
Chapter 12
Geographically Weighted Regression

Yang Yang

Abstract The family of geographically weighted regression (GWR) methods has
seen its wide applications in a variety of fields including ecology, agriculture,
social science, and public health. The popularity of these methods stems from
their ability to depict spatial heterogeneity, easy interpretation of outputs, and the
availability of user-friendly software tools. These methods have evolved extensively
in the recent decade to address the challenges of multicolinearity in predictors and
variable selection in the era of big data, and a comprehensive review is needed to
raise both awareness and practical validation of these progresses. Equally needed
is an up-to-date introduction to the associated software packages, especially those
developed on the popular statistical software platform R. This chapter provides a
systematic overview of the foundation and recent development of the methodology
of GWR, with a balance between rigidity and practicality. Via a case study, this
chapter also offers step-by-step guideline to the use of three major GWR-dedicated
R packages, including their facilities for multicolinearity diagnosis and variable
selection. We hope a broadened user group of these methods will in turn motivate
more methodological advances and improve the contribution of GWR methods to
global health.

Keywords Geographically weighted regression · Spatial heterogeneity · Variable
selection · Multicolinearity · GWR software

12.1 Introduction

Health outcomes such as chronic conditions and infectious diseases typically exhibit
spatial and temporal variation, driven by both risk factors and random errors. While
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changes in risk factors explain a significant amount of variations in health outcomes,
it is quite often they do not explain all. Additional variation may be accounted for by
spatial or temporal heterogeneity in the effects of risk factors. An example is shown
in Fig. 12.1, where the effects of drug infection history (left) and drug rehabilitation
history (right) on the risk of HCV infection in a Yi Ethnicity Autonomous Prefecture
in Southwestern China were estimated using the geographically weighted regression
(GWR) approach (Zhou et al. 2016). This figure clearly demonstrates spatial
heterogeneity in the estimated effects. Such heterogeneity is more prominent at
larger spatial scales, e.g., states, countries or continents.

Figure 12.2 shows the spatial distributions of local R-squares (upper left) and
selected GWR-estimated regression coefficient estimates for teenage birth rate in
rural counties of the United States during 2003 (Shoff & Yang, 2012). The effects
of some factors such as clinic rate have opposite signs across different regions.
If such heterogeneity is ignored and the covariate effects are assumed spatially
homogeneous, the effects could be estimated as null and are thus very misleading.

A natural and widely used solution to spatial heterogeneity is to group data points
by spatial regions, where the regions are usually defined as administrative units,
e.g., counties or states, or as ecological zones. A categorical variable indicating
the regions is then incorporated into the analysis. As a main effect, this variable
can capture spatial variation in the intercept, i.e., the mean level of the dependent
variable. Spatial variation in the effects of other predictors can be investigated by
formulating interaction terms between these predictors and the region indicator
variables. Assuming that n individuals are observed in a total of J spatial regions, a
typical statistical presentation of the model is

Fig. 12.1 Spatial distribution of GWR-fitted adjusted odds ratios for drug injection history (left)
and drug rehabilitation history (right) with regard to their effects on HCV infection in Southwestern
China (Zhou et al. 2016)
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Local R-Squared Values

Significant Local
Parameter Estimates

Local R-Squared

Percentage Black Percentage Native American

Clinic Rate

0.128 - 0.360
0.361 - 0.445
0.446 - 0.532
0.533 - 0.622
0.623 - 0.845

0.142 - 0.263
0.264 - 0.418
0.419 - 0.739
0.740 - 1.947
1.948 - 7.944

Metropolitan County

Metropolitan County
Not Significant

Significant Local
Parameter Estimates

-6.824 - -4.792
-4.791 - -3.787
0.300 - 1.199
1.200 - 2.507

Metropolitan County
Not Significant

Significant Local
Parameter Estimates

-1.391 - -0.768
-0.767 - -0.391
0.560 - 0.834
0.835 - 1.099

Metropolitan County
Not Significant

Fig. 12.2 Spatial distribution of GWR-fitted local R-squares and estimated coefficients of pre-
dictors for average teenage birth rates during 1999–2001 among non-metropolitan counties in the
United States (Shoff & Yang, 2012)

yi = α + βxi +
J−1∑

j=1

ηj zij +
J−1∑

j=1

ξj zij xi + εi, i = 1, . . . , n,

where, for individual i, yi is the response, xi is a risk factor of interest, zij indicates
whether observation i is in region j (1=yes, 0=no), j = 1, . . . , J − 1, and εi is the
error term that is often assumed identically and independently distributed (i.i.d.) as
normal with mean 0 and an unknown variance σ 2. We assume only one risk factor
for illustrative purpose. The coefficients α and β are the intercept and slope for the
reference region defined by zi1 = . . . = zi(J−1) = 0. For the region associated
with zij = 1, the intercept and slope are α + ηj and β + ξj , respectively. Several
disadvantages of this approach are worth noting. First, the grouping of data points
into regions is often a choice of convenience, not necessarily matching the true
geographic pattern in data-generating mechanism. For example, the spatial variation
of data-generating mechanism may be smooth over the whole study area rather
than with abrupt changes at boundaries of regions as assumed by the grouping
approach. Second, there is no widely accepted guideline on choosing the level and
number of spatial regions. A few large regions may not be adequate to delineate
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the spatial heterogeneity, creating issues such as ecological fallacy, whereas too
many small regions may encounter the identifiability issue because of sparse data
in some regions. Ecological fallacy refers to the phenomenon that heterogeneous
individual trends within a region are represented by a homogeneous but misleading
trend for the whole region when individual data are aggregated by region for
analysis (Wakefield 2008).

An extension of the grouping approach is the expansion method (Casetti 1972;
Jones 1992), which models the regression coefficients as continuous functions of
the geocoordinates. A general presentation of the expansion method is

yi = α(ui, vi) + β(ui, vi)xi + εi,

where (ui, vi) are the geocoordinates of individual i, e.g., longitude and latitude. A
simple example is the linear mapping

αi = α0 + α1ui + α2vi,

βi = β0 + β1ui + β2vi .

Higher orders of ui and vi as well as their interactions can be added when needed.
A major limitation of the expansion method is that spatial patterns in real life are
often much more complex and cannot be satisfactorily captured by polynomials
of geocoordinates. In addition, the interpretation of the estimated coefficients can
be very difficult. Fotheringham, Charlton, and Brunsdon (1998) compared the
expansion method and the geographically weight regression (GWR) using the data
of limiting long-term illness (LLTI) in Northeastern England. Risk predictors under
consideration were unemployment rate, household crowdedness, proportion of
single-parent families among children <5 years, social class and population density.
All predictors were modeled as linear effects in all models. Figure 12.3 shows the
spatial distribution of (a) standardized LLTI in the study area; (b) intercept under the
expansion method when linear expansion was applied to intercept and all slopes;
(c) intercept under the expansion method when quadratic expansion (including
interaction) was applied to intercept and all slopes; and (d) intercept under the GWR
approach. The gradients of intercept under linear expansion (Fig. 12.3b) is largely
consistent with the observed pattern of LLTI, although the direction of decrease
appeared more from northeast to southwest for the model than from north to south
as shown by the data. Under the quadratic expansion (Fig. 12.3c), however, the
direction of gradients flipped, now increasing from northeast to southwest. The
distribution of the intercept term of the GWR (Fig. 12.3d) reflects the spatial pattern
observed in the data and reserves some non-directional spatial differences compared
to the linear expansion method.
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Fig. 12.3 (a) Spatial distribution of limiting long-term illness data in Northeastern England; (b)
distribution of the intercept term under linear expansion; (c) distribution of the intercept term
under quadratic expansion; (d) distribution of the intercept term fitted by the GWR method. The
subfigures are adapted from Fotheringham et al. (1998)

12.2 Theory

12.2.1 Basic Model Structure and Inference

The model expression of GWR is very similar to that of the expansion method,
except that no specific functional form is assumed for the dependence of coeffi-
cients on geocoordinates. Suppose we are regressing an dependent variable on p

predictors. For notional simplicity, define s = (u, v) for the geocoordinates. For a
given individual i at location si = (ui, vi), the model to be fitted is

yi = β0(si) +
p∑

k=1

βk(si)xik + εi = Xτ
i β(si) + εi, (12.1)

where Xi = (1, xi1, . . . , xip)τ and β(si) = (β0(si), . . . , βp(si))
τ are the vectors

of covariates and coefficients, respectively, and τ denotes transpose of vectors or

matrices. As usual, we assume ε1, . . . , εn
i.i.d.∼ Normal(0, σ 2). The coefficients,



286 Y. Yang

β0(s), . . . , βp(s) can be viewed as continuous spatial functions defined at any
point s in the study area rather than only at the observed locations s1, . . . , sn. The
essence of GWR is the construction of the diagonal weight matrix W (si)n×n =
diag

(
w1(si), . . . , wn(si)

)
, where each diagonal element wj(si) is determined by a

predefined distance between si and sj , j = 1, . . . , n. Let X be a n × (p + 1) matrix
with Xi as its ith row, i = 1, . . . , n, and let Y = (y1, . . . , yn)

τ be the column vector
of the dependent variable. Following standard linear model theory, minimizing the
sum of weighted squares of residuals chosen as the objective function

argmin
β(si )

||W (si)
1/2(Y − Xβ(si))||2 = argmin

β(si )

n∑

j=1

wj(si)
(
yj − Xτ

jβ(si)
)2 (12.2)

yields the WLS estimates for the coefficients

β̂(si) = B(si)Y , where B(si) = (
XτW (si)X

)−1
XτW (si).

This is also the maximum likelihood estimate (MLE) of β(si) under the normal
assumption for εi’s with a correlation matrix W (si). Model (12.1) is to be fitted n

times, one at each individual location in the data. It can also be fitted at an arbitrary
location s in the study area, but the model need to be restated in a more general form

y(s) = β0(s) +
p∑

k=1

βk(s)xk(s) + ε(s) = X(s)τβ(s) + ε(s).

However, y(s) and X(s) are observed only at the locations of the study-sampled
individuals, i.e., si , i = 1, . . . , n.

To obtain a variance estimate for β̂(si) so that we can construct confidence
intervals for all the local coefficients, we need to estimate σ 2, the variance of
the error term. Let ŷi = Xτ

i β̂(si) be the model-fitted value at si , and let Ŷ =
(ŷ1, . . . , ŷn)

τ . We can write Ŷ = HY , where

H =

⎛

⎜⎜⎜⎝

Xτ
1B(s1)

Xτ
2B(s2)

...

Xτ
nB(sn)

⎞

⎟⎟⎟⎠

is analogous to the hatmatrix in the ordinary linear regression setting. Let ε̂ = Y−Ŷ

be the vector of residuals. An important statistic is the residual sum of square

RSS =
n∑

i=1

(
yi − ŷi

)2 = ε̂
τ
ε̂

= (Y − Ŷ )τ (Y − Ŷ ) = Y τ (I − H )τ (I − H )Y ,
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where I is the n × n identity matrix. Following Leung, Mei, and Zhang (2000),
under the assumption that E(Ŷ ) = E(Y ), RSS can further written as

RSS = [
Y − E(Y )

]τ
(I − H )τ (I − H )

[
Y − E(Y )

]

= ετ (I − H )τ (I − H )ε

Note that

E(RSS) = E
[
ετ (I − H )τ (I − H )ε

]

= E

[
trace

(
ετ (I − H )τ (I − H )ε

)]

= E

[
trace

(
(I − H )τ (I − H )εετ

)]

= trace
[
(I − H )τ (I − H )E

(
εετ
)]

= σ 2ν1

where ν1 = trace
(
(I − H )τ (I − H )

) = n − [
2tr(H ) − tr(H τH )

]
is the degree

of freedom of the RSS, and 2tr(H ) − tr(H τH ) represents the effective number of
parameters (Fotheringham, Brunsdon, & Charlton, 2002). The trace function of a
matrix is simply the sum of diagonal elements of that matrix. An unbiased estimate
for σ 2 is then σ̂ 2 = RSS/ν1, and the variance-covariance matrix of β̂(si) can then
be estimated as

Ĉov
[
β̂(si)

] = B(si)B(si)
τ σ̂ 2. (12.3)

The Wald-type 95% confidence interval for each coefficient can be established as

β̂k(si) ± 1.96 ×
√
V̂ar
[
β̂k(si)

]
,

where V̂ar
[
β̂k(si)

]
is the kth diagonal element of Ĉov

[
β̂(si)

]
, k = 0, 1, . . . , p.

12.2.2 Constructing Weights

The choices of the weights wj(si) depends on the nature of the data. When the
individuals under observation are relatively large spatial units such as zip codes,
counties or states, the neighbor indicator is a reasonable choice, i.e., wj(si) = 1 if
units i and j share a common border and 0 otherwise. The concept of adjacency-
based weighting can be generalized to k-order neighbors (Zhang & Murayama,
2000). The neighbor structure can be viewed as an undirected graph with directly
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neighbored units connected by edges. If the shortest path between two units has
k edges, then the two units are k-order neighbors. Consequently, a more general
adjacency-based weighting scheme is to let wj(si) = 1 if units i and j are k-order
neighbors for any k ≤ h, where h is called the bandwidth. When it is appropriate
to consider predefined geographic distances between individuals, a kernel function
of the distance subject to a bandwidth constraint is often used, e.g., the bisquare
function

wj(si) =
{(

1 − d2
ij /h2

)2
, if dij < h,

0, otherwise
,

where h is the bandwidth. Two other popular choices are the Gaussian density ker-
nel, wj(si) = exp(−d2

ij /h2), and the exponential kernel, wj(si) = exp(−dij /h).
Any kernel function,K(d), of distance d that satisfies (1)K(0) = 1, (2)K(∞) = 0,
(3) K(d) > 0 for d > 0 and (4) non-increasing can be considered. A monotone
decreasing kernel function ensure that higher weights are put on observations that
are closer to the current location si . The bandwidth, h, further controls how fast
the weight should decay according to the distance, and its choice is crucial for
the inferential performance of the method. If h is large so that the decay is slow,
then distant observations contributed almost equally as the nearby ones. On one
hand, the effective sample size increases and thus the estimates will be more stable
and less variant; on the other hand, however, if the coefficients vary substantially
over the space, severe bias is likely to occur. This is a large-bias-small-variance
situation. Conversely, if h is too small, only close-by observations will contribute,
leading to small bias but large variance. Consequently, the choice of h is actually
an issue of balance between bias and variance, and cross-validation (CV) procedure
is recommended to choose the bandwidth (Brunsdon, Fotheringham, & Charlton,
1996). Let ŷ(i)(h) = Xτ

i β̂(si, h) be the fitted value at the location of individual i

with a given value of h, where the model is fitted with individual i excluded. We
use the notation β̂(si, h) instead of β̂(si) to reflect its dependence on h. Then, h is
chosen by minimizing the sum of squares of residuals:

h
 = argmin
h

n∑

i=1

[
yi − ŷ(i)(h)

]2
.

Another popular objective function for bandwidth calibration is related to the
Akeike Information Criterion (AIC) that balances between goodness-of-fit and
model parsimony,

AICc(h) = log
[
RSS/n

]+ n + trace(H)

n − 2 − trace(H)
,
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where both RSS and H depend on h (Fotheringham et al. 2002). The optimal
bandwidth is then h
 = argminh AICc(h). In practice, empirical data or expert
opinions may also inform the choice of h.

12.2.3 Testing Spatial Nonstationarity

Two questions naturally arise with the use of GWR:

1. Is the GWR fitting the data better than the ordinary least squares (OLS)
regression that assumes spatial stationarity in covariate coefficients?

2. Which covariate coefficients have significant spatial heterogeneity?

The first question is about testing the global presence of spatial nonstationarity,
while the second is about testing spatial variation for each individual predictor.
Statistically, the null hypotheses to be tested are

1. H0a : β(s1) = β(s2) = · · · = β(sn).
2. H0b: βk(s1) = βk(s2) = · · · = βk(sn) for a given k.

For the global testing, Brunsdon et al. (1996) suggested the CV-derived bandwidth
parameter h
 as a test statistic, as the smaller the bandwidth the larger the spatial
heterogeneity. A GWR with h
 = ∞ is equivalent to the OLS. For the testing of
specific coefficients, Brunsdon et al. (1996) recommended the sample variance (or
standard deviation) of each location-specific coefficient, i.e., Sk = 1

n

∑n
i=1

(
β̂k(si)−

1
n

∑n
j=1 β̂k(sj )

)2. As the theoretical distribution under each null hypothesis is not
easy to derive, a permutation-based approach was proposed (Brunsdon et al. 1996).
Under the global null hypothesis H0a , the data (yi,Xi ) can be randomly permuted
across all locations. Suppose M permuted sample data sets are generated, and let
the bandwidth derived based on the mth sample dataset by hm. The p-value of the
observed value h
 from the original data for testing H0a is given by

Pr(h ≤ h
) = 1

M

M∑

j=1

I(hm ≤ h
),

where I(c) is the indicator function taking 1 if condition c is true and 0 otherwise.
Although h = ∞ corresponds to spatial stationarity theoretically, the meaningful
null distribution of h in reality is bounded by the size of the study area. Brunsdon
et al. (1996) suggested using the sample permutation approach to find the null
distribution of Sk; however, the obtained distribution is underH0a instead ofH0b. As
the parameter space underH0a is a subspace of that underH0b, using the distribution
of Sk under the global null will not necessarily yield a valid type I error, and will
likely lack sufficient statistical power.

The computational burden of the permutation approach is heavy for large n,
especially for the calculation of hm which itself involves a search for the optimal
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bandwidth for each sample dataset. Leung et al. (2000) explored the possibility
of asymptotical tests for the two hypotheses. The test statistic they proposed for

H0a is Fa = RSSgwr/ν1

RSSols/(n−p−1)
, where RSSgwr = Y τ (I − H )τ (I − H )Y and

RSSols = Y τ (I − X(XτX)−1Xτ )Y are the residual sums of squares based on
GWR and OLS, respectively. Leung et al. (2000) suggested the null distribution
of F1 be approximated by the F(ν1/ν2, n − p − 1) distribution, where ν2 =
trace

[(
(I − H )τ (I − H )

)2]. H0a is rejected if the observed value of F1 is less

than the α × 100% percentile for a given type I error α. To test H0b, the suggested

test statistic is Fb = S2
k /γ1

σ̂ 2 , where γ1 = 1
n
trace

[
Bτ (I − 1

n
J )B

]
, J is a n×n matrix

with all elements equal to one,

Bk =

⎛

⎜⎜⎜⎝

eτ
kB(s1)

eτ
kB(s2)

...

eτ
kB(sn)

⎞

⎟⎟⎟⎠ ,

and ek is a vector of zeros of length p + 1 except for the (k + 1)th element being
one. The null distribution of Fb is approximated by F(γ 2

1 /γ2, ν
2
1/ν2), where γ2 =

trace
[( 1

n
Bτ (I − 1

n
J )B

)2]. H0b is rejected if the observed Fb exceeds the (1−α)×
100% percentile of the null distribution.

These approximate asymptotic null distributions, however, remain to be rigor-
ously justified in the sense that the numerators and denominators are not necessarily
independent. In addition, Fotheringham et al. (2002) noted that the computation load
of these asymptotic tests is as heavy as the permutation tests in practice. Finally, the
F1 statistic could be used as an alternative to h in the permutation test for the global
null hypothesis H0a , in particular when h is fixed rather than calibrated in cross-
validation, e.g., the binary neighbor indicator matrix.

Mei, Wang, and Zhang (2006) proposed a resampling based approach to test the
hypotheses in a more general form

• H0: βk(s1) = βk(s2) = · · · = βk(sn) for k ∈ �, where � is a given subset of
{1, . . . , p}.

• H1: All coefficients vary over space.

The set � could be a single coefficient, a subset of or all of the coefficients. This
bootstrap procedure goes with the following steps:

1. Fit the unrestricted model to obtain the residuals ε̂ = (ε̂1, . . . , ε̂n)
τ = (I −H 1)Y

and the residual sum of squares RSS1 = Y τ (I − H 1)
τ (I − H 1)Y , where H1

is the hat matrix. Let ε̂c = (ε̂c1, . . . , ε̂cn)
τ be the centered residuals, i.e., ε̂ci =

ε̂ci − 1
n

∑n
j=1 ε̂j .
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2. Fit the null model using the two-step method of Fotheringham et al. (2002) to
obtain the residual sum of squares RSS0 = Y τ (I − H 0)

τ (I − H 0)Y , where H0
is the hat matrix under the null.

3. Compute the observed statistic T = RSS0−RSS1
RSS1

.

4. For m = 1, , . . . ,M , draw with replacement random samples ε̃(m) =
(ε̃

(m)
1 , . . . , ε̃

(m)
n )τ from the centered residuals ε̂c, formulate new responses

as Ỹ
(m) = (ỹ

(m)
1 , . . . , ỹn)

(m))τ = H 0Y + ε̃(m), and calculate the statistics

T̃ (m) = R̃SS
(m)
0 −R̃SS

(m)
1

R̃SS
(m)
1

, where R̃SS
(m)
k = (Ỹ

(m)
)τ (I − H k)

τ (I − H k)Ỹ
(m)

,

k = 0, 1.
5. The p-value is calculated as p = 1

M

∑M
m=1 I(T̃ (m) ≥ T ).

12.2.4 Geographically Weighted Generalized Linear Models

Analogous to the generalized linear global models (GLM) for fitting binary and
count data, geographically weighted generalized linear models (GWGLM) have also
been developed. The GLM theory is based on the exponential family of statistical
distributions in the form

f (y|θ, φ) = exp

{
yθ − b(θ)

a(φ)
− c(y, φ)

}
,

to which many commonly seen distributions such as normal, binomial, Poisson
and negative binomial (when the overdispersion parameter is assumed known)
belong. Parameters θ and φ are called the canonical parameter and the dispersion
parameter, respectively, and the functions a(·), b(·) and c(·, ·) are assumed known.
For example, the Poisson distribution with parameter λ can be written as

f (y|λ) = exp

{
y log(λ) − λ

1
− log�(y + 1)

}
,

with θ = log(λ), b(θ) = exp(θ), a(φ) = 1, and c(y, φ) = log�(y + 1). The mean
and variance of y are related to this parameterization via E(Y ) = μ = b′(θ) and
Var(Y ) = a(φ)b′′(θ), where b′(θ) and b′′(θ) are the first and second derivatives of
b(θ). The mean μ is related to linear predictors η = β0 +β1x1 + . . .+βpxp = xτβ

via the link function η = g(μ). Table 12.1 lists the model components for several
distributions in the exponential family.

A general Iteratively Reweighted Least Squares (IRLS) algorithm is available
to fit these models (Nelder & Wedderburn, 1972), which can be adapted to the
GWGLM setting (da Silva & Rodrigues, 2014; Fotheringham et al. 2002; Nakaya,
Fotheringham, Brunsdon, & Charlton, 2005). The following algorithm is modified
from Fotheringham et al. (2002). The algorithm is applied to the local fitting at
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Table 12.1 GLM components for selected distributions

Distribution θ φ a(φ) b(θ) c(y, φ) g(μ)

Normal(μ, σ 2) μ σ 2 φ θ2/2 − 1
2

[ y2

φ
+ log(2πφ)

]
μ

Binomial(n, p)a log
( p
1−p

)
1/n log(1 + eθ ) log

[(
n
ny

)]
log
(

μ
1−μ

)

Poisson(μ) log(μ) 1 eθ − log(y!) log(μ)

NB(μ, α)b log
(

μ
r+μ

)
1 −r log

(
1 − eθ

)
log �(r+y)

y!�(r)
log(μ)

a y/n is viewed as the random variable
b For negative binomial to be in exponential family, r is assumed known

each location si separately, i.e., all parameters (β, η, μ, θ , φ) depend on si , but we
suppress such dependence in notation for simplicity. η, μ and θ further depend on
xj at all observation locations when we fit the local model centered around si , and
thus we use ηj , μj and θj , j = 1, . . . , n to reflect such dependence.

1. Choose initial estimate β(0) and φ(0), and obtain η
(0)
j = xτ

jβ
(0), μ

(0)
j =

g−1(η
(0)
j ), and θ

(0)
j = b′−1

(μ
(0)
j ), where g−1(·) and b′−1

(·) are inverse functions
of g(·) and b′(·) respectively. For iterations k = 0, 1, . . ., do the following steps:

2. Derive the adjusted dependent variable z
(k)
j = η

(k)
j + g′(μ(k)

j )(yj − μ
(k)
j ).

3. Construct a diagonal matrix A(k) with its j th diagonal element being

a
(k)
jj =

{[
g′(μ(k)

j )
]2

a(φ(k))b′′(θ(k)
j )

}−1
.

4. Update the coefficients as

β(k+1) = (XτWA(k)X)−1XτWA(k)Z(k),

whereX andW are the covariate matrix (including first column of 1s) and weight
matrix as defined before, and Z(k) is the column vector (z

(k)
1 , . . . , z

(k)
n )τ .

5. Estimate the dispersion parameter using the Newton Raphson approach, i.e.,

φ(k+1) = φ(k) −
{[∂2l(φ,β(k+1))

∂φ2

]−1 ∂l(φ,β(k+1))

∂φ

}

φ=φ(k)
,

where l(φ,β(k+1)) is the log-likelihood function with β fixed at β(k+1).
6. Repeat steps 2–5 until convergence of the parameter estimates.
7. Let β̂, φ̂ and A be the final estimates after convergence. The variances can be

estimated by

Ĉov(β̂) = B̃A−1B̃, V̂ar(φ̂) = [− ∂2l(φ, β̂)

∂φ2

]−1
∣∣∣
φ=φ̂

,

where B̃ = (XτWAX)−1XτWA.
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Table 12.2 Expression of zj

and ajj in the IRLS algorithm
for selected distributions

Distribution zj ajj

Normal(μ, σ 2) yj 1

Binomial(n, p) ηj + yj /nj −pj

pj (1−pj )
njpj (1 − pj )

Poisson(μ) ηj + yj −μj

μj
μj

NB(μ, α) ηj + yj −μj

μj

μj r

μj +r

If the model does not involve an overdispersion parameter such as binomial and
Poisson, step 5 is skipped. Table 12.2 gives zj and ajj (iteration index suppressed)
for Gaussian, logistic, Poisson and negative binomial geographically weighted
regression models. Note that the expressions of zj and ajj are based on Fisher
information, i.e., the negative of the expectation of the second derivative of the log-
likelihood with regard to ηj . They can be based on the observed Fisher information
(without taking expectation) as well, as da Silva and Rodrigues (2014) did for the
negative binomial model.

12.2.5 Colinearity and Remedies

Hereinafter, we assume each model has a total of p rather than p + 1 covariates,
which may or may not include an intercept. This is because some of the regularized
models require or recommend the response variable Y to be standardized which will
eliminate the intercept. Typically, GWR fits models with n × p parameters, using
only n observations. This overfitting is constrained by local weight matrices to yield
valid inference, but probably at certain price. Wheeler and Tiefelsdorf (2005) took
a close look at how the multicolinearity among predictors (covariates) might affect
the correlation among GWR-estimated coefficients and their interpretability. The
correlation between estimated coefficients is twofold. First, at any given location,
the estimated local coefficients are correlated in terms that the estimated covariance
between them are nontrivial. Second, and more importantly, the estimated coeffi-
cients for a given pair of covariates are correlated across all observation locations.

Wheeler and Tiefelsdorf (2005) first showed the possibility of local coefficient
estimates contradicting the global regression results and scientific evidence by
analyzing the bladder cancer mortality data from the Atlas of Cancer Mortality from
the National Cancer Institute. Bladder cancer mortality was expected to be positively
associated with population density (a proxy for urban vs. rural environment) and
lung cancer mortality rate (a proxy for smoking prevalence), consistent with the
global regression results. However, the GWR showed vast geographic heterogeneity,
and the local coefficient estimates were negatively correlated. Counter-intuitive
negative association with the outcome variable was found for population density
in the West and Northeast and for lung cancer in the Midwest.
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They then performed a series of simulation studies and found that the local
coefficient estimates could be substantially correlated with each other, even when
the corresponding covariates are not correlated globally. (Figs. 12.8and 12.9),
adapted from Wheeler and Tiefelsdorf (2005), illustrates the correlation in the
second sense. The two covariates, called exogenous variables, are generated for two
scenarios according to

Scenario A (dashed curve) : x1 = Evac3, x2 = sin(θ)Evac3 + cos(θ)Evac1,

Scenario B (solid curve) : x1 = Evac4, x2 = sin(θ)Evac4 + cos(θ)Evac1,

where Evack , k = 1, . . . , n are eigenvalues of the spatial adjacency matrix based
on all the counties of the Georgia State in the U.S., after certain transformation
and re-scaling. These eigenvalues capture orthogonal spatial characteristics. The
parameter θ induces correlation between x1 and x2 via corr(x1, x2) = sin(θ). Both
scenarios indicate strong negative associations: the higher the correlation between
the covariates, the lower the correlation between the coefficient estimates. Most
surprisingly, zero correlation between the covariates is associated with a high level
of negative correlation, −0.8, between the coefficient estimates for scenario B.

Wheeler and Tiefelsdorf (2005) speculated that when two covariates are highly
positively correlated, the GWR model tends to explain the variation in the outcome
by one coefficient, while pushing the other coefficient to the opposite direction.
However, this speculation does not explain the strong positive correlation in
coefficient estimates when the covariates are highly negatively correlated as seen
in Fig. 12.4. In addition, although the negative correlation between coefficient
estimates is obvious in their simulations even when the covariates are not correlated
(Figs. 12.8 and 12.9 in Wheeler and Tiefelsdorf (2005)), it is not clear whether
such negative correlation matters in practice because the coefficient estimates are
mostly close to their global true values (statistical significance level was not given).
When nontrivial multicolinearity among covariates is present, however, caution
and diagnostic efforts need to be taken, like in global regressions, e.g., examining
correlation in the coefficient estimates and the sensitivity of coefficient estimates to
addition or deletion of other covariates.

Local Linear Estimation

The local linear estimation approach was proposed by Wang, Mei, and Yan (2008)
to target reduction of bias in coefficient estimates of GWR, not to directly address
the issue of multicolinearity. In particular, they were concerned about the boundary-
effect problem, that is, the GWR estimates tend to be more biased at the boundaries
than in the interior part of the study area. Nevertheless, multicolinearity could
contribute to bias as evidenced by above discussion. Therefore, the local linear esti-
mation approach can potentially alleviate the problem caused by multicolinearity,
while being able to reduce bias from other sources. The idea of this approach is
based on first-order Taylor expansion of local coefficients with regard to spatial
points:
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Fig. 12.4 Overall correlation between two coefficient estimates as a function of correlation
between the two corresponding covariates, adapted from Wheeler and Tiefelsdorf (2005)

βk(u, v) ≈ βk(ui, vi) + β
(u)
k (ui, vi)(u − ui) + β

(v)
k (ui, vi)(v − vi),

where β
(u)
k (ui, vi) and β

(u)
k (ui, vi) are partial derivatives of βk(u, v) with regard to

u and v, respectively, evaluated at sj = (ui, vi). For each local regression centered
at (ui, vi), it is no longer necessary to assume the same coefficients as at (ui, vi) for
all other observation locations. Instead, the objective function becomes

Li

(
β(si)

) =
n∑

j=1

wj(sj )
{
yj −

p∑

k=1

xjk

[
βk(ui, vi) + β

(u)
k (ui, vi)(uj − ui)

+ β
(v)
k (ui, vi)(vj − vi)

]}2

= ||W (si)
1/2(Y − Xβ(si)||2

(12.4)

The fitting of the model is as usual
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β̂(si) = (
X(si)

τW (si)X(si)
)−1

X(si)
τW (si)Y ,

except that the coefficient vector and design matrix are of an extended form:

β(si) = (
β1(si), β

(u)
1 (si), β

(v)
1 (si), . . . , βp(si), β

(u)
p (si), β

(v)
p (si)

)τ

and

X(si) =

⎡

⎢⎢⎢⎣

x11 x11(u1 − ui) x11(v1 − vi) · · · , x1p x1p(u1 − ui) x1p(v1 − vi)

x21 x21(u2 − ui) x21(v2 − vi) · · · , x2p x2p(u2 − ui) x2p(v2 − vi)
...

...
...

...
...

...
...

xn1 xn1(un − ui) xn1(vn − vi) · · · , xnp xnp(un − ui) xnp(vn − vi)

⎤

⎥⎥⎥⎦ .

Note that X(si) depends on location si , different from the traditional GWR. In
their simulation studies, Wang et al. (2008) generated two coefficients as nonlinear
continuous functions of the spatial coordinates (Fig.12.5), and the local linear fitting
approach (Fig. 12.6b, d) clearly demonstrated its bias reduction utility in comparison
to the traditional GWR (Fig. 12.6a, c).

Regularized Fitting

Ridge Regression To further constrain the coefficient estimates which serves both
purposes of reducing correlation in coefficient estimates and variable selection,
Wheeler (2007) suggested the coupling of GWR with ridge regression (GWRR),
i.e., adding a penalty term for the L2 norm of the coefficients:

Fig. 12.5 True coefficient functions of geocoordinates in a simulation study in Wang et al. (2008):
(a) coeficient β1(u, v) for predictor 1; (b) coeficient β2(u, v) for predictor 2
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Fig. 12.6 Coefficient functions fitted by GWR (left) and local linear fitting (right) in a simulation
study in Wang et al. (2008)

β̂(si) = argmin
β

{ n∑

j=1

wj(si)
[
ỹj − X̃

τ

jβ(si)
]2 + λ

p∑

k=1

β2
k (si)

}
(12.5)

= [
X̃

τ
W (si)X̃ + λI

]−1
X̃

τ
W (si)Ỹ , (12.6)

where X̃j and ỹj are standardized covariates and response, X̃ and Ỹ are the
standardized version of the covariate matrix and response vector, and λ is the global
shrinkage parameter. Several standardization schemes were discussed by Wheeler
(2007), but here we only introduce the most straightforward scheme:

x̃jk = xjk − x̄k

(
W (si)

)

σ̂
(x)
k

, ỹj = yj − ȳ
(
W (si)

)

σ̂ (y)
,

where

x̄k

(
W (si)

) =
n∑

i=1

√
wj(si)xjk/

n∑

i=1

√
wj(si),

ȳk

(
W (si)

) =
n∑

i=1

√
wj(si)yjk/

n∑

i=1

√
wj(si)
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Fig. 12.7 Spatial distributions of coefficient estimates based on GWR and GWRR of crime rate
on household income and housing value in Columbus, Ohio: (a) Household income, GWR; (b)
Housing value, GWR; (c) Household income, GWRR; and (d) Housing value, GWRR (adapted
from Wheeler (2007))

are the weighted means, and σ̂
(x)
k and σ̂ (y) are the unweighted sample standard

deviations, of the kth covariate and the response. Standardization matters for ridge
regression, because centering removes the intercept from the model, as ridge
regression does not regulate intercept, and rescaling by sample standard deviation
ensures fair shrinkage of the regression coefficients. Similar to the bandwidth h,
the shrinkage parameter λ can be chosen by cross-validation, and Wheeler (2007)
recommended tuning h and λ simultaneously. In his example of fitting crime
rate on household income and housing value in Columbus, Ohio, Wheeler (2007)
showed appreciable reduction in the correlation between coefficient estimates and
more reasonable local coefficient estimates (Fig. 12.7) provided by the GWRR as
compared to traditional GWR. Indeed, in Fig. 12.7, the negative association between
the coefficient estimates by contrasting (c) with (d) for GWRR is much less obvious
than that by contrasting (a) with (b). In addition, the counter-intuitive positive
association between crime rate and housing value in East Columbus with GWR
(b) become largely negative with GWRR (d).

GWGlasso Analogous to the ridge regression, Wang and Li (2017) proposed a
method that couples GWR with adaptive group LASSO to identify model structure
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and select variables, and named it GWGlasso. The shrinkage of classic lasso is
reached by using the L1-norm penalty, λ

∑p

k=1 |βk(si)|, instead of square of the
L2 norm, λ

∑p

k=1 β2
k (si). One major distinction between ridge regression and lasso

is that the former tends to allow for small coefficients close to 0 whereas the latter
shrinks small coefficients to 0 exactly (Wheeler 2007). Group lasso applies L2 norm

to the each group of coefficients, λ
∑G

g=1

√∑pg

k=1 β2
k (si), where G is the number

of groups and pg is the number of coefficients in group g. It reduces to classic
lasso when pg = 1 for all groups. Rather than shrinking each coefficient separately,
group lasso shrinks the whole group of coefficients to 0, if shrinkage does occur.
As a result, group lasso serves better as a model selector. Adaptive group lasso

attaches a different tuning parameter to each group,
∑G

g=1 λg

√∑pg

k=1 β2
k (si). Due

to the adaptive feature, it is not necessary to remove the intercept by centering the
responses and covariates.

To facilitate the description of GWGlasso, the following notation is defined. Let a
be a n×p matrix with its element at ith row and kth column being aik = βk(si). We
denote the columns and rows of a by a,k = (βk(s1), . . . , βk(sn))

τ , k = 1, . . . , p,
and ai, = (β1(si), . . . , βp(si))

τ , i = 1, . . . , n, respectively. Note that both a,k and
ai, are column vectors. Let b be a 2n × p matrix with its element at ith row and kth
column being

bik =
{

β
(u)
k (si), 1 ≤ i ≤ n,

β
(v)
k (si−n), n < i ≤ 2n

.

Similarly, the columns of b are represented by b,k = (
β

(u)
k (s1), . . . , β

(u)
k (sn),

β
(v)
k (s1), . . . , β

(v)
k (sn)

)τ , k = 1, . . . , p. The rows of b are represented by bi, =(
β

(u)
1 (si), . . . , β

(u)
p (si)

)τ for 1 ≤ i ≤ n, and bi, = (
β

(v)
1 (s1), . . . , β

(v)
p (si)

)τ for
n < i ≤ 2n. The objective function to be minimized is

L(a, b) =
n∑

i=1

Li

(
β(si)

)+ 2λ
p∑

k=1

(
ω1k||a,k||2 + ω2k||b,k||2

)
, (12.7)

where Li

(
(β(si) is given in (12.4), ||a,k||2 =

√∑n
i=1[βk(si)]2, and ||b,k||2 =

√∑n
i=1[β(u)

k (si)]2 + [β(v)
k (si)]2. || · ||2 is the L2 norm (also called Euclidean norm).

The weights, ω1k = √
n/||â(0)

,k ||2 and ω2k = √
2n/||b̂(0)

,k ||2, are used to account for
the scales of the coefficient groups and turn multiple tuning parameters to a single

one, where â
(0)
,k and b̂

(0)
,k are estimates of a,k and b,k without the penalty (Wang & Li,

2017). The objective function is not differentiable at the origin for the same reason
that f (x) = |x| is not. To circumvent this difficulty, a local quadratic approximation
can be used (Wang & Li, 2017). For example, suppose the current estimate of a,k is
â

(m)
,k at themth iteration in an iterative evaluation procedure. Based on the first-order

Taylor expansion of f (y) = √
y, the approximation is
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||a,k||2 ≈ ||â(m)
,k ||2 + ||a,k||22 − ||â(m)

,k ||22

2||â(m)
,k ||2

.

||ak||22 is differentiable everywhere. The same approximation applies to ||bk|| as
well. With such approximations plugged in, the objective function becomes

L(a, b) ∝
n∑

i=1

[
Li

(
β(si)

)+ λ
(
aτ

i,D
(m)
1 ai, + bτ

i,D
(m)
2 bi, + bτ

n+i,D
(m)
2 bn+i,

)]
,

where D
(m)
1 = diag

(
ω11/||a(m)

,1 ||2, . . . , ω1p/||a(m)
,p ||2

)
and D

(m)
2 = diag

(
ω21p/||b(m)

,1 ||2, . . . , ω2p/||b(m)
,p ||2

)
.

Depending on whether the coefficient groups are shrunk to 0 or not, the model is
naturally structured:

• When â,k = b̂,k = 0, then we conclude βk(si) = 0 for all i, i.e., the kth covariate
is not influential.

• When b̂,k = 0 but â,k �= 0, then βk(si) = βk for all i, i.e., there is no
spatial heterogeneity in the effect of the kth covariate, and βk is estimated by
1
n

∑n
i=1 β̂k(si), where β̂k(si)’s are elements of â, k.

• When â,k �= 0 and b̂,k �= 0, then there is spatial heterogeneity in the effect of the
kth covariate, and βk(si) is estimated by β̂k(si).

To alleviate computational overhead, Wang and Li (2017) suggested the optimal
bandwidth, h
, be chosen using cross-validation based on the unpenalized local
linear estimation approach. After fixing the bandwidth, the shrinkage parameter λ

can be chosen to minimize the Bayesian information criteria,

BIC = log
[ 1

n2

n∑

i=1

Li

(
β̂λ(si)

)]+ dfλ

log(nh)

nh
+ (p − dfλ)

log(n)

n
,

where dfλ is the number of spatially-varying coefficients, Li

(
β̂λ(si)

)
is given

in (12.4), and β̂λ(si), i = 1, . . . , n, are the estimated coefficients in a and b under a
given value of λ.

While GWGlasso is able to identify model structures, it is often desired to find
sparse local coefficients within groups. Such desire entails the need for a method
between lasso and group lasso, where the sparse group lasso fits (Simon et al. 2001).
A possible extension of (12.7) is to incorporate sparse group lasso into GWGlasso
is

L(a, b) =
n∑

i=1

Li

(
β(si)

)+ 2λ1

p∑

k=1

(
ω1k||a,k||2 + ω2k||b,k||2

)

+ λ2

p∑

k=1

(
ω

1k||a,k||1 + ω


2k||b,k||1
)
,
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where ||a,k||1 = ∑n
i=1 |aik| is the L1 norm. Whether this is a valid extension, as

well as what form should ω

1k and ω


2k take, are open questions.

GW Elastic Net lasso is able to identify influential covariates to form a parsimo-
nious model, sacrificing the predictive power of the model to some level. On the
other hand, ridge regression is able to reduce the impact of multicolinearity without
compromising predictive performance, but it may retain non-predictive covariates.
To find a balance between parsimony and predictive performance, a geographically
weighted elastic net (GWEN) blends lasso and ridge penalties (Li & Lam, 2018):

Li

(
β(si)

) =
n∑

j=1

wj(si)
[
yj − β0(si) −

p∑

k=1

βk(si)xjk

]2

+ λ

p∑

k=1

[
(1 − α)β2

k (si) + α|βk(si)|
]

Similar to (12.5), one can center and rescale covariates and responses to remove the
intercept:

Li

(
β(si)

) =
n∑

j=1

wj(si)
[
ỹj − X̃

τ

jβ(si)
]2 + λ

p∑

k=1

[
(1 − α)β2

k (si) + α|βk(si)|
]

where X̃j and ỹj , j = 1, . . . , n, are standardized covariates and responses.
In an analysis of population size change from 2000 to 2010 regressed on thirty-

five socio-environmental variables in the Lower Mississippi River Basin, Li and
Lam (2018) compared the results between several GWR models as shown in
Table 12.3. In this table, root MSE measures goodness of fit, mean VIF measures
multicolinearity among covariates, and global Moran’s I measures spatial assesses
spatial autocorrelation among residuals. For all these quantities, the lower the
better. GWEN resembles GWR-lasso in model parsimony and explaining spatial
correlation, and is comparable to GWR-Ridge in terms of goodness-of-fit and mul-
ticolinearity. As expected, GWEN offers a reasonable trade-off between parsimony
and goodness-of-fit.

Table 12.3 Comparison between various GWR models

Metrics Classic GWR GWR-Ridge GWR-lasso GWEN

Root MSE 0.42 0.51 0.59 0.55

Mean VIF 252.64 4.92 2.78 4.04

Average # of selected covariates 35.00 35.00 10.18 10.18

Global Moran’s I 0.009 0.019 0.046 0.045

This table is adapted from Li and Lam (2018)
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12.3 Software and Case Study

Currently, there are multiple choices of software tools implementing various
versions of GWR. GWR4 is a standalone software package dedicated to GWR,
implementing GWR for three distribution families (Gaussian, Poisson and Logistic),
with useful features such as variable selection and simultaneously considering
global and local regression coefficients (Nakaya, Fotheringham, Charlton, & Bruns-
don, 2009). GWR has also been integrated into several commonly used GIS or
spatial statistics software tools such as ArcGIS (Environmental Systems Resource
Institute 2013), SpaceStat (BioMedware 2011), and SAM (Rangel, Diniz-Filho,
& Bini, 2010). Both ArcGIS and SpaceStat are commercial software packages
that are not free. We introduce three GWR-related R packages, spgwr, gwrr and
GWmodel using a case study with a real data set, mainly for the free availability
and versatility of R as a software platform for data manipulation, data presentation,
and statistical analysis. To facilitate our description, we refer to the three regularized
models (GW ridge regression, GWR with lasso and GWR with locally compensated
ridge) available in packages gwrr and GWmodel as GWR-Ridge, GWR-LASSO
and GWR-LCR. A brief comparison of features of the three packages is shown
in Table 12.4. Clearly, these packages have some non-overlapping features, and it
could be fruitful to use them in combination.

12.3.1 Data

For the case study we use the hand, foot and mouth disease (HFMD) surveil-
lance data during 2009 in China, provided by the courtesy of Chinese Center
for Disease Control and Prevention (CCDC). Epidemiological description and
statistical analyses of these data can be found elsewhere (Tang, Yang, Yu, Liao,
& Bliznyuk, 2019; Wang et al. 2011). Briefly, HFMD is a disease mainly among
children under 6 years of age caused by a spectrum of enteroviruses. In China,
mandated reporting of this disease was initiated by a large outbreak in 2008.
The reporting became well established and relatively complete since 2009. As
in Wang et al. (2011), we will analyze the data at the prefecture level, which
is an administrative level between province and county. The dependent variable
(outcome) of interest is disease incidence, i.e., number of cases per year and 100,000
people, after log-transformation. The independent variables (predictors) are log-
transformed population density, (log-popden) temperature (temp), relative humidity
(rh), and wind speed (ws), and all three climatic predictors are taken as annual
averages. All predictors have been standardized to have 0 for sample means and
1 for sample variance. The spatial distributions of case numbers and incidences
are shown in Fig. 12.8. High disease incidences are found in Guangxi, Guang and
northern Hunan provinces. Moron’s I statistic based on Euclidean distances as the
weights is −0.056 with a p-value <0.001, indicating a pattern of more spatially
dispersed than expected.



12 Geographically Weighted Regression 303

Table 12.4 Comparison of features between various GWR-related R packages, partially adapted
from Gollini et al. (2015)

Packages

Model Function Option spgwr gwrr GWmodel McSpatial

All Kernela Gaussian Y Y Y Y

Bi-square Y Y Y

Tri-cube Y Y

Exponential Y Y

Classic Bandwidth CV Y Y Y Y

GWR Selection AICc Y Y

Adaptive

Bandwidth Y Y

Colinearity VIF Y

Diagnosis VDP Y Y

Condition number Y Y

Colinearity Global ridge Y Yb

Solution Local ridge Yb

LASSO Y

Test global vs.

local coefficients Y Y

Generalized Distributionc Poisson Y Y

GWR Binomial Y Y Y

Multinomial Y

Quasi-Poisson Y

Bandwidth CV Y Y Y

Selection AICc Y

Adaptive

Bandwidth Y Y
a GWmodel and McSpatial provide additional kernel functions
b GWmodel requires users to provide ridge parameters, i.e., no optimization
c spgwr offers additional distributions as specified in glm() function

12.3.2 Data Analysis with R Packages

We use R 3.3.0 for all the analyses (R Core Team 2013). The following packages
are to be loaded.

Packages < c (” maptools ” , ” s h a p e f i l e s ” , ”RColorBrewer ” , ” rgda l ” , ” spdep ” ,
” sp ” , ”spgwr ” , ”gwrr ” , ”GWmodel” , ” l a t t i c e ” , ”ape ”)

i n v i s i b l e ( l app ly ( Packages , l i b r a ry , cha rac t e r . only = TRUE))

To load an individual package, e.g., gwrr, simply use “library(gwrr)”. To load the
data, use either of the following options:
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(a) Number of Cases

under 1200.6
1200.6 − 1735.8
1735.8 − 2349
2349 − 4217.6
over 4217.6

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b) Incidence (/100,000)

under 33.35
33.35 − 54.27
54.27 − 73.41
73.41 − 94.93
over 94.93

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.8 Spatial distributions of (a) numbers of cases and (b) annual incidences at the prefecture
level in five southern provinces of China during the 2009 epidemic of the hand, foot and mouth
disease

# Option 1
setwd ( path ) ; load ( case s tudy gwr . RData)
# Option 2
load ( paste ( path , ” case s tudy gwr . RData” , sep = ’ ’))

where path is the directory where your put the data, e.g., “C:/gwr/data/”.
Three data sets will be loaded, two spatial data objects (of type SpatialPoly-
gonsDataFrame in R spatial statistics packages), named “south5.shp” and
“south5_province_line”, and one usual data frame, named “my.data”,
which contains the same data as in south5.shp but no polygon structures.
“south5_province_line” is only for drawing provincial boundaries.

To assess Moran’s I for disease incidence, use the code

c en t r o i d s < coo rd ina t e s ( south5 . shp )
my. dMat < gw . d i s t ( c en t r o i d s )
Moran . I (my. da ta$ l og inc id ence , my. dMat)

We first examine the relationship between the outcome and the predictors to see
if nonlinear trend exists. There appears to moderate levels of nonlinear trends for
population density, temperature and wind speed (Fig. 12.9). However, for illustrative
purpose, we move ahead with only linear terms. To select a bandwidth via cross-
validation using the Gaussian kernel and to fit a classic GWR with the chosen
bandwidth, one can use the following functions from the spgwr package:

bw. gwr< gwr . s e l ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=south5 . shp ,
adapt=FALSE, gweight=gwr . Gauss , verbose=TRUE)

f i t . gwr< gwr ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=south5 . shp ,
bandwidth=bw. gwr , gweight=gwr . Gauss , hatmatrix=TRUE)
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Fig. 12.9 Scatter plots of the outcome with (a) log(population density), (b) temperature, (c)
relative humidity and (d) wind speed. The red solid curves represent loess smoothing

The option adapt=FALSE tells gwr.sel() that a fixed rather than adaptive band-
width is desired. If adapt=TRUE, then a fraction is returned. For example, if the
optimal fraction found by gwr.sel() is 0.8, then the nearest 80% of all data points
will be included for analysis at each location. The option hatmatrix=TRUE specifies
that the hat matrix is to be included in the returned object fit.gwr, in addition to other
model outputs. The spatial distributions of the estimated coefficients, as shown in
Fig. 12.9, are produced by

par (mfrow=c (2 , 2 ) )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$log popden , ’ ( a ) l og (Pop Density ) ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$temp , ’ ( b) Temperature ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$rh , ’ ( c ) Rel . Humidity ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$ws , ’ ( d) Wind Speed ’ )

and the function do.map() can be found in the accompanying online code
with this book. Figure 12.10 appears to indicate geographical clustering of
different levels of regression coefficients for each predictor, particularly relative
humidity and wind speed; nevertheless, such geographic heterogeneity may not
be of practical importance. For example, the absolute value of the coefficient
of variation is 0.23 for the estimated coefficients for temperature, much lower
than 3.33 and 3.35 for relative humidity and wind speed, suggesting a lesser
degree of spatial heterogeneity for temperature. The coefficient of variation
is simply the ratio of standard deviation to mean and can be computed by
sd(fit.gwr$SDF$temp)/mean(fit.gwr$SDF$temp). Formal statistical
tests can be used to test for spatial nonstationary in all or specific predictors:
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Fig. 12.10 Spatial distributions of local coefficients estimated by classic GWR with a fixed
Gaussian kernel for (a) log(population density), (b) temperature, (c) relative humidity, and (d)
wind speed

> BFC02 . gwr . t e s t ( f i t . gwr ) $p . va lue
0.1932179
> LMZ.F1GWR. t e s t ( f i t . gwr ) $p . va lue
0.4162748
> LMZ.F2GWR. t e s t ( f i t . gwr ) $p . va lue
0.2315591
> LMZ.F3GWR.test(fit.gwr)
Leung et a l . (2000) F(3) t e s t

F s t a t i s t i c Numerator d . f . Denominator d . f . Pr(>)
( I n t e r c ep t ) 0 .87779 34.29761 58.356 0.65434
log popden 0.96944 23.37794 58.356 0.51567
rh 4.21961 31.52168 58.356 1 .008 e 06 ∗∗∗
temp 0.57866 22.33473 58.356 0.92288
ws 1.71297 23.17358 58.356 0.05019 .

S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1
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BFC02.gwr refers to the resampling-based test (Brunsdon et al. 1996; Fothering-
ham et al. 2002), and LMZ.F1GWR and LMZ.F2GWR refer to the asymptotic
test (Leung et al. 2000), for the global null (spatial stationarity in all coefficients).
LMZ.F3GWR refers to the asymptotic tests for specific predictors (Leung et al.
2000). Spatial nonstationarity seems to be significant for relative humidity and
marginally significant for wind speed. However, none of the global tests are
significant. Statistically speaking, one should take the tests for specific predictors
seriously only if the global test is significant.

To assess colinearity in predictors and its impact on GWR, we look at local
weighted correlations among predictors’ values (weights determined by the same
distance matrix as in GWR) and correlations among GWR-estimated local coeffi-
cients of these predictors.

> var . l i s t < c ( ’ log popden ’ , ’ temp ’ , ’ rh ’ , ’ws ’ )
> cov . gwr< gw . cov ( f i t . gwr$SDF , vars=var . l i s t ,

)ssuaG.rwg=thgiewg,rwg.wb=wb+
> mean . cor . gwr< with ( cov . gwr$SDF@data , apply ( cbind ( cor . log popden . temp . ,

gol.roc+ popden . rh . , cor . log popden . ws . , cor . temp . rh . ,
))naem,2,).sw.hr.roc,.sw.pmet.roc+

> b< matrix (0 , nrow=4, nco l =4, dimnames=l i s t ( var . l i s t , var . l i s t ) )
> b [ lower . t r i (b , d iag=FALSE) ] < mean . cor . gwr
> t (b)

log popden temp rh ws
log popden 0 0.6352849 0.3803019 0.01462292
temp 0 0.0000000 0.4499036 0.16462085

0000000.00000000.00hr 0.81590363
00000000.00000000.00000000.00sw

> with ( f i t . gwr$SDF@data , cor ( cbind ( log popden , temp , rh , ws ) ) )
log popden temp rh ws

log popden 1.0000000 0.5994083 0.4320501 0.1735663
temp 0.5994083 1.0000000 0.5898919 0.4249700
rh 0.4320501 0.5898919 1.0000000 0.9482771
ws 0.1735663 0.4249700 0.9482771 1.0000000

The local weighted correlations flagged alarming colinearity between population
density and temperature, −0.63, as well as between relative humidity and wind
speed, −0.82. The impact of colinearity of the latter pair on GWR is confirmed by
the high negative correlation, −0.95, in local coefficients between relative humidity
and wind speed. The colinearity associated with relative humidity and wind speed
are visualized as the scatter plot of the estimated local coefficients (Fig. 12.11a)
and the mapping of estimated local correlation based on Fisher information in the
estimates of local coefficients (Fig. 12.11b). Unfortunately, the package spgwr does
not provide means of addressing colinearity. It is probably worth mentioning that,
for colinearity in the GWR setting, it could be misleading to only check the global
correlations among the predictors, as the following code shows.
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Fig. 12.11 Colinearity between relative humidity and wind speed is examined by (a) scatter plot
of estimated local coefficients and (b) spatial distribution of estimated local correlation (using
Fisher information) in the estimates of local coefficients

> with (my. data , cor ( cbind ( log popden , temp , rh , ws ) ) )
log popden temp rh ws

log popden 1.00000000 0.27318920 0.05270545 0.44078059
temp 0.27318920 1.00000000 0.11509446 0.04691729
rh 0.05270545 0.11509446 1.00000000 0.34480512
ws 0.44078059 0.04691729 0.34480512 1.00000000

The package spgwr does provide generalized GWR models, and the distribution
families are as many wide as specified by glm(). The Poisson family is appropriate
if we model the number of cases directly with population size as an offset.

bw. ggwr< ggwr . s e l ( n ca s e s ˜ log popden+rh+temp+ws+o f f s e t ( l og ( pop ) ) ,
data = south5 . shp , fami ly=poisson , adapt = FALSE,
gweight = gwr . Gauss , verbose = TRUE)

f i t . ggwr< ggwr ( n ca s e s ˜ log popden+rh+temp+ws+o f f s e t ( l og ( pop ) ) ,
data = south5 . shp , fami ly=poisson ,
bandwidth=bw. ggwr , gweight=gwr . Gauss )

This Poisson GWR yields largely similar spatial patterns of local coefficient
estimates (Fig. 12.12) as compared to the classic GWR (Fig. 12.10), except that large
coefficients for temperature became more clustered in the southwest corner of the
study region. However, spgwr does not offer predicted values of generalized models
(mean rate in the Poisson case) or any measure for goodness-of-fit to the data.

Before exploring the ridge regression and LASSO facilities in the gwrr package,
we first introduce the function vdp.gwr() in this package for diagnosing colinearity.
Unlike spgwr, functions in gwrr do not handle spatial data structure (such as
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Fig. 12.12 Spatial distributions of local coefficients estimated by Poisson GWR with a fixed
Gaussian kernel for (a) log(population density), (b) temperature, (c) relative humidity, and (d)
wind speed

south5.shp used above) directly; instead, they require usual data frames with geo-
coordinates as a separate argument.

bw. gwr . exp< gwr .bw . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ”)

vdp . gwr< gwr . vdp ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , phi=bw. gwr . exp$phi ,
s e l . c i = 30 , s e l . vdp = 0 . 5 )

The first command optimizes the bandwidth via cross-validation, using the exponen-
tial kernel. Only two kernels are available in gwrr, Gaussian (“gauss”) or exponential
(“exp”). We got an numeric error by using the Gaussian kernel on the HFMD
data, which leaves exponential as the only feasible option. Function gwr.bw.est()
returns a structure rather than a value, and the selected bandwidth can be retrieved
with bw.gwr.exp$phi. Function gwr.vdp() outputs both variance decomposition
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proportions (VDP) and condition numbers (CN), both derived from the weighted
covariance matrix

√
W (si)X. According to Wheeler (2007), let the singular value

decomposition of
√

W (si)X be
√

W (si)X = UDV τ , where U is a n × (p + 1)
matrix with orthogonal columns, D is a (p + 1) × (p + 1) diagonal matrix, and
V is a (p + 1) × (p + 1) matrix with orthogonal columns. The diagonal elements
(d1, . . . , dp+1) of D are called singular values, and the columns of V are called
(right) singular vectors. CNs are defined as CNj = max(d1, . . . , dp+1)/dj for

j = 1, . . . , p + 1, and VDPs are defined as a matrix � = {φij = v2ij

d2j
}(p+1)×(p+1)

rescaled by its row sums, i.e., V DPij = φij /φi , where φi = ∑p+1
k=1 φik . The

rationale behind VDP is Var(β̂k(si)) = σ 2φi . However, function gwr.vdp() returns
only a single value rather than a vector for CN and a vector rather than a matrix for
VDP. After some investigation (see the online R code associated with this book), we
found that the returned CN is the ratio of the largest to the smallest singular value,
and the returned VDP vector is the column of the matrix {V DPij } associated with
the smallest singular value. This CN definition is analogous to (not exactly the same
as) the one introduced in Gollini, Lu, Charlton, Brunsdon, and Harris (2015) for the
package GWmodel. CN values > 30 or VDPs > 0.5 are thought to flag potential
issues of colinearity, and that is why 30 and 0.5 are used for threshold options sel.ci
and sel.vdp in the above code to indicate which locations have alarming RNs and
VDPs. CN is also called condition index in Wheeler (2007), which explains the
naming of the option sel.ci.

> summary(vdp . gwr$condit ion )
Min . 1 s t Qu. Median Mean 3rd Qu. Max.
1 .831 2 .344 2 .581 2 .616 2 .787 3 .978

> apply ( vdp . gwr$vdp , 2 , summary)
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

Min . 6 .206 e 05 0.01967 2 .764 e 05 0.0001593 0.02339
1 s t Qu. 1 .260 e 02 0.23340 4 .909 e 02 0.3273000 0.16460
Median 2.410 e 01 0.35770 1 .298 e 01 0.6547000 0.31700
Mean 2.994 e 01 0 .39300 2 .208 e 01 0.5513000 0.39120
3rd Qu. 5 .281 e 01 0.52170 4.188 e 01 0.8028000 0.66820
Max. 8 .384 e 01 0 .84120 6 .724 e 01 0.8949000 0.86160

For the HFMD data, none of the CNs are over the threshold, but a substantial
amount of VDPs are exceeding 0.5, suggesting that a certain level of colinearity.
The following code fits classic GWR and GWRs with ridge and LASSO penalties
using functions in the gwrr package, where both bandwidth and shrinkage parameter
are automatically chosen via cross-validation.

f i t 2 . gwr< gwr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , bw=bw. gwr . exp$phi )

f i t . gwrr< gwrr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , bw=TRUE, rd=TRUE)

f i t . gwl< gwl . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
data=my. data , l o c s=cent ro id s , k e rne l=”exp ”)
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We found that the ridge shrinkage parameter chosen by gwrr.est() for the HFMD
data was 0, i.e., no shrinkage at all. For illustration, we fitted a GWR-Ridge model
with a bandwidth equal to bw.gwr.exp$phi and an rather arbitrary shrinkage
parameter of 0.01, and presented all results about GWR-Ridge based on this model.

> f i t . gwrr< gwrr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
,”pxe”=lenrek,sdiortnec=scol,atad.ym=atad+

)10.0=dr,ihp$pxe.rwg.wb=wb+
> go f < rbind ( c ( f i t 2 . gwr$rsquare , f i t . gwrr$rsquare , f i t . gwl$rsquare ) ,
+ c ( f i t 2 . gwr$RMSE, f i t . gwrr$RMSE , f i t . gwl$RMSE) )
> dimnames ( go f)< l i s t ( c ( ’R square ’ , ’RMSE’ ) ,

RWG’,’RWGcissalC’(c+ Ridge ’ , ’GWR LASSO’ ) )
> go f

C l a s s i c GWR GWR Ridge GWR LASSO
R square 0.4584649 0.5085547 0.6956734
RMSE 0.5431182 0.5173908 0.4071468

The approximate R-squares of the regularized GWRs are larger, whereas the root
mean square errors (RMSE) are smaller, than those of the classic GWR, indicating
better goodness-of-fit to the data for the regularized regressions. Nonetheless,
this does not necessarily imply better predictive power on new data. The scales
and spatial distributions of local coefficients are shown in Fig. 12.13 for GWR-
Ridge and in Fig. 12.14 for GWR-LASSO. Compared to classic GWR (Fig. 12.10),
GWR-Ridge yielded more or less similar spatial patterns of coefficients except for
temperature for which large coefficients in southern Guangxi province shifted to
northern Hunan province. Shrinkage of coefficients towards zero is only noticeable
for temperature. GWR-LASSO clearly shrank local coefficients towards 0 more
aggressively, and led to more scattered spatial patterns of coefficients than the other
two models.

Gollini et al. (2015) proposed a GWR approach with locally compensated
ridge (GWR-LCR) parameters which is implemented in the R package GWmodel.
However, the statistical presentation in the paper was a little loose, and we were not
able to find further technical details elsewhere. As a result, we briefly summarize the
rationale here, per our understanding of the paper. In a global regression setting, the
standard solution to ridge regression is expressed as β̂ = (XτX + λI )−1XτY ,
where λ is the ridge penalty tuning parameter and I is the identity matrix. Let
θ1, . . . , θp be the eigenvalues of XτX in decreasing order, i.e., θ1 and θp are the
largest and smallest eigenvalues. Eigenvalues returned by R functions usually are
also ordered decreasingly. Gollini et al. (2015) defined the condition number as
θ1/θp. The eigenvalues of the ridge-adjusted cross-product matrix XτX + λI is
θ1 + λ, . . . , θp + λ, and the associated CN is (θ1 + λ)/(θp + λ). To have CN ≤ κ

for some threshold κ , one can choose λ ≥ (θ1 − κθp)/(κ − 1). In a GWR-Ridge
setting where a local ridge penalty is applied to each location, the local solution
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Fig. 12.13 Spatial distributions of local coefficients estimated by GWR-Ridge with an exponential
kernel and a fixed bandwidth for (a) log(population density), (b) temperature, (c) relative humidity,
and (d) wind speed

is given by β̂(si) = (XτW (si)X + λiI )−1XτW (si)Y . The local ridge parameters
λi’s can be tuned separately to reach acceptable local CNs. This is in contrast to the
usual GWR-Ridge where a global λ is tuned to minimize prediction error via cross-
validation. Tuning of either fixed or adaptive bandwidth proceeds as usual, using
either cross validation or AICc.

We want to point out that, the definition of CN differs from that in Wheeler
(2007). The eigenvalues of XτW (si)X and the singular values of

√
W (si)X do not

yield exactly the same CN because of their relationship θj = d2
j . If the definitions

of CN are accurate in the two papers, we suspect that CNs produced by GWmodel
are squares of those produced by gwrr. We compared the CNs produced by the two
packages in Fig. 12.15, which was generated by the following code:



12 Geographically Weighted Regression 313

(a)

under 0
0 − 0
0 − 0.02
0.02 − 0.15
over 0.15

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0
0 − 0
0 − 0.79
0.79 − 1.39
over 1.39

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −0.74
−0.74 − 0
0 − 0
0 − 0.01
over 0.01

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under 0
0 − 0
0 − 0
0 − 0.35
over 0.35

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.14 Spatial distributions of local coefficients estimated by GWR-LASSO with an expo-
nential kernel and a fixed bandwidth for (a) log(population density), (b) temperature, (c) relative
humidity, and (d) wind speed

f i t 0< gwr . l c r ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ ,
bw=bw. gwr$phi , lambda=0, adapt ive=FALSE, dMat=my. dMat)

bound< max( c ( fit0$SDF$Local CN , vdp . gwr$condit ion ) )
p l o t ( fit0$SDF$Local CN , vdp . gwr$condit ion , xl im=c (0 , bound ) ,

ylim=c (0 , bound ) , xlab=’GW LCR’ , ylab=’GWR’ , type=’p ’ ,
pch=19, main=’Local cond i t i on ind i c e s ’ )

po in t s ( s q r t ( fit0$SDF$Local CN ) , vdp . gwr$condit ion , pch=1, c o l =’blue ’ )
ab l i n e ( c o e f = c ( 0 , 1 ) )

The original CN outputs of the two packages are very different, shown by the black
dots. The square roots of the CNs produced by GWmodel are close to the CNs
produced by gwrr, but not exactly. We are not sure about the source of the subtle
differences even after taking square root. Both packages recommended the same
threshold (30) for flagging potentially problematic CNs.
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Fig. 12.15 Comparison
between condition numbers
produced by function
gwr.vdp() in gwrr and those
by function gwr.lcr() in
GWmodel. Black solid dots
are scatter plot of the CNs
from the two functions. Blue
circles are scatter plot after
applying square root to the
CNs produced by gwr.lcr()
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The following code selects bandwidth for and fits the GWR-LCR model, using
the exponential kernel and an adaptive bandwidth.

bw. l c r < bw. gwr . l c r ( l o g i n c i d e n c e ˜ log popden + rh + temp + ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ ,
adapt ive=TRUE, lambda . ad jus t=TRUE, cn . thresh=30)

f i t . l c r < gwr . l c r ( l o g i n c i d e n c e ˜ log popden + rh + temp + ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ , bw=bw. l c r ,
adapt ive=TRUE, lambda . ad jus t=TRUE, cn . thresh=30)

The AIC, AICc and residual sum of squares obtained from GWR-LCR are 178, 191
and 24.4 respectively, compared to 137, 157 and 24.9 for the classic GWR. The less
satisfactory AIC and AICc of GWR-LCR compared to the classic GWR could be
due to the weak association of the predictors with the outcome and the substantially
more parameters in the GWR-LCR model. The spatial patterns of local predictor
coefficients fitted by GWR-LCR are shown in Fig. 12.16. The shrinkage effect of
GWR-LCR is clear for relative humidity and wind speed. Interestingly, the spatial
patterns are more comparable to the results of the classic GWR (Fig. 12.10) than
to those of GWR-Ridge (Fig. 12.13), especially for temperature and population
density.

The following code uses Moran’s I to test spatial randomness of residuals
for all four models. No special spatial patterns were found as all p-values are
relatively large. This result suggests that, while the predictors did not show high
predictive power overall, they indeed explain the spatial auto-correlation in the
HFMD incidences.
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(a)

under 0.06
0.06 − 0.08
0.08 − 0.11
0.11 − 0.13
over 0.13

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0.82
0.82 − 0.87
0.87 − 0.91
0.91 − 1.01
over 1.01

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −0.29
−0.29 − −0.04
−0.04 − 0.12
0.12 − 0.18
over 0.18

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under −0.08
−0.08 − −0.05
−0.05 − −0.02
−0.02 − 0.05
over 0.05

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.16 Spatial distributions of local coefficients estimated by GWR-CLR with an exponential
kernel and a adaptive bandwidth for (a) log(population density), (b) temperature, (c) relative
humidity, and (d) wind speed

> r e s . gwr < f i t . gwr$SDF$pred my. da t a$ l o g i n c i d en c e
> r e s . gwrr < f i t . gwrr$yhat my. da t a$ l o g i n c i d en c e
> r e s . gwl < f i t . gwl$yhat my. da t a$ l o g i n c i d en c e
> r e s . l c r < f i t . lcr$SDF$yhat my. da t a$ l o g i n c i d en c e
> out< rbind (Moran . I (my. da ta$ l og inc id ence , my. dMat ) ,
+ Moran . I ( r e s . gwr , my. dMat ) , Moran . I ( r e s . gwrr , my. dMat ) ,
+ Moran . I ( r e s . gwl , my. dMat ) , Moran . I ( r e s . l c r , my. dMat ) )
> rownames ( out ) < c ( ’Raw Response ’ , ’ Res idual :GWR’ ,
+ ’ Res idua l :GWR Ridge ’ , ’ Res idua l :GWR LASSO’ , ’ Res idua l :GWR LCR’ )
> out

observed expected sd p . value
Raw Response 0.05610592 0.01470588 0.008402828 8.353727 e 07
Res idual :GWR 0.007730267 0.01470588 0.008427097 0.4078063
Res idua l :GWR Ridge 0.008066695 0.01470588 0.00844284 0.4316514
Res idual :GWR LASSO 0.009189744 0.01470588 0.008329576 0.5078205
Res idua l :GWR LCR 0.007598853 0.01470588 0.008431426 0.3992724
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Fig. 12.17 Comparison of correlations among local regression coefficients for classic GWR
(upper left), GWR-Ridge (upper right), GWR-LASSO (lower left) and GWR-LCR (lower right)

We further compared at colinearity in local coefficients of all four models, classic
GWR, GWR-Ridge, GWR-LASSO and GWR-LCR in Fig. 12.17. The regularized
models all reduced colinearity to some extent, and GWR-LASSO did a more
satisfactory job. GWR-LCR shrank the ranges of coefficients for all parameters,
particularly so for temperature and population density, but such shrinkage is not
necessarily towards 0. Although the linear correlation in coefficients between
relative humidity and wind speed still remains clear in the regularized models, it is
generally not wise to increase the shrinkage level too much, as the price paid for
less colinearity is bias in the estimated coefficients (Gollini et al. 2015).

12.3.3 Conclusion

We have introduced the theoretical background of the classic GWR and several
regularized versions that impose different constraints on the magnitude of regression
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coefficients. We also touched the base of some diagnostic statistics such as VDP
and condition number. In the case study, we reviewed the use of three R packages
dedicated to GWR. We conclude this chapter with comments on future development
of GWR and a brief introduction of a Bayesian GWR framework. Thus far,
most applications of GWR are limited to cross-sectional data, despite valuable
information such as seasonality contained in longitudinal data. There seems to
be no theoretical obstacle to the application of GWR to longitudinal data, as
long as a reasonable distance can be defined in space-time. However, there is no
consensus or guideline on such definitions. One possibility is to introduce an extra
tuning parameter for the importance of time relative to space in the construction of
distance, and let data guide the choice of this parameter, e.g., via cross-validation.
Through the case study, we have seen the difficulties in real data analysis. The
existing software packages may not offer the desired tools or output for diagnosis
or inference. Documentation of most packages is far from sufficient. For instance,
we had to do our own investigation to find out how VDP and condition number
are calculated in some packages, and yet did not succeed in such investigation for
other packages. Better documentation and literature support will greatly increase
the popularity of GWR methods. Finally, there appears to be a gap in the GWR
literature about how to handle missing data.

All the methods formally introduced in this chapter are likelihood- or frequentist-
oriented. The Bayesian approach is known to be able to incorporate prior knowledge
about parameters, which is useful when data are inadequate to support inference
about some parameters. Another advantage of the Bayesian approach is its con-
venience in handling complex likelihood with latent or missing data, when the
inference is performed by Markov chain Monte Carlo (MCMC), e.g., using either
Gibb’s sampler or the Metropolis-Hasting’s algorithm (Gelman, Carlin, Stern, &
Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996). A promising direction
that has been researched in the past two decades is the Bayesian spatially varying
coefficient (SVC) models (Banerjee, Carlin, & Gelfand, 2004; Finley 2011; Gelfand,
Kim, Sirmans, & Banerjee, 2003; Wheeler & Calder, 2007; Wheeler & Waller,
2009). The basic hierarchical structure of the Bayesian SVC model is

Y = X
β + ε

ε ∼ N (0, σ 2
ε I )

β ∼ N (1n×1 ⊗ μ,H (φ) ⊗ T )

μ ∼ N (η, σ 2
μI )

T ∼ InverseWishartν(�
−1)

φ ∼ gamma(aφ, bφ)

σ 2
ε ∼ InverseGamma(aτ , bτ )

(12.8)
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where Y is the outcome vector of length n, β is a vector of length n × p stacking
regression coefficients at all locations together, X
 is a n × np block diagonal
matrix with Xi (ith row of X) as each diagonal block ad 0 elsewhere, and ε is
the vector of i.i.d. normal errors. The prior distribution of β is the essence of
the Bayesian SVC model. The notation A ⊗ B denotes the Kronecker product
which multiplies every element of matrix A with matrix B and yields a block
matrix of dimensions as the products of corresponding dimensions of A and B.
For example, the mean of β, 1n×1 ⊗ μ, gives a column vector with n μ’s stacked
together, where 1n×1 is a column vector of n 1’s. The covariance matrix of β is
the Kronecker product of a n × n correlation matrix H (φ) and a p × p covariance
matrix T . H (φ) captures spatial correlation between study locations and is assumed
to depend only on distance and a decay parameter φ, e.g., the (i, j)th element being
hij = exp(−dij /φ), where dij is the distance between locations i and j . T is the
covariance among regression coefficient at any location. This Kronecker product
structure ensures � is positive definite and hence a valid covariance matrix. The
last four expressions in (12.8) specify prior distributions of μ, T , φ and σε with
known hyper-parameters. The inference of model was implemented via MCMC
in Wheeler and Calder (2007). Due to the high-dimension nature of GWR (number
of coefficients increases with locations), the computational burden of this model
can be heavy. There are two R packages, spBayes (Finley 2011; Finley & Banerjee,
2019) and spTDyn (Bakar, Kokic, & Jin, 2016), implementing Bayesian SVC
models. In particular, parallel computing via openMP is available in spBayes to
expedite computation. As computer engineering continues to advance at a fast pace,
we can see that Bayesian approach will become more computationally affordable
and popular.
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