/abs/1907.06010
https://doi.org/10.1007/b101880
https://doi.org/10.1007/b101880
https://doi.org/10.1109/TSMCC.2004.841906
https://doi.org/10.1109/TSMCC.2004.841906
https://doi.org/10.1109/4235.585893


WinoFlexi: A Crowdsourcing Platform for
the Development of Winograd Schemas

Nicos Isaak1(B) and Loizos Michael1,2

1 Open University of Cyprus, Nicosia, Cyprus
nicos.isaak@st.ouc.ac.cy, loizos@ouc.ac.cy

2 Research Center on Interactive Media, Smart Systems, and Emerging Technologies,

Nicosia, Cyprus

Abstract. The Winograd Schema Challenge, the task of resolving pro-
nouns in certain carefully-structured sentences, has received considerable
interest in the past few years as an alternative to the Turing Test. Sys-
tems developed to tackle this challenge have typically been evaluated on
a small set of hand-crafted collections of sentences, since the develop-
ment of new sentences by individuals is itself a rather challenging task,
requiring care and creativity. In this paper we approach the problem
of developing Winograd schemas via the introduction of WinoFlexi, a
flexible online crowdsourcing system. Our empirical evaluation of the
system’s performance suggests that WinoFlexi allows crowdworkers to
develop Winograd schemas of quality similar to that of most typical
existing collections.

Keywords: Winograd Schema Challenge · Crowdsourcing

1 Introduction

The Winograd Schema Challenge (WSC) has been proposed as a novel litmus
test for machine intelligence. Unlike the Turing Test, which is based on short
free-form conversations during which a machine attempts to imitate a human,
machines passing the WSC are expected to demonstrate the ability to think
without having to pretend to be somebody else [1]. Passing the challenge requires
resolving pronouns in certain sentences where shallow parsing techniques seem
not to be directly applicable, and where the use of world knowledge and the
ability to reason seem necessary [2,3]. Although the challenge is, by design, easy
for humans, the development of new Winograd schemas is, itself, too troublesome
for humans lacking inspiration and creativity [4].

In this paper, we present WinoFlexi, a flexible online collaboration system
that allows members of crowdsourcing platforms to collaborate explicitly for the
development of Winograd schemas. To the best of our knowledge, this is the first
work that attempts to use crowdsourcing for this task. We envision the use of this
platform as a source of Winograd schemas for use in WSC-based CAPTCHAs
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[5] and in WSC competitions for the evaluation of systems that attempt to pass
the challenge [4].

WinoFlexi uses a combination of tools that enhance the schema-development
process: (i) it is more cheat-proof than existing crowdsourcing platforms, and
(ii) it uses test questions that are closer to the schema-development process
that benefit non-dubious workers and ban dubious ones. Our empirical study
with workers from an existing crowdsourcing platform, showed that WinoFlexi
can be used for the development of Winograd schemas that are comparable to
the most typical existing schema collections.

2 The Winograd Schema Challenge

Winograd schemas comprise of two Winograd halves, with each half consisting
of a sentence, a definite pronoun or a question, two possible pronoun targets
(answers), and the correct pronoun target [1]. The following schema (a pair
of halves) illustrates the key characteristics of Winograd schemas: 1. Sentence:
Erica called Jennifer on the phone because she was not responding to email.
Question: Who was not responding to email? Answers: Jennifer, Erica. Correct
Answer: Jennifer. 2. Sentence: Erica called Jennifer on the phone because she
was not able to email. Question: Who was not able to email? Answers: Jennifer,
Erica. Correct Answer: Erica.

Given just one of the halves in a schema, the aim is to resolve the definite
pronoun in the question to one of its two co-referents. The avoid trivializing
the task, the co-referents are of the same gender, and are either both singular
or both plural. The two halves differ in a special word or phrase that critically
determines the correct answer. Schemas that do not strictly follow these rules
are called “schemas in the broad sense”.

It is believed that the WSC can provide a more meaningful measure of
machine intelligence when compared to the Turing Test, exactly because of the
presumed necessity of reasoning with commonsense knowledge to identify how
the special word or phrase affects the resolution of the pronoun. By extension,
it is believed that a system that contains the commonsense knowledge to cor-
rectly resolve Winograd schemas should be capable of supporting a wide range
of AI applications. Although, as expected from its reliance on commonsense
knowledge, English-speaking adults have no difficulty with the challenge, the
development of the schemas themselves is a very challenging task [4]. According
to Levesque [1] in order to build quality Winograd schemas one needs to avoid
two pitfalls: having questions whose answers are in a certain sense too obvious,
and (more importantly) having questions whose answers are not obvious enough.

To the best of our knowledge, the availability of Winograd schemas is limited.
Currently, only two widely-used WSC collections exist: (i) Rahman and Ng’s
collection [6], which consists of 942 schemas and was developed by students
(built under the “broad sense”); (ii) Levesque and Davis’s [1] collection, which
consists of 150 schemas and was developed under the strict rules of the WSC
(referred to later as the Winograd-library).
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The availability of Winograd schemas seems disproportional to their demand
and their potential impact. A recent study [5] showed that the WSC can form the
basis of a new type of CAPTCHA, which might encourage more AI researchers to
work on the problem of actually trying to tackle the WSC, and perhaps, to help
towards the building of machines able to reason with commonsense knowledge.
On the other hand, the development of carefully-crafted pronoun resolution tasks
towards the development of Winograd schemas is a hard process [4]: it requires
creativity and inspiration, and it is too troublesome to be done on a regular basis
to support, for instance, competitions on the WSC or the testing of systems that
might have been trained on existing collections of Winograd schemas. Perhaps
not unrelated to the limited availability of Winograd schemas is the fact that
the first and only WSC competition was organized in 2016 [4].

Towards addressing this disparity, we turn to crowdsourcing. Currently,
many skilled labor activities are carried out online via crowdsourcing platforms.
These platforms can eliminate geographic constraints and help workers to pursue
work that they find valuable [7]. This work utilizes such platforms to develop
WinoFlexi, in an effort to bring together researchers and people from across dis-
ciplines, concerned with the acquisition and use of language data in the context
of knowledge-based applications like the WSC. The design of appropriate crowd-
sourcing mechanisms for our particular task and the evaluation of the developed
Winograd schemas is the focus of the rest of this paper.

Fig. 1. WinoFlexi ’s architecture for the development of Winograd schemas. The vari-
ous parts of the architecture are marked in red rectangles, and are discussed in Sect. 3.
(Color figure online)
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Fig. 2. The contributor dashboard.

3 Crowdsourcing Platform Architecture

We continue to present our platform and its constituent modules (see Fig. 1),
and discuss how the crowd collaborates to built schemas under WinoFlexi ’s
evaluation mechanisms. Recognizing that the schema development process is
tedious and troublesome, WinoFlexi is built to act as an assistant with effective
incentive mechanisms for the crowd.

3.1 Registration and Training Session

The first step for each worker is to apply as a Contributor to our platform, where
they register their credentials (http://cognition.ouc.ac.cy/mcSchemaBuilder; see
part-1 in Fig. 1). Workers need not be domain experts but need to have a strong
command of English to ensure that schemas have no spelling, syntactic, or gram-
matical errors, and comply with the schema development process. To maximize
the quality of the developed schemas, every Contributor has to complete a train-
ing task (see part-2 in Fig. 1). During the training phase workers are familiar-
ized with the development process by being asked to correctly resolve randomly
selected schemas from the Winograd-library. The length of the training phase can
be increased either by the system administrator or automatically by WinoFlexi
to ensure that the quality of the produced schemas meets expectations. In par-
ticular, if the auto-training flag is enabled, then the length of the training phase
for every new registered Contributor is determined by how much the number of
invalid schemas produced so far exceeds the number of valid ones.

3.2 Contributing and Evaluating

Workers both contribute in the development of schemas, and evaluate their
quality.

http://cognition.ouc.ac.cy/mcSchemaBuilder


WinoFlexi: A Crowdsourcing Platform 293

Fig. 3. Heuristic relations to eliminated problems with schema cohesion.

Contributors: Contributors are workers who develop schemas (see part-6 in
Fig. 1), using the dashboard shown in Fig. 2. When a Contributor adds a schema,
WinoFlexi does some basic checks: (i) It checks if each schema half comprises a
sentence, a question, and two pronoun targets. (ii) It checks if the correct pro-
noun target of each schema half has been selected. (iii) It checks if the sentence,
the question, and the two pronoun targets of each schema half are related. (iv)
It checks if the two halves are related. Relatedness is checked using the heuristic
approach shown in Fig. 3 applied to each of the pairs sentence-question, sentence-
first pronoun target, sentence-second pronoun target.

Evaluators: Workers who validate schemas are called Evaluators (see part-7
in Fig. 1). Contributors are allowed to take on this second role if they meet two
requirements: first, the percentage of their valid and approved (by other Evalua-
tors) schemas among those that they have contributed that far exceeds a certain
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Fig. 4. The evaluator dashboard.

threshold (which we have set to be 90%, corresponding to the bar for near adult
human abilities on the WSC [3]); second, their score (which we discuss later)
is above a certain other threshold. Contributors who are also Evaluators choose
the role in which they interact with WinoFlexi at login time. At the beginning
of the development process, the only Evaluator is the system administrator. The
evaluation process comprises of answering a number of yes/no questions using
the dashboard shown in Fig. 4. Affirmative responses to all but the first question
are necessary to characterize a schema as valid. Additionally, the Evaluators
have access to a similarity tool to detect if the Contributors are following a pat-
tern to develop similarly-looking schemas. The tool acts like a leakage-detector
[7] that queries the WinoFlexi-library and Winograd-library to determine if a
newly-contributed schema is “leaked”, in that it is significantly similar to an
existing schema. Each approved schema increases the Contributor’s score and
each “leaked” schema decreases it, affecting whether the Contributor will meet
the requirements to become an Evaluator.

3.3 Quality-Assurance Measures

Additional mechanisms are used to ensure the quality of the developed schemas.

Test Questions: Many crowdsourcing platforms use tests as a method of assess-
ment, offering their certification mechanisms to verify that a given worker indeed
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holds a particular skill [7,8]. Previous works indicate that more interactive stud-
ies may motivate participants to read instructions more carefully leading to
better compliance [9]. Our approach is based on the adaptive interjection of
test questions and on rewarding the worker with a positive score for success-
fully resolving them (see part-5 in Fig. 1). WinoFlexi can be enabled to display
test questions as often as necessary, to both Contributors and Evaluators; this
can be manually handled by the system administrator, or automatically con-
trolled by the system. By default, a test question has a 10% probability of being
displayed after every login. If the auto-testing flag is enabled, this probability
is adjusted in a manner analogous to how the length of the training phase is
adjusted. Test questions are selected from the WinoFlexi-library (validated con-
tributed schemas) and the Winograd-library; both collections include schemas
that strictly follow the WSC rules. Correct/wrong answers to test questions
increase/decrease a worker’s score.

Ban Score: Online certification of skills is still problematic, since dealing with
cheating is a major challenge. The ban-score mechanism automatically bans
workers who have a sufficiently low score (see part-3 in Fig. 1), with the threshold
identified empirically.

Un-Validated Schemas: To prevent workers from entering a large number
of potentially invalid schemas, there is a mechanism that limits the number of
schemas each worker can develop before they undergo the validation process (see
part-4 in Fig. 1).

Winograd Schema Hardness: WinoFlexi leverages existing tools for the
WSC to generate feedback to the Contributors (see part-8 in Fig. 1). Towards
this goal, we follow a single-step approach for labeling schemas with a hard-
ness score which indirectly shows if a schema is considered hard to answer by
a machine; Winograd schemas are accordingly labeled as such by the computed
hardness index. For this purpose we use a recent tool [3] that can take any
Winograd schema and output a score that shows its hardness index. The hard-
ness index is presented to the Contributors and the Evaluators. If the majority of
a Contributor’s schemas are easy (respectively, hard) then our system prompts
them to develop schemas that are harder (respectively, easier) to solve.

3.4 Payment and Rewards

Payment Procedure: Most of the microtasks on the crowdsourcing platforms
are priced individually, and workers are paid a base rate multiplied by the number
of correctly completed tasks. Whatever their motives are, workers want to earn
money and seek out tasks to maximize their expected earnings. To make sure
that only the workers who developed schemas are going to get paid, we enhanced
WinoFlexi with a payment verification plug-in (see part-9 in Fig. 1). Upon each
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schema development (or validation), Contributors and Evaluators are prompted
with a notification message and a code which is automatically generated and
inserted into our database. Each worker has to provide the same code on their
crowdsourcing platform to receive the actual payment.

Rewards: Workers, recruited through crowdsourcing platforms, must receive a
small fixed payment for participating in the experiment, and/or a bonus for high
quality results [8]. Past work has shown that the quality of work produced in
a crowdsourcing working session can be influenced by the presence of financial
incentives, such as bonuses. WinoFlexi adopts this philosophy and rewards Con-
tributors based on “relative performance”, namely only the worker that performs
best receives rewards.

4 Experimental Design and Results

In recent years, a growing number of researchers have been using well-known
crowdsourcing platforms [9]. A large body of work has shown MicroWorkers
(MW) to be a reliable and cost-effective source for various fields and research
purposes [8,9]. Platforms like MW offer a framework that enables the employers
to submit individually designed tasks to the crowd. MW has almost 1.5 million
subscribed workers, and offers more than 40 million tasks. The MW platform
offers many features which can influence the completion time and the results.
Moreover, it provides campaign creators with predefined groups of workers from
different regions that are organized according to their skills (e.g., best rated
countries, writers, workers with certain language qualification tasks). To attract
the worker’s attention we used a simplified title (title: Develop Groups of Sen-
tences, Questions & Answers that Meet Certain Criteria) and promoted it on
the MW platform. Workers were given instructions explaining the task directing
them to develop schemas without sacrificing accuracy. It was made clear that the
development of invalid schemas might ban them from the system. Furthermore,
we promoted WinoFlexi only under the Hired-Section of English Speaking Coun-
tries + En, meaning that only members of that group were able to participate.
Our selected workers have both English proficiency, and admission tests passed.
For our task, we offered a compensation of $1.00 for each developed schema or
for the validation of three schemas in a row. We also advertised a bonus for
quality schemas without stating the amount.

The experiments ran for one week, and yielded more than 165 schemas (see
Table 1), from 50 workers, aged 18 to 65. From the developed schemas, 135 (81%)
were valid, and 30 invalid. The highest score of a worker was 250 points and
the lowest was −70; the Contributor with the lowest score was automatically
banned by WinoFlexi. The majority of the workers had a non-negative score,
and the top three workers had a score of at least 170, which well-exceeded the
second condition for qualifying as an Evaluator. The total cost of our campaign
was $258.00. The Contributors were paid $165.00 for the schema development
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Table 1. Snapshot of the Contributors’ Developed Schemas on WinoFlexi.

1 Erica called Jennifer on the phone because

she was not responding to email

Who was not

responding to email?

Jennifer, Erica

Erica called Jennifer on the phone because

she was not able to email

Who was not able to

email?

2 If Rachel listened to Mrs. Sheila, she would

have given her full marks

Who would give full

marks?

Mrs. Sheila,

Rachel

Had not Rachel ignored Mrs. Sheila, she

would have got full marks

Who would have got

full marks?

3 The martial artist defended himself from

the drug dealer because he was violent

Who was violent? The drug dealer,

The martial

artistThe martial artist defended himself from

the drug dealer because he was under attack

Who was under

attack?

process, with an additional $63.00 given as bonuses. On the other hand, $30.00
were paid to Evaluators for the schema evaluation process.

Our experimental evaluation shows that WinoFlexi supports the develop-
ment of valid schemas, with a cost of approximately $1.91 per schema. Consid-
ering the challenge difficulties, we believe that this is a fair cost. Mean response
time across all workers was 1.48 min, and the average time for the best worker
was 1.66 min. 60% of the bonuses were offered to the top five workers. We believe
that our adopted approach leads to more bonus opportunities for workers who
submit schemas of good quality.

Evaluators were not observed to show a preference for the evaluation process
over the schema design process. Although the evaluation process seems more
straightforward, workers might have preferred the schema design process for the
following reasons: (i) they were more familiar with the schema design process
than the evaluation process; (ii) through the schema design process they were
eligible for rewards, such as cash bonuses; (iii) they did not want to leave other
Contributors unpaid, or lower their score.

The general picture emerging form the analysis above is that WinoFlexi is
a platform where workers can collaborate for the schema development process.
However, there is a key question when considering this approach that we have
not addressed yet: How does the quality of the developed schemas compare to
that of schemas in existing collections?

4.1 Quantitative Analysis

Co-reference Resolution: Our baselines are three co-reference resolution sys-
tems that were used on the Winograd-library [4], namely the Stanford-Core-
NLP system, Wikisense [10], and Knowledge-Parser [2]. Showing a positive
correlation of the performance of the three systems on the Winograd-library
and the WinoFlexi-library would offer evidence that WinoFlexi can be used
to develop schemas of good quality. For our experiment, we randomly selected
50 schemas (100 schema-halves) from each library. On the Winograd-library,
Stanford-Core-NLP correctly resolves 37% schema-halves, incorrectly resolves
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39% of them, and does not make any decision on the remaining 23%. On
the WinoFlexi-library, it correctly resolves 44% schema-halves, incorrectly
resolves 44% of them, and does not make any decision on the remaining 12%.
Wikisense correctly resolves 59% schema-halves of the Winograd-library, incor-
rectly resolves 31% of them, and does not make any decision on the remain-
ing 9%. On the WinoFlexi-library, it correctly resolves 56% schema-halves, and
incorrectly resolves 44%. K-Parser correctly resolves 38% schema-halves of the
Winograd-library, incorrectly resolves 36%, and does not make any decision on
the remaining 26%. On the other hand, on the WinoFlexi-library, it correctly
resolves 37% schema-halves, incorrectly resolves 37% of them, and does not make
any decision on the remaining 26%. Comparison of the results shows that the
performance of the three systems on the WinoFlexi-library is analogous to their
performance on the Winograd-library. According to our results, the two libraries
have correlation coefficients of 0.925 (Stanford-Core-NLP), 0.987 (Wikisense),
and 0.995 (K-Parser), respectively. The results provide evidence that our devel-
oped schemas are of the same or similar quality with the Winograd-library
schemas.

Hardness Metric Tool: For the purpose of this experiment, we randomly
selected 57 schema-halves of the WinoFlexi-library, and compared their hard-
ness index to that of 57 schema-halves of the Winograd-library taken from a
previous work [3]. Figure 5 shows in more detail how the computed hardness
index varies across schema-halves, suggesting that indeed, the two sets have
comparable average hardness indices and analogous variability in their hardness
indices. The general picture emerging from the analysis shows that despite the
fact that our workers were not initially familiar with the schema development
process, through WinoFlexi ’s mechanisms they were trained to design schemas
of good quality. Furthermore, the data presented here provides evidence that the
WinoFlexi schemas avoid Levesque’s pitfalls, meaning that the questions of the
schemas are neither too obvious, nor are their answers not obvious enough.

Schema Structure: Next, we compare the structure of all the crowd-
generated schemas (WinoFlexi-library) to that of all the expert-generated
schemas (Winograd-library), as a way to determine if using crowdworkers sacri-
fices quality in exchange for scalability.

For this experiment, we developed a tool that identifies the sentence pat-
tern of each designed schema. Given as input an English sentence, it outputs
its pattern/type which can be either a simple, a compound, a complex, or a
compound-complex sentence. Simple sentences have only one independent clause
(SV; where S = Subject and V = Verb), while compound sentences can have two
or more independent clauses (e.g., “SV and SV”). On the other hand, complex
sentences can have one independent clause plus one or more dependent clauses
(e.g., “SV because SV”), and compound-complex sentences can have two or
more independent clauses plus one or more dependent clauses (e.g., “SV and SV
because SV.”). The connector in each complex sentence shows how the dependent
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Fig. 5. Hardness index variability across 57 schema Halves of the Winograd-library
and 57 schema Halves of the WinoFlexi-library. Each group is sorted based on the
hardness index.

clause relates to the independent clause. Based on the typical connectors found
in Winograd schemas, we consider the following groupings of connectors for our
analysis: (i) Cause/Effect: because, since, so that; (ii) Comparison/Contrast:
although, even though, though; (iii) Place/Manner: where, how, however; (iv)
Possibility/Conditions: if, whether, unless; (v) Relation: that, which, who; (vi)
Time: after, as, before.

The results showed that 9% of the crowd-schemas are based on simple sen-
tences, 8% on compound sentences, and 83% on complex sentences. On the
other hand, 41% of the expert-schemas are based on simple sentences, 14% on
compound sentences, and 45% on complex sentences. Most of the developed
schemas (both expert and crowd) are based on complex sentences. The expert-
schemas that were designed with complex sentences had 30% “Cause/Effect”,
8% “Comparison/Contrast”, 1% “Place/Manner”, 4% “Possibility/Condition”,
18% “Relation”, and 39% “Time” relationships. On the other hand, the crowd-
schemas had 52% “Cause/Effect”, 1% “Comparison/Contrast”, 2% “Possibil-
ity/Condition”, 1% “Relation”, and 44% “Time” relationships. The results pro-
vide evidence that with WinoFlexi ’s help the crowd was able to develop quality
schemas that are based on a variety of sentence patterns, similar to the expert
developed schemas. Additionally, the fact that crowd-schemas are not based on
simple sentences, like the expert-schemas are (41%), might show that the crowd
did not sacrifice quality in exchange for scalability. Considering the challenge
difficulties, it seems that WinoFlexi can motivate and inspire researchers for the
faster development of new schemas.
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4.2 Qualitative Analysis

Based on the valid developed schemas, and taking into account com-
ments received from Contributors, we present below a qualitative analysis of
WinoFlexi ’s outputs.

Evaluation Procedure: Certain outputs suggest that WinoFlexi ’s evaluation
might need to be optimized, and schemas might need to be evaluated by more
than one Evaluator. For instance, the following was mistakenly considered as a
valid schema: 1. Sentence: Karen loved going to salons to get her nails done.
They always looked so nicely decorated. Question: What looked nicely decorated?
Answers: The Salons, The Nails. 2. Sentence: Karen loved going to salons to
get her nails done. They always looked so nicely manicured. Question: What
looked nicely manicured? Answers: The Salons, The Nails. This schema cannot
be considered as a valid one because the second half is resolvable with selectional
restrictions; salons cannot be manicured.

Inspiration and Creativity: One of the problems during schema development
is the lack of inspiration and creativity. It seems that the collective intelligence
of the crowd is able to mitigate this issue. For instance, the workers developed
schemas which are based on a variety of subjects, like cartoon heroes (spiderman,
hulk), animals (hyenas, zebras), hospitals (psychiatrists, medications), people in
general (fights, burglars), things (cards, drains). The following is an example
schema: 1. Sentence: Spiderman spun his web around the Hulk because he was
falling. Question: Who was falling? Answers: Hulk, Spiderman. 2. Sentence:
Spiderman spun his web around the Hulk because he was annoyed. Question:
Who was annoyed? Answers: Hulk, Spiderman.

Enjoyment and Curiosity: Based on comments that we received, certain
workers were motivated by an intrinsic incentive such as enjoyment and curiosity
for new knowledge, and not only from potential rewards. Worker Member0xx, for
example, offered the following comment: “I am terribly sorry, on my most recent
schema I accidentally selected the wrong option. The schema is about putting a
shirt in the dryer. I hope it is something you can fix. Thank you for your time
and allowing a platform to develop these schemas, I very much enjoy trying to
figure out new ways to create a valid schema.”.

5 Conclusion and Future Work

We have presented WinoFlexi, an online crowdsourcing system built explicitly
for the development of Winograd schemas. Despite the acknowledged difficulty of
the task when assigned to individuals, our empirical evaluation offers evidence
that online crowd platforms and systems like WinoFlexi might offer a viable
alternative.
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Among possible directions for future research, of interest would be the
automation of parts of the process of schema development and validation, with-
out taking humans out of the loop. Sentences upon which schemas could be
built, for example, could be automatically detected by crawling the Web, and
offered to the WinoFlexi crowdworkers for further processing and validation.
This human-machine teaming might prove to lead to a more efficient utilization
of human time, and might yield a more diverse set of schemas, perhaps expand-
ing the creativity and inspiration of the crowdworkers. In terms of validation,
one could attempt to identify heuristics employed by humans when evaluating
schemas, and might seek to help Evaluators focus their attention to those aspects
of a schema that might be more salient when determining its validity.
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Abstract. Conversations contain a wide spectrum of multimodal information
that gives us hints about the emotions and moods of the speaker. In this paper,
we developed a system that supports humans to analyze conversations. Our
main contribution is the identification of appropriate multimodal features and the
integration of such features into verbatim conversation transcripts. We
demonstrate the ability of our system to take in a wide range of multimodal
information and automatically generated a prediction score for the depression
state of the individual. Our experiments showed that this approach yielded better
performance than the baseline model. Furthermore, the multimodal narrative
approach makes it easy to integrate learnings from other disciplines, such as
conversational analysis and psychology. Lastly, this interdisciplinary and
automated approach is a step towards emulating how practitioners record the
course of treatment as well as emulating how conversational analysts have been
analyzing conversations by hand.

Keywords: Multi-disciplinary AI � Conversational analysis � Visualization �
Multimodal data

1 Introduction

When people speak, a lot of information is communicated at several levels. The con-
tent, as well as the way the speech is delivered, gives us hints about the emotions and
moods of the speaker. To be a good listener in the conversation or a third-party
conversation analyst, one must consider a wide range of information, paying attention
to the choice of words, attitudes, and emotions, for example.

Analyzing conversations is complex and time-consuming. In specialized settings,
such as a clinical psychology setting, expert insights are required to get a sense of what
to look out for – both in terms of what was said and how it was said. For example,
people who are clinically depressed tend to lose interest in things they were previously
interested in [1] (which relates to what was said). Also, while responding, the clients
tend to have a longer response time and/or have reduced affect display in facial
expression [2, 3] (which relates to how it was being said). As an anecdotal example
from one of our authors’ experience as a practicing clinical psychologist, his experience
is aligned to the aforementioned literature and he also found that during the initial
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treatment, depressed clients tend to employ avoidance coping, such as responding with
ambivalence (e.g., I don’t know’) when they are asked to encounter their inner
experience.

In another related discipline, conversational analysis, multimodal information from
dialogs have been transcribed using a technical system developed by Jefferson [4]. This
system encodes information about how it was being said in addition to what was being
said. The challenge is that the manual encoding of such information is very time-
consuming and susceptible to human error.

In this paper, we alleviate the manual-intensive problem of representing and
visualizing multimodal information. We customize our conversational analysis system
so that it takes in temporal multimodal information, weaves them into the verbatim
transcript and automatically generates a prediction score for the depression state of the
individual. We discuss insights from current practices in the clinical psychology
industry to help inform our construction of the multimodal narrative. With the help of
current artificial intelligence (A.I.) algorithms, we extract features to accomplish a task
that demands both attention and domain-specific expertise. The experiments show that
our proposed method performs better than the baseline model. Lastly, we present an
example of how the content of a conversation can be visualized and analyzed intu-
itively by humans.

2 Related Works

2.1 Textual Multimodal Representation

Representations of multimodal information are typically vector-based, i.e., numerical.
However, we are proposing a textual form of multimodal representation. There are two
closely related tasks in the domain of machine learning – visual question-answering
(VQA) [5] and dense video captioning [6] tasks. In these tasks, the model is trained to
take in the video input and output a sequence of text that describes the video or answer
questions. Our objective differs from these tasks, because our generated text is both
used as an intermediary step for downstream models as well as a final product to be
used in visualizations. Therefore, our objectives surrounding the generated text are
(1) interpretability of the downstream model, and (2) whether the downstream model
would be performant. Consequently, we are not concerned with the measures typically
used in VQA and dense video captioning tasks to compare against the ground truth.
Instead, our objective measure would be on the downstream model performance.

2.2 Detecting Depression with Automated Conversational Analysis

Recently, there has been a growing interest in interdisciplinary research that assesses
human conversations automatically. We focus on applications that detect depression
and discuss past attempts at detecting depression in conversations. The Audio/Visual
Emotion Challenge (AVEC), in the year of 2016, 2017 and 2019, has invited
researchers to predict the level of depression severity (measured by the PHQ-8
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questionnaire) from audio-visual recordings of a clinical interview. Since our dataset
was also used in the AVECs, past attempts in the AVECs are highly relevant.

Although the challenges were about analyzing conversations, we did not find any
past accepted papers that were concerned with the textual presentation of the analysis.
Many accepted papers did, however, use text as an input. Some used the verbatim
transcript in the text format as input into the model. Others extracted numeric features
from the transcripts in three main ways – timings, keyword searches, and emotional
indices.

3 Data

3.1 Data Collection

We used a publicly available multimodal dataset, Distress Analysis Interview Corpus
[7]. It contains interviews of individuals conducted by a virtual human designed to help
diagnosis of psychological distress conditions. Self-reported PHQ-8 scores are pro-
vided as the dependent variable, with an interval scale from 0 to 24, and larger scores
indicate greater severity. In total, there are 219 participants. This dataset was also used
in the AVEC 2019 challenge. The organizers have performed the digitization step to
extract baseline features [8]. The scripts that replicate the baseline features extraction is
publicly available1. Of the baseline features, we used the Geneva Minimalistic Acoustic
Parameter Set (egemaps) and Facial Action Units (AU).

3.2 Feature Extraction

Using the provided data and features, we extracted more features and classified them
into three different levels of inputs. Figure 1 provides an overview of the prediction
process and the distribution of the PHQ score. The baseline level of input is the session-
level numeric features, followed by a session-level coarse summary. Lastly, the mul-
timodal narrative comprised of both the verbatim transcript and multimodal informa-
tion at the talk-turn level. The motivation is to produce an interpretable set of features
that considers the temporal nature of conversational analyses. In total, there are nine
features extracted at the session-level and four features extracted at the talk-turn level.

Fig. 1. The high-level architecture of the pipeline (left) and distribution of PHQ score (right).

1 https://github.com/AudioVisualEmotionChallenge/AVEC2019.
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3.2.1 Session-Level Numeric Features
We created three families of session-level inputs – prosody, actions, and demo-
graphics. Table 1 gives an overview of all features. Summary statistics refer to the
maximum, minimum, average, and standard deviation of the feature for the entire
session.

Firstly, for the family of demographics, we investigated the effects of talkativeness,
Big 5 Personality, Gender. Talkativeness is selected because depressed individuals
have been found to show reduced response length and poor articulation of distinct
words [9].

Of the Big 5 Personality, higher neuroticism and lower conscientiousness have
been found to correlate with higher depression. In a meta-analysis that reviewed 851
effect sizes based on 175 articles, strong effect sizes have been observed in the cor-
relations between depression and neuroticism (d = 1.33), and conscientiousness
(d = −.90) [10]. Interestingly, it has been found that the Big 5 Personality did not
correlate with psychomotor retardation, while the Big 5 Personality correlates with the
negative affect component in depression [11]. Hence, the present study included
proxies of depression from both affective (Big 5 Personality) and physiological
dimensions (Speech Delay, Speech Rate, Talkativeness).

Gender differences exist in the manifestation of depression. Firstly, in a large study
using about 80,000 individuals, women tend to report more depressive symptoms than
men across all age groups [12]. Secondly, in perpetuating depression, chronic strain,
low mastery, and rumination were reported to be more common in women than in men
[13]. Therefore, the factor of gender is included to capture these possible systematic
differences in depression manifestation.

The method of extracting features for the family of demographics is as follows.
Talkativeness is measured by the total word count and total distinct word count from
the supplied transcripts. Big 5 Personality is computed using the IBM Watson Per-
sonality Insights API, which returns the five percentile scores – one for each Big 5
personality – which are used as inputs. Gender is predicted by a regularized logistic
regression model using the egemaps features supplied. Using all 16 egemaps variables,

Table 1. Session-level numeric features.

Family Child Feature

Demo-
graphics

Talkativeness Total word count & Total distinct word count
Big 5
Personality

Percentile scores for each of the big 5 personality

Gender Predicted Male/Female
Actions Laughter Total laughter count

Facial
expression

Summary statistics of the given AU intensity and count
values

Prosody Delay Summary statistics of time gaps between talk-turns
Speech rate Average speech rate
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we obtained an accuracy of 99.1% on the pooled predictions from the cross-validation.
We used one-hot encoding to represent gender as a numeric feature.

Secondly, for the family of actions, we investigated the effects of laughter and
facial expressions. The reduction in laughter frequency has been found to be a
symptom of depression, which may be linked to humor deficit and increased feelings of
anhedonia observed in depressed patients [14]. Facial expressions of emotions are also
expected to be reduced with depression [15].

The method of extracting features for the family of actions is as follows. Laughter
events were detected using the open-source algorithm [16]. We summed up the total
number of laughter events per session. As for facial expressions, we computed sum-
mary statistics for the intensity and count values of each AU. To limit the number of
input features, we only computed summary statistics for four AU (AU5, 17, 20, 25)
because these have been found to be effective in Yang et al. [17]. The description of
each of the four AUs are – AU5: Upper lid Raiser; AU17: Chin raiser; AU20: Lip
stretcher; AU25: Jaw drop [18].

Lastly, for the family of prosody, we investigated the effects of delay and speech
rate. These two features were selected because of the existing literature that suggests
the following. Firstly, higher delays in responses (also known as speech pause time)
have been found to positively correlate with higher depression scores [2, 3]. Secondly,
a lower speech rate has also been found to also correlate with higher depression scores
[19].

The method of extracting features for the family of prosody is as follows. We
computed the summary statistics of time gaps between talk-turns. As for speech rate,
the overall average speech rate is computed by dividing the total number of words
spoken by the total number minutes of talk-turn duration.

3.2.2 Session-Level Coarse Summary
In addition to numerical inputs, we investigated whether it is possible to represent the
inputs in the form of text. The motivation is that in clinical psychology consultations,
practitioners are ethically obligated to summarize session-level progress details, to
inform subsequent assessments and interventions in the course of treatment (see https://
www.psychology.org.au for example). This investigation is a step towards emulating
how practitioners record the course of treatment and provides insights on analyzing the
session-level coarse summaries. In this section, we first explain the automatic gener-
ation of a text representation, then we motivate the extraction of a new family of input
features – comprehension. The overview of templates for the session-level coarse
summary is provided in Table 2.

The method of converting session-level features into text representation involves
standardization of the numerical inputs across the training dataset. For each of the
numerical inputs, we computed the standardized score (z-score) using the mean and
standard deviation obtained from the training fold. Depending on the standardized
score, we inserted templates 1 to 7 (except 3), where possible values in the bold-face
were “very low” (z-score < −2), “low” (z-score < −1), “high” (z-score > 1) and “very
high” (z-score > 2). We did not insert any templates when the z-score was within the
normal range of −1 to 1 to keep the narrative succinct. As for template 3, we used the
predicted gender from the logistic regression model.
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Since we are changing the representation of the session from numerical features to
text features, we also investigated the addition of a new family of input features –

comprehension. The recent progress of machine comprehension has prompted the
research question of the benefits of using trained machine comprehension models to
extract text features for downstream supervised learning. Machine comprehension
models take in two inputs – the question and the passage – and return an extracted
phrase from the passage that is most related to the question. In our application, we used
the model as a targeted summarization tool. The comprehension input family consisted
of two sets of questions which we discuss in turn. To extract the answers, we used the
pre-trained Bidirectional Attention Flow model from AllenNLP [20]. We also set the
minimum probability threshold to be 0.1, so that answers that are deemed to be low-
confidence by the model are replaced by “not applicable”.

The first set of comprehension questions were derived from Yang et al. [17], where
the authors conducted a content analysis of the transcripts using keywords-matching to
identify whether the participant is (a) previously diagnosed, (b) sleeping well, (c) shy or
outgoing, (d) feeling bad or good. The second set of comprehension questions were
derived from the DSM-5 [1]. The DSM-5 is widely used in Australia by psychologists
and psychiatrists to make a diagnosis of depression. We present the set of derived
questions along with a sample answer extracted from the transcripts in Table 3.

Table 2. Templates for the session-level coarse summary.

Family Child ID Template

Demo-graphics Talkativeness 1 ‘number of words high number of distinct words
high’

Big 5
Personality

2 ‘openness very high’

Gender 3 The participant is female
Actions Laughter 4 ‘laughter counts high’

AU 5 ‘minimum lip depressor very low maximum lip
depressor low average lip depressor low variance
lip depressor low’

Prosody Delay 6 ‘minimum delay very low maximum delay low
average delay low variance delay low’

Speech rate 7 ‘speech rate high’
Comprehension Yang et al.

[17]
8 See Table 3

DSM-5 9 See Table 3
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3.2.3 Multimodal Narrative
In this section, we also investigated the effects of adding the entire transcripts, anno-
tated with multimodal information. In effect, we added information on what was being
said as well as how it was being said at a talk-turn level.

At the talk-turn level, we introduced two families of information – prosody, and
actions. We weaved this information into the transcript to create the multimodal nar-
rative. Table 4 gives an overview of the templates, the bold-face indicates a variable.

The laughter detection algorithm returns the time window of the detected laughter.
Using this time window, we inserted template 10 if the window of the laughter is
completely contained within the time window of the talk-turn.

The method of computing delay is through the provided time window for each talk-
turn in the transcripts. The nominal values (template 11) of delay could be used by the
model to compare the delay lengths across sessions; however the drawback of is that it
does not help the model consider the within-session variation in delay. Therefore, to
tackle this problem, we added template 12 where the template is dependent on the
standardized duration of the delay “long” (1 � z-score < 2) and “significantly long”

Table 3. Sample comprehension features derived.

Yang et al. [17] DSM-5 [1]
Question Sample

answer
Question Sample answer

Am I
diagnosed?

no I never
been formally
diagnosed

Do I feel
depressed most
of the day?

No lately I’ve still been pretty depressed

Am I
sleeping
well?

I have not
been sleeping

Do I lose
interest?

I was not interested in things that are
that I would normally interested in and
you know I was sort of withdrawn

Am I shy? I’m not I’m
not extremely
shy

Do I feel tired? Fatigued I’m very tired

How am I
feeling
lately?

irritated tired
lazy

Do I feel
worthless?

I feel like invisible

Do I feel like
dying?

I felt like I couldn’t cope

Table 4. Templates for the multimodal annotations

Family Child ID Template

Actions Laughter 10 ‘the participant laughed and said’
Prosody Delay 11 ‘after two hundred milliseconds’

12 ‘a long delay’
Speech rate 13 ‘quickly said’
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(2 � z-score). The mean and standard deviation of the delay are calculated using all
talk-turn delays from the same session. Lastly, we appended template 13 to annotate
speech rate variation within the session. Similar to template 12, the possible values of
template 13 are dependent on the standardized words per minute for each talk-turn –

“very slowly” (z-score < −2), “slowly” (z-score < −1), “quickly” (z-score > 1), and
“very quickly” (z-score > 2).

4 Analysis

4.1 Evaluation Metric

To evaluate the performance of the models, the Concordance Correlation Coefficient
(CCC) was used, this was also the metric used in the official AVEC 2019 challenges
[8]. The CCC is defined by:

rc ¼ 2rrxry

r2x þ r2y þ lx � ly
� �2 ð1Þ

where r represents the Pearson’s correlation coefficient (PCC) between two vectors
(ground-truth and prediction), µ represents the mean of each vector, and r represents
the standard deviation of each vector.

4.2 Ablation Test Design

To investigate the benefits of including different families of input features, and different
learning algorithms, we designed a series of ablation tests. We discuss the motivations
for our ablation test design, as illustrated in Fig. 2. The dotted boxes correspond to the
granularity of feature input, as described in Fig. 1. The grey boxes denote the learning
algorithm. The white boxes denote the families of inputs that were common to our
existing system; whilst the blue boxes denote the families of inputs that are newly
added features in this paper. For each model, we start from the left, which uses only
demographic features. The ablation test setup is such that we add one input family at a
time, starting with A, then P and others. We discuss the four motivations for this
design.

Fig. 2. The high-level architecture of the prediction pipeline.
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The first motivation is the ability to compare the differences in performance
between the two algorithms, keeping the input configurations similar. Therefore, in
Fig. 2, we observe that it is possible to compare the performance of the decision tree
versus the HAN for the first three configurations (D, DA, DAP).

The second motivation is the ability to investigate the additional benefits of pro-
gressively adding families of input into the configuration. Therefore, we have elected to
add one family at a time. We have chosen demographics to be the starting configuration
because this family of inputs is always populated for text inputs. In other words, because
the other two families (actions and prosody) are only populated when they contain high
standardized values (see Sect. 3.2.2), they are not suitable as the starting configuration.

The third motivation is the ability to investigate the benefits of employing the pre-
trained machine comprehension model. Therefore, we have introduced a split at the end
of the DAP configuration. On one path, we used the machine comprehension model to
perform targeted summarization. On the other path, we used our automatically gen-
erated multimodal narrative, which includes both the multimodal information and
verbatim transcript.

Lastly, the fourth motivation is the ability to investigate the effects of using all
extracted information in the form of text in the DAPNC configuration.

4.3 Regression Tree

The regression tree used is from the rpart package within R. We used the “anova”
splitting method to train the regression tree. We tuned the hyperparameters minimum
split, maximum depth, and cp through a grid search and the cross-validation. We report
in Table 5 the performance metrics using different inputs. The cross-validation is
performed on the entire dataset.

4.4 Han

With the text features, each word is represented by the set of Glove word embeddings
(300-dimensions). We tuned the learning rate, number of GRU units, recurrent dropout,
GRU dropout, and L2 regularization via random-search. We used the Stochastic Gra-
dient Descent optimizer. Batch size is set to 8. The training process consists of 350

Table 5. Cross-validation results for regression tree and HAN. The standard deviation of
performance is presented in brackets.

Family Regression tree HAN
CCC CCC

D 0.144 (0.065) 0.171 (0.027)
DA 0.226 (0.125) 0.200 (0.035)
DAP 0.234 (0.052) 0.239 (0.056)
DAPC N/A 0.291 (0.118)
DAPN 0.297 (0.132)
DAPNC 0.302 (0.092)
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epochs, with no early stopping. We have also clipped the range of the predicted values to
be between 0 and 24. The performances of HAN are also presented in Table 5. To
facilitate all pairwise comparisons, we also computed whether the performance differ-
ences are statistically significant through bootstrapping the CCC differences
(N = 1000). At the 0.95 significance level, we found significant differences in two pairs
- Tree-D vs. HAN-DAPN, and Tree-D vs. HAN-DAPCN. At the 0.90 significance level,
we found a significant difference in one additional pair – Tree-D vs. HAN-DAPC.

5 Discussion

For regression tree, we observe that the CCC cross-validation performance increases
significantly from the D configuration (CCC = 0.144) to the DA configuration
(CCC = 0.226) and then followed by a small increase in the DAP configuration
(CCC = 0.234).

As for the HAN, the increase of CCC is almost linear as we progressively add the
session-level inputs – from the D (CCC = 0.171), to DA (CCC = 0.200), and then the
DAP configuration (CCC = 0.239). When we added the comprehension features, the
performance increases markedly (CCC = 0.291). After that, the performance of the
DAPC configuration is similar to DAPN (CCC = 0.297) and the configuration of
DAPNC, which contains all text features, is the best (CCC = 0.302).

The DAPC configuration is an efficient way to extract text features for this
supervised learning task. This is evident from two observations. Firstly, the perfor-
mance increase from the DAP to DAPC configuration is high. Secondly, the difference
between the DAPC and DAPN configuration is small. However, we posit that the
challenge here is asking the machine comprehension model the right questions, which
we attempted to overcome by using past research, including the DSM-5.

When we hold the input configuration constant, we found that text representation
had the same level of performance as the regression tree when representing session-
level inputs (DAP configuration). The CCC performances of other participants of the
AVEC 2019 challenge – using the same number of observations and performance
metric (CCC) – are not published at the time of writing this paper.

6 HAN Visualization

In the closing section, we demonstrate how the HAN model could be used to support
humans analyze conversations, through using the attention weights. We used both the
talk-turn as well as word-level attention weights to construct the visualization manu-
ally. Here, a talk-turn represents a question (answer) to (from) the machine compre-
hension model. We extracted and standardized attention weights from all talk-turns
within the same session. Having computed the standardized talk-turn-level and word-
level weights, we use the following style schemes to construct the visualization.

In the visualization, the numbers on the left indicate the talk-turn number. The
analyst could first get a sense of the relative importance of all talk-turns by looking at
the talk-turn-level attention weights. Then, the analyst could dive deeper and analyze
the relative importance of each word.
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We picked an example that has the actual PHQ score of 20, and the model predicted
a score of 15. In Fig. 3, we illustrate a short extract from the DAPC configuration that
has talk-turns with high attention weights. In the extract, we observed that only talk-
turn 4 are having high importance in making the prediction score of 15. More inter-
estingly, we noted that the words marked as high importance are concepts semantically
related to depression.

7 Conclusion

In this paper, experiments on the DAIC-WOZ dataset [7] were presented, with a focus
on the multimodal text representation. Our proposed approach constructs a text nar-
rative and then uses it as input to a model. Finally, both the model and the narrative are
used to construct a visualization to analyze the dialog.

We have demonstrated that this approach could accommodate customizations,
allowing the researcher to inject research findings from cross-disciplinary literature. In
our application, we injected talkativeness, big 5 personality, laughter, delay, speech
rate, comprehension information into our multimodal narrative. These selected features
are guided by the psychology as well as the conversational analysis literature.

The ablation tests showed that text representations perform just as well as the
regression trees. However, the flexibility of text representation makes it possible to
extract more information through the pre-trained machine comprehension model and
achieve a cross-validation CCC of 0.291. Using all the information, our system
achieves a cross-validation CCC of 0.302. For future research directions, we would like
to better understand the effectiveness of the produced visualizations and text summaries
as well as the time savings from this automated approach through user-studies. There is
also future work to improve or widen the multimodal feature extraction to further
improve the performance of HAN.

Lastly, the visualization is a step towards emulating the way human conversation
analysts analyze conversations, and a step towards emulating how practitioners keep a
text record of the course of treatment.

z-
score Importance Word Talk-turn

Color Size Color Label
< 0 Nil +0 N
< 1 Low +1 L
< 2 Medium +2 M
≥ 2 High +3 H

Fig. 3. Conversation analysis example.
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Abstract. Huge volume of events is logged by monitoring systems. Analysts
do not audit or trace the log files, which record the most significant events, until
an incident occurs. Human analysis is a tedious and inaccurate task given the
vast volume of log files that are stored in a “machine-friendly” format. The
analysts have to derive the context for an incident using the prior knowledge to
find relevant events to the incident to recognise why it has happened. Although
the security tools by providing visualization techniques and minimizing human
interactions have been developed to make the process of analysis easier, far too
little attention has been paid to interpret security incident in a “human-friendly”
format. Besides, the current detection patterns and rules are not mature enough
to recognize early breaches, which have not caused any damage. In this paper,
we presented an Explainable AI model that assist the analysts’ judgement to
infer what is happened from the security event logs. The proposed Explain-
able AI model includes storytelling as a novel knowledge representation model
to present the sequence of the events which automatically are discovered from
the log file. For automated discovering sequential events, an apriority-like
algorithm by mining temporal patterns is utilized. This effort focused on security
events to convey both short-life and long-life activities. The experimental results
demonstrate the potential and advantages of the proposed Explainable AI model
from the security logs that validated on the activities during the security con-
figuration compliance on Windows system.

Keywords: Security events � Storytelling � Periodic frequent item set

1 Introduction

Every day, millions of activities and attempts are recorded in computer systems. Logs,
the outputs of the recording process, are usually intended for security and diagnostic
purposes; their data can be extremely useful in system audits and forensic investiga-
tions. When monitoring systems generate alerts, the first place analysts investigate are
the event logs. The log file contains rich information including: when the problem
occurred, what applications were running, and which application might have caused the
problem. Log file analysis is carried out using a mix of both the powers of machines
and the powers of human beings [1, 2]. Machines typically perform simple tasks to
tackle the volume and heterogeneity of input data. The human verification on filtered
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data is then required to justify events with minimal false positives. However, what
seems to be missing from filtered data is the detail and relevant knowledge. The current
approaches apply sufficient context to the data, or have enough intelligence to know
why certain classifications are important [3]. Such shortcoming requires human
involvement in order to determine the relationship between the events. At the same
time, the machine-friendly format of log files is highly challenging for the analysts to
extract valuable knowledge [4].

In prior research, automated Cyber Situation Awareness (CSA) tools and models
that enhance the cognition and understanding of experts have been proposed [5]. Still,
the existing Cyber Situation Awareness systems have not been able to address the
challenges practically [5]. A significant impact on the usability of correlation
approaches, such as conceptual expressiveness, is achieved through the representation
used to model events [6]. Semantic analysis of the log files is also the earlier approach
for assistance of forensic investigators and security analysts. Massive volume of the
events are not comprehended, thus the researchers focus their effort on the context, and
the link to enrich background knowledge [7].

Storytelling is a novel knowledge representation method with high persuasion that
can highlight the semantic and implied information from log files into a human-
understandable format [8]. The stories generated take advantage of human cognition by
building the context around the facts. According to Mackinaly et al. [9], “Data tells
you what is happening. Stories tell you why it matters”.

The mining algorithm proposed in this paper is similar to the one applied by Khan
and Parkinson [10]; however we differ in focus. Although the timespan was used for
determining the ordering of event sequences by Khan and Parkinson [10], it was not
considered in the mining process for frequent item set. As a result, only the activities
that are repeated in the log files are identified as frequent patterns, omitting the short-
life activities. Besides, algorithm proposed in [10] deals with different unresolved
conflicts through the chain making of the events, that are addressed in this paper. On
the other hand, the approach proposed by Mahanta et al. [11], considers the time for
partially periodic patterns retrieval, however, the algorithm has only been tested in the
market-basket problem [12]. The approach is borrowed for security events.

In this paper, sequence of events from log files is automatically filtered out and
presented in a storytelling format. An Explainable AI model for the identification of
periodic temporal associations with timestamps is proposed. The model is utilised to
discover the relationships between events that persist for some duration of time. Since
time plays an important role when representing the knowledge among the events, the
model is developed to recognise the events within the variation of the association rules
over time. Interesting events often occur within a specific period; therefore time aspect
is very important factor in log files analysis [13]. By extension of the apriori-like
algorithm in the proposed model, the interesting events within the observed period are
mined and chains of the sequential events are produced. Furthermore, the interpretation
of the sequential events chains in a natural language through the appropriate context
enrichment has been proposed. The main contribution of this paper is the story design
model for the security events contextualised interpretation to reduce human effort in
relevant relationships between the events identification. The rest of the paper is
organised as follows. First, we review the apriori-like algorithms from relevant
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literature, such as frequent item sets and association rules. Then, the proposed AI
model is introduced. Finally, the storytelling model is evaluated on a case study, and
compared to the algorithm adopted by Khan and Parkinson [10].

2 Terms and Definitions

2.1 Apriori-Like Algorithm

Apriori-like algorithm is a suitable candidate to discover temporal patterns in interval-
based data. As the name of the algorithm shows, the main idea of the apriori algorithm
is based on the inductive theory. If s � S, then it can be conducted that the support
(S) � support(s). It means that if k-length item set could not be recognised as satis-
fying pattern, there is no need to check any m-length item set, where m > k [14].

2.2 Frequent Item Set Mining with a Timestamp

The main idea for periodic mining item set is based on the work by Mahanta et al. [11].
According to which the local frequent set is a collection of item sets that are frequent in
a specific period. A threshold is used to validate the gap between the current time and
the last-seen time of appearance of a particular item set. If the gap exceeds the
threshold, it means the last-seen time was the end point of the previous local frequent
set, and the current time is the start point of the next period (next set). The minSupport
checks the frequency of items in each local set. In other words, the local sets for each
candidate are defined if the candidate from start point to end point of the associated
time interval is repeated more than the minSupport.

The transaction is set in the time interval [Ti, Tj] if its timestamp occurs inside the
interval. The N Ti;Tj½ � is the number of transactions that occurred in the time interval [Ti,

Tj], and the N xð Þ Ti;Tj½ � is the number of transactions containing item set x. The support

of a local item set is calculated as follows (1):

support xð Þ Ti;Tj½ �¼
N xð Þ Ti;Tj½ �
�
�
�

�
�
�

N Ti;Tj½ �
�
�
�

�
�
�

ð1Þ

Support amount is calculated in each local frequent set. The item sets may appear in
more than one local frequent set. Therefore, the support of item set x is defined based
on the average of the local support amounts, where each local support is greater than
the minSupport. All k-length item sets are generated and stored as an array. The set of
candidates extracted are commonly called CK, where C refers to the candidate, and K
refers to the length of the sequence. If the average of local supports is greater than the
minSupport, then the item set is added to the sub-sequences of the selected candidates
(LK). CK for K > 1 is pruned by dropping the candidates if their item set was not
found in the previous LK. All of the time intervals of item set x, when x occurs
frequently (more than minSupport), are saved in an array [11].

An Explainable Intelligence Model for Security Event Analysis 317



2.3 Association Rules

“An association rule is an expression of the form x ) y, where x, y are the item sets
and x\ y ¼ £” [15]. Association rules are generated from the discovered frequent
item sets to extract useful and understandable patterns from a database. According to
the Eq. (2), the support of each association rule is defined as follows:

support x ) yð Þ Tp;Tq½ �¼
N x; yð Þ Tp;Tq½ �
�
�
�

�
�
�

N Tp;Tq½ �
�
�
�

�
�
�

ð2Þ

Where N(x, y) is the number of transactions that contain both x and y in the time
interval, the time interval [Tp, Tq] shows the intersection time of item set x and item set
y. For generating the association rules, a subsequence called “consequence” is parted
from each LK. If the item set from the LK is called as “frequence”, then the association
is defined according to AR = freq-cons ) cons, and the time interval for each is
calculated according to the Eq. (3), based on the TP array.

Time ARð Þ ¼ TP freq-cons½ � \TP cons½ � ð3Þ

For each association rule, a confidence value is defined. The confidence of an
association rule x ) y is the ratio between the number of transactions that contain x
and y and the number of transactions that contain x. The confidence determines the
conditional probability of having y contained in a transaction, given that x is contained
in that transaction. By defining a rule based on AR, the confidence is estimated using
the Eq. (4) based on the support values.

Confidence AR Time ðARÞ ¼ support freq½ �
support freqt-conseq½ � ð4Þ

An association rule is valid if the confidence in the time interval is greater than the
minConf, which is determined by the user. By using the timestamp and finding the
local frequent sets, the candidate has great confidence. It means that the timestamps
help to select and validate candidates before filtering through the threshold.

3 Related Works

In recent years, many studies present convincing arguments that time plays an
important role to identify the knowledge among temporal data since data usually
contain time stamping [13]. The timestamp is the main part of a log that conveys the
knowledge from what is happened among logs. i.e. logging in a server after the work
hours is suspicious activity in many scenarios; however, it is normal if it happens
during the work hours. Only time conveys the knowledge.
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Retrieving knowledge among the log file by considering the time is also a very
important factor for computer forensics investigations to reconstruct the past events and
find the relation between them [16]. Digital evidence is built based on computer
activates, not only logs [17]. Thus, forensic investigators used software tools for
demonstrating the activities through the timeline and compare them with other dis-
covery. According to the limitation of the space, please refer to the survey in [18] for
more details.

Semantically analysis the logs are an earlier approach for assisting forensic
investigators and security analysts. A Massive volume of events not comprehended;
thus, researchers focus on the context and find the linked to rich background knowl-
edge [7]. In [10], a manual pre-defined statuses for activity plan is proposed. The output
results used as an automating learning approach from the human. A story from the log
file is a novel approach to support the analytical process. There are not much efforts to
support analysts by using narrative formats. Simple concepts in sequential sentences
are organised in the Explainable AI to discern where the events are headed. It is easier
for a human being to find co-relations of events in the log files when they were
modelled using storytelling design.

4 The Proposed Explainable AI Model

We used temporal association mining to extract frequent periodical events from log
files. The aim of the proposed algorithm is to automatically find chains of the sequence
of events in a contiguous subset of log file through time. The main framework of the
proposed algorithm is shown in Fig. 1.

4.1 Pre-processing

Let L = {ID, Timestamp, p1, p2,…, pn} be the log record from a log file in a Windows
operation system, where ID and Timestamp are numeric event type IDs of the record
and the time of recording respectively. Pi is the event property symbol. The common
properties of the Windows event log have been defined by Microsoft. We defined
Entity (E), as a set of properties, E = {pi, pi+1,…, pm}. The property pi can be con-
sidered as an explicit field of the E such as “User”, or an implicit property which is
embedded in an explicit property, i.e. “Error-code” from “Message” property in the
Windows security events is an implicit property. Both implicit and explicit properties

1-Extract entities from log file by pre-processing 
2-Generate event rules (Figure 2) 
3-Generate chain of eventIDs form event rules
4-Generate a story from the chain of sub-sequent events

Fig. 1. The main framework of the proposed algorithm
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are retrieved from a log record using regular expressions. A short sentence explaining
each event is in form of a plain text. The text is part of the message property in the
Windows platforms, called as “Short-Description” (implicit property that is extracted
from the message property). List of the security event descriptions based on the event
IDs can be found in [19].

According to the above model, a log record is L = {(ID, Timestamp), Entity, (pt1,..,
ptn), Short-Description}. The properties from pt1 to ptn in the Entity are selected
properties from the log record. By using the pre-processing, the Entity is a set of items,
and the log file is a database of transactions. Each log record is a transaction with an
associated identifier transaction ID (EventID), a timestamp and items. Let T = {t1, t2,
…, tn} be a sequence of timestamps where t1 < t2 < … < tn. The log file is ordered in
ascending order of timestamps. By defining the log files and entities based on the
market-basket problem [12], using an association mining algorithm for identifying co-
occurred properties of log records is easily applicable. The co-occurred properties
belong to the relevant events and express happening. In this model, the apriori-like
algorithm applied based on the work by Mahanta et al. [11].

4.2 Event Rules

The event-based rules are defined by the association rules. According to Sect. 4.1, each
log record has eventID corresponding to the Entity, which is used to construct the item
sets. Item sets are replaced with the corresponding eventID to construct event-based
rules. Figure 2 depicts a procedure to find the log record, which contains all the
properties from the item set x and y individually. Then, return the corresponding
eventIDs that occurred during the Time (AR) according to Eq. (3). Since log file is
ordered based on the timestamps ascending, the retrieval list of eventIDs from each side
of the association rules shows the sequential ordering of the event-based rules. It means
that each LH and RH in Fig. 2 contains a list of eventIDs that are ordered by time.

By considering the timestamps to find the frequent local item set, the sequence of
events, which we call as a chain of events is created. It brings improvement in the
algorithm proposed by Khan and Parkinson [10]. Since they did not use timestamp for
finding the association rules. They proposed an algorithm to order the sequence of
eventID and a solution to resolve the conflict in ordering the events, where at least two

For x and y in the association-rules 
  Item set1=x 

Item set2=y 
 SearchinEvents(item set,evenTime,time(association-rule))

  eventID(item) 
if evenTime in interval time(association-rule) 

   return eventID
LH=list of eventIDs for item1
RH=list of eventIDs for item2

Fig. 2. Conversion of association rules to event-based rules.
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eventIDs are connected to the same destination. However, the same source and loop
conflicts have not been considered. The same source and loop conflicts may happen
among the log files since two parallel processes are started, or activity is repeated.
Check the security configuration includes repeated activates, which in turn causes
loops. For example, a common chain of the actions for checking security configuration
is: login from a privileged user, try to login to a system with a blank password by
running a script (an administrator defines the blank password for a target user - it is
recorded in the log file as a successful or failed login), run the compliance toolkit to set
a security baseline (the toolkit checks the blank password – it is recorded in log file as
an attempt for finding the blank password), and try to login to a system with a blank
password by running the script to validate the security configuration.

4.3 Event Chain to Story

The representation used to model events has a crucial impact on awareness. Generating
a story from discovered events is more comfortable for human beings to find corre-
lations of events in the log files. Since making a story requires the annotation to be
generated, the short description property (explained in Sect. 4.1) is used for this pur-
pose. Although the short description property interprets the main action (not subject
and object), it makes sense for a user who follows-up the event sequence. Each eventID
mapped to its corresponding short description causes a chain of subsequence events is
translated into a story. While the ordered sequence is kept in the chain and trans-
plantation is based on the order, a loop or the same source conflicts not happened. As
Fig. 3 is shown, the event chain includes 5 eventIDs (with loop), the story is generated
based on the sequence order without conflicts. Since the order of eventIDs is the same
as their appearance in the chain, direction between two sequential eventIDs is only
shown by the “!” symbol. By looking up the Table 1, which contains the eventID and
its short description property, each event translates to its own description. Table 1
shows a snapshot of the eventID, short description and explanation based on the online
source in [19]. The generated story provides a holistic view for better understanding
and easier traceability of security events by analysts and forensic investigators. The
story from the log files is chucked to M levels, according to Eq. (5), where M is the
number of levels that are determined based on the number of association rules, and the
interval time threshold that is considered for finding the local set of each item set.

M =
N Association Rules

Thereshold TimeInterval
ð5Þ

We suppose that each event in the log file happened 1 s after the previous event.
Therefore, story of each local set is explained in one level. The first line of each level
shows the start and stop time of period of the story. It helps analysts to make an easier
and faster decision about an incident reported by monitoring systems due by referring
the relevant story level. The story in each level provides more details about what
happened in the period. Sequence of the most important events, which selected based
on the frequent item set mining, is demonstrated in a human-understandable format.
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5 Experimental Results

In this section, we compare the proposed model with the model introduced by Khan
and Parkinson [10], which we call the “StoryPlan”. Although authors did not claim the
proposal of a story from the log file, their action plans are extracted from the predefined
statuses and activities, thus provide a level of understanding and representing the
knowledge from the log file. As a result, we add the translation functions to their
algorithm instead of their application of automated planning for easier comparison
(their action plan is not available). The added function translate the chain of events into
the descriptions.

To explain the working of our proposed model and its advantages, we run three
scenarios on the Microsoft Windows Server 2012 R2 Base - 64-bit on the AWS1.

Event chain [4717,4625,4688,4797, 4625]
Event by ordered symbol: 4717 4625 4688 4797 4625
Lookup the table for finding the short description for each eventID
Generate the story: 
system security access was granted to an account an account failed to log on A new process has been created 

An attempt was made to query the existence of a blank password for an account an account failed to log on
Story after using the Template:
From Time x to y (if each event occurred exactly 1 second after the previous one ) time is equal to [AR]: 

• system security access was granted to an account 
• an account failed to log on
• a new process has been created, 
• an attempt was made to query the existence of a blank password for an accounts 
• an account failed to log on

Fig. 3. Translation of the chain of events into a story.

Table 1. Snapshot of mapping of eventIDs to their descriptions according to [19]

EventID Short description Explanation

4717 system security access was granted
to an account

This event documents the grant of logon
rights such as “Access this computer from
the network” or “Logon as a service”

4625 an account failed to log on It documents each and every failed
attempt to logon to the local computer
regardless of logon type, location of the
user or type of account

4688 A new process has been created It documents each program that is
executed, who the program ran as and the
process that started this process

4797 An attempt was made to query the
existence of a blank password for
an account

this event at least included the process
that made the request

1 Amazon web Server.
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The AWS instances are t2.micro type with 1 vCPU and 1 Gigabytes memory. The
security event logs are gathered through the period that an administrator checks the
security configuration by running PowerShell scripts or Microsoft Security Compliance
Toolkit2. The aggregated logs are considered as inputs for the Explainable model and
StoryPlan. The implicit and explicit properties are extracted based on the regular
expressions. The Entity (Sect. 4.1) contains 18 properties as the following:

Entities ¼ fUser; Computer; Event Source Name; Session ID; SecurityID; AccountName;

AccountDomain; LogonID; LogonType; LogonGUID; ProcessID; ProcesName;

Caller workstation; TargetAccountName; TargetAccountDomain; WorkstationName;

SourceNetAddress; SourcePortg:

The blank and none value properties are cleared from the data in the pre-processing
step. The Date and Time, Event ID, and Short descriptions are extracted properties that
stored in the separate tables. The minimum threshold for defining the local set is 300 s
or 5 min. According to the experts from the SOC team in the educational institute,
whom we work with, 5 min is a reasonable time to trace the incident event in the log
files. While each local set is explained in one level of story, the minimum threshold
defines the period for tracing events. The minSupport and minConfidence thresholds
are considered with the same values in [10], 20% and 70% respectively. Table 2 shows
the statistical results of 2 algorithms after running 3 scenarios with different numbers of
logs as following:

• Scenario 1: login with admin remote user, clear the logs, create 2 accounts, enable
auditing policies, run PowerShell scripts to find the blank password and corre-
sponding information, install and run Microsoft Security Compliance Toolkit, run
again PowerShell scripts to find the blank password and corresponding information

• Scenario 2: login with admin remote user, clear the logs, install and run Microsoft
Security Compliance Toolkit, run PowerShell scripts to find the blank password and
corresponding information

• Scenario 3: login with admin remote user, running the malware simulation tools,
changing the auditing policies, install and run Microsoft Security Compliance
Toolkit.

By defining local sets through the time, the sequential event rules are generated. As
mentioned earlier, the loop and the same source conflicts have not been resolved in [12]
for ordering the event rules. As shown in Table 2, events in “StoryPlan” have 5
conflicts in each scenario and the corresponding chain could not be generated. For
example, in Scenario 3, there is an event rule that contains both (‘4656’, ‘4624’) and
(‘4656’, ‘4672’). No information is provided about which event should be the last one

2 Security Compliance Toolkit (SCT) is a set of tools that allows enterprise security administrators to
download, analyze, test, edit, and store Microsoft-recommended security configuration baselines for
Windows and other Microsoft products.
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in the sequence (the same source conflict). However, in our algorithm, the timestamp in
the short period is able to account for the ordering of the events.

The results presented in Table 2 show that the number of association rules in our
model is larger than that generated by “StoryPlan” for all scenarios. Since the average
confidence for the association rules compared to the average amounts in “StoryPlan”
are greater, it means that our proposed algorithm was able to discover the more tem-
poral association items from the log files with better reliant ratio.

Different item set may appear in a log record with the same eventID. Therefore, the
same chains may be generated from different item sets. Duplicated chains are deleted
for easier understanding at each level. The total number of unique chains and the
number of generated sentences are demonstrated in the Table 2. Since duplicated
chains can differ from level to level of the story, each level contains various number of
sentences.

Figures 4 and 5 show the first generated story from the 2 algorithms in the Scenario
3. In Scenario 3, a malware activity is simulated and ran in the Windows server. The
malware is simulated by running an open source tool (malware simulator). Malware
simulator created and deleted a file (MalwareSimulator.txt) in all accessible areas. As
the Fig. 4 shows, the generated story is started with “A handle to an object was
requested”. According to the [19], the short description for eventID 4656 is: “A handle
to an object was requested”. When an application attempts to access the object, a
handler to an object is the first recorded event [19]. Therefore, the first event of the
malware behaviour correctly is identified by the proposed algorithm.

As Fig. 4 shows, our proposed algorithm has identified the sequential events of the
malware behaviour in the chain correctly; (the malware attempts to access different
objects and gain the privileges). The story also displays that “An attempt was made to
duplicate a handle to an object”, which means that another level of access is inherited
by the object; for accessing the inner folders. Then the malware updated the scheduled
task. After this message, we see some sentences related to windows firewall activities.
These is noise that occurred in the real environment, such as where the model was

Table 2. Comparison results from the proposed algorithm vs the proposed model in [10]

Parameters Explainable AI model Story plan model [10]
Scenario 1 2 3 1 2 3

Num of logs 100 1276 4170 100 1276 4170
Num association
rules

2509 42920 14982 54 1368 85

Avg confidence 0.9661 0.9663 0.9684 0.9226 0.9573 0.9682
Num unique chains 48 1470 191 6 17 7
Num conflicts 0 0 0 5 5 5
Num sentences 48 in 8

levels
1470 in
143 levels

191 in
50 levels

1 12 2
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simulated. Our model was not able to ignore all the noise, but it tolerated it and
generated a reasonable story with the sequential of events.

The output sentences from the “StoryPlan” is shown in Fig. 5. As the Fig. 5 shows,
each translation explains different part of Windows activities that does not make sense
in terms of what is the relationships between them; Just a sentence that mentioned “An
object a file type, C:\Desktops\Malware.tmp was deleted” related to the malware
activity, which attempts to delete a temporary object. Beyond the sequential sentences
problem, there is no suggestion for how to pursue the story in “StoryPlan”. Our model
represents the log file by chucking the story with a specific period as a label. It is easy
for users with different preferences to pursue the story through time. It brings an option
for analysts to check the specific time for finding what is happened among the log files.

6 Discussion and Future Works

The disadvantage of the proposed model is a high computation performance since it
employs the apriori-like algorithm and iteratively processes various sub-sets of events
from a log file. However, the purpose of the model is to assist a human cognition for
improved analysis, which takes place offline, after the machine analysis. Log files are
analysed in an offline mode. The extracting knowledge is faster and more accurate than
a human, who manually analysis and may miss events among the logs. Therefore, the
performance can be neglected. In term of future directions, the Explain AI can be tested
on more data to show the qualitative and quantities comparison results. Furthermore, to
highlight the establishing the novelty of the model, terms such as ‘an account’, ‘a new
process’, ‘a handle’, etc., can be translated by an enrichment function; thus makes sense
for human and highlight the accuracy of the proposed model.

From 2019-08-01 07:31:00 to 2019-08-01 07:31:00 Story is: 
[['A handle to an object was requested.'] ['The handle to an object was closed.'] ['An object was deleted.']
['An attempt was made to access an object.'] ['An operation was attempted on a privileged object.'] ['A new 
process has been created.'] ['A process has exited.'] ['An attempt was made to duplicate a handle to an 
object.'] ['A scheduled task was updated.'] ['Auditing settings on object were changed.'] ['The state of a 
transaction has changed.'] ['The Windows Filtering Platform has permitted a connection.'] ['The Windows 
Filtering Platform has permitted a bind to a local port.']]

Fig. 4. The first generated story by our proposed algorithm in Scenario 3

[['A scheduled task was updated.'] ['An object was deleted.'] ['The state of a transaction has changed.']
['An operation was attempted on a privileged object.'] ['An account was successfully logged on.']]

Fig. 5. The first generated story by “StoryPlan” for Scenario 3 [10]
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7 Conclusion

In this paper, Explain AI by automatically extracting the nutshell of cybersecurity
events has been proposed. The output of the model reduces a huge amount of log
records down to the more understandable sub-sets with chains of sequence and time
period of occurrence. The events are translated into their own descriptions. The pro-
posed model has been validated in terms of the effort that is required to convert the log
files into the action plans. The proposed model has accomplished the 3 main
improvements, i.e. (1) Automatically create chains of subsequent events without pre-
defined status, (2) generate more accurate and easily traceable story through the time,
and (3) discover the important short and long life span events.
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Abstract. Feature filtering aims to find useful and relevant features for
improvement of machine learning performance, reduction of computation
complexity, and disclosure of internal information interaction. We employ some
popular filtering criteria as meta-dimensions for the construction of feature
space, where a word or a document can be represented with significantly
reduced dimensionality. The experiment results show that the meta-feature data
representation we proposed requires no extra resources on pre-training to derive
word embeddings, and outperforms other traditional frequency-based or
learning-based embeddings in the task of sentiment analysis.

Keywords: Feature selection � Text classification � Sentiment analysis

1 Introduction

Feature selection often employs filters, wrappers, and embedded strategies alike to
harvest relevant and useful information in data mining. Different from the wrappers and
embedded methods where the selection process is directly involved in training clas-
sifiers, feature filtering is independent of the classifiers and works in a more fast and
effective way of attribute selection. For example in text categorization, feature filtering
first converts term distribution in a document collection through metrics like Pointwise
Mutual Information (PMI) and Log-likelihood Ratio, among the others into meaningful
information units. After ranking these transformed units, the insignificant features can
be removed to mitigate the curse of dimensionality. The statistical model induced after
feature selection may be more robust and generalize better while interpreting new data.

Motivated by the previous work [1, 2] on using feature filtering to retrieve salient
features from data samples, we investigate its effectiveness and efficiency on recon-
structing a novel distributional representation for text classification. On assumption that
these filtering criteria can be viewed as meta-dimensions or meta-features, we study
how to transform the document-by-word representation commonly used in text cate-
gorization into a document-by-criterion one, where the new dimensions only consist of
some of typical filtering metrics such as Information Gain (IG), Mutual Information
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(MI), and Odds Ratio (OR). This new data representation can significantly reduce the
high dimensionality inherited in the document-by-word representation more intuitively.
The experiment results also show that the meta-feature representation consistently
outperforms the popular frequency-based and the learning-based word embeddings [3]
in sentiment classification.

2 Related Work

Feature filtering metrics have been well studied in text categorization and other lan-
guage engineering tasks such as identifying collocation [4] and collostruction [5], as
well as in the non-NLP literature [6]. Their performance on a specific group of
homogenous tasks is usually varied and inconsistent depending on unique datasets and
methodology employed. For example, Yang and Pedersen [7] revealed that IG and Chi-
square test (CHI) worked well above others on k-nearest neighbor (KNN) and a
regression-based classifier, whereas Mladenić and Grobelnik [1] concluded that among
11 feature filtering criteria only OR and its variants achieved best results on Naïve
Bayes in an unbalanced dataset. Moreover, Forman [2] found that Bi-normal separation
and IG frequently outperformed others, after systematically investigating the effec-
tiveness of 12 filtering criteria with 4 classifiers, including Naïve Bayes, Decision Tree,
logistic regression, and SVM on 3 benchmark datasets. These metrics demonstrate the
distinctive abilities of uncertainty reduction and discrimination power on feature space
construction.

In addition to these methods in attempting to find meaningful and authentic
information attributes underlying data, a neural language model (NLM) [3, 8–10] can
also render a dense and unified word representation, characterized with a lower
dimensionality in an unsupervised-learning way. Such learning/predication-based word
embeddings can cluster semantically similar words close in a latent feature space,
which works effectively in its nature as the matrix factorization of Singular Value
Decomposition (SVD) [11].

Among the recent development on NLMs [12] were combining word embeddings
with the predefined knowledge resources such as WordNet and Paraphrase databases
[13, 14], supplementing word embeddings with syntactic and sentiment information
[15], and learning with the deep neural networks (DNN) to induce sentence or docu-
ment embeddings [16, 17]. The learning-based word embedding is also the cornerstone
of the state-of-the-art methods in sentiment classification [18, 19] and other NLP tasks.
Another growing research trend is on customizing the unified NLM embeddings [3, 8–
10] on a discourse through employing the contextualized embeddings such as CoVe
[20], ELMo [21], ULMFiT [22] and BERT [23].

In contrast to the current approaches to developing a feature space, we in the paper
aim to use the feature filtering criteria to produce a meta-feature space, through which
we design a novel document-by-criterion representation specifically for text catego-
rization. To derive such a meta-feature embedding, we first apply feature filtering
criteria to calculate a word’s relatedness or usefulness in a text collection. We then
concatenate these relatedness values sequentially to form the word embedding, which
can be further accumulated to form a document embedding. It imposes a similar effect
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of SVD or NLM on lowering the dimensionality of a vector space model (VSM).
Finally, in comparison with the NLM-based and frequency-based embeddings on
sentiment classification, we apply some typical classifiers on 3 benchmark product
review datasets to systematically evaluate this meta-feature embedding hypothesis. Our
proposal on the construction of a meta-feature embedding is essentially different from
the previous work on reducing the dimensionality of a document-by-word VSM
through removing uncorrelated terms or deriving a condensed word embedding with
SVD or NLM.

3 Feature Filtering Criteria

We can generally classify the feature selection methods into two groups: one-sided and
two-sided in terms of their values’ scope [24]. The one-sided measures, such as OR and
Correlation Coefficient (CC), only calculate the impact of positive features on feature
selection, whereas the two-sided ones, such as IG and CHI, consider both positive and
negative ones during estimation of their impact on the class membership. Owing to the
unbalanced data distribution and specialty of each application, both groups have been
widely used for feature filtering in text categorization.

It is noteworthy that to even cover all of the popular feature filtering methods in this
investigation is unrealistic. Since multiple variants of these methods have been studied
in the literature, we decide to choose 6 well-known or typical ones from both one-sided
and two-sided feature selection groups in the paper: IG and PMI aiming for uncertainty
reduction; OR and Probability Ratio (PR) for discriminative power; CC for Pearson
correlation coefficient; along with CHI for hypothesis test.

Given a document d in its collection set D and its corresponding tag ti in the tag set
T for D ði 2 ð1; Tj jÞÞ, we apply these feature filtering criteria to measure the distinc-
tiveness of a word w in each d. We denote P(ti) as the probability of the documents
tagged with ti, and correspondingly Pð:tiÞ as the probability without ti, i.e.
Pð:tiÞ ¼ 1� PðtiÞ. P(w) is the ratio between the size of the documents containing
w and the size of total documents in D, so Pð:wÞ is equal to 1� PðwÞ. Table 1 lists the
contingence analysis between w and t, and the definitions of probability calculations
under different conditions. We calculate those criteria to specify how useful and rel-
evant is w in forecasting ti for d. We briefly introduce them in the following sections.

Table 1. A contingency analysis between w and ti

ti (O|E) :tiðOjEÞ R

w O11|E11 O12|E12 O11 + O12

:w O21|E21 O22|E22 O21 + O22

R O11 + O21 O12 + O22 N
P(w|ti) = O11/O11 + O21 P(ti|w) = O11/O11 + O12

Pðwj:tiÞ ¼ O12=O12 þO22 Pð:tijwÞ ¼ O12=O11 þO12

Pð:wjtiÞ ¼ O21=O11 þO12 Pðtij:wÞ ¼ O21=O21 þO22

Pð:wj:tiÞ ¼ O22=O12 þO22 Pð:tij:wÞ ¼ O22=O21 þO22
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3.1 Information Gain

IG, measuring the size of entropy under the condition of w in d or not, indicates the
predicting ability of w in classifying d. IG is biased toward features with great values,
which is:

IG wð Þ ¼ P wð Þ
X Tj j

i¼1
P tijwð ÞlogP tijwð ÞþP :wð Þ

X Tj j
i¼1

P tij:wð ÞlogP tij:wð Þ
�
X Tj j

i¼1
P tið ÞlogP tið Þ

3.2 Pointwise Mutual Information

PMI shows the nonlinear dependence between w in d and its ti, where PMI = 0 means
that w and ti are independent, otherwise dependent in a variety of degree if PMI > 0.
PMI is prone to picking up rare features in text categorization [7]. PMI expresses the
degree of reduced uncertainty for a model to induce ti if w is present in d, which is:

PMI w; tið Þ ¼ log P w; tið Þ=ðP wð ÞP tið ÞÞð Þ

3.3 Odds Ratio

OR measures the strength of association between w and ti with odds, indicating that
when w is present in d, d should be more frequently tagged with ti. As a relevance two-
sided indicator for ranking in feature selection, OR is:

OR w; tið Þ ¼ log
PðwjtiÞð1� Pðwj:tiÞÞ
Pðwj:tiÞð1� PðwjtiÞÞ

3.4 Probability Ratio

PR is the ratio of the respective rates of true positives and false positives. PR, as a
variant of OR, simplifies the calculation of OR. PR can intuitively indicate the pref-
erence level of w for the presence or absence of ti with d, which is:

PR w; tið Þ ¼ log P wjtið Þ=Pðwj:tiÞð Þ

3.5 Correlation Coefficient

As a criterion of variable association, CC describes the degree of linear correlation or
co-variance shared between w and ti, which is:
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CC w; tið Þ ¼ P w; tið ÞP :w;:tið Þ � P w;:tið ÞP :w; tið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P wð ÞP :wð ÞP tið ÞP :tið Þp

3.6 Chi-Square

CHI, requiring no normal distribution of variables, can be transformed from correlation
coefficient with X2 = nCC2. It can be regarded as a two-sided CC while taking into
account both positive and negative features in counting the class membership. The CHI
statistic indicates the significance of dependence between w and ti, which is:

X2 ¼ N O11O22 � O12O21ð Þ2
O11 þO12ð Þ O11 þO21ð Þ O12 þO21ð Þ O21 þO22ð Þ

4 Distributional Representation

In the process of producing a document-by-word VSM, feature selection criteria ini-
tially cross out redundant or irrelevant words to reduce the sparsity of the VSM. After
that, a condensed document embedding is developed and composed of co-occurrence
counts of w in d [1, 2, 7]. In contrast to using feature selection criteria to derive such a
reduced document-by-word feature space, we propose to use the criteria introduced in
Sect. 3 as the meta-dimensions/features in data representation, i.e. we reconstruct a
condensed document-by-criterion embedding for text categorization. In the following,
we first introduce the frequency-based and NLM-based word embeddings and then
illustrate how to build the meta-feature representation.

4.1 Frequency-Based Representation

Let |voc| be the size of the vocabulary of D. |d| is the size of total words in d. A typical
document vector Vd can be represented by its co-occurrence words w with the
dimensionality of |voc|, and Vd has a corresponding label ti for d. For such a document-
by-word model, each dimension of Vd can be valued either with binary or term fre-
quency. Furthermore, according to the Zipfian distribution [25] of word usage, a
straightforward way of producing a compressed feature space for d is to apply inverse
document frequency (IDF) [26] and the feature filtering criteria [4] on w, or to generate
a reduced latent semantic space with SVD [27].

4.2 Learning NLM-Based Representation

After training recurrent NLMs [3, 8–10], each word w is represented with a
k-dimensional dense vector Vw, where k’s size is varied, say, from 50 to 300, depending
on the downstream applications. A sentence or document embedding can be harvested
with some simple tensor operations on these words’ vectors or with the gramma
dependencies among them after parsing the sentence [28]. We can also supply DNN
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such as convolutional neural networks (CNN) and recurrent neural networks
(RNN) with word embeddings to extract more contextual information from a document
d [16, 17]. Therefore, instead of a vector Vd, a matrix with a |d| by k dimensionalities
can also act as an input of a document’s representation into DNN.

4.3 Our Document-by-Criterion Representation

The basic process of developing the novel document-by-criterion feature space is
illustrated in Fig. 1. For w and ti across each document in D we first calculate the
values of the 6 feature filtering criteria in Sect. 3, as following:

• IG: {IG(w)}
• PMI: {PMI(w,t1)…PMI(w,ti)…PMI(w,t|T|)}
• OR: {OR(w,t1)…OR(w,ti)…OR(w,t|T|)}
• PR: {PR(w,t1)…PR(w,ti)…PR(w,t|T|)}
• CC: {CC(w,t1)… CC(w,ti)… CC(w,t|T|)}
• CHI: {X2(w,t1)… X2 (w,ti)… X2 (w,t|T|)}

Note that we do not calculate the average or maximum of PMI, OR, PR, CC, or
CHI; instead we save all the values for each scoring metric and concatenate these
values to assemble Vw, i.e. the distributional structure of Vw is composed of IG, MI,
OR, PR, CC, and CHI with the dimensionality of 5 * |T| + 1 (|T| denotes the size of
label ti). Given the diversity of word usage in context, we aim to keep all relevant
information between w and ti.

A word w in a document 
d D labelled with 

{t1...ti...t|T|}

Vector of Vw {IG 
PMI OR PR CC 

CHI}, where |Vw| 
≤ 5*|T|+1

Vd: ∑Vw or a 
matrix of [Vw]

Computing filtering 
criteria {IG, PMI, 
OR, PR, CC, CHI} 

Conducting 
Co-linearity 

analysis

Semantic 
composition 

of Vd

Fig. 1. The workflow for constructing the document-by-criterion representation.

336 D. Yang et al.



To filter out these highly correlated attributes, we supplement a simple co-linearity
analysis only using Spearman rank correlation on Vw. Consequently, the dimensionality
of the final Vw is much less than 5 * |T| + 1, depending on word distribution across ti in
D. Note that as for the co-linearity analysis, we did not run any complex heuristic
search or the wrapper methods to find the optimal subset of features on Vd for each
classifier to avoid the possibility of overfitting. A document’s Vd can then be derived
with semantic composition through the addition or concatenation of word embeddings
(Vw). In line with the NLM-based embeddings, such meta-feature embedding might
leverage the reduced dimensionality in text categorization.

5 Sentiment Classification

5.1 Dataset Preparation

We selected 3 benchmark datasets as the test bed for sentiment classification, i.e. IMDB
[29] and Yelp2013/14 Dataset Challenges [30]. We kept the same split of training and
test data on these datasets in comparison with other models. IMDB has an even
distribution of positive and negative reviews (i.e. 25k items for each label), but Yelp
2013 and 14 show severely unbalanced distributions on their 5 labels, with about 12%
proportion for the negative and high-negative reviews and over 67% proportion for the
positive and high-positive ones.

5.2 Feature Construction

We first preprocessed the datasets with the standard procedure of normalization and
stemming, then extracted words above a predefined frequency threshold. We respec-
tively set up the thresholds with 15, 35, and 55 for IMDB, Yelp 2013, and Yelp 2014,
according to the size of the datasets. The extracted words, also contained in the sen-
timent lexicon of MPQA [31], were chosen as candidates for computing filter criteria.
Since MPQA was the exclusive lexicon employed in the experiment, it should be fair to
compare these data representations in Sect. 4, and we can avoid detrimental effect on
using different lexicons on the datasets.

Among the distributional representations introduced in Sect. 4, the frequency-based
representation only recorded the co-occurrence frequency. We retrained the word2vec
model [32] respectively using the 3 datasets and found that its optimal dimensionality is
40. We also included the original word2vec vectors, pre-trained with CBOW (di-
mensionality of 300) on 100 billion words from Google News.

In constructing the document-by-criterion representation, we followed the work-
flow framework proposed in Sect. 4.3. After conducting co-linearity analysis in the
document-by-criterion feature space, we found that IG was one of 5 optimal meta-
features for IMDB, together with OR, PMI, PR, and CC that derived on the positive
reviews. The optimal meta-feature set consisted of IG, OR, CHI, and CC for Yelp
2013, where OR and CHI were derived on the high-positives and the neutrals; PMI on
the negatives; and CC on the high-negatives and the high-positives respectively. The
optimal meta-feature set for Yelp 2014 was slightly different from it for Yelp 2013 with
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CC derived on the positives rather than on the high negatives. Consequently, only 10
dimensions were used in the document-by-criterion space for Yelp 2013/14.

5.3 Sentiment Classification

We employed some typical classifiers, including SVM, Naïve Bayes, and Decision
Tree in the experiment. Since we aimed to compare different data representations in
Sect. 4, we did not fine-tune these classifiers during each separate training and applied
the identical configuration for each classifier on these representations. SVM was
configured with a linear kernel; Decision Tree was configured with pruning and the
maximum depth of 5.

Apart from these classifiers, we also designed a simplified DNN with 2-layer CNN
(each configured with 32 filters, the kernel size of 3, and the relu activation), stacked
with one max-pooling layer and one flatten layer; one dense layer (with 30 units and the
relu activation); one output layer (with the softmax activation). We did not run grid
search to optimize these hyperparameters. As with deep learning, many transfer
learning models such as BERT [23] and OpenAI Transformer [33] can be applied to get
better results, but using such complicated networks to improve performance was not
our purpose in the paper, so we leave that as further work.

6 Results and Discussion

6.1 Sentiment Classification with the Meta-Feature Embedding

As shown in Table 2, the classification results with SVM, Naïve Bayes, and Decision
Tree indicated that the meta-feature data representation consistently outperformed other
embeddings in Sect. 4 across IMDB and Yelp 2013/14. The reason behind may be that

Table 2. The final test results of different data representations on IMDB and Yelp 2013/14. All
accuracy values were reported on the test dataset.

Counts NLM: word2vec
(Google)

NLM: word2vec
(self-trained)

Meta-
feature

SVM IMDB 0.742 0.83 0.668 0.84
Yelp2013 0.474 0.493 0.411 0.498
Yelp2014 0.445 0.472 0.391 0.475

Naïve
Bayes

IMDB 0.815 0.703 0.59 0.831
Yelp2013 0.424 0.387 0.357 0.425
Yelp2014 0.401 0.369 0.342 0.418

Decision
tree

IMDB 0.639 0.679 0.596 0.839
Yelp2013 0.332 0.358 0.321 0.480
Yelp2014 0.323 0.337 0.309 0.457

CNN IMDB 0.792 0.853 0.876 0.855
Yelp2013 0.621 0.678 0.673 0.671
Yelp2014 0.608 0.672 0.664 0.67
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the meta-features works not only as meaningful dimensions in data representation but
also as the sub-models of classifiers for ensemble learning. Given the discrimination
power or uncertainty deduction abilities of these feature selection metrics in Sect. 3,
each classifier in Table 2 functioned similarly as a stacking ensemble, which could first
harvest the pre-selection results of the 6 filters and then generalize better classification
outcomes.

As for the simplified DNN we proposed (denoted as CNN in Table 2), the meat-
feature representation performed competitively on IMDB with an accuracy of 0.855,
although the best results were achieved by the two learning NLM-based (i.e. word2-
vec). The CNN’s performance on Yelp 2013/14 suggested that no significant disparity
existed between our proposed method and the two NLM-based embeddings. The
results also showed that in terms of ensemble generalization, CNN on the meta-feature
embedding did not consistently achieve the equivalent degree of improvements made
by the 3 classifiers in Table 2, partly because possible overfitting may exist while using
the deep learning on our proposal.

In contrast to the embeddings produced with the learning NLM-based methods, our
proposal did not require a significant amount of time on pre-training to achieve
competent and stable results. The feature filtering criteria were also relatively easier to
calculate than the complex NLM methods. It tends to facilitate disclosing and inter-
preting internal relationships between a meat-feature and an induced model.

6.2 Related Work on Sentiment Classification

In Table 3 we included the results of state-of-the-art models on the same datasets we
used in the experiment for comparison. In contrast to our simple feature filtering
method, these models heavily relied on pretraining for sentence or document embed-
ding [34–36], transfer learning [20, 22, 23], designing sophisticated neural architec-
tures with hierarchical attention [38, 39] and adversarial networks [36], and employing
DNN-based classifiers [20] in sentiment classification. On the binary classification task
of IMDB they (well above an accuracy of 0.91) outperformed our models (an accuracy
of 0.855 at best) on the meta-feature representation with significant gains, but their
performance was not consistently superior to us on the multiclass classification task of
Yelp 2013/2014. We achieved around 0.67 accuracy on Yelp, surpassing paragraph
embedding [30, 34], along with CNN or LSTM gated RNN [30], although our model
was marginally inferior to two hierarchical attention-based DNN [38, 39]. The results
partly implied that the fine-grained sentiment classification is a more challenging task
than the coarse-grained even with the adoption of sophisticated DNN in this language
understanding task.

On the other side, the robustness of such a “black box” model, derived from the
intensively trained DNN, can be problematic. As pointed out by Meliset al. [40] in their
evaluation of various recurrent neural language models, the empirical gains of
employing sophisticated neural architectures such as recurrent highway networks [41]
and reinforcement learning [42] often source from fine-tuning hyperparameters such as
dropout and weight decay, whereas the well-regularized vanilla-LSTM can outperform
them at no extra cost of deploying the sophisticated architectures. Such issues of
designing unnecessarily complicated neural networks were also observed by Lipton
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and Steinhardt [43]. While dealing with billions of parameters commonly generated in
DNN, we should be cautious before extending it into different applications; instead the
concise subnetworks or “winning tickets” [44] need to be identified and extracted from
the initial DNN to improve its generalization and prediction abilities.

7 Limitations and Future Work

In the paper, the feature filtering criteria were used as meta-features/dimensions on the
reconstruction of a document-by-criterion VSM. Although this meta-feature space only
consisted of 5 dimensions for IMDB and 10 dimensions for Yelp, it outperformed the
frequency-based or learning NLM-based embeddings in sentiment classification. The
noticeable benefit of our proposal was that the dimensionality of VSM can be signif-
icantly reduced at no cost of increased complexity on enormous embedding pre-
training and sophisticated neural-structure fine-tuning.

Table 3. Performance of the state-of-the-art methods on IMDB and Yelp 2013/14. The accuracy
figures were extracted from their published papers separately. The second column indicates how
a document embedding was generated as an input layer to a classifier.

Document embedding IMDB

Distributed Memory Model
of Paragraph Vectors [34]

Unsupervised training on Feedforward NN for
paragraph embedding

0.926

Oh-2LSTMp [35] One-hot + 3-layer CNN + 2-layer bi-LSTM 0.941
Virtual Adversarial
Training [36]

word2vec + LSTM (unsupervised pretraining) 0.941

CoVe [20] Transfer learning: Glove + 2-layer bi-LSTM
(attention); Classification: Feedforward
NN + bi-LSTM (attention) + 3-layer Maxout
NN

0.918

UDA [37] Transformer model in BERT [23] (large fine-
tune) + Unsupervised Data Augmentation

0.958

ULMFiT [22] Transfer learning: 3-layer bi-LSTM 0.954
Yelp
2013/14

Paragraph Vector [30, 34] paragraph embedding 0.577/0.592
Convolutional gated RNN
[30]

word2vec(self-trained) + CNN + Gated-RNN 0.637/0.655

LSTM gated RNN [30] word2vec(self-trained) + LSTM + Gated-
RNN

0.651/0.671

100D structured attention
[38]

word2vec(self-trained) + 2-layer bi-LSTM
with structured attention (on both sentence and
document levels)

0.686/na

Hierarchical attention
Networks (HAN) [39]

word2vec(self-trained) + 2-layer bi-GRU with
hierarchical attention (on both word and
sentence levels)

0.682/0.705
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Since our purpose was to test the effectiveness of the meta-feature embedding, fine-
tuning a DNN model for its better performance on classification is beyond the scope of
this paper, and we leave it for future work. We have not conducted the ablation studies
on these feature filtering criteria in this experiment as only a limited number of
dimensions were reserved after collinearity analysis. Given the growth and richness of
feature selection methods, we will further investigate and differentiate their effective-
ness on disclosing internal data attributes for embeddings. Moreover, the robustness of
the meta-feature embedding needs to be examined for other heterogeneous tasks on text
categorization in the future.
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Abstract. Hate speech can be defined as a language used to demean
people within a specific group. Hate speech often contains explicitly pro-
fane words, however, the presence of these words does not always mean
that the text instance is hateful. In some cases, text instances with pro-
fane words are just offensive language and they do not target any specific
group, and so cannot be classified as hate speech. In this work, we build
on existing studies to find a better demarcation between hate speech
and offensive language. Our main contribution is to introduce the use of
typed dependency as new features in our feature set. This new feature
enables us to consider the relationship between long distance words in a
text instance, thereby provides more identifying information than single
word-based features. We evaluate our approach using a dataset with the
classes: hate, offensive and neither. Comparing our work with existing
studies, our feature set is much smaller but we achieve better accuracy
and show comparable results in further analysis. Our detailed analysis
also showed instances missed by the lexical features that were correctly
predicted by the proposed feature set.

Keywords: Hate speech detection · Offensive language · Text
classification · Feature extraction

1 Introduction

The task of detecting hate speech instances on social media platforms has become
an important and interesting area of research recently. Some of the reasons are
the current fragile political environment in several countries and the increasing
discussions surrounding religion, immigration, gender identity, sexual orientation
among others. A large proportion of these discussions happen online in posts
and posts’ comment sections on social media and the sensitive nature of these
discussions means that some of these posts and comments can contain utterances
that are harmful to the lives and properties of the people involved.

Recently, the International Workshop on Semantic Evaluation held a com-
petition, SemEval-20191, consisting of several tasks in five different categories.
1 http://alt.qcri.org/semeval2019/.
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One of the categories was Opinion, Emotion and Abusive language detection
and it contained 4 different tasks, one of which was OffensEval: Identifying and
Categorizing Offensive Language in Social Media2 with multiple publications
from the participants highlighting the various ways they attempted to solve the
problem.

Existing studies in this area mostly focus on detecting and distinguishing
between hate speech and non-hate speech [8,19] or between the various sub-types
of hate speech [1,3,25]. However, an equally important and often overlooked
aspect is the difference between a hateful utterance and an offensive or profane
one. Most of the existing studies categorize all hateful and profane language into
the same category. But, according to the several definitions of hate speech used
by legal institutions and organizations like Twitter3 and Facebook4—although a
universally accepted definition of hate speech does not exist—the use of profane
language does not qualify to be categorized as hate speech.

Fortuna et al. [6] defines hate speech as ‘language that attacks or diminishes,
that incites violence or hate against groups, based on specific characteristics
such as physical appearance, religion, descent, national or ethnic origin, sexual
orientation, gender identity or other, and it can occur with different linguistic
styles, even in subtle forms or when humour is used’. An example is ‘i’ll do
that if you agree to take your ethiopian starvin looking n*gger5 as* back to
africa’. Offensive language was defined by [7] as ‘text which uses abusive slurs
or derogatory terms’. An example is ‘these h*es be f*cking all of us n*ggas.
i got news for all the monogamous n*ggas, yo bitch f*ck anonymous niggas’.
Offensive language does not meet the criteria outlined in the various definitions
of hate speech, in the sense that they do not attack an individual or a group
based on protected/specific categories such as ethnicity, race, gender and sexual
orientation [6,19,24].

Offensive language has more overlap with hate speech, especially explicit
hate speech, thus the false negative rate (with the hate class as the positive
class) of existing methods is very high [5,15]. The difficulty of this task has been
highlighted in a couple of other studies [7,16,27]. It is difficult to distinguish
between offensive language and hate speech because they contain a lot of similar
characteristics and the differentiating characteristics are not easy to spot.

In this study, we focus on investigating and improving the distinction between
hateful and offensive utterances. Most of the proposed solutions for hate speech
detection use profane or pejorative words to detect hate speech, however, a large
number of tweets that contain these words are not directed towards an individual
or a group of individuals defined by a protected category. In reality, these profane
words are used by individuals to be plainly offensive or just show emphasis. There
is a thin, blurred line between hateful speech and offensive language. For this

2 https://competitions.codalab.org/competitions/20011.
3 https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy.
4 https://www.facebook.com/communitystandards/hate speech.
5 The authors have added ‘*’ for public viewing. These were not part of the original

tweet.

https://competitions.codalab.org/competitions/20011
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://www.facebook.com/communitystandards/hate_speech


346 K. J. Madukwe and X. Gao

work, the problem is modelled as a multi-class classification problem supported
by a three-class dataset (hate, offensive, neither). We aim to investigate and
propose a new feature that can distinguish between the two classes of interest;
the Hate class and the Offensive class. We suggest methods that could solve the
problems highlighted after an error analysis.

The rest of the paper is structured as follows. In Sect. 2, we discuss exist-
ing related studies. Section 3 describes the dataset, presents our methodology
and experiments conducted. In Sect. 4, we report and analyse our experimental
results. Section 5 concludes the work with suggestions of our proposed next steps
to improve on this work and an attempt to answer pending questions from our
analysis.

2 Related Work

The task of automatically detecting hate speech has been modelled as a super-
vised binary classification problem by the majority of the existing studies in lit-
erature with the aim of distinguishing between hate speech and non-hate speech.
This task is non-trivial however, as has been shown in recent studies [3]; in fact,
hate speech is not binary. It contains several subtypes that could overlap or
have different identifying features like racism, sexism, religion, disability, gender
amongst others. However, all these subtypes can still be classified as hate speech.
An often overlooked class that is often lumped together with the hate speech
class is the offensive language class. Most existing and public datasets do not
distinguish between these two classes (hate class and offensive class).

However, the ternary classification task of accurately differentiating between
Hate, Offensive and Neither class has been attempted by a number of researchers.
Davidson et al. [5] brought forward the argument that offensive language is not
hate speech. For features, they used Tf-Idf weighted token unigrams, bigrams and
trigrams, Tf-Idf weighted Parts of Speech (PoS) tags, readability scores derived
from Flesch-Kincaid Grade Level and Flesch Reading Ease scores, a sentiment
lexicon, hashtags, mentions, retweets, URLs, and number of characters, word
and syllables per tweet. They highlighted the difficulty in differentiating between
the hate and offensive class by analysing the predictions from their model. The
authors highlight the importance of taking context into consideration because
tweets without explicit keywords were difficult to classify. We propose to do
this with the use of syntactic features that emphasize grammatical dependencies
between words in a sentence/tweet.

Malmasi et al. [15], using data made available by Davidson, attempted to
distinguish between hate speech and offensive language, using various levels of
surface n-grams (word and character) and word skip grams as features for a
linear Support Vector Machines (SVM) classifier. Word skip grams are similar
to regular word bigrams but skip grams, depending on the selected window size
omitting the words that fit into the window immediately after the head word
and selecting the word occurring after the window. For example, in this sentence:
‘This is an example sentence’, a 1-skip gram would generate these features: ‘this
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an’, ‘is example’, ‘an sentence’ while a bigram would generate these features:
‘This is’, ‘is an’, ‘an example’, ‘example sentence’. Word skip grams increase the
distance between words thus making them similar to syntactic dependencies [14]
and also performs a form of dimensionality reduction to the feature set. The
authors report that their features were not effective in correctly distinguishing
between hate and offensive language.

The study by Malmasi et al. [15] was extended in [16], where the same authors
employed the use of single and ensemble classifiers to discriminate between pro-
fanity and hate speech while applying character and word n-grams, skip-grams
and Brown clusters. Their results show that 4-character n-grams used for train-
ing a single classifier outperformed all other features and also outperformed
the ensemble classifiers generated from multiple fusion methods. Furthermore,
they conducted a meta-classification experiment using a linear SVM and a non-
linear(rbf) SVM. These classifiers outperformed their previous baselines (single
and ensemble classifiers) with the rbf-SVM meta-classifier emerging as the best.
However, from their results, it can be seen that the hate class is still grossly
misclassified as offensive. A closer analysis of their features showed that obscene
words were informative for both the hate and offensive class. They also noted that
the different spellings of some words resulted in features for different classes. For
example, ‘nigger(s)’ was a distinguishing feature for hate speech while ‘nigga(s)’
was one for offensive language. This pattern was initially mentioned by [22],
where they highlighted that the second spelling variant was used by a particular
ethnic group in daily conversations and music to signify brotherhood and friend-
ship. We might argue that it has been wrongly annotated as offensive because
in real life situations, the users do not think it is offensive.

In [7], they report better results for this ternary classification task using an
l2 normalized Term frequency-Inverse document frequency (Tf-Idf) weighted n-
grams which could be accredited to the fact that they augmented the Davidson
dataset thus making the hate class more balanced. Tf-Idf are weights assigned
to a word based on the product of its frequency in a document and the inverse
of its occurrence across documents or corpus to show the words’ importance in
that document. A similar data augmentation process was carried out in [27].

We compare our work to [5,15,16] because they used the same dataset, similar
classifiers and they have the best results compared to other studies with the same
broad aim as ours. These are the major existing studies our work builds on. Our
work differs from these in that we used typed dependency as a better syntactic
feature over PoS tags. Typed dependencies provide a grammatical relationship
between two words in a sentence where one word is syntactically dependent on
the other. It produces dependency tags similar to PoS tags, but unlike PoS tags,
typed dependencies depict a relationship between dependent words in a sentence.
In addition, typed dependencies are more efficient than regular n-grams because
they can capture long-distance relationships between words in a sentence.

Typed dependency has been used in literature to represent context in tasks
like sentiment classification and document polarity [9,10,23]. It was introduced
for hate speech detection and classification in [2,3] and was used in [1] for extract-
ing ‘othering’ language (language that indicates the divide between an ‘us’ group
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and a ‘them’ group) for cyber-hate classification. The authors in [11–13] used
typed dependency as feature, often as an input feature for learning embeddings
as opposed to learning embeddings from linear and flat bag of words features.
In the area of cyber hate detection, [19] used typed dependency in conjunction
with embedding learning to differentiate between hateful and non-hateful text.
These studies have shown that embeddings learned using dependency-based con-
text outperforms those learned on regular sequentially ordered text. Deep neural
network architectures have also been applied for capturing the order of words in
a text as a feature [28].

To the best of our knowledge, this is the first work using typed dependency
in conjunction with word and character n-grams for distinguishing between pro-
fane language and hate speech. Our hypothesis is that including this dependency
feature will improve the classification performance when distinguishing between
hate speech and offensive language by capturing dependent words in a sentence
separated by a long distance. We investigate two different methods of incorpo-
rating the typed dependencies features into our feature set. Also, we use less
features compared with existing works but with more potential of distinguishing
between our classes of interest.

3 Proposed Methods and Experiment

3.1 Feature Extraction Methods

Here we describe the features used in our classification task and how we extracted
them from the tweets in the dataset.

Word and Character N-Grams: As part of our feature set, we use word
and character n-grams. Word n-grams are useful in capturing keywords that
belong to each of the classes. A word n-gram is a commonly used feature in
text classification and has been shown to help improve classification accuracy.
The size of the word n-gram varies from 1 to n, however the ideal size depends
on the task at hand. Increasing the value of n over a certain threshold might
unnecessarily increase the complexity of the feature set. One value of n or a
combination of different values can be used to extract features. In this work, we
used a combination ranging from 1 to 3 as used in [5]. Since our data is made
up of tweets from Twitter which are prone to spelling errors, intentional or
unintentional, we used character n-grams to overcome that problem. To reduce
noise, we extracted our character n-grams within word boundaries using an n
value ranging from 2 to 5. Our n values were based on reports from existing
studies. Character n-grams have been shown to improve classification accuracy
especially when used with other features. Also the matrix produced by character
n-gram is less sparse and thus contains more important data points than that
produced by word n-gram [18,26] After extracting the word and character n-
grams, we derived their Tf-Idf weights and used that in conjunction with other
features as input to our classification algorithm.
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Typed Dependency: In order to incorporate syntactic features into our
dataset for the purpose of retaining hidden contextual information present in
each text instance or tweet, we use typed dependencies. Typed dependency is
one way to represent the syntactic structure of a sentence [17]. We employed the
use of the SpaCy6 library (English module) to extract dependency labels from
our dataset. The output of the dependency parser gives the syntactic head word
(governor), the word that syntactically depends on the head word (dependent)
and the dependency tag that joins the governor to the dependent. Figure 1 shows
a dependency parse tree for a sentence culled from the dataset ‘The Irish in Cal-
ifornia are all white trash’. It generates 7 dependency tags, some of which are
nsubj(are, Irish), attr(are, Trash). The meaning and function of each tag can be
found on the SpaCy7 website.

Fig. 1. Dependency parse tree

We experimented with two methods for incorporating the typed dependency
feature to the input of the classifiers. First, we use the term frequency weighted
dependency tags. We extracted 46 different dependency tags from our corpus
which were used to build our feature set. This was concatenated with the word
and character n-gram features to form our first syntactic feature set. Next,
we used the governor-dependent word pairs. For each tweet in the corpus, we
extracted the governor and the dependent words and concatenated each respec-
tive governor to its dependent, thereby creating bigram-like pairs. To transform
this into a useable feature vector, we calculated the term frequency weight of
each word pair, regarding each tweet as a document. The document-term matrix
formed was used as an input into the classifier. The results of these experiments
are reported in Sect. 4.

3.2 Experiment Design

We aim to improve the detection of hate speech and distinction between hate
speech and offensive language by decreasing the false negatives. We employed
the traditional pipeline of data gathering and preprocessing and in this section
we describe the dataset and the steps taken to preprocesss the data.

6 https://spacy.io/.
7 https://spacy.io/api/annotation#dependency-parsing.

https://spacy.io/
https://spacy.io/api/annotation#dependency-parsing
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Dataset: The dataset8 used in this work was made publicly available by David-
son et al. [5] in 2017. They report collecting this data from Twitter using a lexicon
from HateBase9 containing hateful words and phrases. They used a crowdsourc-
ing platform (Figure-Eight10 formerly CrowdFlower) for annotating the tweets
into 3 classes (Hatespeech, Offensive and Neither). The annotators were pro-
vided with the authors’ definitions and specific instructions. They record an
inter-rater agreement of 92% as provided by the crowdsourcing platform. The
dataset contains 24,802 tweets in English (5.77% labelled as Hatespeech, 77.43%
as Offensive and 16.80% as Neither).

Data Preprocessing: We preprocess our data slightly differently from exist-
ing works in this research area as a result of the fact that we intend to use
typed dependency as a feature extraction method. Therefore, we do not remove
the traditional stopwords as it might affect the true grammatical dependen-
cies of the remaining words in the tweet. We construct our own stop word list
consisting of items like ‘amp’, ‘etc’, ‘rt’, ‘ff’ amongst others. Using regex, we
removed all usernames and mentions including those with an underscore ( ) at
the beginning, end or middle. We also removed URLs and punctuation marks.
Some existing work have used punctuation as a feature because it indicates emo-
tion and enthusiasm–more specifically using exclamation marks, question marks
and full stops [27]. Nevertheless, we do remove punctuations because the depen-
dency parser views punctuation as a token and this increases the dependencies
extracted thus inflating the dimensionality of our resulting feature vector. All
letters are reduced to their lowercase versions prior to any of the aforementioned
preprocessing. Then, using NLTK’s WordNetLemmatizer11, we lemmatized each
token in the corpus to return them to their lemmas. We chose this over stem-
ming as stemming produces crude results that might have an adverse effect on
our extracted features.

Classification Algorithm Design: In order to compare our work to existing
studies [5,15] which are SVM based, we use a linear Support Vector Machine
(SVM) as a classification algorithm. We used SVM instead of the deep learn-
ing algorithms that have been used recently in most tasks because we want to
compare our feature sets with existing feature sets using the same classifier. We
implemented a stratified 5-fold grid search to discover the best parameters for
our problem set, which resulted in C = 0.1, penalty = l2 and max iter = 1000. We
use the One-Vs-Rest approach for our multi-class classification problem and 25%
of the dataset to evaluate the performance of our model.

8 https://github.com/t-davidson/hate-speech-and-offensive-language.
9 https://hatebase.org/.

10 https://www.figure-eight.com/.
11 https://www.nltk.org/ modules/nltk/stem/wordnet.html.

https://github.com/t-davidson/hate-speech-and-offensive-language
https://hatebase.org/
https://www.figure-eight.com/
https://www.nltk.org/_modules/nltk/stem/wordnet.html
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4 Results and Analysis

It was noted in [28] that the majority of the existing studies in the area of hate
speech detection use the basic classification metrics of Accuracy, Precision (P),
Recall (R) and F1-score. They make use of the micro-average scores which could
be problematic in hate speech detection and its notoriously unbalanced datasets
with the hate class being both the positive class and the minority class. Thus
micro-average scores calculated using the total True Positive (TP), False Positive
(FP) and False Negative (FN) of all the classes to calculate the P, R and F1-
score, is not representative of the actual performance. While [28] suggests the
use of macro scores, [25] suggests the use of a weighted F1-score as a metric in
order to take into consideration any misclassification of minority classes. The
weighted average method is also very similar to the micro-average, hence the
misclassification of the minority class will not be noticeable. Since we only have
the micro-average results for existing studies reported in their papers, we initially
use micro average to compare our results to those studies. But, as pointed out
above that these measures are not suitable for unbalanced data, so we also
report our macro average scores for all the classes. As a further analysis, we also
compared our approach with existing studies using the P, R and F1-score for
the hate class.

We experiment with several features and feature combinations but due to
a lack of space we report only three combinations. The results are summa-
rized in Table 1. Word+Char represents the lexical features with a combi-
nation of Word and Character n-grams. Word+Char+TagDepParse concate-
nates the dependency parse tags to the previous Word+Char combination.
Word+Char+WordPairDepParse concatenates the word pair dependency parses
to the Word+Char combination. Table 2 shows precision, recall and F1 score of
the hate class alone for our feature sets. The feature set extended with TagDep-
parse has a better precision than the one extended with WordPairDepParse,
however the recall was too low. Considering both Tables 1 and 2, we take the
WordPairDepParse feature as our best performing feature set.

Table 1. Classification results for different feature sets.

Features Accuracy Macro-P Macro-R Macro-F1

Word+Char 0.9 0.75 0.80 0.77

Word+Char+TagDepParse 0.91 0.81 0.67 0.69

Word+Char+WordPairDepParse 0.90 0.75 0.79 0.77

Initially, we trained and evaluated our model using the entire extracted fea-
ture set but our results showed very low recall for the hate class, and the precision
was more than twice the recall. The number of false negative was higher than
the true positive with most of the false negative being classified as offensive.
We then implemented an embedded feature selection using Logistic Regression
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Table 2. Classification results for the hate speech class for different feature sets.

Features Precision Recall F1

Word+Char 0.45 0.52 0.49

Word+Char+TagDepParse 0.64 0.18 0.28

Word+Char+WordPairDepParse 0.47 0.49 0.48

as an estimator with penalty set to l2. The cut off threshold value is set the
mean of all the feature importance c = scaled by 1.25. Thus we only keep and
use features with importance higher or equal to the threshold. This considerably
reduced the dimensionality of the feature sets, improved our recall for the hate
class and balanced out the recall:precision ratio. We report only the results after
feature selection.

Table 3 shows the comparison with existing studies in terms of micro-average
scores. We achieve comparable results to Davidson et al. [5] and better results
than Malmasi et al. [16], even though we use fewer feature types and only one
classifier.

Table 3. Comparison of our best performing results with the baselines

Accuracy Micro-precision Micro-recall Micro-F1

Davidson et al. [5] – 0.91 0.90 0.90

Malmasi et al. [15] 0.78 – – –

Malmasi et al. [16] 0.798 0.78 0.80 0.79

Ours 0.90 0.90 0.90 0.90

We did not include features that represented the readability of the document
as used in [5] because tweets are normally filled with spelling mistakes and
errors, thus it would not be a good identifying feature. It was corroborated by
[21] that these features including the use of mentions and hashtags were not
very distinctive. We also refrained from including sentiment features because
hate speech and offensive language both have negative sentiments therefore they
would not be discriminative.

Table 4 compares results from our hate class with the results of the baselines
for the hate class. This shows that with a reduced feature set and a simple linear
SVM classifiers, we were able to get comparable results and–in terms of some
metrics–better results than the existing studies.

Our further investigation shows that the performance of the syntactic depen-
dence feature set was affected by a couple of factors. One is that dependency
parsers are not resilient or robust to misspellings [4], therefore spelling variations
of a word will not be recognised as the same word. This increases complexity
by increasing the dimensionality of the extracted features thereby causing a
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Table 4. Comparison of our best performing results with the baselines’ hate class.

Precision Recall F1

Hate class [5] 0.44 0.61 0.51

Hate class [16] 0.59 0.36 0.45

Hate class (Ours) 0.47 0.49 0.48

decrease in performance. Also, a large percentage of the tweets in the dataset
contained replies, sometimes more than one. This, after preprocessing, would
be converted to one sentence. Hence, a non-hateful tweet with a hateful reply
will form one sentence. This can introduce some confusion to the classifier as
sentences annotated as offensive or hateful now contain a substantial amount of
neutral words with benign meaning.

We made some observations from the error analysis of the misclassified
instances. With respect to our feature set, we discovered that the inclusion of
typed dependency to the feature set assisted in identifying tweets that were mis-
classified when using the lexical features alone. For example, ‘This kid looks like
a retard when he tries hiding his phone... so obvious’ was correctly classified
as hateful. However, there are also tweets the extended feature set misclassi-
fied that are correctly classified by n-gram features. We discovered that many
cases where the word ‘f*gg*t’ was used were annotated as offensive but were
predicted by the classifier to be hateful thus increasing the number of false pos-
itives. We also identify problems with human annotation, where some instances
were wrongly annotated to be hate speech but were correctly classified as being
offensive. Example: ‘only fuck niggas would want to continue to mess with these
messy ass bitch vs somebody who have been down for them all ’ or ‘ray j is the
perfect example of what happen when you give lame nigga some pussy ’. It can be
seen that these examples contain easily offensive words and were predicted to be
offensive but have been labeled as hateful. This shows that a better annotation
job is needed to provide a dataset for supervised classification.

A lot of factors contribute to this seemingly impossible task of accurately
distinguishing between hate and offensive instances. The difficulty of this task
cannot be over-emphasized. Recently, the authors in [20] used deep neural net-
work for creating task-specific embeddings and also applied transfer learning to
solve this problem. They reported that their models performed worse than the
baseline on the Davidson dataset.

5 Conclusion and Future Work

It is of utmost importance to identify and draw the line between hate and pro-
fanity. Models built without this distinction, when deployed in real life, can
introduce debilitating bias whereby the use of profane words in a plain offen-
sive tweet might be flagged as hateful and the tweet removed. This would have
a negative impact amongst social media users. We use typed dependency in
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conjunction with word and character n-grams for distinguishing between pro-
fane language and hate speech. We aimed to reduce the number false negative
classification from what was reported in existing studies. To further improve
performance, we propose a bias free annotation task to enable the models to be
trained with better labels. Also, Twitter data is very noisy and would require a
more in-depth preprocessing to get rid of the unnecessary information. We also
suggest an investigation into using embeddings learned from the dependency
word-pairs.

Disclaimer. This work contains examples of hateful and offensive instances. All exam-

ples were obtained from the dataset and do not represent the principles of the authors.
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Abstract. An agent in pursuit of a task may work with a corpus of
documents with linked subjective content descriptions. Faced with a new
document, an agent has to decide whether to include that document in
its corpus or not. Basing the decision on only words, topics, or entities,
has shown to not lead to a balanced performance for varying documents.
Therefore, this paper presents an approach for an agent to decide if a
new document adds value to its existing corpus by combining texts and
content descriptions. Furthermore, an agent can use the approach as a
starting point for high quality content descriptions for new documents.
A case study shows the effectiveness of our approach given varying types
of new documents.

Keywords: Subjective content description · Text mining

1 Introduction

An agent that pursues a defined task or goal may work with a set of docu-
ments (corpus) as a form of reference library. A person assembling a range of
scientific articles as related work describes such a setting, with the person as
the agent, the compiling of related articles as the task, and the articles as the
library. From an agent-theoretic perspective, an agent is a rational, autonomous
unit acting in a world, perceived through sensors, fulfilling a task, e.g., an agent
providing document retrieval services given specific requests from users. For more
effective performance, the documents may be annotated with subjective content
descriptions (SCDs), which the agents expects to be relevant to its task. The task
provides a context in which SCDs add value for the agent. E.g., notes added to
specific sentences of an article may provide explanations or references. Thus,
SCDs add information relevant for the task or goal and that information has a
connection to specific words in the document.

But, what should an agent do if presented with a new document, which
typically has no SCDs? Without having thoroughly processed the new document,
the question for the agent is: Does that document have anything of value to add
in the given context? The problem is a decision making problem: Should the
agent extend its reference library with the new document or should it not?
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We aim at providing an approach to making a multi-dimensional decision
in the context of the task. We focus on the SCDs in the corpus, which are
specific to the task and have links to words in the documents. We model that
SCDs generate the words of a document. The links between an SCD and specific
words are modelled by a sequence of words in a window, with an SCD located
at the center of the window. Words closer to the SCD location are more likely
generated by the SCD than words farther away. The key idea for determining if
a document adds value to the corpus is to measure how much of a new document
without any SCDs can one generate with the existing SCDs in the corpus.

We build an SCD-word distribution for each SCD describing how likely an
SCD generates each word of the vocabulary of the corpus. The problem turns
into finding most probable SCDs (MPSCDs) for a new document given the SCD-
word distributions of the existing SCDs. Given MPSCDs of a new document and
their probabilities, an agent decides whether to extend the reference library with
that document or not. Solving the problem of finding MPSCDs exactly is infea-
sible as the vocabulary of a corpus is huge with a large number of annotations.
Therefore, we work with the similarity between vectors of SCD-word distribu-
tions and vector representations of estimated windows of the new document.
We use the cosine similarity because the vectors are sparse and cosine similarity
has a low complexity for sparse vectors. An agent identifies those SCDs that
have vector representations most similar to the window vectors, assuming that
those SCDs are the most probable ones based on the statistics of the corpus.
Using the similarities of the chosen SCDs, an agent then computes indicators
such as minimum, maximum, and average similarity. Based on that indicators,
it decides whether the new document is too similar or too dissimilar compared
to the documents in its corpus to contribute anything useful in the context of
its task. If the agent decides to extend its library with the new document, it can
even choose to retain SCDs with highest similarity, possibly adapting them, and
then use them as a basis for further enrichment, automatic [8,15] or manual.

Specifically, the contributions of this paper are: (i) solving the problem of
finding MPSCD for a new document by estimating them based on SCD-vector
comparisons, (ii) providing a decision making procedure based on MPSCD, and
(iii) a case study regarding decision making based on MPSCD given varying new
documents. Additionally, we look at two considerations: (i) For large corpora
containing documents from various topics, filtering a corpus based on topics
decreases the number of documents to consider. (ii) For adapting estimated
MPSCDs, an expectation-maximisation approach allows for optimizing window
size and positions, e.g., if interested in retaining SCDs for new documents.

The remainder of this paper starts with a look at related work. Then, we
specify notations for documents and SCDs. Next, we present our contributions,
followed by a case study. The paper ends with a conclusion and future work.

2 Related Work

Over the past 20 years, a considerable number of automatic (semantic) anno-
tation systems have been developed. The systems extract named entities
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from text of documents and add so-called semantic annotations from exter-
nally available common-sense knowledge bases, enriching the documents with
machine-processable data. Some well-known automatic annotation systems are
YEDDA [16], MINTE [4], OpenCalais [12], YAGO [14], KDTA [11], or GATE [5].
Some well-known sources of common-sense knowledge are DBpedia [9], NELL [3],
and KnowledgeVault [6]. Named entities represent the link between documents
and common-sense knowledge and link prediction is used to identify semantic
annotations for an entity. Generally, link prediction describes the task of estimat-
ing the likelihood of a link (relation) existing between nodes (entities), given the
links and attributes of nodes within a graph [7]. These annotation systems aim
at developing a knowledge graph augmented with data from external sources.
The systems efficiently solve their underlying problem. However, we investigate
a different problem, deciding if a new document provides value to an agent.

Surveying methods of text mining, one can base a decision on different
aspects, e.g., (i) similarity of text in the spirit of tf.idf [13], comparing a vec-
tor representation of a new document with vector representations of the doc-
uments in the corpus, (ii) similarity of topics in the spirit of latent Dirichlet
allocation (LDA) [2], comparing an estimated topic distribution of a new doc-
ument with topic distributions of the documents in the corpus, or (iii) entity
matching [10] using named-entity recognition (NER), comparing entities (and
relations) retrieved from the new document with entities (and relations) of the
SCDs in the corpus. All three approaches carry drawbacks: The first two, based
on bag-of-words, ignore SCDs and the order of words. Additionally, they make
it hard to model that a document has to add value, i.e., not be a rephrased
copy of an existing document or contain only unrelated data. The last approach
has the problem that NER tools might not output annotations in the context of
the task, which may lead to very few matches with SCDs of the corpus. Addi-
tionally, the decision in each case is a one-dimensional decision, based on one
feature of the documents. Therefore, we aim at providing an approach to make
a multi-dimensional decision that considers the context of the task.

3 Preliminaries

This section specifies notations of the technical framework for this paper and
gives a brief overview of LDA, which is used for filtering large corpora (see
Sect. 4.4) and is part of our case study in Sect. 5.

3.1 Notation

We define the following terms to formalize the setting of a corpus of documents,
each document associated with a repository of additional data, i.e., SCDs.

– A word w is a basic unit of discrete data from a vocabulary V =(w1, . . . , wV ).
Each w is represented as a unit-basis vector of length V that has a value of
1 where w = wv and 0’s otherwise.
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– A document d is a sequence of words (w1, . . . , wD) where each wd is from V.
The expression words(d) refers to the number of words in d.

– A corpus D is a set of N documents {d1, . . . , dN}.
– For each document d ∈ D exists a document-specific repository g containing

a set of SCDs {(tj , {ρi}l
i=1)}s

j=1. SCDs can take any form. As such, their
formats may be highly diverse. A standardized format would be the Resource
Description Framework (RDF) but, for our main contributions, the specific
format is irrelevant. Each t is associated with a set of positions {ρi}l

i=1 in d
where ρi refers to the ρi’th word in d. Given a document d or repository g, the
terms g(d) and d(g) refer to the linked repository and document, respectively.
The set of all SCDs of documents in D is given by g(D) =

⋃
d∈D g(d).

– An SCD window wind,t,ρ refers to the words in d that surround the posi-
tion ρ of t ∈ g(d), i.e., wind,t,ρ = (w(ρ−i), ..., wρ, ..., w(ρ+i)), i ∈ N if ρ marks
the middle of the window. The position of a word w ∈ wind,t,ρ is given
by pos(w,wind,t,ρ) (0-based numbering). The size of wind,t,ρ is given by
s(wind,t,ρ), i.e., s(wind,t,ρ) = 2i + 1 if ρ marks the middle of the window.

– Each word w ∈ wind,t,ρ is linked to an influence value I(w,wind,t,ρ). The
closer a word w is positioned to the position ρ of t, the higher is the influence
value I(w,wind,t,ρ). The influence value I(w,wind,t,ρ) of w is given by the
probability of the Binomial distribution at position pos(w,wind′,t,ρ), i.e.,

I(w,wind,t,ρ) =
(

n

k

)

· πk · (1 − π)n−k, (1)

where n = s(wind′,t,ρ) − 1, k = pos(w,wind′,t,ρ), and π = ρ
n , i.e., π = 0.5 if

t is at the center of wind,t,ρ and influence values to the left and right of ρ
should be symmetric. The binomial distribution yields a probability for each
word w ∈ wind,t,ρ that is higher the closer w is to the position of t.

3.2 Latent Dirichlet Allocation

LDA [2], a well-known statistical technique, assumes that documents in a corpus
D represent a mixture of topics where each topic is characterized by a distribution
of words from a vocabulary V of D. LDA generates a topic model from the
documents in D, learning latent structures of two forms, (i) a document-topic
distribution θ for each document d ∈ D, i.e., the degree to which the content
of d relates to each topic in a set of topics and (ii) a topic-word distribution φ
describing the probability of each word from V occurring in each topic. Both
the document-topic distribution and the word-topic distribution depend on the
documents in D.

Next, we present the main contributions of this paper, context-specific corpus
enrichment based on MPSCDs.

4 Context-Specific Corpus Enrichment

This section provides the theoretical foundations for MPSCDs and presents our
approach to estimating MPSCDs. Additionally, it looks into two considerations.
This section ends with decision making using MPSCDs.
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4.1 Foundations of SCDs

This paragraph formalizes the link between SCDs and the words of a document
as a basis for MPSCDs. Specifically, we model that SCDs generate the words of
a document. Each document d ∈ D has a link to its repository g(d), containing
SCDs that themselves are linked to positions in d. Words closer to an SCD
location are more likely generated by the SCD than words farther away.

Mathematically, we represent each SCD as a vector of length n, where n =
|V(D)| and each vector entry refers to a word in V(D). The entry itself is a
probability that describes how likely it is that the corresponding SCD generates
the word, yielding an SCD-word distribution for each SCD. We represent SCD-
word distributions for all m SCDs in g(D) by an m × n matrix δ(D), with the
SCD-word distribution vectors forming the rows of the matrix:

δ(D) =

⎡

⎢
⎢
⎢
⎢
⎣

w1 w2 w3 ··· wn

t1 v1,1 v1,2 v1,3 · · · v1,n

t2 v2,1 v2,2 v2,3 · · · v2,n

...
...

...
...

...
...

tm vm,1 vm,2 vm,3 · · · vm,n

⎤

⎥
⎥
⎥
⎥
⎦

We can fill δ(D) based on the documents in D and their linked SCDs. Using
a maximum-likelihood strategy, one counts for each SCD t the number of occur-
rences of each word w in the windows wind,t,ρ of t over all documents and all
positions. The occurrences are weighted by their influence value I(w,wind,t,ρ).

Algorithm 1 shows a description of forming matrix δ(D), in which δ(D)[t][w]
refers to entry at the intersection of the row of t and the column of w. The term
δ(D)[t] refers to the complete row of t. The outer loop (line 3) goes through each
SCD with the three inner loops counting the weighted occurrences of words in
windows of each document. At the end of each outer loop iteration, the SCD-
word distribution of the current t is normalized to yield a probability distribution
for each SCD over the complete vocabulary. Formally, normalization is given by

vi,j =
vi,j∑n

k=1 vi,k
. (2)

To illustrate line 7 of Algorithm 1, consider the following example. Assume
that in document d1, there is a window wind1,t1,ρ for SCD t1

wind1,t1,ρ = (w21, w4, w8, w15, w16, w23, w42) (3)
(0.015625, 0.09375, 0.234375, 0.3125, 0.234375, 0.09375, 0.015625) (4)

with t1 positioned at the center (w15, underlined) and the influence values in
Eq. 4 based on Eq. 1 with n = s(wind1,t1,ρ) − 1 = 6, k ∈ {0, . . . , 6}, and entry
positions corresponding to positions in Eq. 3. Based on the innermost loop of
Algorithm 1, seven entries of δ(D) are updated, e.g., for w21 at position 0:

δ(D)[t1][w21] += 0.015625
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Algorithm 1. Forming SCD-word distribution matrix δ(D)
1: function buildMatrix(Corpus D)
2: Initialize an m × n matrix δ(D) with zeros
3: for each t ∈ g(D) do
4: for each d ∈ D do
5: for each wind,t,ρ ∈ d do � Iterates over ρ
6: for each w ∈ wind,t,ρ do
7: δ(D)[t][w] += I(w, wind,t,ρ) � For I, see Eq. (1)

8: Normalize δ(D)[t] � See Eq. (2)

9: return δ(D)

where δ(D)[t1][w21] refers to v1,21, which is incremented by 0.015625. Algorithm 1
updates δ(D) for the remaining words and then continues with the next window.
When Algorithm 1 is finished with d1, it moves on to the next document, going
through the windows of the next document. After iterating over all documents,
Algorithm 1 repeats going through all documents and their windows for the
remaining SCDs.

The model behind a SCD-word distribution matrix δ(D) is generative as one
could now choose M � m SCDs and sample a new document based on the
chosen SCDs. Given the generative nature, we are now interested in the most
likely SCDs to have generated words of a new document.

Thus, we look at the problem of finding those SCDs that are most probable
given the words of a new document.

4.2 The MPSCD Problem

Generally, the MPSCD problem asks for the M most probable SCDs for a doc-
ument d′ given the SCD-word distribution matrix δ(D) and the words in d′:

arg max
t1,...,tM ∈g(D)

P (t1, . . . , tM |d′, δ(D)) (5)

As we do not model an influence of one SCD on the next and as we place the
M windows evenly distributed over d′, we can simplify Eq. 5 as follows

arg max
t1∈g(D)

P (t1|wind′,t1,ρ, δ(D) ∪ · · · ∪ arg max
tM ∈g(D)

P (tM |wind′,tM ,ρ, δ(D)) (6)

That is there are M windows wint,d′,ρ and for each window individual MPSCDs
are estimated. The intuition is as follows: If d′ is a document from D or a close
variation of the documents in D, then Eq. 5 yields MPSCDs with high prob-
abilities. If d′ is an unknown document, the resulting MPSCDs vary in their
probability. If the vocabulary or word composition is very different, the proba-
bilities are very low on average. The closer the vocabulary and word composition
of d′ get to the characteristics of D, the higher the probabilities are. Determining
if a document adds value to a corpus is based on of how much of a new document
can one generate with high probability given δ(D) and what is too much.
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Unfortunately, solving the MPSCD problem is intractable as n and m are
typically very large, which is why we estimate probability with similarity.

4.3 Estimating MPSCDs

Based on the statistics of the corpus, we estimate Eq. 6 for an SCD t in a window
wint,d′,ρ by determining the SCD in δ(D) with the most similar distribution
compared to a vector representation of wint,d′,ρ using influence values.

The setting is as follows: Given a new document d′ and the SCD-word distri-
bution matrix δ(D), we estimate M MPSCDs. Based on M , M windows wint,d′,ρ

lie over the text of d′ with a window size of σ = words(d′)
M and positions ρ starting

at σ
2 and incrementing by σ. For each wint,d′,ρ, the SCD is unknown at the start,

i.e., t = ⊥. As the words in wint,d′,ρ have an influence value based on Eq. 1, we
can build a vector δ(wind′,t,ρ) of length n. The entries δ(wind′,t,ρ)[w] are set to
0 for each word w ∈ V not in wint,d′,ρ and set to I(w,wint,d′,ρ) otherwise. Using
cosine similarity, the SCD t most similar to δ(wind′,t,ρ) is given by:

arg max
t

δ(D)[t] · δ(wind′,t,ρ)
|δ(D)[t]| · |δ(wind′,t,ρ)| . (7)

Algorithm 2 describes estimating MPSCDs for d′ using δ(D) given M . The out-
put is the set of MPSCDs g(d′) as well as the windows and similarities for the
MPSCDs in g(d′). The outer loop (line 3) iterates over the positions of the M
SCDs, setting up a window wind′,t,ρ and a vector representation δ(wind′,t,ρ).
Then, Algorithm 2 calculates cosine similarities between δ(wind′,t,ρ) and the
SCD vectors in δ(D) based on Eq. 7. It retains the SCD with the highest simi-
larity as MPSCD t for the window wind′,t,ρ. Our approach rests on the following
proposition:

Proposition 1. Algorithm 2 estimates for a new document d′ M (locally) most
probable SCDs, i.e., Eq. 7 calculates for each window estimates of Eq. 6.

We argue that the similarity between the influence distribution over the words in
a window and the SCD-word distribution indicates that the SCD is most likely
to generate the words in the window. Another SCD generating other words
with high probability would not generate the words in the window with a high
probability and as such, does not lead to a high similarity.

The MPSCDs represent a local optimum based on the current setting of
the windows. If the agent decides on adding the new document to the corpus
and using the MPSCDs for additional tasks like query answering or document
retrieval, optimizing the initial SCDs of d′ might lead to more attuned SCDs.

4.4 Considerations

We look at two considerations, one regarding fine-tuning MPSCDs, e.g., if inter-
ested in retaining SCDs for documents, and one regarding large corpora.
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Algorithm 2. Estimating MPSCDs
1: function estimateMPSCD(Document d′, Number M , matrix δ(D))

2: σ ← words(d′)
M

, ρ ← σ
2
, W ← ∅

3: for ρ ← σ
2
; ρ ≤ words(d); ρ+ = σ do

4: Set up a window wind′,t,ρ of size σ around ρ with t = ⊥
5: δ(wind′,t,ρ) ← new zero-vector of length n
6: for w ∈ wind′,t,ρ do
7: δ(wind′,t,ρ)[w]+ = I(w, wind′,t,ρ)

8: t ← arg maxti

δ(D)[i]·δ(wind′,t,ρ)

|δ(D)[i]|·|δ(wind′,t,ρ)|
in wind′,t,ρ

9: sim ← maxti

δ(D)[i]·δ(wind′,t,ρ)

|δ(D)[i]|·|δ(wind′,t,ρ)|
10: W ← W ∪ {(sim, wind′,t,ρ)}
11: g(d′) ← g(d′) ∪ {t}
12: return g(d′), W

SCD Window Adjustments. To optimize MPSCDs for a new document d′, one
can adjust the initial number of SCDs, the corresponding SCD positions, and the
window sizes in d′ to get MPSCDs with higher overall probability (or similarity).

We require the outputs of Algorithm 2, (repository g(d′) for document d′, set
W containing the similarities sim and the initial windows wind′,t,ρ). To optimize
the SCDs in g(d′), we can iteratively adjust size and position of all windows in
W and update t in each window based on Eq. 7 s.t. the overall similarity of the
M influence vectors is maximum, i.e.:

max
∑

(sim,wind′,t,ρ)∈W
sim. (8)

Optimization starts with calculating the overall similarity of the current
SCDs in g(d′) using the similarities stored in W. Then, it iteratively adjusts
windows until it reaches a local optimum for the optimization problem stated in
Eq. 8. Each window in W can be adjusted in the following four different direc-
tions: (a) extend left boundary of the SCD-window to the left, (b) extend right
boundary of SCD-window to the right, (c) shift left boundary of SCD-window
to the right, and (d) shift right boundary of SCD-window to the left. Win-
dow adjustments (a) and (b) extend the size of window wind′,t,ρ, while window
adjustments (c) and (d) reduce the size of window wind′,t,ρ.

Document Clusters. Large corpora contain thousands of documents that may
focus on different topics. Identifying documents in a corpus D having a high
topic similarity with a new document d′ narrows down the set of possible SCDs
for d′ by considering only SCDs from similar topics. Therefore, one can form a
cluster Cd′ of d′-related documents s.t. all d ∈ Cd′ have a Hellinger distance H
of their topic distributions θ being smaller than a threshold τ , i.e., Cd′ = {d ∈
D | H(θd′ , θd) < τ}, where H(θd, θd′) refers to the Hellinger distance between
the topic distributions of d and d′, respectively. The cluster Cd′ takes the place
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of D in Eq. 5. The threshold τ decides on the minimum required topic similarity
between two documents d′ and d, such that d ∈ Cd′ . The best value for τ depends
on the performance of external applications working with the SCDs in g(d′). A
smaller τ means a higher similarity between documents in Cd′ . Next, we build
MPSCDs into a decision making procedure for an agent.

4.5 Decision Making

An agent can use the MPSCDs for a new document d′ making a decision on
adding the new document d′ to the corpus or not. Obviously, this decision
depends on the goal of the agent. If the agent is interested in similar docu-
ments containing new information, it may decide adding documents where half
of the SCDs have a high similarity and the other half of the SCDs have a small
similarity. Based on the goal of the agent, thresholds have to be set accordingly.

The agent has to decide whether to extend its corpus D with d′ if d′ adds
value relevant to its task. Document d′ may not add value if d′ has no or very
little connection to D or if d′ does not add new content. SCDs are the connec-
tion between documents and context, signalling their value to the task. Thus,
the decision incorporates SCDs and the words that are connected to them using
the available resources D, g(D), and δ(D). An agent proceeds as follows if pre-
sented with a new document d′: (i) Using Algorithm 2, it computes MPSCDs
{t1, . . . , tM} for d′. As a byproduct, it receives the windows and the maximum
similarities of each window in W. (ii) Based on W and {t1, . . . , tM}, the agent
makes a decision. The decision making is based on a combination of (i) maximum
similarity, (ii) minimum similarity, (iii) average similarity, and (iv) maximum and
average difference in the similarity between neighbouring windows.

5 Case Study

We present a case study illustrating the potential of the multi-dimensional deci-
sion making approach considering the initial question: Should an agent extend
its reference library with a new document or should it not? In this case study
we use two corpora containing Wikipedia articles. The first corpus contains doc-
uments about European largest cities (https://bit.ly/2kOvmwD); the second
corpus contains documents about U.S. presidents (https://bit.ly/2Z1v1G9).

We compare for both corpora our multi-dimensional decision making app-
roach with LDA. We do not consider entity matching since entity matching
ignores context, which means that unrelated documents can share the same
entities and similar documents can have no matches in their entities.

The new documents we test belong to the following four types of documents:
(i) Similar documents (dsim); content of new document is very similar to the
content of documents in the corpus, e.g., the new document tells about the same
event. (ii) Extensions (dext); content of new document is similar to the content of
documents in the corpus and contains additional information unavailable in any
other document in the corpus, e.g., the new document represents an extension
of an article. (iii) Revisions (drev); the new document represents a revision of

https://bit.ly/2kOvmwD
https://bit.ly/2Z1v1G9
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Fig. 1. Representation of the four document types dsim, dext, drev, and dunrel using
the introduced MPSCD similarity values (left) and topic similarity (right).

another document in the corpus. (iv) Unrelated documents (dunrel); content
of new document is unrelated to the content of documents in the corpus. We
preprocess all documents by lowercasing characters, stemming words, tokenizing,
and eliminating tokens part of the Stanford CoreNLP stop-word list.

Afterwards, we use Stanford OpenIE [1] to automatically extract tuples from
the documents acting as SCDs for all documents within the corpus to have
roughly the same number of SCDs for all documents that are not influenced by
us. The MPSCDs of new documents support agents in their decision making
process since MPSCDs of new documents give information about the document
type. The MPSCDs are not only suitable to decide if a new document is similar
or unrelated to the documents in the corpus, but also if a new document is an
extension or a revision of a document in the corpus. We consider the following
five indicators to decide on extending a corpus with a new document or not:
(i) maximum similarity of all MPSCDs (max. sim.), (ii) minimum similarity of
all MPSCDs (min. sim.), (iii) maximum difference between highest and lowest
similarity value (Δmax,min), (iv) average MPSCD similarity (avg. sim.), and (v)
maximum change between neighbouring MPSCD-windows (max. Δwin).

On the left, Fig. 1 presents the indicators for the MPSCDs for each type of
document. On the right, Fig. 1 shows two variants of comparing a new document
and the corpus using LDA. The first variant learns a new topic model for the
corpus including the new document, yielding a topic distribution for the new
document. The second variant infers the topic distribution of the new document
using an existing topic model of the initial corpus. Similarity is given by the
Hellinger distance between two topic distributions subtracted from the value
1. Infering the topic distribution is significantly faster than calculating a new
topic model but makes it impossible to identify the type of a new document
since all similarity values are similar. Generating a new topic model allows for
distinguishing an unrelated document and a revision from all types but makes
it difficult to distinguish a similar document from an extension because both
documents share nearly the same topic distribution leading to almost identical
similarities. Estimating the MPSCDs for a new document and analysing the five
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Table 1. Document type indicator comparision

City corpus President corpus

dsim dext drev dunrel dsim dext drev dunrel

Max Sim + + + ◦ + + + ◦
Min Sim + ◦ ◦ − ◦ ◦ ◦ −
Δmax,min − ◦ − ◦ − ◦ − ◦
Avg. Sim + ◦ + ◦ + + + ◦
Max.Δwin − ◦ − ◦ − ◦ − ◦

indicators enables classification of a new document in the context of a given
corpus. Generally, the value of indicators slightly change with the corpus.

Table 1 represents the five indicators for all four document types of the city
corpus containing articles the largest European cities and the president corpus
containing articles about the U.S. presidents. We specify a high similarity (+) for
values between 0.7 and 1, an average degree of similarity (◦) for values between
0.3 and 0.7 and a low similarity (−) for values below 0.3.

For both corpora new documents of type dsim, dext and drev share high values
for the maximum similarity. Similar documents (dsim) have a noticeable higher
minimum similarity than all other types of documents. Unrelated documents
(dunrel) have a smaller maximum similarity value compared all other types of
documents and the minimum similarity is small. The maximum similarity change
between neighbouring windows (max.Δwin) of document extensions (dext) is
similar to unrelated documents while the maximum similarity change between
neighbouring windows of revisions (drev) is comparable to similar documents.

6 Conclusion and Outlook

If an agent is presented with an unknown document, this paper enables it to
answer the question “To extend or not to extend?” in a context-specific way.
The decision behind the question has to consider how much added value a docu-
ment provides within the context of the agent’s task. SCDs capture the context
and generate the words of documents in introduced model. For a new docu-
ment, an algorithm allows for estimating MPSCDs based on existing SCDs in
the spirit of “how much of the new document can the existing SCDs generate
with high probability?” For feasibility, the algorithm uses similarity of vector
representations of word distributions. The procedure for making a decision uses
the estimated MPSCDs and their similarities. By combining indicators, an agent
is able to make a decision about documents with varying value to add.

Future work includes modelling a window sequence with a hidden Markov
model to find a most probable sequence of known and unknown segments of
a document for decision making. Another aspect is finding a global optimum,
trading off better results with more work. Currently, we are further analyzing
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patterns emerging between windows to extract them for transfer learning and
investigate kernel methods to separate the different types of new documents.
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Abstract. Just over thirty years ago the prospect of modelling human
knowledge with parallel distributed processing systems without explicit
rules, became a possibility. In the past five years we have seen remarkable
progress with artificial neural network (ANN) based systems being able
to solve previously difficult problems in many cognitive domains. With a
focus on Natural Language Processing (NLP), we argue that the progress
is in part illusory because the benchmarks that measure progress have
become task oriented, and have lost sight of the goal to model knowledge.
Task oriented benchmarks are not informative about the reasons machine
learning succeeds, or fails. We propose a new dataset in which the correct
answers to entailments and grammaticality judgements depend crucially
on specific items of knowledge about verb semantics, and therefore errors
on performance can be directly traced to deficiencies in knowledge. If
this knowledge is not learnable from the provided input, then it must be
provided as an innate prior.

Keywords: Machine learning · NLP · Grammar · Learnability ·
Cognition · Benchmarks · Dataset

1 Introduction

Cognitive Science has a long tradition for using ANNs to investigate the nature
of mental representation, learning and thought. Perhaps the key driver in the
modern era was the 1986 release of Rumelhart and McClelland’s two-volume
textbook, Parallel distributed processing: Explorations in the microstructure of
cognition, Volume 1: Foundations [20], Volume 2: Psychological and biological
models [21], which introduced the Connectionist Paradigm and brought a sea
change in theoretical approaches to cognitive science [7].

A central area of debate concerned the nature of the mental lexicon, how it
is represented, learned [19] and accessed [10]. The chapter On Learning the Past
Tenses of English Verbs [10] showed how a distributed connectionist network
could learn lawful linguistic behaviour without learning any explicit rules. The
authors presented a system which mimicked key aspects of the human acqui-
sition of the past tense in English, which follows three predictable stages. In
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 369–380, 2019.
https://doi.org/10.1007/978-3-030-35288-2_30
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stage 1 children typically know only a few very high frequency verbs, which are
predominantly irregular in their past tense (e.g. come-came, go-went). In stage
2 they acquire many of the less frequent verbs, which are predominantly regular
(e.g. wipe-wiped, pull-pulled). This has been interpreted as learning a rule to add
the -ed suffix to any verb to obtain the past tense form [2]. Unfortunately at
this stage they often add the suffix to irregular verbs they already know, and
therefore make mistakes on verbs they had previously used correctly (e.g. come-
comed, go-goed). Finally in stage 3 children regain the correct use of the irregular
forms. The authors showed that a simple two-layer pattern associator network
with hand crafted features could not only learn the final rule-like behaviour of
past tense formation, but could also learn irregular forms, as well as replicate
the three stage process of learning. In the following 20 years the bold attempt to
replace rules with connections in the case of past tense learning had resulted in
somewhat of a stalemate with over 150 publications both in favour and against
the claims [15]. One of the major contributors, Steven Pinker, summarises his
view as “denying compositional structure and shoehorning phenomena into a
single uniform net” was insufficient to model the processes faithfully [15].

The recent resurgence of connectionist modeling, following the success of
deep learning networks in speech recognition, visual object recognition, object
detection and many other data intensive domains [28], has given rise to new
approaches in language modelling. The past year has seen substantial progress
in many NLP tasks, driven by deep learning systems that couple self-supervised
learning of a generic language modelling task on massive text corpora, with
methods for fine tuning the network to specific target tasks [6,14,18]. This app-
roach immediately resulted in sizeable improvements in many common tasks
such as textual entailment, semantic similarity and reading comprehension1.

On the other hand, the purpose of model construction has changed. Rather
than attempting to understand and model knowledge required to perform a task
(like forming the past tense of a new verb with rules), the primary aim is to
perform as well as possible in standard tasks, no matter what knowledge is
required and how it can be acquired. For example during learning, the XLNet
network uses bidirectional contexts [27], a wildly implausible method for human
language acquisition.

The quest for developing the best performing networks has made it necessary
for the community to agree on a common set of tasks and evaluation metrics,
both as a source of data to enable development and as a benchmark against
which systems can be tested. One current effort which is gaining community
traction is the GLUE benchmark project2 and its successor SuperGLUE [23,24].
The datasets in the suite are designed to include difficult problems such as lexical
entailment and problems that require the incorporation of world knowledge in
their solution. However the datasets are not primarily motivated by an attempt
to understand how humans perform the tasks, or what knowledge they need, but
rather to present tasks which humans can solve and machines can emulate.

1 https://openai.com/blog/language-unsupervised/.
2 https://gluebenchmark.com/.

https://openai.com/blog/language-unsupervised/
https://gluebenchmark.com/
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The problem we suggest is that benchmark tests are not written with the
intent to discover what knowledge is attained by a learning system but with
the intent to test how well they perform on common tasks, which implicitly
rely on the knowledge. The use of insufficiently grounded tasks can additionally
lead to spurious errors from unforeseen sources. For example, natural language
inference systems can mistakenly judge sentences like “Alice believes Mary”
as being entailed by sentences which contain the words as subsequences but
not linguistic constituents, such as “Alice believes Mary is lying” [11]. In the
premise “Mary” is not the direct object of the verb but rather the subject of
the complement “lying”, whereas the hypothesis changes the role of “Mary” to
direct object of “believes”. The mistake can only be discovered when the dataset
includes a theory of syntax to semantics mappings.

In this paper we describe our work on a dataset in which the correct classifi-
cation of entailment relations depends on highly finessed grammatical relations
as described in Beth Levin’s study on English verbs [9]. The linguistic behaviour
of verbs reveals rich semantics which control their behaviour, and the acquisi-
tion of this semantic knowledge poses a learnability paradox [17]. The dataset
provides a direct test of learnability in artificial neural networks.

2 Related Work

There have been several datasets for NLP tasks that were based on linguistic or
cognitive theory. SemEval-2012 Task 2 [8] included a rich variety of sentences
for measuring degrees of relational similarity, where the items were based on a
category system of relations consisting of 79 categories gleaned from a synthesis
of existing psycholinguistic theory [1]. The categories were part of the research
framework to understand how students reason in the analogy problems included
in the Graduate Record Examinations (GRE), standardized test for admissions
to most graduate schools in the United States. Several processing models were
proposed for how students solve the analogy tasks with the different types of
relations [1]. In other words, not only the task, but the knowledge needed to
solve the task, were questions under investigation.

There are two important ways in which this theoretical analysis benefited the
dataset and its use in machine learning research. First, the processing models all
relied on a dynamic pairwise comparison between the words in the analogy ques-
tion, at the time of testing. Relations according to this model are not learnt, but
computed at time of testing. An implication of this is that single vector-space
models in which relational information is encoded within the vector at time of
learning, may not be the best approach. The results support this hypothesis
since the best machine learning systems used multiple vector spaces to compute
similarity with the use of predictive features such as word frequency, positive
pointwise mutual information (PPMI), and two measures of co-occurrence in a
domain- and function-space [22]. Single vector space models using a recurrent
neural network model performed significantly less well [13]. The second impor-
tant contribution was that results could be further analysed to reveal how the
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type of relations interacted with the machine learning algorithms. For example
some of the classes included relations based on “Class-Inclusion”, “Part-Whole”,
“Similar”, “Contrast”, “Attribute”, “Non-attribute”, and “Space-Time”. The
results showed that systems tended to perform best with the “Similar” category3

and worst with the “Non-Attribute”4, but that the “Non-Attribute” examples
were also worse than the subtly different “Contrast” examples5. Results such as
these can be used to investigate the difference in optimal learning scenarios for
the different relations.

Models of single word embeddings were subsequently improved with the
CBOW and Skip-gram algorithms, and their performance on analogy tasks also
improved [12]. Unfortunately the results are not directly comparable because
the evaluation of analogical reasoning was not performed with the SemEval
task. Instead, a new Google evaluation set was constructed, which was com-
posed of five types of semantic and nine type of syntactic questions. The five
semantic relations are “Common capital city”, “All capital cities”, “Currency”,
“City-in-state”, and “Man-Woman”. To the best of our knowledge there is no
theoretical justification for these choices, and comparison between categories is
difficult, with little theoretical interest. For example the relation “City-in-state”
(e.g. Chicago-Illinois) appears to have some semantic overlap with “Common
capital city” (e.g. Athens-Greece), but it is not clear if a comparison of results
on these classes would be meaningful. The test set was also criticised on the
ACL state-of-the-art web site6 on several grounds, including “In the semantic
part, country:capital relation accounts for over 50% of all semantic questions”,
with the result that the nature of semantic knowledge acquired by CBOW and
Skip-gram embeddings is difficult to infer from the test data.

Another dataset which was developed with strong theoretical foundations is
the CoLA grammatical acceptability judgement corpus [25]. Acceptability judge-
ments are at the core of modern linguistic theory, which has as its principle goal
to discover the grammar capable of generating all and only the acceptable sen-
tences of a language [3]. The goal of the CoLA set was to find evidence concerning
the Poverty of Stimulus Argument, which is a claim that the richness of human
grammatical knowledge cannot be acquired by purely data driven methods [4].
Sentences were drawn from a pool of texts and technical books about language,
and the grammatical status of each sentence was stipulated in the texts. Only
three broad classes of violations were included: morphological, syntactic and
semantic, and a large range of grammar property violations were looked at.
There was no attempt to describe more specific classes of linguistic phenomena.

3 one word represents a different degree or form of the object, action, or quality rep-
resented by the other word, e.g. car:auto, buy:purchase, simmer:boil.

4 one word names a quality, property, or action that is characteristically NOT
an attribute of the entity named by the other word, e.g. harmony:discordant,
recluse:socialize, famine:plentitude.

5 one word names an opposite or incompatible of the other word, e.g. alive:dead,
old:young, believe:deny.

6 https://aclweb.org/aclwiki/Google analogy test set (State of the art).

https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)
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The experiments showed that state-of-the-art networks were not sufficient to
learn the task effectively, with the highest accuracy reaching 0.772. This was
taken as evidence for the Poverty of Stimulus Argument.

The test suite SuperGLUE does not use the CoLA set but instead includes
grammaticality test from the GLUE diagnostics which use entailment rather
than acceptability judgements. The method is based on White et al. who show
that it is possible to automatically rewrite classifications into the form of textual
entailment pairs [26]. The tasks themselves are not tied to any specific theory
of knowledge, however, leaving open the question of what kinds of grammatical
knowledge are learnable from text input. We propose a more direct test set in
which sentences are constructed to test precisely the knowledge that is required
to perform the task. The knowledge itself is based on a linguistic theory which
had its roots in the following puzzle about language acquisition.

3 Learnability and Cognition

The puzzle involves verb frames and the possibilities for alternative frames
involving the same verb. For example the verb load can appear in the following
construction (examples taken from [16]).

(1) Hal is loading hay into the wagon.

In sentence (1) the grammatical subject (Hal) of the verb is the loader, the object
is the contents being moved (the hay), and the further object of into expresses
the container into which the hay is being moved (the wagon). This is called the
content-locative construction because the focus of the sentence is the content
(hay). The same meaning can be expressed by sentence (2) where the object of
the verb is now the container, changing the focus of the sentence. This is called
the container-locative construction.

(2) Hal loaded the wagon with hay.

There are many examples of verbs which behave this way, for example (3). A
possible generalisation of this pattern is that verbs appearing in content-locative
constructions can also appear in container-locative constructions.

(3) a. Jared sprayed water on the roses.
b. Jared sprayed the roses with water.

However the generalisation does not hold, as there are many other verbs
which result in unacceptable sentences if we try and apply the generalisation.
Examples (4) and (5) show that pour does not accept the container-locative, and
fill does not allow content-locative. There does not seem to be a clear way to
distinguish the verbs that do, and the ones that don’t allow the generalisation. In
these examples pour, fill, and load are all verbs which describe someone moving
something somewhere.
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(4) a. Amy poured water into the glass.
b. *Amy poured the glass with water.

(5) a. *Bobby filled water into the glass.
b. Bobby filled the glass with water.

The fact that adult speakers of English can make these distinctions is a learnabil-
ity paradox. Four conditions summarise the set of relevant facts that lead to the
paradox: (a) language speakers generalise from observations, (b) they avoid some
possible generalisations, (c) they are not corrected for erroneous generalisations,
(d) there is no systematic difference between verbs that allow generalisation and
those which do not. Clearly at least one of these statements cannot be correct.

Pinker argues that the fourth condition is where the solution to the para-
dox lies, and in fact systematic differences do exist. However the differences are
described in terms of nonobvious, fine-grained descriptions of semantic struc-
ture [16,17]. The research strategy then becomes one of gathering classes of
verbs which behave differently with respect to some alternation, and then try to
analyse them for subtle semantic variations. Consider examples (6a) and (6b)
which show additional verbs that do, or do not accept the locative alternation.

(6) a. brush, dab, daub, plaster, rub, slather, smear, smudge, spread,
streak, swab

b. dribble, drip, drop, dump, funnel, ladle, pour, shake, siphon, slop,
slosh, spill, spoon

The core meaning of these verbs all involve getting some substance onto some
receptacle. You can, for example, brush paint onto the floor or pour paint onto
the floor. However, Pinker suggests that if we study the physics of the actions,
we observe a very different pattern: the (a) list involves actions where the agent
applies force to the substance and surface simultaneously by pushing, whereas
the (b) verbs allow gravity to do the work [16]. It is the difference between direct
action and an enabling action. When you are directly acting on a substance you
are in complete control and can therefore brush the floor with paint as much as
you like, with the desired effect. But you can’t *pour the floor with paint. You
can pour the paint out of a container in the direction of the floor, but you cannot
control how it lands on the floor. This is a very specific kind of distinction that
involves a mental construal about the way the world works. The Grammatically
Relevant Subsystem hypothesis is that our ability to use verbs correctly hinges on
a specific set of shared beliefs about the way the world works, which is somehow
intertwined with language [17]. In this case a distinction between direct- and
enabling- action.

The Grammatically Relevant Subsystem hypothesis claims that some aspects
of human grammar are controlled by semantic knowledge that is not directly
observable from the strings of the language. Thus, if a machine learning system
differs from a human grammar, then we would conclude that the system was
unable to learn the semantic knowledge. This is a better source of evidence for
a Poverty of the Stimulus hypothesis than current benchmarks.
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Beth Levin performed an extensive analysis of English verbs by grouping
them into classes according their behaviour with respect to a large number of
possible alternations [9]. The hypothesis is that the syntactic behaviour of verbs
is semantically determined, and therefore all verbs in a given class will share
some semantic core. Identifying the classes will help identify the core. In her
“preliminary investigation” she identifies over 70 distinct alternations. For our
initial dataset we selected the 50 alternations where most data was available.
Some of these are shown in Table 1, together with example sentences.

This preliminary dataset was constructed following the advice of Dagan et.
al. [5] who argue that the Recognizing Textual Entailment (RTE) task is suit-
able for capturing a variety of semantic inferences. We propose that the semantic
relation between alternations can be described as entailment where the text, e.g.
“The horse kicked John” entails (or not) the hypothesis “John was kicked by
the horse” (see also [26]). The dataset currently contains 311 sentences in which
the hypothesis is ungrammatical due to the alternation (e.g. I donated a book
to Roy./*I donated Roy a book.), and 306 sentences where the hypothesis is
grammatical (e.g. I gave a book to Roy./I gave Roy a book.). Of these 306,
there are 102 sentences where the hypothesis is not entailed because the alterna-
tion introduces a subtle change in meaning (e.g. This hammer won’t break the
window/This hammer won’t break), and 204 where the hypothesis is entailed.
A hypothesis can therefore not be entailed either because of a subtle semantic
change, or because it is meaningless.

4 A Preliminary Experiment

We used the AllenNLP system7 to evaluate each sentence pair for entailment.
The package provides a straightforward API for entailment judgements.

Table 2 shows the verb alternation categories that were tested, and whether or
not AllenNLP agreed with human judgement on the example sentences. Agree-
ment was defined as at least 70% of the sentences in the category concurring
with human judgement8. A tick in the first column means that AllenNLP pre-
dicted an entailment for grammatical alternations that we judge as semantically
equivalent. A tick in the second column means that AllenNLP did not agree.
The third column shows results for sentences where the hypotheses are ungram-
matical. A tick in this column indicates that AllenNLP predicts a high degree
of entailment even though the meaning is not entailed by the alternation. The
results show that the system did not perform correctly on any of these cases.
In summary the model learns the correct generalization for verbs that allow an
alternation, but completely fails to learn verbs that do not.

Since AllenNLP failed completely on this task, we attempted to replicate
the results with a more recent XLNet model from the PyTorch-Transformers
package9 tuned on the RTE dataset. However at the time of writing we were
7 https://github.com/allenai/allennlp.
8 Entailment values exceeding 0.7 for an entailed hypothesis, or below 0.3 for a non-

entailed hypothesis.
9 https://github.com/huggingface/pytorch-transformers.

https://github.com/allenai/allennlp
https://github.com/huggingface/pytorch-transformers
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Table 1. Categories used in the experiment. Categories with a small amount of samples
are excluded.

Category Sample

As Alternations
The president appointed Smith press secretary. / The president appointed Smith as press secretary.

The captain named the ship Seafarer. / *The captain named the ship as Seafarer.

Benefactive Alternations
Martha carved a toy out of wood for the baby. / Martha carved the baby a toy out of wood.

Martha carved some wood into a toy for the baby. / *Martha carved the baby some wood into a toy.
Body-Part Possessor
Ascension Alternations

The horse kicked Penny’s shin. / The horse kicked Penny in the shin.
The horse broke Penny’s shin. / *The horse broke Penny in the shin.

Bound Nonreflexive Anaphor as
Prepositional Object

Tamara poured the water over her. / Tamara poured the water over herself.
This list includes my name on it. / * This list includes my name on itself.

Causative Alternations
The little boy broke the window./ The window broke.

Margaret cut the bread. / * The bread cut.
Characteristic Property
Alternations

This hammer won’t break the window. / This hammer won’t break.
This key won’t open the lock. / *This key won’t open.

Cognate Prepositional Phrase
Construction

Kelly buttered the bread. / Kelly buttered the bread with unsalted butter.
Kelly buttered the bread. / *Kelly buttered the bread with butter.

Conative Alternations
The mouse nibbled the cheese. / The mouse nibbled on the cheese.

The mouse consumed the cheese. / *The mouse consumed on the cheese.
Creation and Transformation
Alternations

That acorn will grow into an oak tree. / An oak tree will grow from that acorn.
I kneaded the dough into a loaf. / *I kneaded a loaf from the dough.

Dative Alternations
I gave a book to Roy. / I gave Roy a book.

I donated a book to Roy. / *I donated Roy a book.

Fulfilling Alternations
The judge presented a prize to the winner. / The judge presented the winner with a prize.

The judge offered a prize to the winner. / *The judge offered the winner with a prize.

Instrument Subject Alternations
David broke the window with a hammer. / The hammer broke the window.

Doug ate the ice cream with a spoon. / ?The spoon ate the ice cream.

Locative Alternations
The garden is swarming with bees. / Bees are swarming in the garden.

The square is seething with people. / *People are seething in the square.

Locative Inversion
A cat jumped onto the table. / Onto the table jumped a cat.

A lot of snow melted on the streets of Chicago. / *On the streets of Chicago melted a lot of snow.
Object of Transitive = Subject
of Intransitive Alternations

Bill pounded the metal fiat. / This metal won’t pound flat.
Bill pounded the metal. / *This metal won’t pound.

Possessor-Attribute Factoring
Alternations

I admired his honesty. / I admired him for his honesty.
I sensed his eagerness. / *I sensed him for his eagerness.

Preposition Drop Alternations
Martha climbed up the mountain. / Martha climbed the mountain.

Sharon came into the room. / *Sharon came the room.

Prepositional Passive
George Washington slept in this bed. / This bed was slept in by George Washington.
George Washington slept on Tuesday. / *Tuesday was slept on by George Washington.

Reciprocal Alternations
Brenda and Molly agreed. / Brenda agreed with Molly.
Bill and Kathy married. / *Bill married with Kathy.

Resultative Construction
Jasmine pushed the door open. / The door was pushed open.

The silversmith pounded the metal flat. / *The silversmith pounded on the metal flat.

Search Alternations
We investigated the area for bombs. /We investigated bombs in the area.

We rummaged through the desk for papers. / *We rummaged papers through the desk.

There-Insertion
A flowering plant is on the windowsill. / There is a flowering plant on the windowsill.

A lot of snow melted on the streets of Chicago. / *There melted a lot of snow on the streets of Chicago.

Unexpressed Object Alternations
I flossed my teeth. / I flossed.

Jennifer craned her neck. / *Jennifer craned.

Verbal Passive
The cook sliced the mushrooms. / The mushrooms were sliced by the cook.

The package weighed ten pounds. / *Ten pounds was weighed by the package.

unable to obtain an accuracy greater than 52%, which is below the 88% SOTA,
and therefore chose not to report these results.

Another possibility for the poor result is that the ungrammaticality of the
hypotheses is not noticed, and the entailment is judged purely on word overlap.
We decided to test this possibility with the state-of-the-art XLNet system, to
see if it could judge the grammaticality of the hypotheses correctly. We fine
tuned XLNet with the CoLA task and obtained the reference results. Table 2
shows the Matthew’s correlation coefficient against the sentences in our dataset,
where the human grammaticality judgements are taken from Levin’s book (and
corroborated by the authors).
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Table 2. Agreement between AllenNLP and human judgement. Categories with
unclear results or insufficient data are indicated with “?”. The last column is the
Matthew’s correlation coefficient against human grammatical acceptability judgement.

Category Agree Disagree
(grammatical)

Disagree
(ungrammatical)

XLNet
(grammaticality)

As Alternation � 0.333

Benefactive Alternations � 0.645

Body-Part Possessor
Ascension Alternations

� � 0.654

Bound Nonreflexive Anaphor
as Prepositional Object

� 0.654

Causative Alternations � � 0.684

Characteristic Property
Alternations

� 1.0

Cognate Prepositional
Phrase Construction

� � 1.0

Conative Alternations � 0.85

Creation and Transformation
Alternations

? 1.0

Dative Alternations � � 0.658

Fulfilling Alternations � � 0.632

Instrument Subject
Alternations

� 0.632

Locative Alternations � � 0.546

Locative Inversion � � 0.745

Object of Transitive =
Subject of Intransitive
Alternations

� 0.786

Possessor-Attribute
Factoring Alternations

� � 1.0

Preposition Drop
Alternations

� � 0.866

Prepositional Passive � � 1.0

Reciprocal Alternations � � 0.480

Resultative Construction � � 0.654

Search Alternations � � 0.67

There-Insertion � � 1.0

Unexpressed Object
Alternations

� � 0.715

Verbal Passive � 1.0

The acceptability results show that XLNet performs very well on some of
the categories, but poorly on others. While the results are more positive towards
the machine learning model, the knowledge required for making some accept-
ability judgements is still lacking. The poorest performing categories were the
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as-, locative-, reciprocal-, and fulfilling- alternations. For example, the model
misjudged sentences like “*The captain named the ship as Seafarer” and “*Bill
married with Cathy”. However, it correctly judged “*This key won’t open” and
“*Kelly buttered the bread with butter”. This is impressive, and we plan to
continue the work by gathering comprehensive human judgements on these sen-
tences to obtain more accurate correlations.

5 Conclusion

This paper proposes a new dataset which is constructed to test the learnability of
specific, theoretically motivated knowledge that is relevant for the understanding
human language. In this respect it is different from the majority of existing
datasets which are task oriented and provide fewer theoretical insights. We claim
that current datasets focused on tasks are less useful for scientific discovery. The
initial results show evidence for a Poverty of the Stimulus Argument, that current
machine learning systems are unable to learn some of the knowledge needed to
properly comprehend human language, from linguistic input. In this regard the
dataset can be useful for testing new systems, for their ability to learn such
knowledge.

But there might be a stronger conclusion. That is, it is possible that systems
which learn only from text input are simply unable to learn this knowledge.
The implication would then be that machine learning systems will require prior
knowledge about causation, duration, tense, aspect, and other concepts impli-
cated by linguistic analyses. One possible implementation could be to include
these as semantic features in the training data to be learned alongside the vocab-
ulary. On this view machine learning would serve as an invaluable tool that helps
discover the proper set of semantic features in the psycho-linguistic system.
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is funded by the Norwegian Research Council’s IKTPLUSS programme as project
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Abstract. Social media sentimental analysis is interesting field with
the aim to analyze social conservation and determine deeper context as
they apply to a topic or theme. However, it is challenging as tweets are
unstructured, informal and noisy in nature. Also, it involves natural lan-
guage complexities like words with same meanings (Polysemy). Most of
the existing approaches mainly rely on clean textual data, however Twit-
ter data is quite noisy in real life. Aiming to improve the performance,
in this paper, we present hybrid words representation and Bi-directional
Long Short Term Memory (BiLSTM) with attention modeling resulting
in improvement in tweet quality by not only treating the noise within
the textual context but also considers polysemy, semantics, syntax, out
of vocabulary (OOV) words as well as words sentiments within a tweet.
The proposed model overcomes the current limitations and improves
the accuracy for tweets classification as showed by the evaluation of the
model performed on real-world airline related datasets.

Keywords: Natural language processing · Text mining · Sentiment
analysis · Hybrid words embedding · Neural networks

1 Introduction

Social media platforms where people share their opinions and views, plays a
key role in providing a new approach to collecting the valuable information
that allows businesses, researchers, governments, politicians and organizations to
know about peoples sentiments which helps for decision making such as improv-
ing the services, products, and recommendations for those users. However, it is
challenging task as tweet-like social media text is often short, informal and noisy
in nature which makes analysis very challenging [23,25]. Although, in recent year,
different methods have been presented in literature but still we are not able to
fully handle the language complexities with in the content of tweets such as words
with different meanings (Polysemy) along with semantics, syntanx, sentiment of
words and OOV words [24].
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The language used on social media platforms and blogs is ubiquitous
(unstructured and very informal) in nature. Furthermore, tweets are short
statements and descriptions. This makes its analysis more challenging for the
machines to understand and analyze like human. Every Twitter user post their
message in their own style. They use different words, acronyms, emoticons, use
URLs to give extra information and sometimes intentionally make spelling mis-
takes etc. These language imperfections makes the data noisy and an right com-
bination of pre-processing techniques must be applied to improve the quality
of text. Furthermore, managing language complexities like human beings also a
challenging tasks.

Analysis of social media has attracted the attention of many researchers.
Conventional methods for sentiment analysis like lexicon [4] and rule based tech-
niques are easy, simple and not computationally expensive but their dependency
on humans for labelling documents, less coverage etc limits them in case of
unstructured text. Over the period of time, different researchers claimed that
using traditional machine learning and hybrid of lexicon with machine learning
improves the classification performance [5].

Recently proposed word representation algorithms like Word2Vec [15] and
GloVe [19] have been excessively used for the representation of semantic and
syntactical information within the content. Mikolov et al. [15] presented con-
tinuous bag of words (CBOW) and skip-gram algorithms for the representation
of words which can capture semantics and syntactical information. Similarly,
global vectors (GloVe) [19] also deals with semantic and syntactical information
but it uses co-occurrence counts to capture this information. Later, deep con-
volutional neural network (DCNN) was proposed by Jianqiang et al. [10] which
gives better accuracy performance by initializing word representation with GloVe
whereas, whereas Santos et al. [6] exploited character and word level representa-
tions for sentiment classification of short text and fed representation into CNN.
All of these methods captures semantic and syntactical information but ignore
the issue of polysemy within the content. To address this issue, Liu et al. [13]
presented context sensitive embedding which allocate one vector to each word
in the context. Similarly, Melamud et al. [14] proposed Context2Vec which uti-
lizes representations from final layer of the model which essentially leave out
information from the lower layers which is a major drawback of context2Vec. In
recently past, Peters et al. [20] presented deep contextual word representations
for learning complex attributes of a word use in a context.

To consolidate the sentiment knowledge into conventional words representa-
tion, researchers proposed sentiment specific embedding (SSE). Tang et al. [27]
presented several hybrid ranking methods (HyRank), which considers context
and sentiment knowledge of words in tweets. Similarly, In another study con-
ducted by Yu et al. [29] where they proposed sentiment embeddings by refining
pre-trained embeddings and used intensity score of external resource. Razaeinia
et al [21] presented improved word vectors (IWV) by concatenating word repre-
sentation algorithms, part of speech (POS) and different sentiment lexicons for
sentiment analysis. In recent past, Cambria et al. [2] proposed context embed-
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dings by conceptual primitives from data and linked with commonsense concepts
and named entities. In our previous work [18] we presented deep intelligent con-
textual embedding (DICE) which solves the language complexities like polysemy,
semantics, syntax, sentiments of words. In this work we improve our model and
added character embedding to solve the issue of OOV words along with other
language complexities.

Fig. 1. Examples of research motivation and problems

Figure 1 presents motivation and the problem, we have addressed in this work.
It shows the example of tweets where the meaning of words such as Like ad Hate
changes according to its context. Existing word representation models unable to
handle this kind of language complexities and assigns same vector to such kind of
words which results in low performance. Further, both of these words have some
sentiments associated to its meaning which as a human beings we can under-
stand due to our prior knowledge but machines can not. We want to handle this
language complexities just like human beings which helps to improve the clas-
sification performance [22]. Moreover, unstructured and noisy nature of tweets
also results in OOV words. Thus, models which are unable to able handle this
kind of language ambiguities and low quality of text results in low performance
in case of tweets sentiment classification task. To overcome the aforementioned
challenges, in this paper, we present an efficient approach that first improves
the quality of tweets followed by handling the natural language complexities
defined earlier. Our hybrid word representation model is able to capture poly-
semy, semantics, syntax, OOV words and words sentiments. We then input our
hybrid representations to BiLSTM with attention model which compliments our
model to improve the classification performance. We experimented with three
Twitter datasets and experimental results proves that classification performance
improves significantly when used our proposed model. The key contribution
of this paper are:

– We improve the quality of tweets like messages by replacing emoticons,
acronyms, spell correction, expanding contractions and removing other nose
from data. The proposed tweet quality improvement method can be applied
to any social media text.

– We improve the representation of text so that it can handle the language com-
plexities and can capture complex language characteristics such as polysemy,
semantics, words sentiments, syntax.
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– Extensive experiment results on airline datasets showed that proposed app-
roach is able to capture OOV words efficiently which also add to the classifi-
cation performance.

The rest of the paper is organized as follows. Section 2 describes the architec-
ture of the proposed model. Section 3 highlights evaluation and analysis of the
proposed model. Section 4 gives the conclusion of this research.

2 Proposed Model

In this section we describe the proposed tweet classification model which is based
on Hybrid Words Representation and Bi-directional Long Short Term Memory
(BiLSTM) with Attention. The framework of proposed approach is given in
Fig. 2. We have applied five data representation steps to create input vector for
LSTM that are (I) POS tagging of word in input tweet (II) language model
embedding to extract the vector of each word that consist of polysemy, syntax
information as well as provide context embedding. (III) GloVe embedding to
create vector of words to capture the word semantic information. (IV) We have
also created sentiment score of each word from lexicons in a tweet and create
lexicon vector. (V) character embedding to overcome the aforementioned issue of
OOV words. Finally, we have concatenated all five input vector and forwarded
to BiLSTM with attention for sentiment analysis of tweets. In the below dis-
cussion, we have explained each component of proposed hybrid contextual word
representation.

Fig. 2. Hybrid words representation w/ BiLSTM & attention

2.1 Hybrid Words Representation

Tweet classification is challenging task as they are is often short, informal and
noisy, and involves language ambiguity such as polysemy. To improve the tweet
classification performance, we have applied different data representations to con-
sider both contextual and semantics information. For a given tweet Ti with a
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sequence of tokens (t1, t2, t3, ..., tk). Her i are the number of a tweets and k are
the number of tokens in a tweet. We applied five data representation on each
input tweet that are

Character Embedding: In order to have closer representation among words
of same category, the prefix and suffix information of any word provides the
character-level features. It does not only helps to deal with the challenge of
OOV as well as mitigating issues like unseen words. In our experiment, we have
performed character level representations using Bi-LSTMs in order to produce
a character-enhanced embedding for each unique word in a tweet [12]. In this
experiment, we consider the maximum character length 25 and set forward and
backward LSTMs parameters to 25 which results in 50-dimensional embedding
vector,VChar.

Context Embedding: The quality of words representation is computed by
how it handle polsemy and ad syntax information into the model. This results in
improvement semantic word representation. In this work, we have used ELMo.

Deep contextual embeddings are based on ELMo language model learned
from Bi language model (BiLM) learned from Bi language model (BiLM) [20].
It considers different aspects of words according to its usage in the context. In
training process of BiLMs, we have considered the log-likelihood of each sentence
in both forward and backward language models. We have computed the resultant
vector by concatenating the hidden representations from both forward language
model

−→
h LM

n,j and backward language model
←−
h LM

n,j , where j = 1, ...., L. We can
write BiLM as

BiLM =

k∑

n=1

(log p(tn|t1, ....., tn−1;Θx,
−→
ΘLSTM , Θs) +log p(tn|tn+1, ...., tn;Θx,

←−
ΘLSTM , Θs)

(1)
where

−→
ΘLSTM is the forward and

←−
ΘLSTM is the backward BiLSTM parameter.

θs and θx are the softmax and token representation parameters respectively.
Both θx and θs are shared between forward and backward directions. ELMo
abstracts the representations learned from intermediate layer and compute the
linear combination for each token in a downstream task. BiLM consist of 2L+1
set of of representations as given below.

Rn = (XLM
x ,

−→
h LM

n,j ,
←−
h LM

n,j | j = 1, ...., L)

= (hLM
n,j | j = 0, ..., L)

where hLM
n,0 = xLM

n and hLM
n,j = [

−→
h LM

n,j ,
←−
h LM

n,j ] the layer of token and BiLSTM
layer respectively. ELMo is the task specific combination of these features where
all the layers in M are flattened to single vector, given as
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ELMotaskn = E(Mn;Θtask) = γtask
L∑

j=0

staskj hLM
h,j (2)

where staskj are weights which are softmax normalized for the combination of
different layers representations. γtask is a hyper parameter for scaling and opti-
mization of ElMo representation. In this paper, we have used pre-trained ELMo
embeddings with the dimensions of 1,024. The pre-trained model is obtained
using the 1 Billion Word Benchmark consisting of about 800M tokens of news
crawl data from WMT 2011 [3]. In this work, we have computed context vector
of 1024 dimensions Vcontext using ELMo. The resultant vector has the polysemy
and syntax information of tweets context.

Glove Embedding: Global Vectors (GloVe) for word representation is an unsu-
pervised learning model to obtain word vector representations through aggregat-
ing global word-word co-occurrence statistics by efficiently leveraging the statis-
tical information in a corpus instead of entire sparse matrix i.e. how frequently a
word appears in a context [19]. GloVe uses ratios of co-occurrence probabilities.
It is favourable to concatenate ELMo embeddings with traditional word embed-
dings. In this work, we have used pre-trained GloVe embedding (trained on 840
billion token from common crawl) of 300 dimensions. We further compared its
performance with Word2Vec and results showed that GloVe provided better per-
formance for tweet classification. The resultant of GloVe embedding model is a
vector of 300 dimensions, VGloV e, that consist of word semantics information of
tweets.

Lexicon (Sentiment) Embedding: Use of lexicon can be helpful in sentiment
analysis, thus in this work, we computed sentiment score from sentiment lexicon.
In our case, each lexicon contains a pair of word-sentiment where each words in
a tweet has its own sentiment score (−1 <sentiment score> 1). Sentiment score
less than zero represents the negative words and sentiment score greater than
zero represent the positive words. Selection of semantic lexicon is very important.
It could be one or appropriate combination of different lexicons. In this work, we
have performed several experiment to select appropriate lexicon and selected the
combination 6 different lexicons for extracting sentiments. In case if any token is
unavailable in any of these lexicons, we have assigned zero score to that token as
well as its outputs VLexicon of 6 dimensions. Lexicons used in our experiments
are given in Table 1.

Table 1. Lexicons used for Lexicon embedding

(1) SenticNet 5.0 [2] (4) SemEval Twitter English Lexicon [17]

(2) VADER [9] (5) NRC Sentiment140 Lexicon [11]

(3) Bing Liu Opinion Lexicon [8] (6) SentiWordNet [1]



Hybrid Words Representation for Airlines Sentiment Analysis 387

Part of Speech (POS) Embedding: POS tagging is one of the essential
processing step for high level text processing of tweet classification in which each
word in the context is assigned with an appropriate POS tag. Recently POS has
been extensively used and shown promising results in NLP. It provides very
useful information about a word, its neighbors and different syntactic categories
i.e. nouns, adverbs, verbs, and adjectives etc. In this work, we have generated
POS tag through Stanford parser for POS. We have transformed each POS tag
token to vector of dimension 50 VPOS of 50 dimensions.

Finally, we concatenated the above vectors to get one vector VCE , which
almost free from the aforementioned challenges and consist of word semantics,
polysemy, syntax knowledge as well as sentiment knowledge. Equation 3 shows
the concatenation of vectors.

VCE = Vcontext ⊕ VChar ⊕ VGloV e ⊕ VPOS ⊕ VLexicon (3)

where element-wise symbol ⊕ denotes vectors concatenation. and VCE is the
hybrid contextual word vector.

2.2 Attention Based BiLSTM Layer

In this work we have used bidirectional LSTM for the classification of tweets.
We have forwarded hybrid words vector to BiLSTM [26] with attention layer for
sentiment analysis to capture the information from both directions. The input
to BiLSTM is a vector VCE with a sequence of xz tokens and produces hidden
representation hi at a given time i by concatenating hidden representations as
shown in Eq. 4.

hi = [
−→
hi ‖ ←−

hi ] (4)

where ‖ denotes the concatenation of outputs from both forward and backward
LSTM.

As we know that different words play different role in understanding, thus
do not contribute equally in understanding the sentence. In this work, we have
further used attention mechanism [28] to enforce the contribution of important
words in understanding the sentence. We have assigned weight ai to each token
through a softmax function and finally, representation R which is a weighted
sum of all tokens is computed as shown in Eq. 5.

R =
z∑

i=1

aihi, (5)

where,

ai =
exp(ei)∑z
t=1 exp(et)

,

z∑

i=1

ai = 1

ei = tanh(Whhi + bh)
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where Wh and bh are learned parameters, hi is the concatenation of the repre-
sentations of the forward and backward LSTM, introduced in Eq. 4.

2.3 Output Layer

Finally, we used representation R generated from an attention layer and forward
to fully connected softmax layer to get the class probability distribution. In
order to find the optimal parameters, we have used the grid search optimization
technique.

3 Experimental Results

In order to validate the performance of proposed approach, we have performed
several experiment on benchmark datasets.

3.1 Datasets

In this study, we have used three airline related datasets. Two of these datasets
were crawled and labeled by authors whereas third dataset (US airline) is pub-
licly available. Table 2 describes the tweets distribution of each dataset.

US airlines dataset is publicly available at the Kaggle Datasets originally
released by CrowdFlower. It consist of 14,640 tweets related to six major US air-
lines. We filterd out and extracted 11,541 tweets with positive and negative lales
only. Furthermore, we have Three Airlines dataset consist of 16,454 tweets
related to Cathay Pacific, United airline and Singapore airline and annotated
positive and negative. In addition to US airline and Three airline datasets, we
have also used Emirates airlines dataset. It consist of 22,172 and contains
tweets related to Emirates airline. The labeling of Three Airline dataset and
Emirtes airline dataset are based on guideline by Mohammad et al. [16].

Table 2. Tweets distribution in each dataset

Dataset name Positive tweets Negative tweets Total tweets

US Airlines 2363 9178 11541

Three Airlines 11670 4784 16454

Emirates 17860 4312 22172

3.2 Pre-processing

In this paper, we improved our proposed pre-processing method in our previous
work [18] where we consider the noise from unstructured and informal tweets
through correction of spelling mistakes. We further performed sentiment aware
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tokenization (using Potts’s tokenizer1) i.e. replacing slang words or emotions
with possible word and word segmentation of hashtag words. As a results of
our pre-processing, we are not only able to capture the basic sentiment related
expressions but also able to identify recently used expressions and slangs. In order
to correct spell mistake we used Norivig’s spell correction technique. Finally, the
word segmentation is performed to separate the words in hashtags followed by
normalization of all words, removal of punctuation marks, stops words, mentions
(@), URLs and special characters.

3.3 Performance Evaluation

Baselines: As a baseline, we compared our proposed model with classic words
representation, continuous words representation models and finally, hybrid and
sentiment specific words representation models. To be precise, we compared the
performance of our model with method proposed by Gao et al. [7] and da Silva
et al. [5] where they used weighted word representations TF-IDF with differ-
ent traditional machine learning based classifiers. From continuous word rep-
resentation models, we compared our model with (i) deep convolutional neu-
ral network2 (DCNN) where they used GloVe for word representations [10]
and (ii) CharSCNN/SCNN3 [6] utilized character embedding (CharSCNN) and
Word2Vec (SCNN) for initializing embedding where resulting embeddings are
fed to deep neural networks. Melamud et al. [14] proposed context2Vec to gen-
erate context dependent representations. Context2Vec utilizes representations
from final layer of the model which essentially leave out information from the
lower layers And from the hybrid and sentiment specific word models, We also
compared the performance our our proposed model with hybrid word represen-
tation model like hybrid ranking [27] (HyRank4) and sentiment specific word
representation models like refined embeddings Re(*) [29]. Finally, performance
of our model was also compared with improved word vectors (IWV) [21] and
in last compared the results with our DICE model aswell. We selected those
methods because they are the state-of-the-art ones and based on the conducted
meta-analysis they exhibit the highest accuracy among the techniques developed
so far.

Results: Accuracy results of our model are given in Table 3. As we can see that
the accuracy of our model is better than existing methods for sentiment analysis
when testing them on three, airline related Twitter datasets. The reasons why our
model achieved better results as compared to others are as follows (i) we improve
the quality of text by removing noise, learning sentiment aware tokenization and
correcting spelling mistakes etc, which helps to learn better representation, and
(ii) it hanldes the language ambuiguites by capturing deeper relationships within
1 http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py.
2 https://nlp.stanford.edu/projects/glove/.
3 https://code.google.com/archive/p/word2vec/.
4 http://ir.hit.edu.cn/dytang/.

http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
http://ir.hit.edu.cn/dytang/
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Table 3. Comparison of the proposed model

Model\Dataset US Airlies Three Airlines Emirates

TF-IDF SVM .792 .781 .808

TF-IDF NB .831 .836 .827

TF-IDF DT .861 .853 .876

TF-IDF RF .871 .874 .901

Lexicon Based Classifier .624 .715 .691

Deep Convolutional Neural Network .839 .846 .853

Character embedding w/ CNN .865 .862 .875

Word2Vec Embedding w/ CNN .836 .842 .861

Context2Vec .841 .839 .85

Hybrid Rank embedding .848 .846 .868

Refined Word2vec embedding .853 .852 .872

Refined GloVe embedding .860 .859 .875

Improved word vectors w/ BiLSTM .884 .875 .890

DICE .936 .931 .939

Proposed .942 .939 .945

the text. Unlike Word2Vec, GloVe and Fasttext which can not handle words with
different meanings in the context (polysemy) whereas our proposed model can
capture it. Along with polysemy, our model can also handle the OOV issues and
have sentiment knowledge of words which other hybrid model like IMV, Refined
embedding, HyRank and DICE fails to capture. Specifically, our proposed model
learns high quality representations by adding polysemy, OOV words, sentiment
knowledge of words, semantics and syntactical information of words which helps
to get better classification results and can be considered as robust solution for
sentiment analysis problem.

4 Conclusion

In this paper, we proposed a Hybrid Words Representation model, which han-
dles language complexities for machines within the noisy tweet context. The
proposed method handles the issues of polysemy, OOV words, semantics, sen-
timent and syntax within the tweet context by learning representations from
five different embeddings and our pre-processor improves the quality of tweets
by removing the noise of informal and unstructured tweets. The experiment
shows that our model outperforms different baselines based on traditional word
embeddings, contextual, hybrid and sentiment specific word embeddings for sen-
timent analysis. In future, we plan to explore different ways to incorporate more
data characteristics, handle other language complexities and apply our model on
different domains.
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Abstract. Recent studies have shown that contextualized word rep-
resentation models are effective on a variety of NLP tasks. However,
how these models encode information into representations is not yet well
understood because of the insufficient lack of analysis methodologies.
To shed light on the behavior of these models, we explore the variation
property of word representations produced by the ELMo encoder. More
specifically, we analyze how the linguistic, statistical, and semantic fea-
tures of each word are associated with the variation of its representations.
We find that lexical category, word position, the diversity of the con-
texts, and the diversity of the word senses are the features most closely
associated with variation, although the entanglement of word senses in
the representation space is also important. In addition, detailed analy-
sis using a randomized ELMo encoder indicates that the word position
effect is not a characteristic acquired through the pre-training process
but an inductive bias that arises from the ELMo encoder architecture.

Keywords: Representation learning · Contextualized word
representation · Analytical study · ELMo

1 Introduction

Contextualized word representation (CWR) models, also known as contextual-
ized encoders, are statistical models that transform each word into a vector by
taking the entire words in a sentence as input. This is a clear contrast to tra-
ditional static word representation models, which assign a fixed vector to each
word regardless of the rest of the sentence. A recent line of works have empiri-
cally demonstrated that the CWRs that are trained with large scale corpus using
language modeling as a pre-training task such as ELMo [1], BERT [2], and GPT
[3], is crucially effective for improving the performance onf a wide range of NLP
tasks. Consequently, contextualized encoders are not only becoming a key com-
ponent of NLP models but are also attracting much attention from researchers,
who look to either improve their performance or analyze the mechanisms behind
their effectiveness.

The effectiveness of CWRs compared with that of static word representations
indicate that contextualized encoders somehow capture useful features that are
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 393–405, 2019.
https://doi.org/10.1007/978-3-030-35288-2_32
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originally represented as the context (surrounding words) of each word. “Prob-
ing” is a common approach for analyzing what type of information is encoded
in word representations [4]. In this approach, a specific NLP task (e.g., part-
of-speech tagging) is typically used as a testbed to evaluate how well it can be
predicted using word representations as an input of a classifier, which is trained
in a supervised manner. If the performance of the classifier for the task is good,
we can argue that a piece of information that is closely related to the target NLP
task is embedded in the word representations. A line of research has revealed
that linguistic, syntactic, and semantic information can be encoded in CWRs
in a convincing manner using carefully designed probing tasks in a convincing
manner [5–8].

Previous researchers have already analyzed what is in the CWRs. Now, the
next question should be how contextualized encoders encode this information
into word representations, because knowing and understanding the behavior of
the model is considered to be essential for the development of better methodolo-
gies. Unfortunately, analyzing the behavior of contextualized encoders is much
more complicated than exploring what is in CWRs because recent models are
built on top of deep neural networks, sometimes referred to as “black boxes” [9].
With this in mind, we adopt a simple approach; analyze what word properties
affect the variation of the CWRs. The premise behind our analysis is that vari-
ation of the representations should be associated with the information that the
contextualized encoder encodes. For a specific word, we can quantify to what
extent its representation changes depending on the sentence in which it appears
by aggregating the sentences in the corpus. Does the scale of the variation differ
among words? If it does, what factors or attributes explain the magnitude of
these fluctuations? According to the findings of previous probing studies, these
plausible explanatory factors should be lexical and contextual properties. How-
ever, to the best of our knowledge, no previous studies focused on the variation
property.

For these reasons, we analyze which features affect the variation property of
CWRs. In concrete terms, we analyze the mutual dependence and correlation
between the lexical, statistical, and semantic features and the variance of CWRs.
Our final goal is to reason the governing factor of the variation based on our
analysis results. Our study provides some interesting insight:

– Association measures, such as mutual information and rank correlation, indi-
cate that lexical category, word position, the diversity of the contexts, and
the diversity of the word senses are closely associated with the variance of
CWRs.

– The entanglement of word senses in representation space, which is quantified
using the soft nearest neighbor loss, also plays an important role in enhancing
the connection between the diversity of the word senses and the variance.

– Because of the word position effect, words that mostly appear at the beginning
or end of sentences, i.e., title-cased words, exhibit a much smaller variance.
The results of an ablation study using randomized ELMo strongly indicates
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that position awareness is not a characteristic acquired through pre-training
but an inductive bias of the recurrent architecture of the ELMo encoder.

2 Methodology

In this section, we explain the details of the methodology we employed to carry
out a feature analysis on the variation of CWRs. First, we select a contextualized
encoder that we are interested in. Secondly, we define the variation metric which
is applied to the CWRs. Thirdly, we introduce a set of features that reflect
the lexical, statistical, and semantic properties of each word. Finally, we define
association measures that quantify the mutual relatedness between the word
features and the variation of the CWRs.

2.1 Contextualized Encoders

In this research, we explore the behavior of the ELMo encoder1 [1], which is
one of the various recently proposed contextual encoders, because ELMo is rec-
ommended to use as a feature extractor for downstream tasks, whereas other
contextualized encoders, such as BERT, is encouraged to fine-tune for specific
tasks. This means that the properties of the CWRs encoded by ELMo directly
affect their practical application and thus strengthen the practical interest. We
leave the exploration of other contextualized encoders, such as BERT and GPT,
for future work.

2.2 Variance of the CWRs

We assume that the empirical distribution of the contextualized representation of
a specific word w in the D-dimensional space can be approximated by a Gaussian
distribution, whose mean and covariance are µ(w) and Σ(w), respectively. Under
this assumption, we define the variance of the CWR of a specific word νw as the
geometric mean of the diagonal elements of the covariance matrix Σ(w), where

νw =

(
D∏

d=1

Σ(w)
d,d

) 1
D

(1)

Σ(w) =
1

|Sw|
∑
s∈Sw

g(w; s)g(w; s)T − µ(w)µ(w)T (2)

g(w; s) =
1
3

3∑
l=1

ELMol(w; s) (3)

Here, Sw represents the set of sentences that contain a specific word w in the
corpus and ELMol(w; s) represents the output of the l-th layer of the ELMo
encoder, where a word w in a sentence s is encoded.
1 We obtain the pre-trained model that was pre-trained on a dataset with 5.5B tokens

from the author’s website at https://allennlp.org/elmo.

https://allennlp.org/elmo
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Table 1. Summary of the lexical, statistical, and semantic features and their definitions

Type Feature Description Corpus

Lexical PoS Most frequently assigned part-of-speech tag UMBC, SemCor

PoS-entropy Diversity of the assigned part-of-speech tags

Statisticallog-freq Logarithm of the word occurrence UMBC

context-entropy Diversity of the co-occurring words in the context window

position-mean Average of the relative position in a sentence

position-stdev Standard deviation of the relative position in a sentence

Semantic Sense-count Cardinality of the annotated word senses in the corpus SemCor

sense-entropy Diversity of the annotated word senses in the corpus

sense-snnl Entanglement measure of word senses in representation space

adj-sense-entropyDiversity of the word senses adjusted by the sense-snnl

The ELMo encoder has three layers: two LSTM layers on top of the context-
independent character CNN layer. This naturally leads to the arbitrary choice
of a pooling function. We follow the standard usage of the ELMo encoder and
employ a simple average of all the ELMo layers, as defined in Eq. 3.2

2.3 Features

In this study, we distinguish words by their surface form, which means different
capitalizations or forms will be considered as different words. Considering this,
we assign ten features to each word: two lexical features, four statistical features,
and four semantic features. Table 1 shows a summary of these ten features.

For the lexical features, we introduce PoS and PoS-entropy. PoS is the most
frequently assigned part-of-speech tag in the corpus. Similarly, PoS-entropy is
the entropy of the frequency distribution of the assigned part-of-speech tag in
the corpus.

For the statistical features, we introduce log-freq, context-entropy, position-
mean, and position-stdev. These features are summary statistics that are com-
puted solely based on the corpus. log-freq is the logarithm of the number of
occurrences. context-entropy is the entropy of the frequency distribution of
the co-occurring words within the context window. More specifically, we use a
context window size of 5, and we also count the occurrences of special tokens <s>
and </s>, which represent the beginning and end of the sentence, mainly to make
the feature consistent with the pre-processing methodology of the ELMo encoder.
position-mean is the average of the relative position within a sentence. The
beginning and end of a sentence are represented as 0 and 1, respectively. Simi-
larly, position-stdev is the standard deviation of the relative position within a
sentence.

For the semantic features, we introduce sense-count, sense-entropy, sense-
snnl, and adj-sense-entropy. These features are calculated using the word sense
2 We conducted a preliminary experiment to investigate which pooling function max-

imizes the mutual information between the variance and a subset of features. The
results showed that a simple average of all the ELMo layers achieved the highest
mutual information, which indicates that our methodology is reasonable.
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annotated corpus. sense-count is the cardinality of the word senses annotated
in the corpus. Similarly, sense-entropy is the entropy of the frequency distri-
bution of the annotated word senses.

sense-snnl is the entanglement measure of the word senses in representation
space. More specifically, it is the soft nearest neighbor loss [10], which we measure
as how close the CWR pairs for the same word sense are and how distant the
CWR pairs for the different word senses are. Let the collection of the CWR and
annotated word sense pairs of a specific word be {xi, yi}ni=1, then the sense-snnl
of a word lsnnl(.) is

lsnnl({xi, yi}ni=1;T ) =
1
n

n∑
i=1

{
log

∑
j �=i

yj=yi

exp
(

−||xi − xj ||2
T

)

− log
∑
k �=i

exp
(

−||xi − xk||2
T

)}
,

(4)

where T is the annealing temperature.3

adj-sense-entropy is the sense-entropy subtracted by sense-snnl. Our moti-
vation for introducing this metric can be explained as follows. Intuitively, we
expect a positive correlation between the variance of the CWRs and the diver-
sity of the word senses as long as the word senses are reflected on the CWRs.
Because sense-entropy and sense-snnl should respectively capture the former
and latter properties independently, we also expect that the difference between
these two metrics will act as the diversity of the word senses adjusted by the
entanglement of the word senses in representation space.

2.4 Datasets

We use two datasets (corpora) in our experiment; namely, the UMBC corpus
[11] as a large-scale text corpus and the SemCor dataset [12] as a word sense-
annotated corpus. For the calculation of the lexical and statistical features, we
use the 3-billion-word UMBC corpus as a dataset, which is a large-scale collection
of paragraphs extracted from the web. We obtain the tokenized version that
is available at the SemEval-2018 Task 9: Hypernym Discovery task,4 and we
use the spaCy tokenizer to assign the part-of-speech tags.5 Note that we limit
the vocabulary to words that occur 100 times or more in the corpus in order
to decrease the effect of the estimation error. It results in approximately 205
thousand words.

For the calculation of the semantic features, we use the SemCor dataset,
which is the manually annotated word sense corpus that contains about 33 K
senses in total. More specifically, we use the curated version that was published
3 We use T = 30 in our experiment.
4 Available at: https://competitions.codalab.org/competitions/17119.
5 We use spaCy version 2.1.0 with en core web sm model available at: https://spacy.

io.

https://competitions.codalab.org/competitions/17119
https://spacy.io
https://spacy.io
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by Raganato et al. [13]. We also calculated the PoS feature to allow for making
a comparison between the semantic features and lexical feature in a relative
manner. To calculate the PoS feature, we use the originally annotated part-of-
speech tags as provided. Finally, similarly to the lexical and statistic features,
we limit the vocabulary to words that occur 50 times or more in the dataset,
which results in 673 words.

2.5 Association Measures

We apply quantitative and visualization methodologies to investigate the effect
of each feature on the variation of the CWRs. More specifically, to perform a
quantitative analysis, we employ three metrics to quantify the degree of the
association between the variance and the features: Spearman’s rank correlation
ρ(X,Y ), mutual information I(X;Y ), and the mutual information of feature
pairs I(X;Y,Z), where X is the variance that is defined in Eq. 1 and Y,Z are
two of the features that are introduced in Sect. 2.3. Whereas Spearman’s rank
correlation captures the nonlinear correlation, mutual information captures the
dependence on one feature or a pair of features.

We estimate the mutual information I(X;Y ) using the Scikit-learn function
mutual information regression. We also estimate the mutual information of
feature pairs I(X;Y,Z) by decomposing it into the plain mutual information
and conditional mutual information using the chain rule:

I(X;Y,Z) = I(X;Z) + I(X;Y |Z) (5)

I(X;Y |Z) ≈
∑
z

I(X;Y |Z = z)p̂(z) (6)

where p̂(z) is the empirical distribution of variable Z. When Z is a continuous
variable, we convert it into a categorical variable beforehand using K-means
clustering with a cluster size of 100.

3 Experimental Results

3.1 Lexical and Statistical Features

In this section, we focus on the experimental results of the lexical and statistical
features that are computed on the UMBC corpus.

Table 2 shows the mutual information I(X;Y ) and Spearman’s rank corre-
lation ρ(X,Y ) of each feature. Among the six features, PoS, position-mean, and
position-stdev yield a relatively high mutual information compared with log-freq
and PoS-entropy. We also find that the rank correlations of context-entropy and
position-stdev are approximately 0.4, which indicates that these two features
have a positive correlation to variance.

Table 3 shows the mutual information of the feature pairs I(X;Y,Z). The
feature pairs comprising PoS, context-entropy, position-mean, and position-stdev
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Table 2. Mutual information and Spearman’s rank correlation of the lexical and sta-
tistical features

Type Feature name I(X; Y ) ρ(X, Y )

Lexical PoS 0.196 -

PoS-entropy 0.025 −0.152

Statistical log-freq 0.028 0.200

context-entropy 0.091 0.334

position-mean 0.221 −0.189

Position-stdev 0.200 0.410

Table 3. Mutual information of the feature pairs I(X; Y, Z)

Feature Y \ Z PoS PoS-entropy log-freq context-entropy position-mean position-stdev

PoS 0.196 0.234 0.292 0.386 0.362 0.334

PoS-entropy - 0.025 0.073 0.134 0.250 0.236

log-freq - - 0.028 0.132 0.287 0.266

context-entropy - - - 0.091 0.329 0.331

position-mean - - - - 0.221 0.291

position-stdev - - - - - 0.200

yield a relatively high mutual information out of all the possible feature pairs.
More specifically, the {PoS, context-entropy} pair and the {PoS, position-mean}
pair yield the highest values.

Followed by the quantitative results, we visualize the interaction between the
most effective features: PoS, context-entropy, and position-mean. Figure 1 shows
a box plot of the variance of each PoS group. It shows that numerals, proper
nouns, and adverbs (NUM, PROPN, ADV) have the largest variance, whereas inter-
jections, determiners, and auxiliary verbs (INTJ, DET, AUX) have the smallest
variance. We also verify that the difference between the PoS groups are statis-
tically significant.6

Figure 2 (left) shows a box plot of the variance of each interval of the position-
mean grouped by PoS. As we see the inverted U-shaped figures, the results clearly
show that words that frequently appear at the beginning or end of sentences have
a smaller variance for most part-of-speech tags. Similarly, Fig. 2 (right) shows a
scatter plot of the variance versus context-entropy grouped by PoS. This plot
shows that there is a correlation between the context-entropy and the variance
and that the correlation values differ among the various part-of-speech tags.

These experimental results indicate the following properties of the lexical
and statistical features. First, part-of-speech type, contextual diversity, and word
position are the features most closely related to the variation of the represen-
tations. Secondly, the scale of the variation differs among the different part-of-

6 The hypothesis that the median of the variance is the same for all groups was tested
using Kruskal–Wallis Test, for which we obtained a p-value of 0.000.
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Fig. 1. Differences in the variance for the part-of-speech tags

Table 4. Mutual information and Spearman’s rank correlation of the semantic features

Type Feature name I(X; Y ) ρ(X, Y )

Lexical PoS (reference) 0.233 -

Semantic sense-count 0.063 0.198

sense-entropy 0.096 0.199

sense-snnl 0.064 0.131

adj-sense-entropy 0.172 0.444

speech types. Thirdly, contextual diversity and the variation of the representa-
tions have a positive correlation. In other words, words that co-occur with a
wide variety of context words tend to have larger variation compared with those
that occur in a specific context. Lastly, average word position captures a special
effect at either end of sentences. More concretely, words that frequently appear
at the beginning or end of the sentence have a smaller variation.

3.2 Semantic Features

In this section, we focus on the experimental results of the semantic features,
which are computed on the SemCor dataset.

Table 4 shows the mutual information I(X;Y ) and Spearman’s rank correla-
tion ρ(X,Y ) of each features. Out of the four features, adj-sense-entropy yields
the largest values for both mutual information and correlation, and all semantic
features yield a positive correlation. We also find that the mutual information
of PoS exceeds that of all other semantic features. These numbers show that
the adjustment made using sense-snnl enhances the association of the variance
when using sense-entropy.

These experimental results indicate the following properties of the semantic
features. First, the higher the diversity of the word senses tends to be, the larger



Variation Property of CWRs 401

Fig. 2. Interaction between PoS, context-entropy, and position-mean

the scale of the variation of the CWRs is. Secondly, the adjustments made using
the degree of the entanglement of word senses in the representation space enhance
the dependence and correlation between the diversity measure of the word senses
and the scale of variation. The association between the word senses and CWRs
is consistent with the findings of (Peters et al. [1]) indicating that CWRs can be
used to make predictions for a word sense disambiguation task.

4 Analysis

We reported several experimental results in the previous section. More specifi-
cally, we found that the part-of-speech tags, word positions, the diversity of the
surrounding words, and the diversity of the word senses are the most closely
associated with the variation of CWRs. In this section, we discuss the validity
of these findings and the source of some properties.

4.1 Words with Large or Small Variance

In Table 5, we examine some of the top-10 and bottom-10 words for each part-of-
speech tag category after sorting from largest to smallest variation, according to
the variance variable estimated using the UMBC corpus, along with the mean
of the variation in each word group7. For most part-of-speech tags, the mean of
the variation of the top-10 words is two to ten times larger than that for the
bottom-10 words, which should be large enough difference for comparing two
groups.
7 We excluded words that appeared less than ten thousand times in the corpus and

also omitted the part-of-speech tags that did not have a vocabulary size large enough.
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Table 5. Words with large variance (right) and words with small variance (left) for
each part-of-speech tag. Note that these words are case sensitive.

Part-of
-speech

Smallest variance words Largest variance words
Words Variance Words Variance

ADJ Prerequisite, Such, Many, Numerous, Several, Contrary 0.0054 seventh, long, 9th, sixth, 12th, 7th, 5th, 8th, 6th 0.0488
ADP Although, Despite, Unlike, Though, Whilst, During 0.0039 vs., Against, of, up, versus, out, en, over, off, per 0.0464
ADV Additionally, However, Furthermore, Consequently 0.0027 far, much, only, heavily, materially, most, ever 0.0451
CCONJ But, Yet, Nor, And, Either, Or, Plus, but, neither 0.0162 &, or, +, and, and/or, nor, AND, either, OR 0.0475
DET These, Each, Some, Both, Those, This, Another 0.0053 all, the, another, no, any, a, both, this, an, some 0.0388
NOUN Prerequisites, Examples, Anyone, Others, Thousands 0.0066 age, heart, 13th, half, 11th, R, stem, strip 0.0448
NUM One, Twenty, Two, 1920s, set-up, Three, pop-up, 2020 0.0207 11, 14, 13, 16, 19, 22, 26, 23, 17, 49 0.0517
PRON They, She, There, We, It, Whatever, Its, Their, He 0.0056 his, its, her, their, himself, it, herself, Me, my 0.0382
PROPN MR., DR., Sec, Br, Inc, Abstract, Footnote, Fig. 0.0107 de, S., F., D., E., Trade, W., L., Space, G. 0.0615
PUNCT ., ...., ....., ?, !!, !, ..., .3, .2, } 0.0166 -, (, , [, ,, ”, , ”, ], 0.0380
VERB Depending, Assuming, Posted, According, Founded 0.0049 Left, left, leading, striking, known, passing 0.0429
AUX Would, Could, Should, Must, Can, MUST, SHOULD 0.0162 Ca, Will, would, can, could, will, might, shall 0.0275
X etc, etc., , ie, priori, i.e., vitro, se, , hoc 0.0240 la, v, k, <, ex, th, >, facto, z, f 0.0377
INTJ Id, Please, Tr, Anyway, Okay, Sorry, Sure, Yeah, Well 0.0079 O, ha, yes, id, please, oh, Ah, Hey, yeah, Yes 0.0195

A distinct trend observed is that almost all of the words with small variance
are title-cased, which is much less often the case for words with a large variance,
except for proper nouns (PROPN in the table). Another trend that is observed
that, for words that belong to the punctuation category (PUNCT in the table),
sentence-delimiter symbols, such as the period and the exclamation mark, appear
in the small variance group, whereas non-sentence-delimiter symbols, such as
brackets and quotation marks, appear in the large variance group. In summary,
we can conclude that words/symbols that appear in the small variance groups
are those that frequently appear at the beginning or at the end of sentences,
which is consistent with the word position effect that we reported in Sect. 3.1.

4.2 Cause of the Positional Effect

Our experimental and analysis results indicate that the ELMo encoder is a
position-aware model in terms of the variation of the representations. This is
particularly evident at the beginning and end of sentences, which correspond
with a decrease in the variation. The plausible explanations of the cause of
this behavior are two-fold: the so-called “inductive bias” and the characteristics
acquired through the pre-training process. More concretely, the first one corre-
sponds to the recurrent architecture of the LSTM layers, and the second one
corresponds to the language modeling task trained using left-to-right and right-
to-left directions independently. In this section, we investigate which explanation
is more plausible by conducting a feature analysis using randomized ELMo in
the same manner as the original ELMo.

Randomized ELMo [7] is a pre-trained ELMo model in which all weights
above the lexical layer, i.e., all weights in the LSTM layers, are replaced with
random values.8 Intuitively, randomized ELMo is a contextualized encoder that
forgets how to process the surrounding words into the representations, which is
acquired through language modeling task.
8 We overwrite all linear transformation matrices in the LSTM layers using Glorot

initialization [14].
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Table 6. Comparison between the results for the randomized and original ELMo

Type Feature name I(X; Y ) ρ(X, Y )

Original Randomized Original Randomized

Lexical PoS 0.196 0.345 - -

PoS-entropy 0.025 0.029 −0.152 −0.013

Statistical log-freq 0.028 0.018 0.200 −0.047

context-entropy 0.091 0.050 0.334 0.026

position-mean 0.221 0.388 −0.189 −0.521

position-stdev 0.200 0.810 0.410 0.877

Table 6 shows the mutual information I(X;Y ) and Spearman’s rank corre-
lation ρ(X,Y ) of the lexical and statistical features obtained using the original
and randomized ELMo models. These results show that the randomized ELMo
model yields higher values for the positional features, such as position-mean and
position-stdev, whereas the original ELMo yields higher values for the context
diversity features, such as context-entropy for both metrics. It is noteworthy that
context-entropy is no longer correlated in the case of randomized ELMo.

The contrast between the two ELMo models strongly suggests that position
awareness is not a characteristic acquired through the pre-training process but
the inductive bias of the recurrent architecture. Or rather, pre-training seems to
reduce position awareness and enhance the effect of the surrounding words so
that the model can capture the meaningful contextual information.

5 Conclusion

We study word attributes that are considered to be associated with the varia-
tion property of contextualized word representations, namely the outputs of the
ELMo encoder. Features that reflect lexical, statistical, and semantic properties
are used to quantitatively and qualitatively analyze their dependence and cor-
relation on the variance of the word representations. Among these features, our
experimental results show that the lexical category, word position, the diversity
of the contexts, and the diversity of the word senses are most closely associated
with the variance of CWRs. We also reveal that the entanglement of word senses
in representation space is an important property for enhancing the relationship
between the diversity of the word senses and the variance. In addition, our analy-
sis strongly indicates that the word position effect, which is evident among words
that appear mostly at the beginning and end of sentences, is not caused by the
pre-training process but by the inductive bias of the ELMo encoder architecture.

Intuitively, word representations with a large variance may suffer from fine-
tuning on downstream tasks if variance acts as a noisy input. Considering this
issue, we will investigate the effects of the variation property on downstream
tasks and compare different contextualized encoder models in future works.
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Abstract. Within the domain of biomedical natural language process-
ing (bioNLP), researchers have used many token features for machine
learning models. With recent progress in word embeddings algorithms,
it is no longer clear if most of these features are still useful. In this
paper we survey the features which have been used in bioNLP, and eval-
uate each feature’s utility in a sample bioNLP task: the N2C2 2018
named entity recognition challenge. The features we test include two
types of word embeddings, syntactic, lexical, and orthographic features,
character-embeddings, and clustering and distributional word represen-
tations. We find that using fastText word embeddings results in a signif-
icantly higher F1 score than using any other individual feature (0.9142
compared to 0.8750 for the next-best feature). Furthermore, we con-
ducted several experiments using combinations of features, and found
that all tested combinations attained a lower F1 score than using word
embeddings only. This indicates that supplementing word embeddings
with additional features is not beneficial, and may even be detrimental.

Keywords: Natural language processing · Biomedical NLP · Word
embeddings · Feature importance · Named entity recognition

1 Introduction

To achieve biomedical natural language processing (biomedical NLP, or bioNLP)
tasks, such as summarising clinical narratives, question answering about patient
history, and extracting relations between entities in a health records, many fea-
tures are conceivably useful1 For a given token, an algorithm might benefit from
any of the following: the syntactic properties of the token, whether the token
names a known drug or disease, the orthographic properties of the token, which
other tokens tend to co-occur with the token, and so on. At various times, bioNLP
researchers have used many features which attempted to capture this kind of
information. However with recent advances in word embedding algorithms, it is
now conceivable that all previously employed features are now obsolete. Word
1 Our code is available at https://github.com/lajesticvantrashell/N2C2 2018 track 2.
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embeddings are mappings from tokens to fixed dimensional vectors. The map-
pings should ideally reflect semantic or syntactic information about tokens, so
that the vector corresponding to “king” should be similar to that of “monarch”.
Current word embeddings can take into account semantic, syntactic, morpho-
logical [1], and even contextual information [15] about tokens, and have been
used to achieve state of the art in several tasks [15]. If it could in fact be verified
that current word embedding algorithms render other token features moot, this
would be very valuable knowledge for bioNLP researchers. It would simplify the
feature engineering task to merely finding the best word embedding.

As a first step towards investigating whether current word embedding tech-
niques obviates the use of other features, we investigate the utility of com-
mon bioNLP features in Track 2 of the 2018 National NLP Clinical Challenges
(N2C2). This is a named entity recognition (NER) task, in which entities in free
medical text relating to drugs and adverse drug events (ADEs) must be anno-
tated. An adverse drug event is defined as an “adverse outcome that occurs while
a patient is taking a drug” [5]. Because NER is one of the simplest NLP tasks,
this challenge is a natural first domain to investigate feature importance. Our
contributions are two-fold. First, we provide a survey of the main features used
in bioNLP, with implementations of each feature in our accompanying code. Sec-
ondly, we have conducted a feature importance study in which we trained and
tested a simple neural network model using each of these features individually
on the N2C2 2018 NER challenge. We found that word embeddings produced a
significantly higher precision, recall, and F1 score than any other feature (F1 of
0.9142 compared to 0.8750 for the next-best feature). We also evaluated several
sets of features, and found that supplementing word embeddings with additional
features is not beneficial.

This paper is organised as follows. Section 2 discusses related work. Section 3
gives details of our feature importance study method. Section 4 describes the
features we use in detail. Section 5 describes the results of our experiments.
Section 6 concludes this investigation.

2 Related Work

Many feature engineering or feature importance experiments have been done in
the bioNLP domain which used word embeddings. Tang et al. compared several
types of word representation features on bioNLP tasks, including Brown clusters,
word embeddings, and random indexing [18]. None of these representations was
clearly superior to the others, but the combination of all three produced the
best results. Liu et al. found that a word embedding feature could achieve better
results at drug NER than a traditional drug lexicon-based system [11]. However,
the combination of lexical and word embedding features did better than both and
achieved state of the art results. Recently, Chen et al. developed an ADE NER
system which benefited from lexical features [4]. Much of this research suggests
that although word embeddings are useful features, the combination of word
embeddings with other conventional features tends to produce the best results.
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However, word embedding algorithms have improved significantly since these
previous studies were conducted, and it is worth re-examining their conclusions.

Some work has also been done on the best approach to employing word
embeddings for bioNLP tasks. Muneeb et al. evaluated different word embedding
algorithms on semantic similarity and relatedness tasks in a biomedical context
[13], finding that the skipgram implementation of the word2vec was the most
accurate. Wang et al. [20] and Wu et al. [23] both compared the performance
of word embeddings trained on biomedical corpora versus general corpora on
downstream bioNLP tasks. In general, word embeddings trained on biomedical
corpora outperformed those trained on general corpora.

It is worth noting that in most actual biomedical NLP applications rule-based
systems still dominate [21]. However, given the significant role of neural networks
and word embeddings in state-of-the-art natural language processing [12,15],
this seems likely to change in the future. We therefore focus on neural network
models.

3 Feature Importance Experiment Methodology

Our feature importance study began by dividing the official N2C2 2018 Track
2 training dataset into a training/validation/development partition, which was
fixed throughout the study. Then, for each feature we describe in Sect. 4, we
trained a simple neural network model on the training set using only that feature,
and report the lenient precision, recall, and micro F1 score of the model on the
development set. We also performed a single evaluation of our best feature set
on the official N2C2 test set, so that our results could be compared to the official
competition outcomes.

3.1 Model Architecture

Because we were primarily interested in studying feature importance, and not
creating the most accurate model possible, we elected to use a very simple neural
network model for our experiments. However, preliminary experiments with more
complex neural network architectures showed no discernible difference in F1

score. The text was processed in windows of tokens. The features for each token
were generated and then concatenated into a single vector per token. These
vectors were then fed into a bidirectional LSTM (bi-LSTM). A dense layer with
softmax activation then predicted token labels from the bi-LSTM outputs. This
simple architecture is illustrated in Fig. 1 and was implemented in Keras with
Tensorflow backend.

A dropout rate of 0.3 was used between layers. In each experiment the model
was trained using the Nesterov ADAM optimiser with a batch size of 128. The
models were trained for 40 epochs, using early stopping with a patience of 5
epochs. The classification error was given by categorical cross entropy.

We did not perform a formal hyperparameter optimisation for this archi-
tecture. However, preliminary testing indicated that the following were sensible
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options: a token window size of 128, and a latent dimension for the bi-LSTM of
128. At training time the token window had a slide of 32, at test time it was
equal to the window size.

Fig. 1. Our architecture.

Table 1. Effect of training cor-
pora on fastText.

Corpus Prec. Recall F1

Wikipedia 0.9200 0.8472 0.8821

Pubmed 0.9085 0.8681 0.8878

Wiki-news 0.9354 0.8467 0.8889

PMC 0.9312 0.8742 0.9018

MIMIC 0.9353 0.8764 0.9049

Combined 0.9353 0.8941 0.9142

Table 2. Effect of cluster num-
ber on Brown clustering.

#Clusters Prec. Recall F1

100 0.8933 0.7119 0.7923

200 0.8883 0.7772 0.8290

500 0.9079 0.7824 0.8405

1000 0.9086 0.8231 0.8638

3.2 Dataset

Our models were evaluated using a dataset of nearly 505 clinical narratives pro-
vided by Track 2 of the 2018 National NLP Clinical Challenges (N2C2)2. The
N2C2 dataset is a drawn from the MIMIC-III (Medical Information Mart for
Intensive Care III) database [7], with annotations added by domain experts.
The annotations consist of entity tags indicating the presence of drug and ADE
information. Specifically, the named entities for the N2C2 challenge are “Drug”,
“Reason”, “Strength”, “Frequency”, “ADE”, “Dosage”, “Duration”, “Form”
and “Route”.

We used BILOU segment representation for multi-token entities. Under
BILOU, for each named entity which spans multiple tokens, the beginning token
is labelled with a “B”, the last token with an “L”, and those tokens inside the
named entity (i.e., between the beginning and last token) with an “I”. Tokens
which are outside of all named entities are labelled with an “O”, and named
entities consisting of a single (unique) token are labelled “U”. So for example,
we get the following segment representation: “treated/O with/O vanc/U-Drug
for/O the/O septic/B-Reason left/I-Reason knee/L-Reason”.

For training certain features we also made use of the following biomedical
corpora. The MIMIC III dataset [7] contains de-identified information on 40,000

2 https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/.

https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/
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patient encounters in a critical care unit. We extracted the patient summaries
and used these to pre-train some of our features. The PubMed Central (PMC)
dataset is a repository of biomedical and life sciences journal literature. We down-
loaded a portion of the articles from the repository for Dec 2018 which contained
around 200K articles. The Pubmed dataset is a free search engine primarily
accessing the MEDLINE bibliographic database of life sciences and biomedical
information. We extracted over 200K articles and abstracts in a snapshot we
took by searching for relevant clinical articles or abstracts.

3.3 Evaluation

We evaluated the performance of our models using the official N2C2 track 2
evaluation script. The primary evaluation metric of the competition is lenient
micro F1 (henceforth simply “F1”), although we also report the precision and
recall. “Lenient” here meaning that any overlap in the predicted and true span
of a named entity is counted as a correct prediction.

The data is split into 303 official training documents and 202 official test
documents. Because we tested several models, to avoid overfitting to the test
data and positively biasing our F1 score, we further subdivided the training
data into training, validation, and development dataset, with an 8/1/1 split.
The validation set is used for early stopping, and the development set is used for
F1 score evaluation. As a final step in our experiments, we evaluated our most
accurate model (according to the development dataset) on the official test set.

4 Features

In this section we list all the features we experimented with in our experiments,
aggregated from the literatures on biomedical NLP [3,10,11,18], and general
NER [14]. First we considered word representation (WR) features, which can
be categorised as word embeddings, cluster-based representations, and distri-
butional representations. We employed two word embedding algorithms: fast-
Text [1] and ELMo [15]. We used Brown clustering as a cluster-based WR,
and random indexes as a distribution-based WR. In addition to WRs, we also
experimented with character-embedding features, orthographic features, lexical
features, and syntactic features.

4.1 FastText

FastText is a word embedding algorithm based on the skipgram model, primarily
distinguished from preceding word embedding algorithms in two ways: first, it’s
computationally much more efficient, and secondly, it generates embeddings at
the character n-gram model, as well as at the token level. This allows it to model
word morphology, and determine embeddings for tokens which did not appear
in the training data. For our experiments, we downloaded two pre-trained fast-
Text embeddings provided by the original authors. Both are trained on general
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corpora: the first on Wikipedia3, and the second on both Wikipedia and Google
News4. We also trained new embeddings on the biomedical corpora MIMIC-III,
Pubmed, PMC, and the combination of the three. The results of using fastText
embeddings trained on each of these corpora are given in Table 1.

4.2 ELMo

Embeddings from Language Models (ELMo) is a word embedding algorithm
which recently debuted by significantly improving the state of the art in six
difficult NLP tasks [15]. ELMo is a deep bidirectional language model (biLM),
meaning it is composed of several bi-LSTMs stacked on top of one another (imag-
ine Fig. 1 but with the bi-LSTM layer repeated several times). The final word
embedding for a token is a learned linear combination of all the LSTM states in
a vertical stack. This approach allows ELMo to resolve polysemy - words with
multiple meanings - by taking context into account. Due to resource constraints,
we did not fine tune ELMo to our task, and simply used out-of-the-box ELMo
with TensorFlow Hub5 to generate 1024-dimensional word embeddings for each
token.

4.3 Brown Clusters

Brown hierarchical word clustering is an algorithm designed to allocate classes
to tokens, such that the average mutual information between adjacent classes
in text is maximised [2]. Because the clustering is hierarchical, clusters may be
represented by binary strings denoting the binary tree traversal from the root
to the leaf representing the cluster. This is illustrated in Fig. 2, in which we can
see that “with” is more closely related to “between” than to “in”.

We ran an implementation of Brown clustering [9] over the pre-tokenised
MIMIC-III corpus. The number of clusters is a hyper-parameter to be tuned.
We considered four different numbers of clusters, and the results of each clus-
ter number are given in Table 2. 1000 clusters were best in our experiments.
Examples of the resulting clusters are shown in Table 4. The cluster feature is
zero-padded to a fixed length.

4.4 Random Indexing

Random indexing is a distributional word representation method, so tokens
which tend to co-occur in documents will have similar representations. Many
approaches to distributional word representation - such as latent semantic anal-
ysis - rely on a costly dimension reduction step, which must be repeated every
time the representation is updated with a new document. Random indexing gets
around this problem using the fact that random pairs of sparse, high-dimensional

3 https://fasttext.cc/docs/en/pretrained-vectors.html.
4 https://fasttext.cc/docs/en/english-vectors.html.
5 https://tfhub.dev/google/elmo/1.

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://tfhub.dev/google/elmo/1
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Fig. 2. Brown clusters illustration [18].

Table 3. Example of syntactic tags
produced by the Genia Tagger.

tokens POS chunk

The Determiner Noun phrase

patient Noun, singular Noun phrase

was Verb, past tense Verb phrase

tested Verb, past part Verb phrase

Table 4. Illustration of several features with the text “2.50 mg - Lasix”.

tokens jochem clusters shape short shape len title upper lower numeric symbol

2.50 False 11110101 0!00 0!0 4 False 0.00 0.00 0.75 0.25

mg True 1111011 xx x 2 False 0.00 1.00 0.00 0.00

– False 11110111101 ! ! 1 False 0.00 0.00 0.00 1.00

Lasix True 1111010000111 Xxxxx Xx 5 True 0.20 0.80 0.00 0.00

vectors are on average almost orthogonal. This allows a dimension-reduction
computation to be approximated by accumulating such vectors onto token rep-
resentations.

In particular, we adopted the random indexing method described in [16].
Each document Dj was initially assigned an n-dimensional index vector rj . Index
vectors are high dimensional and most elements are zero, with a few elements
being +1 or −1. Each element of the vector was given by

rj,i =
√
s

⎧
⎪⎨

⎪⎩

−1 with probability 1
2s

0 with probability 1 − 1
s

1 with probability 1
2s

(1)

The next step was to generate an n-dimensional context vector vk for each
token wk in the vocabulary. Initially, vk = 0, and then for each occurrence of
wk in Dj , rj was added to vk. In this case we chose n = 100, and s =

√
n = 10.

These values are indicated to be appropriate in [16]. We trained our random
index representation on MIMIC-III.

4.5 Character Embeddings

To capture morphological information about tokens, we used a character-level
token representation. Specifically, we used a neural network architecture called
CharWNN, which was introduced in [17]. CharWNN produces a representation
of each token by convolving over a sequence of character embeddings, and then
taking the maximum value at each index of the resulting vectors. We omit the
mathematical details here, but we use the same architecture and hyperparame-
ters as [17].
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4.6 Lexical Features

Following [11], we checked each token against three popular drug lexica:
drugs@FDA6, DrugBank (version 5.1.2, released 2018-12-20) [22], and Jochem
(Erasmus ontollogy) [6]. Each lexicon has a corresponding binary feature, where
a value of 1 indicates that the token is present in the lexicon, and 0 indicates
it is not. Examples of this token can be seen in Table 4. Each of the entries
in these lexica were preprocessed as follows. The entries were tokenised using
Spacy, and then each token was lower-cased and stemmed. Any tokens with
no alphabetic characters were removed. With this process, 6799 tokens were
extracted from drugs@FDA, 14317 tokens were extracted from the ‘drug name’
and ‘active ingredients’ columns of the Drugbank database, and 941334 tokens
were extracted from Jochem. In addition to a binary feature for each lexicon, we
also considered the concatenation of these features as a 3-dimensional feature
which we called “all lexica”.

4.7 Orthographic Features

We used eight orthographic features to encode information about the kinds of
characters present in the word. These features are illustrated in Table 4. Firstly,
we used a simple orthography feature which gave the proportion of characters
in the token which were numeric, uppercase alphabetic, lowercase alphabetic,
and symbols, plus a Boolean of whether the token was in title case. We can
get a more fine grained picture of the token’s orthography by also considering
the ordering of character types. This was achieved with word shapes. To obtain
the word shape of a token, all uppercase letters were substituted with “X”, all
lowercase letters were substituted with “x”, all numerals were substituted with
“0”, all symbols were substituted with “!”, and all whitespace characters were
substituted with “”. In addition to the word shapes, short shapes are another
feature which summarise the order in which types of characters appear in the
token. These were produced by removing consecutive duplicates of the same
character type from the word shape. Because there are an unlimited number
of possible word shapes and short shapes, all but the 99 most common shapes
were replaced with the empty shape “”, so that the shape can be encoded in a
100-dimensional one-hot vector.

4.8 Syntactic Features

For syntactic features we used the Genia toolkit7 to generate part of speech
(POS) and chunk tags for each token. Examples of these features are given in
Table 3. The Genia toolkit is trained on biomedical texts and has reported high
accuracy on several bioNLP tasks [19]. The POS tags used by the Genia toolkit
are a variant of the Penn Treebank tags, including 38 POS tags, and 9 other tags

6 https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files.
7 http://www.nactem.ac.uk/GENIA/tagger/.

https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
http://www.nactem.ac.uk/GENIA/tagger/
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for punctuation and symbols [8]. The chunking tags indicate where in a syntactic
chunk a token resides. These tags combine BIO segment representation (which
is the same as BILOU representation, but with B in place of U, and I in place of
L), with 28 chunk-type labels. Because the range of possible tags for POS and
chunks is relatively small, the tags were simply one-hot encoded.

4.9 Features Not Investigated

In our literature review we encountered several features which we did not inves-
tigate - either because they did not seem important enough, or because we
could not figure out how to implement them with our architecture. We did not
explicitly include any character n-grams, such as suffixes or prefixes. However,
the character embedding should in principle capture the same information as
character n-grams. We did not use a lexicon of cues denoting contexts in which
entities are likely to occur, such as “medication:” indicating that the following
token is likely to be a drug. Finally, we did not perform any fuzzy matching with
lexica, and we did not use phrase length.

5 Feature Importance Study Results

For each of the individual features described above, we evaluated model accu-
racy using only that feature (using the predetermined train/val/dev datasets
described in Sect. 3). The results are given in Table 5. The two word embed-
ding features - fastText and ELMo - achieved the two highest F1 scores. The
best word embedding feature (fastText trained on combined corpus, 0.9142)
is significantly better than the highest non-word embedding feature (character
embeddings, 0.8750), and even the worst character embedding feature (fastText
trained on Wikipedia, 0.8821) is still better than any non-word embedding fea-
ture. These and similar observations suggest that the different types of features
can be ranked as followed: word embbeddings are the strongest features, followed
by other word representations, orthographic features and POS tags come next,
and lexical features and chunk tags are the weakest features (although lexical
features also have the smallest domains). Drugbank in particular produced a
remarkably low F1 score.

Due to resource constraints we were not able to run a feature selection algo-
rithm over the full set of features. However, we did evaluate the model when the
full set of features are used, when only the top-5 most successful features were
used, and when the top-2 features were used. We did the latter in two different
ways: first, we considered fastText and ELMo as different features, and so used
both of them in the top-2 experiment. Second, we considered fastText and ELMo
as variations of a “word embedding” feature, and so used only fastText, plus the
best non-word embedding feature: character embeddings. Every combination of
features resulted in a lower precision, recall, and F1 score than fastText (com-
bined corpus) by itself. This indicates that not only are word embeddings the
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most useful feature for this task, but also that supplementing word embeddings
with other features is not useful, and is perhaps even detrimental.

To ground our results in the official N2C2 competition outcomes, we also
tested our best feature set on the official competition test data. For this final
experiment, we kept the previous window size of 128, but reduced the window
slide to 16. This is effectively a data augmentation technique which increases
the size of the training data, thereby making the final model more accurate,
but doubling the memory requirements and training time. For this experiment,
the development dataset was added to the training dataset, but otherwise all
experimental details were kept the same. The best feature set on the validation
set was fastText (combined corpus) only. The final F1 score achieved with this
method was 0.9240. For comparison, the state of the art in this task is 0.9418.

Table 5. Performance of models using subsets of the features. The domains of each
of each feature are also included. Binary features are denoted Z2, n-dimensional real-
valued vector features are denoted R

n, one-hot encoded features with n possible values
are denoted Zn.

Feature Domain Precision Recall F1

FastText (combined) R
100 0.9353 0.8941 0.9142

ELMo R
1024 0.9190 0.8610 0.8890

Character embedding R
50 0.9162 0.8374 0.8750

Brown clusters Z
15
2 0.9086 0.8231 0.8638

Random index R
100 0.8551 0.7465 0.7971

Orthography R
5 × Z2 0.9069 0.6006 0.7226

POS Z47 0.8699 0.5878 0.7016

Word shape Z100 0.8959 0.5664 0.6941

Short shape Z100 0.8588 0.5438 0.6660

Length Z 0.8524 0.5249 0.6497

All lexica Z
3
2 0.8286 0.5166 0.6364

Drugs@FDA Z2 0.7609 0.4173 0.5390

Chunk Z27 0.8348 0.3798 0.5220

Jochem Z2 0.8503 0.3572 0.5030

Drugbank Z2 0.5672 0.0425 0.0791

FastText+CE R
350 0.9330 0.8855 0.9086

FastText+ELMo R
1324 0.9329 0.8777 0.9044

Top-5 R
1489 0.9192 0.8833 0.9009

All features R
1873 0.9186 0.8848 0.9014

FastText (test set) R
300 0.9476 0.9016 0.9240
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6 Conclusion

In accord with past research [20,23], our experiments indicated that word embed-
dings trained on biomedical corpera are more useful for bioNLP tasks than those
trained on general corpera; as is visible in Table 1. Unlike past research, which
found that conjunctions of word embeddings with other word representations
were the best feature sets for BioNLP tasks [4,11,18], our experiments indicated
that best results are obtained by using word embeddings only. This discrepancy
can be accounted for by the fact that significant progress has been made in word
embedding algorithms since these early studies were conducted. These results
lend support to the hypothesis that by using state-of-the-art word embedding
algorithms, other features which have traditionally been used for bioNLP - such
as explicitly syntactic, morphological, and contextual features - can be made
redundant. This greatly simplifies the task of bioNLP practitioners, whose fea-
ture engineering task is then simplified to merely finding a good word embedding.

There are several caveats to this conclusion. Our experiments only investi-
gated the effect of using different features for a simple neural network model
with a single architecture and hyperparameters. Furthermore, we only evaluated
the model on a single NER bioNLP task. Further research is therefore required
to validate our findings in the broader bioNLP context. On the other hand,
our experimental procedure is quite representative of a typical bioNLP scenario:
NER is a standard NLP benchmark, and simple recurrent networks - especially
biLSTMs - are a popular model choice for natural language problems. Further-
more, in our preliminary experiments we also tested a more complex neural
network model, and found very similar results to those reported here.
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Abstract. Modelling user interest has been a challenge for improving
the performance of information filtering systems (IFs). Currently, there
have been term-based, phrase-based, and pattern-based approaches in
modelling user interest [2,5,13]. Patterns have been said to convey more
specific and relevant information in modelling user’s interest [5]. How-
ever, the existing patterns such as frequent and closed patterns are all
generated based on their statistical features such as frequency. But their
semantic meaning was ignored. This study proposes a new information
filtering model named as Frequent Semantic Patterns for Document Rele-
vance Ranking, shorted as FSPnIF. In particular, a new type of patterns,
called frequent semantic pattern (FSP), is proposed to represent user’s
interest. The patterns are representative as they are generated from the
top highly frequent words in the training corpus. These patterns also
convey semantic meanings because they are verified by meaningful con-
cepts in ontology. A new method to measure document relevance based
on FSPs is also proposed to filter relevant documents in IFs. The model
was evaluated in IFs using RCV1 and R8 datasets. The results of exten-
sive experiments show that the new proposed model significantly out-
performed all the state-of-the-art baseline models according to five main
evaluating measures.

Keywords: Topic model · LDA · Information filtering · Pattern
discovery · Ontology

1 Introduction

Information Filtering Systems have two main parts which are user interest mod-
elling based on a collection of the user’s documents and filtering irrelevant docu-
ments from the new incoming document stream based on the user interest model.
Accurately modeling user interest has always been an crucial part in information
filtering systems because the user interest model is used to determine the rel-
evancy of incoming documents. Currently, many term-based and phrase-based
representations have been proposed such as BM25 and TNG in [12,13]. However,
single terms are said to be polysemy and synonymy while phrase-based methods
c© Springer Nature Switzerland AG 2019
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35288-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-35288-2_34


Frequent Semantic Patterns for Document Relevance Ranking 419

encounter the problem of low occurences in documents. Latent Dirichlet Allo-
cation (LDA) has been successfully used to represent users interest as in [2].
However, single topical words are considered to be polysemy as well. Lately,
pattern-based topic models (PBTM) can be utilized to generate patterns for
representing users’ interest effectively [5]. These patterns are said to be more
representative and specific to represent topics than terms or phrases generated
by term-based topic models such as LDA and phrase-based topic models such as
TNG [1,13]. However, the PBTM approach only focuses on structural combina-
tion of topical words to generate patterns but ignores the semantic associations
between the words in the patterns. Hence, many patterns are not really mean-
ingful.

Patterns have been used for representing documents for decades. Patterns
are generated based on co-occurrences, i.e., frequently co-occurring words are
generated as patterns. One limitation of patterns is that the semantic meaning
of words are ignored, some of the patterns might not be semantically meaningful.
It is obvious that topical words are highly frequent words in the training col-
lection. However, some of the topical words might not be meaningful and thus
the patterns which are formed from the topical words might not be meaningful.
Take a pattern [dutroux, children] as an example, because the word “dutroux”
is meaningless and thus the meaning of [dutroux, children] becomes much less
meaningful, even meaningless. Unrelated association between topical words is
another limitation of generating patterns based on statistical calculation. More-
over, the longer patterns are said to be more specific in terms of meaning as
described in [5]. However, this claim is not always true because there are many
long patterns which are actually quite ambiguous and thus does not reveal a
specific meaning. Longer patterns are not always better than shorter patterns in
terms of specificity and meaningfulness. For instance, the pattern [Britain, hotel,
growth, industry, percent] is not better than these two shorter patterns [Britain,
hotel] and [industry, growth]. Therefore, mining representative and semantically
meaningful patterns to represent user’s interest in information filtering is impor-
tant.

In this paper, we develop a novel approach to discover semantically meaning-
ful and statistically frequent patterns called Frequent Semantic Patterns (FSPs),
to represent user’s interests and use them for document relevance ranking in
information filtering systems. The model is named as “Frequent semantic Pat-
terns for Document Relevance Ranking”, shorted as FSPnIF. There are three
major steps in the new model. In the first step, a method to generate semantic
patterns from a topic model is proposed by mapping topics to concepts in an
ontology. Secondly, a method to generate FSPs is proposed. Thirdly, a method
to rank the relevance of incoming documents based on the frequent semantic
patterns is developed for the filtering part in IFs. In the experimental part, we
compare results of the proposed model with the state-of-the-art models in infor-
mation filtering. We found that our proposed model not only outperformed term-
based representations and phrase-based representations such as LDA Words,
PLSA Words and TNG in [2,6,13] but also outperformed pattern-based repre-
sentations such as PBTM FP, PBTM FCP and MPBTM in [5].
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This paper has been divided into five parts. The first section is the introduc-
tion part. Section 2 presents related works. The proposed model is concerned in
the Sect. 3. Section 4 displays the experimental results. The conclusion part is
presented in Sect. 5.

2 Related Works

Information filtering systems comprise of two main parts which are user inter-
est modelling and filtering part. In user interest modelling, some conventional
methods based on terms, phrases and patterns were utilized to represent users
interest. One of the very first models based on terms was reported in BM25 [12].
However, term based representation conveys polysemy and synonymy. Methods
of document representation based on phrases were thought to solve the men-
tioned problems in term based approach such as in [3,13]. Although phrases are
considered to be more specific and representative than single words in document
representation, phrases still face the problem of low occurrences. For improving
the cabability of document representation based on terms, some new approaches
have been proposed. The document modelling methods based on word distri-
butions such as PLSA and LDA in [1,6] provided statistic based methods for
modelling user’s interest in which topical words with high probabilities are used
to represent users interest.

In the latest trend in data mining, a considerable amount of literatures have
been published on pattern mining [10,11]. A pattern contains a group of words
occurring in modelled documents, conveying specific and semantic meanings
about things in real world. PBTM approaches in [5] provides a group of effective
methods in mining concise patterns. Although these previous pattern discov-
ery approaches could discover highly significant and representative patterns, the
semantic aspects of patterns were not explicitly considered. However, our work
consider representative and semantic factors of patterns to determine meaningful
patterns which is the main difference between our work and the existing pattern
based approaches such as the work in [5].

In the next section, an innovative approach to mine frequent and semantic
patterns will be proposed, basing on matching topic model to Library of Congress
Subject Headings (LCSH) ontology.

3 The Proposed Model

The aim of this paper is to propose a new approach to discover frequent semantic
patterns (FSP) for user interest representation and apply the FSPs to informa-
tion filtering systems. A FSP pattern comprises of a set of words which occur
frequently in the modelled corpus and semantically express things in real world.
For instance, the patterns “Application software” and “Software” can be consid-
ered as semantic patterns because they are meaningful and semantically express
specific subdomains in information technology. In addition, the two patterns
are also concepts in LCSH ontology. There are three major steps in generating
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frequent semantic patterns. In the first step, documents are trained to gener-
ate a topic model using LDA. The second step discovers all sematic patterns
for topics in the topic model by mapping topics generated in the first step and
semantic concepts in LCSH ontology. In the third step, a method is proposed
for determining the set of frequent semantic patterns from the semantic pat-
terns discovered in the second step. Document relevance ranking is important
for many text mining applications such as information filtering and information
retrieval. In this paper, we propose a document relevance ranking method based
on the frequent semantic patterns and use it to filter out irrelevant documents
to satisfy user interest in information. In brief, the process of frequent semantic
pattern generation is displayed in Fig. 1 below and explained in Sects. 3.1, 3.2
and 3.3.

Fig. 1. The process of generating frequent semantic patterns

3.1 Train Topic Models

The process of semantic pattern generation starts by generating topic models
from training documents. Topic modelling is a group of algorithms to discover
hidden topics in the collection of documents. The basic idea of the technique is
to promote high frequent words to represent the topics in the collection. LDA
is one of the popularly used techniques for generating hidden topics. Let D =
{d1, d2, ..., dM} be a collection of M documents. The main idea of LDA is that a
document is a multinomial distribution over topics. Each topic is a multinomial
distribution over words. At document level, each document is represented by
topic distribution θd = {Vd,1, Vd,2, ..., Vd,v},

∑v
j=1 Vd,j = 1. In the collection level,

D is represented by a set of topics. Each topic is represented by a probability
distribution over words. For the jth topic, we have Φj = {φj1, φj2, ..., φjm}, m
is the number of words per topic, φji = P (wi|zj). Based on the topic model,
the probability of word wi in the document d can be calculated as P (wi|d) =∑v

j=1 P (wi|zj)×P (zj |d), v is the number of topics. In terms of words, each topic
z is represented as a set of words, denoted as T(z) = {w1, w2, ..., wm}. After the
latent topics are generated by applying LDA, the matched patterns are yielded
by mapping the topics and concepts in the ontology. Next section describes the
method of generating semantic patterns.
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3.2 Semantic Patterns

This section involves how to generate semantic patterns for topic models. The
main idea is mapping the topics generated in Sect. 3.1 to concepts in the LCSH
ontology for discovering semantic patterns. As mentioned before, concepts in
the ontology are semantic phrases generated by human beings such as librarian.
For instances, concepts like “Automatic computer” and “univac computer” are
meaningful concepts about an electronic equipment. If there is a concept in the
ontology, which shares the common information with the examined topic, the
concept is called a matched concept. The overlapping part between the concept
and that topic is then called a matched pattern or a semantic pattern.

Definition 1 (Ontology): An Ontology can be presented in a tuple O =<
C, R > such that C is a set of concepts; R is a set of relations.

Definition 2 (Matched concepts): Given a topic z with its topical words
denoted as T(z), a list of matched concepts between the topic z and concepts C

in the ontology is denoted as Γ (z) and defined below:

Γ (z) = {c|c ∈ C, c ∩ T(z) �= ∅} (1)

The number of matched concepts is different for different topics. Normally, a
large number of matched concepts contains only one or two topical words, all
other words in the concepts are non-topical words. The number of such concepts
is much greater than the number of matched concepts which contain more than
two topical words. Concepts that contain non-topical words are called partial-
matched concepts. There are concepts whose words are all topical words. Those
concepts can be classified as full-matched concepts.

Definition 3 (Semantic patterns): The set of semantic patterns of a topic z
over matched concepts, denoted as SP(z), is defined as:

SP(z) = {p|∀c ∈ Γ (z), p = c ∩ T(z), p �= ∅} (2)

Each semantic pattern in SP(z) is the overlapping part between the topic and
a matched concept of the topic. Obviously, the minimal length of each pattern
is one. If a pattern is the same as a full-matched concept, i.e., p = c ∩ T(z) and
p = c, that pattern can semantically and strongly explain the topic. In terms
of meaning, the shorter patterns convey more general meaning about the things
while longer patterns convey more specific meaning about things in real world.
In the aspect of topic explanation, a topic can mention about either specific or
general meanings. Therefore, both shorter and longer patterns can semantically
represent a topic.

3.3 Frequent Semantic Patterns (FSPs)

This section proposes a method to generate frequent semantic patterns for a
topic. A frequent semantic pattern is a semantic pattern which consists of topical
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words and occurs frequently in the training documents. For generating frequent
semantic patterns, a transactional dataset is built for each topic of a topic model
using the documents in the training collection from which the topic model was
built. Then frequent patterns are generated by applying a frequent pattern min-
ing method from the transactional dataset for each topic. A semantic pattern
that is frequent according to a pre-specified minimum support is called frequent
semantic pattern. In brief, there are two steps to generate the frequent semantic
patterns: building transactional dataset for each topic and generating frequent
patterns from each transactional dataset.

Transactional Dataset
For a corpus D = {d1, d2, ..., dM} and a topic z with its topical words T(z), a
transactional dataset for topic z can be generated based on the topical words
in T(z) and the documents in D. Let Tz = {T1, T2, ..., TM} be the transactional
dataset for topic z, each transaction Ti ∈ Tz is defined as Ti = {w|w ∈ T(z), w ∈
di}

Example: Given a set of training documents as D = {d1, d2, d3, d4, d5} over
a set of words Words = {w1, w2, w3, w4, w5, w6, w7, w8, w9}. Assume that there
are three possible topics z1, z2, and z3 modelled in D. Then, the transactional
datasets called Tz1 ,Tz2 and Tz3 for the collection D over the three topics are
described as in Table 1 below.

Table 1. Transactional dataset TDS

z1 z2 z3

T1 {w1, w2, w3} {w1, w5, w6} {w1, w9}
T2 {w3, w4} {w4, w5, w6, w7} {w6, w7, w8}
T3 {w1, w3} {w2, w3} {w1, w9}
T4 {w2, w3, w7} {w2, w3} {w2, w5}
T5 {w2, w3, w4, w8} {w1, w2, w7} {w6, w8, w9}
TDS Tz1 Tz2 Tz3

Frequent Semantic Pattern
By applying a frequent pattern mining method such as FP-Growth, for a given
minimum support, a set of frequent patterns can be generated from Tz. Let
FP(z) be a set of frequent patterns generated from Tz, the frequent semantic
patterns are defined in Definition 4 as below.

Definition 4 (Frequent Semantic Patterns): Given a topic z, let SP(z) be
a set of semantic patterns of z, FP(z) be a set of frequent patterns of z, the
frequent semantic patterns of z is defined as:

FSP(z) = {p|p ∈ FP(z), p ⊆ S, S ∈ SP(z)} (3)
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3.4 Information Filtering Based on Frequent Semantic Patterns

In this study, the topic model generated from a user document collection is used
to represent the user’s interest. In the topic model, each topic is represented
by the proposed FSPs rather than single topical words as used in LDA. The
relevance of an incoming document is assessed based on the significance of topics
and topic distribution. The significance of topics in the incoming document is
measured based on the significance of the FSPs which represent the topics. In
this study, the importance of a pattern is measured based on both its length and
the frequency of topical words that make up the pattern. For a new incoming
document d, the main idea is to determine the relevance of the document d to
the user’s interest by aggregating the significances of frequent semantic patterns
occurring in d and topic distributions to the training collection.

Let FSP(z) = {p1, p2, ..., pt} be the set of frequent semantic patterns repre-
senting the topic z. The significance of a frequent semantic pattern p is calculated
by the following formula:

sig(p|z) =
(

1
|p|

|p|∑

i=1,wi∈p

sig(wi|z)
)

× f(p) × |p|0.5 (4)

where sig(wi|z) is the significance of topical word wi of topic z, which is
defined as sig(wi|z) = mi ∗ Pr(wi|z),mi = Pr(wi|z)/avgPr(z), Pr(wi|z) is the
probability of wi in topic z. In this study, the topical words with mi > 1 are
selected to represent a topic (more detail is given in Sect. 4.3).

This significance of pattern p is measured based on the average of pattern
word significance. If the average significance of pattern words wi is high, the
significance of that corresponding pattern is high.

In the filtering stage, let d be a document to be examined and the training
corpus is D. We would like to determine whether the document d is relevant
to the topic z in the corpus D based on the matched patterns by measuring
sig(z, d) as following:

sig(z, d) =
∑

pt∈FSP(z),pt∈d

sig(pt|z) (5)

Example: Take a topic z8 in training folder 101 of dataset RCV1 as an exam-
ple of determining significant patterns for an incoming document d. The topical
words of the topic z8 is listed as:
z8 = {bill, economic, companies, federal, espionage, foreign, house, countries,
passed, theft}. There are totally 10 FSPs occurring in d. The semantic patterns
are listed in Table 2 below.

The pattern [country, foreign] has the same support, 0.571, with the pat-
tern [country] and it also covers the pattern [country]. Hence, pattern [country]
is not considered as significant pattern while the pattern [country, foreign]
is considered as significant pattern. Significant patterns are chosen as:
{[espionage],[economic,foreign],[company,foreign],[country,foreign],[theft]}.
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Table 2. List of semantic patterns

Support Matched patterns

0.857 [espionage]

0.571 [espionage, economic], [country], [country, economic], [economic, foreign],
[company], [company, foreign], [theft], [country, foreign], [foreign]

Document relevance ranking. For a new incoming document d, the relevance
score of d over the training collection D with v topics is measured below.

rank(d|D) =
v∑

j=1

sig(zj , d) × VD,j (6)

where VD,j is the average topic distribution of all documents in the training
collection D, θD = (VD,1, VD,2, ..., VD,v),

∑v
j=1 VD,j = 1 and VD,j is calculated

as:
VD,j =

1
|D|

∑

d∈D

Pr(zj |d) (7)

4 Experiments

4.1 Dataset

The Library of Congress Subject Headings (LCSH) is available for computer pro-
cessing as MARC. Concepts in LCSH are meaningful phrases coded by librar-
ians, given another name as subject heading. The subject headings in LCSH
have some main relations such as Broader, Narrower, Related, and Variant. In
the following experiments, the 498474 topical subject headings in the subject
headings database [7] were used as concepts. Two datasets were used in the
experiments. The Reuter Corpus Volume 1 (RCV1) dataset [8] was collected by
Reuters journals from the year of 1996 to 1997, covering approximately 806,791
documents about various topics. The dataset provides training and testing sets.
R8 dataset is a widely used collection for text mining. The data was originally
collected and labelled by Carnegie Group, Inc. and Reuters, Ltd. in the course
of developing the CONSTRUE text categorization systems [4].

4.2 Baseline Models

The experiments were conducted to evaluate the effectiveness of the proposed
model in information filtering against these following baselines. Specifically, there
are three groups of document representation methods. The first group com-
prises of pattern-based representations including MPBTM, PBTM FCP, and
PBTM FP. Phrase based representation is organized in the second group. Term-
based representation methods such as BM25, PLSA words and LDA words are
organized in the third group.
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(1) Pattern based representations
MPBTM [5]: Maximum matched patterns are used to represent users’ inter-

est.
PBTM FP and PBTM FCP [5]: Frequent patterns and frequent closed

patterns generated from LDA topic model are used to represent users’ interest.

(2) Phrase based representation
TNG [13]: phrase based topic model, n-grams phrases that are generated by

using the TNG model are used to represent users’ interest.

(3) Term based representations
BM25 [12]: one state-of-the-art model for representing documents by using

terms.
PLSA Words [6]: topical words in pLSA topic model are used to represent

users’ interest.
LDA words [1]: topical words in LDA topic model are used to represent

users’ interest.

4.3 Experimental Settings

The experiments were conducted to evaluate the effectiveness of ranking docu-
ments in document stream based on frequent semantic patterns. For generating
topic models, we used MALLET toolkit [9] to train topic models by LDA for
the first 50 collections in the RCV1 corpus and 8 collections in dataset R8. The
initial parameter settings for LDA are α = 0.5; and β = 0.01. The number of
topics is v = 10. For different topics, different number of topical words were
chosen based on mi calculated by the probability distribution over words in that
topic. The chosen topic words for a topic in our proposed model are words with
probabilities higher than the average word probability of that topic. Specifically,
the ith topical word in topic z is selected if Pr(wi|z) > avgPr(z)(i.e.,mi > 1),
where avgPr(z) is the average word probability in topic z. The minimum sup-
port for determining frequent semantic patterns for dataset RCV1 is 0.4 and it
is 0.2 for dataset R8.

4.4 Evaluation Measurement

In these experiments, five main evaluation metrics were used to compare perfor-
mances of the models. The Top-K score evaluates the precision for the first K
retrieved documents. In these experiments, Top-10 and Top-20 are used. Mean
Average Precision (MAP ) measures precision at each relevant document first,
and averaging precision over all documents afterwards. MAP metric provides a
very succinct summary of the effectiveness of a ranking algorithm. The break-
even point b/p indicates the points where precision and recall are equal. This
score measures the effectiveness of the system. The higher this value of b/p, the
better the implemented system. F1 scores reflect the harmonic average of the
precision and recall. F1 emphasizes the effectiveness of retrieved documents.
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4.5 Results and Discussion

4.5.1 Results
For dataset RCV1, we conducted experiments on our proposed model FSPnIF
using different minimum support δ = {0.2, 0.3, 0.4, 0.5} for generating the fre-
quent semantic patterns. δ = 0.4 was chosen based on the experiment results
shown in Table 3 where δ = 0.4 leads to the best result. Similar experiments were
conducted for dataset R8, δ = 0.2 was chosen for R8 based on the experimental
result.

Table 3. Performance of FSPnIF for dataset RCV1

Threshold δ Top-10 Top-20 B/P MAP F1

δ = 0.2 0.584 0.570 0.481 0.504 0.477

δ = 0.3 0.606 0.568 0.483 0.507 0.479

δ = 0.4 0.628 0.573 0.483 0.512 0.481

δ = 0.5 0.640 0.570 0.481 0.509 0.481

Table 4. Performance among methods for dataset RCV1

Methods Top-10 Top-20 B/P MAP F1

FSPnIF 0.628 0.573 0.483 0.512 0.481

MPBTM 0.632 0.552 0.466 0.477 0.459

PBTM FCP 0.524 0.489 0.420 0.423 0.422

PBTM FP 0.522 0.470 0.402 0.427 0.423

%Change −0.63% 3.80% 3.65% 7.34% 4.79%

TNG 0.468 0.425 0.344 0.354 0.372

%Change 34.19% 34.82% 40.41% 44.63% 29.30%

LDA Words 0.458 0.433 0.370 0.390 0.401

PLSA Words 0.444 0.412 0.366 0.371 0.389

BM25 0.348 0.345 0.337 0.330 0.359

%Change 37.12% 32.33% 30.54% 31.28% 19.95%

Comparison with Term-Based Representation. As shown in Table 4, the big
improvement was in Top-K score. Obviously, FSPnIF gained 0.628 in Top-
10 while the scores of all other term-based methods (i.e., BM25, LDA words,
PLSA words) were lower than 0.50. This made the improvement changed up to
37.12% against the second best method LDA words for Top-10 score. Similarly,
the change for Top-20 was 32.33% against LDA words. In Table 5, the change
in MAP score between the new model and term-based models was noticable.
Specifically, it was 0.701 in FSPnIF while it was 0.432 in LDA words. This
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Table 5. Performance comparison for dataset R8

Methods Top-10 Top-20 B/P MAP F1

FSPnIF 0.850 0.744 0.693 0.701 0.578

MPBTM 0.750 0.712 0.687 0.676 0.571

PBTM FCP 0.763 0.719 0.675 0.665 0.567

PBTM FP 0.763 0.694 0.655 0.668 0.567

%Change 11.40% 3.48% 0.87% 3.70% 1.23%

TNG 0.700 0.619 0.510 0.490 0.455

%Change 21.43% 20.19% 35.88% 43.06% 27.03%

LDA Words 0.600 0.569 0.462 0.432 0.438

PLSA Words 0.550 0.550 0.418 0.402 0.372

BM25 0.462 0.412 0.349 0.338 0.347

%Change 41.67% 30.76% 50.00% 62.27% 31.96%

improvement was up to 62.27%. For dataset R8, the Top-10 score in FSPnIF
was significantly higher than term-based models, 0.850 in FSPnIF and 0.600 in
LDA words. This improvement gained up to 41.67%.

Comparison with Pattern-Based Representation. As shown in Table 4, the new
model FSPnIF performed better than PBTM based models in all five criteria
except Top-10 score. The PBTM model was the state-of-the-art model in pattern
based representations. In particular, the new model was lower than MPBTM
in Top-10 score, which was 0.628 in the new model and 0.632 in MPBTM
accordingly. In Top-20 score, the new model achieved 0.573 while it was 0.552
in MPBTM. Similarly, FSPnIF model gained 0.512 in MAP score higher than
0.477 in MPBTM. This made the improvement change 7.34%. For dataset R8,
the biggest improvement between the new model and pattern-based model was
in Top-10 score. In particular, it was 0.850 in FSPnIF while it was 0.763 in
PBTM FCP. This made the improvement changed up to 11.40%. In MAP score,
the new model performed better than all PBTM. Specifically, it was 0.701 in
FSPnIF while it was 0.676 in MPBTM.

4.5.2 Discussion
According to the experimental results, it is obvious that the new model FSPnIF
performed better than the other models in most of comparison metrics in both
datasets RCV1 and R8. The only exception is the Top-10 measure for RCV1,
the proposed model is 0.004 less than MPBTM.
In terms of document representations, we can see that FSP patterns can be the
best alternative to represent user interest in IFs due to statistical and semantic
features of the patterns. Specifically, the patterns are representative as they
are generated from the top highly frequent words in the training corpus. These
patterns also convey semantic meanings because they are verified by meaningful
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concepts in the ontology. All of those features contribute to the success of the new
model over existing methods based on term, phrase and PBTM representations.

5 Conclusion

In conclusion, this study has proposed a new model named FSPnIF which pro-
vides a method of mining FSP patterns from a corpus and how to use them
in IFs. For generating FSP, three main steps including topic trainings, seman-
tic pattern generation, and frequent semantic pattern mining, were described in
detail. The FSPs were then utilized to represent user’s interest in IFs. In the fil-
tering part of IFs, a method of document relevance ranking based on significant
FSP patterns was proposed by applying the method to determine significant
FSP patterns satisfying user needs in information. The main difference of our
model over the existing models in PBTM is that it can discover semantic and
representative patterns based on meaningful phrases from knowledge resources.
Finally, we apply the proposed model to one of the challenges in information
filtering: discovering meaningful and semantic patterns to represent user inter-
est. The experiments were conducted over two large benchmark datasets RCV1
and R8. Experimental results showed that FSPnIF outperformed the existing
baseline models. In short, FSPnIF demonstrates a promising methodology to
enhance performances of IFs.
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Abstract. Energy costs can be a major component of operational costs
for water utilities. Operational efficiencies including optimising energy
costs while maintaining continuity of supply is one area to reduce overall
operational costs. To address the challenge, we have proposed an effective
optimisation model to minimise the energy cost for water distribution
networks. A simulation of the model over a water distribution network
in Sydney demonstrated that 15% saving in energy cost could be achieved
using this approach, as compared with the existing rule-based method.

Keywords: Optimisation · Pump scheduling · Water distribution
networks

1 Introduction

Water utilities supply potable water to customers via a distribution network con-
sisting of reservoirs, pumping stations, control valves and a network of pipes. An
example is the Woronora Delivery system in Sydney, Australia, which includes
13 reservoirs sites and supplies on average 80 ML (in summer months) of water
per day to approximately 210,000 customers in 30 separate zones. Under normal
operating conditions, the majority of raw water is supplied from the Woronora
Dam. Within this network, water coming from the dam is filtered and disinfected
at the water filtration plant before it travels in the trunk water mains via pumps
and valves to the reservoirs and into the reticulation networks to the end users
- the customers.

A sub-system of the above water delivery system is shown in Fig. 1, which
includes six major sites, two pump stations and four valves. The other sites
(shown as cloud) are not included in optimisation, due to data unavailability or
incompleteness. However, water flows to those sites, denoted as f7 to f10, are
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 433–444, 2019.
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Fig. 1. A water distribution network

included when calculating water demand. Moreover, the methodology used in
this work can be easily extended to those sites when data become available.

Energy charges are calculated based on time of use. There are three distinct
energy tariff periods, peak hours (2pm–8pm on working weekdays), shoulder
hours (7am–2pm and 8pm–10pm on working weekdays) and off-peak hours (all
other times). Peak hours are charged with the highest rate and off-peak the least.
Moreover, there is a network capacity charge, calculated based on the maximum
half-hourly consumption that occur in the peak hours in the last 12 months.
Therefore, to reduce energy costs, it is very important to minimise peak-hour
and shoulder-hour power consumption, especially during peak hours.

It is critical for water utilities to provide continuous water to customers.
However, it is challenging for water utilities to minimise operational costs while
guaranteeing the continuity of water supply. Reservoirs should be able to supply
enough water for downstream reservoirs and user demand at all times, includ-
ing peak demand. However, too much water in reservoirs can result in longer
water retention time and decreased water quality. In addition, excessive pump-
ing during peak-hours and shoulder-hours will incur higher energy costs. Out of
the operational expenditure, pump energy cost can be a major component. For
example, the pump energy cost of the above system accounts for 66% of its total
operational expenditure [11].

To address this challenge, we have investigated the relationship between
water demands, reservoirs, pumping stations and control valves and have pro-
posed a framework for energy saving optimisation, which guarantees the conti-
nuity of water supply, minimises energy cost and provides quality water to the
customers. At first, a Bayesian probabilistic model was developed to forecast
water demand based on historical demand and weather information, which gen-
erates a prediction for what the short term (24 to 36 h) future water demand
would be. Based on water demand forecasts, an energy saving optimisation model
was developed to optimise pump and valve operating schedules, so that water
demand is met, reservoir operating window (i.e., lower and upper bounds of
reservoir water levels) constraints are satisfied and energy costs are minimised. A
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simulation over 3 months demonstrated that the proposed method could achieve
a saving of 15% in energy cost, compared with the existing rule-based approach.

2 Related Work

There have been several studies on pumping schedule optimisation for water
distribution networks and some work on power supply network optimisation,
which are relevant to this work. Waterworth et al. [10] compared three methods,
dynamic programming, simulated annealing and genetic algorithms, for pump
scheduling, but they only applied it to a single reservoir with fixed-speed pumps,
used average historic water demand rather than demand forecast and did not
consider peak electricity tariff. Moreover, they didn’t compare the optimised
scheduling or cost against the actual ones.

Kurian et al. [4] proposed a method with linear programming for optimal
scheduling of rural water supply schemes, but their work targeted intermittent
supply for rural areas to maximise the water delivered to villages in an equitable
manner, rather than continuous supply for urban networks.

Castro-Gama et al. [1] proposed a multi-objective optimisation for energy
consumption reduction of the water distribution network in Milan, Italy. In their
work, the objective functions included Total Energy and Lack of Resilience, an
EPANET model was used as hydraulic simulator to estimate the pressures and
flows and a genetic algorithm was used to find the optimal solution. Their results
showed that the cost saving for the network could be of up to 26%.

Napolitano et al. [6] also studied the problem of pumping schedule optimisa-
tion and developed a model to identify optimal decision rules by balancing the
risk of water shortages and the cost of pumping stations operating and main-
tenance. Through scenario analysis, mixed integer programming and quadratic
formulation, their developed model could provide the management authority
with optimal decision rules, which are reservoirs threshold levels for pumping
stations activation.

Another area related to this work is power supply networks, where stor-
age during off-peak hours can be used to meet high demand and save cost
during peak hours [2,9]. Garg et al. [2] studied the problem of energy storage
management optimisation given short-term predications of demand, prices and
renewable power availability and proposed an optimisation algorithm to address
online resource allocation problems in terms of Markov Decision Processes with
dynamic temporal uncertainty caused by short-term predictions. The method is
limited to a single battery, rather than a network of multiple batteries, which
cannot work for the optimisation of multiple interconnected reservoirs.

Urgaonkar et al. [9] designed an algorithm for optimally exploiting uninter-
rupted power supply (UPS) units and delay-tolerance of workloads to minimise
the time average cost for data centres. The idea was to store energy within UPS
units at a data centre when prices were low and use this to augment the draw
from the utility when prices were high. They addressed the above problem with
Laypunov optimisation, which enables the design of online control algorithms
for time-varying systems.
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Fig. 2. Energy saving optimisation

To summarise, the problem of optimising pump and valve operations in water
supply networks remains unsolved. There is a pressing need for investigating
energy saving methodologies for urban water supply networks to meet with the
requirements of continuity based on accurate demand forecast.

3 Methodology

Figure 2 shows our proposed framework for energy saving optimisation. At first,
historical water demand and weather data are modelled to forecast water demand
in the next 24 h. Then demand forecast, together with initial reservoir water
levels, operating windows, pump performance and electricity tariffs, are fed into
an energy saving optimisation model to produce an optimised pump and valve
operating schedule, with which energy cost is minimised.

3.1 Water Demand Forecasting

A prerequisite for optimising network operations, pumping schedules and reduc-
ing energy costs is accurately forecasting systems demands within different parts
of the network. Water demand forecasting combines with operational data and
weather information and generates a prediction of short-term (24 to 36 h) future
water demand. Specifically, factor analysis was firstly performed to identify
important correlating factors, i.e., past flow, past and forecasted rainfall, past
and forecasted temperatures, and a weekday/weekend flag. A Bayesian proba-
bilistic model was then employed to capture forecast uncertainty. Our experi-
mental results demonstrate that the forecasting has a Mean Absolute Percentage
Error (MAPE) of around 5%, as compared with the ground truth of historical
data. The model can provide operational planners with accurate forecasts of
water demand over operational windows, allowing more informed and timely
trunk water operational decisions to be made. Details of demand forecasting can
be found in our technical report [5].
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3.2 Pump Scheduling Optimisation

Based on above water demand forecast, we built a model for optimisation of
pump and valve scheduling. The optimisation problem is, given a water dis-
tribution network, its initial reservoir water levels and 24-hour water demand
forecast, to optimise pump and valve operating schedule, so that continuity of
supply is guaranteed and energy cost is reduced. That is,

min
∑

i

∑

t

Costi(t),

subject to
- water demand satisfaction (see Sect. 4.1),
- reservoir operating windows (see Sect. 4.2),
- pump and valve settings (see Sect. 4.3), and
- other business constraints (see Sect. 4.4),
where i = 1, 2, 3... are site IDs and t denotes time (hour).

(1)

Note that the number of pumps and their power consumption vary from site
to site and the electricity tariff rate is dependent on time of use. The energy cost
at site i in hour t can be calculated as

Costi(t) = ni(t)ei(t)ri(t), (2)

where

– ni(t) is number of pumps running at site i in hour t,
– ei(t) is power consumption per pump at site i in hour t, and
– ri(t) is electricity tariff rate for site i in hour t.

Our experimental results show that, if minimising the above cost function
alone, reservoir levels would become close to lower bound at 7am next day,
because the optimisation runs daily and only the cost for 24 h is taken into
consideration. To minimise the cost for the following days, a penalty function is
defined as below make sure that reservoir levels at 7am next day would be close
to the upper bound.

Penalty :=
∑

i

∑

t

bi(t)vi(t) (3)

where

– vi(t) is water level of reservoir i at end of hour t, and
– bi(t) is penalty coefficient and bi(t) ≤ 0.

The objective function is finally defined as the sum of above energy cost and
penalty.

Obj := Cost + Penalty (4)

The aim of optimisation is to minimise the above objective function while satis-
fying all the four types of constraints given in Eq. 1.
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Fig. 3. A single-site model

3.3 A Single-Site Model

To guarantee the continuity of water supply, we use a single-site model (see
Fig. 3) to work out the relationship between reservoir water level, pump operation
and water demand. Their relationship can be formulated as

V (t) = V (t − 1) + Pin(t) − D(t) − Pout(t), (5)

where t is time, V (t) is the reservoir water volume of a site, Pin(t) is the amount
of water loaded through its incoming pumps (or valves), Pout(t) is the amount
of water flow through pumps (or valves) to downstream sites and D(t) is the
water consumption of the reticulation network supplied by the site.

3.4 Extending to Multiple Sites

When there are multiple sites, Eq. 5 can be rewritten as

vi(t) = vi(t − 1) + pi(t) − di(t) −
∑

j

θi,jpj(t), (6)

where

– t = 1, 2, ..., 24 are 24 h, which stand for 7–8am, 8–9am, ... and 6–7am (on the
next day),

– vi(t) is water volume at the end of hour t at site (i.e., reservoir) i, e.g., vi(0)
and vi(24) are respectively water volume of site i at 7am on a given day and
the next day,

– pi(t) is volume of water flow through pumping station or valve i during hour
t,

– di(t) is hourly internal water demand (in ML) on site i (excl. water flows to
downstream sites) during hour t,

– j is pumping stations or valves that draw water from site i,
– θi,j is

• +1, if pump or valve j draws water from site i,
• −1, if pump or valve j loads water into site i,
• 0, if pump or valve j is not connected with site i,

subject to

– reservoir operating windows: vL
i ≤ vi(t) ≤ vU

i , where vL
i and vU

i are respec-
tively lower and upper bounds of water level in reservoir i,
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– pi(t) = αi(t)ni(t),
– αi(t): volume of water flow per running pump through pumping station i (or

opened valve i) during hour t, and
– ni(t): number of pumps running at pumping station (or valve) i during hour t.

4 Energy Saving Optimisation for the Woronora Water
Distribution Network

In this section, we apply the above generic model to the Woronora network.
Specifically, four types of constraints are built according to its network topology
and physical settings.

4.1 Constraint I: Water Supply Continuity

This set of constraints define the relationship between reservoir water levels,
water flow through pumps and valves, and water demand both from reticulation
networks and downstream sites. From Eq. 6 and the Woronora network topology
shown in Fig. 1, we can get

v1(t) = v1(t − 1) + p1(t) − d1(t) − p2(t) − p3(t)
v2(t) = v2(t − 1) + p2(t) − d2(t) − f7(t)
v3(t) = v3(t − 1) + p3(t) − d3(t) − f8(t)
v4(t) = v4(t − 1) + p4(t) − d4(t)
v5(t) = v5(t − 1) + p5(t) − d5(t) − p6(t)
v6(t) = v6(t − 1) + p6(t) − d6(t)

(7)

where f7(t) and f8(t) are water flows to downstream reservoirs from sites 2 and
3, respectively.

The above can be rewritten as

p1(t) − p2(t) − p3(t) + v1(t − 1) − v1(t) = d1(t)
p2(t) + v2(t − 1) − v2(t) = d2(t) + f7(t)
p3(t) + v3(t − 1) − v3(t) = d3(t) + f8(t)
p4(t) + v4(t − 1) − v4(t) = d4(t)

p5(t) − p6(t) + v5(t − 1) − v5(t) = d5(t)
p6(t) + v6(t − 1) − v6(t) = d6(t)

(8)

or in short,
AP + BV = D, (9)
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where

– P = {pi(t)}, i = 1..6, t = 1..24 and pi(t) is the volume of water pumped by
pumping station (or valve) i during hour t,

– V = {vi(t)}, i = 1..6, t = 0..24 and vi(t) is the volume of water in reservoir i
at the end of hour t,

– D = {di(t)}, i = 1..6, t = 1..24 and di(t) is the volume of water demand in
zone i during hour t,

– A and B are coefficient matrices as above.

4.2 Constraint II: Reservoir Operating Windows

There is a business requirement that reservoirs have to operate within certain
water levels. For the Woronora water supply system, the reservoir operating
windows are

– v1(t) ∈ [61%, 94%] × 18.3ML,
– v2(t) ∈ [50%, 70%] × 14ML,
– v3(t) ∈ [76%, 89%] × 9.7ML,
– v4(t) ∈ [72%, 85%] × 6.9ML,
– v5(t) ∈ [40%, 50%] × 25ML, and
– v6(t) ∈ [80%, 85%] × 4.5ML,

where, for each site, the percentages in brackets are respectively lower and upper
bounds of reservoir water levels and the last number ending with “ML” is the
capacity of reservoir. Generally speaking, the wider are the operating windows,
the more the energy cost can be reduced and the less frequent will be the start
and stop of pumps/valves, which was evidenced by our simulation results (not
included in this paper due to limit of space).

4.3 Constraint III: Pump and Valve Settings

In the Woronora network shown in Fig. 1, p1 and p2 are two pumping stations,
with each having three pumps, and at any time, zero, one, two or all there pumps
might be running independently. p3, ..., p6 are valves and their status are either
fully open or closed. Therefore, the range of ni(t), the number of running pumps
(or open valves) at site i during hour t, is

– 0 ≤ ni(t) ≤ 3, when i ∈ {1, 2}, and
– 0 ≤ ni(t) ≤ 1, when i ∈ {3, 4, 5, 6}.

Note that above constraint are specific for the network in Fig. 1. They need to
be adjusted based on the specific network topology if the optimisation model is
to be applied to other networks.
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4.4 Constraint IV: Minimum Daily Water Flow

There is another business requirement that the daily flow from the Woronora
water filtration plant should be no less than 12 ML, that is,

∑

t=1..24

p1(t) + p4(t) + p5(t) + f9(t) + f10(t) ≥ 12, (10)

where f9 and f10 are water flows from the Woronora pipeline to two other water
distribution sub-systems (see Fig. 1).

4.5 Implementation

The proposed model is expected to run at 7am every day and, within a few
minutes, to produce the optimised pump and valve scheduling for the next 24 h.
To build an efficient model, we have chosen linear programming, which is much
faster than non-linear programming. The optimisation is implemented with the
symphony library [8], an open-source mixed-integer linear programming (MILP)
solver using branch-and-bound and branch-and-cut methods. The modelling and
all above constraints in this work are implemented with R [7] and the lpsymphony
package [3].

5 Simulation and Results

To validate the effectiveness of optimisation, we ran a simulation over three
months from 1 December 2016 to 28 February 2017 to generate optimised pump
schedules based on demand forecast and then applied it to the network with
actual water demand. The optimised results are compared with the baseline,
i.e., the energy cost when business-rule based approach was applied. The above
three months are selected because they are high demand seasons and complete
data are available for those months. Below is the simulation process, which is
also illustrated in Fig. 2.

1. Optimisation for a day. Water demand forecast are fed into the model to find
optimised pump and valve operating schedules for the next 24 h starting at
7am.

2. Simulation for the day. Simulate what would have happened if the optimised
schedules were applied and actual water demand was extracted from reser-
voirs.

3. Go to the first step to run optimisation for the next day, until all days within
above timeframe have been simulated.

The above process reiterates every day for three months and then the results
are compared with actual pump and valve schedules and energy cost. The simu-
lation shows that the method is very quick, taking on average 1.7 s for optimising
all six sites for every 24 h, which satisfies business needs.
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Fig. 4. Optimisation result

Figure 4 shows the optimisation result for the Engadine site on 6 Feb 2017,
where the red and blue solid lines show history and optimised pumping schedules,
the red and blue dotted lines show history and optimised reservoir levels, and
the grey dotted lines show lower and upper bounds of reservoir levels. Please
note that the simulation started with the actual reservoir levels at 7am 1 Dec
2016. With the optimised schedule, before 7am of every day, reservoirs are filled
with water close to their upper bounds, so that pumping during the following
shoulder and peak hours can be reduced. Before 2pm, water is again pumped
into reservoirs to ensure that no or little pumping is needed during the following
peak hours. The figure clearly shows that peak hour pumping is reduced, with
an increase in off-peak-hour pumping.

Comparisons of energy consumption and cost are given in Figs. 5, 6 and 7,
where the grey bars (labelled with “Actual”) are results of the baseline model
with existing business rules and the light-blue bars (labelled with “Optimised”)
are results of our optimised model. Figures 5 and 6 show energy consumption
of two pumping stations during the three months, which demonstrated that
pumping during peak and shoulder hours are significantly reduced. Based on
electricity consumption, energy cost were calculated and compared against the
cost with existing business rules in the three months, which shows that around
15% of energy cost can be saved with our optimisation model (see Fig. 7).

We also studied the impact on water by the optimised pumping schedule
(see Fig. 8), which shows that most reservoirs would have better water qual-
ity with the optimised pumping schedule. An exception is site 4 and a likely
reason is that the reservoir often operated below lower bound in the past and
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Fig. 5. Energy consumption of site 1
(Color figure online)

Fig. 6. Energy consumption of site 2
(Color figure online)

Fig. 7. Total energy cost of all sites
(Color figure online)

Fig. 8. Impact on water quality

therefore its reservoir retention time was shorter than that with the optimised
pumping schedule. This water quality can be improved with a chemical dosing
optimisation model, whose details can be found in our technical report [5].

6 Conclusions

To address the challenge of minimising energy costs while guaranteeing the conti-
nuity of water supply in water distribution networks, we have proposed a frame-
work for water supply optimisation and developed an optimisation model for
energy saving. Our model has been applied to the Woronora water network in
Sydney, Australia and a simulation over three months demonstrated that the
model was effective in minimising pumping during peak and shoulder hours and
resulted in considerable reduction in energy costs while meeting water demand.
The simulation results demonstrated that 15% saving could be achieved with
our model.

Future work to extend this research includes running the simulation over a
longer period, for example a whole year to cover all seasonal changes, to further
validate the impact on network capacity charge, further reducing the likelihood of
peak-hour pumping by loading more water into the reservoirs (than forecasted
demand) before 2pm, which would be a trade-off between water quality and



444 Y. Zhao et al.

energy saving, and reducing the number of times of starting/closing pumps and
opening/closing valves, especially for large sites.
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funding this research and also for providing data and domain knowledge.

References

1. Castro-Gama, M., Pan, Q., Lanfranchi, E.A., Jonoski, A., Solomatine, D.P.: Pump-
scheduling for a large water distribution network. Proc. Eng. 186, 436–443 (2017).
XVIII International Conference on WaterDistribution Systems, WDSA2016,
Milan, Italy

2. Garg, V.K., Jayram, T.S., Narayanaswamy, B.: Online optimization with dynamic
temporal uncertainty: incorporating short term predictions for renewable integra-
tion in intelligent energy systems (2013)

3. Kim, V.: lpsymphony: symphony integer linear programming solver in R (2018).
https://projects.coin-or.org/SYMPHONY

4. Kurian, V., Narasimhan, S., Narasimhan, S.: Optimal scheduling of rural water
supply schemes. IFAC-PapersOnLine 51(1), 142–147 (2018). 5th IFAC Conference
on Advances in Control and Optimization of Dynamical Systems ACODS 2018.
http://www.sciencedirect.com/science/article/pii/S2405896318301848

5. Li, Z., et al.: Intelligent network optimisation research project - final report. Tech-
nical report, Data61, CSIRO, December 2018

6. Napolitano, J., Sechi, G., Zuddas, P.: Scenario analysis for optimization of pump-
ing schedules in complex water supply systems considering a cost-risk balancing
problem. Proc. Eng. 89, 565–572 (2014). https://doi.org/10.1016/j.proeng.2014.
11.479

7. R Core Team: R: a language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.
org/

8. Ralphs, T., Mahajan, A., Vigerske, S., mgalati13, jpfasano, Bulut, A., anhhz: coin-
or/SYMPHONY: version 5.6.16 January 2017. https://doi.org/10.5281/zenodo.
248734

9. Urgaonkar, R., Urgaonkar, B., Neely, M.J., Sivasubramaniam, A.: Optimal power
cost management using stored energy in data centers. In: Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS 2011, pp. 221–232. ACM, New York (2011).
https://doi.org/10.1145/1993744.1993766

10. Waterworth, G., Darbyshire, K.: Comparison of methods of pump scheduling in
water supply systems. In: The European Simulation and Modelling Conference,
ESM2001, ENGIN-28, June 2001. http://eprints.leedsbeckett.ac.uk/775/

11. Zhao, Y., et al.: An application of energy saving optimisation to water distribu-
tion networks. In: OzWater 2019, 7–9 May 2019, Melbourne. Australian Water
Association, May 2019

https://projects.coin-or.org/SYMPHONY
http://www.sciencedirect.com/science/article/pii/S2405896318301848
https://doi.org/10.1016/j.proeng.2014.11.479
https://doi.org/10.1016/j.proeng.2014.11.479
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.5281/zenodo.248734
https://doi.org/10.5281/zenodo.248734
https://doi.org/10.1145/1993744.1993766
http://eprints.leedsbeckett.ac.uk/775/


Towards Robust Web Service
Composition with Stochastic Service

Failures Based on a Genetic Algorithm

Chen Wang1(B), Hui Ma1(B), Gang Chen1(B), and Sven Hartmann2(B)

1 School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{chen.wang,hui.ma,aaron.chen}@ecs.vuw.ac.nz
2 Department of Informatics, Clausthal University of Technology,

Clausthal-Zellerfeld, Germany
sven.hartmann@tu-clausthal.de

Abstract. Web service composition aims to loosely couple web services
to accommodate complex goals, which can not be accomplished by any
existing web service. Many researchers have been working on such ser-
vice composition problems with the aim to find composite services with
optimized Quality of Service (QoS) and/or Quality of Semantic Match-
making (QoSM). Due to the huge search space of this NP-hard problem,
Evolutionary Computation techniques have been popularly utilized to
search for solutions with near-optimal QoS and QoSM. A majority of
these works share a common assumption that QoS of web services seldom
or never changes. However, the execution of composite services obtained
from the design stage may fail due to unexpected service failures at the
execution stage. In this paper, we introduce a robust service composition
approach with the goal to build robust composite services that serve as
the blueprint/baseline for service execution. These baseline composite
services can cope with unexpected interruptions in a robust manner, by
applying local search to resume their feasibility while maintaining high
quality at the time of execution. Our experiments show that our new
approach can significantly outperform a state-of-the-art service compo-
sition method (without explicitly considering the robustness) in terms
of both effectiveness and efficiency in the event of unexpected service
failures.

Keywords: Service composition · QoS optimization · Robust
optimization

1 Introduction

Web service composition aims to build a composite service made up of many
loosely coupled elementary web services to accommodate more sophisticated
users’ requirements [13]. This research field has attracted much attention. Many
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works focus on fully automated service composition that automatically constructs
service workflows supported by carefully selected services to fulfill given func-
tional and non-functional requirements, i.e., Quality of Semantic Matchmaking
(QoSM) and Quality of service (QoS) [13]. In particular, the practical impor-
tance of using Evolutionary Computation (EC) techniques to optimize QoS and
QoSM of the evolved composite services has been established. Almost all exist-
ing works [4,14,19,21–23,26] share the common assumption that the QoS of the
elementary web services remains stable. However, such a rigid assumption on
the service operating environment is not always satisfied [28].

In the real world, QoS of services are changing dynamically, due to various
reasons, e.g., network failures. On the other hand, static data on QoS param-
eters (such as response time, throughput, failure probability, availability, price
and popularity [5]) published by service providers is widely used to match the
needs of service requesters. However, this can be very risky because no service
provider can guarantee the advertised QoS under all circumstances. Services
can fail unexpectedly, causing unforeseeable interruptions to a composite service
discovered at the design stage. In fact, a composite service may suffer from var-
ious changes. Stochastic service failures constitute the most critical uncertainty
because the composite service can become completely useless when any compo-
nent service fails. For this reason, stochastic service failures are the central focus
of this paper.

To design composite services, we must take potential service failures into
account to avoid abandoning an ongoing composite service completely. Some
existing works [3,12,25] propose to use re-optimization techniques at the service
execution stage. Particularly, the frequency of re-optimization is scheduled to
cope with changes of the composition environment that are assumed to hap-
pen periodically (e.g., every few generations [25] or every time period [3,12]).
These re-optimization techniques can also be used to handle stochastic service
failures. In fact, [2,10] recommends proactive use of re-optimization techniques
in response to anticipated future changes based on historical data.

While re-optimization techniques can help to some extent, these approaches
ignore the importance of building robust composite services at the design stage.
Moreover, the assumption of periodical changes or sufficient historical QoS data
poses noticeable feasibility challenges. In reality, services often fail sporadically
in a highly unpredictable manner. Meanwhile, newly registered services may not
have sufficient historical QoS data. To address these limitations, we propose a
robust service composition approach that consists of two stages, namely, the
design stage and the execution stage. In the design stage, our approach con-
structs baseline composite services by explicitly considering stochastic service
failures. At the execution stage, the baseline composite services can cope with
unexpected service interruptions in a robust manner with an efficient and effec-
tive local search to resume the high quality of the composite services. Genetic
Algorithms (GA) are a popular EC technique that has enabled the tackling of
several challenging service composition problems [18,19]. Therefore, we will pro-
pose a novel GA-based algorithm to generate robust baseline services in this
paper.
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The overall goal of this paper is to propose a novel GA-based approach to
robust web service composition that can deal with stochastic service failures,
where robust baseline composite services are constructed at the design stage,
and can effectively and robustly handle unexpected service interruptions at the
execution stage. Driven by this goal, we strive to achieve the following objectives
in this paper:

1. We introduce the new model of robust service composition for handling
stochastic service failures. Particularly, the robustness of composite services
in terms of expected QoS and QoSM is optimized in the event of stochastic
service failures. Therefore, optimized composite services can be repaired with
an efficient local search technique so that they can be continuously executed
with good performance.

2. We introduce two key techniques that jointly form an effective method for
searching robust composite services in GA. The first technique is to adopt the
Monte Carlo sampling technique [15] to effectively and accurately approxi-
mate the robustness of any given composite services. The second technique
introduced is an efficient re-optimization technique (i.e., local search) that
effectively repairs composite services in response to arbitrary service failures.

3. We conduct experiments to explore the performance of our GA-based app-
roach to robust service composition (henceforth referred to as GA4Robust)
and a state-of-the-art GA-based approach (i.e., Fixed Length GA in [19],
henceforth referred to as GA) that achieves outstanding performance in find-
ing high-quality solutions. Our experimental results show that GA4Robust
can produce baseline composite services with significantly higher robustness.
In particular, in the event of service failures at the execution stage, these
baselines can continue to work reliably or be easily repaired with negligible
impact on quality through fast local search.

2 Related Work

EC techniques have been used to automatically generate composite services with
optimized QoS and/or QoSM [4,14,19,21–23,26]. These works can be divided
into two groups, namely, static service composition and dynamic web service
composition, based on whether QoS for any/all services changes over time or
not.

Static service composition is based on the assumption that QoS of web ser-
vices seldom changes or does not change at all. These works mainly focus on
using EC as effective global searching techniques to effectively build composite
services with optimized QoS or QoSM. To achieve that, they introduce new and
effective representations to encode composite services either directly or indirectly
and develop domain-dependent genetic operators to explore large search spaces
efficiently. For example, da Silva et al. [16] proposed to represent composite ser-
vices as DAGs, and developed DAG-based genetic operators to evolve DAGs
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directly, ensuring the functional correctness of every newly produced DAGs.
Some works represent composite services as trees [11,14,17,22,27]. Particularly,
different forms of the tree have been proposed to investigate the effectiveness of
the tree-based representations. Other works [19,21,23] show strong favor of indi-
rect representations (i.e., a queue of service indexes) for representing composite
services. Those indirect representations often reply on some decoding methods
that map the indirect representations to service execution workflows. They pro-
duce new candidate solutions through the use of “swap”-based genetic operators
on the selected parent individuals [19] or sampling techniques based on learned
distributions of promising solutions [23].

Dynamic web service composition does not rely on the assumption of static
QoS and instead aims to address new problems caused by the changes in QoS.
Some works [3,12,25] assume that QoS changes periodically. The re-optimization
of composite services is performed after every fixed period of time [3,12,25]. This
assumption is the victim of idealization. In reality, this is due to that changes
can happen at any time. To ensure the performance of composite services, they
need to be re-optimized at running time when QoSs change dramatically or fail.
Some recent works [2,10] consider changes of QoS that follow some historical
pattern and can be predicted in the future. Unfortunately, these works require
sufficient historical data that are not always available for newly registered web
services and is not accurate enough. Interesting ideas have also been explored
to prevent service failures through distributed service deployment [6,20]. For
example, [20] studied the benefits of deploying a sufficient number of distributed
service instances for each component service. These works are related but clearly
targeted to address a different problem from our paper. In addition, comparing
with other existing works [3,12,25] on dynamic service composition, our pro-
posed GA4Robust can handle service sudden failures effectively during running
time. Also, our approach does not need to rely on historical data as in [2,10].

3 The Robust Web Service Composition Problem

A service repository SR is a finite collection of services, each service is consid-
ered as a tuple S = (IS , OS , QoSS), where IS is a set of service inputs that
are consumed by S, OS is a set of service outputs that are produced by S, and
QoSS = {tS , cS , rS , aS , prS} refer to the response time, cost, reliability, avail-
ability, service failure probability of S.

In practical service composition, the execution of a composite service is usu-
ally confronted with stochastic service failures [5]. A service failure probability
prS can be approximated by dividing the number of failed invocations by the
total number of invocations conducted in the past on service S [28]. Also, prS of
newly published web services can be estimated as the prS of web services hosted
by the same service providers in the same location. Moreover, for any service
in the service repository, its failure probability is assumed to be independent of
each other.

A composition task from service requestors (also called service request) over
a given SR is a tuple T = (IT , OT ) where IT is a set of task inputs, and OT is
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a set of task outputs. The inputs in IT and outputs in OT are parameters that
are semantically described by concepts in the ontology O provided by domain
experts.

A composite service is often represented in the form of a directed acyclic
graph (DAG, denoted as G), where nodes represent web services (also called
component services) and edges represent robust causal links [9] between two
matched services S and S′, noted as S → S′. Other than G, a composite service
can also be indirectly represented as a permutation Π = (Π0,Π1, . . . , Πn−1),
elements of which are {0, 1, . . . , n− 1} such that Πi �= Πj for all i �= j. Each ele-
ment in Π represents a unique index id of a web service in the service repository.
According to [23], a permutation Π can be further decoded into a G (denoted
as Π ⇒ G).

The robustness of a composite service is defined in the presence of stochastic
service failures that create a discrete set of scenarios Q. A scenario Q ∈ Q

corresponds to a set of services {Sj} that remain accessible during the execution
of a composite service, where

∑
Q∈Q Pr(Q) = 1 (i.e., the probabilities of all

the scenarios are summed up to 1) and Sj ∈ SR. Let L (Π,Q) be a local
search operator (i.e., an efficient re-optimization technique) that produces a new
feasible composite solution Π ′ for Q through applying local changes to Π. The
robustness is defined as the expected quality of a composite service across all
possible scenarios and can be directly estimated through Monte Carlo sampling
[15] as follows:

robust(Π) =
∑

Q∈Q

fcq(L (Π,Q))Pr(Q) ≈ 1
N

N∑

i=1

fcq(L (Π,Qi)) (1)

where N is the sample size. Particularly, in Eq. (1), Π is evaluated N times based
on N sampled Qi. fcq(Π ) measures the comprehensive quality of a composite
service defined in Eq. (2).

fcq(Π) =

{
M̂T + ˆSIM + Â + R̂ + (1 − T̂ ) + (1 − ĈT ) if Π⇒ G
0 otherwise

(2)

where the normalized semantic matching type M̂T and the semantic similarity
ˆSIM are calculated for measuring QoSM, while the normalized availability Â,

reliability R̂, response time T̂ , and execution cost ĈT are calculated for mea-
suring QoS, see [23] for more explanations. T̂ and ĈT are subtracted from 1 to
ensure that higher scores in Eq. (2) correspond to better quality.

Robust web service composition aims to search a baseline solution Π with
optimized robustness measured in Eq. (1) for a composition task T over a ser-
vice repository SR at the design stage. To search for a solution with optimized
robustness, a global search technique will be utilized to find this robust baseline
solution offline. When the baseline solution fails at the execution stage due to
the unexpected service failures, the baseline solutions Π can be repaired by a
local search process to form another solution Π ′. This new solution does not
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depend on any failed component services and is expected to maintain a high-
quality level. Due to its efficiency, the same local search operator will be used
consistently both at the design and the execution stage.

Fig. 1. Two-stage robust web service composition and execution process

Our two-stage robust web service composition and execution process is illus-
trated in Fig. 1. The process takes three inputs (i.e., a composition task, a service
repository, and an ontology of services). At the design stage (also called offline
stage), GA is utilized to efficiently search for a baseline solution with optimized
robustness based on N sampled scenarios using Eq. (1). At the execution stage
(also called online stage), the baseline solution will be executed if none of its com-
ponent services fail. Otherwise, this baseline solution will be repaired through a
local search technique. This technique produces a repaired solution with good
quality as measured in Eq. (2).

4 Our GA-Based Approach to Robust Service
Composition

In this section, we present our GA-based method, named GA4Robust, for robust
web service composition. We will start with an outline of our approach in
Sect. 4.1. Subsequently, we will discuss our simulation-based fitness evaluations
for measuring the robustness in Sect. 4.2.

GA has been successfully utilized as a global searching technique for effec-
tively searching service composition with optimized QoS and/or QoSM [19].
However, GA is highly sensitive to the fitness measure used to determine the
quality of each evolved composite service. In this paper, we will utilize Eq. (1)
to estimate fitness based on a set of randomly sampled scenarios. For each sce-
nario, a local search is used to efficiently repair composite services affected by
stochastic failures. For details see Sect. 4.2.
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4.1 Outline of Our Method

Our algorithm for evolving robust composite services is outlined in Algo-
rithm 1. GA4Roust follows the state-of-the-art GA-based service composition
approach [19] except Step 2 and Step 6. We begin with initializing population
P0 with m randomly generated permutations Πg

k (where k = 1, . . . , m). Note
that each permutation can be interpreted as a DAG thought the use a forward
graph building algorithm in [19,23]. The DAG also allows easy calculations of
fitness in Eq. (2). In step 2, we evaluate the fitness values of each permutation
against N randomly sampled scenarios, see details in Sect. 4.2. The iterative
steps (Steps 4 to 7) will be repeated until the maximum number of generations
is reached. During each iteration, m permutations are produced from genetic
operators (i.e., crossover and mutation operators in [19] are utilized) to form
the next generation Pg+1. This newly created population is then evaluated by
following the same process in Step 2. Consequently, the best solution with the
highest fitness is returned after the iteration.

Algorithm 1. GA4Robust method for robust service composition.
Input : composition task T , Ontology O, service repository SR, sample size N ,

and the number of neighbors nnb

Output: an baseline solution
1: Initialize P0 with m randomly permutations, each represented as a Πg

k (where
k = 1, . . . , m);

2: Evaluate each permutation in P0 against the stochastic service failures
based on N simulations in Eq. (1);

3: Set generation counter g ← 0;
4: while g < gmax do

5: Populate Pg+1 with m permutations from Pg through the use of genetic

operators;
6: Evaluate each permutation in Pg+1 against the stochastic service

failures based on N simulations in Eq. (1);

7: Set g ← g + 1;

8: Select the best solution Πopt in Pg as a baseline;

4.2 Simulation-Based Evaluations Using Local Search

Our proposed fitness function in Eq. (1) approximates the robustness of every
candidate solution subject to N randomly sampled scenarios with fast local
search for each scenario. This robustness estimation process is provided in Algo-
rithm 2. Particularly, Step 4 and Step 5 play a crucial role. In Step 4, we produce
another permutation Π ′ that encodes Π based on each sampled Q. This pro-
duced permutation allows some promising component services that belong to
the composite service Π to be re-used by Π ′. In this subsection, we will use
Example 1 to demonstrate Step 4. Subsequently, we will define our local search
operator with an example in Example 2.
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Algorithm 2. Simulation-based evaluation with local search (Step 2 or 6
in Algorithm 1).
Input : population Pg, the number of neighbor nnb and service repository SR
Output: evaluated Pg

1 foreach Π in Pg do
2 Sample N scenarios based on prS of each S in SR;
3 foreach scenario Q in the N sampled scenarios do
4 Produce another permutation Π� that encodes Π based on Q;
5 Generate a size nnb of neighbors from Π� by local search operator;
6 Identify the best neighbor Π ′ with the highest fitness based on Eq. (2);

7 Set the fitness of Π as an averaged fitness value of N Π ′ based on Eq. (1);

8 return evaluated Pg;

Example 1. Let us consider a composition task T = ({a, b}, {e, f}) and a ser-
vice repository SR consisting of six atomic services. S0 = ({e, f}, {g}, QoSS0),
S1 = ({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 = ({d}, {f}, QoSS3),
S4 = ({a}, {h}, QoSS4) and S5 = ({c}, {e, f}, QoSS5). The two special services
Start = (∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a given composition
task T . Figure 2 illustrates one randomly sampled scenario and a process to pro-
duce another permutation Π� that encodes a candidate permutation Π for the
sampled scenario.

Fig. 2. A new permutation produced based on a sampled scenario
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We firstly sample a scenario based on the service failure probability prS of
each service S in a service repository SR. Let {S0, S1, S2, S3, S4} be a sampled
scenario based on prS of each S in SR, so {0, 1, 2, 3, 4} is a set of service indexes
corresponds to the sampled scenario in Fig. 2. In this example, we also take
an arbitrary permutation Π = [4, 1, 0, 2, 3, 5] as a candidate solution. For the
sampled scenario, we produce another permutation Π� that encodes permutation
Π for the scenario by only removing the service indexes of failed services (i.e.,
5) from the permutation. By doing these, the newly produced permutation Π�

can keep some promising component services (e.g., 1) from the candidate Π . We
also show two DAGs decoded from Π and Π� based on the forwarding graph
building technique in [19,23], where the DAGs are constructed based on the
order of service indexes and node, such as 4, is removed since its outputs are not
used in the composition. In the DAG, we can see that the service index 1 of the
decoded G� from Π� is inherited from that of the G decoded from Π in Fig. 2.

Once the permutation for the sampled scenario is produced, we tidy up this
permutation into [1, 2, 3, |4, 0] ( | is just displayed for the courtesy of the reader,
but not part of the representation) as an input of local search. We produce
this permutation by combining two parts, one part [1, 2, 3] is service indexes
of component service in G�, sorted based on the longest distance from Start to
every component services of G� while the second part [4, 0] is indexes of remaining
services in simulated permutation not utilized by G�.

Let Π� = (Π0, . . . , Πt, |Πt+1, . . . ,Πn−1) be the produced permutation in
Step 4, elements of the permutation are {0, . . . , t, t+1, . . . , n−1} such that Πi �=
Πj for all i �= j. Particularly, {0, . . . , t} are service indexes (i.e., id number) of the
component services in the corresponding G, and is sorted based on the longest
distance from Start to every component services of G. While {t + 1, . . . , n − 1}
be indexes of remaining services in SR not utilized by the G. Subsequently,
we apply a stochastic local search operator (i.e., layer-based constrained one-
point swap, see details in [24]) to Π�. To perform this local search, the layer
information (i.e., different layers include different web services as layer members
based on service inputs) must be utilized. Generally speaking, layer information
indicates the order of a service being included into a DAG of a composite service,
starting from the input of a composition task IT . For example, the first layer
L1 includes services that can be immediately executed based on the input of
the composition task IT . The second layer L2 contains those services that can
be executed by using IT and outputs produced by services in L1. Other layers
can be discovered in a similar way, see the layer discovery technique in [19,24].
Therefore, a neighboring permutation is produced by swapping two selected
service indexes Πa and Πb in the permutation. Particularly, one service index
Πa, where 0 ≤ a ≤ t, is selected, and one layer Lk, where Lk s.t. Πa ∈ Lk, is
identified. Afterwards, another service index Πb is randomly selected from the
index set Lk ∩ {Πt+1, . . . , Πn−1}.

Example 2. Let us consider a layer-based constrained one-point swap, starting
from the produced permutation [1, 2, 3, |4, 0] in Example 1. Figure 3 illustrates a
process of producing a neighboring permutation from the given permutation.
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Fig. 3. A neighboring permutation produced from a permutation of a particular sce-
nario

For the permutation [1, 2, 3, |4, 0], one service index (e.g., 1) is firstly ran-
domly selected before the | in the permutation (i.e., 1, 2 or 3). Then we get the
layer information of service index 1 (e.g., layer L1 consists of 1). Afterwards,
another service index (e.g., 4) is randomly selected from the intersection set of
service indexes in L1 and the service indexes after the |. Consequently, 1 and 4
are swapped to generate a new permutation.

5 Experimental Evaluation

5.1 Experimental Design

We conduct experiments to evaluate the performance of GA4Robust and GA,
where GA4Robust and GA aim to generate composite services with optimal
robustness and overall comprehensive quality, i.e., Eqs. (1) and (2) respectively.
We use five composition tasks with corresponding service repositories for testing.
These tasks (i.e., OWL-S TC1 to OWL-S TC5 utilized in [11,14,22]) contain
real-world web services and composition tasks originally collected from OWLS-
TC [8]. Each service in the service repository is extended with real-world QoS
attributes obtained from the QWS dataset [1]. Apart from that, each service is
also associated with a separate service failure rate. The failure rate of a service is
generated from the normal distribution N (μ, σ2) truncated in the interval [0, 1]
with mean μ and variance σ2. According to the failure rates reported in [28] and
by using 15 000 failure probabilities observed by 150 users on 100 web services,
μ and σ are set to 0.0405 and 0.1732.

To perform the comparisons between GA4Robust and GA, we follow the
popular parameter settings in the literature [7,19]: population size is set to 30,
crossover and mutation rate are set to 0.95 and 0.05 respectively, tournament
size is set to 2 and elitism is set to 2. We set the maximum generation to 100. For
Eq. (1), a set of sample size N (i.e., 10, 30, 50, 70 and 90) is to be investigated
in Sect. 5.2, and the number of local search steps (i.e., nnb) is set to 10 that
empirically produces a good compromise between computation cost and service
quality. For Eq. (2), all weights are set to balance quality criteria in both QoSM
and QoS, i.e., w1 and w2 are set to 0.25, and w3, w4, w5 and w6 to 0.125 [23]
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according to the settings in [23]. We have also conducted tests with other weights
and parameters and generally observed the same behavior.

We run both GA4Robust and GA 30 times with 30 different random seeds.
We then test each baseline composite service obtained by every run of every
algorithm over 200 simulated scenarios. Note that, a large number of sampled
scenarios (e.g., 200) is taken into account for testing while a small number of
sampled scenarios N is used at the design stage. This difference is important
for the design stage to remain highly efficient whereas we want to accurately
measure the robustness of any composite service during the execution stage.
Subsequently, we use two-sample t test with a significance level of 5% to verify
the observed difference in the mean fitness values tested on the baselines found
by GA4Robust and GA.

5.2 Parameters Sensitivity

To evaluate the impact of N in Eq. (1) on the testing performance, we perform
parameters sensitivity tests on OWL-S TC3 using different settings of N in
GA4Robust. In Fig. 4, we present a box plot of the testing performance from
testing baseline solutions (near-optimal solutions) found by GA4Robust with
varied settings of N (i.e., 10, 30, 70 and 90) across 30 independent algorithm
runs. It is easy to observe that performance boxes tend to reduce their sizes with
increasing N . This observation agrees with our expectation that more accurate
fitness evaluation with large N will enhance the reliability of our algorithm.
Meanwhile, we can also observe that the medium values in these boxes are also
positively correlated to N . This observation further confirms that more accurate
fitness evaluations contribute to better algorithm performance. In the all the
remaining experiments, we set N to 50 according to Fig. 4, since 50 presents the
most ideal trade-off between algorithm performance and sample cost.

Fig. 4. Mean fitness values tested on near-optimal solutions found by GA4Robust over
a set of increasing N for OWLS-TC 03

5.3 Comparison of the Effectiveness

Table 1 shows the mean fitness values and standard deviations obtained from
testing on baseline solutions over 30 runs for each task, each run is tested over
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200 random scenarios of the execution stage. We verify the significant differences
in the fitness values using two-sample t test, and the winner is highlighted in the
table.

Table 1. Mean fitness values tested based on the baseline solutions for our approach
in comparison to GA (Note: the higher the fitness the better)

Task GA4Robust GA [19]

OWL-S TC1 0.922799 ± 0.000304 0.922791 ± 0.000311

OWL-S TC2 0.930779 ± 0.000998 0.929618 ± 0.005009

OWL-S TC3 0.864505 ± 0.001448 0.854218 ± 0.00779

OWL-S TC4 0.790862 ± 0.003172 0.779121 ± 0.012348

OWL-S TC5 0.82504 ± 0.005556 0.812852 ± 0.012388

At the execution stage, GA4Robust can produce composite services that are
clearly more robust to stochastic service failures as evidenced by the performance
summarized in Table 1. Particularly, baseline solutions produced by GA4Robust
achieves significantly higher mean fitness values against 200 random scenarios
for 3 out of 5 tasks. Therefore, composite services produced by GA4Robust is
more likely to maintain a good quality despite of stochastic service failures. This
finding matches well with our new objective at the design stage for GA4Robust.

Moreover, for the two tasks (i.e., OWL-TC1, OWL-TC2), GA4Robust per-
formed similarly as GA. Particularly, both GA4Robust and GA can maintain
very high quality across the 200 sampled scenarios with very small standard
deviations. This is because the search space of feasible solutions in OWL-TC1,
OWL-TC2 is small, and these two methods can always find high-quality solutions
through local search in the event of service failures at the execution stage.

5.4 Comparison of the Efficiency

Tables 2 and 3 show two groups of execution time observed for design stage and
execution stage, respectively, using both GA4Robust and GA. We keep using
two-sample T test to detect any noticeable differences in the experiment results
in efficiency.

Table 2. Mean execution time (in s) observed for our approach in comparison to GA
at the design stage (Note: the shorter the time the better)

Task GA4Robust GA

OWL-S TC1 221.854233 ± 63.968435 2.279767 ± 0.594116

OWL-S TC2 51.851 ± 34.814491 1.502733 ± 0.163235

OWL-S TC3 27.075967 ± 14.63108 1.4005 ± 0.132212

OWL-S TC4 468.054967 ± 342.97007 13.785767 ± 21.966587

OWL-S TC5 901.813933 ± 598.884817 19.577733 ± 71.642104
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Table 3. Mean execution time (in ms) per scenario by local search based on the baseline
solutions found by our approach in comparison to GA (Note: the shorter the time the
better)

Task GA4Robust GA

OWL-S TC1 0.155067 ± 0.06195 0.194944 ± 0.095481

OWL-S TC2 0.456811 ± 0.323291 1.173133 ± 1.618681

OWL-S TC3 0.788439 ± 0.574859 1.363739 ± 0.892455

OWL-S TC4 9.315556 ± 7.508798 10.824494 ± 5.943972

OWL-S TC5 12.694856 ± 10.350321 22.812806 ± 21.672252

For the design stage, we note that GA consistently takes significant less exe-
cution time (in seconds) for all the tasks. This is because the fitness evaluation
in GA through Eq. (2) is far efficient than GA4Robust through Eq. (1). On
the other hand, GA4Robust consistently requires much more execution time.
This is because a single evaluation of one candidate solution involves N times
of calculations of comprehensive quality against the stochastic service failures
using Eq. (1). This observation indicates a sensible trade-off because the fre-
quency of producing baseline solutions by GA4Robust is far less frequent than
the that of repairing the baseline solutions by local search. On the other hand,
although GA4Robust consumes much longer execution time at the design stage,
GA4Robust gains much higher quality against the stochastic service failures at
the execution stage, see the previous discussion in Sect. 5.3. The efficiency of
evolving robust composite services may be further improved with the help of
using surrogate techniques. This will serve as our future work.

For the execution stage, GA4Robust requires significantly less execution time
(in milliseconds) than GA for 3 out of 5 tasks per scenario. This observation
indicates that baseline solutions produced by GA4Robust are more likely to
have useful services, required to build a suitable DAG, to be placed at the very
front of the neighbors exploited from them. This can potentially accelerate the
process of decoding from permutations to DAGs.

6 Conclusion

In this paper, we proposed a robust service composition method, GA4Robust, for
handling stochastic service failures. In particular, we proposed a fitness function
using Monte Carlo integration to evaluate the robustness of composition solu-
tions. We then proposed a GA-based method to produce baseline solutions at
the design stage. The baseline solutions produced can be used by a local search
to find feasible and high-quality solutions to handle situations that some of the
component services are not available at the execution stage. Our experimental
evaluation shows that GA4Robust can produce more robust composite services
compared to a state-of-the-art GA method that merely focuses on searching
high-quality solutions. We also investigate the impact of sample size N in our
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proposed fitness function that plays an important role in making a good balance
between the efficiency of evaluations using Monte Carlo integration and the error
in the estimation of the robustness. In the future, we will work on improving
the efficiency and accuracy of robustness evaluations by proposing a surrogate
model for a fast and accurate estimation of the robustness.
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Abstract. Bayesian optimisation is a popular method in optimising
complex, unknown and expensive objective functions. In complex design
optimisation problems, the additional information about the smoothness,
monotonicity or the modality of the unknown objective functions can be
obtained either from the domain expertise or from the problem environ-
ment. Incorporating such additional information can potentially enhance
the performance of the optimisation. We propose a methodology to incor-
porate the aforesaid extra information to have a better fitted surrogate
model of the unknown objective function. Specifically, for Gaussian Pro-
cess regression, we propose a covariance function to encompass varying
smoothness across the input space through a parametric function whose
parameters are tuned from the observations. Our experiments on both
synthetic benchmark functions and real-world applications demonstrate
that embodying such additional knowledge accelerates the convergence.

Keywords: Bayesian optimisation · Global optimisation · Gaussian
Process · Spatially varying kernels

1 Introduction

The optimisation of real-world complex systems is expensive. Determining the
appropriate values for the parameters in the problem environment ensures the
success of optimisation. For instance, optimising a complex machine learning
model capable of performing classification is a non-trivial task. The selection of
right hyperparameters is the key to a good generalisation performance. However,
the optimisation of hyperparameters based on a validation set performance can
be tedious, if the model to be trained is very complex and training involves a
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large dataset. As a result, each iteration can be time-consuming and hence find-
ing the optimum parameters in a small number of trials is important. Bayesian
optimisation [1], a well-known global optimisation technique addresses the afore-
said issue by offering a theoretically guaranteed fast convergence rate in terms of
the number of samples. Recently, the application of Bayesian optimisation has
proliferated in many domains. For example, Li et al. [10] studied the manufac-
turing of short polymer fibers with the desired characteristics as an optimisation
of a black-box function. Czarnecki et al. [3] used Bayesian optimisation for classi-
fying bioactive compounds. Other applications of Bayesian optimisation include
circuit designing [18], robot decision making [17] and policy learning in driving
simulators [2]. Most of the current Bayesian optimisation methodologies assume
the nature of objective function to be completely black-box, i.e., no information
about the properties of the objective function is known apriori. But, in numer-
ous cases [8,11], the domain experts can reveal some useful knowledge about
the function that can be utilised to further boost the performance of Bayesian
optimisation. However, embodying the knowledge from experts to improve the
performance of the Bayesian optimisation process is not very well explored.

A commonly occurring pattern in complex real-world design problems is that
the unknown objective function is mostly flat with low values, except for a few
good spots having spikes of high values. Such behaviour is also the reason why in
reality finding a good value location can be tricky. It implies that such objective
functions have non-stationary behaviour, i.e., the region around a local optimum
looks very different from the overall function. Such implicit, but vital prior infor-
mation originating from the domain experts about the behaviour can contribute
to better model accuracy. Previous approaches incorporate prior information
either through transfer learning methods [8] to borrow function similarity from
the previous tasks or through the incorporation of specific trends [11]. The trans-
fer learning method thrives only when past data is available and cannot enforce
any specific knowledge. Methods that can incorporate specific trends are not only
problem-specific but also insufficiently flexible to handle the aforesaid common
non-stationary pattern that we are interested to exploit.

In Bayesian optimisation, there have been early attempts to account for the
objective functions exhibiting non-stationary behaviour. Snelson et al. [15] pro-
posed a way to transform the input space of the unknown function learnt using
the Gaussian Process (GP) [19]. Dalal et al. [4] discussed a general framework for
non-stationary covariance functions. Paciorek et al. [13] developed a framework
for non-stationary GP regression models. Snoek et al. [16] devised a methodology
to warp the input space of the objective function to a stationary space so that
the effects of varying smoothness is eliminated. Martinez-Cantin [12] proposed a
methodology to partition the input space into different regions, to model them
as separate entities. Gönen et al. [7] developed a method to model using multi-
ple kernels instead of one kernel. Many of the aforementioned methods are too
general in that it can learn any type of non-stationarity from the data. Learning
the non-stationarity from the data offers a more flexible framework, but at the
cost of increased demand for the data - a requirement that does not go well with
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the application of Bayesian optimisation. In contrast, we aim to incorporate a
specific kind of non-stationary covariance function to accelerate Bayesian opti-
misation. For GP based surrogate models, we propose to encode the additional
information by considering the length-scale as a parametric function of the input.
The parameters of the length-scale function are optimised in the light of data
over the iterations. We propose a generic parametric function that can handle
objective functions that are mostly flat with only a few good spots. However, our
framework is also applicable if there is specific knowledge available about the
function’s smoothness. The generic prior takes the shape of an inverted Gaussian
curve. The mean of the inverted Gaussian is progressively tuned based on the
observations. In the experiments, we observe the performance by evaluating our
algorithm on different synthetic functions employing both function-specific prior
information as well as generic prior information. In our real-world experiments,
we use hyperparameter tuning of Support Vector Machines (SVM) [5] and Elas-
tic Nets [21] considering only generic prior length-scale function. We compare
the performance of our proposed method against other state-of-the-art Bayesian
optimisation algorithms implementing fixed length-scale (FIX) Squared Expo-
nential (SE) kernel [1], Automatic Relevance Determination (ARD) using SE
kernel [19] and weighted multiple kernels (MULTI) [7]. The experimental results
demonstrate that our proposed method converges faster than the baselines.

2 Bayesian Optimisation

Bayesian optimisation provides an elegant framework for finding the global
extrema (x∗) of an expensive and noisy black-box function f(x), represented
as x∗ = argmax

x∈X
f(x). The values observed for f(x) is assumed to be noisy,

i.e., yi = f(xi) + εi, where εi ∼ N (0, σ2
noise) is the Gaussian noise. The cen-

tral idea behind Bayesian optimisation is to define a prior distribution over the
possible set of objective functions and then refine the model sequentially with
data. Bayesian optimisation is generally comprised of two main components (i)
a Gaussian Process (GP) and (ii) Acquisition Functions [20].

2.1 Gaussian Process Models

A GP is a non-parametric model that provides a flexible framework for plac-
ing prior on functions, to find a distribution over the possible functions that
are coherent with the observations. Though there exist other popular surro-
gate models like Student-t process [14], Wiener process [9], GP is still the pre-
ferred surrogate model because of its simplicity. The properties of a GP are
completely defined by a mean function (μ) and a covariance function (k). If
D1:t = {x1:t,y1:t} denotes a set of observations, then according to the prop-
erties of a GP, the observations D1:t and a new observation (xt+1, yt+1) are
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jointly Gaussian. Therefore, the predictive distribution for the new observation
is obtained as

P(yt+1|D1:t,xt+1) = N (μ(xt+1), σ2(xt+1))

where μ(xt+1) = kT[K + σ2
noiseI]−1y

σ2(xt+1) = k(xt+1,xt+1) − kT[K + σ2
noiseI]−1k

k = [k(xt+1,x1), k(xt+1,x2), · · · , k(xt+1,xt)]
and Kij = k(xi,xj) ∀i,∀j ∈ [1, · · · , t]

(1)

The covariance function used in a GP plays a vital role in the modelling process,
as it incorporates the prior belief about the unknown function being modelled.
One of the most commonly used covariance function is the SE kernel function,

k(x,x′) = σ2
f exp

(
− 1

2l2
||x − x′||2

)
(2)

where l and σ2
f correspond to the length-scale and signal variance, respectively.

These hyperparameters are collectively represented as Θ = {l, σ2
f}. They are

estimated by maximising the marginal likelihood, given by the equation

L = p(y|X, Θ) =
∫

p(y|f) p(f|X, Θ) df (3)

The log marginal likelihood for a GP has a closed-form formulation, given as

log L = −1
2
(yT(K + σ2

noiseI)−1y) − 1
2

log |K + σ2
noiseI| − t

2
log(2π) (4)

where t corresponds to the number of observations. Traditional global optimisa-
tion technique such as a multi-start local optimiser can be used to maximise the
log marginal likelihood.

2.2 Acquisition Functions

The posterior distribution obtained from GP is used to pick the next query point
that promises to be an optimum. This decision process is characterised by an
acquisition function (α(x)) that guides the search for the optimum by balancing
the exploration of high variance regions versus the exploitation of high mean
regions. The range of acquisition functions that can be employed with GPs is
listed in [20]. In our experiments, we have considered the Expected Improvement
(EI) acquisition function, which guides the search by taking into account the
expected improvement over the current maximum. If f(x+) is the best value
observed, then the next best point to query is obtained by maximising the EI
acquisition function αEI(x), given by

αEI(x) =

{
(μ(x) − f(x+)) Φ(Z) + σ(x) φ(Z) if σ(x) > 0

0 if σ(x) = 0
; Z =

μ(x) − f(x+)
σ(x)

(5)
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where Φ(Z) and φ(Z) represent the Cumulative Distribution Function (CDF)
and Probability Density Function (PDF) of the standard normal distribution,
respectively.

3 Framework

We propose to incorporate the expert knowledge about the unknown function
into GPs as a Spatially Varying Length-Scale (SVL). We first discuss the details
of the length-scale function and covariance function to be used, followed by the
process for estimation of the parameters in the length-scale function. Finally, we
provide a Bayesian optimisation algorithm using SVL based covariance functions.

3.1 Spatially Varying Length-Scale

The covariance function k(x,x′) given by Eq. (2) is the key to incorporate the
additional knowledge known apriori about the objective function. The length-
scale l used in the covariance function k(x,x′) implies the belief about the
smoothness of the objective function. The value selected for this hyperparameter
significantly affects the predictions made using the GP Model. A fixed length-
scale implies that the smoothness of the objective function is constant across
the entire input space. To account for the varying smoothness of the objective
function, it is more suitable to have the length-scale l as a function of the input,
i.e., l(x). It is important to note that just replacing the fixed length-scale l by
a parameterised form l(x) will not result in a valid covariance function k(x,x′).
Therefore, it is of prime importance to carefully select the length-scale function
and its range, considering the positive definiteness property of the covariance
function.

3.2 Spatially Varying Covariance Function

A valid covariance function k(x,x′), along with a set of n inputs generates a
positive definite covariance matrix K(X,X). It is non-trivial to modify a covari-
ance function to accommodate the additional knowledge from the experts. Gibbs
[6] derived a valid covariance function by replacing the length-scale l as a posi-
tive function of x without compromising the positive definiteness property of the
covariance matrix K(X,X). To ensure the positive definiteness of the covariance
function k(x,x′), a network comprised of a set of basis functions φk(x) centered
at ckd in each input dimension d is considered. Such basis functions are given by

φk(x) =
D∏

d=1

√ √
2

l(xd; θd)
exp

(
−

D∑
d=1

(xd − ckd)2

l2(xd; θd)

)
(6)

where θd is the set of parameters in dimension d, i.e., Θ = {θd}D
d=1. The covari-

ance function capable of embodying varying smoothness by adopting a spatially
varying length-scale function is constructed using an infinite number of such
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Fig. 1. Samples drawn from the GP prior using different length-scale functions.

networks, each having a fixed set of basis functions φk(x). A positive definite,
non-stationary covariance function incorporating spatially varying characteris-
tics of the objective function is given by Eq. (7).

k(x,x′) =
D∏

d=1

√
2 l(xd; θd) l(x′

d; θd)
l2(xd; θd) + l2(x′

d; θd)
exp

(
−

D∑
d=1

(xd − x′
d)

2

l2(xd; θd) + l2(x′
d; θd)

)
(7)

where l(xd; θd) is a positive parameterised function of x, with hyperparameters
θd in the input dimension d. The additional knowledge about the properties
of the objective function from the domain experts is captured in the length-
scale function l(xd) mentioned in Eq. (7). Incorporating such extra information
about the behaviour of the objective function can boost the performance of the
optimisation procedure by improving model accuracy. The length-scale function
to be considered in Eq. (7) is chosen carefully, such that the positive definiteness
of the covariance matrix is retained. It should also be ensured that the function
modelled for l(x) never becomes zero or negative. For instance, if the objective
function is expected to exhibit a more jagged behaviour at the beginning of
the input space than that of the end, then the length-scale function l(xd) for
modelling such functions can be assumed to vary linearly across the input space.
The choice of linear length-scale function results in shorter length-scales at the
beginning representing the more wiggly nature and larger values at the end
representing greater smoothness. Similarly, if the length-scale function chosen
follows the shape of a Gaussian distribution, then the shorter length-scales are
observed at the extrema and larger length-scales at the peak of the curve. The
inverted Gaussian is used as the generic prior as it provides a sharp function
with mostly flat regions. The mean of the inverted Gaussian can be progressively
tuned to position it at the global optima of the function. In the case of objective
function with multiple modes, we can have a mixture of inverted Gaussian where
each mean would go to each mode of the function. However, we see in our
experiments that for real-world examples, even using single inverted Gaussian
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proves quite beneficial. The choice of length-scale function directly impacts GP
priors. The variations observed in the GP priors by using different forms for the
length-scale function in the spatially varying kernel are depicted in Fig. 1.

The accuracy of the surrogate model generated from GPs plays a significant
role in the success of Bayesian optimisation. The posterior distribution for an
objective function with identical sets of observed samples using a spatially vary-
ing kernel and a fixed length-scale SE kernel is depicted in Fig. 2(a) and (b),
respectively. From the posterior obtained using a spatially varying covariance
function, it is observed that the portion of input space containing the optimum
exhibit larger variances. As a result, the acquisition function concentrates the
search for optima in this region. In contrast, posterior from the fixed length-scale
kernel predicts the next best sample assuming an equal amount of variations
across the entire input space and hence, is focused on the inappropriate region.

Fig. 2. Posterior distributions obtained using a spatially varying kernel (a) and a fixed
length-scale kernel (b). The red markers correspond to the samples observed, the solid
blue lines show the true functions, the green dashed lines show the posterior mean
function of the GPs and the shaded area covering ±2 × σ. (Color figure online)

3.3 Optimising Parameters of the Length-Scale Function l(x)

The right analytical form for the length-scale function is not sufficient to ensure
performance enhancement. The values for parameters in the spatially varying
covariance function must be chosen optimally. It is important to restrict the
length-scale function from providing invalid length-scale values for the covariance
function that can potentially eliminate the positive definiteness of the covariance
matrix K(X,X). For instance, if a linear function is used as the length-scale
function in the given dimension d, then l(xd) is given by l(xd; θd) = ad · xd + bd,
where θd = {ad, bd}. We must ensure that the parameters in θd are not such that
l(xd) ever becomes zero or negative within the Bayesian optimisation search
bound. We can estimate the optimised values for the hyperparameters θd by
maximising the log marginal likelihood given in Eq. (4) to obtain

Θ∗ = argmax
θd

log L (8)
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To enhance the convergence of the likelihood maximisation, the gradients of
the log marginal likelihood are computed and provided to the global optimiser.
The general form of the log marginal likelihood gradient is given by Eq. (9).

∂ log L
∂Θ

= −1
2

(
yTK−1 ∂K

∂Θ
K−1y

)
− 1

2
Tr

(
K−1 ∂K

∂Θ

)
(9)

In our case, gradients of the log marginal likelihood depend on the analytical
form of the length-scale function chosen. Therefore, the resulting gradients of
the log marginal likelihood are calculated as a Jacobian matrix. For instance, if
the length-scale function used is linear, then the Jacobian matrix is given by

∂K
∂θd

=
[

∂K
∂l(xd)

·∂l(xd)
∂ad

,
∂K

∂l(xd)
·∂l(xd)

∂bd

]
where,

∂l(xd)
∂ad

= xd ;
∂l(xd)
∂bd

= 1 (10)

The modified Bayesian optimisation algorithm with the proposed spatially vary-
ing length-scale in the covariance function is given by Algorithm1.

Algorithm 1. Bayesian optimisation with spatially varying covariance function.
Input: Set of Observations D1:t = {x1:t,y1:t}, length-scale function type l(xd, θd)

1. For t = 1, 2, .. Do
2. Optimise hyperparameters to obtain Θ∗ using Eq. (8) and Eq. (9)
3. Use the kernel function in Eq. (7) to update the GP Model with Θ∗

4. Find the next point to query, i.e., xt+1 = argmax
x∈X

αEI(x)

5. Query the objective function f(x) to find yt+1 = f(xt+1) + εt+1

6. Augment the Data D1:t+1 = D1:t ∪ (xt+1, yt+1)
7. end For

4 Experimental Evaluations

We evaluate the performance of the proposed algorithm on various synthetic
benchmark functions. Then, we tune the hyperparameters of Support Vector
Machines (SVM) with RBF kernel and Elastic Net models, both performing clas-
sification task on real-world datasets. We compare the performance of the pro-
posed algorithm (SVL) with the other Bayesian optimisation (BO) algorithms:
(i) FIX BO with fixed length-scale SE kernel [1], (ii) ARD BO with Automatic
Relevance Determination (ARD) SE kernel [19] and (iii) MULTI BO with mul-
tiple weighted kernels [7]. We use Expected Improvement acquisition function
αEI(x) to guide the search for the optimum in all our experiments. We plot
simple regret, rt = f(x∗) − max

x∈D1:t
f(x) for the methods mentioned above.
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4.1 Synthetic Benchmark Functions

First, we test our algorithm with a benchmark function1 resembling a damped
harmonic oscillator function having multiple local maxima and local minima.
This benchmark function is treated as an expensive black-box function in our
experiments. The length-scale function is chosen as l(xd) = ad ·xd +bd, to model
the objective function more accurately. We also present results for other 1D
benchmark functions like the Xin-She Yang N.3 function and the Gramacy &
Lee function2. The results are as shown in Fig. 3.

Fig. 3. Simple regret for 1D benchmark functions. The first column depicts the objec-
tive function, the second column represents the length-scale function used, and the last
column depicts the simple regret over number of iterations.

In the case of higher dimensions, we use the synthetic functions listed in
Table 1 for the experiments. The results for the evaluations with 2D benchmark
functions are as shown in Fig. 4. For instance, in the case of the Ackley 2D
function, the global maximum is found at the origin O(0, 0), where it seems
to be more wiggly. Therefore we can expect shorter length-scales around this

1 http://infinity77.net/global optimization/test functions.html.
2 https://www.sfu.ca/∼ssurjano/optimization.html.

http://infinity77.net/global_optimization/test_functions.html
https://www.sfu.ca/~ssurjano/optimization.html
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region and larger length-scales, otherwise. This can be achieved by selecting a
length-scale function that looks like an inverted Gaussian curve. The shorter
length-scales are generated around the origin to concentrate the search around
that region and hence the optimum is reached with fewer function evaluations.
Likewise, in the experiments with more than three dimensions, we have consid-
ered the same inverted Gaussian length-scale function as the generic prior. The
main intuition here is that the region around the optimum generally appears to
be more jagged than that of the other regions. Therefore, choosing an inverted
Gaussian curve and estimating the right value for the mean enables our algo-
rithm to converge quickly. For d dimensional synthetic functions, the convergence
results after 10 × d iterations obtained for different algorithms are as shown in
Table 2.

4.2 Real-World Dataset

We evaluate the proposed algorithm in tuning hyperparameters of machine
learning algorithms operating on Wisconsin Diagnostic Breast Cancer Dataset

Fig. 4. Simple regret for 2D benchmark functions. The first column depicts the objec-
tive function, the second column represents the length-scale function used in both the
dimensions, and the last column depicts the regret over iterations.
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Table 1. Details of the synthetic benchmark functions.

Function Range f(x∗) x∗

Ackley n-D xi ∈ [−32.76, 32.76] 0 x = (0, · · · , 0)

Shubert 2D xi ∈ [−5.12, 5.12] 186.7 x = (−1.424, −0.799)

Michalewicz 2D xi ∈ [0, π] 1.801 x = (2.2044, 1.5692)

Hartmann 3D xi ∈ [0, 1] 3.862 x = (0.1146, 0.5556, 0.8525)

Rosenbrock n-D xi ∈ [−2.04, 2.04] 0 x = (1, · · · , 1)

Hartmann 6D xi ∈ [0, 1] 3.322 x = (0.201, 0.15, 0.476, 0.275, 0.311, 0.657)

Table 2. Simple regret for synthetic functions in higher dimensions after 10 × d itera-
tions. Each cell signifies the mean value of regret along with standard error.

Function MULTI ARD FIX SVL

Hartmann 3D 0.0112 ± 0.00 0.0013 ± 0.00 0.0119 ± 0.00 0.0002 ± 0.00

Rosenbrock 5D 0.4179 ± 0.00 0.3163 ± 0.01 4.3746 ± 0.07 0.2119 ± 0.00

Ackley 6D 0.0204 ± 0.00 0.0275 ± 0.00 0.0209 ± 0.00 0.0144 ± 0.00

Hartmann 6D 0.0153 ± 0.00 0.0172 ± 0.00 0.0200 ± 0.00 0.0123 ± 0.00

Fig. 5. Hyperparameter tuning for machine learning algorithms. Subfigures (a), (b)
depict the accuracy obtained for Elastic Net and (c), (d) for SVM accuracy.

(WDBC) and the Vehicle Dataset, available from UCI data repository3. For the
SVM, we tune the cost parameter (C) and the width of the RBF kernel in the
exponent space of [−3, 3] and [−5, 0], respectively. Next, we tune the Elastic
Net hyperparameters, i.e., the Elastic Net mixing parameter (L1 Ratio) in the
interval [0, 1] and the penalty parameter in the exponent space of [−7,−1]. The
results obtained for the hyperparameter tuning are as shown in Fig. 5.
3 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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5 Conclusion

We propose a novel method to incorporate additional knowledge from the domain
experts about the spatial properties of the objective function to accelerate
Bayesian optimisation. We have used a spatially varying kernel to embody the
variance in the smoothness of the objective function by representing the length-
scale as a function of the input. The added information about the smoothness
improves the accuracy of GP surrogate models, thereby ensuring better conver-
gence. We have discussed the valid choices available for the length-scale function
and also an approach to estimate its parameters. The experimental results show
that our proposed method outperforms other Bayesian optimisation algorithms.
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Abstract. Bayesian Optimization (BO) is an efficient method to opti-
mize an expensive black-box function with continuous variables. How-
ever, in many cases, the function has only discrete variables as inputs,
which cannot be optimized by traditional BO methods. A typical app-
roach to optimize such functions assumes the objective function is on a
continuous domain, then applies a normal BO method with a rounding
of suggested continuous points to nearest discrete points at the end. This
may cause BO to get stuck and repeat pre-existing observations. To over-
come this problem, we propose a method (named Discrete-BO) that
manipulates the exploration of an acquisition function and the length
scale of a covariance function, which are two key components of a BO
method, to prevent sampling a pre-existing observation. Our experiments
on both synthetic and real-world applications show that the proposed
method outperforms state-of-the-art baselines in terms of convergence
rate. More importantly, we also show some theoretical analyses to prove
the correctness of our method.

Keywords: Bayesian optimization · Gaussian process · Discrete
variables · Hyper-parameter tuning

1 Introduction

Bayesian optimization [11,12] is an efficient approach to find a global optimizer of
expensive black-box functions, i.e. the functions that are non-convex, expensive
to evaluate, and do not have a closed-form to compute derivative information.
For example, tuning hyper-parameters of a machine learning (ML) model can be
considered as an expensive black-box function since it is time-consuming, and
there is no explicit mathematical formula that maps the hyper-parameters to
the accuracy of the model. Additionally, evaluating the goodness of a hyper-
parameter set requires re-training of the model and assessment of the trained
model on a validation set, which is expensive especially on large models like
deep neural networks. BO can find the best set of hyper-parameters within a
reasonable number of iterations because it makes use of observed data to predict
a next point where the function should be evaluated. Generally, a BO method
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has two main steps. First, it builds a surrogate model for the objective function
and quantifies the epistemic uncertainty of the surrogate model using a Bayesian
machine learning technique (e.g. using a Gaussian process). Second, it uses an
acquisition function constructed from the surrogate model to decide where to
sample the next function evaluation point. A summary of recent research work
in BO and its applications in real-world problems can be found in [15].

When optimizing a function, most BO methods assume the input variables
to be continuous because BO uses an acquisition function defined only on a con-
tinuous domain. In real-world applications, it is common to encounter problems
with discrete variables, e.g. the number of trees and depth in tuning a random
forest model, the number of layers/hidden units and the batch-size in tuning
a neural network. Therefore, applying BO to optimize functions with discrete
inputs is a challenging problem. First, when BO samples the next point for func-
tion evaluation, it suggests a continuous point that is an invalid input for the
function. Second, we have exponentially many combinations of discrete values
with respect to the number of variables, which causes the search space to become
large and impractical to try all possible values.

Existing Methods. There have been a few prior attempts to develop meth-
ods to optimize expensive black-box functions defined on discrete inputs. One
of them is the Transformation approach of Garrido-Merchán and Hernandez-
Lobat [4]. This method is based on BO and assumes that the objective function
does not change its values except at discrete points. Although this method can
tackle the discrete inputs by simply rounding the inputs of a covariance func-
tion, it makes the acquisition function a step-wise function, which is difficult to
optimize. Another work is Sequential model-based optimization for general algo-
rithm configuration (SMAC) [5], which uses random forest as a surrogate model
instead of a Gaussian process. It has a low computational cost and can naturally
deal with discrete variables due to the tree-based structure. However, random
forest is not a good choice for the surrogate model because it has a limitation
in performing extrapolation [9]. Similarly, Tree-parzen estimators (TPE) [1] is
another tree-based method which estimates the densities of good and bad candi-
date points in the search space and can cope with discrete variables by randomly
sampling candidates from discrete distributions. Unfortunately, TPE requires a
large enough number of observations, in the beginning, to model the density
distribution efficiently. BO methods for multi-armed bandit [15] can tackle dis-
crete domain. However, they do not incorporate correlation between neighbour
discrete values, and they need to sample the same point again to reduce the
uncertainty. Because of these disadvantages, the problem of black-box function
optimization with discrete variables remains open.

When a standard BO is used to optimize functions with discrete variables,
it treats discrete variables as continuous then applies a normal BO method,
and finally rounds the suggested continuous point before function evaluations.
We call this approach as BO with naive rounding (Naive BO). This approach
does not have the problems of above-mentioned works e.g. step-wise difficult to
optimize acquisition function, extrapolation problems of SMAC, or the density
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modelling requirement of TPE. However, this approach often starts to repeat the
function evaluations at previously tried points due to rounding of a continuous
suggestion to the nearest discrete value in the search space. It is illustrated in
Fig. 1, and, in this paper, we aim at solving this problem.

Fig. 1. An illustration of the repetition of pre-existing observations problem of standard
BO caused by naive rounding. We can only evaluate at grid locations, and we already
evaluated at −2, 0, 1, 4, 5, 6, 8, and 10 indicated by black dots. Using a Gaussian
process, we can calculate the predictive mean (dashed line) and variance to build
an acquisition function. Maximizing the acquisition suggests a continuous point (red
marker) x = 0.3 that is invalid to evaluate, so we round to the nearest grid point x = 0
which is already observed. (Color figure online)

Our Method. We propose a novel approach, named Discrete-BO, to solve
the repetition problem in the Naive BO method. In particular, we want the
algorithm to sample points that are different from pre-existing observations by
shifting the suggested point obtained after maximizing an acquisition function.
There are two ways to shift the suggested point. One is to increase the value of
the exploration factor of the acquisition function, and another one is to adjust
the length scale of the covariance function. To select the optimal values for the
exploration factor and length scale, we formalize it as an optimization problem.
With these optimal exploration factor and length scale, our proposed method not
only suggests valid discrete points but also avoids the repetition of observations.

Our contributions are:

– We propose Discrete-BO – a BO method for optimizing expensive black-box
functions with discrete inputs.

– We provide theoretical analyses for a deeper understanding of our method.
– We conduct comprehensive experiments on both synthetic functions and real-

world applications where our method outperforms state-of-the-art baselines.

2 Background

In this section, we briefly provide basic knowledge of BO with Gaussian process
(GP) and the well-known upper confidence bound (GP-UCB) acquisition func-
tion since they form the basic framework of our proposed method. A detailed
review of BO and acquisition functions can be found in [3,10].
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Bayesian Optimization with Gaussian Process. BO is a well-known search
strategy for finding the global optimizer of an expensive and noisy black-box
function [12]. Specifically, BO finds the optimizer (i.e. the optimal input):

x∗ = argmax
x∈X

f(x) (1)

where X is a bounded domain in R
d and f(x) is an objective function.

Normally, it is expensive to directly evaluate the objective function, thus
BO builds a surrogate model that is cheaper to sample. One commonly used
surrogate model is Gaussian process [13]. Typically, f(x) is assumed to be a
smooth function and modelled by a GP, i.e. f(x) ∼ GP(μ(x), k(x, x′)), where
μ(x) and k(x, x′) are mean and covariance functions of the distribution. In the
context of BO, mean can be assumed to be a zero function and the squared
exponential kernel (Eq. (2)) is often used for covariance function.

k(x, x′) = σ2exp(− 1
2l2

‖x − x′‖2) (2)

where σ2 is a parameter dictating the uncertainty in f(x) and l is a length scale
parameter which controls how quickly a function can change.

Let D = {(xi, yi)}N
i=1 is our observations that contain N inputs xi and their

corresponding function values yi = f(xi) + εi and εi ∼ N (0, σ2
ε ). By fitting

the observed data into the GP, we obtain the predictive distribution of f(x) at
any point x in the search space. This predictive distribution is also a Gaussian
distribution characterized by the mean and variance as follows:

μ(x) = kT (K + σ2
ε I)

−1y, σ2(x) = k(x, x) − kT (K + σ2
ε I)

−1k (3)

where y = (y1, ..., yN ) is a vector of the function values we have so far, k(x, x)
is the covariance at point x, k = [k(xi, x)]∀xi∈D is the covariance between the
new point x and all other observed points xi, K = [k(xi, xj)∀xi,xj∈D] is the
covariance matrix, I is an identity matrix with the same dimension as K, and
σ2

ε is the measurement noise.
The posterior mean and variance, calculated from Eq. (3), are used to define

an acquisition function α(x), and various types of acquisition function are pre-
sented in [3,12]. In our method, we use the well-known GP-UCB because it was
theoretically analyzed to have a bounded regret [16].

Upper Confidence Bound Acquisition Function. This acquisition function
combines the posterior mean and variance from Eq. (3) as:

αUCB
t (x) = μ(x) +

√
βtσ(x) (4)

where βt is the exploitation-exploration trade-off factor. The author in [16] rec-
ommends the value βt = 2 log

(
t22π2/3δ

)
+ 2d log

(
t2dbr

√
log (4da/δ)

)
. Using

this βt, BO algorithm with GP-UCB achieves an upper bound on the cumulative
regret with the highest probability, greater or equal to 1−δ, in the search space,
which is a subset of [0, r]d with r > 0, and a, b > 0 are constants [16].
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The acquisition function in Eq. (4) qualifies every point x in the domain so
that we can sample the next point xt+1 as follows:

xt+1 = argmax
x∈X

αUCB
t (x) (5)

Acquisition functions differ in the way of balancing exploration and exploita-
tion. The simplest one is the Probability of Improvement (PI) [8], which purely
exploits the area near the incumbent [3], thus it might easily fall into a local opti-
mum. An alternative is the Expected Improvement (EI) [6,7], which incorporates
both exploitation and exploration leading to the global solution. Essentially, all
acquisition functions mentioned above assume that the objective function f(x)
continuous so that the Eq. (5) returns a real-valued point.

3 The Proposed Framework

Given an expensive black-box function f(x) with discrete inputs as illustrated
in Fig. 2, our goal is to find the maximum of the function as

x∗ = argmax
x∈X

f(x) (6)

where X is a finite discrete domain in R
d, and we only have noisy observations

in the form yi = f(xi) + εi, εi ∼ N (0, σ2
ε ).

Fig. 2. An example of a black-box function with a discrete variable x. We do not
know the form of this function, but we can evaluate it at discrete points in the set
{−3, ..., 10}. Any other values of the variable x are invalid inputs.

The optimization in Eq. (6) is particularly challenging because f(x) is defined
only on discrete points. However, since most of the real-world functions may
still take correlated values on discrete points in a neighbourhood, one can fit
a continuous function passing through these discrete points as shown in dotted
line in Fig. 2. We can use a GP to model this continuous function and then use
an acquisition function to suggest the next point for function evaluation. Since
this point may not be part of the discrete input set, the function is evaluated at
the closet point in the discrete set. But as discussed in Sect. 1 (see Fig. 1), this
naive approach may repeatedly evaluate the function at the same point making
the algorithm become stuck and causing inefficiency in the algorithm.
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Before presenting a solution to this problem, we first provide a detail insight
into what determines the next sample when using the GP-UCB acquisition func-
tion. In particular, since GP-UCB is a combination of μt(x) and σt(x), its max-
imum value is determined strictly by one of the three scenarios.

Case 1. μt(x) dominates αt(x): The maximizer of αt(x) is determined com-
pletely by μt(x), and σt(x) has no effect on the solution. If the naive rounding
scheme experiences repetition of any previously evaluated function values, we
can artificially increase the weighting βt to increase the effect of σt(x) in deter-
mining the maximizer. Although this “artificial” increase of βt introduces some
extra exploration in the optimization, it makes the algorithm going (without
repetitions) while ensuring the convergence guarantee [16].

Case 2. σ (x) dominates αt(x): The maximizer of αt(x) is determined completely
by σt(x), and μt(x) has no effect on the solution. Thus, the repetition is not
possible because close to the existing observations, the σt(x) will be small and
will not achieve maximum.

Case 3. μ (x) and σ (x) are balanced: Both μ (x) and σ (x) have influence in
determining the maximizer. In the event of any repetition, adjusting βt can
make it σ (x) dominated, which will stop repetitions. However, in this case, it
may be possible to adjust the GP kernel length scale as an additional control
to avoid repetitions as by increasing/decreasing length scale will allow us to not
use excessively high values of βt. We note that changing the length scale may
cause slight misspecification of the GP prior, however, the convergence of the
algorithm still remains guaranteed.

In three cases, the solution for avoiding the repetitions requires adjusting
βt and/or the kernel length scale. Importantly, it needs to be set to reasonable
values as their values directly affect the optimization efficiency. A large value of β
causes more exploration, making the algorithm less efficient. Similarly, the length
scale l controls the smoothness of a surrogate model, and a large misspecification
leads to a requirement of more samples to get accurate function estimation.

Proposed Method

Based on the above observations and analyses, we propose our Discrete-BO
algorithm. Our idea is to avoid sampling pre-existing observations by increasing
the exploration-exploitation trade-off factor β and adjusting the length scale l of
the covariance function. In the following we describe an optimal way to adjust
the β and the length scale l.

Optimizing β and l. In our proposed algorithm, whenever a suggestion is
repeated, we find new values of β and l so that the rounded maximizer of the
acquisition function differs from the previously suggested rounded maximizer.
Although we can adjust β and l using random search or grid search, it will
be computationally expensive to find the appropriate combination of β and l.
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Therefore, we take a systematic approach to find the new values of β and l by
solving an optimization problem as follows:

β∗, l∗ = argmin
Δβ∈[0,βh],l∈(0,lh]

g(βt + Δβ, l)

g(βt + Δβ, l) = Δβ + ‖xt+1 − x′
t+1‖2 + P (x′

t+1)
(7)

The Δβ is the increment applied on βt as βt ← βt+Δβ. The xt+1 is the point
suggested by the original βt and lt. The x′

t+1 is the point suggested by the βt+Δβ
and adjusted l. The term P (x′

t+1) is set to a constant C if round(x′
t+1) ∈ Dt,

otherwise it is zero. We can manually set the upper limits βh and lh.
The optimization problem in Eq. (7) has three objectives. The first objective

is to minimize Δβ since we do not want our new βt to exceed much more than
the original βt to avoid inefficiency. We can not have negative Δβ as this will
take away convergence guarantee of the algorithm [16]. The second objective is
to minimize the distance between xt+1 and x′

t+1 because the algorithm should
suggest a discrete point that is close to the current potential area for exploitation.
The third objective is to minimize a penalty, which is given to make sure pre-
existing observation is not sampled again. The optimization problem in (7) is a
continued non-convex problem. We solve it using L-BGFG with multiple random
initializations. We summarize Discrete-BO in Algorithm 1.

Algorithm 1. Discrete-BO algorithm
Input: GP model, initial data D0 = {(x0, y0)}, upper limits βh, lh

1 for t = 0, ..., n do
2 βt is calculated as suggested for GP-UCB, lt is estimated using Dt

3 Select the next sample xt+1 = argmaxx∈X αUCB
t (x) with βt, lt

4 xt+1 = round(xt+1)
5 if x ∈ Dt then
6 Find the optimal β∗ and l∗ using (7): βt ≤ β ≤ βh and 0 < l ≤ lh
7 xt+1 = argmax

x∈X
αUCB

t (x) with β∗, l∗

8 xt+1 = round(xt+1)
9 Query the objective function to obtain yt+1

10 Augment Dt+1 = {Dt, (xt+1, yt+1)} and update statistical model GP
11 end

4 Theoretical Analysis

In this section, we provide a theoretical understanding of our algorithm. We
start by providing a definition of the repetition of pre-existing observations.

Definition 1. In a discrete domain, a sample point is repeated if the following
condition holds: xt+1 = �argmaxx∈R αt (x)� ∈ Dt, where Dt consists of observa-
tions up to iteration t.
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The following two Lemmas provide an understanding of the two extreme
cases detailed at the start of this section.

Lemma 1. (μ-dominance) If the BO algorithm repeats an observation due to the
dominance of μt(x), there exists an increased β that will lead to a new solution
x′

t+1 of the acquisition function such that x′
t+1 /∈ Dt.

Proof. For μ-dominance case, σt(x) 	 μt(x) ∀x ∈ X ⊆ R, then max (α) �
max (μt (x)). Denoting the existing observations up to iteration t as Dt, for any
xt+1 ∈ Dt, let us assume that xt+1 is the rounded value of a continuous value
xa. Also consider another continuous value xb such that the rounded value of xb

is not in Dt. Then ||xa −xt+1|| < ||xb −xt+1|| and σ(xa) < σ(xb). By sufficiently
increasing βt, we make the effect of σ(x) term dominates the μ(x) term (See
α(x) � μ(x) +

√
βtσ(x)) and thus α(xb) > α(xa). Hence, we can always get a

solution xb. Finally, we can recommend the rounded value of xb to BO.

Lemma 2. (σ-dominance) If the BO algorithm repeats an observation in gen-
eral, where none of μ(x) or σ(x) dominates, then there exists an increased β
and an adjustment in length scale l that will lead to a new solution x′

t+1 of the
acquisition function such that x′

t+1 /∈ Dt.

Proof. For the case where both μt(x) and σt (x) jointly influence the maximizer
of αt(x), we can always sufficiently increase βt and tilt the balance such that the
problem can become σt (x) dominated and therefore, no repetition will occur.
By adjusting length scale l, it is possible to use a smaller increase in βt and get
the σt (x) dominance as shown in the proof of Lemma 1.

5 Experiments

We conduct experiments to show the performance of our proposed method
Discrete-BO on both synthetic and real-world applications. We compare our
method with existing methods such as BO with naive rounding (Naive BO),
Transformation method of Garrido-Merchán and Hernandez-Lobato [4], SMAC
[5], and TPE [2]. These baselines are described in Sect. 1.

In our experiments, we use the squared exponential kernel and randomly
initialize the optimization with d+1 points, where d is the input dimension. The
initialized points are kept identical across all methods for a fair comparison. We
also use the same budget (i.e. the number of iterations), where at each iteration
t we report the best function value found so far by each method. We repeat each
method 10 times and report the average result along with the standard error.

5.1 Synthetic Applications

We first illustrate our method on synthetic functions. Since most standard bench-
mark functions are continuous, we need to discretize them. For example, consid-
ering the simple 1-dimension Test function in Table 1, it is a continuous function
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Fig. 3. A discretized version of the Test function in Table 1. It has one global maximum
of 1.4 at x = 2.

but is discretized, as shown in Fig. 3. Other functions in Table 1 such as Schu-
bert, Eggholder, and Griewank are also discretized, and we multiply them with
−1 so that we can find their maximum instead of minimum in their original
form.

Table 1. Characteristics of discretized synthetic functions.

Function Formula Dim Range

Test function e−(x−2)2 + e−(x−6
10 )2 + 1

ex
2
+1

1 x ∈ {−2, . . . , 10}
Schubert

∏2
i=1

(∑5
j=1 j cos((j + 1)xi + j)

)
2 x1, x2 ∈ {−10, . . . , 10}

Eggholder −(x2 +47) sin
(√∣

∣x2 + x1
2

+ 47
∣
∣
)

−x1 sin
(√|x1 − (x2 + 47)|

)
2 x1, x2 ∈ {−512, . . . , 512}

Griewank
∑3

i=1

x2
i

4000
− ∏3

i=1 cos
(

xi√
i

)
+ 1 3 x1, x2, x3 ∈ {−50, . . . , 600}

Figure 4 shows the optimization results for four functions in Table 1. From
the results, we can see that our proposed method Discrete-BO is the best
method where it significantly outperforms other methods. For example, consider
the optimization result of the 1d Test function in Fig. 4(a). Our method and
Transformation need only 10 iterations to find the true maximum function value
of 1.4. In contrast, TPE requires a double number of iterations (20 iterations)
to achieve the same result. Naive BO is unable to find this maximum due to its
repetition problem as discussed in Sect. 1. SMAC is better than Naive BO.

When the number of dimensions is increased up to 2 and 3 (Fig. 4(b)–(d)),
the optimization becomes a challenging problem due to the large search space.
Our method still performs well and it clearly outperforms others. Transformation
becomes the second-best method, which can be explained by the fact that the
step-wise acquisition function created by Transformation is difficult to optimize
on high dimension functions. Interestingly, Naive BO performs much better than
TPE and SMAC on the 3d Griewank function.
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(a) Test function (b) Schubert

(c) Eggholder (d) Griewank

Fig. 4. Results on synthetic functions – best function value (maximum) vs. iteration:
(a) Test function, (b) Schubert, (c) Eggholder and (d) Griewank.

5.2 Real-World Applications

The second experiment shows the efficacy of our method in real-world applica-
tions: hyper-parameter tuning for a random forest (RF) and a neural network
(NN).

Our goal is to find the optimal set of hyper-parameters for two ML models,
which achieves the best accuracy in classification. We define the black-box func-
tion as a mapping between the hyper-parameters and the classification accuracy
on a held-out validation set. For RF, we used the Human Activity Recognition
dataset [14], which consists of 10,299 records and 561 features. For NN, we build
a network with one hidden layer and train with stochastic gradient descent. We
test on the Handwritten Digits dataset [17], which has 1,797 8 × 8 images and
10 labels. The discrete hyper-parameters to optimize are summarized in Table 2.

Figure 5(a) shows the result of hyper-parameter tuning for RF. From the
result, we can see that our method Discrete-BO and Transformation are the
best method. The performances of our method and Transformation are compa-
rable although our method converges slightly faster than Transformation. Com-
pared to SMAC and Naive BO, our method is significantly better. Naive BO is
the worst method due to its repetition problem as explained in Fig. 1. TPE is
the second-best method and it outperforms SMAC and Naive BO.

Figure 5(b) shows the result of hyper-parameter tuning for NN. Our method
clearly outperforms all baselines, needing only 40 iterations to converge to the
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Table 2. Hyper-parameters to optimize for Random Forest and Neural Network mod-
els. The last column indicates a dataset used to train and test the model.

Model Hyper-parameters Dim Dataset

Random Forest Estimators ∈ {1, . . . , 100}
Min samples in leaf ∈ {1, . . . , 10}

2 Human Activity

Neural Network Hidden units ∈ {1, . . . , 400}
Batch size ∈ {1, . . . , 2000}
Max iterations ∈ {1, . . . , 1000}

3 Handwritten Digits

(a) Random forest classifier (b) Neural network classifier

Fig. 5. Results of hyper-parameter tuning – best function value (accuracy) vs. iteration
for two models: (a) RF and (b) NN.

optimum. Interestingly, Transformation does not perform well whereas SMAC
becomes the second-best method; however, SMAC requires 100 iterations (2.5
times larger than ours). TPE is better than Transformation and Naive BO.

6 Conclusion and Future Work

This paper discusses the problem of BO for optimizing black-box functions with
discrete variables. The naive rounding BO does not converge since it gets stuck
at suggesting pre-existing observations. Our proposed method can improve the
vanilla BO in a discrete domain and successfully solves the rounding problem of
the vanilla BO without requiring a more complex kernel function. Our experi-
mental results clearly demonstrate the effectiveness of our proposed method.
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Abstract. Modern AI is largely driven by machine learning. Recent
machine learning algorithms such as deep neural networks (DNN) have
become quite effective in many recognition tasks e.g., object recognition,
face recognition, speech recognition, etc. Due to their effectiveness, these
models are already catering to user needs in the real world. To han-
dle the service requests from large number of users and meet round the
clock demand, these models are usually hosted on cloud platforms (e.g.,
Microsoft Azure ML Studio). When hosting a model on the cloud, there
may be security concerns. For example, during the transit of the model
to the cloud, a malicious third party can alter the model or sometimes
the cloud provider itself may use a lossy compression on the model to
efficiently manage the server resources. We propose a method to detect
such model compromises via sensitive samples. Finding the best sensi-
tive sample boils down to an optimization problem where the sensitive
sample maximizes the difference in the prediction between the original
and the modified model. The optimization problem is challenging as (1)
the altered model is unknown (2) we have to search a sensitive sample
in high-dimensional data space and (3) the optimization problem is a
non-convex problem. To overcome these challenges, we first use a vari-
ational autoencoder to transform high-dimensional data to a non-linear
low-dimensional space and then uses Bayesian optimization to find the
optimal sensitive sample. Our proposed method is capable of generating
a sensitive sample that can detect model compromise without incurring
much cost by multiple queries.

Keywords: Cloud service · Sensitive sample · Bayesian optimization

1 Introduction

Machine learning (ML) algorithms have changed the face of problem solving
scenarios of today’s world. With the enormous amount of data generated like
medical images, data in social media, images from surveillance cameras and
much more, human analysis of these data is not feasible. ML algorithms analyze
these data to understand useful patterns and perform prediction tasks as good
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as humans in many cases. Consequentially, ML is now being used in many real-
world applications such as medical diagnosis, predicting behavioral patterns from
posts in social media [16], security systems, autonomous driving and much more.
One popular machine learning approach applies Deep Neural Networks (DNN)
[12]. A DNN is capable of extracting high-level features from raw data. A DNN
has multiple hidden layers, with higher layers learning some high level features
from the raw data. In case of images, the low-level features might be some lines
or edges. The high-level features might correspond to parts of a face or object.
Since they find application in many large-scale problem-solving scenarios and
the services are required round the clock, hosting these models locally is not
sufficient. Also sometimes training these models requires a lot of computational
and storage requirements, which might not be available locally. So these models
often use cloud resources. Cloud resources can be used by models in two different
ways. The first is to use the resources (e.g. storage space, processing power) to
train the model and host it. The second type of usage is to train the model in the
local system, then host it in the cloud environment. The former type of cloud
service is known as model training and the latter is known as model servicing.
There are many platforms that offer cloud services for training as well as hosting
machine learning models. Examples are Amazon Sagemaker, Microsoft Azure
ML Studio, and Google cloud ML.

There are certain security threats while hosting a model in the cloud. For
example, during the transit of the model to the cloud, a malicious third party
can host an attack to modify the model [15]. Also there is a possibility that a
dishonest cloud provider might use lossy compression of the original model, at
the cost of slight prediction accuracy to save the resources used for hosting. In
this situation, the customer ends up paying more than the cost of the actually
allocated resources. Other types of attacks target the trained models already
hosted on the clouds, like a trojan attack [14], data poisoning attack [3] etc.
The common thing about all mentioned types of attacks is that they attempt to
adversary modify the parameters (aka weights) of the model to meet an attack
goal.

Detecting if the hosted model is compromised or not is a challenging problem.
Once the model is hosted on a cloud, it remains a black-box for the customer.
The model can only be queried via the API provide by the cloud service provider.
Traditional methods of verification like hashing [10] etc cannot be used. Even
if the cloud provider provided an Application Programming Interface (API) to
obtain the hash values of the deployed model, it cannot be trusted in case of
a dishonest service provider. In the scenario of model servicing, the original
model is available in the local machine. In this case a method to detect model
compromise is to query the deployed model and look for the mismatch in the
prediction of the deployed model (cloud model) and the original model (local
model). The attackers usually only slightly modify the model so as to evade
detection. So querying with some samples might not detect the compromise.
Also querying is costly as payment has to be made for each query. Thus it is
imperative to find a sensitive sample that can detect small changes in the model.
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A sensitive sample is a sample for which even slight changes in the model, results
in different prediction.

Finding a sensitive sample boils down to an optimization problem where the
sensitive sample maximizes the difference in the prediction between the original
and the modified model. The optimization problem is challenging as (1) the
algorithm has to search for a sensitive sample in a high-dimension space and
(2) it is a non-convex problem. This requires global optimization. In this paper,
we use Bayesian optimization (BO) to efficiently find the sensitive sample. Since
the data may lie in a high-dimensional space, we face the challenge of global
optimization in high dimension, which is a well known hard problem. Fortunately,
for most of the real-world applications, data lie in smaller dimensional manifolds.
We use this idea to reduce the data dimension into a non-linear manifold learnt
using a variational autoencoder (VAE). We show that the dataset used to train
the DNN model is usually sufficient to learn a VAE based data manifold. We then
perform the global optimization in the VAE manifold, using a sample efficient
global optimizer, widely known as Bayesian optimization. Our proposed method
is capable of generating sensitive samples that can detect model compromise
without incurring much cost by multiple queries to the cloud.

2 Related Works

Deploying models in clouds poses a risk of being attacked by a third party.
Many such attacks have been documented. One such attack is the trojan attack
[5,14]. In this technique, the adversary modify the target so as to mis-classify it.
Usually this modification is done by adding some kind of trigger (for example,
an image where the person wears spectacles). Only the images with triggers will
be mis-classified. Another attack technique is data poisoning attack [1,3]. In
this method malicious samples are used to tune the parameters of the model to
degrade the performance of the system. These integrity breaches pose a major
concern in applications such as autonomous driving and user authentication.

There are many works done to verify integrity of the data stored in the cloud
[18]. Most of them involve a third party authorization and generating certificates
clarifying the integrity of the data. Some traditional integrity checks like hashing
are not particularly useful in the cloud scenario. Many cloud service providers do
not provide an API to access the hash values. Also, in case of dishonest service
providers, these hash values cannot be trusted. A work in integrity checking in
cloud scenario has been done by Ghodsi et al. [6]. In this work a framework was
proposed to verify the integrity of the cloud provider. This approach struggles to
detect some subtle model integrity attacks. Integrity checking by querying the
deployed model with sensitive samples has been proposed by He et al. [7]. In this
work they query the model with samples that are similar to normal queries but
are sensitive to slight changes in the model. They have used a local optimizer to
find the sensitive sample.
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Bayesian optimization (BO) is an efficient method to optimize expensive
functions [2]. It uses the Bayesian technique of setting a prior over the function
and using the further observations obtained by evaluation of the function to get
the posterior. In order to find the next point of evaluation, it uses an acquisi-
tion function that balances the trade-off between exploration and exploitation
of the search space. Gaussian process regression (GP) is the most popularly
used method for priors in the BO algorithm. Optimization in high dimension
is challenging [13]. Finding a representation of high-dimensional data in a low-
dimensional manifold is one way to tackle this problem.

VAE is a generative model that consists of an encoder that maps the repre-
sentation of data in higher dimension to a lower dimension and a decoder that
maps the data from latent space to the original dimension [9]. VAE assumes the
latent distribution to be a Gaussian distribution. Also the latent space in VAE is
continuous. The objective function of VAE ensures that the reconstructed image
is similar to the original image and also that the encode representation fall in a
Gaussian distribution in the latent space. These two assumptions allow BO to
run smoothly in the latent dimension [4].

3 Proposed Method

In the scenario considered for our method, the parameters of the original model
is known. The deployed model is a black-box, i.e. the parameters of this model is
not known. The parameters usually learned in a DNN model are the weights. Let
the parameters of the original model be W and those of the modified black-box
model be W + Δw, where Δw is a perturbation. Let the function of the original
model be y = f(x;W ) and that of the compromised model be y′ = f(x;W +Δw).
In case of a multi-class problem with r classes, the model function is of the form
y = f(x) = [y1, y2, ..., yr]T = [f1(x;W ), f2(x;W ), ..., fr(x;W )]T . When a model
is compromised, usually the change is in the parameters learned. The goal is to
find a sensitive input s similar to x that maximizes the difference between the y
and y′. This can be mathematically represented as:

s = argmaxx ‖y′ − y‖22
= argmaxx ‖f(W + Δw, x) − f(W,x)‖22 (1)

= argmaxx

r∑

i=1

‖fi(W + Δw, x) − fi(W,x)‖22 (2)

Here ‖.‖ represent l2 norm of a vector and Δw is the perturbation made by the
malicious third party. This perturbation is unknown to us. We do the Taylor
expansion of the expression of the Eq. (1) as follows:
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fi(W + Δw, x) = fi(W,x) +
∂fi(W,x)T

∂W
Δw + O(‖Δw‖22) (3)

If Δw is small, we can approximately write

‖fi(W + Δw, x) − fi(W,x)‖22 ≈

∥∥∥∥
∂fi(W,x)T

∂W
Δw

∥∥∥∥
2

2

(4)

When looking at term in Eq. (4), we can ignore the Δw as it does not depend

on x. Hence in this case the objective function is of the form
∥∥∥∂fi(W,x)

∂W

∥∥∥
2

. Here,
f(W,x) is the function of the model we have access to. So to find the derivative
of this function, we do not need to access the model hosted in the cloud. So the
sensitive sample can be found just using the model in hand and can be used
to detect multiple model tampering. The derivative of a DNN function w.r.t.
weights result in a matrix. The objective function here is the Frobenius norm
of the resultant matrix. The objective function also has a constraint that the
sensitive sample should fall in the same distribution of the input data. Defining

C(x) �
∥∥∥∂f(W,x)

∂W

∥∥∥
2

F
, the optimization problem can be written as:

s = argmax
xεX

C(x) (5)

where X is input data space. For example, in the case of images, the pixel
values are in the range between [0, 255]. Eq. (5) can be optimized using a local
optimizer like Gradient Ascent [7]. However, since Eq. (5) is the gradient of a
DNN function and the DNN function is a non-convex function with multiple
local minima and maxima, our objective function is also a non-convex function.
Using a global optimizer is more suitable for our objective function. Bayesian
optimization (BO) is a powerful global optimization method. It is an efficient
method to optimize expensive black-box function. When the perturbation Δw
is small we can approximate Eq. (1) to a known objective Eq. (5).

3.1 Dimensionality Reduction

Images are high-dimensional inputs. Optimization in high-dimensional space is
a challenging problem. Also in our problem, we have to ensure that the sen-
sitive sample lies in the input data distribution. In dimensionality reduction,
an assumption is made that for a data distribution in high dimensional space,
a representation of the same distribution can be found in a lower-dimensional
manifold. To find this lower dimensional representation, various dimensionality
reduction techniques like Principal Component Analysis (PCA) and generative
models can be used. We have used VAE to achieve this lower dimensional rep-
resentation.



490 D. P. Kuttichira et al.

VAE is a generative model which consists of an encoder and decoder [9].
Encoder maps the observed variable in high-dimensional space to a lower-
dimensional latent space. Decoder reconstructs the observed variable from the
sample in latent space. VAE is build on the concepts of directed probabilistic
graphs. Here the assumption is that for an observed variable x in the high-
dimensional space a latent variable z can be inferred in a lower-dimension. In
our case the observed variable is the query input. This input is mapped to a
latent space by VAE. This latent variable is also assumed to be continuous. The
true distribution of the observed variable is a marginal likelihood of x given z
which can be expressed as follows:

p(x) =
∫

p(x|z)p(z)dz (6)

The marginal likelihood in Eq. (6) is intractable. The posterior distribution
pθ(z|x) is also intractable. Thus we use a tractable distribution qΦ(z|x) and
approximate it to pθ(z|x). This approximation is done by minimizing the KL
divergence between the two distribution. It can be simplified to the form below:

KL(qΦ||pθ) = log pθ(x) +
∫

qΦ(z|x)log qφ(z|x)/pθ(z, x) (7)

Here − ∫
qΦ(z|x)log qφ(z|x)/pθ(z, x) is known as the variational lower bound

L . Maximizing the lower-bound is equivalent to maximizing the marginal like-
lihood of the observed variable. Maximizing the lower bound is of the form:

L = −KL(qφ(z |x )||pθ(z )) + Eqφ(z |x) [log pθ(x |z )] (8)

Equation (8) ensures that the assumed tractable distribution is approximated
close to the original latent distribution and the reconstruction error is minimum.
Now as the input data distribution is mapped to a latent distribution, we have
a latent distribution for our high dimensional input variables. Given a sample
xs in input space the encoding function qφ(.) maps the input to latent space to
obtain zs. The decoding function pθ(.) maps zs back to xs.

3.2 Formulation Using BO

Using BO for high-dimensional data is a challenging problem. Since we have
obtained a latent distribution for our input data using VAE, we can use BO in
this latent space to obtain a sensitive sample. In BO, since the objective function
is assumed to be a black-box function, a Gaussian Process (GP) is used to model
the latent function based on observations. We fit a GP in the latent space. The
observations are of the form {zj , vj}J

j=1, where J is the number of observations,
vj = C(pθ(zj))+εj with εj ∼ N (0, σ2), where σ2 is the measurement noise vari-
ance and pθ(.) is the decoder function of VAE. Here C(pθ(zj)) is the Frobenius
norm of the resultant matrix and zj is the latent variable. For our problem we
select a random image from the training dataset, obtain the corresponding rep-
resentation in the latent space and reconstruct it back in the high-dimensional
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space to evaluate the objective function and obtain vj . After using GP to fit
the model, we construct an acquisition function to query the next point. Specif-
ically, Gaussian process is a stochastic process where the joint distribution of
any point in the domain space is still a Gaussian distribution. Therefore, for a
predicted point z∗, its predictive posterior distribution is a Gaussian distribution
N (μ(z∗), σ2(z∗)). With a typical zero-mean assumption for GP mean function,
we can write the mean and variance as:

μ(z∗) = kT
∗J(KJJ + σ2I)−1y1:J

σ2(z∗) = k∗∗ − kT
∗J(KJJ + σ2I)−1k∗J

where k∗∗ is the kernel function, k∗J = [k(x∗, x1), · · · , k(xt+1, xt)] and KJJ is
the Gram matrix between x1:J . Note that k is the kernel function representing
the smoothness of the latent function. The popular choice includes the squared
exponential kernel and Matern kernel.

Next based on the built GP, we want an acquisition function to quantify the
belief for the next evaluation point. The acquisition function essentially balances
between exploration and exploitation. Exploration is when sampling is done from
parts of function where we do not have many observations. Exploitation is when
we sample near to observed high values of a function. To find the next query
point, a natural choice is to use a function to measure the possible improvement
over the best observation so far (minimal or maximal). Popular choices include
probability of improvement (PI) [11], expected improvement (EI) [8], and GP-
upper confidence bound (GP-UCB) [17] have been derived. In our work, we
opt for GP-UCB although other acquisition functions are also suitable. We can
maximize the acquisition function to obtain the next point and then update
Gaussian process and these steps will be repeated. So we propose an algorithm
to detect the adversarial compromise of the model using BO, called BO for
Compromise Detection (BCD).

4 Experiments

We conduct experiments to show the performance of our proposed method on
two real-world datasets, Olivetti (aka AT&T ) and MNIST. We compare our
method with two popular and recent methods, Random and VerIDeep [7]. The
Random method simply uses a random image chosen from the training set as a
sensitive sample while the VerIDeep method uses a local optimizer to modify a
random image to be a sensitive sample [7].

For VerIDeep, we use the same setting for its hyper-parameters as suggested
by the authors. For our BO-based method, we use the squared exponential kernel
and use the budget (i.e. the number of iterations) of 60. We repeat each method
10 times and report the average result along with the standard error.
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Algorithm 1. BO for Compromise Dectection (BCD)
1. Input: D = {xi, yi}n

i=1

2. Train the DNN;

3. The objective function
∥
∥
∥

∂f(W,x)
∂W

∥
∥
∥

2

F
is the Frobenius norm of the derivative of DNN;

4. Train the VAE using D;
5. Select a random sample xs from the Input;
6. Use encoder of VAE qφ to generate qφ(xs) = zs;
7. Use decoder of VAE pθ to reconstruct zsin input space and evaluate objective

function;
8. The initial observation for BO is DBO = {zi, vi}n

i=1;
9. Fit a GP in z space using initial observation;

10. For t = 1, 2, ...T do
11. Recommend zt by optimizing the acquisition function GP-UCB;
12. Reconstruct xt = pθ(zt) to evaluate the objective function;
13. Augment the initial dataset with the observed points DBO

1:t = DBO
1:t−1U{zt, vt}

and update GP;
14. end for
15. Reconstruct the z∗

t using decoder as the sensitive sample s;

4.1 Dataset Description

In our experiments, we used two standard real-world datasets. The first dataset
is the Olivetti dataset. This dataset has 40 labels and 400 data points. These
are the facial images of 40 different people, each of who has 10 images under
different poses. The second dataset is the MNIST dataset, which has 10 labels
and 60,000 digit images, where each image is a gray-scale image of size 28 × 28.
For both datasets, we normalize the data points where we transform the pixel
values to the range of [0, 1].

4.2 Architecture of the Model Used

The machine learning model used for our experiment with the dataset Olivetti is
a neural network with one hidden layer. The input layer has 4,096 neurons and
the hidden layer has 256 neurons with the relu activation function. The output
layer has 40 neurons with the softmax activation function.

For the dataset MNIST, we also use a neural network with one hidden layer.
The input layer has 784 neurons, the hidden layer has 256 neurons, and the
output layer has 10 neurons. The relu function is used as the activation function
for the hidden layer while the softmax function is used for the output layer.

4.3 Experimental Settings and Results

Since the change in output is mostly influenced by the slight changes in the
weights in the last layer [7], we consider only the weights in the last layer as
the parameters of interest. For the Olivetti dataset, the original model achieves



Detection of Compromised Models Using Bayesian Optimization 493

Fig. 1. Detection rate with respect to ratio of weight changes on Olivetti dataset. As
the ratio of weight changes increases, the difference between two models (the original
model vs. the compromised one) also increases. This allows all methods to detect the
compromise easier.

an accuracy of 88.75% and for the MNIST dataset it achieves an accuracy of
97.96%. To compromise the model, we add a Gaussian noise with mean 0 and
standard deviation 0.01 to the weights in the last layer. We vary the ratio of the
weight changes in the last layer from 0.1% to 80%, the same setting as in [7].

Quantitative Results. Given a sensitive sample, if the output given by the
original model and the compromised model for that sample is different, we say
the sensitive sample has correctly detected the compromised model. For each
sensitive sample obtained, we test it against with 500 modified models, and
evaluate the detection rate calculated as the percentage of times the sensitive
sample is able to detect the compromise in the model.

Figure 1 shows the detection rates of the three methods (Random, VerIDeep,
and our method) on the dataset Olivetti. From the figure, we can see that our
method clearly outperforms the other methods by a large margin. For example,
considering the ratio of weight changes at 0.8. Our method is able to detect nearly
70% cases of compromised models whereas the second-best method VerIDeep
only achieves an accuracy of 58%. In case the compromised model is just slightly
different from the original one (e.g. the ratio of weight changes is just 0.01), our
method is still able to detect nearly 30% cases whereas the Random method
totally fails in this extreme scenario.
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Fig. 2. Detection rate with respect to ratio of weight changes on MNIST dataset. As
the ratio of weight changes increases, the difference between two models (the original
model vs. the compromised one) also increases.

Figure 2 shows the detection rates of Random, VerIDeep, and our method on
the dataset MNIST. Similar to the result on Olivetti, our method is significantly
better than the two baselines. Compared to VerIDeep, the gain obtained by our
method over VerIDeep is noticeable, around 7–23%.

Qualitative Results. Table 1 shows sensitive-sample images selected randomly
by the Random method and those generated by VeriDeep and our method on the
dataset Olivetti for 10 runs. Although the quality of images selected by Random
is good since these images are original, they are not effective when using them
for compromise detection as shown in Fig. 1. This can be explained by the fact
that the compromised model is just slightly different from the original model,
which often gives the same output for a training image as the original one. Our
method is able to generate sensitive-sample images with a comparable quality
but they are very sensitive to the model change (i.e. the weight modification).
As a result, they are very effective when using for the compromise detection as
shown in Fig. 1.
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Table 1. Sensitive-sample images selected/generated by each method at each running
time on the dataset Olivetti. We remind that the Random method does not generate
the sensitive image. Instead, it simply selects a random original image from the training
set; thus the image is clearer compared to those generated by VerIDeep and our method.

Run 1 Run 2 Run 3 Run 4 Run 5

Random

VerIDeep

Our method

Run 6 Run 7 Run 8 Run 9 Run 10

Random

VerIDeep

Our method

5 Conclusion

In this paper, we have proposed an efficient method for verifying the integrity of
deep models in terms of checking whether the model weights are modified. Our
method has two significant advantages. First, it uses a generative model - VAE
to transform the high-dimension space of data to a low-dimension space, which
allows the searching to perform effectively. Second, it applies BO to find the
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sensitive sample that achieves the highest sensitivity score w.r.t. to the weights
using a global optimization. Our comprehensive experiments on two real-world
datasets Olivetti and MNIST show that our method outperforms existing state-
of-the-art methods in terms of detection rates.
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Abstract. Bayesian optimisation is a widely used technique for finding
the optima of black-box functions in a sample efficient way. When there
are concurrent optimisation tasks/functions then it may be possible to
transfer knowledge across each other in a multi-task setting and improve
the efficiency further. Transferring knowledge requires estimation of task
similarity, which in turn requires good knowledge about the objective
functions. However, in a multi-task Bayesian optimisation setting the
number of observations for all functions can be small, especially at the
beginning, making reliable computation of task similarities difficult. In
this paper, we propose a novel multi-task Bayesian optimisation method
that uses information theory based approach to transfer knowledge across
tasks and handle the uncertainty of similarity measurements in an unified
framework. Each optimisation task uses contribution from other optimi-
sation task via a mixture model on the location of optima by appropri-
ately combining distribution over optimal locations for each individual
task. The probability distribution of the optimal location for individual
tasks can be obtained because the objective functions are modeled using
Gaussian processes. The weights of the mixture distributions are com-
puted based on the similarities (measured via KL divergence) between
two distributions and then appropriately weighting down by the uncer-
tainty in the knowledge. That is, we encourage transfer of knowledge
only when two tasks are confident about their high similarity measure
and discourage if they are not confident, even if the similarity is high.
We evaluate and demonstrate the effectiveness of our proposed method
on both synthetic and a set of hyperparameter tuning tests compared to
state-of-the-art algorithms.

1 Introduction

Design problems are pervasive in various domains, including scientific studies,
engineering design, advertising and banking. These problems are often fraught
with complex design choices and parameter settings. The objective of these kinds
of problems is to find the optimal design choices and its associated parameter
settings via experimentation. In other words, the solution to these problems
require to seek the global optima of unknown black box functions, which are
c© Springer Nature Switzerland AG 2019
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often expensive to evaluate. A näıve approach is to tune the available choices
manually in combination with random or grid search, however the search space
is often too vast for the domain experts to navigate effectively. Consequently
this approach is expensive in both cost and time. The challenge is to find the
optima of such expensive black-box functions in minimum computational cost
and time. Bayesian optimisation offers a powerful and sample efficient solution
to these kind of problems. Bayesian optimisation is a model based approach
in which the experiments are performed sequentially at the optima locations
of a computationally cheap surrogate function until an acceptable solution is
found. Even though, Bayesian optimisation is an elegant approach towards global
optimisation, it faces a “cold start” phase where the algorithm may need a
higher number of function evaluations before it reaches a good region. When
a new product or process is designed, the experimenter must perform a new
optimisation task starting from the scratch and each time he/she experiences
this cold start phase. As optimisation model becomes more complex, the cost
due to this cold start problem becomes quite high.

There are several settings in which it is possible to partially mitigate the effect
of cold start phase. Whilst prior knowledge about functions can be used for this
purpose e.g. [10,18], such knowledge may not be available for many scenarios. In
absence of any prior knowledge, when one has access to previous similar function
optimisations (source), transfer learning can be used to accelerate the current
optimisation task (target) [1,4,5,8,12,13,19]. However, transfer learning based
methods assume the availability of enough observations in source functions to
compute a precise source/target similarity measure. When there are concurrent
optimisation tasks, it may be possible to learn from each other in a multi-task
setting [17]. In this paper we consider multi-task setting to address the cold
start problem. Existing method for multi-task learning using multi-task Gaussian
process models [17] has one chief limitation that it completely relies on the
relatedness estimate that are usually poor at the beginning of the optimisation
due to small number of samples. Additionally, multi-task GP scales poorly with
the number of concurrent tasks as it pools all the observations in one single GP.
Thus a robust multi-task learning framework for Bayesian optimisation which is
capable of estimating task similarities on-the-fly and scalable to large number of
tasks is still an open problem.

This paper proposes a multi-task learning framework for Bayesian optimisa-
tion that performs simultaneous optimisation of multiple functions by sharing
their knowledge about optima locations in the input space. At each iteration,
one function is chosen as target in a round robin routine while the remaining as
sources. Knowledge about optima locations from a particular source to the tar-
get is transferred based on its similarity with the target. From each task-specific
Gaussian process the probability distribution on optima location can be obtained
via Thompson Sampling. Probability distribution from all sources are combined
with that of the target in a mixture model fashion where weights of the target
distribution is set as 1 and the weights related to the source distributions are
computed via an inverted monotonic transformation of KL-divergence (between
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source and the target distributions) to keep them between [0 1]. Since all the
functions may not have large number of observations available especially in the
initial iterations, the optima distribution would be wide and then there is a pos-
sibility that the similarities might be measured high, even though this measure
is somewhat unreliable as the knowledge itself is uncertain. Therefore, we need
to estimate a similarity that can also incorporate a measure of how much each
function should rely on the measure. This is obtained by scaling KL-divergence
down with the entropy of the source. Following that, a new information-theoretic
acquisition function similar to Predictive Entropy Search (PES) is proposed. We
validate our multi-task learning framework through application to optimisation
of both synthetic and real world experiments and demonstrate the effective-
ness by comparing with a well known multi task Bayesian optimisation method,
information-theoretic transfer learning method [12] as well as with the generic
Bayesian optimisation method.

2 Preliminaries

2.1 Gaussian Process

Gaussian process (GP) is a powerful, non-parametric method to perform non-
linear regression in stochastic processes and has earned immense popularity
among statistics and machine learning community. Essentially, GP places a flex-
ible prior distribution over the space of continuous functions (f : X → R) and
is completely specified by a mean function (μ : X → R) and a kernel function
(k : X × X → R). A draw from a GP is a function as f(x) ∼ GP(μ(x), k(x,x

′
)).

For simplicity, and without loss of generality, we assume the mean to be a zero
function which makes the GP fully specified by the kernel function. We also
assume that the function measurements as noisy, i.e. yi = f(xi) + εi, where
εi ∼ N (0, σ2) being the measurement noise. Then any finite collection of func-
tion observations, f1:n where n is the iteration, follows a multi-variate Gaussian
distribution. Given a new query point x̃, the joint Gaussian distribution between
f1:n and f(x̃) can be written as

[
f1:n
f(x̃)

]
∼ N

(
0,

[
K k
kT k(x̃, x̃)

])
(1)

where k =
[
k(x̃,x1) k(x̃,x2) . . . k(x̃,xn)

]
and K(i, i

′
) = k(xi,xi′ ). Using

Sherman-Morrison-Woodbury formula [14] we can write the predictive distri-
bution as p(f(x̃) | D1:n, x̃) = N (μn(x̃), σ2

n(x̃)), where the predictive mean
μn(x̃) = kT

[
K + σ2I

]−1
f1:n and predictive variance σ2

n(x̃) = k(x̃, x̃) −
kT

[
K + σ2I

]−1
k.

2.2 Bayesian Optimisation

Bayesian optimisation is a popular sample-efficient method for the global opti-
misation of noisy, black-box functions which are expensive to evaluate. Since the
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objective function is unknown, Bayesian optimisation uses a probabilistic model
to express the belief about the function. Typical choices for function modeling are
Gaussian process, random forests [7] or Bayesian neural networks [15] as these
models are capable of quantifying uncertainty in function values. In this paper,
we use Gaussian process to model the unknown objective function due to its
tractability. Using this prior and observations so far, a posterior estimate about
the true function is derived, which is in turn used to build a cheap surrogate func-
tion called acquisition function. The acquisition function is optimised to decide
the next promising function evaluation point while keeping a balance between
exploitation (sampling regions where function values are likely to be optimal)
and exploration (sampling regions where uncertainty about function values are
likely to be high) in the search space. Commonly used acquisition functions -
Probability of Improvement (PI) [9], Expected Improvement (EI) [11] and GP-
UCB [16] are generally constructed using the combination of posterior mean
and variance. Another alternate acquisition function called Predictive Entropy
Search (PES) [6] recently gained popularity among the practitioners because
of its direct approach to reduce uncertainty about the information about the
location of the optimum. In this paper, we build a new acquisition function for
multi-task learning that is based on predictive entropy search.

2.3 Information-Theoretic Transfer Learning for Bayesian
Optimisation

Information-theoretic transfer learning method [12] utilizes the knowledge about
global optima locations from different source functions to optimise the target
function. A mixture distribution containing global optima samples from both
source and target is constructed and is then used to build a new acquisition
function based on Predictive Entropy Search (PES). That is, the PES acquisition
function (see Eq. (2) in [6]) is modified by constructing a mixture distribution
of p(x∗) from the target and ps(x∗) from each source s where s = 1, . . . , S. The
proposed mixture distribution is defined as

pmix(x∗) = π0p(x∗) + π1p
1(x∗) + . . . + πSpS(x∗) (2)

where π0, π1, . . . , πS are the mixture coefficients. The mixture coefficients are set
using the similarity between the target and a source such that

∑S
s=0 πs = 1. The

similarity measure ψs between the target p(x∗) and a source ps(x∗) is given by as
ψs = exp(−DKL(p

s||p)
η ) where η > 0 is a model hyperparameter and DKL(ps||p) is

the KL divergence between p(x∗) and ps(x∗). ψ0 is the similarity of p(x∗) with
itself and is set to 1. Using this similarity measures, the mixture coefficients
π0, π1, . . . , πS is defined as πs = ψs∑S

s=0 ψS
. Then PES acquisition function is

redefined for the transfer learning setting as

xn+1 = argmax
x∈X

αn(x) = H [p(y | Dn,x)] − Epmix(x∗|Dn) [H [p (y | Dn,x,x∗)]] (3)

The crucial assumption is that the sources have large number of observa-
tions, making the measurements of the similarities reliable. In the following we



Information-Theoretic Multi-task Learning Framework 501

will formulate our proposed multi-task Bayesian optimisation framework using
a similar idea where the same pmix(x∗) is computed for each task but the mix-
ture weights are computed differently because in the small data regimen of the
multi-task setting the similarity measurements are unreliable.

3 Proposed Method

We propose a multi-task learning framework for Bayesian optimisation that
allows to mutually share the knowledge among different functions and concur-
rently optimise each function in a dynamic setting. Our framework is based on
an information-theoretic acquisition function where we provide a way to incor-
porate the knowledge from each optimisation task, especially considering the
uncertainty of the knowledge.

3.1 The Proposed Multi-task Learning Method

Let us assume there are t = 1, 2, . . . , T tasks to optimise in a multi-task setting.
Our goal is to select (in a round robin routine), at each iteration, a fixed task
(let us say t - target) and optimise the same using the knowledge from all other
tasks (∀t′such that t′ �= t - sources). In order to do so, we build a new acquisition
function in a manner similar to predictive entropy search that can incorporate
the information from every task based on some similarity measure with the
target, i.e. we are trying to modify the expectation in (Eq. (3)) for a multi-task
setting by constructing a mixture distribution (similar to Eq. (2)) from all the
tasks. Since every task faces scarcity in the number of observations especially in
the initial iterations, a similarity measure based only on the divergence between
optima distributions [12] will be unreliable.

Key Insight: To deal with insufficiency in number of observations while com-
puting the similarity, we incorporate uncertainty in the knowledge for every tasks
with the divergence. For a better understanding, we illustrate two different cases
of divergence estimation depending on the shape of optima distributions from
any two tasks that clearly explains why multi-task learning is different from
transfer learning. Before proceeding, let us first denote pt,n(x∗) as the target
optima distribution at time n and pt′,n(x∗) be the same for a source t′ at time
n. Here we use adaptive kernel density estimation [2] to compute the probability
distributions pt,n(x∗) and pt′,n(x∗) from the available x∗ samples.

Case I (Transfer Learning): Consider a transfer learning scenario where large
number of observations from all the sources are already available which trans-
lates the sources, pt′,n(x∗) to nearly impulse functions as shown in Fig. 1. Since
pt′,n(x∗) is nearly an impulse function, DKL(pt′,n||pt,n) (see Sect. 2.3) between
pt′,n(x∗) and pt,n(x∗) is highly dependent on how much probability mass of
pt,n(x∗) has around the peak of pt′,n(x∗). In Fig. 1a, pt,n(x∗) has sufficiently
high probability mass around the peak of pt′,n(x∗) and therefore the value of
DKL(pt′,n||pt,n) will be extremely small. Whereas in Fig. 1b, pt,n(x∗) has small
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(a) True similarity is high (b) True similarity is low

Fig. 1. (Transfer learning scenario) Optima distribution of pt′,n(x∗) is densely dis-
tributed while the same for pt,n(x∗) is widely distributed. (a) DKL(pt′,n||pt,n) is
extremely small and thus similarity is high. (b) DKL(pt′,n||pt,n) is extremely large
and thus similarity is low. Since true similarity for (a) is high and for (b) is low,
DKL(pt′,n||pt,n) based similarity is a reliable measure.

probability mass around the peak of pt′,n(x∗) which causes the DKL(pt′,n||pt,n)
to take an extremely large value. In both the cases the divergence based measure
provides a reliable measure of the underlying similarity as the true similarity in
the first case is high and in the second case is low.
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Fig. 2. (Multi-task scenario) Optima distribution of pt′,n(x∗) and pt,n(x∗) are widely
distributed. Since pt′,n(x∗) is not sufficiently narrow, DKL(pt′,n||pt,n) will not provide
an accurate measure and thus divergence based similarity is undesirable for this case.

Case II (Multi-task Learning): Next consider a scenario of multi-task learn-
ing where observations are scarce for both source and target. Hence, both
pt′,n(x∗) and pt,n(x∗) are widely distributed as shown in Fig. 2. Let us assume
the true similarity in Fig. 2a is high and in Fig. 2b is low. In both cases, the KL
divergence, DKL(pt′,n||pt,n) provide a value which is neither too small nor too
large because the source distribution, pt′,n(x∗) is not sufficiently narrow to com-
pute an accurate divergence measure. Therefore, the divergence based measure
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Algorithm 1. The Proposed Multi-Task Learning Algorithm.
1. Input: Initial observations from every function:

{{xt,i, yt,i}n0
i=1

}T

t=1
.

2. Output:
{

{xt,n, yt,n}Nn=1

}T

t=1
.

3. for n = n0, . . . , N do
(a) Draw M samples of x∗ from the posterior Gaussian process of each function. Denote

them as
{

{xt,(j)
∗ }Mj=1

}T

t=1
.

(b) Select one function t as target. Compute the KL- divergence DKL(pt′,n||pt,n) between
t′-th source and the target using samples {xt′,(j)

∗ }Mj=1 and {xt,(j)
∗ }Mj=1. Next compute

πt′,n using Eq. (4).

(c) Draw x∗ samples from pmix
t (x∗) by re-sampling {xt,(j)

∗ }Mj=1 and {xt′,(j)
∗ }Mj=1 in the

proportion of πt′,n.
(d) Use x∗ samples to compute αn(x) and maximize it as in Eq. (5) to select a new xt,n.
(e) Evaluate the target function at xt,n: yt,n = f(xt,n) + εt,n where εt,n ∼ N (

0, σ2
)
.

(f) Augment (xt,n, yt,n) to the target observations and update the posterior GP.
(g) Select the next function as target and when t = T , restart the selection.

4. end for

will provide comparable level similarity for both the cases, which is undesirable.
In other words, when the source task itself is not very sure about it’s knowledge
we should not rely highly on it.

Construction of Multi-task Learning Algorithm: From the multi-task
learning scenario, it is clear that the extent to which a source task should con-
tribute towards the mixture distribution pmix(x∗) (see Eq. ( 2)) should depend on
the uncertainty of the pt′,n(x∗). This will prevent negative transfer from unre-
lated functions as initially due to the lack of many samples, similarity between
any two functions (related or not) can appear high. Here we compute the mea-
sure of information contained in any particular source task using an estimate
of differential entropy. Differential entropy of a source task t′ at time n can
be formally written as H(pt′,n/Dn) = − ∫

pt′,n(x) log pt′,n(x). We then incorpo-
rate this entropy measure with the KL divergence and define the source/target
similarity as a product of divergence and entropy. Based on this, the similarity
measure ψt′,n between two probability distributions pt,n(x∗) and pt′,n(x∗) can
be written as ψt′,n = exp(−DKL(pt′,n||pt,n)∗(H(pt′,n/Dn)/(r∗log(b−a)))

η ) where r > 0
and η > 0 are model hyperparameters and are set according to the values of
entropy and KL divergence. We also normalize the entropy of pt′,n/Dn using
log (b − a), which is the highest entropy for a bounded distribution with support
[a, b]. Given the similarity measure, the mixture coefficients can be computed as

πt′,n =
ψt′,n

1 +
∑T

t′=1,t′ �=t ψt′,n
(4)

Similarity of pt,n(x∗) with itself is set to 1. Then the mixture distribution for
multi-task learning scenario can be formally written as pmix

t (x∗) = π0pt,n(x∗) +
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∑T
t′=1,t′ �=t πt′,npt′,n(x∗). Following this, formulation of our proposed multi-task

acquisition function is as follows:

xn+1 = argmax
x∈X

αn(x) = H [p(y | Dn,x)] − Epmix
t (x∗|Dn) [H [p (y | Dn,x,x∗)]] (5)

The entropies are computed as in [6] (see Eq. (10)).
Note that, in our method, the Gaussian process for each task are built inde-

pendently. Therefore, the complexity of inverting kernel matrix at iteration n is
O (

Tn3
)
. This is clearly smaller compared to multi-task Bayesian optimisation

[17], which uses multi-task GP and has a complexity O (
T 3n3

)
. This complexity

arises due to pooling the observations from all the tasks to build a single GP. Our
proposed multi-task learning algorithm for Bayesian optimisation is summarized
in Algorithm 1.

4 Experiments

We evaluate our proposed method using both synthetic functions and real data
experiments. The synthetic functions are designed to illustrate the behavior of
our proposed multi-task learning method in a controlled setting and real data
experiments to illustrate the efficacy of our method to tune the hyperparameters
of a classification algorithm - Support Vector Machine (SVM). For both synthetic
and real experiments, we compare our proposed method with following three
baselines:

1. ITTL-BO: This algorithm [12] is a single-task transfer learning method for
Bayesian optimisation that assumes the observations from all other functions
(sources) are already available. To address multi-task learning, we choose one
fixed function (in round robin routine) at each iteration and optimise the same
using knowledge from all other functions (sources).
2. MT-BO: This algorithm [17] is the only existing multi-task framework for
Bayesian optimisation. In this paper, authors used an approach where the func-
tions are modeled using a multi-task Gaussian process and then each function
is optimised using standard Bayesian optimisation. A covariance function that
measures the relationship between input-task pairs is fundamental behind multi-
task Gaussian process. This covariance function is used to compute predictive
mean and variance of each objective function and which is then used with GP-
UCB acquisition function to recommend the next function evaluation point.
3. No-Transfer: This baseline does not use any source information and follows
the standard predicative entropy search based Bayesian optimisation algorithm
[6].

4.1 Experimental Setting

In all the experiments, we use squared exponential kernel for Gaussian process
(GP) modeling and maximum a posteriori (MAP) estimate for GP hyperparam-
eter estimation where we used gamma distribution as the prior. All the results
are averaged over 20 runs with random initial values.



Information-Theoretic Multi-task Learning Framework 505

4.2 Synthetic Experiments

We generated 4 bi-modal Gaussian functions in 3-dimensions with the fol-
lowing form. f(x) = 2 − a1 ∗ exp

(− 1
2 (x − μ1)Σ

−1
1 (x − μ1)T

) − a2 ∗ exp(− 1
2 (x − μ2)Σ

−1
2 (x − μ2)T

)
. For function 1, μ1 = [−1,−1,−1] and μ2 =

[0.8, 0.8, 0.8]. For function 2, μ1 = [−0.7,−0.7,−0.7] and μ2 = [1.1, 1.1, 1.1].
For function 3, μ1 = [2.9, 2.9, 2.9] and μ2 = [−2.5,−2.5,−2.5]. For function 4,
μ1 = [−2.5,−2.5,−2.5] and μ2 = [3, 3, 3]. For all the five functions a1 = 4,
Σ1 = 0.25 × I3×3 and a2 = 8, Σ2 = I3×3. As seen from the values of μ1 and
μ2, functions 1 and 2 are related to each other while other two functions are
unrelated. Figure 3 (first column) shows the immediate regret (IR) obtained for
respective functions with respect to iterations. Immediate regret is defined as
| f(x̃n) − f(x∗) |, where x̃ is the recommended location at time n and x∗ is
the location of true global minimum. Each method starts with the same four
random observations from [−4, 4] along each dimension. The performance of
proposed multi-task method clearly outperforms the baselines for all the func-
tions. Since to draw samples from pmix(x∗), we resort to resampling from the
samples of p(x∗) from all the tasks, we can track the number of x∗ samples
used from each distribution as the contribution from each distribution. This is
shown in Fig. 3 (second and third column) as a function of iteration. From the
graphs it is clear that our method selects less number of x∗ samples from all the
functions especially in the initial iterations and later when functions get more
observations they managed to compute a precise similarity measure and even-
tually started to have more number of x∗ samples from the related functions.
Multi-task baseline is performing worse than No-Transfer in most of the cases
because it proceeds by recommending same point to all the functions based on
a relationship matrix between input-task pairs. Since there are more number
of unrelated functions, evaluating all the functions in a common point might
not be a suitable procedure. Since the similarity is not weighted down by the
uncertainty in the knowledge, ITTL-BO selects almost equal number of samples
from every functions. This causes the degradation in optimisation performance
because every function is obtaining large number of samples even from unrelated
functions.

4.3 Hyperparameter Tuning: SVM with RBF Kernel

We consider a handwritten digits data set - ‘Pen-Based Recognition of Hand-
written Digits’ - from UCI machine learning repository [3]. The dataset is a
multi-class classification dataset consisting of 10 classes (digits 0–9). To demon-
strate our multi-class learning method, we consider 4 classes - ‘digit 0’, ‘digit
2’, ‘digit 4’, ‘digit 6’ and the classifier is realized by training one-vs-all binary
classifiers. SVM with RBF kernel has two hyperparameters to tune: cost param-
eter (C) and kernel parameter (γ). The range for γ is set as

[
10−4, 103

]
and the

same for C is
[
2−5, 26

]
. The multi-task optimisation arises from using one-vs-all

scheme for multi-class classification where we build 4 binary classifiers for 4 class
problem. Hyperparameter tuning for each binary classifier is one optimisation
task. For each binary classifiers, we tuned the two hyperparameters γ and C by
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Fig. 3. Synthetic experiments: First column - Immediate Regret vs optimisation iter-
ations for each function, Second column - Proportions of sources and the target in
the mixture distribution with respect to optimisation iterations (proposed method),
Third column - Proportions of sources and the target in the mixture distribution with
respect to optimisation iterations (ITTL-BO). In (b) & (e) at the start of optimisation,
the target failed to compute an accurate similarity measure with other functions and
thus it relies more on its on x∗ samples. Later when all the functions started to get
more observations, target identifies the related function and selects more samples from
itself while eliminate the influence from other unrelated functions. In (h) and (k) both
functions are not related to other functions and when iteration increases the influence
from other functions reduce to zero. On the other hand, for ITTL-BO, the similarity is
not weighted down by the uncertainty in the knowledge and thus every function share
samples almost equally. This causes degradation in the performance.
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Fig. 4. Hyperparameter tuning for SVM with RBF kernel: First column - Immediate
Regret vs optimisation iterations for each function, Second column - Proportions of
sources and the target in the mixture distribution with respect to optimisation itera-
tions (proposed method), Third column - Proportions of sources and the target in the
mixture distribution with respect to optimisation iterations (ITTL-BO).

optimising the validation performance as a function of hyperparameter values
in the exponent space. Figure 4 (first column) shows the immediate regret (1 -
AUC) of each function on a held-out validation set. The proportion of contri-
butions from different functions versus iterations is shown in Fig. 4 (second and
third column).
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5 Conclusion

We proposed a novel multi-task learning algorithm for Bayesian optimisation
based on predictive entropy search acquisition function. In a round robin fash-
ion one function is chosen as target at each iteration and the optimisation is
performed by utilizing the information from all other functions. We compute
a similarity measure of all the functions with the target using their divergence
between the optima distributions and scaling it with the entropy of the source
distribution. This similarity measure is then used to construct a mixture dis-
tribution of optima samples from both source and the target and is used to
formulate the new information-theoretic acquisition function. The experiments
with diverse optimisation tasks show the ability of our algorithm.
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Abstract. In standard single-label classification, feature selection is an
important but challenging task due to its large and complex search
space. However, feature selection for multi-label classification is even
more challenging since it needs to consider not only the feature interac-
tions but also the label interactions. Particle Swarm Optimization (PSO)
has been widely applied to select features for single-label classification,
but its potential has not been investigated in multi-label classification.
Therefore, this work proposes PSO-based multi-label feature selection
algorithms to investigate the importance of population initialization in
multi-label feature selection. Particularly, the discriminative information
is utilized to let the swarm start with more promising feature combina-
tions. Results on eight real-world datasets show that the new strategies
can reduce the number of features and improve classification performance
over using all features and standard PSO-based multi-label feature selec-
tion.

Keywords: Particle Swarm Optimization · Feature selection ·
Multi-label classification

1 Introduction

Classification is an important task in machine learning, which aims to predict
the class labels of unseen instances based on their feature values. In the learn-
ing process, a classification algorithm is trained on a set of labeled instances,
called a training set. The learned classifier is then applied to classify unlabeled
instances, called a test set. The classification performance depends heavily on
feature quality. However, many real-world datasets often involve a large num-
ber of features which contains irrelevant and redundant features. Classification
using a large feature set needs a large number of instances to achieve reliable
performance due to the data sparsity, i.e. “curse of dimensionality” [1]. In addi-
tion, irrelevant features may blur useful information from the relevant features,
which deteriorates the classification performance. Besides, redundant features
provide the same information as other features, so they do not provide any more
c© Springer Nature Switzerland AG 2019
J. Liu and J. Bailey (Eds.): AI 2019, LNAI 11919, pp. 510–522, 2019.
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useful information and lead to expensive computation time. Feature selection
is proposed to address the above problems by removing irrelevant and redun-
dant features, which reduces the training time and improve the classification
performance over using all features [2]. However, due to the complex feature
interactions and the huge search space, it is challenging to develop an effective
feature selection algorithm for datasets with a large number of features [7].

In a standard (single-label) classification problem, each instance is assigned to
only one label, resulting in the inability to describe the problem when an instance
belongs to multiple labels/classes simultaneously. Multi-label classification deals
with the case where one instance is associated with multiple labels simultane-
ously. Feature selection for multi-label classification is more challenging since the
correlation between labels needs to be considered [3,5,6]. A straightforward way
is to transform it into many single-label problems, then applying existing single-
label feature selection methods to each single-label problem [4]. However, these
methods ignore the correlation between labels. This paper proposes a feature
selection approach that can directly apply to multi-label problems.

A feature selection approach has two main components: search mechanism—
to generate candidate feature subsets, and evaluation—to evaluate the goodness
of each candidate subset. Based on the evaluation, feature selection can be clas-
sified into three categories: wrapper, embedded, and filter approaches. Wrappers
include a classification algorithm as part of the evaluation criterion, while fil-
ters operate independently of a learning algorithm [2,7]. Similar to wrappers,
embedded approaches also involve a classification algorithm, but the selection
process is performed during the classifier’s training process. In comparison with
the other two approaches, wrappers usually achieve the best classification perfor-
mance with respect to the wrapped classifier [2,7]. Therefore, this work focus on
developing a wrapper-based feature selection algorithm for multi-label problems.

Suppose there are n original features, the total number of possible feature
subsets is 2n which exponentially increases with respect to the number of fea-
tures. Therefore, feature selection needs an effective search mechanism. Evo-
lutionary Computation (EC) is a population-based optimization family which
has been widely applied to feature selection [7]. Among EC techniques, particle
swarm optimization (PSO) gains more attention by the feature selection com-
munity since it has a natural representation for feature selection. In comparison
with other EC techniques, PSO has fewer parameters and is easier to under-
stand. Therefore, we will propose a PSO-based feature selection algorithm for
multi-label classification. It has been shown that initialization is an essential
step in PSO-based feature selection [7]. Since feature selection has a large and
complex search space, a good starting point can help the swarm to avoid local
optima, thus improving the quality of the final feature subset. However, there has
been no existing work considering the importance of initialization in PSO-based
feature selection for multi-label classification.

Goals: The overall goal of this paper is to develop a new PSO based feature
selection algorithm for multi-label classification, which selects a smaller number
of features and achieves similar or even better classification performance than
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using all features. In order to achieve this goal, we propose a novel initialization
strategy with an expectation that a good starting point can help to improve the
selection performance. The proposed algorithm is evaluated on eight real-world
benchmark datasets. These datasets are selected from different application areas.
They also have different numbers of features, labels, and instances, so they can
be good representatives of real-world problems. Specifically, we will investigate:

– whether the proposed PSO-based feature selection algorithm can reduce the
number of features and maintain or even improve the classification perfor-
mance over using all features,

– whether the proposed initialization mechanism can achieve better selection
performance than the standard random initialization of PSO, and

– whether the proposed algorithm can outperform two well-known conventional
multi-label feature selection methods, RF-BR and RF-LP [6].

2 Related Work

2.1 Multi-label Classification

In many real-world applications, the single-label classification does not fit well
[20]. For example, a news document can cover several topics, such as education,
health, religion, politics, and finance, at the same time, which is known as multi-
label classification. Several standard single-label classifiers have been extended to
cope with multi-label classification. Among the proposed multi-label classifiers,
Multi-label KNN (ML-KNN) [23] is one of the most common classifiers. In ML-
KNN, maximum a posteriori (MAP) principle is employed to determine the label
set for an unseen instance based on the statistical information gained from the
subset of labels of its neighboring instances. In this work, ML-KNN is used as
the wrapped classifier to guide PSO search for the optimal feature subset.

In comparison with single-label classification, multi-label classification needs
more complex evaluation metrics, since a label set can be partially correct or
fully correct. Therefore, a number of evaluation metrics have been extended
to work with multi-label classification. In this work, we use the Hamming loss
metric [24], which can be calculated by the following equation:

HammingLoss =
1

mq

m∑

i=1

q∑

l=1

(I(l ∈ Zi ∧ l /∈ Yi) + I(l /∈ Zi ∧ l ∈ Yi)) (1)

where m and q are the number of instances and the number of labels, respectively,
Zi and Yi are the predicted labelset and the correct labelset of the ith instance,
I is the indication function, i.e. I(true) = 1, I(false) = 0. The smaller the value
of hamming loss the better the performance of algorithm. Ideally, the hamming
loss is 0, which indicates all the instances are correctly classified.
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2.2 Multi-label Feature Selection

In multi-label feature selection, most existing methods use the problem trans-
formation approach to transform multi-label data into many single-label data
and then apply a single-label feature selection algorithm [21]. For example, RF-
BR [6] initially transformed the multi-label dataset into q—number of labels—
binary-classification datasets and used ReliefF attribute evaluator on each binary
datasets. The features with average values greater than or equal to a threshold
were selected. RF-LP [6], on the other hand, used the feature importance mea-
sured directly on the original multi-label dataset. There are also few feature
selection methods which directly dealt with multi-label data [18,25]. Pereira et
al. [26] presented a multi-label filter adaptation based on the information gain
measure. Jungjit and Freitas [27] proposed a new Lexicographic multi-objective
Genetic Algorithms (GAs) for Multi-Label Correlation-based Feature Selection
(LexGA-ML-CFS). In comparison with GAs, PSO is usually more efficient, but
there has been very few works applying PSO to multi-label feature selection.

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) [8] is a population-based optimization tech-
nique, where each particle represents a candidate solution. The particles move
in the search space with their own position and velocity vectors, denoted by
x and v, respectively. Each particle records its best position, called pbest, and
the best position discovered by all particles, called gbest. Based on the two best
positions, the position and velocity of the ith particle can be updated according
to the following equations:

xt+1
id = xt

id + vt+1
id (2)

vt+1
id = w ∗ vt

id + c1 ∗ r1i ∗ (pbestid − xt
id) + c2 ∗ r2i ∗ (gbestid − xt

id) (3)

where t represents the tth iteration, d represents the dth dimension in the search
space, c1 and c2 are acceleration constants, r1 and r2 are random constants in [0,
1], w is the inertia weight. PSO has been widely applied to feature selection [7,28,
29], but very few researches in the literature have focused on PSO for multi-label
feature selection. To the best of our knowledge, Zhang et al. [11] proposed the
first PSO-based multi-label feature selection, but it considers feature selection
as a multi-objective problem. This paper focuses on designing initialization for
a PSO-based multi-label feature selection algorithm where feature selection is
considered as a single-objective problem.

3 Proposed Approach

3.1 Overall Structure

In the proposed PSO-based feature selection algorithms, a particle’s position is
represented by a vector of real numbers, where each vector element corresponds
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to an original feature. The element value at the dth dimension, xid, is in [0, 1],
which shows whether the dth feature is selected or not. Particularly, a threshold
θ is used to compare with the position value xid. If xid > θ, the dth feature is
selected. Otherwise, the dth feature is not selected.

Each candidate feature subset is evaluated by the following fitness function:

fitness = weight × loss + (1 − weight) × #selectedFeatures

#oriFeatures
(4)

where loss is the Hamming loss of the feature subset (Eq. (1)), #selected-
Features and #oriFeatures show the number of selected features and original
features, respectively, and weight ∈ [0, 1] is used to control the importance of
the two components.

In a standard PSO-based feature selection approach, the candidate solutions
are randomly initialized. During the evolutionary process, new candidate solu-
tions are generated based on its best experience (pbest) and the swarm’s best
experience (gbest). The candidate solutions are evaluated based on the Eq. (4).
The evolutionary process stops when the predefined maximum number of iter-
ations is achieved, and gbest is outputted as the final feature subset. The main
contribution of this work is to propose initialization strategies that are specif-
ically designed for multi-label classification. The pseudo-code of the proposed
algorithms with new initialization strategies are shown in Algorithm 1 where
our contributions are in lines 3–4.

Algorithm 1. PSO using new initialization methods for multi-label FS

1 Input : Training set, Test set and labels
2 begin
3 calculate feature scores;
4 initialize the position and velocity of each particle in the swarm;
5 while Maximum iterations has not been met do
6 evaluate the fitness of each particle according to Eq. (4);
7 for i = 1 to Swarm Size do
8 update pbest and gbest of particle i;
9 end

10 for i = 1 to Swarm Size do
11 update vi of particle i according to Eq. (2);
12 update xi of particle i according to Eq. (3);

13 end

14 end
15 calculate the training and testing hamming loss of gbest;
16 return gbest and its training/testing loss;
17 end

3.2 New Initialization Strategies

Standard PSO randomly initializes particles, which means all features have the
same chance to be selected at the beginning. However, some features can be
more relevant than other features. Therefore, feature relevance can be used to
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provide a good starting point for PSO, which will be useful, especially for a
complex problem like feature selection. During the initialization phase, a set
of features are selected to initialize a particle. In the proposed strategy, the
probability of choosing a feature depends directly on its relevance, which means
the more relevant feature has a higher chance to be selected. The probability
of choosing a weaker feature is lower but always greater than zero, so weakly
relevant features still have a chance to be selected. This design is important
since a combination of weakly relevant features may form a strongly relevant
feature subset. Based on the feature relevance, each feature is allocated a slot
proportional to its relevance score. Suppose there are n features and their scores
are denoted by wi > 0(i = 1, 2, ..., n). The selection probability of ith feature is
calculated by:

pi =
wi∑n
i=1 wi

(5)

w1 w2 w3 w4

R

Fig. 1. Selection of a feature among four original features.

In Fig. 1, a line segment of length
∑n

i=1 wi out of consecutive slots of length
wi(i = 1, 2, ..., n) is constructed and a random number R(0 < R <

∑n
i=1 wi) is

generated. The generated random number R is located to the corresponding slot
(here, w2) and hence, the corresponding feature is selected. In the initialization
process, each particle is assigned to a feature subset generated by RWS. If a
feature is selected, the corresponding element in the particle position is set to a
random value greater than the threshold θ. Otherwise, the element is set to a
random value smaller than θ. The proposed strategy is inspired by the Roulette
Wheel Selection algorithm (RWS) [12].

We propose three novel single feature scoring based initialization strategies
which are feature ranking roulette wheel ReliefF Attribute (RF) initialization,
feature ranking roulette wheel Correlation Attribute (CR) initialization and sin-
gle feature ranking roulette wheel (HL) initialization. The three strategies are
different in terms of scoring features, which are described as following.

– Initialization based on Correlation measure (CR): Correlation
attribute evaluator is a filter measure that evaluates features with respect
to the target class [16]. Pearson’s correlation is used to measure the correla-
tion between a feature and the class label, i.e. the feature relevance. Based
on the obtained relevance scores, the probability of selecting each feature is
calculated based on Eq. (5). An advantage of the correlation measure is its
efficiency and scalability.

– Initialization based on ReliefF measure (RF): ReliefF is another popu-
lar feature evaluator [13,14]. The key idea is to estimate the feature relevance
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according to how well their values distinguish between neighboring instances.
For each feature, ReliefF randomly selects an instance Ri and then searches
for its nearest neighbor from the same class (a “hit”), and its nearest neigh-
bor from the different classes (a “miss”) based on the feature. The feature
relevance (score) is updated based on the two nearest “hit” and “miss”. The
obtained scores for all features are then normalized. Based on the normalized
scores, RWS algorithm is applied to select features and initialize particles.
Since ReliefF was originally developed for the single-labeled data, we have
used label powerset transformation to transform the multi-label problem into
a multi-class problem by considering a set of class labels as a single (powerset)
label. Such transformation takes the label correlation into account [15].

– Initialization based on Hamming loss (HL): In this mechanism, the
feature relevance is based on its individual Hamming loss. Each feature is
used to classify the training data using the ML-KNN classifier. The obtained
Hamming loss is used as the feature score. The more relevant features will
have lower loss values. The generated hamming loss values for the individual
features are normalized. After that, the RWS algorithm is applied to select
features and initialize particles.

The reason for selecting the three measures is how relevant they are to the
wrapped classification algorithm, i.e. ML-KNN. Correlation is a filter measure,
which is completely independent of ML-KNN. ReliefF is another filter measure,
but it is more related to ML-KNN since its mechanism is based on the nearest
neighbors. In contrast, Hamming loss can be considered a wrapper-based mea-
sure that essentially relies on ML-KNN. We select the three measures to analyze
the importance of the consistency between the initialization measure and the
evaluation measure.

Table 1. Format of data set

Dataset Domain #Feat. #Labels #Training instances #Testing instances

flags Image 19 7 129 65

cal500 Music 68 174 251 251

emotions Music 72 6 391 202

yeast Biology 103 14 1500 917

birds Audio 258 19 322 323

scene Image 294 6 1211 1196

enron Text 1001 53 1123 579

medical Text 1449 45 333 645
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4 Experimental Design

4.1 Benchmark Datasets and Techniques

The popular multi-label repository is maintained in the MULAN website
(http://mulan.sourceforge.net/datasets-mlc.html). MULAN [18] is an extension
of WEKA [17] for multi-label classification problems. The experiment is con-
ducted on eight multi-label datasets from various application domains such as
music, image, biology, audio, and text, which can be seen in Table 1. In the
experiment, the performance of the three initialization mechanisms (RF, CR
and HL) are compared with using all features and standard PSO-based feature
selection that uses the random initialization approach. Furthermore, the perfor-
mance of HL is compared against two well-known conventional methods, RF-BR
and RF-LP [6]. The two methods were implemented in MULAN.

4.2 Parameter Settings

In order to examine the performance of the proposed algorithms, the ML-KNN
classification algorithm is used with K = 9. Hamming loss is used as the perfor-
mance measure. The parameters for PSO are set according to common settings
proposed by Clerc and Kennedy [19] as follow: inertia weight w = 0.7298, acceler-
ation constants c1 = c2 = 1.49618, minimum velocity is −0.2, maximum velocity
is 0.2, minimum position is 0.0, maximum position is 1.0, population size is 30,
maximum number of iterations is 100. The star topology is used. The thresh-
old θ is set as 0.6. For each dataset, the experiment has been conducted for 30
independent runs. The Hamming loss of a selected feature subset is evaluated by
10-fold cross-validation on the training set. After the training process, selected
features are evaluated on the test set to obtain the testing Hamming loss as the
final performance.

5 Experimental Results and Discussions

Experimental results of the proposed algorithms are shown in Table 2 where the
weight is set to 1.0. In the table “All” means that all available features are used,
“#Feat.” represents the number of selected features. “Ave-Train-loss” and “Ave-
Test-loss” represent the average training and test hamming losses of the feature
subsets selected by each approach in the 30 runs. The significance test, Wilcoxon
test, is performed with the significance level of 0.05. T1 represents the results of
the significance test comparing between the three proposed algorithms and using
all features. “+”/“=”/“−” mean that the proposed algorithms are significantly
better/similar/worse than the benchmark algorithms. T2 represents the results
of the significance test between HL and the other PSO-based algorithms. The
best testing Hamming loss is marked in bold.

http://mulan.sourceforge.net/datasets-mlc.html
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Table 2. Experiment results for weight = 1.0

Dataset Method #Feat. Ave-Train-

loss

Ave-

Test-loss

T1 T2 DatasetMethod #Feat. Ave-

Train-loss

Ave-

Test-loss

T1 T2

flags All 19 0.2337 0.3011 All 260 0.0500 0.0466

Random 9 0.2388 0.2947 + Random 96 0.0531 0.0505 =

RF 9 0.2291 0.2898 + = birds RF 96 0.0513 0.0496 − −
CR 11 0.2323 0.2932 + = CR 136 0.0524 0.0504 − −
HL 9 0.2438 0.2867 + HL 58 0.0528 0.0509 −

cal500 All 68 0.1345 0.1402 All 294 0.0729 0.0957

Random 26 0.1339 0.1399 + Random 106 0.0743 0.1009 −
RF 37 0.1341 0.1399 + + scene RF 147 0.0746 0.0985 − −
CR 39 0.1341 0.1398 + + CR 156 0.0736 0.0985 − −
HL 21 0.1348 0.1393 + HL 92 0.0782 0.1038 −

emotions All 72 0.2758 0.3234 All 1001 0.0452 0.0516

Random 24 0.2517 0.3142 = Random 357 0.0448 0.0509 +

RF 36 0.2560 0.3169 + − enron RF 511 0.0450 0.0508 + =

CR 36 0.2557 0.3183 + + CR 529 0.0448 0.0506 + =

HL 29 0.2520 0.3128 + HL 275 0.0453 0.0506 +

yeast All 103 0.1802 0.2043 All 1449 0.0148 0.0191

Random 45 0.1764 0.2061 = Random 538 0.0130 0.0153 +

RF 59 0.1749 0.2034 + − medical RF 302 0.0133 0.0169 + +

CR 59 0.1760 0.2042 = = CR 613 0.0137 0.0174 + +

HL 42 0.1761 0.2055 − HL 279 0.0125 0.0149 +

5.1 Comparison Between the Proposed Algorithms and Using All
Features

The results in Table 2 show that on at least five out of the eight datasets, the
three PSO-based feature selection algorithms result in significantly lower testing
losses than using all features with a much smaller number of selected features.
On six out of the eight datasets, the best classification performance is belonged
to the three proposed algorithms. On most of the eight datasets, the number of
features is reduced by 60–70%. Particularly, on the datasets with large numbers
of features such as medical, nearly 80% of the features are removed and ham-
ming loss is also decreased. Thus, the proposed algorithms successfully remove
redundant/irrelevant features and at the same time maintain or even improve
the classification performance.

5.2 Effect of Different Initialization Mechanisms

On most datasets, RF achieves better Hamming losses than CR. Although both
methods use filter measures for initialization, Relief is essentially based on near-
est neighbors which is quite close to ML-KNN. Hence, RF usually has better
classification performance.

In comparison with RF and CR, HL achieves similar training loss but select
significantly smaller numbers of features. The possible reason is that the Ham-
ming loss can distinguish between relevant and irrelevant features, which leads
to a few features with high scores while most other features with low scores.
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Such behavior allows HL to select relevant features repeatedly (in RWS), so the
number of features selected by each particle (at the initialization step) is small.
It can be seen that starting with smaller numbers of features enhance the gen-
eralization of the feature subsets. On five out of the eight datasets, HL achieves
the best Hamming loss on the test set.

The results show that initialization is an essential step in a PSO-based multi-
label feature selection. The superiority of HL to the other two algorithms empha-
sizes the importance of keeping consistency between the initialization step and
the evaluation step.

5.3 Effect of Different Weights

The effect of different weight values can be seen from Table 3. Setting weight
to 1 completely ignores the number of selected features, while setting weight
to 0.99 considers both the number of selected features and the classification
performance. It can be seen that when weight is set to 0.99, HL usually selects
a much smaller number of features than setting weight to 1.0. However, setting
weight to 1.0 usually results in better Hamming loss. The results indicate that
weight can successfully control the trade-off between the two main objectives of
feature selection, which is especially useful when the trade-off is known before.

Table 3. HL with weight = 1.0 and weight = 0.99

Dataset weight #Feat. Ave-Train-

loss

Ave-Test-

loss

Dataset weight #Feat. Ave-Train-

loss

Ave-Test-

loss

flags w = 1 9 0.2438 0.2867 birds w = 1 58 0.0528 0.0509

w = 0.99 8 0.2449 0.2911 w = 0.99 32 0.0524 0.0507

cal500 w = 1 21 0.1348 0.1393 scene w = 1 92 0.0782 0.1038

w = 0.99 12 0.1339 0.1394 w = 0.99 91 0.0784 0.1045

emotions w = 1 29 0.2520 0.3128 enron w = 1 275 0.0453 0.0506

w = 0.99 28 0.2520 0.3141 w = 0.99 237 0.0454 0.0505

yeast w = 1 42 0.1761 0.2055 medical w = 1 279 0.0125 0.0149

w = 0.99 37 0.1772 0.2061 w = 0.99 156 0.0125 0.0149

5.4 Further Discussions

Table 4 shows the comparison between two conventional multi-label feature selec-
tion algorithms, RF-BR and RF-LP, and the proposed algorithm HL. In the
table, “T1” shows the results of the significance test between HL and conven-
tional methods. As can be seen from the table, the conventional methods usually
achieve lower Hamming loss on the training set, but they usually select a much
larger number of features than HL. It seems that RF-BR and RF-LP tends to
overfit the training data by selecting a large number of features. Meanwhile, HL
selects a smaller number of features which can generalize better. Therefore, HL
achieves significantly better Hamming loss values on the test set.
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Table 4. Comparison between HL and two conventional methods

Dataset Method Numfeatures Train-

loss

Test-

loss

T1 Dataset Method Numfeatures Train-loss Test-loss T1

flags HL 9 0.2438 0.2867 birds HL 58 0.0528 0.0509

RF-BR 12 0.2292 0.2945 + RF-BR 65 0.0500 0.0464 –

RF-LP 19 0.2337 0.3011 + RF-LP 37 0.0500 0.0464 –

cal500 HL 21 0.1348 0.1393 scene HL 92 0.0782 0.1038

RF-BR 65 0.1347 0.1397 + RF-BR 237 0.0765 0.0985 –

RF-LP 67 0.1344 0.1402 + RF-LP 232 0.0733 0.0971 –

emotions HL 29 0.2520 0.3128 RF-BR HL 275 0.0453 0.0506

RF-BR – – – + enron 987 0.0456 0.0518 +

RF-LP – – – + RF-LP 1000 0.0451 0.0515 +

yeast HL 42 0.1761 0.2055 medical HL 279 0.0125 0.0149

RF-BR 102 0.181 0.2033 – RF-BR 186 0.0146 0.0178 +

RF-LP 103 0.1802 0.2043 – RF-LP 113 0.0146 0.0178 +

6 Conclusions and Future Work

In this work, three new initialization strategies are developed for PSO-based
multi-label feature selection. Particularly, the proposed initialization strategies
allow PSO to start with more relevant features. The feature relevance is measured
by three metrics: relief, correlation, and hamming loss. The results show that
PSO can select a small number of features while improving the classification
performance over using all features. The three initialization mechanisms can
further improve the performance of PSO. In addition, PSO with the proposed
initialization mechanisms can select more generalized feature subsets than two
conventional multi-label feature selection methods, RF-BR and RF-LP. Among
the three initialization mechanisms, using Hamming loss usually results in the
best classification performance, which emphasizes the importance of maintaining
the consistency between the initialization and the evaluation phases.

Although the proposed algorithms achieve promising results, there is still
room for improvement. For example, “premature convergence” is a common
problem of PSO, which happens even more frequently in multi-label feature
selection due to the large and complex search space. A possible solution is to
propose a local search technique to prevent PSO from converging too early.
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Abstract. Incompleteness is one of the challenging issues in data sci-
ence. One approach to tackle this issue is using imputation methods to
estimate the missing values in incomplete data sets. In spite of the popu-
larity of adopting this approach in several machine learning tasks, it has
been rarely investigated in symbolic regression. In this work, a genetic
programming (GP) based feature selection and ranking method is pro-
posed and applied to high-dimensional symbolic regression with incom-
plete data. The main idea is to construct GP programs for each incom-
plete feature using other features as predictors. The predictors selected
by these GP programs are then ranked based on the fitness values of the
best constructed GP programs and the frequency of occurrences of the
predictors in these programs. The experimental work is conducted on
high-dimensional data where the number of features is greater than the
number of instances.

Keywords: Symbolic regression · Genetic programming · Incomplete
data · Imputation · Feature ranking

1 Introduction

Genetic programming (GP) is a biological evolution inspired technique for evolv-
ing programs to solve a particular task by applying natural-like operations [13].
GP starts with a population of programs generated randomly and applies genetic
operators to produce fitter ones through progressively advanced generations [13].
One of the typical applications of GP is symbolic regression. Symbolic regression
is the task of discovering mathematical functions in which the dependent vari-
ables are expressed in terms of independent variables. The main advantage of
symbolic regression over traditional regression methods is the non-requirement
of pre-assumptions on the structure of the regression model [4].

Learning from data sets containing missing values is a challenging problem.
One way to address this challenge is by applying imputation methods to esti-
mate the missing values and produce complete data that can be used by any
c© Springer Nature Switzerland AG 2019
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learning algorithm [10]. Existing imputation methods can be classified into sin-
gle imputation and multiple imputation [10]. Missing values are categorized into
three main types: missing at random, missing completely at random, and miss-
ing not at random [10]. The existing research on dealing with missing values
mainly focus on classification tasks and only a few studies have been conducted
on symbolic regression with incomplete data [2].

Data becomes more and more high-dimensional, i.e. more features, which
introduces significant challenges into the field of machine learning [17]. In fact,
high-dimensionality can refer to the situation of having more features than
instances [14]. Such a situation poses many problems such as curse of dimension-
ality, spurious correlations, model overfitting, and biased performance estimate
[8]. These issues are much more challenging when the data are incomplete due
to the risk of having less useful instances and a large number of features. One
approach to mitigate the problems related to the high-dimensionality is feature
selection [21].

Feature selection is the process of choosing a subset of relevant features [23].
GP performs implicit feature selection as the features involved in a GP program
represent a set of selected features. For example, in tree-based GP, the target
variable is represented as an expression tree in which the leaf nodes can be chosen
from a terminal set that contains the independent features. Any feature appears
in the constructed program is considered as a selected feature by this program.
GP has been successfully used for feature selection to enhance the performance of
different learning tasks such as clustering, classification, and symbolic regression
[23]. Feature ranking can be considered as a feature selection method where the
features are ranked according to a certain measure and the top-ranked features
can be then chosen as a final feature subset [19].

As GP programs can provide mathematical forms to represent the relation-
ships between the input features and a target one, the expressiveness ability of
GP makes it suitable for discovering the relationship between predictive features
and an incomplete feature in a given data set. To the best of our knowledge, no
study has been conducted to investigate feature selection for high-dimensional
symbolic regression on incomplete data.

In this work, the main goal is to develop a new GP-based method for predictor
selection and ranking to improve the imputation performance. Although GP
can select the predictors implicitly, an explicit selection mechanism is imposed
into the evolutionary process. Furthermore, the selected predictors are scored
and ranked to provide the ability to use different amounts of highly ranked
predictors in the learning process. The method is utilized in performing symbolic
regression on high-dimensional incomplete data. As high-dimensional data are
more likely to contain redundant predictors, the proposed method can improve
the performance by using the most relevant predictors. Moreover, using fewer
predictors means less computational complexity.
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2 Related Work

In symbolic regression research, the most common strategy to deal with incom-
plete data is to delete the instances having missing values [9]. In [5], GP for sym-
bolic regression method is performed on incomplete data. The missing values are
handled through prediction models for the variables. The method employs many
heuristics for parameter optimization in the evolutionary process. The experi-
mental results are obtained using synthetic data using a dynamic model called
Lorenz attractor system. The main limitation of this method is the enormous
computational complexity.

In [22], the missingness is treated as having imbalanced data in certain regions
of mathematical functions. A framework for data samples weighting is proposed
to take into account the relative importance of each sample. Instead of estimating
the missing values, the methods are used to balance synthetic data drawn from
mathematical functions. A hybrid method combines GP and KNN to impute
missing values for symbolic regression is proposed in [2]. This method works
by constructing imputation models for each set of missing values that have the
same neighbourhood of complete instances. This approach is time consuming
especially on data sets with high instance-based variance.

GP has been successfully used for feature selection and ranking in classifica-
tion. In [16], the features are scored based on the fitness of the best individuals
obtained by multiple GP runs. The frequency of the features is not included
and no feature reduction pressure is imposed in the fitness function. A similar
fitness-based scoring is presented in [12], where it considers all population indi-
viduals in only one GP run. This means that poor individuals may have a high
contribution in the scores especially if there are many of such individuals. More-
over, the mutation operator is modified to be biased towards selecting features
with higher scores.

In [1], the feature scores are calculated based on the frequency of the features
in the best individual of one GP run. Although, scoring the features dose not
take into account the fitness value, the fitness function is designed to reduce
the number of selected features as in [15]. However, it starts with emphasizing
on reducing the features at early generations which may impact the chance of
including more useful features from better fitted solutions at later generations.

For high-dimensional symbolic regression, a feature selection method for
improving the generalisation ability of GP is proposed in [7]. In [3], artificial
bee colony programming is proposed for feature selection in symbolic regression
with high-dimensional data. However, these studies used complete data sets. This
situation is much more challenging as it needs to consider the treatment of miss-
ing values in addition to the dimensionality reduction. This work will develop
a feature ranking and selection method for symbolic regression on incomplete
high-dimensional data.
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3 The Proposed Method

In order to perform symbolic regression on incomplete data, the missing values
can be imputed and the resulted complete data are then used. To impute an
incomplete feature in a data set, other available features can be used in pre-
dicting its missing values. These features are called imputation predictors for
the incomplete feature to be imputed. The main goal of the proposed method
is to select imputation predictors for each incomplete feature and rank them
according to their prediction contributions. A good selection of the predictors
can improve the imputation performance and reduce the computation time as
well.

The Overall System. Figure 1 shows the diagram of the system. It consists of
three main processes: the predictor selection and ranking process, the imputation
process, and the symbolic regression process. These processes are carried out in
two stages, training and testing.

In the process of predictor selection and ranking, the incomplete training
data set is used by several GP runs to select a set of predictive features (predic-
tors) for each incomplete feature. Each GP is used to evolve an imputer while
reducing the number of used predictors during the evolutionary process. The
importance of the selected predictive features is computed based on their contri-
butions in good imputers. The obtained importance is in turn used to score each
selected predictor which is then ranked according to the accumulative scores
from different runs.

For the imputation process, different sets of highly ranked predictors from the
original data are selected for each incomplete feature. Each incomplete is asso-
ciated with its predictors and this association is fed into an imputation method
to be utilized in estimating the missing values. The imputed complete data sets
are then used in the symbolic regression process to evaluate the performance of
the proposed imputation method.
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Fig. 1. The overall system.
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GP-Based Predictor Selection. Given an incomplete regression data set,
D, and an incomplete feature, f , the GP-process is designed to select a set
of predictors for this feature. The predictor selection is achieved by enforcing
predictor reduction pressure, which is called a selection pressure based on the
generation number and the number of selected features as in Eq. (1).

The first factor is the ratio of the number of the current generation, g, to
the maximum number of generations, G. When the value of g increases, the
importance weight of feature reduction increases monotonically. It is designed
in this way to allow including more predictors in the early generations and then
in the later generations, where individuals are supposed to be fitter, have more
contribution in selecting the predictors.

The other factor is the ratio of the number of selected features, Mind (i.e. the
features that are used in the individual), to the number of all available features
in the data set, M . If two individuals in a generation have the same prediction
value, a lower value is given to the one with fewer features.

selection pressureind =
g

G
∗ Mind

M
(1)

Prediction Strategy. The GP prediction strategy is to build GP programs
to predict the incomplete features. For an incomplete feature, f , the data set is
reformed to consider the feature as the target variable for the GP evolutionary
process. The other features (called predictors here) are used in the terminal
set. Although all other features including those containing missing values are
considered, only the complete instances are used.

The prediction task is performed depending on the data type of the targeted
feature. If the incomplete feature is numerical, the prediction process is a regres-
sion task and its goodness is measured by the regression error computed using
relative squared error (RSE) shown in Eq. (2).

RSE =

n∑

i=1

(yi − ŷi)2

n∑

i=1

(yi − ȳ)2
(2)

where n is the number of instances, yi (ŷi) is the target value (predicted value)
of the ith instance, and ȳ is the average of the target values, i.e. ȳ =

∑n
i=1 yi

n .
For the categorical incomplete features, the GP programs are constructed to

be classifiers and the prediction error is the classification error rate shown in
Eq. (3).

Error rate = 1 − #correctly classified instances
#instances

(3)
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Following [24], the numerical outputs of GP individuals are translated into
class labels using Eq. (4).

class(output) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1: : output ≤ 0,

C2: : T < output ≤ 2 ∗ T,

...
Cj : : (j − 1) ∗ T < output ≤ j ∗ T,

...
Cnc

: otherwise,

(4)

where Cj , j = 1, 2, ..., nc are class labels representing the available nc distinct
values in the feature of interest, output is the output of the evolved GP individ-
ual, and T is a random positive constant.

Fitness Function. The fitness function for evaluating GP imputation mod-
els is proposed to minimise the number of used predictors in addition to min-
imising the prediction error. As shown in Eq. (5), the fitness function has
two parts: the prediction error (prediction errorind) and the selection pressure
(selection pressureind). The prediction error measures how accurately the cur-
rent GP individual fits the incomplete feature, whereas the selection pressure
pushes towards using a smaller number of features.

The parameter α is used for controlling the relative importance of features
reduction and it is set to be 0.3 because the prediction accuracy is more impor-
tant. In order to ensure that the selection pressure will not be the dominant part
of the fitness function, especially when the prediction error is very small, it is
multiplied by the prediction error to be a proportional ratio of the prediction
performance.

Fitness = prediction errorind ∗ (1 + α ∗ selection pressureind) (5)

where the prediction error is computed as Eq. (6).

prediction errorind =

{
Classification error (Eq. (3)), for categorical features,

Regression error (Eq. (2)), otherwise.

(6)

GP-Based Predictor Scoring. The scoring of the predictors is based on
their frequency in the constructed GP individuals and the fitness values of these
models. The score of a predictor, p, for an incomplete feature, f , at a GP run r
is denoted as Scorer,p,f which is calculated as in Eq. (7).

Scorer,p,f =
G∑

g=1

(
Freqp,g,best ind∑

∀q∈Pf

Freqq,g,best ind
)e−fitnessg,best ind (7)
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where fitnessg,best ind is the best individual fitness value in the gth generation,
Pf is the set of all predictors of f , Freqp,g,best ind (Freqq,g,best ind) is the number
of times the predictor p (q) appears in this individual, and G is the maximum
number of generations.

Scorer,p,f is calculated according to the fitness value of the best individual
of each generation and the frequency of p in this individual, accumulated across
all generations. It is expected to have better fitness in advanced generations or
at least not worst (due to the elitism), so the corresponding score is higher in
late (mature) generations as the exponential factor e−fitness decreases when the
fitness value increases.

The process of scoring predictors is performed R times (the value of R is
chosen to be 10 empirically) for each incomplete feature. The scores of the pre-
dictors obtained by different runs are accumulated to obtain an overall score of
the contribution of the predictor p for the incomplete feature f , Scoreall,p,f , as
shown in Eq. (8). The predictors are then sorted according to their total scores
and they are given ranks based on their orders after the sorting process.

Scoreall,p,f =
R∑

r=1

Scorer,p,f (8)

where Scorer,p,f is the score of the predictor p for the feature f in the rth GP
run and is computed according to Eq. (7), and R is the number of GP runs.

The predictors that survive in the best individuals in any generation of any
GP run represent the set of selected predictors. In fact, these predictors are the
ones that have non-zero scores.

4 Experimental Setup

To evaluate the proposed method, four high-dimensional data regression data
sets are used. In each data set, the number of features is higher than the number
of available instances. The information of the data sets are shown in Table 1 and
more details can be found in the data repository OpenML [20]. For each data
set, 30 incomplete data sets are generated by imposing 20% missing at random
(MAR) probability on 10% of the features. The synthetic incomplete data sets
are generated using the R package SIMSEM [18]. In this work, each data set is
split randomly with the ratios of 70%, and 30% into a training set, and a test
set, respectively.

The goodness of the ranked predictors is evaluated based on their impact
on the performance of some widely used imputation methods including linear
regression (LR), polynomial regression (PR), random forest (RF), and classifi-
cation and regression trees (CART). The imputation methods are implemented
using the R package MICE [6] with the default settings.

Table 2 shows the settings of GP parameters for both GP-based predictor
selection and ranking, and for symbolic regression. The implementation of these
methods is carried out under the GP framework provided by distributed evolu-
tionary algorithms in python (DEAP) [11].
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Table 1. Statistics of the data sets.

Data set #Instances #Features #Categorical features

Selwood 31 54 0

Pah 80 113 0

Pdgfr 79 321 39

Mtp2 274 1143 55

Table 2. GP settings

Parameter GP predictor selection Symbolic regression

Generations 30 100

Population size 256 1024

Crossover rate 0.9 0.9

Mutation rate 0.1 0.1

Elitism Top-1 individual Top-5 individual

Selection method Tournament Tournament

Tournament size 3 7

Maximum depth 9 9

Initialization Ramped-half and half

Function set +, −, *, protected %

Terminal set features and constants ∈ U(−1, 1)

Fitness function Eq. (5) Eq. (2)

5 Results and Analysis

5.1 Imputation Performance

To evaluate the impact of using highly ranked predictors on the imputation
performance, the results of using four imputation methods are obtained with
different ratios of selected predictors. The performance is first evaluated with the
highest 10% ranked selected predictors, then with the highest 20%, 40%, 60%,
and 80% top-ranked of the selected predictors, then with 100% of the selected
predictors referred to AllS, which includes all the non-zero scored predictors. The
full set of available predictors, denoted as Full, is also used for comparisons.

The results of these evaluations are shown in Fig. 2, where the horizontal axis
shows the ratio of predictors used in the imputation and the vertical axis shows
the average of the imputation error, measured by RSE (Eq. (2)), over 30 runs
on the 30 incomplete copies of each data set.

From the shown results, it can be observed that the case of using all predictors
doesn’t lead to the best imputation performance on any of the used data sets.
Moreover, it is worse than any other case on almost all the data sets. On the
Selwood data set, all the methods have their best performance when using 20%
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Ra o of selected predictors

RSE

Methods

(a) Selwood

0.2

0.3

0.4

10 20 40 60 80 AllS Full

(b) Pah

0.13

0.14

0.15

0.16

10 20 40 60 80 AllS Full

(c) Pdgfr

0.24

0.28

0.32

0.36

10 20 40 60 80 AllS Full

(d) Mtp

Fig. 2. The imputation performance of using different imputation methods with
increasing ratios of top ranked predictors.

of the highly ranked predictors. Compared to any other case, CART and RF can
do better by using only 10% top predictors on the Pah data set.

Moreover, the top 10% features are enough to get the lowest error on the Mtp
data set with every method. Similar behaviour is observed on the Pdgfr data
set for all methods except for the CART method where the best performance
is achieved when using the top 20% predictors. The trends in the imputation
results reveal that in most cases, using more features could cause a considerable
decline in the imputation performance.

5.2 Symbolic Regression Performance

Regarding the symbolic regression performance, after applying each imputation
method on each generated incomplete data set, 30 symbolic regression exper-
iments are performed. The symbolic regression is performed by GP using the
imputed data provided by imputation methods once with the selected predic-
tors and another one with all available predictors over each incomplete copy of
each data set. The used selected predictors are those that have non-zero accu-
mulative scores.

Figure 3 shows the comparisons of the symbolic regression performance. The
statistical significance pairwise Wilcoxon test with the significance level of 0.05
is performed to measure the difference in the symbolic regression performance
when using each imputation method with and without feature selection. The
portion “+” (“−”) refers to the number of cases in which the method with
selected predictors outperforms (is outperformed by) the same method with all
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the predictors, whereas “=” refers to the number of cases with no significant
difference.

(a) Selwood (b) Pdgfr

(c) Mtp (d) Pah

Fig. 3. The significance comparisons of symbolic regression performance between using
the selected features and using all the available features.

The results show that the use of the selected features leads to better symbolic
regression performance in most of the considered cases. This is particularly true
for all the methods on the Mtp data set, and CART and RF on all the data
sets. Such results are probably because the selection process gets rid of the noisy
predictors which do not contribute towards predicting the missing values. Using
all the features as predictors can not obtain the best performance on any data
set.

Considering the symbolic regression results along with the imputation results,
a correlation between the two evaluations can be found, i.e. the better imputation
accuracy, the better symbolic regression performance. For example, the symbolic
regression combined with the CART and RF imputation methods leads to better
performance than when using LR and PR. In fact, the use of the LR method,
which has the poorest imputation accuracy, does not show a significant difference
between using the selected predictors and using all predictors.

5.3 Predictor Ranking

To understand the ranking method more, the obtained ranking results in the
Selwood data set are analyzed. Table 3 shows the top 20% ranked predictors
for the incomplete features in the Selwood data set. The predictors are ordered
according to their ranks starting with the highly ranked one.
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The shown results are not only useful in improving the imputation perfor-
mance but also they can be used to discover the relationships between different
features, which in turn can be helpful to improve the overall regression per-
formance. It is clear that some features have small numbers of predictors than
others. The most frequent feature is oz39, which occurs in the top lists for all
the five incomplete features.

Interestingly, some incomplete features are useful for imputing other features.
For example, the features oz16 and oz51, which are incomplete features, are
ranked among the top 20% predictors to predict other features. They are both
appear in the top list for the feature oz38. The feature oz51 is ranked among
the top predictors for three incomplete features (viz. oz16, oz25, and oz38).
The feature oz16 is the second highly ranked predictor for the feature oz38.
Moreover, both features (i.e. oz16 and oz51) have high contributions toward
predicting the missing values of each other. This can indicate that there is some
shared missingness cause between different features, i.e, the missing values in
these features might be due to the same reason.

Table 3. Top 20% predictors for incomplete features in the Selwood data set.

Incomplete feature Top 20% predictors

oz16 oz7, oz29, oz24, oz17, oz41, oz46, oz51, oz11, oz39

oz25 oz37, oz39, oz38, oz33, oz9, oz45, oz27, oz26, oz1, oz51

oz31 oz52, oz14, oz45, oz24, oz15, oz19, oz39

oz38 oz11, oz16, oz1, oz6, oz39, oz50, oz51

oz51 oz36, oz22, oz38, oz39, oz28, oz19, oz16

6 Conclusions and Future Work

In this work, two challenging problems are addressed: incompleteness and high-
dimensionality. A GP-based feature selection and ranking method is proposed
and applied to symbolic regression with incomplete data. GP is used to evolve
prediction programs for each incomplete feature, select the important predictive
features, and score them according to the discovered importance. The method is
evaluated on high-dimensional data and the results are promising in improving
both the imputation accuracy and the symbolic regression performance.

The main drawback of most single feature ranking methods is considering the
importance of individual features without taking into account the interactions
with other features. Although the proposed method avoids this limitation by
considering the score of the feature in the context of other features, it is difficult
to claim which features should be used together. Such a consideration is worth
further investigated. Moreover, intensive comparisons with state-of-the-art exist-
ing selection methods will be conducted on more data sets from different data
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repositories. Meanwhile, the applicability of the developed method can also be
examined in other machine learning tasks such as classification and clustering.
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ham, A. (eds.) Nostradamus 2013: Prediction, Modeling and Analysis of Complex
Systems. Advances in Intelligent Systems and Computing, vol. 210, pp. 181–189.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00542-3 19

6. Buuren, S.V., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by
chained equations in R. J. Stat. Softw. 1–68 (2010)

7. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic
programming for high-dimensional symbolic regression. IEEE Trans. Evol. Com-
put. 21(5), 792–806 (2017)

8. Clarke, R., et al.: The properties of high-dimensional data spaces: implications for
exploring gene and protein expression data. Nat. Rev. Cancer 8(1), 37 (2008)

9. Dick, G.: Bloat and generalisation in symbolic regression. In: Dick, G., et al. (eds.)
SEAL 2014. LNCS, vol. 8886, pp. 491–502. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-13563-2 42

10. Donders, A.R.T., Van Der Heijden, G.J., Stijnen, T., Moons, K.G.: A gentle intro-
duction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091
(2006)

11. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
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Abstract. Genetic programming (GP) has been successfully used to
automatically design effective dispatching rules for job shop scheduling
(JSS) problems. It has been shown that hybridizing global search with
local search can significantly improve the performance of many evolu-
tionary algorithms such as GP because local search can directly improve
the exploitation ability of these algorithms. Inspired by this, we aim
to enhance the quality of evolved dispatching rules for many-objective
JSS through hybridizing GP with Pareto Local Search (PLS) techniques.
There are two challenges herein. First, the neighborhood structure in GP
is not trivially defined. Second, the acceptance criteria during the local
search for many-objective JSS has to be carefully designed to guide the
search properly. In this paper, we propose a new algorithm that seam-
lessly integrates GP with Pareto Local Search (GP-PLS). To the best of
our knowledge, it is the first time to combine GP with PLS for solving
many-objective JSS. To evaluate the effectiveness of our new algorithm,
GP-PLS is compared with the GP-NSGA-III algorithm, which is the
current state-of-the-art algorithm for many-objective JSS. The experi-
mental results confirm that the newly proposed method can outperform
GP-NSGA-III thanks to the proper use of local search techniques. The
sensitivity of the PLS-related parameters on the performance of GP-PLS
is also experimentally investigated.

Keywords: Many-objective optimization · Genetic programming ·
Pareto Local Search · Evolutionary computation · Job shop scheduling

1 Introduction

Job shop scheduling (JSS) [14] is a classical combinatorial optimization problem
which has received a lot of attention owing to its wide applicability in the real
world such as cloud computing [16]. A JSS problem deals with a group of tasks
or jobs by using different resources or machines. The goal of a JSS problem is
to design a schedule, according to which all jobs can be processed as efficiently
c© Springer Nature Switzerland AG 2019
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as possible through a set of machines. It is widely mentioned in the literature
that JSS by nature presents several potentially conflicting objectives [8], such as
makespan, mean tardiness, maximum tardiness and mean flowtime. Therefore,
JSS is naturally studied as a many-objective optimization problems (MOaPs)
where conflicting objectives require us to find a set of non-dominating solutions,
known as the Pareto front. The aim of many-objective optimization algorithms
is to provide a good representative approximation of the Pareto front.

JSS has been proven to be NP-hard [1] and one of the popular solution
approaches to such NP-hard problems is to use dispatching rule heuristics [7].
These rules have some key advantages including being flexible, scalable and effi-
cient, especially when a job shop exhibits high levels of dynamics. Conceptually,
a dispatching rule uses a priority function to select the next job in the queue to
be processed at each decision point.

Dispatching rules are not universal in nature [13], meaning that no single
rule maintains high effectiveness on all problem instances. Particularly, in the
manufacturing domain, the underlying properties of the problem often change
over time, such as processing time and release dates [9]. Therefore, dispatching
rules should be updated frequently according to the condition of the manufac-
turing environment. It is challenging to design such rules manually because this
task relies heavily on human experts and extensive empirical testing to ensure
that any newly designed dispatching rules can be used effectively. To circum-
vent the issues related to manually designing dispatching rules, researchers have
proposed various automated design approaches [13]. Among them, Genetic Pro-
gramming based hyper-heuristic (GPHH) approaches are particularly effective
[9,13]. When applied to JSS, GPHH searches for dispatching rules in the heuris-
tic search space. It was shown in [9] that GPHH can evolve much more effective
rules than manually-designed rules on many JSS problems. An additional benefit
of GPHH comes from the fact that it can integrate easily with many-objective
optimization procedures, making it possible to automatically design dispatching
rules to simultaneously optimize several conflicting objectives [7].

The literature states that Pareto Local Search (PLS) is a simple and effective
local search method for multi-objective optimization tasks [4]. It is a key com-
ponent of many evolutionary algorithms and has broken performance records
in recent years [4]. We can clearly observe from the literature that properly
hybridizing global search and local search techniques can often lead to signifi-
cantly improved performance. This understanding motivates us to integrate GP
as a primary global search method with PLS. We face two challenges during the
integration. First, the neighborhood structure of a tree (dispatching rule) in GP
is not trivially defined. Second, the acceptance criteria during the local search
for many-objective JSS has to be carefully designed to guide the search properly.
We aim to address both challenges in this paper.

To address the first challenge, we propose to apply a local search driven by
restricted mutation to the dispatching rules evolved by GP. The restricted muta-
tion tries to avoid large mutations and prevent the neighborhood rules from being
too different from their parent rules. Multiple consecutive local search steps will
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be performed to encourage the discovery of better rules surrounding an exist-
ing one. Meanwhile, the second challenge is tackled by adopting a dominance-
based [2] and fitness-guided [6] acceptance strategy. After selecting promising
rules obtained by local search, GP with Pareto Local Search (GP-PLS) further
adopts the niching mechanism of NSGA-III [3] to evolve a new population of
widely distributed dispatching rules that are closer to the Pareto front.

The research objectives of this paper are to: (1) develop a new hybrid app-
roach combining the global search of GP and local search of PLS (GP-PLS)
to discover effective dispatching rules for many-objective JSS; (2) compare the
proposed GP-PLS algorithm with the current state-of-the-art GP-NSGA-III [8]
on a group of benchmark JSS problems since GP-NSGA-III also relies on GP to
evolve dispatching rules and the niching mechanism of NSGA-III and (3) analyze
the behavior and effectiveness of local search in GP-PLS.

The rest of the paper is organized as follows. Section 2 covers the research
background, including the JSS problem, many-objective optimization, and
related works. Section 3 introduces GP-PLS. Section 4 describes the experimen-
tal design. Section 5 covers the results and discussions. Finally, Sect. 6 concludes
this paper and highlights possible future research directions.

2 Research Background

In this section, the JSS problem and many-objective problem will be described
first. Then we will discuss some related works.

2.1 Problem Description

Job Shop Scheduling. In a JSS problem, N jobs are to be processed by M
machines. Each job Ji includes a series of operations. Each operation Ok

i has
a processing time tki and should be processed by machine mk

i . Any solution to
such a JSS problem has to comply with the following three common conditions.

1. An operation is performed on a machine without interruption. This means
that all operations are non-preemptive.

2. The operation cannot start until its precedent operation has been completed.
3. Whenever a machine becomes idle (just finished processing an operation), it

will be immediately available for processing a new operation.

The goal of JSS is to design a schedule to optimize some objectives such as
mean flowtime/tardiness. When using a dispatching rule (e.g. First-Come-First-
Serve), the schedule is generated in an online fashion. In JSS, every dispatching
rule is represented and evaluated as a GP tree. The GP tree will assign a priority
to each pending job in the waiting queue associated with any machine. The job
with the highest priority will be processed next.
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Fig. 1. The GP tree representation of the 2PT+WINQ+NPT rule.

Many-Objective Optimization. Without loss of generality, in a MaOP, we
aim to simultaneously optimize more than three conflicting objectives. In many-
objective JSS, the comparison of two dispatching rules/solutions (Δ1 and Δ2)
is based on the concept of dominance relation [3]. Solution Δ1 dominates Δ2 if
and only if

∀i, 1 ≤ i ≤ m, fi(Δ1) ≤ fi(Δ2) (1)

and
∃i, fi(Δ1) < fi(Δ2). (2)

If a solution Δ∗ is not dominated by any other solution then it is called a Pareto-
optimal solution. The set of all Pareto-optimal solutions jointly forms the Pareto
front (PF) in the objective space and the Pareto set (PS) in the solution space.

2.2 Related Work

Manually designing dispatching rules is a challenging task in an ever-changing
manufacturing environment. This issue can be resolved by evolving dispatching
rules automatically. In the literature, the most widely explored technique for
automatically designing dispatching rules is GPHH [8,10].

GPHH has been widely demonstrated to be an effective learning method for
evolving tree-based dispatching rules [9,11]. GPHH not only shows its effective-
ness in single-objective JSS problems but can also evolve useful rules for multi-
objective and many-objective JSS problems. [12] developed a GPHH method
for multi-objective JSS problems involving the optimization of five conflicting
objectives. [8] mainly focused on evolving dispatching rules in many-objective
JSS problems. However, these methods overlooked the opportunity of enhancing
the quality of evolved rules through local search.

Researchers have recently studied the application of PLS to multi-objective
evolutionary algorithms [6]. In particular, [6] showed that suitable candidates for
local search should be carefully selected based on some scalarization mechanisms.
[4] applied PLS and improved the overall quality of the evolved Pareto fronts.
However, to the best of our knowledge, no research works have been dedicated
to studying PLS in GPHH for many-objective JSS. We are only aware of one
existing study on the application of local search to GPHH, but the focus of that
research is on single-objective JSS [13]. It is very interesting to investigate the
effectiveness of using PLS in GPHH and this is expected to inspire many future
studies on PLS in GPHH for many-objective optimization. We aim to achieve
this goal in this paper through the development of the new GP-PLS algorithm.
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Algorithm 1. The framework of GP-PLS.
Input : training set Itrain
Output: A set of non-dominated solutions(rules) P ∗

1 Initialize of rules and Evaluate the population P0;
2 g ← 0;
3 while g < gmax do
4 Apply the Pareto local search (Pbest )g=ParetoLocalSearch(Pg );
5 Apply genetic operators to (Pbest )g to generate offspring Qg ;
6 foreach Q ∈ Qg do Evaluate rule Q;

7 Rg=(Pbest )g ∪ Qg ;
8 Generate the fronts of Rg : F = (F1, F2, . . . ) by the nondominated sorting;
9 Form the new population Pg+1 from Rg by the NSGA-III selection;

10 g ← g + 1;

11 end
12 return The non-dominated individuals P ∗ ⊆ Pgmax ;

3 Proposed Algorithm

3.1 Representation of Rules

Consider the popular manually-designed 2PT+WINQ+NPT rule [5]. In the GP
tree representation, dispatching rules for JSS are constructed by function nodes
and terminal nodes. In Fig. 1, the terminals in the tree are {2,PT ,WINQ ,NPT}
(refer to Table 1 for a summary of all terminal types used in this paper) and the
functions are {+, ∗}.

3.2 General Framework of GP-PLS

Algorithm 1 outlines the framework of GP-PLS. It starts with the initialization
by using the ramped-half-and-half method and evaluation (refer to Sect. 3.3)
of the dispatching rules. Next, the evaluated rules are processed by the PLS
component. PLS features the use of an archive to keep track of candidate rules
for local search. The archive initially has either a randomly-selected subset of
rules (Pk) in the population or the whole population (PN ). The proposed algo-
rithm iteratively searches through the neighboring solutions of every rule in the
archive and stops after a certain number of consecutive local search steps have
been performed on each archived rule. In the meantime, GP-PLS keeps track of
(Pbest)g. This (Pbest)g archive represents the best-performing dispatching rules
evolved so far. In order to maintain a well-diversified collection of rules in the
archive, GP-PLS also adopts the niching mechanism used by NSGA-III. In line
with this high-level overview of our algorithmic framework, each key component
of GP-PLS will be discussed below.

3.3 Fitness Evaluation

To evaluate the quality of a rule in terms of each objective (lines 1 and 6 of
Algorithm 1), it is applied to a set of JSS training instances Itrain to generate
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Algorithm 2. Pareto Local Search
Input : A set of solutions(rules) Pg

Output: A set of best solutions(rules) Pbest

1 Pbest ← ∅;
2 Randomly select K individuals from P to form archive;
3 foreach p ∈ archive do
4 pnew ← p;
5 for step = 1 → stepmax do
6 p′ ← mutate(p); // neighbors

7 evaluate(p′);
8 if p′ is better than pnew then pnew ← p′ ;

9 end
10 if pnew is better than p then
11 Pbest \ p ;
12 Pbest ← Pbest ∪ pnew

13 end

14 end
15 return Pbest ;

schedules for them. Then, for each objective, the quality of a rule p is defined as
the average objective value of the schedules generated over the training instances.

3.4 Pareto Local Search

The Pareto local search (PLS, line 4 of Algorithm 1) is described in Algorithm
2. First, PLS randomly selects K individuals from the population to form the
archive. Then, for each individual p in the archive, the restricted mutation is
used to generate a neighboring rule around p. A maximum of stepmax neighbors
can be generated, and the best neighbors are compared with p. If the neighbor is
better than p, then it is added into Pbest . This local search mechanism will help
to enhance the exploitation ability and explore promising rules in the proximity
of each selected candidate rule.

Neighborhood Solution. In GP-PLS, a neighboring rule of any given rule
p is obtained by using the restricted mutation operator. When the restricted
mutation is applied to rule p, we randomly select a node in p whose corresponding
sub-tree has a depth of 2. The selected node and its sub-tree are then replaced
by a randomly generated sub-tree with the same depth of 2. With the help of
this restricted mutation, GP-PLS can effectively prevent a new neighboring rule
discovered during the local search process from being significantly different from
the original rule.

Exploration. In the local search algorithm, the exploration strategy deter-
mines the size of the neighborhood for exploration. One can either explore the
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Table 1. Terminal set of GP for JSS.

Attribute Notation Attribute Notation Attribute Notation

Processing time of

the operation

PT Ready time of the

operation

ORT Flow due date FDD

Inverse processing

time of the operation

IPT Ready time of the

next machine

NMRT Work Remaining WKR

Number of operations

in the next queue

NOINQ Work in the next

queue

WINQ Due Date DD

Processing time of

the next operation

NOPT Number of operation

remaining

NOR Weight W

Number of operations

in the queue

NOIQ Ready time of the

machine

MRT Work in the queue WIQ

neighborhood entirely (best-improvement) [4] or only partially until the ter-
mination criterion is met [4]. In this study, the partial strategy is used, since
the entire neighborhood is extremely large. Specifically, we randomly sample a
neighbor from the neighborhood repetitively until the maximum number of steps
(stepmax) is reached, and return the best neighbor sampled so far. The reason of
using partial strategy because it is less computationally expensive than the best
improvement strategy, especially for a problem with a large number of features.

Comparison. While comparing two rules p′ and pnew during PLS (e.g. line 8
of Algorithm 2), we consider the following two strategies: (1) the scalarization
strategy [6] and (2) the replacement strategy [2]. In the scalarization strategy,
the objective vector of each rule is aggregated into a scalar using weighted sum,
i.e.,

fit(x) = w1 · f1(x) + w2 · f2(x) + · · · + wm · fm(x), (3)

where w = (w1, . . . , wm) is a random weight vector such that wi ≥ 0 (∀i =
1, . . . ,m) and w1 + · · · + wm = 1.

The replacement strategy is based on the dominance relation. Whenever we
compare two rules pnew and p′, there are three possible outcomes:

– if pnew dominates p′, p′ is replaced by pnew.
– if pnew and p′ are non-dominated by each other, p′ is replaced by pnew.
– if pnew is dominated by p′, do nothing.

By replacing rule p with rule pnew that dominates it in the archive, we can
impose selection pressure on the archive and push it towards the Pareto front.

4 Experiment Design

To verify the effectiveness of GP-PLS, we compare its performance with the cur-
rent state-of-the-art GP-NSGA-III algorithm. The number of fitness evaluations
allowed for running both GP-PLS and GP-NSGA-III is 100000.
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4.1 Dataset for JSS

Taillard static (TA) job shop is a widely used static JSS benchmark set [15]
and is selected for our experiments. TA consists of 80 JSS problem instances.
We group the problem instances with the same number of jobs and machines
into the same group. As a result, TA is divided into 8 groups (denoted as TA-
1, . . . , TA-8). The number of jobs varies from 15 to 100, and the number of
machines varies from 15 to 20 across these groups. In the experiments, the total
80 instances were further divided into the training set and the test set, where
each set consists of 40 instances.

4.2 Parameter Settings

In line with the tree-based representation of dispatching rules, the function set
in GPHH includes {+,−,×, /} (the protected division operator returns 1 if the
denominator is zero), the 2-argument “min” and “max” operators and the 3-
argument “If” operator that returns the second argument if the first argument
is positive, and the third argument otherwise. Table 1 summarizes the terminals.

For all competing algorithms, the crossover, mutation and reproduction rates
are set to 85%, 10%, and 5%, respectively, based on many previous works [8].
The maximal tree depth is set to 8. As a common practice, the population is
initialized by the ramp-half-and-half method. In each generation, the parents
are selected by the tournament selection method with a tournament size of 7.
For GP-NSGA-III, the population size is set to 1000 and the maximal number
of generations is set to 100. For GP-PLS, the population size is set to 1000
but a maximal number of generations will be set after the sensitivity analysis
(Sect. 4.3). GP-PLS has two additional parameters, size of the archive (K) and
the maximum number of local search steps (Stepmax). In our experiment, we aim
to minimize four objectives, i.e., the mean flowtime (Obj1), maximal flowtime
(Obj2), mean weighted tardiness (Obj3) and maximal weighted tardiness (Obj4).
Existing work showed that the four objectives are mutually conflicting [8].

4.3 Sensitivity Analysis

In this experiment, we examined three different combinations of the parameters,
(K, stepsmax, generations) = (1000, 3, 25), (500, 2, 50), (250, 4, 50) for GP-PLS.
Sensitivity analysis was applied on both versions (scalarization and replacement)
of the PLS. The three-parameter settings have the same total number of fitness
evaluations (100000), identical to the number of evaluations in GP-NSGA-III, for
a fair experiment comparison. In the sensitivity analysis, for each combination
of the parameters, 30 independent runs were performed and obtained 30 final
sets of dispatching rules.

Due to the space limit, we summarize our findings without giving detailed
results. For the case of (1000, 3, 25), GP-PLS cannot explore the solution space
as effectively as GP-NSGA-III due to a limited number of generations. For the
case of (500, 2, 50), local search in GP-PLS is weak since only two steps of local
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Table 2. The mean and standard deviation over the average HV values of the 30
independent runs on training instances of the compared algorithms. The significantly
better results are shown in bold.

HV IGD

GP-NSGA-III GP-PLS-s GP-PLS-r GP-NSGA-III GP-PLS-s GP-PLS-r

0.688±0.0221 0.690±0.0160 0.705 ± 0.0130 0.00125±0.0001 0.00127±0.0001 0.00120 ± 0.0001

search can be performed at maximum. In contrast with the first two parame-
ter combinations, (250, 4, 50) obtained much better results due to its balance
between better global search (50 generations) and local search (4 steps during
the local search) capabilities.

After evaluating the three combinations, we found that the total number of
generations and the maximum number of local search steps is highly influential
on the performance of GP-PLS. They together provide varied trade-offs between
global and local searches in GP-PLS. The result showed that GP-PLS cannot
search the solution space extensively with a small number of generations. On the
other hand, if GP-PLS cannot perform a sufficient number of local search steps,
the power of local search cannot be effectively utilized. In order for GP-PLS to
achieve good performance, we select (250, 4, 50) in the subsequent experiments.

4.4 Performance Measures

Inverted Generational Distance (IGD) [17] and Hyper-Volume (HV) [18] are two
well-known metrics to evaluate the performance of many-objective algorithms.
They measure the algorithms in terms of both convergence and diversity.

In this study, we consider both performance measures. IGD measures the
gap between the targeted locations on true Pareto front (PF) and approximated
Pareto front (A∗) in the objective space. HV measures the volume of the objec-
tive space dominated by evolved Pareto optimal solutions S with respect to a
reference point r∗, r∗ = (r∗

1 , r
∗
2 , . . . , r

∗
m). The reference point is set to (1.1, 1.1,

. . . , 1.1). Ideally, a set of non-dominated dispatching rules evolved by GPHH
should have high HV and low IGD values.

5 Results and Discussions

For each algorithm in the experiment, 30 GP runs were conducted to obtain 30
sets of dispatching rules. Then, the rules were tested on the 40 test instances.

5.1 Performance of Obtained Dispatching Rules

Table 2 shows the mean and standard deviation of the training performance
in terms of HV and IGD of the rules obtained by GP-NSGA-III, GP-PLS-
scalarization (GP-PLS-s) and GP-PLS-replacement (GP-PLS-r). Here GP-PLS-s
refers to the variation of GP-PLS where the scalarization approach is used for
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Table 3. The mean and standard deviation over the HV values on the test instances
of the compared algorithms. The significantly better results are shown in bold.

HV IGD

ID#J #MGP-NSGA-IIIGP-PLS-s GP-PLS-r GP-NSGA-III GP-PLS-s GP-PLS-r

1 15 15 .1868(.0368) .1698(.0125) .2723(.0145).0189(.0008) .0274(.0001) .0147(.0001)

2 15 15 .3296(.0182) .3070(.0145) .4091(.0110).0127(.0005) .0124(.0004) .0117(.0003)

3 15 15 .2175(.0125) .2683(.0125) .2508(.0127) .0173(.0008) .0126(.0006) .0137(.0002)

4 15 15 .3159(.0183) .1259(.0133) .4561(.0091 .0162(.0007) .0260(.0006) .0135(.0002)

5 15 15 .2370(.0202) .1799(.0302) .3479(.0192).0193(.0005) .0200(.0003) .0085(.0007)

6 20 15 .4747(.0176).4024(.0186) .4280(.0139) .0079(.0004) .0147(.0001) .0124(.0007)

7 20 15 .2396(.0683) .2551(.0695) .3146(.0683).0250(.0013) .0109(.0012) .0121(.0014)

8 20 15 .2935(.0201) .3201(.0253) .2158(.0501) .0133(.0001) .0156(.0012) .0147(.0012)

9 20 15 .1787(.0198) .3232(.0198) .1606(.0219) .0201(.0001) .0108(.0005) .0142(.0003)

10 20 15 .3180(.0151) .3847(.0141) .2743(.0366) .0129(.0002) .0077(.0001) .0128(.0003)

11 20 20 .2114(.0038) .2214(.0138) .3087(.0118).0094(.0006) .0090(.0001) .0091(.0003)

12 20 20 .3852(.0133).2452(.0123) .3206(.0134) .0217(.0004) .0168(.0001) .0147(.0006)

13 20 20 .4540(.0151) .4541(.0326) .4550(.0221) .0155(.0001) .0112(.0005) .0100(.0004)

14 20 20 .1658(.0110) .2945(.0140) .3318(.0118).0246(.0009) .0174(.0005) .0216(.0004)

15 20 20 .1742(.0225) .1840(.0199) .1352(.0125) .0191(.0008) .0315(.0003) .0289(.0004)

16 30 15 .2964(.0300) .3508(.0234) .3198(.0110) .0111(.0006) .0090(.0002) .0070(.0008)

17 30 15 .3741(.0096) .3385(.0229) .4076(.0093).0061(.0003) .0047(.0008) .0077(.0007)

18 30 15 .3825(.0233).3710(.3032) .3274(.0103) .0060(.0006) .0092(.0008) .0063(.0007)

19 30 15 .4353(.0126).3808(.0197) .3988(.0146) .0065(.0004) .0059(.0008) .0054(.0007)

20 30 15 .3800(.0312) .3801(.0312) .3762(.0212) .0019(.0005) .0054(.0003) .0065(.0002)

21 30 20 .1983(.0657) .3340(.0792) .2190(.0492) .0094(.0022) .0097(.0013) .0125(.00012)

22 30 20 .2385(.0472) .2954(.0470) .3177(.0372).0098(.0010) .0103(.0006) .0095(.0001)

23 30 20 .2020(.0398) .2672(.0410) .3675(.0294).0077(.0004) .0074(.0006) .0063(.0002)

24 30 20 .4420(.0503) .4652(.0443) .4529(.0174) .0069(.0001) .0056(.0001) .0085(.0002)

25 30 20 .3372(.0477) .3854(.0396).2864(.0427) .0056(.0001) .0071(.0002) .0074(.0001)

26 50 15 .4563(.0417) .4672(.0170) .4872(.0270).0057(.0001) .0058(.00002) 0054(.0004)

27 50 15 .5710(.0361).5685(.0304) .5555(.0304) .0038(.0002) 0054(.0001) .0042(.0004)

28 50 15 .4598(.0398) .4966(.0250) .4798(.0333) .0036(.0001) .0035(.0003) .0040(.0005)

29 50 15 .5749(.0372) .5702(.0251) .4323(.0413) 0035(.0003) .0062(.0003) .0045(.0003)

30 50 15 .4510(.0406) .4310(.0333) .4732(.0240).0043(.0001) .0045(.0004) .0043(.0001)

31 50 20 .5190(.0424).4477(.0295) .4870(.0433) .0047(.0002) .0046(.0003) .0052(.0001)

32 50 20 .4354(.0476) .5705(.0476) .4996(.0375) .0040(.0001) .0054(.0002) .0041(.0001)

33 50 20 .4427(.0266) .4426(.0838) .5165(.0366).0054(.00001) .0056(.00002) .0044(.00008)

34 50 20 .4108(.0384) .3945(.0262) .4911(.0332).0037(.00005) .0036(.00008) .0033(.00009)

35 50 20 .4421(.0349).4138(.0222) .4140(.0165) .0032(.00015) .0032(.00007) .0031(.00009)

36 100 20 .6054(.0179) .59169(.0093) .6228(.0222).0027(.00020) .0032(.00001) .0021(.00067)

37 100 20 .6584(.0142) .6678(.0101) .5857(.0152) .0034(.00018) .0031(.00001) .0027(.00017)

38 100 20 .6152(.0196) .6175(.0136) .5525(.0111) .0044(.00028) 0037(.00004)0040(.00008)

39 100 20 .6495(.0185) .6515(.0191) .6695(.0103).0026(.00020) .0028(.00001) .0024(.00067)

40 100 20 .6830(.0158).6322(.0100) .6467(.0104) 0018(.00001) .0019(.00002) .0022(.00009)

selection in Algorithm 2. On the other hand, GP-PLS-r represents the varia-
tion where the replacement strategy is used for selection in Algorithm 2. The
Wilcoxon rank-sum test with the significance level of 0.05 is applied to the HV
and IGD of the Pareto front evolved by the three compared algorithms. Table 2
reveals that GP-PLS-r performs significantly better than GP-NSGA-III and GP-
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Fig. 2. The curves of the average number of HV and IGD values of the non-dominated
solutions on the training set during the 30 independent GP runs.

PLS-s in terms of both HV and IGD. For more detail, Table 3 shows the mean
and standard deviation of the test performance on each of the 40 test instances.

In the case of HV, GP-PLS-r performed the best on 16 out of the 40 test
instances. GP-NSGA-III performed the best only on 8 instances. GP-PLS-s out-
performed the other algorithms on 12 instances. Overall, both GP-PLS-s and
GP-PLS-r performed much better than GP-NSGA-III.

Regarding the IGD values, GP-PLS-r performed the best on 16 out of the
40 test instances. In contrast, GP-NSGA-III performed the best on 9 instances.
GP-PLS-s outperformed the other algorithms on only 8 instances. Upon taking a
closer look at Table 3, we can observe that GP-PLS-r not only performed well on
small-scale problem instances but also on larger and more challenging instances.
For some test instances (e.g. instances 7, 23 and 36), GP-PLS-r is remarkably bet-
ter than the other algorithms, especially in terms of HV. This demonstrates the
performance advantage of applying PLS to GPHH. Table 3 shows that GP-PLS-r
performs significantly better than GP-PLS-s and GP-NSGA-III. This indicates
that it is more effective to utilize the dominance relation during local search.

5.2 Further Analysis

To further investigate how PLS affects the GP search process, we plotted (a) the
average HV and IGD of the non-dominated solutions evolved by GP-PLS across
multiple generations in Fig. 2, and (b) parallel coordinate plots of non-dominated
solutions evolved by GP-PLS on one problem instance in Fig. 3.

Figure 2 reveals that GP-PLS-r has better convergence curves in terms of
both HV and IGD than GP-PLS-s. Figure 2 also shows that for the first few
generations of evolution, both algorithms exhibited similar HV and IGD val-
ues. However, after the first ten generations, GP-PLS-r started to outperform.
Moreover, in the last few generations, when the solutions were very close to the
Pareto front, GP-PLS-r achieved significantly better HV and IGD.

The parallel coordinate plots in Fig. 3 depict the non-dominated set of dis-
patching rules obtained respectively by GP-PLS (scalarization) and GP-PLS
(replacement) on one JSS problem instance. Figure 3 shows that GP-PLS-r
obtained better coverage for the third and fourth objectives (i.e. mean weighted
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Fig. 3. Parallel coordinate plot of instance 23 the fitness values of the population (a)
GP-PLS-r in generation 10, (b) GP-PLS-r in generation 10, (c) GP-PLS-s in generation
50, and (d) GP-PLS-r in generation 50.

tardiness and maximum weighted tardiness) in generation 10. It can also be
seen in Fig. 3 that GP-PLS-r managed to cover a much wider range of values for
objective 2 in generation 50 than GP-PLS-s.

6 Conclusions

This paper proposed GP-PLS, which combines GP with Pareto local search
for solving many-objective JSS problems. The key idea of this approach is to
perform multiple local search steps and effectively explore the neighborhood of
non-dominated dispatching rules. GP-PLS features the use of a newly designed
restricted neighborhood structure and the partial acceptance mechanism for
MOaP. This is the elementary GP with PLS. In this study, we experimentally
evaluated two common selection strategies: scalarization and replacement. Our
experiment results showed that GP-PLS performs much better than the current
state-of-the-art method without local search, in terms of both HV and IGD.

In future studies, we will enhance the performance of our proposed PLS
by exploring different local search heuristics. We will develop an intelligent local
search operator to guide exploitation based on recently evaluated rules and adap-
tive selection methods. Furthermore, we will further investigate how GP-PLS
search effective dispatching rules. To the best of our knowledge, GP-PLS is the
first GPHH method with the local search capability for many-objective JSS.
To unleash the great potential of the local search techniques on many-objective
GPHH, more investigations are required in the future.
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Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 116–
131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7 8

8. Masood, A., Mei, Y., Chen, G., Zhang, M.: Many-objective genetic programming
for job-shop scheduling. In: Proceedings of 2016 IEEE Congress on Evolutionary
Computation. IEEE (2016)

9. Nguyen, S.: Automatic design of dispatching rules for job shop scheduling with
genetic programming. Ph.D. thesis (2013)

10. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

11. Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-
heuristic approach for combinatorial optimisation. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, pp. 1299–1306.
ACM (2011)

12. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop
scheduling: a genetic programming approach. In: Uyar, A., Ozcan, E., Urquhart, N.
(eds.) Automated Scheduling and Planning. Studies in Computational Intelligence,
vol. 505, pp. 251–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39304-4 10

13. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic programming via
iterated local search for dynamic job shop scheduling. IEEE Trans. Cybern. 45(1),
1–14 (2015)

14. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg
(2012)

15. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

16. Tsai, C.W., Rodrigues, J.J.P.C.: Metaheuristic scheduling for cloud: a survey. IEEE
Syst. J. 8(1), 279–291 (2014)

17. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjec-
tive optimization test instances for the CEC 2009 special session and competition.
University of Essex, Colchester, UK and Nanyang technological University, Sin-
gapore, special session on performance assessment of multi-objective optimization
algorithms, Technical report, pp. 1–30 (2008)

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-319-77449-7_8
https://doi.org/10.1007/978-3-642-39304-4_10
https://doi.org/10.1007/978-3-642-39304-4_10


A Biased Random Key Genetic Algorithm
with Rollout Evaluations for the Resource

Constraint Job Scheduling Problem

Christian Blum1, Dhananjay Thiruvady3, Andreas T. Ernst2(B),
Matthias Horn4, and Günther R. Raidl4

1 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es
2 School of Mathematical Sciences, Monash University, Melbourne, Australia

andreas.ernst@monash.edu
3 School of Information Technology, Deakin University, Geelong, VIC, Australia

Dhananjay.Thiruvady@deakin.edu.au
4 Institute of Logic and Computation, TU Wien, Vienna, Austria

{horn,raidl}@ac.tuwien.ac.at

Abstract. The resource constraint job scheduling problem considered
in this work is a difficult optimization problem that was defined in
the context of the transportation of minerals from mines to ports. The
main characteristics are that all jobs share a common limiting resource
and that the objective function concerns the minimization of the total
weighted tardiness of all jobs. The algorithms proposed in the litera-
ture for this problem have a common disadvantage: they require a huge
amount of computation time. Therefore, the main goal of this work is
the development of an algorithm that can compete with the state of the
art, while using much less computational resources. In fact, our experi-
mental results show that the biased random key genetic algorithm that
we propose significantly outperforms the state-of-the-art algorithm from
the literature both in terms of solution quality and computation time.

Keywords: Job scheduling · Genetic algorithm · Rollout evaluation

1 Introduction

The resource constraint job scheduling (RCJS) problem is an NP -hard schedul-
ing problem originally motivated by a mineral supply chain application. It
involves simultaneously solving multiple single machine scheduling problems sub-
ject to a shared resource constraint. In mining supply chains this arises when
multiple mines plan their production with a shared rail link that connects the
mines to an export port.

Due to the complexity of the RCJS problem, several methods have been
developed to solve it. Exact approaches such as integer linear programming [26]
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and constraint programming [15] have been attempted successfully [20,21]. How-
ever, these approaches are computationally expensive and can only solve rather
small instances. Hence alternatives such as metaheuristics [4] have been explored.
Overall, the most effective methods so far are hybrid approaches, e.g., combi-
nations of ant colony optimisation (ACO) and integer programming [22], ACO
and constraint programming [7,21], Lagrangian relaxation and particle swarm
optimisation (PSO) [9] and column generation and differential evolution [18].

Project scheduling [2,6,8,17], a very well-known class of problems, is closely
related to the RCJS problem. There are two main differences: (1) in RCJS jobs
must execute on the machine to which they are allocated, and (2) there is only
one common shared resource. In addition most variants of project scheduling
focus on minimising the makespan rather than tardiness. Brucker et al. [6] cat-
egorise project scheduling problem variants. Demeulemeester and Herroelen [8]
investigate different heuristic and meta-heuristic approaches for the problem.
Neumann et al. [17] tackle project scheduling with time windows and show that
genetic algorithms, simulated annealing and exact approaches can be effective.
Ballestin and Trautmann [2] explore a problem very similar to the RCJS problem,
in which the objective is to minimise the cumulative deviation from the desired
completion times of all the tasks. The approach they use is a population-based
iterated local search. The studies from [5,23,24] investigate resource constrained
project scheduling with the objective of maximising the net present value. Thiru-
vady et al. [23] show that a Lagrangian relaxation and ACO hybrid finds good
heuristic solutions and upper bounds. Brent et al. [5] improve the same hybrid
with a parallelisation in a multi-core shared memory architecture. Thiruvady et
al. [24] show that a matheuristic derived from construct, solve, merge and adapt
and parallel ACO improves upon previous approaches.

Unfortunately, current approaches require a substantial amount of compu-
tational resources, both in terms of computation time and in terms of parallel
computing facilities. With the aim of deriving a computationally less intensive
method, we tackle the RCJS problem in this work by means of a biased ran-
dom key genetic algorithm (Brkga). This type of genetic algorithm [16] was
first introduced in [11]. Since then, Brkgas have been shown to obtain excellent
results for a substantial range of combinatorial optimization problems, includ-
ing the maximum quasi-clique problem [19] and the project scheduling problem
with flexible resources [1], to name just a few of the more recent applications.
Furthermore, parallel and distributed versions of Brkga have been investigated
[10,12]. Júnior et al. [12] explore an irregular strip packing problem and the
study by Alixandre and Dorn [10] shows good performance on the CEC 2013
benchmark datasets.

2 Resource Constrained Job Scheduling

The RCJS problem consists of a number of nearly independent single machine
weighted tardiness problems that are linked by a single shared resource con-
straint. The problem can technically be described as follows. Each job from a
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given set J = {1, . . . , n} must execute in a non-preemptive way on one specific
machine from a set M of machines. Each job j ∈ J has the following data asso-
ciated with it: a release time rj , a processing time pj , a due time dj , the amount
gj required from the shared resource during the jobs execution, a weight wj ,
and the machine mj ∈ M to which it belongs. The maximum amount of shared
resource available at any time is G. Precedence constraints C may apply to two
jobs on the same machine: i → j ∈ C requires that job i completes before job j
starts. The objective is to minimise the total weighted tardiness. Note that this
problem is NP-Hard as the single machine weighted tardiness problem is already
NP-hard [13].

This problem can be expressed in terms of a time-discretized integer linear
program (ILP) as follows. Let T = {1, . . . , tmax} be the set of considered discrete
times (with tmax being sufficiently large), and let zjt be a binary variable for all
j ∈ J and t ∈ T that takes value one if the processing of job j completes at
time t or earlier. By defining the weighted tardiness for a job j at time t as
wjt := max{0, wj (t − dj)}, the resulting ILP can be stated as follows:

min
∑

j∈J

∑

t∈T

wjt · (zjt−zjt−1) (1)

s.t. zjtmax = 1 ∀ j ∈ J (2)
zjt − zjt−1 ≥ 0 ∀ j ∈ J, t ∈ {2, . . . , tmax} (3)

zjt = 0 ∀ t ∈ T : t < rj + pj , j ∈ J (4)
zbt − za,t−pb

≤ 0 ∀ (a, b) ∈ C, t ∈ T : t > rb + pb (5)
∑

j∈Ji

zj,t+pj
− zjt ≤ 1 ∀ i ∈ M, t ∈ T (6)

∑

j∈J

gj · (zj,t+pj
− zjt) ≤ G ∀ t ∈ T (7)

zjt ∈ {0, 1} ∀ j ∈ J, t ∈ T (8)

Equalities (2) ensure that all jobs complete by tmax. Inequalities (3) guarantee
that once a job completes it stays completed. Equalities (4) account for the
release times of jobs. Inequalities (5) ensure that precedence constraints are
satisfied and inequalities (6) make sure that at any time only one job is processed
on a machine. Inequalities (5) require that the resource constraint on the common
resource is satisfied at any time. There are many other ways to formulate this
problem, but this is one of the most computationally efficient formulations [20].

3 A BRKGA for the RCJS Problem

A biased random key genetic algorithm (Brkga) is a steady-state genetic algo-
rithm. The main machinery of the algorithm is problem-independent. Individuals
are always coded in terms of random keys, that is, vectors of floating point val-
ues in [0, 1]. Moreover, the population management and the crossover operator
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Algorithm 1. Brkga for the RCJS Problem
1: input: a RCJS problem instance
2: input: parameter values for psize, pe, pm and probelite
3: P := GenerateInitialPopulation(psize)
4: Evaluate(P )
5: while computation time limit not reached do
6: Pe := EliteSolutions(P, pe)
7: Pm := Mutants(P, pm)
8: Pc := Crossover(P, Pe, probelite)
9: Evaluate(Pm ∪ Pc) {note: Pe is already evaluated}

10: P := Pe ∪ Pm ∪ Pc

11: end while
12: output: Best solution in P

are problem-independent as well. The only problem-dependent part is the way
in which individuals are translated into valid solutions for the specific problem.
The problem-independent part of the algorithm is shown in Algorithm 1. It
starts by a call to function GenerateInitialPopulation(psize) in order to generate
a population P of psize random individuals. Hereby, each individual π ∈ P is
a vector of length n (the number of jobs of the RCJS instance). The value of
each position j of π (denoted by π(j)) is randomly chosen from [0, 1]. Note that
π(j) is associated with job j of the RCJS instance. The next step consists of
the evaluation of the individuals from the initial population, that is, the trans-
lation of the individuals into valid schedules for the RCJS problem, which will
be explained in Sect. 3.1. As a consequence, each individual obtains its objective
function value denoted by f(π). After that, the following actions are performed
at each iteration of the algorithm’s main loop. First, the best max{�pe ·psize�, 1}
individuals are copied over from P to Pe (function EliteSolutions(P, pe)). Sec-
ond, a set of max{�pm ·psize�, 1} so-called mutants—that is, randomly generated
individuals—are produced and stored in Pm. Next, a set Pc of psize −|Pe|− |Pm|
new individuals are generated by crossover (function Crossover(P, Pe, probelite)).
The generation of an offspring individual πoff by crossover works as follows: (1)
an elite parent π1 is chosen uniformly at random from Pe, (2) a second parent
π2 is chosen uniformly at random from P \ Pe, and (3) πoff is generated on the
basis of π1 and π2 and stored in Pc. Hereby, value πoff(i) is set to π1(i) with
probability probelite, and to π2(i) otherwise, for all i = 1, . . . , n. After generating
all new offspring in Pm and Pc, these new individuals are evaluated in function
Evaluate(Pm ∪ Pc). Remember that the individuals in Pe are already evaluated.
Finally, the next generations’ population is obtained by the union of Pe with Pm

and Pc.

3.1 Evaluation of an Individual: The Decoder

The evaluation of an individual π (lines 4 and 9 of Algorithm 1) is the problem-
dependent part of the Brkga. The function that evaluates individuals is called
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the decoder. In our Brkga implementation for the RCJS problem, the decoder
involves the application of a greedy construction heuristic that was introduced
in [25]. This greedy heuristic works as follows. It chooses, at each construction
step, exactly one of the so-far unscheduled jobs, and provides it with a feasible
starting time and, therefore, also with a finishing time. Henceforth, let Jdone ⊆ J
be the set of jobs that are already scheduled, and let sj denote the starting time
of j ∈ Jdone. At the start of the solution construction process it holds that
Jdone := ∅. The process stops when Jdone = J .

Let maxt := maxn
j=1 rj +

∑n
j=1 pj be a crude upper bound for the makespan

of any feasible solution. Moreover, let Cj be the set of jobs that – -according to
the precedence constraints in C—must be executed before j, and let Mmh

⊆ J
be the subset of jobs that must be processed on machine mh ∈ M . Furthermore,
given a partial solution, let gsum

t ≥ 0 be the sum of the already consumed resource
at time t.

Given Jdone, the set of feasible jobs—that is, the set of jobs from which the
next job to be scheduled can be chosen—is defined as follows: Ĵ := {j ∈ J\Jdone |
Cj ∩ Jdone = Cj}. In words, the set of feasible jobs consists of those jobs that
(1) are not scheduled yet and (2) whose predecessors are already scheduled. A
time step t′ ≥ 0 is a feasible starting time for a job j ∈ Ĵ , if and only if

1. t′ ≥ sk + pk, for all k ∈ Jdone ∩ Cj ;
2. t′ ≥ sk +pk, for all k ∈ Mmj

∩Jdone (remember that mj refers to the machine
on which job j must be processed); and

3. gsum
t + gj ≤ G, for all t = t′, . . . , t′ + pj .

Here T ′ is the set of feasible starting times for a job j ∈ Ĵ and the earliest possible
starting time smin

j is defined as smin
j := min{t′ | t′ ∈ T ′}. Finally, for choosing a

feasible job at each construction step, the jobs from j ∈ Ĵ must be ordered in
some way. In many scheduling applications, ordering the jobs according to their
earliest possible starting times (in an increasing way) is a powerful mechanism.
Therefore, our decoder combines the earliest starting time information with the
numerical values of π in the following way. It produces an ordered list L of all
the jobs j in Ĵ sorted according to increasing values of π(j) · (smin

j + 1). Then,
the first job of L—let us call this job j∗—is chosen and added to Jdone, and its
starting time sj∗ is fixed to smin

j∗ .

3.2 Applying the Decoder in a Rollout Fashion

Any constructive heuristic can be applied in a so-called rollout fashion [3]. In
the context of the decoder from the previous sub-section, this works as follows.
Instead of ordering the jobs j ∈ Ĵ at each construction step according to their
π(j) · (smin

j +1) values, the decoder is completely applied to each partial solution
Jdone∪{j}, for all j ∈ Ĵ . Hereby, the starting time of j is set to smin

j in each case.
This provides us with |Ĵ | complete solutions whose objective function values—
henceforth called the rollout values—are then used for producing the ordered
list L of all jobs from Ĵ (in an increasing way). As in the standard decoder, the
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first job of L—let us call this job again j∗—is chosen and added to Jdone, and
its starting time sj∗ is set to smin

j∗ .
Even though applying the decoder in a rollout fashion provides better evalu-

ations of the individuals, the computational time needed for evaluating an indi-
vidual increases substantially. Therefore, we make use of the following techniques
for shortening the run time:

1. We use an explicit rollout width rowidth > 0. In those construction steps in
which rowidth < |Ĵ |, the rollout is only applied to the first rowidth jobs from list
L (when ordered according to the π(j)·(stmin

j +1) values). The remaining jobs
in L receive a rollout value of ∞. After that, the list L is reorderd according
to the rollout values, the first job from L is selected and used to extend Jdone,
before we proceed to the next construction step.

2. The decoder is only applied in a rollout fashion (with a rollout width of
rowidth) after a number of nmax

noimpr ≥ 0 consecutive Brkga iterations without
an improvement of the best-so-far solution. After the execution of such a
Brkga iteration in which the decoder is applied in a rollout fashion, the
counter for consecutive non-improving Brkga iterations is re-initialized to
zero, as at the start of the Brkga algorithm.

Clearly, rowidth and nmax
noimpr are two important algorithm parameters that control

to what extent the decoder is applied in a rollout fashion.

4 Experimental Evaluation

All experiments concerning Brkga were performed on a cluster of machines with
Intel R© Xeon R© CPU 5670 CPUs with 12 cores of 2.933 GHz and a minimum of
32 GB RAM. As mentioned before, the current state-of-the-art results for the
RCJS problem were obtained by a recent hybrid algorithm labelled Cg-De-Ls
that combines column generation with differential evolution and local search
see [18]. Note that, while Brkga was run in a one-threaded mode with a limit
of 3600 s of CPU time for each problem instance, Cg-De-Ls was implemented
in a parallel framework and each run (limited by 3600 s of wall clock time) was
given 16 cores on the Monash University’s Campus Cluster. Each machine of
the cluster provides 24 cores and 256 GB RAM. Each physical core consists
of two hyper-threaded cores with Intel Xeon E5-2680 v3 2.5 GHz, 30M Cache,
9.60GT/s QPI, Turbo, HT, 12C/24T (120W). In summary, consider that a run
of Cg-De-Ls consumes at least one order of magnitude more computation time
than a run of Brkga.

Problem Instances. The comparison of Brkga with Cg-De-Ls was conducted
on 36 instances from a dataset that was originally introduced in [20]. This dataset
consists of problem instances with the number of machines ranging from three
to twenty, and there are three instances per number of machines. Each machine
has to process, on average, 10.5 jobs; that is, an instance with three machines
has approximately 32 jobs. Further details concerning the problem instances and
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their job characteristics (processing times, release times, weights, etc.) can be
obtained from the original study.

Tuning of Brkga. The proposed Brkga approach has six parameters which
require suitable values. In this work we made use of the automatic configuration
tool irace [14] for finding such parameter values. More specifically, we aimed
at identifying one parameter setting that works well for all 36 test problem
instances. For this purpose, we selected six problem instances (having between
3 and 12 machines) from the additional instances provided in [20] which have
not been tested in [18]. In addition, we added instances 15–3 and 20–5 from the
36 instances that will be used for the final experimentation, because [20] does
not contain any other instances of that size. In total, this makes a set of eight
tuning instances. The following parameter value ranges were considered:

– psize ∈ {10, 50, 100, 200, 500, 1000, 5000}.
– pe ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.
– pm ∈ {0.1, 0.15, 0.2, 0.25, 0.3}.
– probelite ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
– rowidth ∈ {2, 3, 5, 10, 20}.
– nmax

noimpr ∈ {10, 50, 100, 200, 500}.

In total, we allowed a maximum of 5000 experiments—with a computation time
limit of 3600 s per run—for tuning. The results provided by irace were as follows:
psize = 1000, pe = 0.25, pm = 0.15, probelite = 0.5, rowidth = 3, and nmax

noimpr =
200. These parameter value settings were used for the final experimentation.
The parameter settings of Cg-De-Ls (for the same set of problem instances)
are described in [18].

4.1 Numerical Results

Brkga was applied ten times to all 36 considered problem instances with a CPU
time limit of 3600 s per run. The numerical results—in comparison to those of
Cg-De-Ls taken from [20]—are presented in Table 1. The first column provides
the instance names. The following three columns show the results of Cg-De-
Ls in terms of the best solution found in 30 runs (column with heading best),
the average of the values of the 30 solutions found in 30 runs (column with
heading avg) and the corresponding standard deviation (column with heading
std). The same three columns (based on tens runs per problem instance) are
provided for Brkga. Two additional columns provide information about the
average computation time at which the best solution of each run was found and
the corresponding standard deviation. Finally, note that values in columns avg
are marked in bold font when the corresponding result is better (with statistical
significance according to Student’s t-test with α = 0.05) than the result of the
competing algorithm.

The results in Table 1 allow for the following observations:
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Table 1. A comparison of Brkga with CG-DE-LS [18]. Both algorithms were run 30
times on each problem instance and allowed 3600 s of run-time. Statistically significant
results at α = 0.05 are shown in bold.

Instance Cg-De-Ls Brkga

best avg std best avg std time std

3–5 505.00 505.00 0.0 505.00 505.00 0.0 2.5 0.5

3–23 149.07 149.29 0.7 149.07 149.07 0.0 13.2 30.3

3–53 69.36 69.44 0.2 69.36 69.36 0.0 1.0 0.2

4–28 23.81 23.91 0.1 23.81 23.93 0.10 221.5 298.4

4–42 66.73 66.92 0.3 67.64 67.64 0.0 4.4 1.1

4–61 45.96 45.98 0.1 45.96 46.47 0.3 696.5 680.2

5–7 252.90 253.79 1.9 253.38 253.69 0.4 1827.8 1260.4

5–21 168.63 168.63 0.0 168.63 168.63 0.0 8.9 2.2

5–62 249.68 256.61 2.3 249.50 255.66 2.7 979.8 1016.9

6–10 812.90 822.45 6.7 817.10 828.09 6.9 2209.2 1210.7

6–28 218.37 219.02 1.6 219.48 228.07 6.6 290.1 556.5

6–58 238.84 242.89 3.3 238.84 241.33 1.8 915.7 697.2

7–5 418.06 426.96 7.6 418.06 430.15 10.1 961.7 1027.6

7–23 540.60 555.17 5.4 553.40 557.54 4.3 826.3 843.6

7–47 404.09 420.63 7.7 412.41 418.46 3.9 1356.8 1116.7

8–3 619.58 634.00 9.2 618.50 629.76 8.8 1493.1 1116.6

8–53 449.40 459.16 6.7 442.18 452.84 7.4 1345.7 1192.6

8–77 1175.56 1214.36 20.4 1163.78 1194.32 20.5 1583.0 1044.6

9–20 871.72 887.18 6.4 877.30 882.18 4.5 1626.4 1209.0

9–47 1189.14 1219.74 17.6 1158.25 1185.53 17.4 1095.7 1148.8

9–62 1395.08 1449.99 17.5 1382.63 1399.67 12.4 1254.2 964.6

10–7 2401.99 2471.82 32.8 2384.04 2400.26 13.9 1601.8 1230.1

10–13 2100.96 2148.57 22.1 2082.71 2106.96 11.6 1816.7 944.3

10–31 577.54 595.37 8.9 572.03 586.76 11.2 2146.8 1193.3

11–21 968.12 1001.94 33.2 964.04 973.49 7.2 2037.4 1296.7

11–56 1748.48 1798.08 24.1 1674.49 1694.78 15.9 2147.0 1164.4

11–63 1963.26 1994.49 18.1 1887.17 1912.81 16.5 2004.2 1004.3

12–14 1670.97 1728.63 26.8 1636.39 1658.02 13.0 1693.3 1258.0

12–36 2799.20 2904.02 41.3 2764.17 2796.94 28.5 1644.7 1225.5

12–80 2319.92 2372.37 31.5 2226.67 2258.13 20.6 1673.1 1032.1

15–2 3797.59 3867.99 41.7 3596.50 3627.43 19.8 2191.4 1038.2

15–3 4174.87 4251.49 49.1 3948.22 3994.25 40.3 2060.4 1086.1

15–5 3378.38 3433.19 35.4 3234.74 3275.01 35.5 1805.3 921.2

20–2 8243.78 8339.35 58.3 7755.29 7890.49 66.8 2090.9 1043.8

20–5 13818.30 14120.69 163.3 12899.17 13123.85 138.0 2446.2 988.6

20–6 7246.64 7347.18 52.6 6907.80 6998.20 74.2 2243.1 742.4
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– For the small-medium problem instances (see the first 14 rows of Table 1)
there is no a clear pattern, with Brkga outperforming Cg-De-Ls in some
cases, and vice versa in others.

– Starting from instance 7–47 (i.e., and all larger instances with 8 machines
or more) Brkga clearly outperforms Cg-De-Ls. Hereby, the advantage of
Brkga over Cg-De-Ls seems to grow with increasing problem instance size.
In the case of the largest 11 instances, for example, the average performance
of Brkga is better than the best solution values found by Cg-De-Ls.

In order to better understand the behaviour of Brkga, we provide graphics
about the evolution of the best-so-far solution over time for four rather large
problem instances in Fig. 1. More specifically, the graphics show the mean per-
formance of Brkga over 10 runs, while the grey-shaded area around the curves
show, for each time step on the y-axis, the performance of the worst run and
of the best run among the 10 runs. Furthermore, the dashed horizontal lines
indicate the value of the best solutions found by Cg-De-Ls within 30 runs,
where each run made use of 16 threads in parallel. Finally, the vertical bars
indicate the initiation of iterations with rollout evaluations (in any of the ten
runs). In those cases in which such a vertical bar has a white square head,
the rollout iteration was successful in the sense that the best-so-far solution was
improved. Otherwise—that is, in those cases in which such a bar has a black dia-
mond head—the rollout iteration was not successful. Note that in the context of
instances 11–63 and 15–2 (Fig. 1a and b) only the successful rollout iterations are
indicated, because showing all rollout iterations would have made these graphics
unreadable.

The graphics in Fig. 1 allow us to make the following conclusions:

– First, in all four cases all ten runs of Brkga improve over the best solution
found by Cg-De-Ls after a few hundred seconds. This is despite the fact
that Cg-De-Ls makes use of 16 threads in parallel, while Brkga is run in
one-threaded mode.

– Second, the best moment to make use of rollout iterations seems to be when
the algorithm is stuck for quite a while in a local minimum. Remember that
the parameter setting was determined by our tuning procedure with irace, as
described in the third paragraph of Sect. 4. The chosen settings are rowidth = 3
and nmax

noimpr = 200, that is, a very narrow rollout-width and a rather high
number of consecutive non-improving iterations before a rollout iteration is
initiated. The effect of this can be nicely seen in the four graphics. In fact, the
first rollout iterations are—in all four cases—initiated after the algorithm has
already outperformed Cg-De-Ls. The reason for making use of rollout itera-
tion in this way is the significant difference in computation time requirements:
a standard iteration requires 0.157 s for instance 11–63, 0.34 s for instance 15–
2, 0.52 s for instance 20–2, and 0.64 s for instance 20–5. In contrast, a rollout
iteration requires 12.7 s for instance 11–63, 41.1 s instance for 15–2, 89.3 s for
20–2, and 115.0 s for 20–5. That is, a rollout iteration consumes about two
orders of magnitude more time than a standard algorithm iteration.
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Fig. 1. Evolution of the best-so-far solution of Brkga for four large problem instances.
The curves show the mean performance over 10 runs, while the gray-shaded area behind
the curves shows the spread of the 10 runs. The dashed horizontal bars indicate the best
result of Cg-De-Ls after 30 runs. The vertical bars indicate the initiation of rollout
iterations.

Summarizing, we can say that our Brkga algorithm significantly outperforms
the current state-of-the-art algorithm Cg-De-Ls, especially with growing prob-
lem instance size. Moreover, the algorithm requires much less computational
resources than its competitor from the literature.

5 Conclusions and Future Work

We considered the resource constraint job scheduling problem where multiple
single machine scheduling problems are linked by one limited shared resource.
The objective is to minimize the total weighted tardiness of all jobs. We tackled
this problem by means of a biased random key genetic algorithm, which is a
quite generic framework. For the problem dependent part of the algorithm—the
decoder—we apply a greedy construction heuristic which processes the jobs in
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an order determined by the jobs’ random keys in combination with the earli-
est starting times. The basic greedy heuristic is further substantially enhanced
by applying rollouts in a carefully controlled way in order to obtain a more
promising ranking of the jobs. As rollouts are time-expensive, they are only used
when the optimization gets stuck with the standard greedy criterion for a certain
number of iterations.

Our experimental results show that in particular with growing problem
instance size our approach significantly outperforms the leading column gener-
ation/differential evolution hybrid from the literature, both in terms of solution
quality and computation time.
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Abstract. In this paper, we propose a 3D convolutional neural network
targeting at the segmentation of brain tumor. There are different types of
brain tumors and our focus is one common type named glioma. The pro-
posed network is efficient and balances the tradeoff between the number
of parameters and accuracy of segmentation. It consists of Anisotropic
Block, Dilated Parallel Residual Block, and Feature Refinement Mod-
ule. The Anisotropic Block applies anisotropic convolutional kernels on
different branches. In addition, the Dilated Parallel Residual Block incor-
porates 3D depthwise and separable convolutions to reduce the amount
of required parameters dramatically, while multiscale dilated convolu-
tions enlarge the receptive field. The Feature Refinement Module pre-
vents global contextual information loss. Our method is evaluated on
the BRATS 2017 dataset. The results show that our method achieved
competitive performance among all compared methods, with a reduced
number of parameters. The ablation study also proves that each individ-
ual block or module is effective.

Keywords: Brain tumor segmentation · Magnetic resonance imaging ·
3D deep neural network

1 Introduction

Glioma is a common cause of brain tumor, which can be roughly classified into
high-grade glioma (HGG) and low-grade glioma (LGG). Once patients are diag-
nosed as HGG, the average remaining life expectancy can be two years or less.
Magnetic resonance imaging (MRI) is routinely applied to diagnose severity of
brain tumor [16]. Different imaging modalities shown in Fig. 1 provide comple-
mentary information for each other. Automatic segmentation of brain tumor
c© Springer Nature Switzerland AG 2019
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from different MRI modalities provides quantitative information for analyzing
the anatomical structures, which has a positive influence on the diagnosis, growth
rate and future treatment [1]. However, glioma segmentation is still challenging
due to the following issues: (1) diffusion of surrounding edema into the tumor
region; (2) non-standardized voxel intensity values in MRI unlike the Computed
Tomography and X-ray; and (3) irregular shapes and sizes of brain tumors [22].

(a) T1 (b) T1-post (c) T2 (d) FLAIR

Fig. 1. Visualization of different imaging modalities.

Convolutional neural networks (CNNs) have been widely applied to many
biomedical related segmentation tasks: neuronal arbours segmentation in 3D
microscopic images [15], nuclei segmentation in pathology images [20], prostate
segmentation in MR images [5], semantic membrane segmentation in microscopy
images [7], retinal vessel segmentation in color fundus retinal images [17] and
multiple sclerosis lesions segmentation in MRI images [19]. Recently, many
approaches [4,12,14,22,23] have been proposed for brain tumor segmentation.
They are typically designed based on the public dataset [10], which provides
researchers an opportunity to perform standardized benchmarking and solve the
same challenge from different perspectives. Existing segmentation approaches
can be roughly categorized into generative models and discriminative models.
The generative models try to analyze the probabilistic data distribution. For
example, the hierarchical probabilistic framework [14] consists of multi-window
Gabor filters and Markov Random Field. The handcrafted features reach their
limit of achieving higher accuracy, therefore many recent works use the deep con-
volutional neural network (CNN). For example, InputCascadedCNN and Two-
pathway CNN [4] investigate both global and local contextual features to seg-
ment brain tissues, with 2D convolution operations. However, 2D CNNs cannot
fully utilize the spatial information, and hence 3D CNNs have been proposed
to better address the 3D biomedical image segmentation tasks. For example,
one-pass multi-task network [23] shares the feature extraction layers, but inde-
pendent convolution, classification, and loss layers are applied to effectively solve
unique challenges of detection and classification tasks.

Even though most focus has been emphasized on improving the brain tumor
segmentation accuracy by customizing the CNN model, there is little work tar-
geting at proposing a lightweight model to improve the efficiency. To the best of
our knowledge, the most related work are BiSeNet [18] for semantic segmentation
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of street scene images and Cascaded 3D lightweight network [9] for brain tumor
segmentation, which are proposed to increase the inference speed of semantic
segmentation. BiSeNet [18] introduces three novel components: Context Path
(CP), Spatial Path (SP), and Feature Fusion Model (FFM) whose backbone is
Xception39 with 2D depthwise separable convolutions to reduce the parame-
ters. Unlike the two-stage framework in the Cascaded 3D lightweight network,
our proposed model is end-to-end. In addition to the dilated convolutions used
in the Cascaded 3D lightweight network, our proposed model also applies 3D
depthwise and separable convolutions to reduce the number of parameters.

To address the challenges of glioma segmentation and achieve a balance
between efficiency and accuracy, we propose a novel lightweight 3D CNN model.
In particular, we design an end-to-end CNN model consisting of Anisotropic
Block, Dilated Parallel Residual Block, and Feature Refinement Module. The
fundamental building component (Dilated Parallel Residual Block) utilizes effi-
cient 3D depthwise and separable convolutions to reduce the required number of
parameters while maintaining the segmentation accuracy. Our method demon-
strates competitive performance in segmenting the brain tumor on the MICCAI
brain tumor segmentation challenge 2017 dataset (BRATS17).

2 Methods

The proposed network follows an encoder-decoder structure. In the encoder part,
there is an Anisotropic Block described in Sect. 2.1 followed by five Dilated Par-
allel Residual Block series (DPRBs) described in Sect. 2.2. The essential com-
ponent of the proposed network is DPRB, which consists of independent and
parallel Dilated Depthwise Separable Convolution Blocks (DDSCBs) with fewer
parameters by depthwise and pointwise convolution compared to the standard
convolution. In the decoder part, two additional DPRBs are used to refine the
learned feature representations by the encoder and then the processed feature
representations are fused together. The fused information is finally processed by
Feature Refinement Module in Sect. 2.3 to produce the segmentation output.

2.1 Anisotropic Block

Our design of Anisotropic Block is inspired by kernel decomposition and the
existence of some anisotropic image features which can be better learned by
anisotropic kernels. In general, 2D kernel with the size of Q × Q can be decom-
posed into two adjacent kernels with the size of Q × 1 and 1 × Q respectively
to reduce the number of parameters. To extend the 2D kernel decomposition to
3D, there can be several options. For example, a convolution kernel Q × Q × Q
can be decomposed into several kernels with the size of: (a) Q×Q×1, Q×1×Q,
and 1×Q×Q respectively; (b) Q×Q× 1, 1× 1×Q. In our design, our priority
is to balance the accuracy and speed, so option b is chosen for the design of AB.
Specifically, 1× 7× 7 kernel and 7× 1× 1 are used for the left branch. 7× 1× 1
kernel and 1 × 7 × 7 kernel are used for the right branch. The middle branch
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Fig. 2. The encoder of proposed network includes an Anisotropic Block (AB) and five
Dilated Parallel Residual Blocks (DPRBs). The decoder consists of 2 Upsampling-Conv
Blocks (UBs), 2 Concatenation (Cat) layers, and a Feature Refinement module with
Conv-BN-Relu (CBR), Spatial Pyramid Block (SPB), Pyramid Scene Parsing Block
(PSPB), and Refine Upsampling Block (RUB). ×N represents the repetition of N
times.

Fig. 3. The architecture of anisotropic block. + and BN stand for the elementwise
summation and batch normalization respectively.

uses standard 3D convolution with 7 × 7 × 7 kernel. Three branches are then
fused together with batch normalization to produce the output of this AB layer
(Figs. 2 and 3).
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2.2 Dilated Parallel Residual Block

The main building block for the proposed network is DPRB, which consists
of several fundamental components: Dilated Depthwise Separable Convolution
Block (DDSCB) and CBR. In order to reduce gridding artifacts, the DPRB
is designed to have four parallel DDSCBs to achieve hierarchical information
fusion. This design expands the width of DPRB. The DDSCB is motivated by
the convolution factorization [18]. It can learn image features representation at
different scales with different dilation rates. Different and parallel DDSCBs are
incorporated together and the resulted image features are fused by the sum-
mation operation to improve the information flow. In addition, DDSCB is also
designed to have fewer parameters and lower computational cost compared to the
standard convolutional block. We include four DDSCBs in DPRB with the aim
of creating a three-level hierarchical feature extraction and fusion mechanism.
The first summation of the two middle DDSCBs merges the feature information
of different receptive fields. Another DDSCB with the dilation of 2 is further
adopted to introduce more global information. The feature maps to be concate-
nated from left to right are rich in different levels of information. The fusion
turns out to be effective enough to learn both the global and local information
(Fig. 4).

Fig. 4. The architecture of anisotropic block. + and BN stand for the elementwise
summation and batch normalization respectively.

In order to better illustrate the difference between the standard 3D convolu-
tional layer and depthwise convolutional layer, the shape of the kernel is simpli-
fied as a cube for the following discussion. Assume that the size of input feature
map (F ) of a standard 3D convolutional layer is DF ×DF ×DF ×M and its cor-
responding output feature map (G) is DG ×DG ×DG ×N , where M and N are
numbers of input and output channels respectively. The number of parameters of
a standard 3D convolution is then DK ×DK ×DK ×M ×N , where DK depends
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on the kernel size of convolution operation. In addition, the corresponding com-
putational cost is proportional to DK ·DK ·DK ·M ·N ·DF ·DF ·DF . Different
from the standard 3D convolution, the depthwise convolution performs convolu-
tion filter per channel. The computational cost of 3D depthwise convolution is
reduced and proportional to DK ·DK ·DK ·M ·DF ·DF ·DF . The pointwise convo-
lution helps further reduce the computational cost by using 1×1×1 convolution
filter, and the pointwise convolution can be understood as a linear combination
of image features generated by depthwise convolutional layer. The computational
cost of pointwise convolution is proportional to DK ·DK ·DK ·M ·N . The ratio
of computational costs between the 3D DDSCB to standard 3D convolution is
thus:

Rcost =
DK · DK · DK · M · DF · DF · DF

DK · DK · DK · M · N · DF · DF · DF

+
DF · DF × DF × M × N

DK · DK · DK · M · N · DF · DF · DF

=
1
N

+
1

DK · DK · DK

(1)

2.3 Feature Refinement Module

The Feature Refinement Module (FRM) consists of CBR, ASPB, PSPB, and
RUB. The design motivation of FRM is to ensure the minimal information loss
on global contextual information. The process of refining features passed by the
encoder is achieved by the combination of feature map based and multiscale con-
volution based poolings. The main principle of ASPB block [2] is split-transform-
merge. Different branches of ASPB have different sizes of receptive fields. The
use of ASPB block is to ensure that different receptive field sizes can respond to
image features at various scales. The image features are added together instead
of concatenation to reduce intermediate parameters. Four branches have dilated
convolution rates d = {3, 5, 7, 9}.

In terms of the PSPB, the receptive field determines the learned feature size.
Feature maps after different levels of pooling are upsampled and concatenated
together. Based on this pyramid pooling and upsampling operation, fixed-size
constraint of the network is weakened [21]. The feature maps generated by pyra-
mid pooling at different scales = {0.2, 0.4, 0.6, 0.8} are upsampled to the same
size by trilinear interpolation. The upsampled feature maps are concatenated
together and are then processed by the RUB module.

The RUB further refines the decoding process by CBR, ASPB, Upsample,
LDCB, and Conv. Similar to Depthwise Separable Convolutions, LDCB also
balances between speed and accuracy. For LDCB, the entire space might not
be fully covered by the manifold of interest because of the non-linear operation.
Although it is possible to have lots of channels, the introduction of ReLU might
still lead to some information loss. Proved by the Mobilenetv2 [13], the capabil-
ity of ReLU operation to preserve input manifold information is related to the
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Fig. 5. The architecture of the Feature Refinement Module (FRM) including CBR,
ASPB, PSPB, and RUB. s, + and d represent stride value of convolution operation,
elementwise summation, and dilation rate for convolution operation, respectively.

coverage of low-dimensional subspace of the input space to the input manifold.
Two linear convolutional modules with kernel 1×1×1 in LDCB are embedded to
further improve the capability of preserving input manifold information (Fig. 5).

3 Experimental Results

3.1 Dataset and Parameters Setting

We used the BRATS17 dataset consisting of 210 HGG images for evaluation. The
annotated brain tumor regions include complete tumor (necrosis, edema, non-
enhancing core, and enhancing core), core region (necrosis, non-enhancing core,
and enhancing core), and enhancing region (enhancing core). Ablation study
was conducted on a subset containing 58 images for training and 9 images for
testing. The remaining images were used for method comparison with 106 images
for training and 37 images for testing. The test strategy is to choose the trained
model with the highest intersection over union. Data augmentation includes
scaling patch size to 144 × 144 × 144, 128 × 128 × 128, 96 × 96 × 96, and flip
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operation. To be more specific, three different sizes of input are used to train the
model. The batch size is 2. The weighted cross-entropy loss is used to deal with
the severe class imbalance problem in the dataset. The specific class weight is
defined as:

classweight[i] =
1

log(α + hist[i]/(
∑N

j=1 hist[j]))
(2)

where hist is the histogram of class information of brain tumor; total number of
classes is N ; i represents the specific class type; α is the constant normal value,
1.1. The Adam optimizer is applied for the proposed network where β1 is 0.9
and β2 is 0.999; the weight decay is 0.0002. The initial learning rate is 0.0005.

3.2 Analysis of Brain Segmentation

We used the voxel-level sensitivity, specificity, and dice scores as our evalua-
tion metrics. Another type of segmentation measurement metrics, Hausdorff
distance, is also used to estimate boundary difference. Ablation studies were
conducted to prove the effectiveness of the individual modules of our network.
As shown in Table 1, the proposed method had the best performance. In addition,
Fig. 6 shows that the proposed method tends to generate a smooth segmentation
boundary compared to other state-of-the-art methods. In this example, the pro-
posed method made least errors on segmenting the challenging enhancing region
compared to the others. Table 2 shows the quantitative evaluation metrics com-
paring 3D U-Net, V-Net, HighRes3DNet and the proposed network. We reim-
plemented 3D U-Net, HighRes3DNet and V-Net for comparison and manually
tuned hyperparameters for brain tumor segmentation. The Adam optimizer is
also used for fair comparison. The details of comparison methods in experiment
setting are referred to [8]. HighRes3DNet has the least parameters among all
comparing methods with 811128 trainable parameters only. Regarding with 12
segmentation scores, the proposed method ranked first for 5 metrics. At the same
time, the proposed method achieves highest segmentation scores on the Dice-TC,
Hausdorff95-TC, Sensitivity-TC, Specificity-ET and Specificity-TC. 3D-UNet
has 47772476 parameters which are almost 3 times as the proposed method,
and it resulted in the highest performance for only 3 of the metrics. Overall,
our proposed method achieves better balance among the number of parameters,

Table 1. Ablation study of the proposed model on the testing images of ablation
dataset. The unit of Hausdorff distance is mm. ET, WT, and TC mean enhanced
tumor, whole tumor, and tumor core, respectively. w/o stands for without.

Metrics w/o AB w/o DPRB w/o FRM Proposed

Dice-ET 0.642 ± 0.124 0.319 ± 0.098 0.624 ± 0.355 0.676± 0.179

Dice-WT 0.820 ± 0.148 0.809 ± 0.103 0.786 ± 0.195 0.827± 0.092

Dice-TC 0.740 ± 0.198 0.597 ± 0.188 0.717 ± 0.403 0.775± 0.200
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(a) GT (b) Proposed (c) Highres (d) 3D UNet (e) VNet

Fig. 6. A visual example from the testing image of the method-comparison set. The
first, second, and third rows show axial, sagittal, and coronal views of brain images.
Different colors indicate different tumor classes: red (enhancing tumor), yellow (non-
enhancing tumor) and green (edema). (Color figure online)

Table 2. Quantitative comparison with 3D U-Net, V-Net, HighRes3DNet, and the
proposed method on the method-comparison dataset.

Metrics 3D U-Net [3] V-Net [11] HighRes3DNet [6] Proposed

Parameters 4772476 71049604 811128 1303096

Dice-ET 0.785±0.204 0.766 ± 0.214 0.748 ± 0.224 0.753 ± 0.195

Dice-WT 0.861 ± 0.162 0.847 ± 0.185 0.801 ± 0.170 0.852 ± 0.174

Dice-TC 0.819 ± 0.222 0.781 ± 0.229 0.800 ± 0.244 0.839 ± 0.214

Hausdorff95-ET 11.775 ± 26.048 6.429 ± 13.749 20.285 ± 29.927 8.322 ± 20.647

Hausdorff95-WT 11.387 ± 18.092 6.984 ± 7.910 36.480 ± 26.326 8.956 ± 16.991

Hausdorff95-TC 14.453 ± 26.825 9.613 ± 13.674 24.967 ± 29.378 8.151 ± 18.699

Sensitivity-ET 0.810 ± 0.210 0.782 ± 0.231 0.776 ± 0.218 0.759 ± 0.208

Sensitivity-WT 0.890 ± 0.182 0.830 ± 0.215 0.928 ± 0.169 0.846 ± 0.201

Sensitivity-TC 0.811 ± 0.249 0.797 ± 0.255 0.808 ± 0.269 0.816 ± 0.239

Specificity-ET 0.996 ± 0.009 0.996 ± 0.008 0.996 ± 0.009 0.997 ± 0.009

Specificity-WT 0.991 ± 0.008 0.995 ± 0.004 0.981 ± 0.013 0.994 ± 0.005

Specificity-TC 0.997 ± 0.003 0.996 ± 0.005 0.997 ± 0.003 0.998 ± 0.002

voxel-level and boundary alignment segmentation results. It is noticeable that
our proposed method achieves the best performance on the segmentation of the
tumor core. This is due to the merging of the multi-scale features. The DPRB
series after fusion between encoders and decoders further learn the combination
of local spatial information and global contextual information thus resulting in
more details being preserved.
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4 Conclusion

We propose an efficient 3D brain tumor segmentation encoder-decoder archi-
tecture consisting of Anisotropic Block, Dilated Parallel Residual Block, and
Feature Refinement Module. The fundamental building block (DPRB) has par-
allel and residual connections. The 3D depthwise and pointwise convolution
operations of DPRB reduce the number of trainable parameters thus saving
the computational cost. Ablation studies demonstrated the effectiveness of each
individual block or module of the proposed method. Our results show that the
proposed method achieves the best balance between trainable parameters and
brain tumor segmentation accuracy on the BRATS2017 dataset.
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Abstract. Lumber paraspinal muscles (LPM) segmentation is of essen-
tial importance in predicting response to treatment of low back pain. To
date, all LPM segmentation methods are manually based instead of auto-
matic. Manual segmentation of LPM requires vast radiological knowledge
and experience. Moreover, the manual segmentation usually induces sub-
jective variance. Therefore, an automatic segmentation is desireable. It
is challenging to achieve automatic segmentation mainly because the
ambiguous boundary of the LPM can be very difficult to locate. In this
paper, we present a novel encoder-decoder and attention based deep
convolutional neural network (CNN) to address this problem. With the
help of skip connections, the encoder-decoder structure can capture both
shadow and deep features which represent local and global information.
Pre-trained VGG11 in ImageNet performed as encoder. In the decoder
part, an attention block is applied to recalibrate the input feature. With
the help of attention block, meaningful features are highlighted while
irrelevant features are suppressed. To fully evaluate the performance of
our proposed network, we construct the first large-scale LPM segmenta-
tion dataset with 1080 images and its segmentation masks. Experimental
results show that our proposed network can not only achieve a good LPM
segmentation result with a high dice score of 0.94 but also outperforms
other state-of-the-art segmentation methods.
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1 Introduction

With a lifetime prevalence of up to 84%, low back pain (LBP) affects a massive
population [1] and causes enormous economic burden on individuals, families,
and governments. To improve the understanding of LBP pathology and develop
appropriate treatment strategies, there is a growing interest in investigating
the relevance between LBP and lumbar paraspinal muscle morphology and fatty
infiltration [2]. Lumbar paraspinal muscles consists of the psoas, quadratus, mul-
tifidus and erector spinae. Due to the attachment to the spinal column, lumbar
paraspinal muscles influence segmental stability and control of the lumbar spine
directly.

Magnetic resonance imaging (MRI) has been used for several years to assess
morphology and fatty infiltration of lumber paraspinal muscles [3]. Up to now,
the assessment of lumber paraspinal muscle composition consists of qualitative
and quantitative methods. Qualitative methods assess the degree of paraspinal
muscle fatty infiltration by visual grading schemes [4]. On the other hand, almost
all quantitative methods rely on manual segmentation of muscle region of inter-
est [5]. While manual segmentation is relatively precise, it is a time-consuming
and subjective procedure. Statistical shape modeling has been used to segment
quadratus lumborum muscle [6] and get a dice similarity of 0.87, but it is not able
to achieve segmentation of other lumbar paraspinal muscles and cannot achieve
a higher segmentation accuracy. Recently, a population-averaged atlas has been
proposed for automated image processing and assessments of lumbar paraspinal
muscles [7], but it has not achieved automated segmentation. Automated seg-
mentation of muscles especially multifidus and erector spinae is still an urgent
problem to be solved. Although automated segmentation of different structures
have been successfully explored such as brain, liver and heart [8], there is not an
approach to segment lumber paraspinal muscles automatically up to now.

Recently, deep learning methods such as convolutional neural network (CNN)
have become popular in computer vision area [9]. Deep neural network learn
representations of data with multiple layers automatically. These methods have
dramatically improved the state of the art in image classification [10], object
detection [11] and so on. Among them, fully convolutional neural network (FCN),
a variant of CNN, achieve state of the art in many semantic segmentation tasks
[12].

UNet [13], an evolutionary variant of FCN, has achieved excellent perfor-
mance in many medical image segmentation and other segmentation areas. The
UNet architecture consists of an encoder, a decoder and skip connections. The
encoder extracts semantic informations through repeated convolution and down-
sample operations. The decoder achieve precise segmentation with repeated con-
volution and upsample operations. The key point of UNet is the use of skip con-
nections which combine decoder’s deep, semantic, coarse-grained features with
encoder’s shallow, low-level, fine-grained features.

An architectural component called squeeze & excitation (SE) block has been
found effective in image classification task and can be integrated into any CNN
model seamlessly [14]. The SE block models dependency among different chan-
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nels in a feature map, besides, spatial dependency in a feature map can be
modeled in a similar way [15]. More generally, the modeling of dependencies of
channel dimension and spatial dimension can be categorized as attention mech-
anism.

In this work, we devise a novel deep neural network for lumbar paraspinal
muscle segmentation called LumNet. Inspired by the UNet and attention mech-
anism, the proposed network architecture consists of three parts: the encoder,
the decoder and skip connections. Pre-trained VGG11 is adopted as the encoder.
A symmetric structure adopting strategy of repeating attention building blocks
performes as the decoder. With the help of skip connections, the low level infor-
mations from the encoder which are crucial for locating propagate directly to
the decoder which capture contextual informations. The attention blocks in the
decoder which models channel and spatial dependency in feature maps plays
an important role in precise localizating lumbar paraspinal muscle’s ambiguous
boundary. Experimental results indicate that our proposed algorithm is effec-
tive in lumbar paraspinal muscle segmentation and can improve segmentation
accuracy compared to other state-of-the-art methods.

The contributions of this work can be summarized as follows:

1. To study automated lumbar paraspinal muscle segmentation method, we con-
struct the first large-scale lumbar paraspinal muscle segmentation dataset
which contains 1080 MRI images and corresponding muscle masks. All mus-
cle masks are acquired by clinical experts. Only multifidus and erector spinae
are under consideration in the dataset.

2. A novel attention based deep neural network for image segmentation called
LumNet is proposed which achieves automatic segmentation of lumbar
paraspinal segmentation for the first time.

3. We evaluate the LumNet on the proposed dataset and compare it with several
state-of-the art image segmentation methods. Experimental results show that
our network outperforms other methods in a large margin with over 0.94 dice
score in multifidus segmentation and over 0.91 dice score in erector spinae
segmentation.

2 Methods

2.1 Overall Framework

Figure 1 illustrates the proposed lumbar paraspinal muscle segmentation net-
work. The network takes lumbar paraspinal muscle MRI image as input and
outputs the segmentation result in an end-to-end manner. Similiar to UNet [13],
the proposed architecture consists of three parts: the encoder, the decoder and
the skip connections. The encoder hierarchically subtract semantic features with
repeated convolutional, non-linear activation and maxpooling operations. Specif-
ically, we adopt VGG11 [16] as encoder which can be pre-trained on ImageNet
[17]. To modify the VGG11 for image segmentation task which was originally
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Fig. 1. Illustration of the proposed network architecture. We adopt VGG11 without
fully connected layers as encoder, a series of ConvReLU operations and attention blocks
as decoder, concatenate and copy operations as skip connections. Input image is pro-
gressively filtered and downsampled in the encoder of the network. The decoder merge
semantic information from decoding part and contextual information from skip con-
nections to achieve precise segmentation. The attention blocks in decoder helps boost
important features and suppress irrelevant features in channel and spatial dimensions.
Schematic of the attention block is shown in Figs. 2 and 3.

Table 1. Network configurations

Encoder configuration Decoder configuration

input(512 × 512 MRI image) output(512 × 512 segmentation result)

conv3-64 conv1-1

maxpool convtransposed2d(stride=2)

conv3-128 conv3-192 + attention block

maxpool convtransposed2d(stride=2)

conv3-256 attention block

conv3-256 conv3-384

maxpool convtransposed2d(stride=2)

conv3-512 attention block

conv3-512 conv3-768

maxpool convtransposed2d(stride=2)

conv3-512 attention block

conv3-512 conv3-768

maxpool + conv3-512(bottleneck) convtransposed2d(stride=2)

designed for image classification, we replace the fully connected layers with a
single convolutional layer with ReLU activation operation to serve as bottle-
neck central part of the network. Symmetrically, the decoder which enables pre-
cise localization consists of repeated transposed convolutional operations, ReLU
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operations and attention blocks. The resolution of output feature is doubled and
the number of channels is reduced by half after the transposed convolutional
layer. Then the output of transposed convolutional layer is concatenated with
the output of the corresponding encoder through the skip connection. After a
convolutional layer, the resultant feature map is recalibrated in both channel and
spatial dimensions by the attention block. This upsampling procedure is repeated
5 times to output the prediction result which has the same size of the input image.
The skip connections in the architecture preserve low level informations which
are crucial in segmentation task and lost by the use of maxpool in the encoder.
The network configurations are outlined in Table 1. On the decoder of original
UNet model, the subsequent component of concatenation operation is a con-
volutional layer which extract important information directly. In this paper, we
suggest model feature dependencies in both channel and spatial dimensions. The
proposed attention block which consists of channel attention block and spatial
attention block can recalibrate input feature in a meaningful way. After passed
into the attention block, the useful channels and spatial locations are magnified
and irrelevant ones are suppressed. This helps improving performance.

2.2 Channel Attention Block

The channel attention block recalibrate input feature by channel attention map
which models the channel dependency of input feature. As each channel of input
feature is considered as a feature detector [15], attention block focus on ’what’
is meaningful in input feature.

We describe channel attention block as spatial squeeze and channel excita-
tion, which was proposed in [14]. Consider an input feature map U ∈ RH×W×C ,
U = [u1, u2, · · ·, uC ] as an combination of ui ∈ RH×W . Spatial squeeze is per-
formed by global average pooling. Vector z ∈ R1×1×C is then produced by global
average pooling with its kth element

zk =
1

H × W

H∑

i

W∑

j

uk (i, j) (1)

This operation embeds the global information into channel descriptor z, whose
statistics are expressive for the whole image. It is prevalent to exploit feature
embeding methods in feature engineering work [15,18]. In this paper, consider-
ing method simplicity and model complexity we apply a simple global average
pooling operation as feature embeding approach which can be replaced by other
methods such as max pooling.

In order to make use of channel descriptor z which is obtained in the squeeze
operation, we propose the second subsequent operation named channel excitation
which aims to capture channel-wise dependency. To fulfil this purpose, we employ
two fully-connected layers and the ReLU unit:

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (2)
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Fig. 2. Schematic of the proposed channel attention block. The channel attention vec-
tor is obtained by spatial squeeze (average pool) and channel excitation (multi-layer
perception) operations. The sigmoid function make sure the range of channel attention
vector is [0.1].

Fig. 3. Schematic of the proposed spatial attention block. The spatial attention vector
is obtained by channel squeeze (maxpool, averagepool) and spatial excitation (convo-
lutional operation) operations. The sigmoid function make sure the range of channel
attention vector is [0.1].

where δ refers to the ReLU unit [19], σ refers to sigmoid function, W1 ∈ R
C
r ×C

and W2 ∈ RC×C
r being weights of fully-connected layers. The dynamic range of

output vector s is [0, 1] due to the using of sigmoid function. The vector s is
then used to recalibrate input feature U by channel-wise multiplication:

Uatten = Channelatten (U) = [s1u1, s2u2, · · ·, scuc] (3)

si indicates the importance of the ith channel, which are rescaled.
In the training phase, the weights in channel attention block are adaptively

tuned to suppress irrelevant channels and emphasise important ones. In the
inference phase, the attention block recalibrate features to propagate more useful
informations. The architecture of the module is illustrated in Fig. 2.

2.3 Spatial Attention Block

The spatial attention block recalibrate input feature by spatial attention map
which utilize the spatial relationship of the feature. Different from the channel
attention block, the spatial attention block focus on ’where’ is more impor-
tant in lumbar paraspinal muscle segmentation task. Similiar to the chan-
nel attention block, we describe spatial attention block as channel squeeze
and spatial excitation. Consider an input feature map F ∈ RH×W×C , F =
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Fig. 4. Schematic of proposed attention block. An input feature is first recalibrated by
channel attention vector and then spatial attention vector.

[f1,1, f1,2, · · ·, f1,W ; · · ·; fH,1, fH,2, · · ·, fH,W ] as a combination of fi,j ∈ RC .
Channel squeeze is performed by both global average pooling and global max
pooling. Vector V max ∈ R1×W×H and vavg ∈ R1×W×H are then produced by
global maxpooling and global average pooling with its i ∗ jth element

vmax
i,j = arg max (fi,j (t)) ; vavg

i,j =
1
C

t=C∑

t=1

fi,j (t) (4)

where t represents tth channel in fi,j .
After transforming input feature from F ∈ RH×W×C to V ∈ R1×H×W ,

we obtain two spatial descriptors V max and V avg. To make full use of spatial
descriptors, we concatenate them together in channel dimension to get the final
spatial descriptor [V max;V avg]. Then, we apply a convolutional layer and sigmoid
function on the spatial descriptor to derive a spatial attention map which encodes
where to emphasize or suppress:

V = σ (Conv [V max, V avg]) (5)

where [V max, V avg] refers to spatial descriptor, Conv refers to a convolutional
layer with the filter size of 7 × 7, σ refers to sigmoid function. The dynamic
range of output vector V is [0, 1] since using of sigmoid function. At last, the
spatial attention map is used to recalibrate input feature map by spatial-wise
multiplication:

Fatten = Spatialatten (F ) = [f1,1v1,1; · · ·; fH,W vH,W ] (6)

vi,j indicates the importance of the i ∗ jth element in spatial dimension which
is used to rescale the corresponding feature. In the training phase, the weights
in spatial attention block are adaptively tuned to suppress irrelevant features
and emphasis important ones in spatial dimension. In the inference phase, the
attention block recalibrate the input feature to transfer more useful informations
to the subsequent network. The architecture of the module is illustrated in Fig. 3.

As presented in Fig. 4, given an input feature, channel attention block and
spatial attention block recalibrate input feature in a sequential way. Two atten-
tion blocks compute complementary attention focusing on ‘what’ and ‘where’
respectively.
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3 Experiments and Results

3.1 Datasets and Implementation Details

We construct the first lumbar paraspinal muscle segmentation dataset. It con-
tains 1080 MRI images from 120 male patients and corresponding segmentation
masks, with the same resolution of 512 × 512 for all images. All images are
splitted into three parts: 756 for training, 216 for validating and 108 for testing.

All the male outpatients, aged from 18 to 35 years, were from the same
hospital. The Philips magnetic resonance was used, the repetition time of sagittal
scanning is 2500 ms, and that of axial scanning is 24855 ms; the echo time of
sagittal scanning is 80 ms, that of axial scanning is 120 ms and that of axial
scanning is 4 mm under 3.0T. All the patients’ lumbar MR scans included T1/T2
weighted. The sagittal position nearest to the midline was selected as the location
image. The axial images corresponding to L3–4, L4–5, L5–S1 discs were scanned.
Each disc was divided into three slices. By excluding obvious disc herniation,
infection, fracture, tumor and other abnormal changes and incomplete images,
T2-weighted axial images of 120 patients were obtained. All images are processed
by brightness and contrast adjustment and normalized operation. Five spine
surgeons and one imaging surgeon used Photoshop graphics software to label the
bilateral erector spine muscles and multifidus muscles in the image manually.

A set of image and corresponding masks are illustrated in Fig. 5. We can
deduce from Fig. 5 that the boundaries of multifidus and erector spinae are
vague. It is very difficult to locate the border precisely. Besides, more kinds of
lumbar paraspinal muscles may be included in the future.

Fig. 5. A set of images in the proposed dataset. From left to right, it is respectively
MRI image, corresponding multifidu mask and corresponding erector spinae mask.

All models were implemented based on the deep learning library Pytorch [20].
We use 8 NVIDIA 1080Ti GPUs for training and only one for testing. In the
training phase, we adopt Adam algorithm to optimize the network with a batch
size of 32. All models were trained for 100 epochs from scratch. The learning rate
was initially set to 0.001 in first 70 epochs and decreased to 0.0001 in the subse-
quent 30 epochs. The original sized images were used as input of network without
downsample operation. We performed data augmentation with random bright-
ness, random contrast, random rotation in angle range [−10, 10] and random
horizontal flipping. When testing, we apply prediction on the original images.
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Loss function indicates optimal update direction in training procedure. To
update parameters in an appropriate way, We adopt a hybrid form of loss func-
tion which is a combination of binary cross-entropy and dice coefficient. We
consider image segmentation task as a pixel classification problem, so the binary
cross-entropy loss is defined as:

E = − 1
n

n∑

i=1

(yi log ŷi + (1 − yi) log (1 − ŷi)) (7)

where yi is a binary value which is the label of the corresponding pixel i and ŷi
is predicted probability for the pixel. n indicates the total number of pixels in
an image. Dice coefficient can be interpreted as similarity measure between two
sets X and Y , can be defined as following:

D (X,Y ) =
2 |X ∩ Y |
|X| + |Y | (8)

Considering dice coefficient of true mask and predicted probability heat map as
part of loss function, we can rewrite it in the following way:

D = 1 − 1
n

n∑

i=1

(
2yiŷi

yi + ŷi

)
(9)

Join these expressions, we can generalize the loss function as: L = E + ωD,
where ω represents the weight of dice coefficient. In all of our experiments, we
set ω equals to 1, which shows applicable in the training process.

3.2 Performance of the Segmentation Task

In this subsection, we empirically show the effectiveness of our proposed method.
Some inference results are showed in Fig. 6. As Fig. 6 shows, our proposed method
can locate weak boundary pixels properly even when it is a difficult task for
human eyes.

Fig. 6. Multifidus and Erector spinae segmentation results of proposed method. The
red region denotes ground truth, and the green region denotes predicting mutifidus
mask of our proposed method. Yellow region indicates pixels which are regarded as
multifidus or erector spinae by both ground truth and proposed method. (Color figure
online)
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To demonstrate the advantage of our proposed method, we compare our
method with several advanced segmentation methods, including Fully Convolu-
tional Network (FCN) [12], SegNet [21] and the baseline model UNet [13]. We
employ several metrics to quantitatively evaluate the segmentation performance
of different methods including Dice Similarity Coefficient (Dice Score), Precision
and Recall [22].

Table 2 lists the metric result of different method in segmenting multifidus
and erector spinae. We can see that our proposed method achieves higher dice
score than other state-of-the-art methods. The SegNet works well in precisely
locate multifidus but it has a lower recall compared to our proposed method.
Our proposed method performs better than the baseline model UNet on nearly
all metrics by a large margin, indicating that the using of pre-trained model and
attention block brings performance gain.

Table 2. Comparision of Multifidus (MF) and Erector Spinae (ES) segmentation
between different methods

Method Dice score Precision Recall

U-Net(MF) 0.900± 0.056 0.864± 0.082 0.948± 0.063

U-Net(ES) 0.865± 0.093 0.828± 0.126 0.925± 0.089

FCN 0.919± 0.050 0.889± 0.079 0.956± 0.042

FCN(ES) 0.899± 0.089 0.915± 0.097 0.899± 0.107

SegNet 0.902± 0.059 0.958± 0.048 0.860± 0.090

SegNet(ES) 0.873± 0.084 0.930± 0.086 0.837± 0.011

Proposed 0.948±0.040 0.947± 0.055 0.951± 0.043

Proposed(ES) 0.912±0.082 0.905± 0.102 0.930±0.084

Table 3. Dice score for different models with and without attention gate in segmenting
lumbar paraspinal muscles.

Muscle With attention block Without attention block

Multifidus 0.948±0.040 0.927± 0.050

Erector spinae 0.912±0.082 0.905± 0.079

As mentioned above, we propose an attention block which recalibrate features
in both channel and spatial dimension to boost important features and suppress
irrelevant ones. To evaluate the performance of proposed attention block, we
conduct some experiments that make a comparison between with and without
attention block in segmenting lumbar paraspinal muscles.

From the results of Table 3 we found that proposed attention blocks improved
dice score by 2.1% in multifidus and 0.7% in erector spinae, demonstrating
that the use of attention block lead to high-precision segmentation of lumbar
paraspinal muscles segmentation.
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4 Conclusion

This paper develops a novel encoder-decoder based deep neural network for lum-
bar paraspinal muscle segmentation in MRI images by harnessing the attention
mechanism. The proposed attention block recalibrate features in both channel
and spatial dimension which helps decoder to achieve accurate segmentation.

We are the first to realize automated segmentation of lumbar paraspinal
muscles, which is a difficult problem because of ambiguous target boundary. To
achieve the purpose, we firstly propose a dataset for segmentation of lumbar
paraspinal muscles. Experiment results demonstrate that our proposed method
can achieve automated segmentation for lumbar paraspinal muscles and out-
performs several state-of-the-art segmentation methods. Moreover, experiment
results demonstrate that using attention block helps in better locating of the
ambiguous boundary. In addition, the proposed method is a general solution
and has the potential to be used for other medical image segmentation tasks.
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Abstract. Neural networks have been successfully used as classification
models yielding state-of-the-art results when trained on a large number
of labeled samples. These models, however, are more difficult to train suc-
cessfully for semi-supervised problems where small amounts of labeled
instances are available along with a large number of unlabeled instances.
This work explores a new training method for semi-supervised learning
that is based on similarity function learning using a Siamese network to
obtain a suitable embedding. The learned representations are discrim-
inative in Euclidean space, and hence can be used for labeling unla-
beled instances using a nearest-neighbor classifier. Confident predictions
of unlabeled instances are used as true labels for retraining the Siamese
network on the expanded training set. This process is applied iteratively.
We perform an empirical study of this iterative self-training algorithm.
For improving unlabeled predictions, local learning with global consis-
tency [22] is also evaluated.

Keywords: Semi-supervised learning · Siamese networks · Triplet
loss · LLGC

1 Introduction

The modern world generates vast amounts of data and provides many opportu-
nities to exploit it. However, frequently this data is complex, noisy, and lacks
obvious structure. Therefore, explicit modeling of, for example, its distribution
is too challenging for a human agent. On the other hand, a human can specify an
explicit procedure, i.e., an algorithm, for how to construct such a model. Machine
learning (ML) is concerned with algorithms that enable computers to learn from
data in this way, especially algorithms for prediction. Many ML algorithms need
labeled data for such a task, but it is common that fewer labeled data are avail-
able than unlabeled ones. Manual labeling is costly and time-consuming. Hence,
there is an ever-growing need for ML methods to work with a limited amount of
labeled data and also make efficient use of the side information available from
unlabeled data. Algorithms designed to do so are known as semi-supervised
learning algorithms.

Supervised learning algorithms employ labeled data to predict class labels
for unlabeled examples accurately. Unsupervised learning algorithms search for
c© Springer Nature Switzerland AG 2019
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structure in data, which can then be used as a heuristic to infer labels for
these examples, on the basis of assumptions about the structure of data. Semi-
Supervised learning (SSL) algorithms lie somewhere between supervised and
unsupervised learning. SSL methods are designed to work with labeled L =
{(x1, y1), (x2, y2), ..., (x|L|, y|L|)} and unlabeled instances U = {x

′
1, x

′
2, ..., x

′
|U |},

where X and Y relate to an input space and output space, xi, x
′
j ∈ X(i =

1, 2, ..., |L|, j = 1, 2, ..., |U |) are examples and yi ∈ Y are labels of xi and
Y = {1, 2, 3, ..., c}, c being the number of classes. Usually, these methods
assume a much smaller number of labeled instances than unlabeled ones i.e.,
|L| � |U |, because unlabeled instances are more useful when we have a few
labeled instances. SSL has proven to be useful especially when we are dealing
with anti-causal or confounded problems [15].

Without making any assumptions on how the inputs and outputs are related
it is impossible to justify semi-supervised learning as a principled approach [4].
Like the authors in that paper, we make the same three assumptions:

1. If two points x1, x2 are close in a high-density region, then their corresponding
outputs y1, y2 should also be close.

2. If points are in the same structure (referred to as cluster or manifold), they
are likely to be of the same class.

3. The decision boundary between classes should lie in a low-density region of
input space.

In this work, we will consider a new training method designed to be used
with deep neural networks in the semi-supervised learning setting. Instead of
the usual approach of learning a direct classification model based on cross-
entropy loss, we will use the labeled examples for learning a similarity function
between instances, such that instances of the same class are considered simi-
lar and those instances belonging to different classes are considered dissimilar.
Under this similarity function, which is parameterized by a neural network, the
features (embeddings) of labeled examples will be grouped together according
to the class labels, in Euclidean space. In addition, we will use these learned
embeddings to assign class labels to unlabeled examples. We do this using a
simple nearest-neighbor classifier. Following that, confident predictions for unla-
beled instances are added to the labeled examples for retraining of the neural
network iteratively. In this way, we are able to achieve significant performance
improvements over supervised-only training.

2 Related Work

Semi-supervised learning has been under study since the 1970s [12]. Expectation-
Maximization (EM) [14] works by labeling unlabeled instances with the current
supervised model’s best prediction in an iterative fashion (self-learning), thereby
providing more training instances for the supervised learning algorithm. Co-
training [1] is a similar approach, where two models are trained on two separate
subsets of the data features. Confident predictions from one model are then used
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as labeled data for the other model. Co-EM [2] combines co-training with EM and
achieved better results than either of them. Another, graph-based SSL method,
LLGC (Local Learning with Global Consistency) [22], works by propagating
labels from labeled to unlabeled instances until labels are stable, maintaining
local and global consistency.

There is a substantial amount of literature available on SSL techniques using
deep neural network based on autoencoders [11,16], generative adversarial net-
works (GAN) [6,18,20] and based on regularization [9,13,17]. The Pseudolabel
[10] approach is a deep learning version of self-learning with an extra loss from
regularization and the reconstruction of a denoising autoencoder.

Our method builds on work investigating similarity metric learning using
neural networks. [5] used a network with the contrastive loss for face verification
in a supervised fashion. [19] suggested network training to be based on triplets of
examples. This work was extended to the semi-supervised paradigm [21] for the
image classification task. [7] tries to minimize the sum of cross-entropy and ratio
loss between class indicators (sampled from labeled examples for each class) and
the intra-class distances of instances calculated based on embeddings.

We train our network based on triplets of images and use the triplet margin
loss [19]. We found this to perform better than the contrastive loss or the ratio
loss in our experiments, while the network is trained in a self-learning fashion.
For improving intermediate predictions, we use LLGC [22] in order to get better
labels for unlabeled instances in subsequent iterations. Although triplet networks
and LLGC are not new, this is the first attempt, to our knowledge, of combining
these two approaches for semi-supervised learning.

3 Siamese Networks

Siamese networks [3] are neural networks that are particularly efficient when we
have a large number of classes and a few labeled instances per class. Siamese
networks can be thought of multiple networks with identical copies of the same
function, with the same weights. They can be employed for training a similarity
function given labeled data. Figure 1 shows a simple network architecture based
on convolutional (CONV) and max-pooling (MP) layers. An input example is
passed to the network for computing the embeddings. Different losses are used
for training Siamese networks, such as contrastive loss, margin-based loss, and
triplet loss. Network parameters are updated according to the loss calculated on
embeddings.

3.1 Triplet Loss

The triplet loss [19] has been used for face recognition. A triplet’s anchor example
a, positive example p, and negative example n are provided as a training example
to the network for getting corresponding embeddings. During optimisation of the
network parameters, we draw all possible triplets from labeled examples based
on class labels. For each mini-batch used in stochastic gradient descent, all valid
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Fig. 1. Network Architecture

triplets(i, j, k) are selected where labels[i] = labels[j], i �= j and labels[i] �=
labels[k]. Then the loss is calculated according to the following equation using
the Euclidean distance d(., .) between the embedded examples:

L = max(d(a, p) − d(a, n) + m, 0) (1)

where m is the so-called “margin” and constitutes a hyperparameter.
As illustrated in Fig. 2, the triplet loss attempts to push away the embed-

ded negative example n from the embedded anchor example a based on a given
margin m and the given positive example p. Depending on the location of the
negative example with respect to the anchor and the positive example, it is possi-
ble to distinguish between hard negative examples, semi-hard negative examples,
and easy negative examples. The latter are effectively ignored during optimisa-
tion because they yield the value zero for the loss.

A P

Nmargin
Easy NegativesSemi-hard Negatives

Hard Negatives
m

A: Anchor
P: Positive
N: Negative

Fig. 2. Triplet loss

3.2 Self-learning Using Siamese Networks

In the first iteration of our semi-supervised learning approach, to be able to
label (some of) the unlabeled examples instances, the Siamese network is trained
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on labeled examples only, using triplet loss. Then the standard nearest neigh-
bor classifier is used to predict labels for the unlabeled examples and a fixed
percentage p of unlabeled examples is chosen based on their distance to the
labeled instances and added to the set of labeled examples for the next itera-
tion. Throughout, embedded data is used to calculate distances. For more details
see the pseudo-code in Listing 1.

Algorithm 1. Proposed approach based on Siamese self-training
1: Input: Labeled examples (xL, yL), Unlabeled examples xU , number of meta-

iterations i and selection percentage p
2: for 1 to i do
3: train siamesenetwork(xL, yL)
4: embedU = siamesenetwork(xU )
5: embedL = siamesenetwork(xL)
6: labelsU , distU = KNN(embedU , embedL, yL)
7: sorted distU , sorted labelsU = sort(distU , labelsU )
8: xnew, ynew = select top(sorted distU , sorted labelsU , p)
9: xL, yL = concat((xL, yL), (xnew, ynew))

10: xU = delete from(xU , xnew)
11: end for

4 Local Learning with Global Consistency (LLGC)

We also investigate local learning with global consistency [22] in addition to the
nearest-neighbor classifier. LLGC works by propagating label information to the
neighbors of an example. The goal of LLGC is to predict labels for unlabeled
instances. The algorithm initializes a matrix Yn×c to represent label information,
where Yij = 1 if example i is labeled as j, and otherwise Yij = 0. We implement a
little variation here for the unlabeled examples: instead of using Yij = 0 for all j
when i is unlabeled, we use predicted labels obtained with the nearest-neighbour
classifier after training the Siamese network.

LLGC is based on calculating an adjacency matrix. This adjacency matrix is
then used to establish a matrix S that is applied to update the label probabilities
for the unlabeled examples. The adjacency matrix is calculated using Eq. 2 by
employing embeddings f(xi) and f(xj) for each pair of two examples xi and xj ,
obtained from the Siamese network. The parameter σ is a hyper-parameter.

Wij =

{
e−σ×|f(xi)−f(xj)|2 , if i �= j

0 if i = j.
(2)

The matrix S is computed as:

S = D−1/2 × W × D−1/2 (3)
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where D is a diagonal matrix: Di =
∑n

j=1 Wij . The initial matrix of label prob-
abilities is set to F (0) = Y , and the probabilities are updated by:

F (t + 1) = S.F (t) × α + (1 − α) × Y (4)

where α ∈ [0, 1) is a hyper-parameter for controlling the propagation of label
information. The above operation is repeated till convergence. Finally, labels for
the unlabeled instances are calculated as:

yi = argmax
j≤c

Fij (5)

For efficiently using unlabeled instances, the Siamese network is first trained
on labeled examples only, using triplet loss. Then the nearest-neighbor classifier
is used to predict labels for unlabeled examples. Then, following that, labeled
and unlabeled embeddings along with labels are passed to LLGC. After a certain
number of iterations of LLGC, a fixed percentage p of unlabeled examples are
chosen based on their LLGC score and added to the labeled examples for the
next iteration. For more details see the pseudo-code in Listing 2.

Algorithm 2. Proposed approach based on LLGC self-training
1: Input: Labeled examples (xL, yL), Unlabeled examples xU , number of meta-

iterations i, selection percentage p, α and σ parameters for LLGC.
2: for 1 to i do
3: train siamesenetwork(xL, yL)
4: embedU = siamesenetwork(xU )
5: embedL = siamesenetwork(xL)
6: labelsU = KNN(embedU , embedL, yL)
7: LLGC labels, LLGC score = LLGC(embedL, embedU , [yL, labelsU ], σ, α)
8: labelsU = LLGC labels[len(xL) :]
9: xnew, ynew = select top(LLGC score, p, xU , labelsU )

10: xL, yL = concat((xL, yL), (xnew, ynew))
11: xU = delete from(xU , xnew)
12: end for

5 Experiments

We consider four standard image classification problems for our evaluation. For
all experiments, a small subset of labeled examples was chosen according to
standard semi-supervised learning practice, with a balanced number of examples
from each class, and the rest were considered as unlabeled. Final accuracy was
calculated on the standard test split for each dataset. No data augmentation
was applied to the training sets. Siamese networks were trained using triplet loss
with margin m = 0.3 for all datasets.
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A simple convolutional network architecture was chosen for each dataset to
ensure performance achieved was due to the proposed method and not the net-
work architecture. For more details about the network architectures, see Table 1.
Layer descriptions use (feature-maps, kernel-size, stride, padding) for convo-
lutional layers and (pool-size, stride) for pooling layers. The simple model is
used for MNIST, Fashion MNIST, and SVHN, and produces 16-dimensional
embeddings, while the CIFAR-10 model produces 64-dimensional embeddings.
We trained the networks using mini-batch sizes 50, 100, and 200. We found that
batch size 50 was insufficient and 200 did not yield significant improvements
compared to batch size 100. Batch size = 100 is used for all experiments, with
Adam [8] as the optimizer for updating network parameters for 200 epochs. Our
proposed approaches Siamese self-training (Algorithm 1) and LLGC self-training
(Algorithm 2) respectively were run for 25 meta-iterations. For LLGC, α = 0.99
is used in all experiments, while σ is optimized for each dataset. The final test
accuracy is computed using a k-NN classifier with k = 1 for simplicity. Our
results were averaged over 3 random runs, using a different random initializa-
tion of the Siamese network parameters for each run and random selection of
initially labeled examples except SVHN. We set a baseline by (a) training the
network on the small number of the labeled instances only, and by (b) using all
the labeled instances. These two baselines should provide good empirical lower
and upper bounds for the semi-supervised error rates.

Table 1. Network model

Simple(#parameters = 163908) CIFAR-10(#parameters = 693792)

INPUT INPUT

Conv-Relu(32,7,1,2) Conv-Relu-BN(192,5,1,2)

Max-Pooling(2,2) Conv-Relu-BN(160,1,1,2)

Conv-Relu(64,5,1,2) Conv-Relu-BN(96,1,1,2)

Max-Pooling(2,2) Max-Pooling(3,2)

Conv-Relu(128,3,1,2) Conv-Relu-BN(96,5,1,2)

Max-Pooling(2,2) Conv-Relu-BN(192,1,1,2)

Conv-Relu(256,1,1,2) Conv-Relu-BN(192,1,1,2)

Max-Pooling(2,2) Max-Pooling(3,2)

Conv(4,1,1,2) Conv-Relu-BN(192,3,1,2)

Flatten() Conv-Relu-BN(64,1,1,2)

Avg-Pooling(8,1)

We now consider the datasets used in our experiments. The MNIST dataset
consists of gray-scale 28 by 28 images of handwritten digits. We select only
100 instances (10 from each class) as labeled instances initially. We apply our
algorithms with a selection percentage p = 10% and the LLGC-based method
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with σ = 1.8. Table 2 shows noticeable improvements over the supervised-only
approach when compared with the proposed semi-supervised approaches, when
using the same number of labeled examples.

Table 2. MNIST Test error %.

# labels 100-Labeled All (60000)

Supervised-only 9.73 ± 0.74 0.6 ± 0.04

Siamese self-training 3.24± 0.32 –

LLGC self-training 3.50 ± 0.14 –

The Fashion MNIST dataset consists of 28 by 28 gray-scale images show-
ing fashion items. 100 instances are considered as labeled initially. Again, we
use selection percentage p = 10% and σ = 3.2. Table 3 again shows noticeable
improvement over the supervised-only approach when compared with the pro-
posed semi-supervised approaches, when using the same amount of labeled data.

Table 3. Fashion MNIST Test error %.

# labels 100-Labeled All (60000)

Supervised-only 26.72 ± 1.23 9.66 ± 0.10

Siamese self-training 23.33 ± 0.43 –

LLGC self-training 23.23± 0.67 –

SVHN comprises 32 × 32 RGB images of house numbers, taken from the
Street View House Numbers dataset. Each image can have multiple digits, but
only the digit in the center is considered for prediction. The proposed approaches
are evaluated using 1000 labeled instances initially, with selection percentage
p = 5%, and σ = 2.4. Table 4 shows noticeable improvement over the supervised-
only approach when compared to the proposed approaches when 1000 labeled
examples are used. Interestingly, purely Siamese self-training again performs
better than LLGC self-training in this case.

The CIFAR-10 dataset contains 32 by 32 RGB images of ten classes. The
proposed semi-supervised approaches are evaluated using 4000 labeled instances
initially, with selection percentage p = 5%, and σ = 2.4. Table 5 shows little
improvement over the supervised-only approach when compared to the proposed
semi-supervised approaches. Siamese self-training performs better than LLGC
self-training.

Figures 3, 4, 5 and 6 show a detailed comparison between Siamese self-
training and LLGC self-training across three different runs of all four datasets;
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Table 4. SVHN Test error %.

# labels 1000-Labeled All (73275)

Supervised-only 30.33 ± 1.55 12.26 ± 0.52

Siamese self-training 20.09± 3.22 –

LLGC self-training 27.23 ± 0.99 –

Table 5. CIFAR-10 Test error %.

# labels 4000-Labeled All (50000)

Supervised-only 40.87 ± 0.56 21.51 ± 0.88

Siamese self-training 36.56± 0.74 –

LLGC self-training 40.06 ± 0.62 –

MNIST, Fashion MNIST, SVHN, and CIFAR-10. The accuracy curves show
definite improvement with respect to the supervised-only version on all datasets
using Siamese self-training as well as LLGC self-training. However, CIFAR-10
and SVHN seem to get low or negligible additional improvement from LLGC
self-training compared to Siamese self-training only.

Fig. 3. MNIST-100 Comparison of Siamese self-training vs. LLGC self-training.

We also tried to visualize the quality of embeddings learned using the pro-
posed method. We trained an additional model by slightly modifying the simple
model Table 1. In order to get a 2-dimensional embedding, two feature-maps are
used instead of 4 in the last convolutional layer, followed by average-pooling(2,2)
before the final flattening layer. For this purpose, we considered MNIST.
Figure 7(a) depicts the embeddings for test instances marked in color according
to their true class after random initialization of the network. Figure 7(b) depicts
the embeddings for test instances after training the Siamese network with only
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Fig. 4. Fashion MNIST-100 Comparison of Siamese self-training vs. LLGC self-
training.

Fig. 5. SVHN-1000 Comparison of Siamese self-training vs. LLGC self-training.

Fig. 6. CIFAR10-4000 Comparison of Siamese self-training vs. LLGC self-training.
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the 100 labeled MNIST instances. It can be seen that the 10000 test exam-
ples’ embeddings form clusters in Euclidean space after training of the network
according to the class labels; test examples’ embeddings are largely scattered
randomly throughout the 2D space before the network is trained.

(a) Before training (b) After training

Fig. 7. MNIST-100: visualisation of 2-dimensional embeddings

6 Conclusion

In this work, we have shown how neural networks can be used to learn in a semi-
supervised setting using small sets of labeled data by replacing the classification
objective with an objective for learning a similarity function. This objective is
compliant with standard techniques of training the deep neural network and
requires no modification of the embedding model. For improving the intermedi-
ate prediction of unlabeled instances, we evaluated LLGC, but this yielded little
additional benefit compared to k-NN classification alone. Using the method in
this work, we were able to achieve significant improvement compared to super-
vised learning only on MNIST, Fashion MNIST and SVHN, when training on a
small subset of labeled examples, but obtained little improvement on CIFAR-10.
We speculate that instead of a fixed selection of unlabeled instances from LLGC’s
predictions, a threshold-based selection based on the LLGC score will be more
beneficial for subsequent iterations of our meta-algorithm. Also, a more robust
convolutional model may help the network in learning distinctive embeddings
and achieving state-of-the-art results for the semi-supervised setting.
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Abstract. The target recognition of the human eye in real scenes is
still far superior to any robot vision system. We believe that there are
two major essential reasons. First, humans can observe the environment
in which the object is located, get the probability of the object cat-
egory. Second, human can use foveal to focus on the object and get
more object detail features from the high resolution image containing
the object and make it easier to identify. This paper proposes a novel
method for searching and locating surrounding objects using a monocu-
lar Panning/Tilting/Zooming (PTZ) camera with free rotation and zoom
functions.

Our system is an active environment-aware vision system based on
Intrinsic Motivation and capable of autonomously exploring the sur-
roundings of the camera. At the same time, by combining the visual
information of foveal field of view and context field of view, the visual
system observes more details and make more accurate prediction, and
overcomes the limitation of low-resolution image in target recognition.
Finally, our experiment proved that the visual perception system incor-
porating the curiosity mechanism is superior to the common perception
method in terms of time overhead and learning ability.

Keywords: Intrinsic Motivation · Active perception · Computer
vision · Intrinsic adaptive curiosity · Developmental robotics

1 Introduction

Future autonomous robots need the ability to perceive the environment
autonomously. That is, robots can discern the objects which are worth observ-
ing in any unfamiliar environment. However, most robots are still designed to
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perform a specified action after matching a specific condition (a specific target
or scene).

The accuracy of the camera perception will be affected by the distance
between the perceived camera and the target, small size of the target, and using a
low resolution camera especially. Because of above reasons, the targets detection
algorithm will classify those targets as backgrounds and ignore them. In order
to improve the efficiency of target search and detection in a real environment,
robots need to zoom in the image detected area selectively.

The main contributions to this paper are summarized as follows:

1. It studies the autonomous object search and detection of the sensing device
in the real indoor environment. We divide the surrounding environment into
equal zones, which constitutes 9 perception fields, each containing differ-
ent visual information. Through the Intrinsic Motivation mechanism enable
model to give different values of different perception fields of view are given.
The sensing device is capable of autonomously selecting a field of view to
observe.

2. We also introduce the foveal field of view to perform secondary verification
and further feature learning with richer details, This means more accurate
and robust object recognition. But in the past if we wanted to be able to find
very small or distant objects, we had to use a higher image resolution camera,
now we only need a Panning/Tilting/Zooming (PTZ) camera that can make
the part of interest earned a very high resolution.

2 Related Work

In order to effectively analyze the input of the camera’s visual modality and
interact with objects in a chaotic surrounding environment, the PTZ camera
platform relies on attention-based strategy-based visual perception. Today, this
idea has been extensively studied and discussed in the perspective of bionics
and computer vision [2–4,22]. In this study, we limit our visual attention to
the recognition and localization of objects of interest. This attentional mecha-
nism, through the combination of Intrinsic Motivation and intelligent adaptive
curiosity (IAC), achieves curiosity-driven peripherals. Attention to environmen-
tal goals.

In the computer vision system with curiosity, the foveated system based on
bionics design is a worthy research object. The foveated system usually refers to
two types of visual inputs obtained by the camera platform, one is the global
field of view of the global, and the other is a partial enlarged view of the object of
interest in the field of view. The former is used to grasp the context information
and locate the object of interest. The context information can give more reference
to the semantic information of the computer vision system. The latter can obtain
the target detail features neglected by the context of the target through the
high-resolution representation of the target of interest. Minut et al. [5] used the
PTZ camera system to learn and locate a target well by learning. Hueber et
al. [6] proposed a motion detection and tracking platform for cameras based
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on integrated foveal field of view and context field of view. Kragg et al. [7]
achieved better target recognition by adjusting the zoom level of the camera lens.
Ekvall et al. [1] completed a target detection system that introduced a attention-
based detection mechanism, which provides a closer view to the target feature
matching through the zoom in and pan/tilt-angles of the PTZ camera. However,
these researchers form a passive visual perception system through cameras. The
system needs to manually set various parameters and types of objects that the
sensing system can detect.

Our system is an active environment-aware vision system for the environ-
ment. By introducing a curiosity mechanism, the system can dynamically update
the attention of various targets in the surrounding environment, effectively
improving the progress of the system learning, and at the same time, through
the fusion of foveal information makes the observation of each target feature
more detailed and accurate.

3 Intrinsically Motivated Active Perception System

Our experimental was developed in the bio-mimetics project, aiming to study
and capture some features and habit of the human vision and promote new
exploration in the field of robot vision or computer vision strategies, such as
recognition, locating, tracking and path planning.

3.1 Physical Hardware

Our camera device is SONY evi-d70p, and shown in Fig. 1. power (W) 12 video
port number rs-232 or rs-422 serial control, 216x scaling ratio (18x optical, 12x
digital), Angle: +90◦ to −30◦ (maximum tilting speed: 90◦/SEC), Horizontal
resolution: 460 TV cable (evi-d70p); 470 TV cable (evi-d70).

Fig. 1. camera device includes a high-resolution PTZ camera. In our experiments we
mount the cameras on a standard tripod instead of using the robotic platform.

3.2 Architecture

The constructed sensorimotor system is defined as a ten-component model
IMAP = {S,A,O,C, V, Vs, L,Ep, El, E}, the meaning of each element is as
follows.
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– S: The set of discrete perceived states of IMAP. S = {Si | i =
1, 2, . . . , ns},Si ∈ S. S is the i-th sense state, and ns is the number of discreet
discrete states.

– A: IMAP action set. A = {Ai | i = 1, 2, . . . , ns},Ai = {aij | j = 1, 2, . . . , ni},
aij represents the j-th optional action of the IMAP in the i-th sense state,
and ni is the number of selectable actions in the i-th state.

– O: IMAP’s perception − motion orientation mapping set. O = {Oi|i =
1, 2, . . . , ns},Oi = diag([oi1, . . . , oij , . . . , oini

])ni×ni
, Oi is the i-th state is a

directional mapping matrix of optional actions in this state, diag means that
the elements in parentheses are stored diagonally. oij(i ∈ (1, 2, . . . , ns), j ∈
(1, 2, . . . , ni)) represents a perception − motion map that characterizes the
orientation to which the IMAP selects the action mj in the perceptual state
Si ∈ S, or the orientation of perceptual motion of the perceptual state si and
the action aij .

– C: Curiosity. C = {Ci | i = 1, 2, . . . , ns}, Ci is the curiosity of the i-th state of
the system. From the perspective of human bionics, the curiosity in a certain
state decreases as the number of times the state is explored. Based on this,
the curiosity is designed as follows, where: Ni is t The number of times the
system explores the state si; k, c are the curiosity parameters. The orientation
and curiosity are two intrinsic factors that influence the next action of the
biological selection.

ci =
1

1 + ek(Ni−c)
(1)

– V : System status orientation. V = {Vi | i = 1, 2, . . . , ns}, The value used
to determine the orientation function corresponds to the system’s perceived
state. Among them, Vi ∈ [−1, 1], −1 is the state orientation of the worst
state, and 1 is the state orientation of the most ideal state.

– Vs: orientation function, Vs = aVn+b(Vn−Vo), Vo and Vn respectively indicate
the state before and after the execution of an action, where a ≥ 0, b ≤ 0 is
the parameter of the orientation function, and its value should be selected.
The sign of the orientation function does not change the sign of (Vn − Vo),
and satisfies a + b = 1, which can generally be learned.

– L: Orientation learning matrix. L = {Li | i = 1, 2, . . . , ns}, The role is to
update and adjust the orientation map based on the information provided
by the orientation function. Let the system at t time map the orientation in
the sensing state si to Oi(t). After the action mj is executed, the orientation
map in the sensing state becomes Oi(t+1), and the orientation map updating
method is as follows Where η > 0 is the orientation learning parameter.

{
pij(t)=1+Sign(Vs(t))(1−e−η|Vs(t)|)+c×P (t);

pik(t)=1,k∈(1,2,...,ni),k �=j; (2)

Sign(x) =

⎧
⎨
⎩

1, x > 0
0, x = 0

−1, x < 0
(3)
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Oi(t + 1) =
Oi(t)Li(t)

ni∑
j=1

oij(t)lij(t)
(4)

– Ep: Predictive entropy of perceptual motion systems. Ep = {Epi | i =
1, 2, . . . , ns}, Determined by the prediction P , the orientation map O, and
the action A taken, the prediction P can predict the result update O(t + 1)
that occurs after the action A(j) is taken under the orientation map O(t) at
the moment. the prediction formula is P (A(j), O(t)) = O(t+1). After making
the prediction P (t + 1) and taking the corresponding action, the robot can
measure the actual result O(t+1) and calculate its prediction error Epi. The
calculation method is Ep(t) = absoluteV alue(P (t + 1) − O(t + 1))

Epi =

∣∣∣∣∣∣∣∣∣∣

k1Ci√
ni∑
i=1

(Vi − Oij)
2

−
num∑
j=1

k2

√
(Si − Uj)

2

∣∣∣∣∣∣∣∣∣∣
(5)

– El: Learning entropy of perceptual motion systems, El = {Eli | i =
1, 2, . . . , ns}, It is used to describe the degree of learning of knowledge in
the system, and to characterize the self-learning and self-organizing charac-
teristics of the system. The knowledge entropy of the system t is defined as:

El(t) =
ns∑
i=1

Eli(t), (6)

Eli(t) = Eli(mj(t)|si) = −
ns∑
j=1

oij(t)log2oij(t) (7)

– E: The comprehensive entropy of the perceptual motion system indicate the
degree of the model on the overall macroscopic level of the system. It is
calculated by the knowledge entropy El and the predicted entropy Epi: E =
C1 × Epi + C2 × Eli where C1 and C2 represent the comprehensive entropy
parameters.

Basic working principle is as follows: t time, system to perceive its internal
state i ∈ S, calculate the moment of the current status of each action oriented
mapping matrix Oi(t) and the state of curiosity i(t); Add curiosity to any action
at random and select the action with the largest sum of orientation and curios-
ity according to the engine mechanism in the system. Perform the action, state
transition; After the transition, the foveal visual Angle of each target was twice
verified, and the state orientation value and orientation function value of the
new state were calculated. According to the information provided by the ori-
entation function, and the orientation mapping matrix is updated to obtain a
new perception − movement mapping. Finally, the prediction entropy Epi and
knowledge entropy Eli of foveal’s perspective target in this state are calculated.
The experiment ends until the loss falls to a certain value or the learning time
is greater than the end time.



Intrinsically Motivated Active Perception for Multi-areas View Tasks 603

3.3 Object Detection

Currently, the most advanced algorithms in the field of target detection are
based on deep neural networks. Girshick et al. proposed R-CNN [14], for each
region, extract the features with AlexNet with the last softmax layer removed.
Subsequently, R. Girshick further optimized the Faster R-CNN [15], designed
Region Proposal Networks, the speed is obviously improved. Ren et al. [16] An
improved framework was proposed through research that can jointly learn to
generate and score object proposals.

Redmon et al. [8,17] proposed YOLO, which generates the probability that
the candidate detection box and the per-box target belong to the category, thus
achieving good performance. The downside of YOLO is that it is not good for
objects that are close to each other, and for small targets, We hope to overcome
this problem by introducing foveal vision.

4 Curiosity-Based Learning Algorithm

In Oudeyer’s article [10], the effect of independent training between multiple
fields of view was achieved by proposing regional experts. Oudeyer [10] used
classic Machine learner to make the most appropriate operation, and the Meta
Machine learner feeds back to classM based on the result of the operation and
the error estimation of classM estimation, for multivariate update classM. Inter-
estingly, it seems that there is a certain degree of similarity with Generative
Adversarial Nets (GAN) [21].

Intrinsic motivation [9,18] is one of the indispensable skills in the study of
robotic autonomous learning today. But in the early days, intrinsic motivation
was paid attention to in the field of psychology [19,20]. In 1938, Skinner [11] first
proposed the concept of operantconditioning. Rosen et al. [12] used Skinner’s
proposal achieved the balance control of the inverted pendulum within a certain
distance. The system designed by Rosen was After reaching a certain steady
state, it is impossible to eliminate the occurrence of small probability events. Shi
et al. [13] established a cognitive model of the self-balancing robot perception
motion system based on the operator conditioning theory proposed by Skinner,
enabling the robot to obtain self-learning in the process of movement The skill of
exercise balance, but the action selection mechanism adopted by Shi also causes
small probability events to occur.

5 Experimental Results

In the experimental setup, we placed the camera platform in the middle of long
tables with some targets to be tested and shown in Fig. 2. The background behind
the desk is very complicated. We expect our curiosity mechanism to be very good
at avoiding complex background interference. Keep curiosity and attention on
the goals on tables.
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Fig. 2. The environment around the camera platform during the experiment.

Fig. 3. Foveal perspective of the target of interest in position 4 (pos4).

Fig. 4. Foveal perspective of the target of interest in position 5 (pos5).

The experiment is to observe the current environment by the unconstrained
camera platform. After the camera first cycles through the surrounding envi-
ronment, the convolutional neural network separates each suspected target of
the context. The suspected target performs secondary verification and specific
feature learning of the foveal field of view one by one and performs curiosity and
orientation assignment of the state of view of the environment according to the
degree of learning. Figures 3 and 4 shown the feature learning of the foveal field
of view separately for targets in different fields of view.
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For the surrounding environment, we set up a 3× 3 area division, each area
is calibrated to a field of view. The state of view of the PTZ camera actively
perceived during the exploration process is shown in Fig. 5.

Fig. 5. The state of view of the PTZ camera actively perceived during the exploration
process.

We took three groups experiments to study what role the curiosity-based
intrinsic motivation strategy play. All experiments set up in the same perception
environment, used same perception device, and same loss calculation method.
We only change the method that next view field selection. We took a ordinal
selection strategy in first experiment, a random selection strategy in second,
and a strategy introduced in this paper in third. The pos changes of the three
experiments are shown in Fig. 6.

Fig. 6. Camera position(pos) changes of the three experiments. The left: ordinal strat-
egy. The middle: random strategy. The right: curiosity-based intrinsic motivation strat-
egy.

After the completion of the three experiments, for the more intuitive com-
parison, we retained the display form of the nine field of view states. Figure 7 is
a line chart of the results of the curiosity changes of the three experiments in
the nine fields of view. It can be seen from the result graph that the green curve
representing ordinal in each field of view is stable and uniform, while the blue
fold line representing random has a relatively undulating change, and the red
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fold line representing curiosity is large. The curiosity in a certain state decreases
as the number of times the state is explored decreases. The change of curiosity
in the nine visual states of the system is shown in Fig. 7. The decline in curiosity
represents the learning of the state of vision. The greater the curiosity, the more
goals that represent unseen and the more complex the types of goals.

Fig. 7. The line chart of the results of the curiosity changes of the three experiments
in the nine fields of view, each field of view in the green lines represent ordinal, blue
lines for random, red lines for curiosity. (Color figure online)

The system state orientation value is a value used to determine the orien-
tation function, which corresponds to the perceived state of the system. The
orientation value of each state is [0, 1]. 0 is the state orientation value of the
worst state, and 1 is the state orientation value of the most ideal state. Dur-
ing the learning process, the camera platform can update the orientation value
function by updating the orientation values of the respective states in real time
as shown in Fig. 8, thereby further affecting the perception−motion orientation
mapping set.

The change in loss in the nine fields of view is shown in Fig. 9. The green curve
representing the ordinal drops very evenly, and there is no long-term continuous
exploration of a particular state. The red curve using the curiosity mechanism
will drop sharply at some point in each field of view. When the loss of a certain
field of view falls to a certain level at a certain moment, the learning effect of
the field of view is improved at that moment. Curiosity will also decline, and the
system will automatically jump to other fields of vision to learn, So the process
in Fig. 9 is that the moments of the red line breaks in each state are staggered.
Loss is the predictive entropy and learning entropy of the perceptual motion
system. It can characterize the self-learning and self-organization characteristics
of the system.
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Fig. 8. The line chart of the results of the orient changes of the three experiments in
the nine fields of view, each field of view in the green lines represent ordinal, blue lines
for random, red lines for curiosity. (Color figure online)

Fig. 9. The line chart of the results of the loss changes of the three experiments in the
nine fields of view, each field of view in the green lines represent ordinal, blue lines for
random, red lines for curiosity. (Color figure online)

We also introduce the foveal field of view through PTZ camera to perform
secondary verification and more detailed feature learning, this means more accu-
rate and robust object recognition. In order to verify the effect of foveal visual
field on the active perception system, under the conditions of the same percep-
tion environment, we compared the results of using foveal visual field and not
using foveal visual field by controlling variables. The experimental results are
shown in Fig. 10.
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Fig. 10. In the case where the other conditions were not changed, a comparative exper-
iment was conducted by changing whether or not to use the foveal field of view. The
results show that the performance of the active sensing process using the foveal field of
view is faster, and the Non-Foveal experiment does not detect enough for long-range
and small-sized targets, resulting in poor performance.

6 Conclusions

The current research on active-aware robots is fiery, We refer to bionics to imitate
the process of biological perception of the surrounding strange environment,
using the combination of Intrinsic motivation and convolutional neural network,
and the related experiments of active sensing by adding foveal field of view.
Experiments show that active sensing is faster and more accurate than random
sensing process and ordinal sensing process. The comparative experiment of
foveal field of view proves that the foveal field of view with high pixel rich
semantic information is more robust to active perception and less time overhead.
We look forward to the next step in the visual perception of better research
results.
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