
Chapter 16
Logistic Cusp Catastrophe Regression for
Binary Outcome: Method Development
and Empirical Testing

(Din) Ding-Geng Chen and Xinguang Chen

Abstract Cusp catastrophe models are unique to advance life sciences, psychol-
ogy and behavioral studies. Extensive progresses have been made to utilize this
modeling technique for continuous outcome and there is no development for binary
data. To fill this gap, this chapter is then aimed to develop a cusp catastrophe
modelling method for binary outcome. Building upon our previous research on the
nonlinear regression cusp (RegCusp) catastrophe model for continuous outcome,
we propose a logistic cusp catastrophe regression (LogisticCusp). LogisticCusp
is based on the principles of logistic regression for binary outcome variable y
(yes/no) being expressed as a latent binary variable Y through a logit link. This
latent regression provides a mathematical connection between an observed outcome
variable as a binomially distributed random variable and the deterministic cusp
catastrophe at its equilibrium. By connecting the two, Y in the LogisticCusp is
considered as one of the true roots of the deterministic cusp catastrophe model
determined using the Maxwell or Delay conventions. We validate the method using
a 5-step Monte-Carlo simulation with two predictors and three parameters for
both bifurcation and asymmetry control variables. We further tested the method
with binge drinking behavior in youth with data from the Monitoring the Future
Study. Results from 5000 Monte-Carlo simulations indicate that the parameter
estimates obtained through LogisticCusp are unbiased and efficient using maximum
likelihood estimation with quasi-Newton numerical search algorithm. Results from
empirical testing with real data are consistent with those estimated using other
methods. LogisticCusp adds a new tool for researchers to examine many issues in
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psychology, life sciences, and behavioral studies, particularly, issues in medicine
and public health with the powerful cusp catastrophe modeling for binary outcome.

Keywords Cusp catastrophe model · Logistic cusp catastrophe regression ·
Bifurcation · Asymmetry · Binary outcome

16.1 Background

Up to date, the statistical models commonly used to examine medical, health,
psychological, and socio-behavioral outcomes depends on the linear regression and
continuous change approach (Chen & Chen, 2015, 2019; Chen, Stanton, Chen,
& Li, 2013). However, in the real world, these outcomes are rarely linear and
continuous because of the nature of the medical, health, and behavioral outcomes
and the multiple, complex influences of environmental, behavioral, psychological,
and biological factors (Chen, Lin, Chen, Tang, & Kitzman, 2014; Chen et al.,
2010; Witkiewitz, van der Maas, Hufford, & Marlatt, 2007; Xu & Chen, 2016).
What might appear to be small and inconsequential changes in one of these factors
can lead to abrupt and sudden changes in an outcome (Thom, 1975). Under these
conditions, a linear and continuous approach seriously limits the predictability of
the influence of hypothesized factors on a particular outcome variable (Chen &
Chen, 2015, 2019; Chen, Wang, & Chen, 2019) and therefore a new paradigm to
incorporate nonlinear and discrete behaviors is needed to fill this knowledge gap.

16.1.1 Cusp Catastrophe for Nonlinear Discrete Systems

To account for nonlinearity and discrete characteristics in low-dimensional sce-
narios, researchers often turn to natural extensions of a linear regression model,
including the kernel regression or regression/smoothing splines (Berk, 2008; Far-
away, 2009; Guastello & Gregson, 2011). In addition to these nonparametric
methods, other techniques for use with high-dimensional data include additive
models, multivariate adaptive regression splines, random forests, neural networks,
and support vector machine. These techniques have been discussed extensively
elsewhere (Chen & Chen, 2017; Faraway, 2009). Despite much strength, these
nonparametric methods do not have a mechanism to identify and incorporate a
medical, health and behavior outcomes with sudden and discrete changes and multi-
modes. Cusp catastrophe model is one that is capable to quantify such a mechanism.

As a complement to many traditional analytical approaches, the cusp catastrophe
model offers distinct advantages given its capacity to not only simultaneously
handle complex linear and nonlinear relationships in a high-order probability
density function but also to incorporate sudden jumps in outcome measures, as
outlined in Zeeman (Zeeman, 1977) and Gilmore (Gilmore, 1981). Catastrophe
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theory was proposed in the 1970s (Thom, 1975) to understand a complicated set of
behaviors that included gradual, continuous changes as well as sudden and discrete
or catastrophic changes in general. The cusp catastrophe model has been used
extensively in a wide range of research fields, including the modeling of tobacco
use (Xu & Chen, 2016), adolescent alcohol use (Clair, 1998), changes in adolescent
substance use (Mazanov & Byrne, 2006), binge drinking among high school and
college students (Chen et al., 2019; Guastello, Aruka, Doyle, & Smerz, 2008) adult
population (White, Tapert, & Shukla, 2017) and problem drinking among persons
living with HIV (Witkiewitz et al., 2007), sexual initiation and condom use among
young adolescents (Chen et al., 2010, 2013), nursing turnover (Wagner, 2010),
HIV prevention (Xu, Chen, Yu, Joseph, & Stanton, 2017), therapy and program
evaluation (Guastello, 1982), health outcomes (Chen et al., 2014), and accident
process (Guastello, 1989; Guastello & Lynn, 2014).

16.1.2 Established Methods for Cusp Catastrophe Modeling

Historically, three main implementation approaches have been established for data
analysis to conduct cusp catastrophe modeling.

The first method test the outcome variable if it follows cusp catastrophe by insert-
ing regression coefficients into the deterministic cusp model and the method was
operationalized by Guastello using a polynomial regression approach (Guastello,
1982; Guastello et al., 2008). This method is straight forward to understand and
the analysis can be completed using any software packages with regression analysis
functionality (Guastello & Gregson, 2011).

The second method uses a stochastic differential equation from Cobb and
his colleagues (Cobb, 1981; Cobb & Zacks, 1985; Grasman, van der Maas, &
Wagenmakers, 2009) with likelihood estimation implemented in an R package
“cusp”. Since the method was established by Cobb and implemented through
Grasman’s work, this approach has been named as Cobb-Grasman cusp modeling
(Chen et al., 2019).

The third method takes a different approach to solve the deterministic cusp
catastrophe model with a statistical approach. Different from the Cobb-Grasman’s
approach described above, in this method, the deterministic cusp catastrophe is
directly casted into the classical multiple regression with the outcome variable being
measured with a latent variable and the two control variables each being measured
as linear combination. In this modeling approach, method for estimation of the cusp
region is also provided (Chen & Chen, 2017). This Chen-Chen method has been
used in modeling harm perception and social influence on binge drinking among
high school students in the United States (Chen et al., 2019). In Chap. 15 of this
book, this method was used to model prostate-specific antigen (PSA), a biomarker
of prostate cancer in men.

http://dx.doi.org/10.1007/978-3-030-35260-8_15
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16.1.3 Need for Methods to Model Binary Data

All the methods described above for cusp catastrophe modeling are for continuous
outcome variables, and no one method is available for other types of outcomes, to
the best of our knowledge. To fill this methodology gap, in this chapter we attempted
a method to analyze binary outcome with cusp catastrophe model. In our previous
research, we developed a regression-based approach to solve for cusp catastrophe
model for continuous outcomes (Chen & Chen, 2017) and used it in analyzing
binge drinking among youth (Chen et al., 2019). We used the same regression-based
approach in this new method with the continuous outcome being replaced by binary
outcome for cusp catastrophe modeling of binary data in the framework of statistical
logistic regression.

16.2 An Overview of the Cusp Catastrophe Model

Catastrophe theory was proposed in the 1970s by Thom (1975) and popularized over
the next two decades by several leading researchers (Cobb, 1981; Cobb & Ragade,
1978; Cobb &Watson, 1980; Cobb & Zacks, 1985; Gilmore, 1981; Thom& Fowler,
1975; Zeeman, 1977). Thom (1975) originally proposed the catastrophe theory to
understand complicated phenomena that included both gradual, continuous change
and sudden, discontinuous or catastrophic change.

16.2.1 Deterministic Cusp Model

To apply this model in research, the deterministic cusp catastrophe model can be
specified with three components: two control factors (i.e., α and β) and one outcome
variable (i.e., y). This model is defined by a dynamic system:

dy

dt
= −dV (y;α, β)

dy
(16.1)

where V, commonly called the potential function, is defined as

V (y;α, β) = −αy − 1

2
βy2 + 1

4
y4 (16.2)

In this potential function V, α is the asymmetry or normal control factor, and β

is the bifurcation or splitting control factor. Both α and β are linked to determine
the outcome variable y in a three-dimensional response surface. When the right side
of Eq. (16.1) moves toward zero, change in the outcome y also tends toward zero
with change in time; this status is called equilibrium. In general, the behavior of the
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outcome y (i.e., how y changes with time t) is complicated, but all subjects tend to
move toward equilibrium the surface.

16.2.2 Characteristics of the Cusp Catastrophe Model

Figure 16.1 graphically depicts the equilibrium surface that reflects the response
plan of the outcome measure (y) at various combinations of the asymmetry control
factor (the measure of α in Fig. 16.1) and the bifurcation control factor (the measure
of β in Fig. 16.1).

As shown in Fig. 16.1, dynamic changes in y have two stable regions (attractors),
which are the lower area in the front left (lower stable region) and the upper area
in the front right (upper stable region). Beyond these stable regions, y becomes
sensitive to changes in α and β. The unstable region can be projected to the control
plane (α, β) as the cusp region. The cusp region is characterized by line OQ (the
ascending threshold) and line OR (the descending threshold) of the equilibrium
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Fig. 16.1 Cusp catastrophe model for outcome (y) in the equilibrium plane with an asymmetry
control variable (the measure of α) and a bifurcation control variable (the measure of β)
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surface. In this region, y becomes highly unstable with regard to changes in α

and β, jumping between the two stable regions when (α, β) approaches the two
threshold lines OQ and OR. In Fig. 16.1, paths A, B, and C depict three typical but
distinct pathways of change in the health outcome measure (y). Path A shows that in
situations where y < O, a smooth relation exists between y and α. Path B shows that
in situations when y > O, if α increases to reach and pass the ascending threshold
link OQ, y will suddenly jump from the low stable region to the upper stable region
of the equilibrium plane. Path C shows that a sudden drop occurs in y as α declines
to reach and pass the descending threshold line OR.

The cusp catastrophe model can be used as both a qualitative and a quantitative
analytical method in research to investigate the relationship between predictors and
outcome variables (e.g., behaviors or health outcomes). The qualitative approach
focuses on identifying the five catastrophe elements (i.e., catastrophe flags) outlined
by Gilmore (1981), whereas the quantitative approach uses numerical data to
statistically fit the model.

16.3 Implementation of a Cusp Catastrophe Model

As described in the Introduction, since the introduction of the cusp catastrophe
model, three quantitative approaches have been developed and used to implement
the model for data analysis: Guastello’s polynomial regression, Cobb-Grasman
stochastic differential equation implemented in an R package “cusp”, and Chen-
Chen approach to cast the cusp catastrophe model into the nonlinear regression.

16.3.1 Guastello’s Polynomial Approach

Specifically, as the first implementation, Guastello’s approach is derived by refor-
mulating the cusp dynamic system in Eq. (16.1) in the differential equation form into
a difference equation system as outlined in Guastello (1982), Guastello et al., 2008).
Since its first publication, this approach has been widely used in analyzing research
data because this approach can be implemented in common statistical software
packages, including SAS, SPSS, STATA, and R. This approach makes it possible
the first time for many researchers to modeling social and behavioral issues with
cusp catastrophe modeling. Guastello’s approach is suitable for longitudinal data
with outcome variables measured at two time points that are not vary far from each
other.



16 Logistic Cusp Catastrophe Regression for Binary Outcome: Method. . . 389

16.3.2 Cobb-Grasman’s Approach

As the second approach in implementing the cusp catastrophe model is Cobb-
Grasman’s stochastic differential equation method (named thereafter as “SDE-
Cusp”). In this SDECusp approach, the deterministic cusp model in Eq. (16.1) is
first extended with a probabilistic/stochastic Wiener process. With this extension,
the modeling process incorporates measurement errors in the outcome variable.
Using this approach, the response surface of cusp catastrophe is modeled as a
probability density function where the bimodal nature of the outcome corresponds to
the two states of outcome variable. Mathematically, Cobb and his colleagues (Cobb
& Ragade, 1978; Cobb & Watson, 1980; Cobb & Zacks, 1985; Hartelman, van der
Maas, & Molenaar, 1998; Honerkamp, 1994) cast the deterministic cusp model in
Eq. (16.1) into a stochastic differential equation (SDE) as follows:

dz = ∂V (z, α, β)

∂z
dt + dW(t) (16.3)

where dW(t) is a white noise Wiener process with variance σ 2.
This extension is in fact a special case of general stochastic dynamical systems

modeling with a constant diffusion function defined by dW(t). Since the model
Eq. (16.2) cannot be solved analytically, computational implementation of this
stochastic model is limited. However, at the equilibrium state when time (t)
approaches the infinity, it is easier to estimate the probability density function
of the corresponding limiting stationary stochastic processes. In other words, the
probability density function of the outcome measure (y) can be expressed as follows:

f (y) = Ψ

σ 2 exp

[
α (y − λ) + 1

2β(y − λ)2 − 1
4 (y − λ)4

σ 2

]
(16.4)

where the parameter ψ is a normalizing constant and λ is used to determine the
origin of y.

With this probability density function, the regression predictors α and β can
be incorporated as linear combinations to replace the canonical asymmetry factor
(i.e., α) and bifurcation factor (i.e., β). Note that as a distribution for a limiting
stationary stochastic process, this probability density function in Eq. (16.3) is
independent from time t, thus it can be used to model cross-sectional relationship
with the advantage to detect and quantify its potential cusp nature comprising both
sudden and continuous states. Moreover, the probability density function allows
the well-known statistical theory of maximum likelihood to be used for model
parameter estimation and statistical inference. R Package “cusp” has been developed
to implement this SDECusp (Grasman et al., 2009). This SDECusp model with R
package “cusp” is extremely well-suited for use with cross-sectional data. We have
used this SDECusp model extensively for research and publications (Chen, Lin, et
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al., 2014; Chen et al., 2013; Diks & Wang, 2016; Katerndahl, Burge, Ferrer, Wood,
& Becho, 2015; Xu & Chen, 2016; Xu et al., 2017; Yu et al., 2018).

16.3.3 Chen-Chen’s Cusp Regression Approach

As the third approach, Chen and Chen (2017) developed a cusp catastrophe
nonlinear regression model (“RegCusp”) for continuous data as a conceptual model
that is guided by the statistical theory of nonlinear regression models (Seber & Lee,
2003). Following Eq. (16.1), the RegCusp model can be formulated as following:

yi = Yi + εi, (16.5)

where yi (i = 1, . . . ,n) are the observed outcome values and εi are the residuals from
n observations, and are assumed to be normally distributed as εi~N(0, σ 2).

Mathematically, it can be seen that the latent variable Yi in Eq. (16.5) is one of
the real roots of the deterministic cusp catastrophe equation:

αi + βiYi − Y 3
i = 0, (16.6)

where αi and β i are two control variables which is discussed later in the section of
cusp catastrophe conventions. For any observed data with p independent variables
(x1, . . . , xp) and the outcome variable yi, the variables αi and β i are the control
variables for ith subject.

In modeling analysis, these two control variables αi and β i are modeled in a way
similarly to the Cobb-Grasman (Cobb & Zacks, 1985; Grasman et al., 2009):

αi = a0 + a1x1i + · · · + apxpi =
p∑

j=0

ajxji (16.7)

βi = b0 + b1x1i + · · · + bpxpi =
p∑

j=0

bjxji (16.8)

With the formulations of Eqs. (16.5)–(16.8), a nonlinear regression method
can be used to estimate the model parameters of a = (a0, a1, . . . , ap),
b = (b0, b1, . . . , bp) from Eqs. (16.7) and (16.8). The model parameters can
be estimated using maximum likelihood estimation with the likelihood function
formulated as follows:

L
(
a, b, σ 2|data

)
=

(
1√
2πσ

)n

exp

(
−

∑n
i=1 (zi − Zi)

2

2σ 2

)
(16.9)
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With the likelihood function defined in Eq. (16.10), the theory of likelihood
estimation can be readily applied to estimate RegCusp parameters as well as the
associated statistical inferences on parameter significance and model selection.

16.4 Cusp Catastrophe Modeling of Binary Data

To establish the logistic cusp catastrophe regression model, we start with the binary
data structure, then introduce logistic cusp catastrophe regression, conventions and
algorithm for parameter estimation, and the method for cusp region estimation.

16.4.1 The Binary Data Structure

Suppose data from n participants are available as data = (yi, x1i, . . . , xpi)
(i = 1, . . . , n) where yi is observed binary outcome with 0/1 from the ith
participants, x1i, . . . , xpi are the corresponding p-independent variables. Then
yi will be binary distributed as:

yi ∼ Binary (pi) (16.10)

where pi = Pr(yi = 1) is the probability to observe category 1.

16.4.2 The Binary Cusp Catastrophe Model

We make use of the logistic type of regression to model the logit of pi to the latent
variable Yi, such that

pi = exp (Yi)

1 + exp (Yi)
(16.11)

is one of the real roots of the deterministic cusp catastrophe equation:

αi + βiYi − Y 3
i = 0, (16.12)

where αi and βi are two control variables which is discussed later in the section of
cusp catastrophe conventions.

The two control variables of αi and β i are modeled in a way similarly to
SDECusp with the linear combination of multiple independent variables in Eqs.
(16.7) and (16.8)
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16.4.3 Maximun Likelihood Estimation

With the formulations of Eqs. (16.10) to (16.12), a maximum likelihood procedure
can be developed to estimate the model parameters of a = (a0, a1, . . . , am),
b = (b0, b1, . . . , bm) from Eq. (16.7) and (16.8) as well as the associated sta-
tistical inferences on parameter significance and model selection. Based on the
theory of maximum likelihood estimation, the parameters of a = (a0, a1, . . . , am),
b = (b0, b1, . . . , bm) are estimated by solving the system of gradient equations
and their associated variances can be obtained by the Fisher information matrix
or Hessian matrix.

Specifically, we construct the likelihood function from Eq. (16.10) as follows:

L (a, b|data) =
n∏

i=1

p
yi

i (1 − pi)
1−yi (16.13)

To maximize the likelihood function defined in Eq. (16.13) is equivalent to
maximize the log-likelihood function as follows:

logL (a, b|data) =
n∑

i=1

[
yi log (pi) + (1 − yi) log (1 − pi)

]

=
n∑

i=1

[
yiYi + log (1 − pi)

] (16.14)

16.4.4 Cusp Catastrophe Conventions

The cusp catastrophe model is not the traditional statistical model in which
each combination of independent variables is associated with one and only one
outcome value. In fact, the RegCusp model formulated from Eq. (16.6) and the
LogisticCusp model formulated from Eq. (16.12) could have one, two, or three roots
for each αi and β i combinations depending on the locations on the control plan,
defined by Eqs. (16.7) and (16.8). There three roots can be solved analytically as
follows:

Y1 = 1

6

∇2/3 + 12β

∇1/3 Y2 = 1

12

√
3I∇2/3 − 12

√
3Iβ − ∇ 2

3 − 12β

∇1/3 , and

Y3 = − 1

12

√
3I∇ 2

3 − 12
√
3Iβ + ∇ 2

3 + 12β

∇1/3

(16.15)
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where I = √−1 as the imaginary unit, ∇ = 108α + 12
√
3Δ and � = 27α2 − 4β3

is the well-known Cardan discriminant. Which one to choose to fit the likelihood
function in Eq. (16.13) for the latent variable Y in Eq. (16.12) would have to be
determined using the Cardan discriminant.

From Eq. (16.15), it can be derived that when � > 0, Eq. (16.12) has one real
root; but when � ≤ 0, Eq. (16.12) has three real roots. Among these three roots,
there are three cases: (a) if α = β = � = 0, the three roots are the same, which is
referred as the cusp point (labeled O in Fig. 16.1); (b) if � = 0, but α �= 0 or β �= 0,
two roots are the same, which are the two lines OQ and OR forming the boundary
for the cusp region (Fig. 16.1); and (c) if � < 0, and α �= 0 or β �= 0, the three roots
are distinct, which characterizes the cusp region between OQ and OR also indicated
in Fig. 16.1. Therefore, this LogisticCusp model is no longer within the traditional
domain of mathematical and statistical modeling. Further investigation is needed to
identify the statistical properties of this LogisticCusp model.

To select the correct root for the cusp catastrophe model described by Eq. (16.12),
we used two modeling conventions: delay convention and Maxwell convention. The
delay convention is used to select the root from the cusp surface of dV (y;α,β)

dy
= 0

in Eq. (16.1) that are close to the observed y. The Maxwell convention is used to
select the roots on the cusp surface of dV (y;α,β)

dy
= 0 in Eq. (16.1) corresponding to

the minimum of the associated potential function V (y;α, β) = αy + 1
2βy2 − 1

4y
4.

16.4.5 Cusp Region Estimation

Based on the discussion above, the boundary of the cusp region depicted in Fig.
16.1 can be constructed from � = 0. Since � = 27α2 − 4β3, this can be solved
at β = 3

√
27α2/4. Therefore for the asymmetric parameter α from a range of lower

limit (say, αLower Limit) to upper limit (say, αUpper Limit), β can be calculated by at
β = 3

√
27α2/4 which would correspond to the two lines OQ and OR forming the

boundary for the cusp region (Fig. 16.1).
When α = β = 0, then � = 0 which would be the cusp point as commonly

referred as the cusp point (labeled O in Fig. 16.1). When � < 0, the values of (α,
β) are within the cusp region and when � > 0, the values of (α, β) are outside the
cusp region.

This cusp region under (α, β) coordinate system can be easily transformed into
the original data coordinate system of the interest based on the estimated Eqs. (16.7)
and (16.8). For example, if the interest is for (x1, x2), we can plug the estimated Eqs.
(16.7) and (16.8) with x1 and x2 varying and the other xs fixed into β = 3

√
27α2/4

and solve for x2 as a function of x1. This is illustrated in the real data analysis in
Sect. 4.
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16.4.6 Numeric Search Algorithms for Parameter Estimates

There are several methods to be used to maximize the log-likelihood function
in Eq. (16.13). We make use of R function “optim”. The default method is an
implementation of that of Nelder and Mead (1965) which uses only function values
and is robust but relatively slow. It will work reasonably well for non-differentiable
functions. Another commonly-used method is a quasi-Newton method (also known
as a variable metric algorithm), specifically that published simultaneously in 1970
by Broyden, Fletcher, Goldfarb and Shanno which is named as BFGS. The BFGS
uses function values and gradients for the optimization. Specifically, with the
log-likelihood function in Eq. (16.14), the parameters of a = (a0, a1, . . . , ap),
b = (b0, b1, . . . , bp) are estimated by solving the system of 2p + 2 gradients as:

(
∂logL

∂a
∂logL

∂b

)
(2p+2)×1

=
(

∂logL

∂a0
,
∂logL

∂a1
, . . . ,

∂logL

∂aj
, . . . ,

∂logL

∂ap
,
∂logL

∂b0
,
∂logL

∂b1
, . . . ,

∂logL

∂bj
, . . . ,

∂logL

∂bp

)’

= 0
(16.16)

where (.)’ in Eq. (16.16) denotes the vector transpose and the partial derivatives

in Eq. (16.16) can be derived as

⎧⎪⎪⎨
⎪⎪⎩

∂logL
∂aj

=
n∑

i=1

[
yi

∂Yi

∂aj
− 1

1−pi

∂pi

∂aj

]
∂logL
∂bj

=
n∑

i=1

[
yi

∂Yi

∂bj
− 1

1−pi

∂pi

∂bj

] for all j = 0,

1, . . . , p. In addition, the partial derivatives of ∂Yi

∂aj
and ∂Yi

∂bj
in the gradients can

be derived from Eq. (16.12) as ∂Yi

∂aj
= − xji

βi−3Y 2
i

and ∂Yi

∂bj
= − xjiYi

βi−3Y 2
i

. Also the

partial derivatives of ∂pi

∂aj
and ∂pi

∂bj
in the gradients can be derived from Eq. (16.11)

as ∂pi

∂aj
= pi (1 − pi)

∂Yi

∂aj
and ∂pi

∂bj
= pi (1 − pi)

∂Yi

∂bj
.

Equation (16.16) is highly complicated and it’s obvious that there are no
analytical solutions to solve the 2p + 2 gradients from Eq. (16.16) to estimate the
2p + 2 parameters of a = (a0, a1, . . . , ap) and b = (b0, b1, . . . , bp). Therefore,
a numerical iterative search algorithm has to be used to obtain the parameter
estimators from Eq. (16.16). We make use of Newton’s method (Nocedal &Wright,
1999) to solve Eq. (16.8) iteratively using following iterative scheme with a large
number of iterations of s = 1, . . . ,S (i.e. S > 1000):

(
a(s+1)

b(s+1)

)
=

(
a(s)

b(s)

)
−

(
∂2logL

∂a2
,

∂2logL
∂a∂b

∂2logL
∂a∂b

,
∂2logL

∂b2

)−1

⎛
⎝ a(s)

b(s)

⎞
⎠

(
∂logL

∂a
∂logL

∂b

)
⎛
⎝ a(s)

b(s)

⎞
⎠ (16.17)
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Note that in the right side of Eq. (16.17),

(
∂logL

∂a
∂logL

∂b

)
and

(
∂2logL

∂a2
,

∂2logL
∂a∂b

∂2logL
∂a∂b

,
∂2logL

∂b2

)
are the

gradient vector in Eq. (16.16) and the Hessian matrix evaluated at the sth iteration of

the parameters

(
a(s)

b(s)

)
. The Hessian matrix is a (2p + 2) × (2p + 2) matrix with its

elements of the associated second derivatives. Specifically, in the Hessian matrix,

• The upper-left matrix ∂2logL

∂a2
is a (p + 1) × (p + 1) matrix with diagonal

elements as ∂2logL

∂a2j
=

n∑
i=1

[
yi

∂2Yi

∂a2j
− 1

1−pi

∂2pi

∂a2j
+ 1

(1−pi)
2

(
∂pi

∂aj

)2]
for all j = 1,

. . . , p, and the off-diagonal elements as ∂2logL
∂aj ∂ak

=
n∑

i=1

[
yi

∂2Yi

∂aj ∂ak
− 1

1−pi

∂2pi

∂aj ∂ak

+ 1
(1−pi)

2
∂pi

∂aj

∂pi

∂ak

]
for all j, k = 1, . . . , p and j �= k.

• The upper-right matrix ∂2logL
∂a∂b

is the same as the lower-left matrix which is a

(p + 1) × (p + 1) matrix with elements as ∂2logL
∂aj ∂bk

=
n∑

i=1

[
yi

∂2Yi

∂aj ∂bk
− 1

1−pi

∂2pi

∂aj ∂bk

+ 1
(1−pi)

2
∂pi

∂aj

∂pi

∂bk

]
for all j, k = 1, . . . , p.

• The lower-right matrix ∂2logL

∂b2
is a (p + 1) × (p + 1) matrix with diagonal

elements as ∂2logL

∂b2j
=

n∑
i=1

[
yi

∂2Yi

∂b2j
− 1

1−pi

∂2pi

∂b2j
+ 1

(1−pi)
2

(
∂pi

∂bj

)2]
for all j = 1,

. . . , p, and the off-diagonal elements as ∂2logL
∂bj ∂bk

=
n∑

i=1

[
yi

∂2Yi

∂bj ∂bk
− 1

1−pi

∂2pi

∂bj ∂bk

+ 1
(1−pi)

2
∂pi

∂bj

∂pi

∂bk

]
for all j, k = 1, . . . , p and j �= k.

• In addition, all the second-order derivatives ∂2Yi

∂a2j
, ∂2Yi

∂aj ∂ak
, ∂2Yi

∂b2j
, ∂2Yi

∂bj ∂bk
, ∂2pi

∂a2j
,

∂2pi

∂aj ∂ak
, ∂2pi

∂b2j
and ∂2pi

∂bj ∂bk
in the above calculations of Hessian matrix can be

similarly obtained using the first-order derivatives from the calculations in Eq.
(16.16).

We name the above estimation process as “LogisticCusp” with respect to the
“RegCusp” in Chen and Chen (2017).

16.5 Test the Logistic Cusp Catastrophe Model Through
Monte-Carlo Simualtion

As the first step to examine the logistic cusp regression method described above, we
conducted Monte Carlo simulation studies with known parameters.
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16.5.1 Model Settings for Simulation

To conduct Monte Carlo simulation, surrogate data are generated using Eqs.
(16.10) to (16.12) with the number of observations n = 300. Two (i.e., p = 3)
independent variables x1 and x2 are simulated independently from the standard
normal distribution.

To test whether the novel model can correctly distinguish and determine the
model variables, we make use of the true parameters of a = (2, 2, 0), b = (2, 0,
2) from Eqs. (16.3) and (16.4) where a2 = 0 in Eq. (16.3) to represent the correct
model selection of x1 from Eq. (16.3) and b1 = 0 to represent the correct model
selection of x2 from Eq. (16.4).

16.5.2 Steps of Simulation Study

The simulation is an iterative process, and it was completed in the following seven
consecutive steps:

Step 1: With n = 300, simulate x1 and x2 from the standard normal distribution;
Step 2: With the true parameters a = (2, 2, 0) and b = (2, 0, 2) and the x1 and x2

from Step 1, calculate αi and β i from Eqs. (16.7) and (16.8);
Step 3: With the αi and β i from Step 2, solve Eq. (16.12) to obtain Yi and select

the one root corresponding to the Maxwell convention, or the minimum of the
associated potential function V(Yi, αi, β i);

Step 4: With the selected Yi from Step 3, generate the outcome variable yi using Eq.
(16.10);

Step 5: Using the data generated from Steps 1 through 4, the objective function
can be formed to estimate the parameters a and b based on Eq. (16.13) using
maximum likelihood estimation.

Step 6: Repeated Steps 1 to 5 for a large number of simulations (we used 5000
times) and record the estimated parameters

Following the steps described above, we first investigated the default Nelder and
Mead optimization and we found that the estimation from the maximum likelihood
is unbiased, but lack of efficiency of the Fisher information matrix for variance
estimation. We further investigated the gradients and Hessian matrix from Eqs.
(16.16) and (16.17) with the quasi-Newton (BFGS) and we found that BFGS
produced very satisfactory variance estimation. As a routine, we run the simulation
for 100,000 times to obtain the modeling results.
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Table 16.1 Summary of the
result for BFGS from 100,000
simulations

Parameter True Mean Median ECP

a0 2.0000 2.0412 2.0191 0.8491
a1 2.0000 2.0486 2.0231 0.7649
a2 0.0000 0.0129 0.0170 0.7176
b0 2.0000 2.0199 2.0114 0.8341
b1 0.0000 0.0032 0.0121 0.7721
b2 2.0000 2.0370 2.0180 0.6823

16.5.3 Results and Interpretation

Table 16.1 summarizes the main results from the simulation analysis. It can be
seen from Table 16.1 that the parameters are estimated unbiased (i.e., the “Mean”
and “Median” of the 100,000 estimated parameters are close to the “True” values)
and the empirical coverage probabilities (ECP) are very reasonable with more than
70%. We also investigated this BFGS estimation with 200,000 simulations, similar
conclusions are found.

Results from the simulation studies indicate that the LogisticCusp performed
quit well to estimate the known parameters of as and bs for the asymmetry and
the bifurcation control variables, including the intercept and the slope with small
differences between the known values and estimates. For example, the true value
for b1 is 2.0000, and the mean estimate is 2.0370.

16.6 Modeling Analysis with Real Data: Binge Drinking

We have known from the above simulation studies that the logistic cusp catastrophe
regression works well. To further demonstrate the utility of the newly established
method, we analyze real data using the logistic cusp regression method that
validated from the Monte-Carlo simulations.

16.6.1 Data Sources and Variables

Data used for empirical testing were 1122 youth lifetime drinkers derived from
the 2015 Monitoring the Future Study: A Continuing Study of American Youth
(12th-Grade Survey) (ICPSR 36408, URL: https://www.icpsr.umich.edu/icpsrweb/
ICPSR/studies/36408). Of the total sample, 48.6% were male, and 50.1% were
White and 24.4% were Black, 39.8% less than 18 years of age and 60.2% were
older than 18. The response variable in this study is the number of drinks (denoted
by “y”) in binge drinking. Based on self-reported data, 848 (75.6%) did not engage
in binge drinking in the past month, 130 (11.6%) engaged once, 72 (6.4%) engaged

https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36408
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36408
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twice and 72 (6.4%) engaged in three or more times. A binary variable if binge
drinking (y/n) (denoted by “y2”) was created for modeling with participants who
engaged in binge drinking at least once in the past month as yes; otherwise no.

Perception of alcohol harm was modeled as the asymmetry variable (denoted by
“x1”). The variable was measured using responses to the question: “How much do
you think people risk harming themselves (physically or in other ways), if they: (1)
Take one or two drinks nearly every day? (2) Take four or five drinks nearly every
day? (3) Have five or more drinks once or twice each weekend? Answer options to
these questions were: 0 (no risk), 1 (slight risk), 2 (moderate risk), 3 (great risk).
Items were reverse coded and mean scores (range: 0–3) were computed for analysis
such that 0 (most risk or highest level of harm) and 3 (least risk or lowest level
of harm). This measure was used in MTF’s research (Johnston, O’Malley, Miech,
Bachman, & Schulenberg, 2017) and reported studies indicate perceived harm is a
significant predictor of alcohol use in adolescents (Pedersen, Fjaer, & Gray, 2016).

Frequency of drinking in social settings was modeled as the bifurcation variable
(denoted by “x2”) based on the responses to the question: “When you used alcohol
during the last year, how often did you use it in each of the following situations?”
(1) With 1 or 2 other people; and (2) at a party. Answer options to the questions were
0 (not at all), 1 (few times), 2 (sometimes), 3 (most times), and 4 (every time). The
highest frequency (range: 0–4) at either of the two settings was used for modeling
analysis. Social setting has been reported as an influential factor for alcohol use in
high school and college students (Weitzman, Nelson, & Wechsler, 2003).

16.6.2 Modeling Analysis

Modeling analysis was conducted using the R program we developed and used in
the simulation studies presented in Sect. 4. For comparison purposes, we analyzed
the same data with Cobb-Grasman’s SDECusp and Chen-Chen’s RegCusp. In the
modeling analysis the asymmetry variable is the perceive alcohol as less risk,
and the bifurcation variable is the social setting for drinking. We consider two
types of outcome variable of binge drinking, y, as continuous variable and y2, as
the binary variable. Using continuous outcome, y, we can fit the typical multiple
linear regression (“Linear Regression”), the stochastic cusp catastrophe model
(“SDECusp”) and the regression cusp (“RegCusp”) catastrophe model. With the
binary outcome, y2, we can fit the LogisticCusp model in this chapter.

16.6.3 Parameter Estimates and Comparison

Results in Table 16.2 summarizes the parameter estimates and their associated
standard errors with standardized data on y, x1 and x2. Parameter estimates from
the linear regarrison and the three cusp catastrophe modeling methods are all
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Table 16.2 Results from linear and 3 cusp regression modeling methods

Model
Binge drinking
(outcome, y)

Perceived alcohol
as less risk (x1)

Social setting for
drinking (x2)

Cusp point
estimated

Linear
regression

Continuous (y) a1 = 0.187
(0.028)∗∗∗

b1 = 0.299
(0.028)∗∗∗

NA

SDECusp Continuous (y) a0 = −0.595
(0.031)∗∗∗

a1 = 0.169
(0.023)∗∗∗

b0 = 3.739
(0.087)∗∗∗

b1 = −0.221
(0.043)∗∗∗

(−1.545,
15.950)

RegCusp Continuous (y) a0 = −0.002
(0.035)
a1 = 0.132
(0.034)∗∗∗

b0 = −0.821
(0.033)∗∗∗

b1 = 0.916
(0.035)∗∗∗

(1.082, 2.483)

LogisticCusp Dichotomous
(y2)

a0 = 0.129
(0.002)∗∗∗

a1 = 1.252
(0.037)∗∗∗

b0 = −0.886
(0.008)∗∗∗

b1 = 2.948
(0.017)∗∗∗

(0.996, 1.982)

Note: values in the parenthesis are standard error

statistically highly statistically significant at p-value <0.001, except the a0 from the
RegCusp that is not (p > 0.05).

16.6.4 Comparison of the Estimated Cusp Regions

With SDECusp, RegCusp and LogisticCusp models, we can estimate the cusp point
in the cusp region as denoted by point O in Fig. 16.1. This can be done by setting
the estimated α and β in Eqs. (16.7) and (16.8) to be zero and solving for the
corresponding values of x1 and x2 which would be the estimated cusp point as
described in Section “Cusp Region Estimation”. As seen in Table 16.2, the cusp
point is estimated at (−1.545, 15.950) for SDECusp catastrophe model which is
out of data region. The estimated cusp point using RegCusp and BinaryCusp are
(1.082, 2.483) and (0.996, 1.982), respectively. The cusp point estimated using
these two method are reasonable compared to the cusp point estimated with the
SDECusp method. The estimated cusp point from the SDECusp was far off the data
range of the two predictor variables with x1 ranging from 0 to 3 and x2 from 0
to 4. According to the cusp point estimated with the RegCusp, sudden changes in
binge drink behavior would occur only when x1, the perceived alcohol harm was
slightly greater than 1 (somewhat harmful); and x2, the frequency of drinking in
social settings was about in the middle between 2 (sometimes) and 3 (most times).
If results from LogisticCusp is used, the values in the two control variables reduced
a bit. Sudden changes in binge drinking would occur when x1 is approaching 1.0
(perceive alcohol use as “somewhat harmful) and x2 is approaching 2 (sometimes
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Fig. 16.2 Estimated cusp point along with cusp region for both RegCusp (black line) and
LogisticCusp (red line) models

drinking in social settings). In another word, with a binary outcome, the estimated
sudden change becomes more sensitive than with a continuous outcome.

Figure 16.2 graphically illustrates the estimated cusp points and the associated
cusp regions for both RegCusp and LogisticCusp models. As seen in Fig. 16.2, the
dashed lines are for RegCusp model where the estimated cusp point is at ((1.082,
2.483) and the solid lines are for LogisticCusp model where the estimated cusp point
is at (0.996, 1.982).

16.7 Discussion and Conclusions

In this chapter, we report our research in successfully establishing the LogisticCusp
method for modeling binary outcome variables. The method is grounded on the
well-established logistic regression to solve for high-order cusp catastrophe models.
The innovative use of a latent binary variable creates a mathematical bridge
linking the deterministic cusp catastrophe with a statistical logistic regression. By
application of the log likelihood method and numerical search approach with either
Maxell or delayed convention, unbiased parameter estimates can be obtained; and
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by application of the bootstrapping, correct model variances can also be estimated.
In addition to validation through simulation, we empirically test the method using
data from national probability sample of youth with a binary variable for binge
drinking. Binary variables are more common than continuous variables in research.
The LogisticCusp provide a new and only tool, the first time for researchers to
examine challenge questions with binary outcome variables. Binary variables are
widely used by researchers in almost all scientific fields in addition to life sciences,
psychology and behavioral studies.

There are several advantages with the LogisticCusp method we developed. First,
all binary variables suitable for logistic regression can be used for cusp catastrophe
modeling to nonlinearity and discreteness of a phenomenon. Second, both the
asymmetry and bifurcation variables in a logistic cusp regression can be modeled
as either a single or multi-variate variable, greatly enhancing the flexibility for
modeling analysis. Research from this and previous analysis (Chen et al., 2019) also
indicate adequate validity of the estimated the cusp point, and the corresponding
cusp region and the two threshold lines with the LogisticCusp method. In addition
to assessing the validity of the estimated parameters, determination of the threshold
lines provide important data guiding practice to avoid sudden changes moving
toward unfavorable outcomes and to promote sudden changes leading to favorable
outcomes. Third, as in other method, R2 or the variances explained by a cusp model
can also be estimated as in the traditional regression analysis, facilitating model
comparisons to help determine whether a study variable is nonlinear discrete or
linear and continuous. Last, the method can be executed in R, free of charge.

There are a couple of limitations to the LogisticCusp method. Like many
statistical methods with numerical search for parameter solutions, the LogisticCusp
method is sensitive to initial values. Several measures can be used to help determine
initial values: a) Generate initial values using parameter estimates for the same data
but using other methods such as linear regression, logistic regression, RegCusp, and
SDECusp. (b) Check if the estimated cusp point, cusp region and the two threshold
lines are within the data range with a meaningful interpretation. Another limitation
is the variance estimation. Like in RegCusp, the estimated variances tended to be
too small for LogisticCusp. Despite that the bootstrapping provides as a remedy to
this issue, we will conduct further research to understand this issue.

Despite these limitations, the establishment of the regression-based approach,
including the LogisticCusp in this study and the RegCusp in our previous studies
(Chen & Chen, 2017; Chen, Chen, & Zhang, 2016) provide an innovative and highly
needed approach for researchers to solve for a deterministic cusp catastrophe model
with a statistical method capable of handling sampling and measurement errors. In
addition, the accurate estimation of the cusp point, cusp research and the threshold
lines advanced cusp catastrophe modeling from qualitatively detecting the cusp to
quantitatively describing cusp catastrophe. It is our anticipation that the application
of the regression-based cusp catastrophe modeling methods we established will
provide a set of great analytics to advance medical, health, social and behavioral
studies.
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