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1 Introduction

Dynamic mode decomposition (DMD) is a data-driven, matrix decomposition
technique developed using linear Koopman operator concept [1]. The key feature
of DMD algorithm is its ability to extract both spatial and temporal patterns of
the data where existing methods are restricted to either of the patterns [2]. DMD
algorithm found its application in a variety of domain-specific applications, such as
fluid flow analysis, neural data analysis, load forecasting, parameter estimation, and
image processing. In all these applications, DMD identifies the underlying dynamics
of the associated system through measured data [3]. This peculiar ability of DMD
makes it a suitable choice for different tasks.

This chapter gives an overview of DMD algorithm and its application in various
fields as an emerging data-driven algorithm. In this chapter, the capability of DMD
algorithm for complex data analysis is well explored with numerous examples.
To show the effectiveness and potential of DMD, the examples are selected from
various disciplines with distinct applications. The rest of the chapter is organized as
follows. Section 2 gives the theoretical explanations and mathematical descriptions
of the DMD algorithm in detail. Section 3 discusses the applications of DMD in
different disciplines of science and engineering. The applications considered in this
chapter are harmonics monitoring and parameter estimation in smart grid, complex
flow analysis in fluid dynamics, short-term forecasting of electric loads, and image
saliency detection.
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2 Dynamic Mode Decomposition Algorithm

The spatiotemporal data analysis tool known as dynamic mode decomposition
(DMD) is built based on the concepts of singular value decomposition (SVD) [4].
DMD has revolutionized the fluid dynamics community due to its peculiar behavior
to approximate the underlying dynamical characteristics of the system.

The DMD algorithm is closely related with proper orthogonal decomposition
(POD), widely used in structural engineering and fluid dynamics. The POD is
basically SVD. The data measurements for POD and DMD are assumed to be spatial
data arranged in the form of a matrix. Mathematically speaking, the data we are
capturing are a function over a rectangular field. The function value is assumed to
be varying over time. To study its dynamics, snapshots are taken at regular interval
of time. Figure 1 indicates the visualization of the data as snapshots over time.

The time-indexed vector data are arranged in the form of columns in a matrix X
as shown in Fig. 2. The time index is varied from 1 to m.

The X matrix is defined as follows:

X =
(

|
x1|

|
x2|

. . .
|

xm|

)
(1)

The SVD factorization of matrix X yields,

X = UΣV T (2)

Here, the data are assumed to be the sum of several independent spatial structures
evolving over time. This interpretation is possible if we split the matrix as a sum

Fig. 1 Illustration of the data
as snapshots

Fig. 2 Illustration of the data
arranged as the columns of
matrix X
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Fig. 3 Illustration of two matrices U and �VT

Fig. 4 Picturization of POD modes and its evolution over time

of several rank one matrices. For this, we consider the following two matrices as
shown in Fig. 3.

It is possible to express X as outer product of vectors from these two matrices. It
is defined as follows:

X = u1σ1v
T
1 + u2σ2v

T
2 + .. . . . + umσmvT

m (3)

The columns of U are called POD modes and are pairwise and mutually orthogonal.
Corresponding to each column vector uk, there is a scaled row vector σkv

T
k which

specify the evolution of uk over time indices from 1 to m and beyond. uk in turn may
be reshaped into the original matrix form. So, the term ukσkv

T
k may be visualized as

a matrix of values (structural patterns in data) evolving over time. This is picturized
in Fig. 4.

Upon comparing with POD, DMD is a much more powerful concept, and it
assumes that the evolution of the function over the rectangular field is affected by
the mapping of a constant matrix A. This concept is illustrated through Fig. 5.

DMD assumes that this A matrix captures the system’s inherent dynamics, and
thus, DMD objective is to find the A or equivalently its dominant eigenvalues and
eigenvectors [5]. The size of the matrix is decided by the size of the column vector
in X data matrix. If the column size is 1000 × 1, then size of the matrix A is
1000 × 1000. One assumption used here is that this matrix A is of low rank, and

hence, the sequence of vectors
|

x1|
,

|
x2|

,
|

x3|
, . . .

|
, xk|

, . . . ,
|

xm|
finally becomes a linearly

dependent set. That is, vector
|

xm|
becomes linearly dependent on previous vectors.
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Fig. 5 Visualization of data
mapping using A matrix

Now, let us try to express data matrix X in terms of eigenvectors associated with
matrix A as follows:

Akx1 = ΦΛkΦ†x1 = ΦΛkb

Akx1 = ΦΛkΦ†x1 = ΦΛkb = xk+1
(4)

where �† is pseudo inverse of �. Here, we assume matrix A of rank m. Hence, � is
having only m columns. That exactly is the reason for taking pseudoinverse rather
than inverse. The columns of � are called the DMD modes. Eq. (4) can be written
as follows:

xk+1 = Φ

⎛
⎜⎜⎜⎝

λk
1b1

λk
2b2
...

λk
mbm

⎞
⎟⎟⎟⎠ =

(
|

φ1
|

|
φ2
|

. . .
|

φm
|

)⎛
⎜⎜⎜⎝

λk
1b1

λk
2b2
...

λk
mbm

⎞
⎟⎟⎟⎠ (5)

For k = 0, Eq. (5) yields,

x1 =
(

|
φ1
|

|
φ2
|

. . .
|

φm
|

) ⎛
⎜⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎟⎠

For k = 1, Eq. (5) yields,

x2 =
(

|
φ1
|

|
φ2
|

. . .
|

φm
|

) ⎛
⎜⎜⎜⎝

λ1
1b1

λ1
2b2
...

λ1
mbm

⎞
⎟⎟⎟⎠
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And finally, for k = m − 1, Eq. (5) yields,

xm =
(

|
φ1
|

|
φ2
|

. . .
|

φm
|

) ⎛
⎜⎜⎜⎝

λm
1 b1

λm
2 b2
...

λm
mbm

⎞
⎟⎟⎟⎠

Now following the above relation, we can express data matrix X as the sum of m
rank-1 matrices. Each such matrix can be thought of as time evolution of DMD
mode.

X = b1

|
φ1
|

(
1 λ1

1 · · · λm
1

) + b2

|
φ2
|

(
1 λ1

2 · · · λm
2

) + · · · + bm

|
φm
|

(
1 λ1

m · · · λm
m

)
(6)

Now the remaining question is how to find the eigenvalues and eigenvectors of A
in an efficient way. For answering this question, DMD forms two data matrices (X1
and X2) as defined below using the data measurements.

X1 =
( |

x1|
|

x2|
. . .

|
xm−1

|

)
(7)

X2 =
( |

x2|
|

x3|
. . .

|
xm|

)
(8)

The relation between the data matrices, X1 and X2, is defined using the A matrix.

X2 = AX1 (9)

By taking the SVD of the data matrix, X1

X1 = UΣV H (10)

By substituting Eq. (10) in Eq. (9) gives

A = X2X
†
1 = X2V Σ†︸ ︷︷ ︸

B

UH ⇒ AU = B (11)

However, for many practical applications, A will be a large dimension matrix and
its eigendecomposition becomes a computational burden [6]. Hence, a rank reduced
matrix, Ã, which shares the same nonzero eigenvalues of A is introduced to resolve
the issue. For deriving the expression for Ã, consider expressing each data vector in
terms of POD modes (the POD modes of data matrix X1 are column vectors in U).
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The data vector x1 is expressed as the linear combinations of POD modes as
follows:

Ux̃1 = x1 (11)

Equation (11) can also be thought as a projection of data vector x1 on POD modes
and is equivalent to xH

1 U = x̃H
1 . Here, the tuple size of x̃1 is far less than that of

x1, since the numbers of POD modes are few (less than m). Following the above
interpretation, the kth and k + 1th data vectors are expressed as follows:

xk = Ux̃k and xk+1 = Ux̃k+1 (12)

By taking the concept explained in Fig. 5, it is possible to express xk + 1 in terms of
A as follows:

xk+1 = Axk (13)

Now from Eq. (12) and Eq. (13),

Ux̃k+1 = AUx̃k ⇒ x̃k+1 = UH AUx̃k = Ãx̃k (14)

That is,

Ãx̃k = x̃k+1 (15)

The matrix Ã defined in Eq. (15) represents the low-dimensional dynamical
evolution. From this, we can easily infer original dynamics using the relation
xk = Ux̃k .

Now, by combining Eq. (11) and Eq. (15),

Ã = UH AU ⇒ Ã = UH B (16)

The matrix Ã is a very low-dimensional matrix compared to A and shares the same
set of nonzero eigenvalues with A. The spectral decomposition of Ã yields,

Ã = WΛW−1 (17)

Here, W denotes the eigenvector matrix and 
 denotes the eigenvalue matrix ofÃ.
The dynamic mode matrix, �, is obtained as follows:

Φ = BW = X2V Σ†W (18)

The columns of dynamic mode matrix, �, represent the eigenvectors of A.
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3 Applications of DMD

This section explains the applications of DMD in different disciplines of science and
engineering. Due to the increased availability of huge data measurements, the usage
and application of data-driven algorithms like DMD are exponentially growing. An
illustration of the usage of DMD in different disciplines is depicted through Fig. 1.
As evident from Fig. 6, the DMD algorithm can be used for various domains, such
as fluid dynamics, financial markets, text analytics, control, multimedia, smart grid,
images, and medical sciences. This section describes a few important applications
of DMD.

Smart grid: Due to the introduction of distributed generation systems, renewable
energy sources, and flexible loads, electric grid is facing issues related to power
quality, stability, reliability, control, and protection. In the recent past, DMD is
widely being exploited for different smart grid applications, such as stability
analysis and modal identification [7, 8]. Here, we are discussing the application of
DMD for harmonics monitoring and parameter estimation in power grids [9]. The
frequency information of power signals is possible to extract using the eigenvalues
of dynamic mode matrix. In [9], the authors have developed a novel methodology for
detecting the frequencies in power signals by employing shift-stacked data matrix
concept and SVD hard thresholding. The stacking of multiple time-shifted copies of
power signals to form the initial data matrices helps to overcome the limitation of
DMD algorithm to extract the multiple frequency components. Further, the singular
value-based hard thresholding eliminates the singular values that corresponds to
noises and other uncertainties in power signals. The performance of DMD for
detecting the multiple frequencies and associated amplitudes in power quality (PQ)
signals are shown in Fig. 7. DMD has prominent results than various other data-
adaptive algorithms, such as variational mode decomposition, empirical wavelet
transforms, and synchro-squeezing transforms, for power signal analysis [10–12].

Fig. 6 Illustration of the data-driven analysis using DMD in different disciplines
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Fig. 7 Performance of the DMD for detecting the disturbance components in PQ signal

Fluid dynamics: Fluid flows are characterized by several temporal features and
spatial coherent structures. Extraction of oscillatory modes and growth/decay rates
of each mode is needed for the characterization of flow data. DMD algorithm
is initially been proposed for turbulent fluid flow analysis [3]. DMD identifies
the coherent structures of fluid flow and which can be used for extracting the
oscillating modes and its growth/decay rates [13]. Understanding of these structures
is important to characterize the dynamical behavior of fluid flow. The analysis
by considering a dataset pertaining to fluid flow around a circular cylinder at
Reynolds number Re = 100 using DMD is shown in Fig. 8. In this example, we are
interested in computing the first r = 15 dominant DMD modes by considering the
corresponding eigenvalues. The eigenvalues captured over the unit circle indicate
the stable DMD modes, and these can be further used for finding the associated
coherent structures in the data.

Forecasting: Another prominent application of DMD is forecasting/prediction of
time-series data. DMD captures the features of the measured time-series data and
is been utilized for prediction of future system state. DMD is mapped for financial
forecasting in financial markets [14] and short-term load forecasting (STLF) in the
power grid [15]. In [15], a novel data-driven strategy for STLF task is proposed
using DMD. In this model, the ability of DMD to extract the meaningful, hidden
tractable information from load series data is utilized for STLF. The main advantage
of the model is the capability to handle the load series data that is affected by
multiple factors, including time, day, seasons, climate, and socioeconomic activities.
To forecast the load demand for a selected day, (1) data from two immediate
previous days, (2) data from the same day in the previous week, and (3) data from the
previous day in the previous week are used. Independent of heavy training stages,
less amount of input data, and no parameter tuning are the key features of DMD-
based STLF strategy. The DMD-based STLF model is adaptive to multiple seasonal
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Fig. 8 The DMD eigenvalues correspond to 15 dominant modes in the absence of noise with
r = 15

and cyclic patterns in load data and thus offers an improved generalization ability for
load prediction of different seasons. On comparing with single stage and ensemble
models, DMD-based model is less complex and offers fast estimation. Thus, this
model can be used as an efficient tool for STLF in interconnected smart grid.

Figure 9 demonstrates the forecasting ability of DMD model for one-day ahead
task. As clear from Fig. 9, the model predicts the day-ahead load more precisely
than conventional autoregressive approaches.

Image analysis: The analytical property of DMD is been exploited for image
processing applications. To effectively utilize DMD for static image processing
applications, a dynamic representation of image data is needed. Here, we are
discussing about saliency region detection and segmentation application of DMD
[16]. In [16], the authors have proposed a novel idea to import dynamicity to
static images by exploiting the color and luminance information. The full resolution
salient maps are created in this way. Thus, this work utilized the analytical power
of DMD for image saliency and segmentation application in color images. The
developed saliency maps using DMD can be used for image classification, object
detection, and image retrieval applications. The image saliency detection results of
the DMD method is shown in Fig. 10. As evident from Fig. 10, the saliency maps
created using DMD capture the saliency information in the images accurately.
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Fig. 9 One-day ahead forecasting results using DMD approach on Australian grid data. Forecast-
ing results for (a) 10-Feb-2017, (b) 15-Apr-2017, (c) 27-Jul-2017, (d) 15-Oct-2017

Fig. 10 The results of DMD-based image saliency detection

4 Conclusion

The data-driven algorithms are widely explored to deal with the heterogeneous data
available in different discipline of science, engineering, and medicine as it can
extract more valuable information regarding the underlying system. The dynamic
mode decomposition (DMD) is a leading data-driven algorithm that decomposes the
complex systems into spatiotemporal coherent structures or modes. The modes can
be used for identifying the latent dynamic characteristics of the underlying system.
Originated in fluid dynamics community, DMD has gained its attention in different
domains for various tasks, such as system analysis, forecasting, image analysis,
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video processing, and control systems. This chapter provides the details of DMD
algorithm with mathematical explanations. The characteristics of DMD algorithm
is explained with respect to POD and SVD, both are dominant techniques for data
analysis. This chapter also covers the application of DMD in frequency estimation
in smart grid, fluid flow analysis, short-term load forecasting, and image saliency
detection tasks. Through the evaluation, it is concluded that DMD can be used as an
emerging data-driven tool for various applications in different domains.
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