
Chapter 13
Bayesian Spatial-Temporal Disease
Modeling with Application to Malaria

Ropo Ebenezer Ogunsakin and (Din) Ding-Geng Chen

Abstract Background: Malaria remains a major public health challenge in Nigeria.
Considerable effort has been made to reduce the prevalence and impact of the
disease. The National Malaria Control Programme conducted a nationally repre-
sentative Malaria Indicator Survey (MIS) within the malaria peak transmission
season in 2008, 2010, 2013 and 2015 which comprises of all the six region of
Nigeria. In this study, the spatial and temporal modeling of malaria risk within each
region of Nigeria were studied using the MIS survey data. Methods: This study
used data obtained from the Nigeria demographic health survey (NDHS) database
to assess models; data were collected in 37 states between 2008, 2010, 2013 and
2015. We examine associations between malaria risk and socio-demographic factors
using 16 Bayesian Poisson spatial-temporal models that incorporate spatial and
temporal autocorrelations. The optimum model selected according to the deviance
information criterion and effective number of parameters in the Bayesian paradigm.
The models were implemented in R-INLA package. Results: The model included
spatially uncorrelated heterogeneity, temporally correlated random-walk autocor-
relation, and spatial temporal interaction model had small deviance information
criteria. This model was the best in examining the association between malaria risk
and socio-demographic factors using NDHS. The relationship between malaria risk
and socio-demographic factor is statistically significant. Conclusion: The spatial-
temporal interaction was statistically meaningful and the prevalence of malaria
was influenced by the time and space interaction effect. Wealth index and place
of residence have influence on malaria. To further reduce malaria burden, current
tools should be supplemented by socio-demographic development.
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13.1 Introduction

Malaria is endemic in Nigeria and remains a major public health burdens affecting
the world despite the remarkable accomplishment made towards its control and
prevention. Most of the burden of malaria is concentrated in Sub-Saharan Africa
(SSA) (Israel et al. 2018). Estimates in 2016 affirmed that 90% and 92% of the
global proportion of malaria cases and death were recorded in this region (Awuah
et al. 2018; Israel et al. 2018; Odugbemi et al. 2018; World Health Organization
2015) and Nigeria accounts for about 29% of this burden. Malaria is the third
leading cause of death among under five children globally and accounts for almost
one out of every five deaths in under five children (Abah & Temple 2015; Israel et al.
2018; Singh, Musa, Singh, & Ebere 2014). In Nigeria, it is estimated that about 110
million clinically diagnosed cases of malaria and nearly 300,000 malaria-related
childhood deaths occur each year (Israel et al. 2018; Kyu, Georgiades, Shannon,
& Boyle 2013). Evidence shows that the disease contributes to about 60% of all
outpatients visits, 30% of hospitalizations and 11% of maternal mortality in the
country (Bennett et al. 2017; Kassegne et al. 2017).

Considerable effort has been made to reduce the prevalence and impact of the
disease, however, the last decade of malaria control has witnessed increased support
by government and its partners in the areas of insecticide-treated nets (ITNs),
intermittent preventive treatment (IPT), indoor residual spraying (IRS), integrated
programme (IVM) and environmental management (EM), long-lasting insecticidal
net (LLIN) campaigns, replacement campaigns, intermittent preventive treatment
(IPT), and a massive scale up in malaria case management. The National Malaria
Control Programme (NMCP) in collaboration with Roll Back Malaria (RBM) also
keying into these global strategies plan (2009–2013) (Kilian, Boulay, Koenker, &
Lynch 2010). In 2010, more than 24 million long lasting impregnated net (LLIN)
were distributed across 14 states of Nigeria through a campaign supported by the
partners (Adigun, Gajere, Oresanya, & Vounatsou 2015). Preceding this time, one of
the state in South-South Nigeria have received more than 600,000 LLINs between
2008 and part of 2009 through the help of United State Agency for International
Development (USAID) (Kyu et al. 2013) for children under the age of five. These
efforts resulted into about 425 of households having at least one ITN (Adigun et al.
2015).

In addition, more than 70 million rapid diagnostic tests (RDTs) were distributed
among all the health facilities in the country between 2008 and 2010 which could
be freely used in malaria diagnosis and to provide immediate treatment based on the
results (World Health Organization 2015). It was further reported that 5% of malaria
cases were screened with RDTs in 2008. But in 2010, the number of pregnant
women who received preventive therapy during their routine antenatal care reached
13% which is an indication of low turnout for health care seeking behavior. In
view of the aforementioned, the effective malaria control strategies suggest a better
and comprehensive map of the spatial distribution of malaria prevalence. This can
help in efficient resource allocation for planning and intervention implementation
as well as the evaluation of their impact (Gemperli et al. 2006; Giardina et al. 2012;
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Gosoniu, Msengwa, Lengeler, & Vounatsou 2012; Hay & Snow 2006; Riedel et al.
2010). It is essential to identify the association between malaria risk and socio-
demographic factors. Such a study of the identification of the socio-demographic
risk factors is helpful in identifying region who have a critical need for intervention.
In Nigeria, previous studies have concluded that malaria risk are associated with
environmental and climatic factors (Adigun et al. 2015; World Health Organization
2017). In particular it was noted that intervention appear not to have important
effect on malaria risk. Nevertheless the spatial distribution of malaria was not
investigated (Adigun et al. 2015). However, the modeling of malaria risk in each of
the region in Nigeria has to be explored. Meanwhile, the spatial pattern of malaria
risk is known to vary, its temporal evolution has yet to be evaluated. Therefore, the
objective of this study was to determine the spatial-temporal modeling of malaria
risk in Nigeria taking into consideration socio-demographic factors.

In this research, we introduce Bayesian spatial-temporal modeling that incorpo-
rate spatial information in such a way that not only reflect the influences of space
and time but also reflect the interaction of space time on the preferred variable of
interest. In doing so, we use 16 Bayesian Poisson spatial-temporal techniques in
estimating model parameters.

13.2 Spatial-Temporal Data in Nigeria

13.2.1 Study Area

Nigeria is the most populous country in the continent of Africa, which is located
in the west sub region of Africa. The country is divided into 37 states grouped into
six (13.6) regions and covers an area of about 923,768 km2. Nigeria has the largest
population in Africa and the seventh largest in the world. The current population is
estimated at 177.1 million based on an annual growth rate of 3.2% (National Popu-
lation Commission [NPopC] 2016). Nigeria’s population is young, with persons age
0–24 accounting for more than 62% of the country’s residents (National Population
Commission 2010). According to the World Bank’s definition, Nigeria is a lower
middle income country. The country has tropical climate with two rainfall seasons
in a year (wet and dry season) which is accompanied with the movement of two
dominant winds: the rain bearing south westerly winds, and the cold, dry and dusty
north easterly wind generally referred to as the Harmattan. The wet season occurs
from April to September, and the dry season from October to March. The annual
rainfall ranges between 550mm in some part of the north mainly in the fringes of
Sahara desert to 4000mm in the coastal region around Niger delta area in the south.
The temperature in Nigeria ranges between 25 and 40 ◦C . The geographic location
of Nigeria makes suitable climate for malaria transmission throughout the country
and it is all year round in most part of the country (Adigun et al. 2015). Plasmodium
falciparum is the most prevalent malaria parasite species in Nigeria (Mouzin et al.
2012; National Population Commission 2012). Malaria transmission intensity, and
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seasonality vary among the country’s five ecological strata that extend from south to
north (National Population Commission 2012). Considering population density and
distribution of risk areas, an estimated 3%, 67% and 30% live in very low to low,
moderate, and high to very high transmission intensities area, respectively (Mouzin
et al. 2012). The transmission season increases from north to south in terms of
duration, in the space of 3 months in the north area bordering Chad to perennial
in the most southern part (Mouzin et al. 2012).

13.2.2 Country Profile

The data were collecteds using the standard malaria indicator questionnaires devel-
oped by the RBM and the demographic health surveillance programme. The dataset
consists of information such as, demographic characteristics and socio-economic
status which is on a nationally representative sample of around 6000 households
from about 240 clusters. Detail description of the sampling strategies is reported in
the final report of NMIS 2010 (National Population Commission 2012). The blood
samples were taken from 239 clusters due to some security challenges in one of
the clusters in northern part of Nigeria (National Population Commission 2012).
The prevalence from two diagnostic methods: RDT and microscopy was recorded
in the data (Wongsrichanalai, Barcus, Muth, Sutamihardja, &Wernsdorfer 2007). In
2015, malaria testing was done through both rapid diagnostic testing (RDT) as well
as blood smear microscopy. Of the 6316 eligible children, 95% provided blood for
RDT and 91% for malaria microscopy. The 2015 NMIS shows a malaria prevalence
of 45% by RDT and 27% by microscopy. The geographical representation of the
clusters involved and observed prevalence in the NMIS is displayed in Fig. 13.1.
Figure 13.1 shows the map of Nigeria divided into various regions.

13.2.3 Ethical Approval

This study was based on the analysis of existing survey data-sets in the public
domain that are available free online. The first author obtained permission for the
download and usage of the NDHS dataset from http://www.dhsprogram.com/data/
dataset_admin/login_main.cfm.

13.2.4 Predictor Variables

The transmission of malaria is known to be influenced by several factors such
as socioeconomic, demographic factors and environmental/climatic. Demographic

http://www.dhsprogram.com/data/dataset_admin/login_main.cfm
http://www.dhsprogram.com/data/dataset_admin/login_main.cfm
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Fig. 13.1 Map of Nigeria showing the 37 states with six Geo-political region

variables were captured on survey tools, which include area type of the household,
age, and mother’s educational level. Information on socioeconomic status was
measured by a wealth index. It was calculated as a weighted sum of household
assets using principal component analysis.

13.3 Statistical Methodology

13.3.1 Malaria Spatial-Temporal Modeling

Spatial-temporal disease mapping has become an important tool in passive surveil-
lance of diseases. Understanding how disease risks and prevalence and/or incidence
vary over time may provide information that may be of great epidemiological
significance. Spatial-temporal models are extensions of the basic spatial models
by simply including a linear or a non-parametric trend in time, time space, time
covariate and time-space-covariate interactions. When using spatial-temporal data
to study occurrences such as diseases, researchers are often interested in both the
spatial and temporal aspects of these data. For instance, researchers might want to
investigate disease location and time of diagnosis along with the disease counts. This
goal could be achieved by modeling the disease counts as a Poisson process while
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concurrently incorporating the space and time data with all other risk covariates.
Because of the spatial-temporal autocorrelations, spatial-temporal disease data are
typically modeled as multivariate with correlated observations of Poisson disease
counts at a fixed spatial location that evolves over time.

In this study, our focus is on malaria data collected over a 4-year period (2–4)
from 37 States in Nigeria. Suppose we let i represent the spatial location i = 1,. . . . . . ,
K (=37) states and t = 1,. . . . . . ,T(=4) years, the number of malaria cases, yit , is
modeled as a Poisson spatial-temporal model with the expected incidence rates Eit ,
and the associated risk θit . The standard Besag-York-Mollie spatial analytic model
is represented as follows:

Data Distribution

yit ∼ Pois(Eit × θit ) (13.1)

where yi counts in area i are independently identically Poisson distributed and have
an expectation in area i of Ei , the expected count, times θi , the risk for area i

Spatial-Temporal Mixed-Effects Regression Model

log(θit ) = βo + β1x1it + · · · + βjxjit + Si + Tt + STit (13.2)

where S represent the random spatial term, T is the random temporal term, and ST
is the random space-time interaction. Meanwhile, the fixed-effects component is
βo + β1x1it + · · · + βjxjit where x1it , . . . , xjit are the risk factors to be modeled
with the disease risk θit . In the present study, the two covariates included is wealth
index (WI), and area type (AT). Hence, the model (13.2) is simplified as

log(θit ) = βo + β1WI1it + β2AT1it + Si + Tt + STit (13.3)

From model (13.1), Eit represent the expected incidence rates and its values can
be estimated by several approaches. The simplest overall average for the expected
counts is given by:

Eit = pit ×
∑K

i=1
∑T

t=1 yit
∑k

i=1
∑T

t=1 pit

(13.4)

where pit is the population at ith location (i.e., state) and tth time point (i.e., year)
in this malaria data.
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Specifically, eight models were constructed by considering the spatial effect, and
the interaction between time and space (see Table 13.2). To evaluate the regional
effects, the spatial-temporal model in expression (13.3) is built to include the six
Nigeria region (Region) as:

log(θit ) = βo + β1WI1it + β2AT1it + β4Regionit + Si + Tt + STit (13.5)

Hence, additional of eight spatial-temporal models are included, yielding a total
of 16 fitted spatial-temporal models. These eight models comprises of different
combinations of spatial random effect (UH), spatially structured heterogeneity,
linear time trend, identically independent distributed time variable, random walk
as well as spatial-temporal interactions (see Table 13.2 for the description of those
models).

13.4 Bayesian Spatial-Temporal Models with INLA

In this section, we introduce how Bayesian spatial-temporal model can be imple-
mented using R-INLA. Spatio-temporal disease mapping models are a well-known
tool to explain the pattern of disease counts. Model of this kind is usually
formulated within a Bayesian framework (Banerjee, Carlin, & Gelfand 2004) and
computationally expensive Markov Chain Monte Carlo (MCMC) are needed to
obtain the respective parameter estimates. Also, in order to get a reliable estimate
for a complex spatial and spatio-temporal models, a specific block-sampling algo-
rithms have to be applied. Furthermore, Bayesian spatial-temporal disease mapping
via MCMC methods involve computationally and time intensive simulations to
obtain the posterior distribution for the parameters. An approximate technique for
parameter estimation in latent Gaussian models was proposed by Banerjee et al.
(2004). This technique uses Integrated Nested Laplace Approximation (INLA). The
advantage of INLA method is that it does not use iterative computation techniques
like MCMC and it returns precise parameter estimates. The posterior approximation
is achieved by applying numerical integrations for fixed effects and Laplace integral
approximation to the random effects (Chen, Wakefield, & Lumely 2014). Primarily,
INLA is designed for latent Gaussian models, a very wide and flexible class of
models like spatial and spatio-temporal models, making INLA to be used widely
in a great variety of applications (Spiegelhalter, Best, Carlin, & van der Linde
2003). In addition, the deviance information criterion (DIC) is provided by INLA for
Bayesian model choice. For our analysis, INLA was implemented in the R package
“INLA” (R-INLA). We used R for data management and R package , maptools for
reading the shapefile.
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13.4.1 Goodness of Fit Statistics

Modeling was done in R using the R-INLA package. The model were compared
using the Deviance Information Criterion (DIC) as recommended by Khana,
Rossen, Hedegaard, and Warner (2018) and Spiegelhalter, Best, Carlin, and Van
Der Linde (2002). The ability to fit complex multilevel models using Markov
Chain Monte Carlo (MCMC) techniques presents a need for methods to compare
alternative models. The standard model comparison techniques such as AIC and
BIC require the specification of the number of parameters in each model. For
multilevel models which contain random effects, the number of parameters is not
generally obvious and as such an alternative technique of comparison is demanded.
The most widely used of such alternative technique is the Deviance information
Criteria (DIC) as suggested by Spiegelhalter et al. (2002). The DIC statistic is a
generalization of the AIC, and is based on the posterior mean of the deviance, which
is also a measure of model complexity and fit. The deviance is defined as

D(θ) = −2 log f (y|θ).

since DIC is a measure of model complexity, it considers a measure of the effective
number of parameters in a model, and is defined by

pD = D̄(θ) − ˘(θ).

where D̄(θ) is the posterior expectation of the deviance, given by

D̄(θ) = −2E

[

log f (y|θ)|y
]

.

and ˘(θ) is the deviance evaluated at some estimate θ̆ of θ . Therefore, we now define
the deviance information criteria (DIC) by

DIC = D̄(θ) + pD = 2D̄(θ) − θ̂ . (13.6)

where D̄ is the posterior mean of the deviance that measures the goodness of fit, and
pD represent the effective number of parameters in the model. In the case of the
Bayesian and bootstrapping models, low values of D̄ imply a better fit, while small
values of pD imply a parsimonious model. pD is higher for a more complex model,
and DIC appears to select the correct model. The best fitting model is one with the
smallest DIC, as suggested by Lesaffre and Lawson (2012) and Spiegelhalter et al.
(2002). When comparing different models, how big the difference between the DIC
value of the models need to be revealed so as to declare that one model is better than
the other. Previous studies have shown that a difference of 3 in DIC between two
models cannot be distinguished while a difference of between 3 and 7 can be weakly
differentiated (Kazembe, Chirwa, Simbeye, &Namangale 2008; Spiegelhalter, Best,
Carlin, & Linde 2014). For context, a DIC difference 3 to 5 is considered significant.
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13.5 Results

To illustrate how the 16 Bayesian Poisson spatial-temporal models can be applied
to real life data, we used the data on malaria risk from 37 states of Nigeria
(see Fig. 13.1). In Table 13.1, we grouped the 37 states into six regions (i.e.,
North central, North east, North west, South east, South south and South west) to
investigate regional differences. We extracted the malaria prevalence rate for the 4-
year period. To obtain the malaria incidence rates, we merged these data to calculate
the associated malaria incidences rates yit and the expected incidence rates Eit to
be used in Eqs. (13.1) and (13.4). As mentioned previously, malaria can be related
to many risk factors. From the epidemiological perspective, malaria risk factors
includes environmental/ climatic, socioeconomic status and socio-demographic and
so on. The DHS database consists an extensive list of risk covariates that could
be used to model the predictability of these risk factors to malaria prevalence rates;
meanwhile, most of the covariates have a higher percentage of missing data (>90%).
Hence, for demonstration purposes the current study utilizes wealth index, and area
type as a possible covariates.

Meanwhile all the spatial-temporal data from 37 states collected for 4 years
period were incorporated for a unified Bayesian spatial-temporal modeling.
Table 13.2 presents series of spatial-temporal models fitted with the R-INLA
package. Comparison results among different models affirmed that the DIC values
of the two models with only spatial heterogeneity effect were: 1358.55 and 1358.36
respectively while the DIC values for models incorporating temporal heterogeneity
were: 1338.26, 1336.49, 1339.86, and 1336.59, respectively. The last sets of two
models considered assesses the spatial-temporal interaction. DIC values of the two
UH random effect and convolution model with interaction term were: 1126.44 and
1125.92 respectively. Among the two interaction models, model taking the spatially
temporally uncorrelated heterogeneity + UH, temporally correlated random walk
autocorrelation, and spatial temporal interaction effect into consideration was the
best fitting one with a smallest DIC as well as pD value. It should be acknowledged
that the DIC values from the models 1–8 space-time interaction do not exhibit
extreme differences. This can be attributed to all models taking the form shown in
Eq. (13.3). Between the eight models fitted, model 7 and 8 has larger pD values
which indicate that the two models are more complex, apparently because it
incorporates a spatio-temporal interaction effect that is not part of model 1–6.
Although, model 7 and 8 is weakly indistinguishable because of the differences
between the DIC value is lesser than 3. Therefore, the higher complexity was
beneficial as it led to lower DIC values in model 8 which indicates a better fit model
to the data. Therefore, the best fitting DICs are seen with the interaction models.

With model 8 as the best fitting model, the estimated coefficients of place of
residence (rural) and wealth index (poorer), (middle), (richer) and (richest) were:
0.04525, 0.01380, 0.11115, 0.000180 and 0.05793 respectively. Moreover, the
estimated β for these socio-demographic variables were 1.04629(95% BCI: 0.905–
1.209), 1.01389 (95% BCI: 0.887–1.158), 1.11797 (95% BCI: 0.966–1.292), 1.0001
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Table 13.1 List of 37 Nigeria states and associated state code

RegionNum RegionName StateName StateCode RegionCode

1 North West Sokoto YYB 1.YYB

1 North West Zamfara ZAM 1.ZAM

1 North West Katsina KAT 1.KAT

1 North West Jigawa DTI 1.DTI

1 North West Kano KAN 1.KAN

1 North West Kaduna KAD 1.KAD

1 North West Kebbi KEB 1.KEB

2 North East Yobe DTR 2.DTR

2 North East Borno BOR 2.BOR

2 North East Adamawa YOL 2.YOL

2 North East Gombe GME 2.GME

2 North East Bauchi BAU 2.BAU

2 North East Taraba TAR 2.TAR

3 North Central Niger KNT 3.KNT

3 North Central Abuja FCT 3.FCT

3 North Central Nasarawa NAS 3.NAS

3 North Central Plateau JOS 3.JOS

3 North Central Benue BEN 3.BEN

3 North Central Kogi LOK 3.LOK

3 North Central Kwara ILO 3.ILO

4 South West Oyo OYD 4.OYD

4 South West Osun SGB 4.SGB

4 South West Ekiti ADK 4.ADK

4 South West Ondo ODK 4.ODK

4 South West Lagos KJA 4.KJA

4 South West Ogun ABG 4.ABG

5 South South Edo BED 5.BED

5 South South Cross River CAL 5.CAL

5 South South Akwa Ibom AKI 5.AKI

5 South South Rivers PHC 5.PHC

5 South South Bayelsa YEN 5.YEN

5 South South Delta WAR 5.WAR

6 South East Anambra ANA 6.ANA

6 South East Enugu ENU 6.ENU

6 South East Ebonyi EBO 6.EBO

6 South East Abia ABI 6.ABI

6 South East Imo WER 6.WER

Note: These 37 states are grouped into 6 regions (“RegionNum”) under the region names
(“RegionName”). For ease of representation in Figs. 13.1 and 13.2, we created the RegionCode
abbreviation that combines the RegionNum and the StateCode
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Table 13.2 Specific spatial-temporal models and associated fit statistics

Model Details DIC n.eff

1 Spatial Only (UH) 1358.55 33.633

2 Spatial Only (UH+CH) 1358.36 33.664

3 Spatial(UH+CH) +Temporal trend 1338.26 34.364

4 Spatial(UH+CH) +Temporal(UH) 1336.49 36.358

5 Spatial(UH+CH)+Temporal(CH) 1339.86 42.938

6 Spatial(UH+CH)+Temporal(UH+CH) 1336.59 36.056

7 Spatial(UH)+Temporal(CH)+ST 1126.44 109.213

8 Spatial(UH+CH)+Temporal(CH)+ST 1125.92 108.740

Abbreviations: Spatial—UH: uncorrelated effect model; CH: correlated effect model. Temporal—
UH: uncorrelated heterogeneity, CH: random walk; spatial-temporal interaction. ST: spatial-
temporal. DIC: deviance information criterion, n.eff: effective number of parameters

Fig. 13.2 Temporal trends for malaria incidence rates (logged) for 37 States of Nigeria from six
regions included in the analyses

(95% BCI: 0.860–1.162) and 1.0596(95% BCI: 0.897–1.250). Both the place of
residence and wealth index had a positive influence on the prevalence of malaria
risk. Moreover, the malaria rates as depicted in Figs. 13.1, 13.3, and 13.5 reveal
some signs of spatial trends despite the fact that there are no statistically significant
spatial patterns. As shown in Fig. 13.2, reported cases of malaria prevalence in
Nigeria declined year by year across the 37 states over the 4-year period.

Also, the map depicted in Fig. 13.3 shows the estimated overall pattern in the
spatial random-residual effects revealing spatial autocorrelation as represented by
Si in expression (13.3). The implication of the map is that all the six regions in
the country have had a mix of high and low malaria prevalence over time, which is
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Fig. 13.3 Spatial random-residual effects showing spatial autocorrelation as indicated by Si in
expression (13.3)
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Fig. 13.4 Temporal random-residual effects showing temporal autocorrelation as indicated by Tt

in expression (13.3)

indicated by the random effects Si and fixed effects presented in expression (13.3).
Figure 13.4 depicts only the overall temporal pattern of the malaria risk prevalence
as reported by Tt in expression (13.3); the map indicates that Nigeria experienced
uneven risk of malaria infection without giving much knowledge about differences
across the geopolitical zone of the country. Hence, both the spatial-only patterns in
Fig. 13.3 and temporal-only trends in Fig. 13.4 should be interpreted simultaneously.
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Fig. 13.5 Spatial and temporal random-residual effects showing spatial and temporal autocorrela-
tion as indicated by STi t in expression (13.3)

Table 13.3 Bayesian spatial-temporal models with regional effect

Model Details DIC n.eff

9 Spatial Only (UH) 1359.45 35.221

10 Spatial Only (UH+CH) 1359.31 35.162

11 Spatial(UH+CH) +Temporal trend 1339.11 35.778

12 Spatial(UH+CH) +Temporal(UH) 1337.05 37.694

13 Spatial(UH+CH)+Temporal(CH) 1339.39 42.581

14 Spatial((UH+CH)+Temporal(UH+CH) 1337.21 37.427

15 Spatial(UH)+Temporal(CH)+ST 1126.34 112.183

16 Spatial(UH+CH)+Temporal(CH)+ST 1125.58 109.873

In addition, the interaction of spatial and temporal factors during 4 year period sug-
gests the presence of convoluted spatial and temporal autocorrelation as indicated by
STit in expression (13.3). Figure 13.5 also indicated some considerable differences
in the relative risk of malaria across the six regions of Nigeria.

Moreover, in order to account for the remaining eight (8) models of our 16
Bayesian spatial-temporal model, we fitted a model accounting for the regional
effects. The findings affirmed that the regional effects were statistically significant
and the result is presented in Table 13.3. The results presented in Figs. 13.2, 13.3,
13.4 and 13.5 are for the first eight (8) models without the regional effect.

13.6 Conclusion and Summary of Findings

In this study, different models were compared for modeling and mapping of malaria
risk in Nigeria. In particular, we considered series of Bayesian spatial-temporal
models to examine the association or effects of socio-demographic on the malaria
risk across the 37 states of Nigeria. This relationship is important to enable an
effective policies as well as tools to tackle the menace of malaria transmission
in Nigeria. These models were fitted to NDHS malaria prevalence data for 4-
year period. Among the different spatial-temporal models examined, the model
with spatial-temporal interaction fit the data well but model 8 appears better than



336 R. E. Ogunsakin and (Din) D.-G. Chen

model 7. The findings indicate that model with spatially uncorrelated heterogeneity,
temporally correlated random-walk autocorrelation, and spatial temporal interaction
was the best model for goodness of fit for modeling malaria risk. The finding is
similar with previous studies (Abellan, Richardson, & Best 2008; Popoff 2014)
which found potential use of spatial and temporal terms in the model. Although our
study did not use the Bayesian hierarchical but previous studies that used Bayesian
hierarchical framework for diseases mapping as well as ecological studies of health
environment association (Ehlers & Zevallos 2015; Popoff 2014) affirmed that if data
are collected over space and time, spatial and temporal terms in the model becomes
necessary. The reason for this could be due to the complex dependence patterns
over space and over time of the occurrence of malaria deaths. The study findings
indicated an estimated positive association between socio-demographic factors and
malaria risk. This finding confirms previous results that showed that malaria risk
is positively associated with socio-economic status (Adigun et al. 2015; Giardina
et al. 2012; Gosoniu et al. 2012; Gosoniu, Veta, & Vounatsou 2010). Moreover, we
observed that the overall malaria risk among the 37 states was spatially uncorrelated
when viewed from a historical point for the 4 years period. Estimations from model
8 affirmed that wealth index could be an influential factor on the prevalence of
malaria. Specifically, with one unit increase of wealth index (poorer), the risk of new
malaria case increased by 1.0139 times. This finding is similar to what the previous
findings on Bayesian geostatistical modeling of malaria from Nigeria (Adigun et al.
2015). Therefore, the results of this study provide evidence on the spatial-temporal
distribution of socio-demographic risk factors in the occurrence of malaria. Hence,
the utilization of socio-demographic data on malaria rapid diagnosis test (RDT),
clarifies the association of these factors. From the study it was affirmed that those
people living in the North Central region were found to be more at risk of malaria
compared to those living in the South West.

Meanwhile, the malaria map produced in this study affirms considerable shrink-
age in malaria burden in comparison to results from the first MIS survey of
2010 that showed a high burden of malaria in the entire country. There are some
limitations to consider when interpreting the findings of this study. Foremost, the
current study relied on malaria test results from RDT. Secondly, one can think of
the limitation of the current study in line with the data used which may contain
spatially correlated malaria prevalence trends across the local government or towns
that are not noticeable at the state level. Hence, for future study it is advisable to
perform a sensitivity analysis in case of a study utilizing Bayesian spatial temporal
modeling to check whether the results vary at different geographical scales. Thus,
this will help the researchers to discuss the research policy in case the results
differ. Moreover, in obtaining the incidence rates when using Bayesian spatial-
temporal approaches, decisions as to whether to calculate the incidence rate as
population-based, geographical area-based, or combination of both should be put
into consideration. In case of the current study, the incidence rate in Eq. (13.4) is
obtained using the population-based. As pointed out by Lesaffre (Lawson 2013;
Lesaffre and Lawson 2012), that is the most commonly used incidence rate in
spatial-temporal disease mapping. An important aspect that needs to be highlighted
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regarding this study is that the regional effects is statistically significant which
requires the attention of the health policies makers in controlling the prevalence
of malaria. Therefore, adequate effort should be targeted further in order to uncover
factors that is responsible for the transmission so as to allow for the development of
better malaria control measures.

A.1 Appendix 1: R Program Codes for Analysis.

StateList = rep(State,each=T)
CodeList = rep(Code, each=T)
region<-rep(1:m,each=T)
region2<-region
ind2<-rep(1:(m*T))
data<-data.frame(Mal,E,year,Year,region,region2,CodeList,

StateList,ind2,Res, Weat)
data
####1. Spatial-temporal data are pre-processed and load them in

source("dataMALARIA.R")
# check the data
print(data)
summary(data)
subregion = read.csv("subregionMALARIApaper.csv", header=T)
data = merge(data,subregion)

#calculation of the population
ff = mean(data$Mal/data$E)
data$pop = data$Mal/ff

#create a new variable for plotting since the State names are
to long

data$NewRegion = paste(data$subregion1,".",data$CodeList, sep
="")

# order the data by the new var
data= data[order(data$NewRegion),]
head(data)

#make table 1
d1 = data.frame(StateList=unique(data$StateList),Code=unique(

data$CodeList),Region= unique(data$NewRegion))
d2 =merge(d1, subregion)
d3 = data.frame(RegionNum = d2$subregion1, RegionName =

d2$subregion, RegionCode=d2$Region,StateName= d2$StateList,
StateCode = d2$Code)

d3
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###2. pre-analysis for to identify the relationship for
modelling

library(lattice)
# incidence time series
xyplot(log(Mal)~Year|as.factor(NewRegion),type=c("b","r"), data

, xlab="Year", ylab="logged MALARIA Incidences")

xyplot(log(Mal)~Year|as.factor(NewRegion),layout = c(7, 6),type
=c("b","r"), data, xlab="Year", ylab="logged MALARIA
Incidences")

### 3. Now Spatial-temporal modelling
#
# R libraries
# load neccessary packages and download the map shapefile and

therefater, read it into R \\

library(maptools)
# get INLA
library(INLA)
inla.setOption(scale.model.default=FALSE)
require(splancs)
require(sp)
require(fields)
require(maptools)
require(abind)
library(rgdal)

## Meaning###
## The R tools maptools::readShapePoly() will read shapefiles

into R, and spdep::poly2nb() followed by INLA::nb2INLA()
are used to create the adjacency matrix neighbor structures
for use with a CAR model. To map results, you can use sp::

spplot()

source("Malaria3.R")

# model 1: spatial only UH
model1 = Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(

region,model="iid")
result1 = inla(model1,family="poisson",data=data,E=E,control.

compute=list(dic=TRUE,cpo=TRUE))
UH<-result1$summary.random$region[,2]
summary(model1)

## where:

# Mal is the disease count or outcome from your dataset.
## 1 forces an intercept onto the model.
## f() specify the spatial region and how it should be modeled.
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## In the case of our study, spatial region is modeled as "iid"
which is a random effects term. One of the advantage of

this function is that it is useful when invoking any
spatial model, especially the geograhically weighted
regressions.

## Also, f() functions can be added to each other in order to
build up models.

## model1 refers to and invokes the previously defined model.
## family = specifies the likelihood.
## data = specifies the data.

## control.compute specifies options like DICand DCO.
## Note: CPO is the conditional predictive ordinate, a cross

validation tool that predicts an area value using all the
data except that area and compare that value to the actual
value.

## E = specifies the offset variable required for a Poisson
likelihood

# model 2: UH and CH effects
model2<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")

result2<-inla(model2,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE))

summary(result2)

# model 3: spatial + time trend (model 1a)
model3<-Mal~1+as.factor(Res)+as.factor(Weat)+year+subregion+f(

region,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")

result3 = inla(model3,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result3)

# model 4: UH + CH + year IID
model4<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="iid")

result4<-inla(model4,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result4)

# model 5: UH + CH + year RW1 (model 1b)
model5<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid",param=c(2,1))+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1",
param=c(1,0.01))

result5<-inla(model5,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result5)
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UH<-result4$summary.random\$region[,2]
yearR<-result4$summary.random\$year[,2]

# model 6: UH +CH +year UH +CH (model 2)
year2<-year
model6<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1")
+f(year2,model="iid")

result6<-inla(model6,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

# modle 7: UH+ year RW1 +INT IID
model7<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(year,model="rw1")+f(ind2,model="iid")
result7<-inla(model7,family="poisson",data=data,E=E,control.

compute=list(dic=TRUE,cpo=TRUE))

# model 8: UH +CH + year RW1 + INT IID (model 3)
model8<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1")
+f(ind2,model="iid")

result8<-inla(model8,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

result1$dic$dic;result1$dic$p.eff
result2$dic$dic;result2$dic$p.eff
result3$dic$dic;result3$dic$p.eff
result4$dic$dic;result4$dic$p.eff
result5$dic$dic;result5$dic$p.eff
result6$dic$dic;result6$dic$p.eff
result7$dic$dic;result7$dic$p.eff
result8$dic$dic;result8$dic$p.eff

##The best model is model 8
#
# summary of the model 8
summary(result8)
# fixed effects
betas = result8$summary.fixed
betas

exp(betas)

## results for model 8

# get the shape file
library(maptools)
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cities <- readOGR(dsn=dsn,layer="
nga_admbnda_adm1_osgof_20161215")

plot(cities)
names(cities)
# extract the data
UH = result7$summary.random$region[,2]*100000
yearR<-result7$summary.random$year[,2]*100000
STint<-result7$summary.random$ind2[,2]*100000

# plot risk rate by state
fillmap(cities,"Spatial Pattern for Nigeria Malaria Prevalence

Risk ",UH,n.col=10)
fillmap(cities,"",UH,n.col=5)

plot(cities)
fillmap(cities,"",UH,n.col=5)

# plot risk rate by year
time<- c("2008", "2010","2013","2015")
plot(time,yearR, xlab="Year", ylab = " Risk Rates",main="

Temporal Pattern for Malaria Risk Rates")
plot(time,yearR, xlab="Year", ylab = " Malaria Risk Rate")
lines(time,yearR)

# the S-T interaction
STest<-matrix(STint,ncol=4, byrow=T)

ST1<-STest[,1]
ST2<-STest[,2]

par(mfrow=c(1,2), mai=c(0,0,0.3,0),mar=c(2,1,1,1))
for(i in 1:4){

#x11()
fillmap(cities,paste("Spatial-Temporal in Year",2008+i,sep="

"),STest[,i]*5,n.col=10)
}

x11()
for(i in 3:4){

fillmap(cities,paste("Spatial-Temporal in Year",2008+i,sep="
"),STest[,i]*10,n.col=10)

}

STest<-matrix(0,nrow = 88, ncol=10)

for(i in 1:4){i=ceiling(i/10) j=i-10*(k-1) STest[i,j]<-STint[i]
}
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