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Preface

Global health is a newly established scientific discipline. It has been emerged
along with globalization to deal with challenging medical and health issues that
either have a global impact or cannot be solved without collaborative and collective
efforts across countries, regions, and even the whole globe. Typical global health
questions include health care systems and inequality, HIV epidemic and control,
influenza, tobacco control, drug and substance use prevention, mental health issues,
and environmental pollution.

As a new discipline in public health and medicine, there is a growing demand
for statistical methods to advance the global health. Advancement of global health
and global health research also needs the participation of epidemiologists. In a more
general sense, global health can be considered as an application of epidemiology in
global health. Guided by these thoughts, in this book, we have collected a series of
statistical methods for global health and epidemiology in three broad parts.

Part I consists of six chapters with focus on data and sampling for global
health and epidemiology. Chapter 1 (by Xinguang Chen and Bin Yu) focuses
on introduction to existing sources of data that have great potential and been
conventionally used in global health and epidemiology research. Chapter 2 (by Hao
Chen and Keerati Ponpetch) introduces sources of satellite imagery data that has
emerged as a new source of data particularly important for global epidemiological
research. Chapter 3 (by Xinguang Chen and Hui Hu) devotes to the GIS/GPS-
assisted probability sample—a newly systematized and highly cost-effective method
to draw probability samples in both resource-limited and developed countries.
Chapter 4 (by Yan Wang and Xinguang Chen) covers a new method for survey
studies to collect data on sensitive questions with a construal-level theory supported
method. Chapter 5 (by Andrea Hussong, Veronica Cole, Patrick Curran, Daniel
Bauer, and Nisha Gottfredson) describes the techniques for harmonization of data
collected by different studies. Lastly, Chap. 6 (by Guanhong Miao, Hanzhi Gao, Yan
Wang, and Samuel Wu) introduces a series of methods for privacy-preservation data
sharing.

Part II of the book consists of another six chapters with focus on the most
essential statistical and epidemiological methods. This part starts with Chap. 7 (by

v
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vi Preface

Bin Yu) that describes the methods and techniques for global mapping, which is
fundamental for global health research to describe geographic patterns of morbidity
and mortality. Chapter 8 (by Xinguang Chen and Ding-Geng Chen) introduces
a newly established 4-dimensional approach for descriptive analysis, including
count, population-based rate, geographic area-based rate, and both population and
geographic area-based rate. Chapter 9 (by Xinguang Chen) describes an innovative
application of the classic epidemiological method of age-period-cohort (APC)
model to investigate historical trend in population health with more recent data.
Chapter 10 (by Ding-Geng Chen, Xinguang Chen, and Huanzhen Qin) covers a new
approach to solve the APC model based on the Moor-Penrose generalized inverse
matrix theory. Chapter 11 (by Xinguang Chen) describes the use of mixed effects
model in analyzing data from cross-cultural studies to study health behaviors among
adolescents in Hong Kong, Macao, Taipei, Wuhan, and Zhuhai. Chapter 12 (by Yang
Yang) illustrates the geographically weighted regression in global epidemiology and
global health research.

Lastly, Part III of the book consists of four chapters covering advanced and
highly innovative methods for global health and epidemiology. This part starts with
Chap. 13 (by Ropo Ogunsakin and Ding-Geng Chen) on Bayesian spatiotemporal
modeling of infectious diseases with application to Malaria in Nigeria. Chapter 14
(by Kai Yang and Peihua Qiu) introduces an advanced disease surveillance model
considering geographic correlation. Chapter 15 (by Xinguang Chen, Kai Wang, and
Ding-Geng Chen) introduces a new cutting-edge analytical method for quantum
change–cusp catastrophe modeling of continuous data with application in analyzing
the testosterone in bifurcating the age-related changes in prostate-specific antigen
(PSA) as a commonly used biomarker for prostate cancer screening and diagnosis.
The last chapter of this book, Chap. 16 (by Ding-Geng Chen and Xinguang Chen),
introduces the same cutting-edge cusp catastrophe modeling method for analyzing
binary data and discusses the methodology development.

Selection of the statistical methods for this book is guided by a global and
epidemiological perspective, considering the unique needs for global health research
that is often cross-cultural, cross-country, cross-geographic areas, and global. Such
large-scope research often involves resource-limited regions, countries, and places.
The methods included in this book are specifically designed to meet these needs.

It is our hope that the publication of this book will facilitate researchers and
graduate students in the fields of epidemiology and global health to advance their
research agenda, promoting advancement of global health. We also expect feedback
from those who use the methods in their research to further improve the methods
covered in the book and to collect and develop additional methods for global health
and global epidemiology.

We are deeply grateful to those who have supported in the process of creating
this book. We thank all the contributing authors to this book for their enthusiastic
involvements and their kindness in sharing their professional knowledge and exper-
tise. Our sincere gratitude goes to all the chapter reviewers for their expert reviews
of the book chapters, which lead to a substantial improvement in the quality of this
book. We thank all the reviewers for providing thoughtful and in-depth evaluations
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of the papers contained in this book. We gratefully acknowledge the professional
support of Ms. Laura Aileen Briskman from Springer who made the publication of
this book a reality. We would also thank the support and encouragement from the
editors of ICSA Book Series in Statistics, Professors Jiahua Chen and Ding-Geng
Chen.

We welcome readers’ comments, including notes on typos or other errors, and
look forward to receiving suggestions for improvements to future editions. Please
send comments and suggestions to any of the editors.

Gainesville, FL, USA Xinguang Chen
Chapel Hill, NC, USA (Din) Ding-Geng Chen
July 2019
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Chapter 1
Existent Sources of Data for Global
Health and Epidemiology

Xinguang Chen and Bin Yu

Abstract Many research questions in global health and epidemiology can be
addressed using data from existing sources over the world. In the first chapter of this
book, we provide a summary of data sources most commonly accessed for global
health and epidemiological research. We focus on sources that provide relevant data
by country on geographic area, population size and age composition, population
mobility, socioeconomic status, cultural and legal characteristics, and morbidity and
mortality. Specific examples from the World Bank, the World Health Organization,
other global organizations, and well-known large-scale cross-country survey studies
are emphasized.

Keywords Data science · Source of data · Global health · Statistics ·
Epidemiology

1.1 Introduction

Global health and epidemiology research uses data to quantitatively investigate
medical and health issues at national, international, regional and global levels.
Collecting such data is challenging even for conducting a project limited to a
local community, a county, a state, a country, not to mention for a research project
with a global focus. Fortunately, through decades of efforts, a number of national,
international and global agencies, such as the United States, the United Nations,

X. Chen (�)
Department of Epidemiology, College of Public Health and Health Professions, College of
Medicine, University of Florida, Gainesville, FL, USA

Global Health Institute, Wuhan University, Wuhan, China
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4 X. Chen and B. Yu

the World Bank, and the World Health Organization, have collected and compiled
large amounts of important data by country. The data compiled by these agencies
are highly valuable for global health and epidemiological research, such as data
on geographic area, population, socioeconomic status, press freedom index, birth
rates, death rates, leading causes of death, tobacco use, numbers of doctors, hospital
beds, and healthcare expenditures, to name a few. Data from most of these sources
are available for use free of charge. To facilitate global health and epidemiological
research, in the first chapter of this book, we describe existing data from a number
of important sources commonly accessed in research.

1.2 Country Codes, Population and Geographic Area Data

Population size and geographic area are essential data elements used for global
health and epidemiological research. Such data are often used by researchers to
gain a mastery of the basic conditions across all countries and to identify countries
of interest against the global picture.

1.2.1 Standard Country Codes

When using country-level data, it is important to consider numerous ways in
which countries are named or abbreviated, as this has implications for database
construction and navigation. For example, the following four names, the USA, the
U.S., the United States, and the United States of America all represent one country.
When we read or hear about any of these names, we know it is referred to the United
States. However, when you input these four different names into a search algorithm
to construct a dataset, the algorithm may consider each as a different country for
statistical analysis.

To facilitate analysis using data by country, The International Organization for
Standardization (ISO) has created and maintains the ISO 3166 Standard—Codes
for the Representation of Names of Countries and their Subdivisions (ISO, 2018).
The ISO 3166 standard codes consist of three parts: ISO 3166-1, ISO 3166-2 and
ISO 3166-3. ISO 3166-1 is widely used representing the names of countries and
their subdivisions. ISO 3166-1contains three parts: (a) two-letter country codes
(also known as alpha 2), representing individual countries using two English letters.
For example, AF: Afghanistan, CN: China, and US: United States. These two-
letter codes are also used to define three-letter country codes and internet country
codes. (b) three-letter country codes (also known as alpha 3), representing individual
countries using three English letters. With this three-letter country code system,
AFG = Afghanistan, CHN = China, USA = the United States. (c) Numeric
codes, using three digits to representing individual countries. With this code system,
004 = Afghanistan, 156 = China and 840 = the United States.

The Table below is a screen shot from the Wikipedia showing the codes for 248
countries and territories in the world (Table 1.1).

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/ISO_3166
https://en.wikipedia.org/wiki/ISO_3166-1
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6 X. Chen and B. Yu

Country name codes are created for 249 countries in the world, of which 193
countries are sovereign states and member countries of the United Nations. The
country name codes can be assessed at the website: https://en.wikipedia.org/wiki/
List_of_ISO_3166_country_codes.

1.2.2 Population Data by Country

Population data are particularly important for global health and epidemiology.
Population size is the basis to compute many epidemiological and health indices,
such as prevalence and mortality rates; the number of persons at risk and the number
of persons who need specific healthcare services.

Most countries with national censuses publish population data regularly or
irregularly. One source which publishes population data for individual countries is
the database by the World Bank (2018). The database is available at: https://data.
worldbank.org/indicator/SP.POP.TOTL.

This database provides data on population size by country for all member
countries of the World Bank (189 of total 195 countries). Detailed data are also
available on population breakdown by sex and 5-year age group. These population
data were collected through the following sources: The United Nations Population
Division, the World Population Prospects (2017 Revision); the Census reports
and other statistical publications from national statistical offices; the Eurostat:
Demographic Statistics; the United Nations Statistical Division; the Population and
Vital Statistics Report in different years; the U.S. Census Bureau (International
Database); and the Secretariat of the Pacific Community (Statistics and Demography
Program) (World Bank, 2018). These sources can be accessed to help researchers
gain a better understanding of the data collection process.

Data are easily downloadable in excel file format. As an illustration, data
presented in Table 1.2 provide an example of a part of the data we manually obtained
from the website for 10 selected countries.

Table 1.2 Population data of 10 selected countries in the world, data source: world bank

Country name Alpha 3-code Total population (1000) Male (1000) Female (1000)

Afghanistan AFG 35,530.08 18,309.89 17,220.19
Argentina ARG 44,271.04 21,667.87 22,603.17
Australia AUS 24,598.93 12,254.51 12,344.43
Brazil BRA 209,288.28 102,855.02 106,433.26
Canada CAN 36,708.08 18,213.75 18,494.33
China CHN 1,386,395.00 714,405.30 671,989.70
Egypt EGY 97,553.15 49,324.99 48,228.16
France FRA 67,118.65 33,000.44 34,118.21
India IND 1,339,180.13 693,958.76 645,221.37
Japan JPN 126,785.80 61,915.09 64,870.71

https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/SP.POP.TOTL
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1.2.3 Geographic Area Data by Country

Like population, geographic area is another key piece of data important to
researchers, as well as policy-makers, planners, and public workers alike to
understand, comprehend, and advance global health and epidemiology. Relative
to population size and composition that change rapidly over time, geographic area
of a country is much more stable. Sources of geographic data are available from the
following websites:

1. Internet World Stats (https://www.internetworldstats.com/stats.htm),
2. Wikipedia (https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_

by_area)
3. The World Bank (https://data.worldbank.org/indicator/ag.lnd.totl.k2).

1.2.4 Data from the Internet World Stats

In this web-based data source, you can access to the compiled data by simply using
the URL address: https://www.internetworldstats.com/list1.htm#AF. Detailed data
on area size of individual country are organized in different way. After gaining
access the web address, simply click the hyperlink: Click here for Countries by
Alphabetic Order (ISO 3166), you will see a table listing all the information
contained there. Very importantly, in this website, individual countries are identified
using the ISO 2-letter code, an obvious plus for data processing in global health and
epidemiologic research (Internet World Stats, 2019).

In addition to the geographic area, this website contains information on total
population, the number of internet users, internet penetration rate, and the date the
data were acquired. Data on internet usage from this website are highly valuable for
global health and epidemiology to address many challenge issues in contemporary
society. As an example, Table 1.3 is a snapshot of the data from the Internet World
Stats.

1.2.5 Data from Wikipedia

Wikipedia also publishes data on area size by country (Wikipedia, 2019a). Further-
more, it provides more detailed data on the area of land and water for individual
countries, which are very useful for global health and epidemiology. For information
purpose, Table 1.4 presents a screen shot of the first page of the website. The figure
shows that data from this source include world total and country-specific data on the
total area size, land area, water area, and % water. A note is also added to each entry
describing additional information for the data.

https://www.internetworldstats.com/stats.htm
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_area
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_area
https://data.worldbank.org/indicator/ag.lnd.totl.k2
https://www.internetworldstats.com/list1.htm#AF
https://www.internetworldstats.com/list2.htm
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An obvious issue for data from this source is that it does not use the ISO 2-alpha
or 3-alpha code as the name to identify individual countries. When processing such
data, you have to manually code the variable for country name yourself. Territories
not identified by the ISO names are also included in this data source if they are
adequately large. You can exclude these territories if they are not the focus of your
research.

Lastly, Wikipedia highlights at the top of the web page that there are disputes
regarding the neutrality and accuracy. Attention should be paid to this issue when
data from this source are used for publication.

1.3 Data for Socioeconomic Status and Vital Statistics

After having data on population and geographic area, we naturally want to obtain
data on social economic status and vital statistics for individual countries. Such
data can be obtained from official publications of individual countries (e.g.,
statistical yearbooks, or annual national reports or something alike). However, a
better approach would be to access data that have been compiled for research.
Although there are often 1 or 2-year delay than the data published by individual
countries, compiled data are often adjusted for between-country differences, and
thus can be directly used in research. You can find such compiled data from two
important sources: Data from the World Health Organization (WHO), particularly
data reported in the Country Profile published by WHO and the Database from the
World Bank.

1.3.1 Data from the World Health Organization

World Health Organization produces World Health Statistics, an annual snapshot of
the health status of all the member countries across the globe (WHO, 2019e). The
report can be accessed at the web address: https://www.who.int/gho/publications/
world_health_statistics/en/. In addition to a summary of global health status, the
report provided detailed data on a long list of medical and health issues ranging
from infectious diseases, non-communicable diseases, mental health, maternal child
health, immunization, sanitation and environmental health, alcohol and tobacco use,
road safety, violence. Annual pdf report since 2005 can be downloaded for data
extraction.

After gain access into the website described above, you can see the detailed
statistics by clicking on the button “By section” from two options. This link will
bring you to a page where you will see the following six selections: (1) Global
health observatory data, (2) Data repository, (3) Reports, (4) Country statistics, (5)
Map gallery, and (6) Standards.

https://www.who.int/gho/publications/world_health_statistics/en/
https://www.who.int/gho/publications/world_health_statistics/en/
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Each of these links leads you do a different type of data. For example, when
clicking on Country statistics, you will see all countries being listed alphabetically.
By clicking the name of a country, you can find the detailed vital statistics by
category for the country, including (a) country summary of statistics, (b) country
life tables, and (c) disease and injury country estimates.

It is worth noting that data from this source of WHO are for member countries
only. No data can be found for non-member countries. In addition, data availability
by country also varies from year to year. As expected, data are available for more
member countries in more recent years than in early years.

1.3.2 Data from the World Bank

The World Bank collects, compiles and updates their data on total and per capita
GDP (gross domestic productivity, in US dollars) and annual GDP growth (World
Bank, 2019). GDP is the single most widely used indicator for economic level and
growth of a country. In addition to GDP, other data important for global health
and epidemiology include percentage of primary school enrollment, percentage of
population under poverty, per capita CO2 emission (metric tons), and life expectancy
at birth (years). You can access these data using the following URL address: https://
data.worldbank.org/country.

After access to the web site, you may also find information for several important
large-scale national and international surveys, which may contain the data you need
but not listed in the compiled data. You may also gain access to data for individual
participants who took part in the survey for in-depth modeling analysis. Two typical
examples are the World Bank Group Country Survey and the Demographic and
Health Survey for different countries conducted in different years.

The World Bank Group Country Survey is an opinion survey that is designated to
measuring and tracking Bank’s clients, partners, and other stakeholders’ perception
of World Bank. Country Surveys explore perceptions of the World Bank’s work
(speed, effectiveness, relevance, etc.), knowledge, and engagement on the ground
for work improvement. Typical survey respondents are national and local govern-
ments, multilateral/bilateral agencies, media, academia, the private sector and civil
society. The earliest survey was conducted in 2011, and such data provide some
information about socioeconomic status of the member countries.

1.4 Data on Important Social, Legal and Religious Factors
by Country

1.4.1 Data for Measuring Press Freedom

When studying social influence on health, freedom of speech is an important factor
(Chen, Elliott, & Wang, 2018). One important global organization, the Reporters
Without Borders collected data and created a Press Freedom Index (PFI) by country

https://data.worldbank.org/country
https://data.worldbank.org/country
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Fig. 1.1 Global pattern of PFI, 2018. Note: The figure was derived from the Reporters Without
Borders website (https://rsf.org/en/ranking)

annually (Reporters Without Borders, 2018). Data for the compiled PFI since 2002
can be accessed through the website: https://rsf.org/en/ranking. This PFI index is
a composite score which measures six aspects of press freedom, including (1)
pluralism, (2) media independence, (3) media environment and self-censorship, (4)
legislative framework, (5) transparency, and (6) the quality of the infrastructure
that supports the production of news and information. An online questionnaire is
developed with 87 items to obtain data for measuring these six aspects. Respondents
of the questionnaire are primarily media professionals, lawyers and sociologists.
Data regarding the abuses and acts of violence against journalists are also collected.
The index scores are calculated by combining questionnaire data and the data
regarding abuses and violence against journalists. Figure 1.1 shows the global
pattern of PFI with light color indicating more press freedom and dark color
indicating less press freedom in 2018 (Reporters Without Borders, 2018).

1.4.2 World Index of Moral Freedom

Likewise, data from the World Index of Moral Freedom (WIMF) can also be used
in global health and epidemiology research. This index consists of five domains: (1)
religious freedom, (2) bioethical freedom, (3) drugs freedom, (4) sexual freedom,
and (5) family and gender freedom (Foundation for the Advancement of Liberty,
2016).

https://rsf.org/en/ranking
https://rsf.org/en/ranking
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1. The domain of religious freedom measures the level of free practice of any
religion or levels of religious-control in a country.

2. The domain of bioethical freedom measures the level of freedom in individual’s
decision-making on matters posing bioethical questions, such as legal control of
abortion, euthanasia and other practices (e.g., surrogacy or stem cell research)
pertaining to bioethics.

3. The domain of sexual freedom measures the freedom of sexual intercourse,
pornography and sex service among consenting adults.

4. The domain of family and gender freedom assesses the level of freedom among
women, LGBT individuals and unmarried couples living together (Kohl, 2016).

The highest score for each domain is 20 points with a total score of 100 points
for the composite WIMF. With the WIMF core, the following criteria is used to rank
a country:

1. Countries with the highest moral freedom: WIMF score: 90–100 points
2. Countries with very high moral freedom: WIMF score: 80–90 points
3. Countries with high moral freedom: WIMF score: 60–80 points
4. Countries with acceptable moral freedom: WIMF score: 50–60 points
5. Countries with insufficient moral freedom: WIMF score: 40–50 points
6. Countries with low moral freedom: WIMF score: 20–40 points
7. Countries with very low moral freedom: WIMF score: 10–20 points
8. Countries with the lowest moral freedom: WIMF score: 0–10 points

A total of 160 countries are ranked using this index. The first edition of
WIMF report was published in 2016 (http://www.fundalib.org/wp-content/uploads/
2016/04/World-Index-of-Moral-Freedom-web.pdf). Results from the report indi-
cate that the Netherlands was scored the highest among all countries in the world
(WIMF = 91.70), with 10 countries having WIMF scores higher than 75 points.

1.4.3 Country Profile of Religions

Religion is another important factor for global health and epidemiological research.
Religion may exert effect on people’s physical, mental and social well-being.
People with different religions present different patterns of health problems and
risk behaviors, such as mental health problems and suicide (Koenig, 2009; Stack
& Kposowa, 2011). However, it is challenging to measure religion. Wikipedia is
one source that provides information on specific religions by country (Wikipedia,
2019b). In one Wikipedia entry entitled “Religions by country”, data regarding
religions for individual countries are provided using tables and maps. In the table,
you can obtain data on population breakdown by religion, country and continent.

Religions listed in the table on the website include Christian, Islam, Hindu,
Buddhist, Folk religion, Jewish, and Other religion. For example, the religion profile

http://www.fundalib.org/wp-content/uploads/2016/04/World-Index-of-Moral-Freedom-web.pdf
http://www.fundalib.org/wp-content/uploads/2016/04/World-Index-of-Moral-Freedom-web.pdf
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for the United States consists of Christian (73.83%), Islam (0.9%), Hindu (0.6%),
Buddhist (1.2%), Jewish (1.8), irreligion (16.40%). An emerging area of global
health and epidemiology research seeks to understand how religion impacts health.

1.5 Data on Disease Statistics

1.5.1 Data for Global Cancer Statistics

Data for cancer statistics by country are available from existing sources, including
the World Cancer Research Fund & American Institute for Cancer Research and the
WHO Cancer Country Profile.

World Cancer Research Fund & American Institute for Cancer Research (https://
www.wcrf.org/) is a leading authority on cancer prevention research with focus on
diet, nutrition and physical exercise, and their influence on cancer (World Cancer
Research Fund International, 2019). Data on specific cancer by country are available
through their website (https://www.wcrf.org/dietandcancer/cancer-trends), such as
lung cancer, breast cancer, prostate cancer, colorectal cancer, and other important
cancers. Data are also available regarding risk factors for different types of cancers
and recommendations for cancer prevention.

Data from WHO Cancer Country Profile can be accessed through the website
(https://www.who.int/cancer/country-profiles/en/). Data included in the profile were
obtained either from original studies or estimated by WHO (2014a). This source
contains information by country regarding levels and time trends of morbidity
and mortality overall and by cancer types, risk factors, availability of national
cancer plans, monitoring and surveillance, primary prevention policies, screening,
treatment and palliative care.

1.5.2 Data for Global Cardiovascular Disease Statistics

Data regarding cardiovascular disease (CVD) by country and gender, can also be
accessed through the WHO website (https://www.who.int/cardiovascular_diseases/
en/). Data by four global regions (Americas, Europe, Eastern Mediterranean,
and Pacific region) are also available in addition to data for individual member
countries (WHO, 2019a). Mortality attributable to CVD, cancer, diabetes or chronic
respiratory disease, by region and by country can also be accessed through
the website (http://apps.who.int/gho/data/view.sdg.3-4-data-reg?lang=en). Data in
CVD mortality, overall and by gender in most countries are available since 2000.

https://www.wcrf.org/
https://www.wcrf.org/
https://www.wcrf.org/dietandcancer/cancer-trends
https://www.who.int/cancer/country-profiles/en/
https://www.who.int/cardiovascular_diseases/en/
https://www.who.int/cardiovascular_diseases/en/
http://apps.who.int/gho/data/view.sdg.3-4-data-reg?lang=en
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1.5.3 Data for Global Infectious Disease Statistics

Infectious disease data can be accessed through the WHO website (https://www.
who.int/csr/resources/databases/en/). Outbreak case counts are compiled by country
and year (WHO, 2019b). The covered infectious diseases include, but are not limited
to, Ebola, Yellow fever, Hantavirus, Chikungunya, Cholera, Dengue, Viral Hepatitis,
Influenza, Malaria, Measles, and Zika virus (https://www.who.int/csr/don/archive/
disease/en/).

Additional data on select infectious diseases are available through the Global
Burden of Disease (http://apps.who.int/gho/data/node.home), including HIV/AIDS,
Tuberculosis, Malaria, Cholera, Influenza, and Meningitis.

1.5.4 Data for Causes of Death in the United States

Mortality data by causes of death are of great significance in global health to deter-
mine the future prevention and treatment strategies and policies. The availability of
such data varies fom countries to countries. One well-established source of mortality
data is the Wide-Ranging Online Data for Epidemiologic Research (WONDER)
managed and provided by the Centers for Disease Control and Prevention (CDC) in
the United States. All the data can be publically accessed through the designated
website (https://wonder.cdc.gov/). CDC WONDER manages a large number of
collections of data for public use to address various research topics, including births,
deaths, cancer diagnoses, tuberculosis cases, vaccinations, environmental exposures
and population estimates and many other related topics.

Researchers can gain access to the data by log into the CDC WONDER website
first; take time to explore the topic areas of your interest, and download the data.
Using suicide mortality data as an example. (1) Go to the website https://wonder.
cdc.gov/. (2) Click on the “Topics” tab to explore and find the topic area of your
interest. The suicide should be within the “Leading Causes of Death” category under
“Death”. (3) Go back to request data by clicking on “WONDER Systems” tab, select
the “Detailed Mortality”. In this page, carefully review and signed the consent to
abide by the terms of data use restriction. After review, click on “I Agree” at the
bottom of the page to proceed. (4) In the tab named “Request Form”, specify the
data you need and how they are tabulated, including locations to cover, demographic
factors, time duration, and days of a week. (5) Specify the cause of death using
one of five methods: (a) ICD-10 Codes, (b) ICD-10 130 Cause List (Infants), (c)
Drug/Alcohol Induced Causes, (d) ICD-10 113 Cause List, and (e) Injury Intent
and Mechanism. Codes for suicide deaths can be selected from (d) the ICD-10
113 Cause list by finding the title: #Intentional self-harm (suicide) (∗U03,X60-
X84,Y870) and choose two entries under this title; or from (e) the Injury Intent
Mechanism by choosing “Suicide” from for data acquisition. After all selections are

https://www.who.int/csr/resources/databases/en/
https://www.who.int/csr/resources/databases/en/
https://www.who.int/csr/don/archive/disease/en/
https://www.who.int/csr/don/archive/disease/en/
http://apps.who.int/gho/data/node.home
https://wonder.cdc.gov/
https://wonder.cdc.gov/
https://wonder.cdc.gov/
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completed, click the “Send” tab at the bottom of the page, the data you request will
come in another page. The data can be saved for further use.

1.6 Data on Global Tobacco and Substance Use

Data for substance use/abuse are very important for global health and epidemiology.
Among various substances, tobacco and alcohol have been studied the most
comprehensively. As such, sources of data for these two substances are highlighted
in this chapter. However, data for other substances, such as marijuana, opioids and
other prescription and illicit drugs can be obtained following the same approach.

1.6.1 Tobacco Use and Prevention

Tobacco use is highly prevalent around the world, and global tobacco prevention
and control programs have been established and implemented since the 1950s when
Dr. Doll and Hill demonstrated the association of tobacco smoking and lung cancer
in the United Kingdom (Doll & Hill, 1956). Data on tobacco use, prevention and
control can be accessed through WHO website (http://apps.who.int/gho/data/node.
main.TOBCONTROL?lang=en). In the “Monitor” section, you can obtain data on
age-standardized prevalence of tobacco use for adults and youth by country and by
gender.

In addition to data from WHO, another important sources for data on tobacco use
is the World Health Statistics (https://www.who.int/gho/publications/world_health_
statistics/en/). The World Health Statistics provides an overview of a number of
tobacco-related health problems. Data on the prevalence rate of tobacco smoking by
region and by year are also available from the World Health Statistics.

A third source for data on tobacco use and control is the Global Tobacco
Surveillance System (GTSS) (https://www.cdc.gov/tobacco/global/gtss/index.
htm). The GTSS aims to enhance country capacity to design, implement and
evaluate tobacco control interventions, and monitor key articles of the World
Health Organization’s (WHO) Framework Convention on Tobacco Control and
components of the WHO MPOWER technical package (CDC, 2018). The GTSS
consists four surveys, including Global Youth Tobacco survey (https://www.who.
int/tobacco/surveillance/gyts/en/), Global School Personnel Survey (https://www.
paho.org/hq/index.php?option=com_content&view=article&id=1749:2009-global-
school-personnel-survey-gsps&Itemid=1185&lang=en), Global Health Professions
Student Survey (https://www.who.int/tobacco/surveillance/ghps/en/), and Global
Adult Tobacco Survey (https://www.who.int/tobacco/surveillance/survey/gats/ind/
en/).

http://apps.who.int/gho/data/node.main.TOBCONTROL?lang=en
http://apps.who.int/gho/data/node.main.TOBCONTROL?lang=en
https://www.who.int/gho/publications/world_health_statistics/en/
https://www.who.int/gho/publications/world_health_statistics/en/
https://www.cdc.gov/tobacco/global/gtss/index.htm
https://www.cdc.gov/tobacco/global/gtss/index.htm
https://www.who.int/tobacco/surveillance/gyts/en/
https://www.who.int/tobacco/surveillance/gyts/en/
https://www.paho.org/hq/index.php?option=com_content&view=article&id=1749:2009-global-school-personnel-survey-gsps&Itemid=1185&lang=en
https://www.paho.org/hq/index.php?option=com_content&view=article&id=1749:2009-global-school-personnel-survey-gsps&Itemid=1185&lang=en
https://www.paho.org/hq/index.php?option=com_content&view=article&id=1749:2009-global-school-personnel-survey-gsps&Itemid=1185&lang=en
https://www.who.int/tobacco/surveillance/ghps/en/
https://www.who.int/tobacco/surveillance/survey/gats/ind/en/
https://www.who.int/tobacco/surveillance/survey/gats/ind/en/
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1.6.2 Alcohol Use

Alcohol use and abuse is a risk factor for many health-related problems, including
cardiovascular diseases, cancer, suicide and other diseases (Harris, 2013). One
important data source of alcohol use and abuse is the Global Information System on
Alcohol and Health (GISAH) (WHO, 2019c), available at (http://apps.who.int/gho/
data/node.main.GISAH?lang=en). Various topics are covered in the data, including
levels and patterns of alcohol consumption, consequence of alcohol, alcohol control
policies, alcohol use disorders and alcohol dependence, presented by country and
year.

Another available data source for alcohol use and abuse is the World Health
Statistics (WHO, 2019e). Data from this source can be accessed through the website
(http://apps.who.int/gho/data/node.sdg.tp-1?lang=en). Data on prevalence of use
and amount of alcohol consumption per capita are available by region and year.
For example, the global average alcohol consumption was 6.4 L of pure alcohol per
person aged 15 or older. The highest alcohol consumption was observed in Europe
(9.8), followed by Americas (8.0), Western Pacific (7.3), Africa (6.3), Southeast
Asia (4.5) and Mediterranean (0.6).

1.7 Data for Measuring Suicide by Countries in the World

Suicide is a significant global health problem with a long history, and it occurs
throughout the lifespan. The rate of suicide provides a reliable measure of the
happiness among people in a country (Bray & Gunnell, 2006). Data estimated by
the World Health Organization indicate that nearly 800,000 people die due to suicide
every year, which is equivalent to one person dying from suicide every 40 s (WHO,
2014b).

To monitor suicide by country over time, WHO has compiled data on rates of
suicide by country, including crude rates and age-standardized rates, overall and by
gender. These data can be accessed at the website (https://www.who.int/mental_
health/prevention/suicide/suicideprevent/en/). As an example, Fig. 1.2 shows the
global pattern of suicide mortality in 2016 based on the data from this source.

1.8 Data on Physicians, Nurses and Hospital Beds

Statistics on physicians, nurses, and hospital beds are important for evaluating
health resources and healthcare systems. World Bank compiled such data and made
it available at their website: https://data.worldbank.org/indicator/SH.MED.PHYS.
ZS. Typical data include the numbers of physicians, hospital beds and nurses and
midwives per 1000 population. According to the most recently available global

http://apps.who.int/gho/data/node.main.GISAH?lang=en
http://apps.who.int/gho/data/node.main.GISAH?lang=en
http://apps.who.int/gho/data/node.sdg.tp-1?lang=en
https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/
https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/
https://data.worldbank.org/indicator/SH.MED.PHYS.ZS
https://data.worldbank.org/indicator/SH.MED.PHYS.ZS
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Fig. 1.2 Global pattern of suicide mortality in 2016. Note: The map was derived from the WHO
website (https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/)

data, in 2011–2013, worldwide on average among 1000 population, there were 1.5
physicians, 3.1 nurses/midwifes and 2.7 hospital beds (World Bank, 2016).

1.9 Important Surveys with International and Global
Coverages

The data sources described in Sects. 1.1–1.8 contained only aggregate data, and no
individual-level data can be obtained from these sources. In this section, we will
introduce several large-scale international and global surveys that offer data at the
individual level.

1.9.1 The Demographic and Health Surveys

The Demographic and Health Survey (DHS) (DHS, 2019) is listed under the World
Bank website. Although not conducted by World Bank, you can access to DHS using
the following web address: https://www.dhsprogram.com/Who-We-Are/About-Us.
cfm. The DHS Program is funded by the U.S. Agency for International Development
(USAID). The DHS also receives contributions from other donors and participating
countries. The goal of DHS is to collect data and provide evidence to advance global
understanding of health and population trends in developing countries.

https://www.who.int/mental_health/prevention/suicide/suicideprevent/en/
https://www.dhsprogram.com/Who-We-Are/About-Us.cfm
https://www.dhsprogram.com/Who-We-Are/About-Us.cfm
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Initiated in 1984, through a partnership with Johns Hopkins Bloomberg School
of Public Health/Center for Communication Programs and other agencies, and
currently implemented by ICF, a well-known scientific consulting agency, DHS
collects and disseminates national representative national data on fertility, family
planning, maternal and child health, gender, HIV/AIDS, malaria and nutrition for
over 90 developing countries.

1.9.2 Global School-Based Student Health Survey

The Global School-Based Student Health Survey (GSHS) is a collaborative surveil-
lance project designed to help countries measure and assess the behavioral risk and
protective factors in ten key areas among students in the age range of 13–17 years
(WHO, 2019d). Survey topics in GSHS include alcohol and drug use, dietary
behaviors, hygiene, mental health, physical activity, sexual behaviors, tobacco use
and violence and unintentional injury. A total of 103 countries have participated in
the project. The data and other related information can be accessed at the following
website (https://www.who.int/ncds/surveillance/gshs/en/).

1.9.3 Health Behavior in School-Aged Children

Health Behavior in School-Aged Children (HBSC) (http://www.hbsc.org/) aims to
collect data on health and well-being, social environments and health behavior
among school-aged children (HBSC, 2019). HBSC started in 1984 with five
participating countries. After its interception, HBSC has become a major cross-
sectional survey with a total of 49 member countries across Europe and North
America. HBSC is conducted every fourth year among students aged 11, 13
and 15 years. The topics covered by HBSC include body image, bullying and
fighting, eating behaviors, health complaints, injuries, life satisfaction, obesity, oral
health, physical activity and sedentary behavior, relationship with family and peers,
school environment, self-rated health, sexual behavior, socioeconomic environment,
substance use (alcohol, tobacco and cannabis), and weight reduction behavior. Data
collected by HBSC can be accessed through inquiry at the website https://www.uib.
no/en/hbscdata.

1.9.4 International Social Survey Program

The International Social Survey Program (ISSP) (http://www.issp.org/menu-top/
home/) is the largest cross-nation research effort in social science (ISSP, 2019). It
was initiated in 1984 by the United States, Australia, Great Britain and Germany.

https://www.who.int/ncds/surveillance/gshs/en/
http://www.hbsc.org/
https://www.uib.no/en/hbscdata
https://www.uib.no/en/hbscdata
http://www.issp.org/menu-top/home/
http://www.issp.org/menu-top/home/
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Fig. 1.3 Member countries in the ISSP. Note: The map was derived from ISSP website (http://w.
issp.org/members/member-states/)

Now the ISSP collaboration has 61 participating countries. The topics covered by
the ISSP include role of government, social network, social inequality, family and
changing gender roles, work orientations, religion, environment, national identity,
citizenship, leisure time and sports, health and health care. ISSP data by year and
by topic area can be accessed through the designated website (http://www.issp.
org/data-download/by-topic/). Figure 1.3 presents the participating countries of the
ISSP all over the world for references.

1.9.5 Multiple Indicator Cluster Survey

Multiple Indicator Cluster Survey (MICS) (https://www.unicef.org/statistics/index_
24302.html) was established to collect data at the household level. The MICS was
originally developed in response to the World Summit for Children to measure
progress of an internationally set of mid-decade goals (UNICEF, 2014). To date,
more than 300 surveys have been conducted by MICS in more than 100 countries,
filling the gap of data on well-being of children and women. Data collected through
MICS are used to help shape policies for the improvement of the lives of women
and children.

To date, six rounds of surveys by MICS have been conducted, including the first
round (1995–1996), second round (2000), third round (2006), fourth round (2009–
2013), fifth round (2012), and sixth round (2016). The seventh round for 2019 is in
the design stage and new data are anticipated by 2020 or 2021. The MICS uses five
main questionnaires for data collection as described below:

http://w.issp.org/members/member-states/
http://w.issp.org/members/member-states/
http://www.issp.org/data-download/by-topic/
http://www.issp.org/data-download/by-topic/
https://www.unicef.org/statistics/index_24302.html
https://www.unicef.org/statistics/index_24302.html


1 Existent Sources of Data for Global Health and Epidemiology 21

1. Household questionnaire, covering contents on household characteristics, energy
use, insecticide treated nets, water and sanitation, handwashing, salt iodization
and water quality;

2. Individual questionnaire for women, covering contents on background, mass
media, fertility and birth history, maternal and newborn health, post-natal
health, contraception, genital mutilation, attitudes towards domestic violence,
victimization, marriage, sexual behaviors, HIV/AIDS, tobacco and alcohol use,
and life satisfaction, etc.;

3. Questionnaire for children under five, covering contents on birth registration,
early childhood development, child discipline and functioning, breastfeeding and
dietary intake, immunization, and anthropometry, etc.;

4. Questionnaire for children age 5–17, covering contents on labor, discipline,
functioning, parental involvement and foundational learning skills; and

5. Questionnaire for men, covering contents on mass media, fertility, attitudes
towards domestic violence, marriage/union, sexual behaviors, HIV/AIDS, cir-
cumcision, tobacco and alcohol use, and life satisfaction.

The survey design, data and reports by MICS reports by country and year are
available through the website (http://mics.unicef.org/surveys).

1.9.6 World Health Survey

The World Health Survey (https://www.who.int/healthinfo/survey/en/) was imple-
mented by WHO in 2002–2004 in 70 member countries. The goal is to collect
information about health of adult populations and healthcare system (WHO, 2019f).
The total sample size of the survey was over 300,000 people. Figure 1.4 presents
the participating countries of the World Health Survey. Data by country collected
through this important effort can be accessed through the website: (http://apps.who.
int/healthinfo/systems/surveydata/index.php/catalog/whs).

1.9.7 The World Mental Health Survey Initiative

The World Mental Health Survey Initiative (WMH) is a project of the Assessment,
Classification, and Epidemiology (ACE) Group at the WHO which coordinates the
implementation and analysis of general population epidemiologic surveys covering
mental, substance use, and behavioral disorders in countries of all WHO Regions
(https://www.hcp.med.harvard.edu/wmh/) (WMH, 2005). A total of 28 countries
participated in the WMH with a total sample size in excess of 155,000. The aim
of WMH is to obtain accurate estimates about the prevalence rates and correlates
of mental, substance and behavioral disorders. Disorders considered in WMH

http://mics.unicef.org/surveys
https://www.who.int/healthinfo/survey/en/
http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/whs
http://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/whs
https://www.hcp.med.harvard.edu/wmh/
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Fig. 1.4 Countries enrolled in World Health Survey. Note: The map was derived from World
Health Survey website (https://www.who.int/healthinfo/survey/whs_001.png?ua=1)

include anxiety disorders, mood disorder, disorders that share a feature of problems
with impulse control and substance disorders (e.g. alcohol abuse and dependence,
drug abuse and dependence, nicotine). All disorders are assessed based on the
definitions and criteria of the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) and the ICD-10 Classification of Mental and Behavioral
Disorders.

1.9.8 World Value Survey

The World Values Survey (WVS) (www.worldvaluessurvey.org) is conducted
through a global network of social scientists who study the changing values and
their impact on social and political life (WVS, 2018). The WVS started in 1981, and
the survey participants were from approximately 100 countries. The WVS seeks
to help scientists and policy-makers understand the changes in beliefs, values and
motivations of people throughout the world. Since 1981, a total of six waves of WVS
have been completed with the most recent survey completed in 2014. WVS data are
available free of charge at the following website (http://www.worldvaluessurvey.
org/WVSContents.jsp).

https://www.who.int/healthinfo/survey/whs_001.png?ua=1
http://www.worldvaluessurvey.org
http://www.worldvaluessurvey.org/WVSContents.jsp
http://www.worldvaluessurvey.org/WVSContents.jsp
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1.10 Summary

Research in global health and epidemiology requires data collected in a standardized
and systematic fashion by multiple countries to address important medical and
health problems with worldwide significance (Chen, 2014; Harris, 2013; Nock,
2012; Webber, 2005). There is a growing trend in data collection through inter-
national and global collaborations. Data collected through such collaborative efforts
are free and widely available for use. As the first chapter of this book, we introduced
several sources of data readily accessible online and routinely used in research and
practice. However, this is not an exhaustive list, and more resources are available.
The information covered in this chapter provides a mode for researchers who are
interested in using existing data to advance their horizon in global health and
epidemiological research.
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Chapter 2
Satellite Imagery Data for Global Health
and Epidemiology

Hao Chen and Keerati Ponpetch

Abstract In this chapter, we describe commonly accessible sources of satellite
imagery data free of charge for research. Exemplary data include lightening for
development level, PM2.5 for pollution, temperature, recitation deforestation. We
cover the sources of such data, methods to access, and utilization of them as
a measure of the macro-environment in research, overall and zoom in down to
specific country, district and community/neighborhood levels. Examples are used
to illustrate the process, including R codes, screen shots, and tables.

Keywords Global health · Satellite imagery data · Epidemiology · Environment
health

2.1 Introduction

Environmental changes can be natural or anthropogenic and examples of such
changes include air pressure, wind, rain, fog, air pollution, and deforestation, to
name a few. Of these changes, the anthropogenic factors are commonly investigated
in research related to population health and targeted for interventional methods
to improve public health. For example, many studies discovered that exposure to
ambient air pollution is associated with increased morbidity and mortality and
heightened social and economic burden (Dockery et al., 1993; Lelieveld, Evans,
Fnais, Giannadaki, & Pozzer, 2015). World Health Organization estimates that
ambient air pollution in both urban and rural areas has caused an excess of 4.2
million premature deaths worldwide in 2016 (WHO, 2018). There is a great research
need to establish the association between the environmental factors and many
adverse health outcomes at the national, international and global levels. Traditional
methods such as air quality index (AQI) collected through specific monitoring
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techniques, have been widely used in research; however, such data are often limited
for addressing larger scale health problems, including air pollution and population
health for all countries across the globe.

To better understand the association between the environmental factors and
adverse health outcomes at the macro level, satellite remote sensing (RS) has
generated an important source of data with unique perspectives and functions
for research in global health and epidemiology. Digitizable information from this
source of data can be used to measure many environmental parameters, such as
particulate matter (PM) from air pollution, temperature, and vegetation coverage.
These quantitative measures can then be used to examine the association between
these environmental factors and health outcomes at the macro level. Another feature
of RS data is that consistent observational records can be generated with the data
to describe key environmental factors at different scales, from local to countrywide,
continental, and further to global (Sorek-Hamer, Just, & Kloog, 2016).

Utilization of satellite observations in the environmental health studies in the
United States started in 2009. In those early studies, one type of RS data—the
Aerosol Optical Depth (AOD) were used to expand the PM2.5 exposure matrix to
obtain spatially complete PM surface, which provided a better measure of PM2.5
concentrations for research to examine environmental pollution and coronary heart
diseases (Hu, 2009; Hu & Rao, 2009; Sorek-Hamer et al., 2016). In addition to
the etiology of diseases, RS data are highly valuable for exposure assessment over
time and future prediction of incidence of diseases. This feature is very important to
inform decision-making and planning in development and implementing prevention
strategies and to evaluate interventional results. For example, temperature and
precipitation data can be used to predict the prevalence of mosquito-associate
disease such as dengue and malaria (Thomson et al., 2017).

Many governmental, academic, and industrial organizations have devoted much
effort to collect and compile RS data with a number of satellites lunched for
environmental monitoring. To promote the utilization, remote sensing data from
a range of sources become widely accessible to the public free of charge. The
question is where to find and how to acquire such data to address specific research
questions in global health and epidemiology. To facilitate the use of RS data, in
this chapter, we will introduce the commonly used sources of data that are readily
available and free of charge (see Table 2.1). For each data sources, examples are
used to demonstrate how to acquire the datasets needed. In addition, advantages and
limitations of the data are discussed.

2.2 USGS Data

USGS stands for the US Geological Survey, and USGS is the first source of data we
introduce in this chapter. USGS data consist of some most typical satellite imagery
data commonly used in research. Researchers can access to the very informative
USGS data through the Earth Explorer.
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Table 2.1 Examples of RS data source

Satellite source Date of operation Developer Resolution Data hosting sites

Landsat 1–3 1972–1983 NASA 80 m Earth explorer,
Earthdata

Landsat 4 1982–1992 NASA 80 m Earth explorer,
Earthdata

Landsat 5 1982– NASA 29/30 m Earth explorer,
Earthdata, INPE

Landsat 7 1999–2020 NASA 15/30 m Earth explorer,
GloVis, INPE

Landsat 8 2013– NASA 15/30 m Earth explorer,
GloVis, INPE

GOES-R 2016– NOAA 0.5–2.0 km Earthdata, CLASS
Sentinel-l 2014 (A)/2016 (B) ESA 5 m- 4 km Sentinel satellite

data
Sentinel-2 2015 (A)/2017 (B) ESA 10, 20, 60 m Sentinel satellite

data
Sentinel-3 2016 (A)/2018 (B) ESA 500 m Sentinel satellite

data
ALOS 2006– JAXA 2.5 m Global ALOS 3D

world
ERS 1991 (1)/1995 (2)

2000 (1)/2001 (2)
ESA 25 m Earth observation

link (EOLi),
sentinel satellite
data

Himawari-8/9 2014– JMA 0.5, 1.0 km Himawari monitor
Terra and Aqua 1999

(Terra)/2002(aqua)
NASA 250 m Earth explorer,

Earthdata

2.2.1 Introduction of Earth Explorer (EE)

Earth Explorer (EE) provides a useful tool to access the satellite and aerial image
data that can be used to measure biology and ecosystem, climate and land use
change, energy, environmental health, geology, water, and natural hazards. EE also
features free downloading data over chronological timelines. Specific data can be
accessed using a wide range of search criteria including address/place, path/row,
coordinates, google map options, dates range, result options, mass media search, and
etc. It also provides access to Landsat data products such as MODIS and AVHRR
land surface and Hyperion’s hyperspectral data from NASA, which have covered
the landscape images with consistent spectral bands since 1972. It is worth noting
that changes in land coverage is especially important when studying the ecological
systems and their relationship with human health (USGS, 2013).

The interface of EE is user-friendly, and the website is easy to navigate through.
An application, named as Bulk Download is provided for researchers to obtain more
than one type of data to address complex research questions.
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2.2.2 Steps to Access USGS Data Using EE

To demonstrate steps to access the USGS data using EE, we used Landsat source as
an example. As expected, the Landsat data are available free of charge. What you
need to do before accessing is to register as a data user.

Step 1. Access to USGS data using EE interface with the URL: https://
earthexplorer.usgs.gov/. After gaining access to the website, you will see the
following on our computer screen—the EE interface for data accessing (Fig. 2.1).

Step 2. Set your search criteria.
This step can be completed by clicking on the “Search Criteria” tab. In this part,

you define the region of interest, timeline for the aerial and satellite imagery data.
For example, search criteria as shown in Fig. 2.2:

1. Click on the “Predefined Area” tab and then the “Add Shape”.
2. Open the box under “State”, and select a state, here we use “Florida” as an

example state; open the box “Area Type” and the select “State”; and then click
“Add”.

Step 3. Enter the time range for the data you plan to download.
This step is easy, and it can be completed by clicking the “Date Range” tab and

then fill in the time period for data and then hit data sets (Fig. 2.3).
Step 4. Select data to download.

Fig. 2.1 Homepage of USGS Earth Explorer. Red circle shows the tabs for “Register” and “Login”

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Fig. 2.2 Example of accessing data source using predefined area function. Red circles showed the
tabs described in step 2

Fig. 2.3 Enter date range. Red circle shows the tabs to enter dates

Click the “Data sets” tap, you will see a long list of many options to download
the remote sensing data, including the aerial imagery, Landsat, LiDAR, MODIS,
etc. The data were also categorized into different levels for quality purposes.
Here we chose eMODIS NDVI as the example dataset by: first select “Vegetation
Monitoring” from the list and then select eMODIS NDVI (Fig. 2.4).
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Fig. 2.4 Select data sets

Step 5. Application of filters to remove noise (optional).
Click the “Additional Criteria” tab, choose the image of interest to filter out

scenes with too much cloud.
Step 6. Download data.
This step is completed by clicking on the “Results” tab as shown below. The

screen provides options for you to browse, preview and download the data as shown
below (Fig. 2.5).

Step 7. Loading dataset to R.
For researchers who are familiar with R program, the follow codes can be used

to complete the previous steps. These codes can be modified to any other types of
data (Fig. 2.6).
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Fig. 2.5 Download data sets

Fig. 2.6 R codes to load the same dataset from USGS
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2.3 UNEP Data of United Nations Environmental Program
(UNEP)

UNEP stands for the United Nations Environmental Program (UNEP). UNEP
provides another important source of satellite and aerial imagery data. Researchers
can access UNEP data using the Environmental Data Explorer.

2.3.1 Introduction of the Environmental Data Explorer
of UNEP

The Environmental Data Explorer is an interface used by UNEP and its partners
to prepare the Global Environment Outlook Report and other related environment
assessments. Data for more than 500 variables are included in this database,
including air pollutant emissions, water, vegetation, climate change, disaster, health,
and among many others. These variables cover the themes, many of which are very
important for global health and epidemiology, including freshwater, population,
forests, emissions, climate, disasters, health, and GDP. The data are provided in
two forms: (a) statistics at different scale (from local to global) and (b) geospatial
forms (maps). The datasets are routinely used for UNEP to make evidence-based
decisions to promote coherent implementation of the environmental dimension of
sustainable development in the United Nations (UNEP, 2018).

2.3.2 Steps to Access UNEP Data

Step 1: Go to the website.
Data access can be completed after getting to the website: http://geodata.grid.

unep.ch/. After getting into the website, you will see the following page (Fig. 2.7),
which assist you navigate the UNEP data with the Environmental Data Explorer.

As shown in Fig. 2.7, you can see that Environmental Data Explorer contains two
options (methods) to access the data: (a) Keyword search by filling in the first box
“Enter words to search”; and (b) Search using the existed category by opening the
second box and selecting the categories of your interest. After clicking the “Search”
bottom, additional criteria are available for users to further refine the data selection
and download.

As an illustration, we will introduce the first approach in detail. When you are
familiar with the first approach, the second approach would be easy to follow. The
approach of keyword search can be completed in the following steps:

Step 2. Start data search by entering a keyword(s).

http://geodata.grid.unep.ch/
http://geodata.grid.unep.ch/
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Fig. 2.7 Home page of the Environmental Data Explorer of UNEP

Use annual temperature as an example. Type the words “annual temperature”
in the box “Enter words to search for”, then “Search”, you will see a screen as in
Fig. 2.8.

Step 3. Choose the dataset of interest.
For example, select “Average Monthly Maximum Temperature-January”, click

the “Continue” tab at the bottom of the screen (Fig. 2.9).
Step 4. Display and download the datasets.
There are three data options as shown in the screen in Fig. 2.10, including “Draw

Map”, “Show Metadata” and “Download Data”. By selecting each of them, you can
get a map and save it for use. You can also review and download the data.

Step 5. Applying datasets to R.
R codes can be used in statistical program to achieve the steps in the sample

described above.

1. Import data into R using the following code:
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Fig. 2.8 Search keyword “annual temperature” in the Environmental Data Explorer

Fig. 2.9 Examples of data sets in the Environmental Data Explorer

2. Crop Tmax data to Florida boundary in R
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Fig. 2.10 Data access options in the Environmental Data Explorer

2.4 NASA Earth Science Data

NASA Earth Science Data consist of another important and very comprehensive
source of data. Data from this source are often used in many types of research,
including medical and health related studies.

2.4.1 Introduction of the Earth Science Data

NASA Earth Science Data (also called EARTHDATA) are compiled by and
powered by EOSDIS (the Earth Observing System Data and Information System).
EOSDIS covers a wide spectrum of data on earth sciences including ocean surface,
field campaigns, polar processes, land cover change, cryosphere, digital elevation,
atmosphere dynamics and composition, and interdisciplinary research, and among
others (Behnke, Mitchell, & Ramapriyan, 2018). EOSDIS also features a set
of 12 discipline-based Distributed Active Archive Centers (DAACs) across the
United States. These centers include: EROS Data Center (EDC) Land Processes,
Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL) Physical
Oceanography DAAC (PO-DAAC), Langley Research Center (LaRC), National
Snow and Ice Data Center (NSIDC), Oak Ridge National Laboratory (ORNL),
Socioeconomic Data and Applications Center (SEDAC) at the Consortium for Inter-
national Earth Science Information Network (CIESIN), Global Hydrology Resource
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Center (GHRC) at Marshall Space Flight Center, National Climatic Data Center
(NCDC), National Geophysical Data Center (NGDC), National Oceanographic
Data Center (NODC), and Satellite Active Archive (SAA) of National Oceanic
and Atmospheric Administration (NOAA). Each of the center was collocated with
scientific expertise in their respective field and they perform many tasks that are
beyond basic data management and serve over three million users across the world
(Behnke et al., 2018).

The database includes platforms from many satellites including Aqua, Terra,
Aura, TRMM, Calipso, Landsat, GOES, NOAA satellites, and many others. These
satellites use numerous instruments to collect data to meet different scientific
needs. Typical instruments include AIRS, Barometer, Humidity Sensor, MODIS,
Thermometer, VIIRS, etc. For example, the data for AOD or aerosol optical
thickness (ADT) which describes the air pollution levels can be measured by the
Moderate Resolution Imaging Spectroradiometer (MODIS) using the satellite Aqua
and Terra over most of the globe on a daily basis. MODIS can measure the spectral
radiance in 36 channels in resolution of between 250 nm and 1 km.

2.4.2 Steps to Access Earth Science Data

The tool available for use to access NASA Earth Science Data is the EARTHDATA
Search. Launched in 2018, this online search tool contains many methods to search
the data you need and download them for use. NASA’s data policy ensures that
all NASA data are fully available, open and without restrictions. In the following,
we use the vegetation coverage data as an example to demonstrate how to use the
search engine to get data from the Moderate Resolution Imaging Spectroradiometer
(MODIS). We demonstrate the process in several steps.

Step 1: Registration and login.
Visit the website https://urs.earthdata.nasa.gov/ for registration. EARTHDATA

requires registration and login for data access (Fig. 2.11).
Step 2. Visit the Homepage.
After login, visit the homepage by clicking the EARTHDATA logo on the top

left corner in Fig. 2.11. Then click “FIND DATA” on the bottom right corner in Fig.
2.12.

Step 3: Search data using a keyword(s).
Type a keyword of interest for searching, for example “vegetation”. The EARTH-

DATA allows you to define your search based on keywords, platforms, instruments,
etc. on the left side of the webpage. We defined our search with keyword “Land
Surface”, platform “Aqua”, and instrument “MODIS”. After search, we obtained
28 matching collections as shown in Fig. 2.13.

https://urs.earthdata.nasa.gov/
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Fig. 2.11 Login and registration webpage for EARTHDATA

Fig. 2.12 Homepage for EARTHDATA. Red circle shows the “FIND DATA” tab
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Fig. 2.13 Search data on EARTHDATA. Red circles show the “keyword box” and the number of
searching results

Fig. 2.14 Choose and download datasets on EARTHDATA. Red circle shows the “Download” tab

Step 3. Download the data of interest.
In this example, we select, from all the 28 options, the MODI-derived Vegetation

and Albedo Parameters for Agroecosystem-Climate Modeling datasets for down-
loading (Fig. 2.14).

2.5 Sentinel Satellite Data

Sentinel Satellite data are compiled by the European Space Agency (ESA). Data
from this source also covers many topics commonly investigated in global health.
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2.5.1 Introduction of the Sentinel Satellite Data

Data from this source provide the highest resolution remote sensing data covering
the whole globe generated using sentinel satellites. Five satellites will be contribut-
ing to the datasets including (ESA, 2014):

1. Sentinel-1: weather, day and night images used for land and ocean observation;
2. Sentinel-2: high resolution images for land which can reach as low as 10 m and

there are as many as 12 spectral bands including red, green, blue and the near-
infrared;

3. Sentinel-3: datasets for land and ocean observation;
4. Sentinel-4 and -5: datasets for atmospheric composition monitoring from geosta-

tionary and polar orbits respectively.

The Copernicus Open Access Hub (formerly known as Sentinels Scientific Data
Hub) is a user-friendly interface that provided users to search and acquire RS data
of interest. This interface is jointly operated by the European Commission, ESA,
and the European Environment Agency. All data from this source are available for
users free of charge.

2.5.2 Steps to Access the Sentinel Satellite Data

To show the process of data acquisition using the interface Copernicus Open Access
Hub, we will provide an example using the AOD data. It takes several steps to
acquire data using the ESA’s interface:

Step 1: Visit the homepage and register.
The interface of the Copernicus Open Access Hub can be accessed through

the website: https://scihub.copernicus.eu/dhus/#/home. Download the data from the
Hub requires registration/sign up and login as shown in Fig. 2.15. After registration,
you will receive an email to validate your registration. After validation, you will be
able to login.

Step 2. Set search criteria.
Once the search tap is clicked, it will provide information for all the available

sentinel data from different satellites. Further refinement can be made to select more
specific datasets by the “advance search” function.

As mentioned, we will use AOD as the example parameter. The example
data were collected using the Multi-Spectral Instrument, carried by SENTINEL-
2 satellite to measure AOD. We choose Frankfurt am Maine, Germany as the target
area and type “platformname: Sentinel-2” in the search box. A total of 50 products
were returned and shown in Fig. 2.16.

Step 3. Choose datasets and download.
After data search is completed and the data of interest are located, take

a review of the data, and make further changes when needed. Finalize the

https://scihub.copernicus.eu/dhus/#/home
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Fig. 2.15 Registration and login for the Copernicus Open Access Hub. Red circle shows the “sign
up” tab for registration

Fig. 2.16 Search function of the Copernicus Open Access Hub. Red circles show the search box
and area of interest in the map
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Fig. 2.17 Choose and download data from the Copernicus Open Access Hub. Red circle shows
the viewing and downloading options

selection and download the data following the online instructions from the
website. It is sometimes time-consuming in downloading data from this
source, particularly when the dataset is big. As an example, we choose
“S2A_MSIL1C_20190226T102021_N0207_R065_T32UMA_20190226T135911”
dataset to show. There are also viewing and downloading options available (Fig.
2.17).

2.6 Global ALOS 3D World Data

Global ALOS 3D world of the Japanese Aerospace Exploration Agency (JAXA)
provides satellite sensing data with high resolution. The data have been widely used
in the health science studies.

2.6.1 Introduction of the Global ALOS 3D World

The ALOS (Advanced Land Observing Satellite) 3D World of JAXA (Japanese
Aerospace Exploration Agency) release datasets from the global digital surface
model (DSM) with a horizontal resolution of approximately 30 m. The data are
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available free of charge since May 2015. Data from this source are considered the
most precise global-scale elevation data that were compiled with images acquired
by the ALOS satellite “DAICHI”. The dataset is highly expected to be applied in
scientific research and education where endeavors are made to investigate the map
development, water resource investigation, as well as damage prediction of natural
disasters. However, the application of the data is hampered for practice use by the
significant extent of data gaps and questionable use of fill data. It is recommended
to use the datasets through significant process and in combination with other data
sources. Overall download volume for the global data is more than 250 GB. The
large file is due to the reason that the data contains two sets; one employs the mean of
the higher resolution data points while the other one represents the average. Subtle
differences of images generated by the two are noticeable (Takaku & Tadono, 2017;
Takaku, Tadono, Tsutsui, & Ichikawa, 2016).

2.6.2 Steps to Access the ALOS 3D World Data

Data from this source can be accessed and downloaded in the following steps:
Step 1. Visit the homepage and registration.
The search engine to access ALOS 3D World of JAXA data can be found

through: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/. Go to the homepage using
the link (Fig. 2.18).

Scroll down the homepage and find the following link to enter registration
page (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/registration.htm). An email will
be sent to the registered email for confirmation and password after completing
registration (Fig. 2.19).

Find the dataset link on the homepage as shown here and click to enter
the data page (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm). Enter the
username (the registered email address) and password to access the data map as
shown in Fig. 2.20.

Step 2. Search data.
Click the area of interest. Here we choose Florida for example (Fig. 2.21). You

can choose even smaller square for more detailed data.
Step 3. Download data.
Following the online instructions to download the selected data as shown in the

red circle in Fig. 2.21.

2.7 Earth Online Data

Earth Online (EO) is another product based on ESA’s Earth Catalogue Service and
provides many sources of remote satellite sensing data that can be applied in the
health science.

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/registration.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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Fig. 2.18 Homepage of the Global ALOS 3D World

2.7.1 Introduction to the EO Data

EO is formerly known as Earth Observation Link (EOLi). As of Jan. 4th, 2019,
EOLi catalogue and ordering services has been upgraded and presented as the
ESA simple online catalogue that was hosted by EO. The mission of EO, is to
supply scientists and decision makers objective and continuous data and images
of planet earth by satellite remote sensing technology, so that informed decisions
will be made to understand and protect our environment. EO provides interface to
browse the metadata and preview of images of Earth Observation data acquired by
the satellites ERS and Envisat. The service also provides downloadable products
of various processing levels. The data from EO comprise of topics in agriculture,
atmosphere, earth surface, water, land, ocean and coasts, snow and ice, and natural
disasters. EOis a JAVA application which is supported on all major computing
platforms including Windows, Linux, MaxOS X and other Unix systems.
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Fig. 2.19 Registration page on the Global ALOS 3D World

2.7.2 The Steps of Access Earth Online Data

The method described in Sect. 2.4 for Sentinel satellite data access can be used here
to access the EO data. As an example, we use the atmosphere data to show the steps
for data acquisition.

Step 1. Registration.
Go to the Earth Online application site: https://earth.esa.int/web/guest/home, and

complete the registration online as shown in Fig. 2.22. A confirmation email will be
sent to the registered email for validation.

Step 3. Choose data of interest.
Once login, click the “Data Access” tab and choose subtab “Browse Data

Products”. Then select “Atmosphere” as shown in Fig. 2.23.
Step 3. Data selection.
After clicking the “Atmosphere”, a list of atmospheric data appears. As an

example, you can select “GOMOS Level 2 - Atmospheric constituents’ profiles -
User Friendly Product (NetCDF.GOMOS_UFP)” Fig. 2.24.

https://earth.esa.int/web/guest/home
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Fig. 2.20 Data map of the Global ALOS 3D World

Fig. 2.21 Data map of Florida in the Global ALOS 3D World
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Fig. 2.22 Homepage and registration tap of EO data. Red circle shows the “Register” tab

Fig. 2.23 Data search from the EO data. Red circles show the “Data Access” tab and result number
for “Atmosphere” category

Step 4. Download the datasets.
The dataset you selected will become available to download after your request is

granted by the data host (Fig. 2.25).
To file an access request, click on the “My Earthnet” on the top of the webpage.

Information of study area, primary application domain, and a brief executive
summary will be needed for the request (Fig. 2.26). The length of waiting time
depends on the data categories (e.g. fast registration with immediate access, fast
registration with approval, or procedures requiring evaluation).
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Fig. 2.24 Data selection from the EO data. Red circle shows the “GET DATA” tab

Fig. 2.25 Data access requires Registration submission

Fig. 2.26 Fast registration to gain data access in EO data
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2.8 Additional Sources of Data

Till now, we have introduced six most commonly used sources of satellite and
aerial imagery data. Additional sources are available, and they could be useful for
researchers to address specific global health and epidemiological questions.

2.8.1 Comprehensive Large Array-Data Stewardship System
(CLASS)

CLASS is an electronic library that hosts environmental data from the National
Oceanic and Atmospheric Administration (NOAA). The database from CLASS
encompasses NOAA and US Department of Defense (DOD) Polar-orbiting Oper-
ational Environmental Satellite (POES) data, NOAA’s Geostationary Operational
Environmental Satellite (GOES) data, and derived data. POES collects data on a
variety of land, ocean, and atmospheric conditions globally daily and supports a
wide spectrum of environmental monitoring applications. GOES monitors weather
events such as storms, tornados and natural disasters including wildfire, dust storms,
and volcanic eruption. Other notable CLASS products include Joint Solar Satellite
System (JPSS), Sea Surface Temperature data (SST), RADARSAT, and among
others.

Though there is a lot of data in CLASS, but it’s less user-friendly compared
with EE of USGS and the Sentinel Science Data Hub of ESA. But CLASS has
developed hardware and software evolution plans for near-term upgrades for climate
model and NPP data, while looking further into the future with its Target System
Architecture (TSA) (Rank, 2011). The free registration is required to access the
datasets of CLASS. (https://www.bou.class.noaa.gov/saa/products/welcome).

2.8.2 National Institute for Space Research (INPE)

INPE, the acronym for National Institute for Space Research in Portuguese, is a
research institution in Brazil. The agency hosts a remotely-sensed data catalog,
established by the partnership between Brazil and China called the China-Brazil
Earth Resources Satellite Program (CBERS). The satellite imagery data are mainly
from China-Brazil Earth Resources Satellites 2, 2b and it also includes satellites
from USA, UK, India, etc.

The most important feature for INPE database is that the satellite data only covers
South America and Africa. The image recorded by the camera are 27 km by width
and have 2.7-m spatial resolution. To access the dataset, registration with email
address is required as the datasets will be sent to the email address provided. This is
the link to access the catalog: http://www.dgi.inpe.br/CDSR/.

https://www.bou.class.noaa.gov/saa/products/welcome
http://www.dgi.inpe.br/CDSR/
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2.8.3 Himawari Monitor Data of Japanese Meteorological
Agency (JMA)

Himawari-8 is main satellite of JMA to carry out the mission for advanced Himawari
Imager (AHI) for improved numerical weather prediction accuracy and enhanced
environmental monitoring (Yang et al., 2018). The satellite was launched in October
2014. AHI of JMA provides high spatial—temporal resolution data on PM levels
using a vertical-humidity correction method. AHI also shares similar spectral and
spatial features as the Advanced Baseline Imager (ABI) that is planned for use in
the American GOES-R satellites (Yang et al., 2018).

User registrations is also required to access the data catalog. The dataset can be
freely accessible through the website: https://www.eorc.jaxa.jp/ptree/index.html.

2.8.4 The AErosol RObotic NETwork (AERONET)

NASA and PHOTONS (PHOtometrie pour le Traitement Operationnel de Nor-
malisation Satellitaire) established a ground-based remote sensing aerosol network
called AERONET (Holben et al., 1998). AERONET provides spectral AOD data
around the globe and its data quality can be achieved through AERONET: level 1.0
(unscreened), level 1.5 (cloud screened), and level 2.0 (cloud screened and quality
assured). Free data are available through following link: https://aeronet.gsfc.nasa.
gov/new_web/data.html.

2.8.5 Bhuvan India Geo-Platform of ISRO

Bhuvan is a platform that integrating remote sensing data from satellites that
were launched by India including satellites Hyperspectral, Cartosat, Oceansat
and Resourcesat. The mapping service allows users to develop both 2D and 3D
representation of earth surface, but most tailored to view India. The imagery datasets
include satellite images for more than 300 cities in the country and partly North
Indian Ocean, and the resolution of the images can be as small as 1 m.

Registration and log-in is required to access and download the datasets. Outside
of India, only a few products are available including Normalized Difference
Vegetation Index (NDVI) Global Coverage, CartoDem Version-3R1 for SAARC
countries, and Climate products for North Indian Ocean. Here is the website link to
access the datasets: https://bhuvan.nrsc.gov.in/bhuvan_links.php.

https://www.eorc.jaxa.jp/ptree/index.html
https://aeronet.gsfc.nasa.gov/new_web/data.html
https://aeronet.gsfc.nasa.gov/new_web/data.html
https://bhuvan.nrsc.gov.in/bhuvan_links.php
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2.9 Conclusion Remark

Data from all the sources described in this chapter will facilitate research to address
pressing medical and health issues by incorporating global and remote sensing data.
Such data are particularly valuable to assess environmental factors where there is
insufficient monitoring; and they have already been introduced in environmental
health research over a decade. In addition to filling in the spatial gap, data from
these sources will add time series data to extend the temporal data gap. These remote
sensing data provide large scale of monitoring of environment changes over time,
such as the observation of vegetation levels in a country over decades. Such long
period of observation will provide valuable information of how vegetation coverage
change affects human health. Lastly, we have to admit that satellite remote sensing
data is still in progress. More research efforts are required to ensure data quality. As
many sources of satellite data are publicly available free of charge, more research
is possible to test the data quality and its result can be used for improvement. We
are confident that the utilization of the RS data will promote the research in global
epidemiology and global health.
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Chapter 3
GIS/GPS-Assisted Probability Sampling
in Resource-Limited Settings

Xinguang Chen and Hui Hu

Abstract It is rather challenge to draw probability samples for epidemiology
and global health research that involves specific geographic area and resource-
limited countries and regions. Based on authors’ published work, in this chapter we
introduce an innovative probability sampling method using the GIS technology for
probability spatial sampling, the GIS and GPS technologies to connect the sampled
geographic area with residential houses and residents, and the random digits method
to select individual participants. With this method, data requirement and cost are
minimized while implementation can be achieve in a short period. Most part of the
method has been tested and used in a developing country to sample rural residents,
rural-to-urban migrants and urban residents.

Keywords Probability sampling · GIS/GPS technologies · Survey studies ·
Statistics

3.1 Study Population and Samples

A significant contribution made by statistics to the modern scientific research is
the establishment of the concepts of study population and sample. It is with these
two concepts researchers can work with only a small number of participants as
a sample selected from the study population, collect data from the sample, and
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derived information from the collected data using statistical methods, and then use
the derived information to inference the characteristics of the study population.

When seeing the word “population”, most researchers naturally visualize the
total number of people living in a country as in demography. In statistics, study
population, also known as target population is the group of people from which
researchers select samples, collect data and conduct analysis to draw scientific
conclusions about a specific research question(s). For example, if one wants to study
the mortality rate for the United States, all people living in the United States consist
of the target population. If one wants to study cigarette smoking among rural-to-
urban migrants in China, all Chinese who migrate from rural areas to urban area
in China will be the study population. If one want to study the prevalence of HIV
infection among men who have sex with men (MSM) in an African country, all
MSM in that country will be the target population. If one wants to study the impact
of internet use on mental health, all persons who use internet would be the study
population.

From the description above, we can see different types of study population. Some
study population is permanent, such as all the residents in a country that are used
to study morbidity, mortality, and access to healthcare; some other populations are
transient, such as seasonal migrant populations and refuge populations; while some
other populations are conceptual, hidden or virtual, such MSM, sex works, the
internet users, drug dealers. In our society today, we have to pay more attention to
medical and health problems among transient, conceptual and hidden populations
than the permanent populations because of the increased diversity along with
globalization and increased power and freedom for all individuals in every societies
(Pieterse, 2015).

3.2 Non-probability Sampling

Sampling is the process by which a pre-determined number of individuals is selected
from the target population. Establishment of many sampling methods makes it
possible for scientists to collect data from a very small number of individuals
selected from a large population, and use the data to understand a research question
for the whole population. For example, by collecting data from a sample of
approximately 2000 adult residents that are eligible to vote in the United States,
a researcher can predict the likelihood of a candidate running for the President
Position of the country with high accuracy, usually plus minus 5% of error.

Before establishment of the probability sampling method (detailed in the next
section), two methods were used to draw study samples, one being named as
purposeful sampling and another convenience sampling. These methods have been
used in research up to now because of their high efficiency and low cost. However,
we must be aware that data collected from such samples are not valid to help derive
the statistics for the study population.
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3.2.1 Purposeful Sampling

Purpose sampling is also known as judgmental sampling. Today, this sampling
method is often used in small scale and exploratory studies, such as pilot study
to establish a theory or generate a set of hypotheses for a large-scale project. For
example, if a researcher wants to examine stress associated with migration for
immigrants from another country in the United States, he/she may purposefully
selected a number of migrants in different ages and gender with different length
of migration in the United States, and assess the levels of stress. Such data will be
useful for a researcher to establish study hypothesis, plan for data collection and
statistical analysis.

In addition to hypothesis generation, purposeful sampling method is used in
selecting participants to conduct formative studies, test and evaluate the feasibility
of a large project; or conduct pilot, focus-group studies to establish protocols for
data collection and develop measurement instruments and survey questionnaire.
For example, if a researcher want to develop a questionnaire to assess HIV risk
behaviors among MSM, he/she can select and recruit a small number (2–3) of
MSM with different racial/ethnic backgrounds (white, black, Hispanic), educational
levels (high school or less, college or more), living in different neighborhoods
(urban core, suburb, rural area). He/she will then collect data from these participants
through individual or group interview on topics related to HIV, sex, drugs, etc. With
information from such focus-group study, researchers may be able to develop a
survey questionnaire for a full-scale research.

Advantages for the purposeful sampling method is that it is highly feasible, can
be completed in a short period to generate needed data. One big limitation is that
data derived from purposeful samples cannot be generalized to the whole study
population.

3.2.2 Convenience Sampling

A method more complex than the purposeful sampling is convenience sampling.
This method is also known as accidental sampling or natural sampling. With
this method, researchers select participants as sample by considering primarily
the feasibility. Such samples are often selected in a convenient location/time
where/when eligible participants often pass by. For example, in many psychological
studies, researchers set up a booth at the cafeteria, and recruit students who come
to there for meals. Market researchers also recruit shoppers at the front gates of
a shopping mall to examine people’s purchasing behaviors. Medical researchers
can recruit patient participants in the waiting area of an outpatient clinic for health
service access and utilization research. HIV researchers can sample truck drivers on
selected rest areas by a free ways where most drivers take break.
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3.3 Probability Sampling

Probability sampling consists of a group of methods that can be used to select a
pre-determined number of individuals from the target study population, including
simple random sampling, systematic sampling, stratified random sampling, and
multilevel/multistage random sampling. These methods have been described in great
details in almost all books in statistics, demography and epidemiology, and two of
my best reference books are (1) Survey Methodology by Groves et al. (2009) and
Sampling Techniques by Cochran (1977). Essentially, when using a probability
sampling method to select participants from a study population, it will help us
achieve the following goals to strengthen a research study:

3.3.1 Know the Probability for Sampling

First of all, probability sampling method will allow researchers to know the
probability or chance by which an individual from the study population can be
selected. Using simple random sampling method will ensure an equal probability
to select any individual from the target population while using other methods
will result in varying but still known probabilities for individual participants to be
sampled.

3.3.2 Independent Identical Sample Distribution

Second, by using a probability sampling method, selected individual participants in
a sample are mutually independent from each other. The selected participants thus
follow the sampling distribution. If a sample is selected using the simple random
method with the same probability for all individuals, all participants in the sample
will follow the independent and identical distribution, often abbreviated as i.i.d, iid
or IID. Therefore, data collected from a probability sample can be analyzed using
most statistical methods that are based on random samples.

3.3.3 Generalizability to the Study Population

Last, results derived from a probability sample can be generalized to the whole study
population with quantified confidence—which is the ultimate goal for researchers
to investigate medical and health issues with a global impact. In another word,
probability sample is a prerequisite to ensure external validity of a research study.
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3.4 Challenges to the Classic Probability Sampling Methods
and Alternatives

Although the advantages for a probability sample are well known, a careful
investigation of the published research studies, particularly journals with original
articles that are primarily based on survey data, including the very prestigious peer-
reviewed journals, such as Journal of Acquired Immune Deficiency Syndrome and
AIDS and Behavior, less than 10% of them used a probability sampling method for
participant selection (Chen et al., 2018). There are a number of factors that may have
prevented researchers from using probability sampling method to select participants
in their research studies. In this chapter, we described three major barriers, including
(1) the lack of new methods to overcome difficulties associated with technological
development, (2) difficulties in defining a study population, and (3) timing—obtain
the results in short period.

3.4.1 Methodology Barriers

Lack of appropriate methods appears to be the first barrier that prevent scientists to
use probability sampling methods (Chen et al., 2015; Landry & Shen, 2005). For
example, many probability sampling methods based on landline telephone using
digital dialing have been well-established and widely used in research to select
sample (Cochran, 1977; Kish, 1965). Despite the high feasibility and efficiency, this
category of methods has several limitations. Using telephone number for sampling
will miss the households that do not have a landline telephone. In the United States,
approximately 3–5% of the households without a landline phone will be missed.
People in these households are more likely to be low in socioeconomic status and/or
racial/ethnic minorities with more medical and health problems, such as overweigh
and obese, cardiovascular diseases, violence, and drug use (Groves et al., 2009).

More challenging than the incomplete coverage to the telephone number-based
digital dialing method is the replacement of landline telephone with numerous new
communication technologies, including smart phone, internet and mass media. Few
people now still use a landline telephone for communication, totally ruling out of the
possibility to randomly select phone numbers and contact the individuals by calling
them one by one. Although telephone numbers are still used to date, the telephone
is moving with people, not fixing in one physical location. Also, persons with more
than one phone are common, preventing researchers from directly using such phone
numbers to build the sampling frame (Chen et al., 2018).
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3.4.2 Hard-to-Reach or Hidden Populations

A prerequisite for probability sampling is that the study population can be defined
operationally for enumeration to construct the sampling frame. However, in modern
survey studies, a number of study populations can be described conceptually but
cannot be defined operationally. Typical examples include, but are not limited to:
Illegal immigrants, mobile populations such as seasonal workers in the United States
from Mexico, rural migrants working in urban cities in China, male and female sex
works, lesbian, gay, bisexual and transgender populations, drug dealers, substance
users, and persons living with HIV.

In survey studies, we consider this type of population as hard-to-reach or hidden
populations. Although these populations can be defined conceptually, no sampling
frame can be established for probability sampling because we simply do not know
the total number of these population and exactly where they are. Even if we know
the total number of this population and can identify each of them to construct a
sampling frame, we do not know if we can reach the sampled individuals since it is
very hard if not impossible to know where they live.

3.4.3 Urgency to Know Study Results

As we all know that it will take time to complete a study if participants are
selected using a probability sampling method, but addressing many urgent medical
and health issues requires timely data (Heeringa & O’Muircheartaigh, 2010). The
most well-known examples that need quick data include epidemiological studies of
outbreaks and vaccination of infectious diseases, such as Zika (Boeuf, Drummer,
Richards, Scoullar, & Beeson, 2016), severe acute respiratory syndrome (SARS)
(Tong, 2005), Ebola (Weyer, Grobbelaar, & Blumberg, 2015), and HIV/AIDS. New
approaches have been attempted for quick sampling without using a validated
sampling frame. Methods often used in reported studies include the capture-
recapture method derived from agriculture and wild life studies (Tilling, 2001);
the venue-day-time sampling, where participants are selected from locations within
a time range when participants are often present (Mansergh et al., 2006); and
respondent-driving sampling (RDS), in which study participants are selected by
starting with a few seed participants to nominate and recruit others within their
network connections (Heckathorn, 1997, 2002).

Although these methods allow for timely sampling of study participants, data
collected from these types of samples cannot be analyzed using the conventional
statistical methods due to a number of limitations inherited with the methods.
For example, in both venue-day-time method and RDS, selected participants are
nested with each other, violating the requirement of identical and independent
distribution (IID) for statistical analysis; while data from the capture-recapture must
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be analyzed using method specifically devised for the sampling methods, mostly for
closed population. In addition, despite rigorous efforts to improve these alternative
methods, the validity of these methods in ensuring probability and representative
samples remains unclear.

3.4.4 Application of GIS/GPS Technologies in Probability
Sampling

Advancement in geographic information systems (GIS) and global positioning
systems (GPS) have encouraged researchers to develop new probabilistic sampling
methods with adequate geographic and population coverage and minimal data
requirements and can be complete in a short period (Chen et al., 2015; Galway et al.,
2012; Landry & Shen, 2005; Shannon, Hutson, Kolbe, Stringer, & Haines, 2012). A
number of GIS/GPS-assisted methods have been developed for probability sampling
to deal with specific settings, such as sampling mobile or migrant populations (Chen
et al., 2015; Landry & Shen, 2005), selecting participants in remote and rural areas
(Escamilla et al., 2014; Haenssgen, 2015; Kondo, Bream, Barg, & Branas, 2014;
Wampler, Rediske, & Molla, 2013) and other special conditions (Galway et al.,
2012; Murray, O’Green, & McDaniel, 2003).

A thorough review of the published sampling method studies reveals that
GIS/GPS-assisted sampling methods can be characterized as the geographically
stratified multi-stage sampling. Using this approach in sampling, a seven-step
procedure must be followed:

1. Define the targeted population and geographic area you want to study,
2. Using GIS data to construct the primary sampling frame (PSF) and define

residential area to determine the primary sampling units (PSUs),
3. Randomly select PSU on computer with a pre-determined probabilistic scheme

(e.g., simple random, proportion to or stratified by population density),
4. Randomly select households from each sampled PSU through random routes,

random section, or other methods; and construct the secondary sampling frame
(SSF) by enumerating the selected households,

5. Select a pre-determined number of participants randomly from each sampled
SSF,

6. Estimate sample weights using information from the previous steps across all
sampling stages,

7. Compute descriptive statistics, such as mean, standard deviation, proportion,
rate and ratios for the study population, considering the sample design used in
participant selection and finalized sampling weights.
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3.5 Challenges to the Existing GIS/GPS-Assisted Probability
Sampling Methods

Sampling methods building upon the GIS/GPS technologies bring new hope for
scientists to apply probability sampling method in modern global health and
epidemiology. However, a careful review of the reported methods for probability
sampling assisted by GIS/GPS technologies have several limitations that have to
be addressed, such as pre-determination of sample size, which caused a study
project to be terminated earlier than planned (Landry & Shen, 2005); determination
of residential area from non-residential housing; method for stratification, and
estimation of geographic sampling weights.

3.5.1 Challenges to Determine Sample Size Before Sampling

Determination of sample size is critical for planning a research project. However,
with the reported GIS/GPS-assisted sampling method, researchers cannot determine
the sample size until the sampling procedure is completed. This is because a
GIS/GPS-assisted sampling method often consists of two interrelated steps: Sam-
pling geographic area first and then sampling households and individual participants
in the sampled geographic areas. Sample size would be easy to determine for a study
that draws geographic samples only. However, it is not possible to pre-determine
exactly how many persons in the study population in a randomly selected geographic
area before the area is selected and fully enumerated.

One method attempted by researchers is to enumerate all of them in a randomly
selected geographic area to construct the SSF, assuming an average number of
participants per geographic units. This method has been proven infeasible for a
study involves high and large variation in population density, complex residential
arrangement, and the presence of high-rise multi-function buildings in selected
geographic areas (Landry & Shen, 2005). For example, the chance to select a
geographic area with high-rise building with several hundreds of residents would
not be small in a modern city. However, it will be very costly and time-consuming
to enumerate a randomly selected geographic area with high-rise residential building
with a large number of residents.

3.5.2 Challenges to Distinguishing Residential
from Non-residential Housing

To correctly estimate sampling weights, researchers must be able to distinguish
between residential housing and non-residential housing. Only the geographic area
with residential housing is needed to estimate sampling weights. Methods attempted
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for distinguishing the two have proven to be time-consuming. For example, in a
previous study, we printed out the satellite imagery maps for all sampled geographic
areas, worked together with local people to mark out the areas with residential
housing in the sampled geographic area, and re-computed the residential areas and
used in estimating sample weights. This method is not only time-consuming but also
error prone, underscoring the need for better approaches (Chen et al., 2015).

Recent development in new methods provides tools to recognize visually or
digitally the residential area/housing with widely available aerial imagery data
(Chang et al., 2009; Escamilla et al., 2014; Haenssgen, 2015; Pearson, Rzotkiewicz,
& Zwickle, 2015; Wampler et al., 2013). These methods are often computerized,
thus fast and inexpensive, and can be used in diverse settings. With this approach,
researchers can involve resource-limited countries for large scale international and
global project for epidemiological research. For example, in study to separate the
residential houses from other types of house using aerial images, Pearson et al.
(2015) corrected identified 93.3% of 175 households that are residential. Although
the error rate of 6.7% is low, this study was conducted in pastoral area with a semi-
nomadic residential patterns, a setting relatively easy for random sampling than in
the more complex residential arrangements in urban settings. Methods are needed
to draw probability samples in more complex settings.

3.5.3 Challenges Due to Heterogeneity in Population Density

A third challenges for GIS/GPS-assisted sampling is that we need to deal with the
large heterogeneity in population density in addition to the complex residential
arrangement. The classic stratification could be a method to deal with this issue.
In GIS/GPS-assisted sample, a grid network system is used to divide the geographic
areas of the target population into mutually exclusive cells, named as geounits. If
population data for individual jurisdictions are available, a stratified method can be
used to randomly sample geounits as we used in our previous research (Chen et
al., 2015). However, population data by jurisdiction may not always be available
in resource-limited and low- and middle-income countries. Therefore, it would be
challenge to draw random samples with the available GIS/GPS-assisted sampling
methods.

Recently, people start to use night-time satellite images as a measure of popula-
tion density but this approach appears to not useful for rural areas and resources-
limited countries/places, and countries/areas that do not depend on electricity for
daily activities (Schneider, Friedl, & Potere, 2009). In order to use GIS/GPS-assisted
sampling method to conduct global health research, additional improvements have
to be made over the current methods to suitable for many different conditions.
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3.5.4 Challenges to Determine the Geographic Sample Weights

A last but not least challenge is to determine the geographic sample weights. This
sound ridiculous at the beginning since the geographic sample weight would be
an inverse of the geographic sampling ratio. The challenge stemmed from the fact
that although conceptually there is a clear difference between residential areas and
non-residential areas; but in fact it is very hard if not impossible to determine
them for sampling. This is because there is not clear and scientifically accepted
boundaries between residential and non-residential areas and a lack of information
on the number of residents living in a sampled geographic area at a specific date and
time (Kondo et al., 2014; Landry & Shen, 2005; Shannon et al., 2012).

To illustrate the challenge, Fig. 3.1 shows a sampled geographic area marked by
the red box with four households A, B, C and D. In this case, how can we separate
the residential areas from non-residential areas? The biggest challenge is how to
divide the large blank space between the school (a non-residential house) and the
four residential houses.

In this chapter, we will introduce an integrative GIS/GPS-assisted sampling
methods with techniques to overcome almost all of the key challenges described
above and with potential to incorporate new development in technology in the
future. This method is based our previous research, including GIS/GPS-assisted
sampling in different articles (Chen et al., 2015, 2018; Chen & Hu, 2018; Heeringa,
2018).

Fig. 3.1 Difficulties in determination of the residential geographic areas. Red square: A sampled
geographic area with households A, B, C, D and a school nearby in a street block
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3.6 GIS/GPS Assisted Multi-stage Probability Sampling

We developed the Integrative Multi-Stage GIS/GPS-Assisted Probability Sampling
Method based on our previous studies and others as summarized in Sect. 3.5. The
purpose is to provide a cost-effective sampling method with high feasibility in
both developed and resource-limited settings for global health research. We will
introduce the method in several steps after an overall summary.

3.6.1 Introduction to the Method

The Integrative GIS/GPS-assisted multi-stage probability sampling method is sum-
marized in Fig. 3.2. Using this method to draw probability samples must go through
four technically different stages after preparation. Before sampling, researchers will
make preparations, including computer and GIS software (e.g., ArcGIS or any other
software that contain geographic data and can process geographic information),
collecting data from local sources that are available and useful for sampling,
including aerial imagery data, updated local maps, and total population data. Effort
should also be used to identify one or two residents in the study area who are familiar
with all the streets and households and have time and be willing to assist.

Fig. 3.2 Integrative Four-stage GIS/GPS-assisted probability sampling
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Fig. 3.3 Spatial sampling using a grid network system to divide the targeted study are within the
judiciary boundary into mutually exclusive geounits

3.6.2 Stage 1 Sampling: Random Selection of Geographic
Units

This stage is also known as spatial sampling. The goal is to generate a set of
randomly selected geographic units (geounits for short) with residential housing.
Geographic data for locations where the study population resides (often by country
or jurisdictions within a country) can be obtained from different sources, mostly free
of charge, such as Google Maps and OpenStreetMap (Haklay & Weber, 2008).

After reading the map into computer, we must divide the total areas where the
study population reside into mutually exclusive cells, named as geographic units
for further sampling. This spatial sampling process is often realized by creating and
laying a grid system over the target area (Fig. 3.3).

In Fig. 3.3, the geounits within the geographic boundaries consist of the primary
sampling frame (PSF). It is from the PSF, a pre-determined number of geounits will
be randomly selected also on computer.

One important task is to determine the size of a geounit to create the grid network
system. If the size of a geounit is too large, it will cover a lot of households, which
may be beyond our capacity to enumerate all of them for sampling. On the contrary,
if the size of a geounit is too small, it may end up with a lot of blank geounits
without even one household, or reducing the probability to include a residential
household. In traditional spatial sampling, the geounit size A was determined by
sampling ratio. For example, if a research determines to sample 10 geounits to
cover 0.01% (equivalent to 10−4) of a geographic area with a total area size of
900,000 (9 × 105) km2, the area size for individual geounit would be A = 9 km2

(9 × 105 × 10−4/10). A grid with side length = 3 km can thus be used to create the
grid network and used to divide the total geographic areas for sampling.
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However, more complex approaches are needed to draw geographic samples for
population-based survey studies, because A is determined not by sampling ratio
but by the probability to include an appropriate number of households and eligible
persons for sampling. There is no shortcut to determine the appropriate grid size
A. We recommend a pilot study to determine the size by considering two important
factors:

1. Density of the study population in the targeted area, and
2. Number of subjects to be recruited from each selected geounit.

For example, when conducting a large-scale survey study targeting the rural-to-
urban migrants temporarily living in Wuhan, China, we determined the area size
A = 100 × 100 m to ensure 20 eligible participants per geounit. This number was
determined through intensive pilot tests in the field. During the pilot study, we used
different area size being measured manually using tape rulers and/laser scales in a
number of typical regions within the city. We then count the numbers of households
and associated with the various sizes of A. Results from our pilot indicated that
an area size of A = 100 × 100 m has approximately 80% probability to cover an
adequate number of households, ensuring at least 20 subjects per geounit in a city
like Wuhan (Chen et al., 2015).

After geounit size A is determine, and the maps of the target population is input
into computer, a grid network with size A is created, and overlay it onto the targeted
area as having showed in Fig. 3.3. Two methods used for grid network creation
and sampling are (1) geographic coordinate systems-based method and (2) side
length-based method. Results from the two methods are rather similar if the targeted
area is relative small (such as a city, a state with a relative small geographic areas);
but the second method is relatively easy to implement. For studies involving very
large geographic areas like a very large countries (e.g., Russia, Canada, China, or
the United States), multi-countries, continents, or the globe, grid length (distance)
defined through an appropriate projection system should be selected.

After the targeted area is divided into mutually exclusive geounits and PSF
is constructed with these geounits, a pre-determined number of geounits are
then randomly selected from the PSF. Considering large variations in population
density across the geographic area, a stratified strategy is thus used to sample
geounits with more geounits being allocated to areas with higher population density,
following an optimum allocation approach to enhance work efficiency (Cochran,
1977). Also, geounits generated using the grid network have a large chance to
cover non-residential areas such as lakes, bridges, highways, and commercial
buildings. To overcome this problem and to enhance feasibility while maintaining
a probabilistic sampling process, we devised a semi-automatic, computer-assisted,
stepwise algorithm with no replacement procedure for implementing the geounit
sampling protocol (Fig. 3.4). R codes for the semi-auto procedure is added at the
end of this chapter.

With PSF and the automatic algorithm, an immediate question is: How many
geounits G are to be sampled? Obviously, G depends on the total sample size N
and the average number of persons M per geounit to be sampled. No method has
been established to determine G and M (Kondo et al., 2014; Landry & Shen, 2005).
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Fig. 3.4 Algorithm for
automatic geounit sampling

To overcome this challenge, we proposed to use the same M for all geounits from
our own research (Chen et al., 2015, 2018). With our method, researchers will first
estimate sample size N through power analysis; and then G can be calculated using
the following formula, allowing the M varying from 15 to 25:

G = N/M (3.1)

For example, if a researcher plan to draw a sample of N = 800 and pilot studies
indicate that it is feasible and effective to draw, on average, 20 persons per geounit.
Using Eq. 3.1, the number of geounits to be selected: G = 800/20 = 40. If you plan
to draw 25 subjects per geounits: G = 800/25 = 32. Readers can calculate G for
M=15. Statistically, a sample selected with smaller number of M and large number
of G will be closer to a simple random sample. Experience from our experiences
suggest that M ≤ 20 and G ≤ 20 can satisfy most survey studies (Chen et al., 2015).

3.6.3 Stage 2 and 3: Random Selection of Geographic
Segments and Households

After completion of geographic unit sampling in Stage 1, data for each geounit,
including maps, and related information must be uploaded to a GPS receiver.
Theoretically any GPS receiver can be used as long as it has the following two
functions:
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Fig. 3.5 Selection of a geographic segment through random walk. (Source: Bauer J. (2014).
Selection error of random route samples Sociological methods and research (43)3: 519–544)

1. Upload selected maps for use to guide travel, drive and walk, and
2. Tracking function to mark a geographic area.

We used the GPS receiver (Garmin Oregon 450, Garmin, Ltd) in our previous
research.

With the sampled geounits loaded to a GPS receiver, the next stage is to select a
segment from each selected geounit and prepare for household selection. Since all
geounits are randomly selected, the eligible participants for some households could
be greater than M. In this case, we need to select a segment within the selected
geounits to have, on average, M subjects.

To avoid bias in segment selection, one method named as Random Walk has been
widely used (Fig. 3.5). With this method, after a geounit is selected and a map is
prepared. Data collectors will locate a start point, often the main entrance to the
geounit (like the red dot in Fig. 3.5). Data collector will then start enumerate and
recruit participants following the natural paths of the street. The recruitment stops
till the pre-determined M participants are recruited.

Research studies have showed that this method does not warrant unbiased sample
even with strict instructions in written that are well followed by the data collector
(Bauer, 2016). To overcome this limitation, we devised a method named as Random
Ordering method (Fig. 3.6).

In this method, a set of numbers are randomly casted to the selected geographic
unit as showing in the figure. Data collectors will then arrange the households using
the number, from small to large, the data collectors then start recruiting participants
from the household number 1, then number 2, all the way till the pre-determined
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Fig. 3.6 Selection of a geographic segment through random ordering. (Source: Derived from Chen
and Hu (2018). Journal of survey statistics and methodology (2018)5: 182–85)

number of subjects M is reached. The random numbering process can be achieved
either manually or on computer.

3.6.4 Stage 4: Random Selection of Participants
from Households

In this last step of GIS/GPS-assisted sampling, data collectors will gain access
to individual households following either the Random Walk approach or Random
Ordering approach. For each household, data collector will first list all individuals
in the household and identify the number of eligible individuals. The list of eligible
individuals of a household will consist of the secondary sampling frame (SSF) from
which individual participants are to be selected.

To ensure independence, only one subject per household will be sampled. For
studies involve both male and female, the criterion of one person per gender per
household can be applied. If only one person is eligible (true in most cases), this
person will be included. If more than one person in one household is eligible
for participation, one person will be selected randomly using devised sampling
methods. The method widely used for sampling individuals from a household is
the Kish Table (Kish, 1949).
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3.6.5 Complementary Data Collection

After completion of household enumeration, participant recruitment and survey data
collection for each geounit, data collectors must collect the following complemen-
tary information for later use to calculate refusal rate, sampling rate, and sample
weights.

1. Data on actual geounit area size Ag for gth geounit. This is the actual area size
occupied by the household from which all M participants are recruited. Ag can
be determined using GPS receiver recorded tracking data;

2. Total number of households Tg on the selected geounit;
3. Total number of households Hg from which participants are selected;
4. The number of households and the number of eligible subjects who refused to

participate.

3.7 Methods to Determine Residential Areas

As we mentioned early in this chapter, the true residential area is conceptually
clear but operationally hard to determine as indicated in previous research studies
(Kondo et al., 2014; Shannon et al., 2012). Without knowing the true residential
area, the geographic and overall sample weight cannot be determined. To overcome
this challenge, we have devised two methods for practical use in different settings

3.7.1 Method 1. Estimate Residential Area with Collected Data

After completion of sampling and data collection, we will have data on Ag = actual
geounit area size for the gth sampled geounit (g = 1,2, . . . ,G). With this data, the
total area of G geounits from which the study participants are sampled B = ∑

g Ag .
Let R=the total residential area to be estimated, P=total population known to be

reside in the targeted area (a district, city, state or a country), Q=the total population
covered by all G geounits, which can be estimated by summing up Qg—the total
population covered by gth geounit (see the previous section on Complementary Data
Collection).

With both B and Q calculated with data collected from randomly selected G
geounits during the sampling, subject recruitment and survey delivery, if G is
adequately large (i.e., 20 or more), the ratio of the two will provide an unbiased
and reliable estimate of the true ratio of R over P, or mathematically we have:

R

P
≈ B

Q
, (3.2)
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Therefore the estimated true residential area will be:

R = P × B/Q (3.3)

This estimation method relies on the assumption that households in a sampled
geounit are associated only with that geounit. In practice, this can be achieved by
carefully determine the appropriate grid size for grid network construction often
through intensive pilot studies as reported in our previous research (Chen et al.,
2015).

3.7.2 Method 2. Estimate Residential Area with Monte Carlo
Method

To use Method 1 described in the previous part, we need data on total population
for the targeted areas, which may not be available in resource-limited countries.
To overcome this limitation, we devised another approach to estimate R without
population data P—a Monte Carlo method (Mathews, 1972; Metropolis & Ulam,
1949). In this method, we first obtain the total geographic area size D using many
GIS software packages. After a map of the targeted area is uploaded to a computer,
a large number of n points (i.e., several hundred) are randomly casted to the total
geographic area. After the points are casted, we will then count the number of points
falling in residential areas and non-residential areas.

Let nr= all points falling on residential areas and nnr= all points falling on non-
residential areas, then n = nr + nnr. Since all n points are randomly selected, n/nr
provides an unbiased estimate of R/D. We can easily derive the true residential area
R using the following equation:

R = nr

nr + nnr

D (3.4)

The Monte Carlo method can be completed on computer with aerial imagery
maps. To support practical application of this method, R codes to implement this
method is also added to the Appendix at the end of this chapter.

3.8 Estimate of Sample Weights

Sample weights are essential for this 4-stage GIS/GPS-assisted sampling method
that connecting space with households and individual persons. We proposed the fol-
lowing formula to computer sample weights following the principles for stratified,
multistage, and disproportionate probability sampling (Cochran, 1977; Groves et
al., 2009; Kish, 1965):
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Wi = Wg × Wgh × Wghi (3.5)

where

Wi is the sample weight for subject i.
Wg is the geographic sample weight for gth geounit, and it is estimated with R/Ag,

where R represents the residential area size (see the two methods to estimate R
in Sect. 3.7), and Agis the area size of geounit g.

Wgh is the sample weight for household h in geounit g and is computed as Tg/Hg,
where Tg is the total number of households in geounit g and Hgis the number of
households actually sampled in geounit g.

Wghi represents sample weight for individual subject i from household h within
geounit g. It equals Ngh/ngh, where Ngh = total number of eligible persons in
household h within geounit g, and ngh = the number of persons sampled from
the eligible persons in household h, n = 1, 2, . . . , Hg. If only one person is
selected per household, ngh = 1. In this case, Wghi = Ngi.

With the complex design, non-conventional statistical methods are needed to
account for variance inflation due to weights and the design effect or correlation
among subjects from the same geounit/households. Therefore, when analyzing data
collected using this GIS/GPS-assisted sampling design, special statistical methods
must be considered, such as the mixed-effects for continuous outcome variables and
the generalized linear mixed-effects methods for binary outcome.

3.9 Practical Test of the Method in an NIH Funded Project

We tested the integrative GIS/GPS-assisted sampling method in Wuhan, China when
conducting an NIH funded project (R01 MH086322, PI: Chen X) to investigate
the relationship between social capital and HIV risk behaviors among rural-to-
urban migrants. Wuhan is the capital of Hubei Province with a total population
of approximately 10 million and per capita GDP of $12,708 and a large number
of rural-top-urban migrants (Statistical Bureau of Wuhan 2012). The field work for
sampling and data collection was completed during 2012–2014.

To address the goal of the project, in addition to migrants, non-migrant residents
in rural areas from where these migrants come from as well as non-migrant residents
in urban area where these migrants live and work were included. Given the fact
that many rural migrants do not have a permanent residence in the city and are
scattered over almost all areas within the city, we decided to use the GIS/GPS-
assisted methodology to select probability samples.

Figure 3.7 illustrates the sampling procedure. The top panel indicates the location
of Wuhan within China. In Wuhan, the dark green in the center is the city, and the
five bands with 5 km width per band around the city is the rural areas included for
sampling. The shortest radius is 50 km and the largest radius is 75 km.
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Fig. 3.7 Integrative 4-stage
GIS/GPS-assisted sampling

3.9.1 Geographic Sampling Frame and Geounits

Following the procedure described in this study chapter, a district boundary file
of Wuhan was obtained using the ArcGIS. Based on pilot studies for field work
efficiency, a grid-system with 100 × 100 m cells was created for the urban area and
a grid-system with 1 × 1 km was created for rural areas to divide the corresponding
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Fig. 3.8 Distribution of the sampled geounits in Wuhan, China

large geographic areas into thousands of small and mutually exclusive cells. These
cells were the geounits used to construct the PSF for further sampling.

To determine G, the number of geounits to be samples, we first determined the
sample size. According to the study aims and based on results from statistical power
analysis, we set N = 1200 subject per group. For sampling in urban area, we set
M = 20, the number of subjects to be sampled from each geounit. Using Equation
x, G = 1200/20 = 60. This means a total of 60 geounits must be selected from the
PSF of Wuhan city. In the field work, data collectors went to each of the 60 randomly
selected geounits to recruit the 1200 rural migrants. For effective comparison, the
same number of urban residents were also recruited from these geounits to minimize
differences in neighborhood conditions. Figure 3.8 showed the distribution of the
sampled geounits in Wuhan using a satellite imagery map.

For rural areas, considering the high traveling cost and low feasibility, we set
M = 30. With the pre-determined sample size of 1200, G = 1200/30 = 40. Our
data collectors travel to each of these 40 randomly selected rural sites to recruit
participants and delivery the survey. The field work was very carefully planned such
that the subject recruitment and data collection for one site can be completed in one
full workday.
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Fig. 3.9 A typical geounit (red square with 100 × 100 m) randomly selected in urban areas with
residential houses

3.9.2 Sampling Geographic Segments, Households
and Participants

The appearance of a sample geounit for rural area can be seen clearly in Fig. 3.7.
But a similar geounit for urban area in Fig. 3.7 cannot be directly used for further
sampling. Figure 3.9 shows a typical geounit for urban area (included by the red
square with the size of 100 × 100 m) we selected in Wuhan for our project. To
sample 20 participants in urban area, we used the Random Walk method to select
geographic segment in a selected geounit—that is to first identify a main entrance
into the selected geounit, starting recruit from the first household on the entrance,
and move along the natural path till the required number of participants are reached.
We recruited one person per gender per households. For households with more
than on eligible subjects, Kish Table was used to select one. When reach to the
end of a street, we set the rule to turn right and continue the recruitment process.
After completion of recruitment for a geounit, a data collector will collect all the
complementary data. In addition to the tracking the area where the households were
sampled, the data collector sketched a map showing the location. This map is very
useful for accurate determination of the residential area after sampling and data
collection.

As an illustration, results from our study indicated that the selected 60 sampled
geounits covered 12,016 households in Wuhan. Of these households, 1251 with rural
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migrants were available and agreed to participate at the time of data collection. A
total of 1310 participants were recruited from these households with one participant
per gender per household. The total number of households per geounit varied from
30 in least populated areas to 1600 in the most populated areas with a median
[quartile 1, quartile 3] of 100 [50, 300] and mean (SD) = 200 (242). The number
of households agreed to participate per geounit varied from 12 to 40 with median
[quartile 1, quartile 3] of 20 [18, 24] and mean (SD) of 21 (6).

As a verification of the sampling method, applying this method in the study
conducted in 2012–2014, we estimated that approximately 58,000 [95% CI: 47000,
68,000] rural-to-urban migrants in Wuhan were MSM with 3650 [95% CI: 2960,
4282] being tested HIV positive (Chen et al., 2015). While official surveillance data
from Wuhan indicated that a total of 3408 (primarily MSM) persons living with
HIV in 2015 (Wuhan Center for Disease Prevention and Control (CDC) 2016). The
observed result is within the estimated 95% CI and the relatively small difference
provides some evidence supporting the validity of our method.

Segment and household sampling in rural area are often simpler because each
geounit often cover total a complete or a large part of a village. In field work, a
whole village was often selected and participants were then selected randomly from
individual households.

3.9.3 Determination of Residential Area with Imagery Data
and GPS-Tracking File

The residential area can be estimated using the imagery map with the GPS tracking
data. Figure 3.10 is a typical example from our study in Wuhan. The red square
indicates the sampled geounit, and the yellow trace indicates the order in which
households were approached with participants selected. It is worth noting that we
started the recruitment outside of the sampling region since there were also migrants
on the street. Here the red square serves like an explorer to find migrants. With
the map, we determined the residential areas occupied by the households using
rectangles (yellow colored) with the line going through half way between the
sampled and non-sampled households. The area size can then be correctly calculated
either manually or on computer using the actual map scale.

3.10 Strengths and Recommendation

The integrative 4-stage GIS/GPS-assisted probability sampling method introduced
in this chapter provides a most updated method for use in different settings to
select probability samples for high quality research. It is critical to understanding
the strengths of the method and pay attention to key steps in applying the method.
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Fig. 3.10 Determination of the residential area from which the households and participants were
sampled

3.10.1 Strengths

The integrative GIS/GPS-assisted probability sampling method described in this
chapter is based on sound theories for both population and geographic sampling. A
major advantage of this method is that it has a minimum data requirement, therefore
is particularly useful for global health research to include participating countries
and regions with little or even no preliminary data supporting probability sampling
or for research studies to access hard-to-reach or hidden populations, such as sex
workers, illegal migrants, people living with HIV, etc.

In addition to its high feasibility, researchers can employ the conventionally
used stratified sampling strategies in the sampling procedure to optimize geounit
allocation to deal with large variations in population density and to increase field-
work efficiency (Cochran, 1977). The size of geounits can be determined through
pilot testing in the field to ensure an adequate number of households and participants
needed for research while taking into account of work efficiency. Both the widely
used random walk method (Bauer, 2016) and the random ordering method we
introduced in this chapter can be used to ensure an equal probability household
sampling.

With our method, many of the sampling tasks can be implemented on computer
with open-source software R and free Google imagery data.
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Last but not the least, data collected using the integrated 4-stage GIS/GPS-
assisted sampling method can be analyzed using many design-based survey meth-
ods (Kish, 1965, Cochran, 1977, Lohr 1999, Groves et al., 2009, Heeringa &
O’Muircheartaigh, 2010, Valliant, et al. 2013). These methods are widely available
in many software packages, including SUDAAN, SAS, STATA (survey module),
SPSS, and “survey” package in R.

The integrated 4-stage GIS/GPS-assisted sampling methods can be altered to
suit for specific conditions. For example, if a target study population is located in
sparsely populated and less developed rural areas, we may just use satellite images
to directly identify households for random sampling, such as in the studies reported
by Haenssgen (2015), Wampler et al. (2013) and Escamilla et al. (2014).

3.10.2 Recommendations for Application

To maximize the strengths of this sampling method while ensuring the success of
applying this method in drawing probability samples, researchers must pay more
attention to the following three issues: (1) large variations in population density, (2)
determination of the area size of a sampled geounit, and (3) geographic section area
and household selection.

Large variations in population density. An innovative mechanism of our method
is to connect geographic area with varying population density to households using
numerous small geounits for further sampling. We recommend use of the classic
stratified sampling strategy to optimize geounit allocation (Cochran, 1977). Our
method also offers other possibilities to deal with varying population density issues.
For example, instead of using fixed geounit size and sampling grid, with our method
researchers can determine the geounit size disproportionate to population density
after randomly tossing the pre-determined number of geounits to be selected.

Determination of area size of a geounit. Large sizes have greater probability
to cover adequate number of households for sampling. However, if a large-sized
geounit is randomly selected in a highly populous area, it will prevent researchers
from completing the sampling due to high cost of time and money (Landry & Shen,
2005). We believe that geounit size can be determined if adequate pilot studies
are conducted before sampling because pilot study to determine geounit size is not
limited by existing data.

Household selection. Although each selected geounit is not large in area size
with a relatively fewer number of households, household arrangement can still be
complex. In this study, we used the random walk method which is not without
problem (Bauer, 2016). The random ordering method appears to be more valid,
additional tests are needed to demonstrate its validity.
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Appendix 1: R Program Codes for a Semi-automatic,
Computer-Assisted, and Step-Wise Algorithm for Geounit
Sampling

#Required Packages:
#install.packages(“rgdal”)
#install.packages(“Grid2Polygons”)
#install.packages(“ggmap”)
#install.packages(“sp”)

#Load required packages
library(rgdal)
library(Grid2Polygons)
library(ggmap)
library(sp)

#Download county maps (this file is big so it might take a couple
of minutes to download)

url<-“http://www2.census.gov/geo/tiger/TIGER2010DP1/
County_2010Census_DP1.zip”

# specify a location on your computer to save the downloaded
file, and the default location is “C:/temp/r_temp”

downloaddir<-“C:/temp/r_temp”
destname<-“tiger.zip”
download.file(url, destname)
unzip(destname, exdir=downloaddir, junkpaths=TRUE)

#Get the filenames for the .shp file
filename<-list.files(downloaddir, pattern=“.shp”,

full.names=FALSE)
filename<-gsub(“.shp”, “”, filename) #Get rid of the extension

name

#Read the US county shapefile (NAD83 coordinate system EPSG:
4269, the file is big and takes some time to read)

uscounty.shp<-readOGR(downloaddir, filename)

# Subset (change the fips code to get the county you want)
shp<-uscounty.shp[substring(uscounty.shp$GEOID10, 1, 5)

== “12001”,]

#re-projection
shp <- spTransform(shp, CRS(“+init=epsg:4326”)) #WGS84

#Generate grid (lat/long) over a polygon
bb<-bbox(shp) #get bounded box
cs<-c(0.01,0.01) #define cell size 0.01 degree by 0.01 degree
cc<-bb[,1]+(cs/2) #define cell offset

### define SpatialGrid object
cd<-ceiling(diff(t(bb))/cs) #generate number of cells

per direction
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grd<-GridTopology(cellcentre.offset=cc,cellsize=cs,cells.dim=cd)

sp_grd <- SpatialGridDataFrame(grd,data=data.frame
(id=1:prod(cd)), proj4string=CRS(proj4string(shp)))

#convert grid to polygon
sp_grd_plys<-Grid2Polygons(sp_grd)

#keep cells that overlay the study area
shp_cell<-sp_grd_plys[shp,]

#plot grid overlaid with the polygon for check up
plot(shp_cell)
plot(shp,add=TRUE)

#overlay on aerial image using Google Map API
shp_cell_fort<- fortify(shp_cell)
shp_fort<-fortify(shp)
centroids <- as.data.frame(getSpPPolygonsLabptSlots(shp))

#get centroids of alachua county
#centered on centroids of alachua county
qmap(location=c(lon=centroids[1,1],lat=centroids[1,2]),

zoom = 10,maptype=“hybrid”) +geom_polygon(aes(x = long,
y = lat,group=group), data = shp_cell_fort,colour = ’red’,
fill = ’black’, alpha = .4, size = .3) #change the zoom
to modify the resolution of the map

#define and apply cell id to individual geounits
shp_cell@data[,2]<-c(1:length(shp_cell@data[,1]))
names(shp_cell@data)<-c(“z”,“cellid”)

#get centroids of individual geounits (polygons)
centroids <- as.data.frame(getSpPPolygonsLabptSlots(shp_cell))

#get centroids of polygons
names(centroids)<-c(“Longitude”,“Latitude”)

#keep cell id as data for constructing primary sampling frame
cell_id<-shp_cell@data$cellid

########################################
#set up parameters for spatial sampling#
########################################

#create the sampling frame of the cell_id
cell_id_samplefrom<-cell_id

#define number of geounits to be sampled (default = 5)
n.geounits<-5

#define number of geounits with residential area, and set to
0 as the initial value

n.geounits.res<-0

#create a user input function
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userinput <- function()
{
n <- readline(prompt=“Does this geounit contain residential
area? If Yes, Enter 1, If No, Enter 0 ”)

return(as.integer(n))
}

#define the output directory (location where the outputted
.gpx files will be saved)

out<-“C:/temp/”

##the loop using predefined function to complete the sampling
procedure

while(n.geounits.res<n.geounits){
#sample one cell
cell_id.sampled<-sample(cell_id_samplefrom,1)
#exclude the sampled cell from the sample frame
cell_id_samplefrom<-cell_id_samplefrom[cell_id_samplefrom!

=cell_id.sampled]
#subset the cell
shp_cell.sampled<-shp_cell[shp_cell@data$cellid==cell_id

.sampled,]
#get the centroid of the cell
centroids.sampled<-centroids[cell_id.sampled,]
#plot on google map
shp_cell_fort.sampled <- fortify(shp_cell.sampled)
print(qmap(location=c(lon=centroids.sampled[1,1],
lat=centroids.sampled[1,2]), zoom = 16,maptype=“hybrid”)
+geom_polygon(aes(x = long, y = lat), data = shp_cell_fort.
sampled,colour = ’red’, alpha = .4, size = .3))

#ask user to determine if the geounit contain residential
areas or not

input<-userinput()
if(input==1){
n.geounits.res<-n.geounits.res+1
line_cell.sampled<-as(shp_cell.sampled,“SpatialLinesDataFrame”)
line_cell.sampled@data$name<-line_cell.sampled@data$cellid
writeOGR(line_cell.sampled[“name”], dsn=paste(out,
“sampled_geounit”, n.geounits.res,“.gpx”,sep=“”),
layer=“tracks”, driver=“GPX”, dataset_options=“GPX_USE_
EXTENSIONS=YES”, check_exists=FALSE)

cat(paste(“Geounits Sampled (”,n.geounits.res,“/”,n.geounits,
“)”,sep=“”))

}
if(input==0){

cat(“Geounit not sampled”)
}
}
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Appendix 2: R Program Codes for Monte Carlo Method
to Determine Residential Area

###### define parameter
n.building<-10000 #number of buildings
mean.area<-600 # mean area of building
sd.area<-150 # sd of building area
min.nh<-1 # minimum number of households
max.nh<-100 # maximum number of households
min.np<-1 # minimum number of people in each household
max.np<-6 # maximum number of people in each household

# Generate Data
set.seed(1)
bid<-c(1:n.building)
area<-rnorm(n.building,mean.area,sd.area)
nh<-sample(min.nh:max.nh,n.building,replace=T)
dat1<-as.data.frame(cbind(bid,area,nh))

# replicate each row by nh
dat2<- dat1[rep(row.names(dat1), dat1$nh),]
rownames(dat2) <- NULL

dat2$hid<-c(1:nrow(dat2))
dat2$np<-sample(min.np:max.np,nrow(dat2),replace=T)

# total population in the study area
(pop.total<-sum(dat2$np))
# total residential area in the study area
(area.total<-sum(dat1$area))

##### Sampling

nbsample<-20 #number of buildings sampled
bid.sample<-sample(1:n.building,nbsample,replace=F)

#get the sampled building id

res<-matrix(NA,nbsample,5)

for (i in 1:nbsample){
nh.bid.sample<-dat2[dat2$bid==bid.sample[i],] #get all rows

where bid=bid.sample
temp.nh<-nrow(nh.bid.sample) #get total number of households

in the building
nsample.nh<-sample(1:temp.nh,1) #determine the number of

households to sample in the building (randomly select
“nsample.nh” out of the total number of households)

hid.sample<-sample(nh.bid.sample$hid,nsample.nh,replace=F)
#sample “nsample.nh” households from the building

nh.sample<-nh.bid.sample[nh.bid.sample$hid%in%hid.sample,]
#get the sampled data

temp.pop<-sum(nh.sample$np) #obtain the total number of
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people in all sampled households in the building
temp.area<-dat1[dat1$bid==bid.sample[i],2] #get the building

area

res[i,1]<-bid.sample[i] #store the sampled bid
res[i,2]<-temp.nh #store the total number of households in

the sampled building
res[i,3]<-nsample.nh #store the number of households sampled in

the sampled bulding
res[i,4]<-temp.area #store the area of the sampled building
res[i,5]<-temp.pop #store the total number of people in

all sampled households in the sampled building
}

colnames(res)<-c(“bid”,“nh”,“nsample.nh”,“area”,“pop”)

#mean number of people in sampled households
pop.sample.mean<-sum(res[,5])/sum(res[,3])

#estimated total number of people in sampled building
pop.sample<-pop.sample.mean∗sum(res[,2])

# true total number of people in sampled building
true.pop.sample<-sum(dat2[dat2$bid%in%bid.sample,5])

# total residential area in the sampled building
area.sample<-sum(res[,4])

# area ratio
area.r<-area.sample/area.total

# pop ratio
pop.r<-pop.sample/pop.total

cat(“Area Ratio=”,area.r,“, Population Ratio=”,pop.r,“,
Difference=”,area.r-pop.r)

##### Repeated Sampling
nrsample<-1000 #define sampling number
out<-matrix(NA,nrsample,6)
for (j in 1:nrsample){

nbsample<-20 #number of buildings sampled
bid.sample<-sample(1:n.building,nbsample,replace=F)

#get the sampled building id
res<-matrix(NA,nbsample,5)
for (i in 1:nbsample){
nh.bid.sample<-dat2[dat2$bid==bid.sample[i],]

#get all rows where bid=bid.sample
temp.nh<-nrow(nh.bid.sample)

#get total number of households in the building
nsample.nh<-sample(1:temp.nh,1) #determine the number

of households to sample in the building (randomly select
“nsample.nh” out of the total number of households)

hid.sample<-sample(nh.bid.sample$hid,nsample.nh,replace=F)
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# sample “nsample.nh” households from the building
nh.sample<-nh.bid.sample[nh.bid.sample$hid%in%hid.sample,]
# get the sampled data
temp.pop<-sum(nh.sample$np)
# obtain the total number of people in all sampled households

in the building
temp.area<-dat1[dat1$bid==bid.sample[i],2]
# get the building area

res[i,1]<-bid.sample[i]
# store the sampled bid

res[i,2]<-temp.nh
# store the total number of households in the sampled building

res[i,3]<-nsample.nh
# store the number of households sampled in the sampled bulding

res[i,4]<-temp.area
# store the area of the sampled building

res[i,5]<-temp.pop #store the total number of people in all
sampled households in the sampled building

}
# mean number of people in sampled households

pop.sample.mean<-sum(res[,5])/sum(res[,3])
# total number of people in sampled building

pop.sample<-pop.sample.mean∗sum(res[,2])
# true total number of people in sampled building

true.pop.sample<-sum(dat2[dat2$bid%in%bid.sample,5])
# total residential area in the sampled building

area.sample<-sum(res[,4])
# compute Ar/Pd

ratio1<-area.total/pop.total
# compute population ratio

ratio2<-area.sample/pop.sample
out[j,1]<-ratio1
out[j,2]<-ratio2
out[j,3]<-ratio1-ratio2
out[j,4]<-pop.sample
out[j,5]<-true.pop.sample
out[j,6]<-pop.sample-true.pop.sample
cat(“Iteration”,j,“Done”,“\n”)

}
den1<-density(out[,3])
m1<-mean(out[,3])
z1=quantile(out[,3],c(0.025,0.975))
r<-out[,1]/out[,2]
den2<-density(r)
m2<-mean(r)
z2=quantile(r,c(0.025,0.975))
den3<-density(out[,6])
m3<-mean(out[,6])
z3=quantile(out[,6],c(0.025,0.975))
r2<-out[,4]/out[,5]
den4<-density(r2)
m4<-mean(r2)
z4=quantile(r2,c(0.025,0.975))
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##### plotting
# plot 1
par(mfrow=c(1,2))
plot(den1,type=’l’,xlab=’’,main=paste(“D, Mean=”,round(m1,2)))
abline(v=z1,col=’red’,lty=3)
abline(v=m1,col=’red’,lty=1)

plot(den2,type=’l’,xlab=’’,main=paste(“R, Mean=”,round(m2,2)))
abline(v=z2,col=’red’,lty=3)
abline(v=m2,col=’red’,lty=1)
par(mfrow=c(1,1))

# plot 2
round(m3,2)
round(m4,2)
par(mfrow=c(1,2))
plot(den3,type=’l’,xlab=’’,main=expression(paste(D[P[g]], “,

Mean=-1.45”)))
abline(v=z3,col=’red’,lty=3)
abline(v=m3,col=’red’,lty=1)
plot(den4,type=’l’,xlab=’’,main=expression(paste(R[P[g]], “,

Mean=1”)))
abline(v=z4,col=’red’,lty=3)
abline(v=m4,col=’red’,lty=1)
par(mfrow=c(1,1))

# Plot together
round(m1,2)
round(m2,2)
round(m3,2)
round(m4,2)

par(mfrow=c(2,2))
plot(den3,type=’l’,xlab=’’,main=expression(paste(D[P[g]], “,

Mean=-0.72”)))
abline(v=z3,col=’red’,lty=3)
abline(v=m3,col=’red’,lty=1)
plot(den4,type=’l’,xlab=’’,main=expression(paste(R[P[g]], “,

Mean=1.00”)))
abline(v=z4,col=’red’,lty=3)
abline(v=m4,col=’red’,lty=1)
plot(den1,type=’l’,xlab=’’,main=expression(paste(“D,

Mean=-0.08”)))
abline(v=z1,col=’red’,lty=3)
abline(v=m1,col=’red’,lty=1)
plot(den2,type=’l’,xlab=’’,main=expression(paste(“R,

Mean=1.00”)))
abline(v=z2,col=’red’,lty=3)
abline(v=m2,col=’red’,lty=1)
par(mfrow=c(1,1))
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Chapter 4
Construal Level Theory Supported
Method for Sensitive Topics: Applications
in Three Different Populations

Yan Wang and Xinguang Chen

Abstract Social desirability bias is a major threat to data quality for survey
studies, particularly studies involving sensitive questions, such as age, income,
sexual behaviors, and drug use. In this chapter, we introduced a construal level
theory (CLT)-based method we devised to reduce social desirability bias. Construals
are our mental constructions of the universe organized in hierarchies along with
spatiotemporal and psychosocial distances, with self, here, and now as the reference.
Answering sensitive question regarding self is often executed at low construal
levels subjected to contextual factors. In this case, the respondent tend to edit the
answer to make it socially desirable either to avoid penalty or to enhance reward. In
contrast, answering sensitive questions for others is often executed at high construal
levels, less likely to subject to contextual factors but more dependent on one’s own
knowledge, attitudes and beliefs. CLT-based method is a technique based on this
theory by asking participants to answer the same questions for 2–3 socially distant
others. In this study, we reported our work on building the method through three
studies, one with data collected from college students in the US, two with data
collected in China, including one sample of urban residents and another sample
of rural residents. Four questions (reading newspaper, engaging in physical activity,
frequent of sexual intercourse and attitudes toward homosexuality) were used in the
college student study conducted in the US; the Brief Sexual Openness Scale (BSOS)
was used in the two studies conducted in China. The use of the method and future
research are also recommended.
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Keywords Sensitive questions · Social desirability bias · Construal-level
theory · CLT-based method · Sexual openness

4.1 Introduction

A large part of modern science is built upon survey data, including epidemiology
and global health. However, scientists using survey data in research often have
to acknowledge the potential for survey responses to be biased as a limitation
(Chen, Wang, Li, Gong, & Yan, 2015). Pursuing high quality data is a goal for
all disciplines, including epidemiology and global health. However, it remains to
be a methodological challenge to obtaining high quality data, particularly data
on sensitive topics (Chen et al., 2015; Tourangeau, Lance, & Raninski, 2000;
Tourangeau & Yan, 2007).

As being detailed later in this chapter, a variety of methods and techniques have
been proposed to enhance the quality of survey data, such as methods to enhance
confidentiality, random response and indirect survey methods, and the methods
using biomarkers. However, up to date, few of such methods have been frequently
employed in research because of technical and practical limitations (e.g., highly
complex procedure, low acceptability, and high cost). Sensitive topics are common
in epidemiological research and global health, such as mental health, substance
abuse, HIV/AIDS, health status, medical insurance, access to healthcare, and patient
satisfaction. Novel techniques and methods are needed to collect high quality data
with increased efficiency and feasibility.

4.1.1 Factors Affecting the Quality of Survey Data

Quality of the survey data can be affected by a number of factors. Typical examples
include errors in defining the study population, errors from random sampling
of study participants (Dwyer, 1980), variations in settings for survey delivery,
miscomprehension of a survey question (Tourangeau et al., 2000; Tourangeau
& Yan, 2007), recall bias in responding to a survey question (Bajunirwe et al.,
2014; Tourangeau et al., 2000), and bias from response editing for sensitive survey
questions (Steenkamp, De Jong, & Baumgartner, 2010). Response styles are also a
factor related to the quality of survey data. Participants often tend to give extreme or
neutral answers to multi-choice questions and preference to integers 0, 5, and 10 to
questions related to age, income, school grade (Johnson & Bolt, 2010; Meisenberg
& Williams, 2008).

4.1.2 Cognitive Censoring and Social Desirability Bias

Among many influential factors, social desirability bias is the most significant and
well researched factor. According to the psychology of survey responses, when



4 Construal Level Theory Supported Method for Sensitive Topics. . . 89

answering a sensitive question, participants are likely to respond untruthfully to
either minimize “harm” or maximize “benefit” (Chen et al., 2015; Tourangeau
et al., 2000; Tourangeau & Yan, 2007). Despite provisions to guard privacy
and confidentiality, if a true answer is perceived socially undesirable, such as
admitting sexually transmitted diseases and disclosing stigmatizing attitudes toward
homosexuality, participants may refuse to respond (missing data) or “edit” their
response (misreport) to avoid disclosure threat (Albaum, Roster, & Smith, 2012;
Chen et al., 2015; Krumpal, 2013; Rasinski, Willis, Baldwin, Yeh, & Lee, 1999;
Tourangeau et al., 2000; Tourangeau & Yan, 2007). Likewise, if answers to a
question are perceived socially desirable, such as being sexually open (a fashion
in countries experiencing rapid globalization like China) or stating adherence to
prescribed medications by doctors, participants may over-report to seek disclosure
rewards (Bockenholt, 2014; Cordero-Coma & Breen, 2012; Paulhus, Harms, Bruce,
& Lysy, 2003; Yuen et al., 2013). Therefore, a participant’s perception, appraisal,
and responding work together like a “cognitive censoring system”, leading to
untruthful answers to different types of survey questions (Bond, Ramsey, & Boddy,
2011; Chen et al., 2015).

4.1.3 Existing Methods to Reduce Social Desirability Bias

A review of published studies reveals a long list of methods and techniques
developed to reduce social desirability bias in survey studies. These methods can
be categorized into three groups. Methods in Group I include indirect measurement
by asking participants to assess peers (Bond et al., 2011; Fisher & Tellis, 1998;
Jo, 2000), application of lie-detection scales (Crowne & Marlowe, 1960; Paulhus,
1984), random response method (Gupta, Gupta, & Singh, 2002; Warner, 1965)
and its derivatives (Bockenholt, 2014; Bockenholt & van der Heijden, 2007; Him-
melfarb, 2008), multi-group item randomized response method (de Jong, Pieters,
& Stremersch, 2012; Himmelfarb, 2008), and computer/smartphone/online digital
encrypt methods that mask data but preserve the statistical relationships (Pei, Chen,
Xiao, & Wu, 2015; Wu, Chen, Burr, & Zhang, 2016). A primary goal of these
methods is to enhance privacy and confidentiality, which has showed limited effect
(Gueguen, 2015; Holbrook & Krosnick, 2010). Furthermore, the indirect method
is still subject to over-reporting socially undesirable behaviors and under-reporting
socially desirable behaviors (Bond et al., 2011; Fisher & Tellis, 1998; Ostapczuk &
Musch, 2011).

Methods in Group II include the use of biomarkers (Dasgupta, 2015; Tavakoli,
Hull, & Okasinski, 2011), biosensors (Robles et al., 2011; Selvam, Muthukumar,
Kamakoti, & Prasad, 2016), audio and video records, and mobile devices as objec-
tive data or digital markers (Chen, Wang, Leeman, Li, & Zhao, 2018; Robinson,
Hensel, Morabito, & Roundtree, 2015) or measurement instrumentations (Sakai,
Mikulich-Gilbertson, Long, & Crowley, 2006; Selvam et al., 2016). However,
these methods are often intrusive, expensive, and practically less feasible. More
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problematic than feasibility issues is that many of these measures are not always
a good proxy of behaviors, therefore often insufficient for research (Pollack, 2012;
Selvam et al., 2016; Tavakoli et al., 2011). For example, biomarkers of substance
use from urine or blood at specific point in time, although objective, are inadequate
to describe the complex dynamics of substance use behavior. Therefore, these
measures are often used to verify self-reported data on protective and risk health
behaviors. In addition, methods for biomarkers are also subject to errors from
sample collection, storage, process, and lab detection.

Methods in Group III involve the use of data from multiple informants—
persons who have close contact with the participants and are therefore, to a certain
extent, able to provide information on the study questions (Achenbach & Ruffle,
2000; Penney, McMaster, & Wilkie, 2014). For example, when collecting data on
performance and behaviors among students, relevant informants might be class-
mates, teachers and parents. This method enhances data quality by incorporating
information from multiple informants using advanced psychometric methods such
as a bifactor or tri-factor analysis (Achenbach & Ruffle, 2000; Bauer et al., 2013;
Penney et al., 2014). Although very promising, challenges remain to implement
the multi-informant method. It is often difficult to locate appropriate informants for
non-student populations. Furthermore, recruiting and collecting data from multiple
informants increase the work burden and complicate the already complex process
for human subject protection.

4.2 Theoretical and Analytical Foundations

The method we introduced in this chapter is rooted deeply on construal-level
theory, the measurement modeling theory and complex factor modeling analysis.
Understanding these theories and models are essential to understand the new
method.

4.2.1 Construal-Level Theory and Social Desirability Bias

In a previous study, we tested a method to minimize social desirability bias in
collecting survey data on sensitive questions (Chen et al., 2015), guided by construal
level theory (CLT) (Liberman & Trope, 2008; Trope & Liberman, 2010). Construals
are our mental constructions of the universe organized in hierarchies according to
spatiotemporal and psychosocial distances, with self, here, and now as the reference
(Liberman & Trope, 2008; Trope & Liberman, 2010). According to the CLT,
responses to sensitive questions will be less error-prone if a participant is asked to
assess socially distant others rather than oneself (Wright, 2012). This phenomenon
occurs because self-assessment is processed at lower construal levels with close
reference to social context (Liberman & Trope, 2008; Liberman, Trope, & Stephan,
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2007; Liberman, Trope, & Wakslak, 2007; Trope & Liberman, 2010; Yaacov Trope
& Liberman, 2012), and often coupled with the cognitive censoring (Fisher & Tellis,
1998).

However, activation of the cognitive censoring system will be less likely if a
person is asked to assess socially distant others, because such assessment is often
made based on one’s own knowledge and beliefs that are stored at higher construal
levels and they are less likely to be affected by contextual factors (Fisher & Tellis,
1998). Social distance thus acts as a mechanism to manipulate construal levels,
reducing the sensitivity of a question for quality data (Kim, Schnall, Yi, & White,
2013; Liberman & Trope, 1998; Steenkamp et al., 2010; Wright, 2012).

4.2.2 The Measurement Theory Underpinning of CLT-Based
Survey

Guided by the latent variable theory (Bollen, 2002; Borsboom, Mellenbergh, & van
Heerden, 2003), we developed a method to deal with the sensitivity of a survey
question by analytically linking the responses to a specific question across various
construal levels to one latent construct (Chen et al., 2015). For example, from the
previous discussion regarding the concept of construal level and social desirability, a
participant’s self-assessment of a question (e.g., if same-sex marriage is acceptable
or not) and his/her assessments of the same question for socially distant others
such as family members, friends, acquaintances, and strangers, are hypothesized
to be determined by one latent construct—this participant’s knowledge, attitude and
belief about the question. In measurement theory, this latent construct functions
as a factor determining the response of a survey participant to the question for
him/herself, and socially distant others.

This phenomenon of construing others’ behaviors and attitudes with reference to
oneself has been documented in published studies in the literature as false consensus
effect (Dunn, Thomas, Swift, & Burns, 2012; Ross, Greene, & House, 1977). For
example, individuals who are more open toward sex are more likely to believe
that others are also sexually open (Sieving, Eisenberg, Pettingell, & Skay, 2006);
individuals who use drugs tend to believe that many others use drug users, too (Dunn
et al., 2012); and individuals who are rich may also believe that many others are
rich (Dawtry, Sutton, & Sibley, 2015). However, this principle has not been used in
survey studies to improve the reliability of self-reported data.

Connecting the CLT with latent variable theory creates the foundation supporting
the use measurement modeling techniques to assess the new method we developed
to improve data quality for sensitive topics. We term this approach as CLT-based
Measurement Modeling, in which self-assessment and assessments of socially
distant others on a sensitive topic are treated as separate items or subconstructs
determined by one single latent construct—the participant’s own behavior or
attitude. With this CLT-based modeling approach, survey items assessing targets
at different social distances from self to more distant others can be integrated as



92 Y. Wang and X. Chen

indicators of their shared determinant factor—the latent construct of individual
participants. The CLT-Based Measurement Modeling thus enables extraction of
the common variance representing the latent factor (knowledge, attribute, and
behavior) of individual participants, and factor loadings representing contributions
of individual items or subconstructs to the common factor.

4.2.3 Statistical Modeling of CLT-Based Survey Data

The CLT-based Measurement Modeling described in the previous section resembles,
to a large extent, the essence of multiple informant approach in data collection.
Multiple informant method, as proposed in the multitrait and multimethod (MTMM)
model (Campbell & Fiske, 1959) is a method in which ratings from multiple
resources (such as parents, teachers, and peer) are added to children’s self-ratings to
improve data quality for assessing the characteristics or behaviors of the child. This
approach has been accepted as the optimal method for data quality improvement in
child behavior research (Achenbach, Mcconaughy, & Howell, 1987; Bauer et al.,
2013).

Instead of depending on multiple informants that are often financially expensive
and practically challenging to implement, the CLT-based method asks individual
participants to rate a sensitive topic for a series of socially distant groups in
addition to self-rating. While the multi-informant method improves data quality by
including knowledge beyond the participants, CLT-based method does so by tapping
the knowledge of only the participants’. Nevertheless, the two methods share one
mechanism in common: using additional information from diverse sources (e.g.,
different informants or different social groups) to “triangulate” a latent construct for
more accurate measurement (Chen et al., 2015; Kraemer et al., 2003). By applying
this principle, CLT-based scales can be developed to address specific research
questions that are sensitive and therefore subject to social desirability bias.

4.2.4 Bifactor and Tri-factor Modeling Analysis of CLT-Based
Data

The similarity between the CLT-based method and MTMM makes it possible to
apply existing measurement modeling methods for data analysis. Two methods that
are particularly relevant for analyzing CLT-based data are bifactor model (Cai, Yang,
& Hansen, 2011; Gibbons et al., 2007; Holzinger & Swineford, 1937) and tri-factor
model (Bauer et al., 2013). These two analytical methods have been well-established
in education research. We have adapted them to model CLT-base data. With these
psychometric modeling techniques, the reliability of any CLT-based scale can be
evaluated and reliable data be derived to minimize social desirability bias.



4 Construal Level Theory Supported Method for Sensitive Topics. . . 93

Specifically, with either the bifactor or the tri-factor model, a common factor for
the hypothetic latent variable can be extracted with data from the multiple assess-
ments of different targets. In other words, variances of a participant’s perspective
for him/herself and socially distant others and variances due to heterogeneity in
individual survey items can be analytically separated from the common factors.
Factor score for the common latent factor provides a “true” measure of a partic-
ipant’s answer to a sensitive question; factor scores for the factor of participants’
self-perspective provide a measure of bias or misreport; while factor scores for
perspective factors of socially distant others provide a measure of participants’
knowledge of these people.

4.3 Detecting the Sensitive of a Question Using CLT-Based
Method

As an introduction, in this section, we introduce the application of CLT-based
method in assessing if a study question is sensitive.

4.3.1 Participants and Procedures

A convenience sample of college students (n = 401) were recruited from a university
campus. An online survey was conducted using the REDCap software. The study
was approved by IRB at the University of Florida. To assess the sensitivity of various
survey topics, data for the following four behaviors were analyzed:

1. Reading newspapers and magazines;
2. Engaging in physical activities;
3. Frequency of having sex; and
4. Attitudes toward homosexuality (sex with the same-gender persons).

According to the principle of CLT-based method, these four questions were
measured in three targets: participants themselves, classmates, and school mates.
Using the first question as an example, in this CLT-based survey, participants were
asked to answer the following three questions:

1. How often do you read newspapers and magazines (response option: “none”,
“sometimes”, “often”, “daily”, and “several times a day”)?

2. How many of your classmates do you think read newspapers and magazines
(responses include “none”, “less than a half”, “about a half”, “more than a half”,
“everyone”)?

3. How many students in the current university of yours do you think read
newspapers and magazines (responses include “none”, “less than a half”, “about
a half”, “more than a half”, “everyone”)?
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With this CLT-based survey design, each of the four study questions was
measured using three survey items, forming a CLT-based scale. According to this
method, a participant response to the same question for him/herself, classmates and
school mates were determined by one latent construct in the brain of the participants.
If the CLT-based method is valid, the three items will form a reliable scale for
sensitive questions (e.g., attitude toward homosexuality); otherwise, no reliable
scale will be formed (e.g., reading newspapers and magazines).

4.3.2 Statistical Analysis and Results

Descriptive statistics including mean and standard deviation were used to assess
individual survey items, correlation analysis, item-response theory (IRT)-based
analysis and measurement modeling with confirmatory factor analysis (CFA) were
used to assess the validity of the CLT-based method and sensitivity levels of the four
questions.

Table 4.1 summarizes the main results assessing item responses. These items
captured information from the individual participants with distribution very close to
normal. The mean scores for all items were also close to 3.00, the theoretical value
of the rating scale with SD much smaller than the mean.

Table 4.1 Mean, SD, and response distribution (%) of individual items

Item/social Mean (SD) 1 2 3 4 5

Reading
Self 2.75 (0.95) 3.74 48.63 35.41 11.72 0.50
Classmates 2.84 (0.71) 1.75 28.93 53.62 15.21 0.50
Schoolmates 2.97 (0.74) 1.75 23.44 51.62 22.69 0.50

Physical
Self 2.94 (0.68) 0.25 24.19 58.10 15.96 1.50
Classmates 2.90 (0.70) 0.50 27.43 53.62 17.96 0.50
Schoolmates 3.00 (0.68) 0.25 21.45 56.86 20.70 0.75

Sex
Self 2.87 (1.11) 9.98 26.68 39.15 17.71 6.48
Classmates 2.59 (0.77) 5.24 41.90 41.90 11.22 0.25
Schoolmates 2.64 (0.74) 2.74 42.89 43.39 9.73 1.25

Homosexual
Self 2.61 (0.79) 6.48 39.15 41.90 12.22 0.25
Classmates 2.68 (0.83) 4.49 42.14 35.91 16.71 0.75
Schoolmates 2.71 (0.74) 2.74 37.41 46.13 13.47 0.25

Note: 1(none), 2 (sometimes) for self and (less than a half ) for the other two target groups; 3 (often)
for self and (about s half ) for other two; and 4 (about daily) for self and (more than a half ) for
other two; and 5 (more than daily) for self and (everyone) for other two
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Table 4.2 Psychometric assessment of responses to four questions for self-assessment and
assessments of two socially distance groups (classmates and schoolmates)

Social distance
Reading
newspaper

Physical
activity

Frequency
of sex

Attitude to
homosexuality

Item-total correlation
Self 0.0120 0.2761 0.3857 0.5118
Classmate 0.3343 0.3286 0.4808 0.5907
School mates 0.2780 0.3344 0.4674 0.6129

Slope (information)
Self 0.3808 2.3420 0.1108 1.5820
Classmate 2.3642 −0.0924 1.4459 2.4145
School mates 2.0989 −0.1522 1.4550 2.8918

Alpha 0.33 0.50 0.62 0.74

The results from correlation and IRT analysis are presented in Table 4.2. In the
table, the four behaviors were assessed as four separate measurement scales of the
four behaviors each as an independent measurement scale. Results from correlation
analysis revealed the item-total correlation was the lowest for the reading behavior
the highest for the measure of attitude toward homosexuality. In addition, the item-
total correlation increased from the smallest for self-assessment to the highest for
the assessment of school mates with the value for classmates in between.

The slope estimated through IRT analysis provides a measure of information
by individual items to the total scale if the scale is correct. The estimated slope
did not show any systematic pattern for the reading behavior and physical activity
but showed a pattern similar to the item-total correlation for the two sex-related
measures.

Lastly, as a measure of scale reliability the estimated Cronbach alpha = 0.33, the
smallest and not acceptable as a scale to measure reading behavior; it reached 0.74,
the largest and acceptable as a scale to measure attitudes toward homosexuality. The
alpha estimates for the other two behaviors was in between the two.

Results from CFA of the four CLT-based measures in Fig. 4.1 provide additional
evidence supporting the findings presented in Table 4.2. The data-model fit was
the worst (e.g., CFI = 0) for the scale measuring reading behavior, and the best
(CFI = 0.87) for the scale measuring attitudes toward homosexuality.

4.3.3 Summary

In this study, we purposely selected four questions, from less sensitive (i.e., reading
newspapers and magazines) to more sensitive (i.e., attitudes toward homosexuality).
A comparison of the results from correlation, IRT and CFA analyses of the four
measures suggests: CLT-based method works for measuring sensitive questions.
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Fig. 4.1 CFA model results for the CLT-based measures. Note. RN Reading newspaper, PA
Physical activity, FS Frequency of sex, AH Attitude to homosexuality, S Self, C Classmates, Sc
School mates

Among the four behaviors included in this study, the reliability of CLT-based
measure increases with the sensitivity level of a question.

As a byproduct of this analysis, CLT-based method may be used to quantitatively
assess the sensitivity level of a study question.

4.4 Application of CLT-Based Method in an Urban
Population

Findings presented in Sect. 4.3 provided empirical data supporting the validity of
CLT in guiding the new method we proposed to assess sensitive topics for quality
data. In this section, we systematically evaluated the CLT-based survey method
based on the principles and findings from the previous sections.
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4.4.1 Participants and Procedures

Data were derived from the urban sample of a large project funded by the National
Institute of Health (R01 MH086322). Participants (18–45 years old) were urban
residents in Wuhan, a provincial capital city of Hubei Province with a population
of approximately ten million and per capita GDP of $10,355 (Statistical Bureau
of Wuhan, 2012); they were randomly selected using a GIS/GPS-assisted method
(Chen et al., 2018). Data were collected using audio computer-assisted self-
interview (ACASI) technique in 2010–2013. Institutional Review Board (IRB)
approvals were obtained from multiple agencies for data collection and analysis.

4.4.2 Conventional and CLT-Based Brief Sexual Openness
Scale

The Brief Sexual Openness Scale (BSOS) was originally devised as a conventional
instrument to assess sexual openness from five aspects using the following five
questions:

1. “It doesn’t matter to have sex with many people.”
2. “It is totally acceptable to have sex with boy/girlfriend before marriage.”
3. “One can have sex with others in addition to spouse as long as it does not

jeopardize his/her own family.”
4. “We should understand and accept those who have sex with the same-sex

persons.”
5. “In special situations, such as long-term separation with spouse due to work or

business trip, it is okay to have sex with sex workers.”

Individual items were assessed using a five-point Likert scale, varying from 0
(strongly disagree) to 4 (strongly agree).

Since sexually related topics are sensitive, we expanded the conventional scale
into the CLT-Based BSOS to obtain more reliability data. In the CLT-Based BSOS,
participants answer the five questions first, and then move to the same questions for
two socially distant groups: the non-migrant urban residents and the non-migrant
rural residents in general. Instead of asking for “agree” or “disagree”, participants
were instructed to estimate how many of people in a group may agree or disagree
with options of 0 (none or a few), 1 (less than a half ), 2 (about a half ), 3 (more than
a half ), and 4 (everyone).

The full CLT-based BSOS consisted consists of a total of 15 items with 5 for self-
assessment, and 5 for urban and 5 for rural residents respectively. These items can
be used for two measurement purposes: (1) Using the three items for each question
to construct five single-question CLT-based scales and (2) using all 15 items to
construct a multi-item scale. These two types of scales are useful for research.
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4.4.3 Variable for Predictive Validity Analysis

1. Sexual desire: Measured using the Brief Sexual Desire Scale (BSDS)
(Chen et al., 2015); and it uses four items to assess the frequencies of “thinking
of sex during free time”, “having strong drive for sex”, “talking about sex
with others”, and “noticing sexually attractive persons around”. Cronbach
alpha = 0.93. Mean scores were computed over the four items with response
options 1 (never), 2 (occasionally), 3 (not every day but at least once a week), 4
(one or more times per day), 5 (several times per day).

2. Lifetime number of sexual partners: Measured based on participants’ response to
the question: “Up to now, with how many people have you had sexual intercourse,
including your spouse, lovers, and strangers?” The reported number was used for
analysis.

3. Unplanned pregnancy (yes/no): After a series of questions regarding sex and
pregnancy, participants were asked, “Have you ever become pregnant (or got oth-
ers pregnant for males) without planning to do so?” Participants who responded
positively to this question were coded as having had an unplanned pregnancy.

4. Sexually transmitted diseases (STD, yes/no): Measured using the cognitive
interviewing techniques (Nguyen et al., 2015; Willis, 2015) by first asking:
“Have you ever had sexually transmitted diseases?” For those who responded
positively, their answer was further confirmed with two follow-up questions: (a)
“Please indicate the type of sexually transmitted diseases?” with a checklist of
STDs commonly reported locally; and (b) “How did you know that you had
the disease?” with answer options (doctor’s diagnosis, self-assessment, told by
others, and other methods).

In addition to the four outcome variables, demographic and socioeconomic
factors were included, such as age (in years), sex (male vs. female), marital status
(married and not married), education (primary school or less, middle school, high
school, college or more), having children (yes/no), and monthly income (in US
dollar). In addition to describing the study sample, some of these variables were
used as covariates in predictive validity analysis.

4.4.4 Statistical Analysis

Data from participants self-assessments were analyzed conventionally, including
correlation and IRT analysis to assess item response, internal consistency, item
information, scale reliability and scale information. IRT analysis for CLT-based
data was conducted using a two-parameter polytomous response model with model
parameters estimated using the generalized partial credit (GPC) method (Verhelst
& Verstralen, 2008), considering the potential local correlations between self-
assessment and assessment of socially distant others. After IRT modeling analysis,
item difficulty was manually computed as the mean of the estimated step parameters.
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Item and scale reliability were estimated using the Bayes model estimate (BME)
method (Nicewander & Thomasson, 1999).

The structural validity of the CLT-based BSOS was assessed first using a two-
level second-order CFA, followed by a tri-factor modeling analysis (Bauer et al.,
2013). (1) The CFA was used to test the structure validity that participants’ self-
assessment and their assessments of socially distant others were the three level-1
subconstructs, which were determined by one level-2 sexual openness construct.
(2) The tri-factor analysis was used to (a) separate participants’ perspectives of
themselves and of the two socially distant groups from their own “true” sexual
openness, and (b) item-level disturbances for the five sexual attitudes/behaviors.

There are some differences in using the tri-factor model to analyze CLT-based
data than the MTMM data (Bajtelsmit, 1979; Campbell & Fiske, 1959). The main
differences include: (1) MTMM data are collected from different participants while
CLT-based data are collected from the same participants; as a result, (2) CLT-
based data might be locally dependent while MTMM data are locally independent.
Fortunately, the tri-factor model makes it possible to handle the local dependence
(Bauer et al., 2013). In all factor analyses, the following data-model fitting criteria
were used: Comparative fitting index (CFI) >0.90, Tucker-Lewis Index (TFI) >0.90,
and root mean square error of approximation (RMSEA) <0.05 (Kline, 2005).

After tri-factor analysis, scale scores were calculated, including the common fac-
tor scores measuring CLT-based BSOS and scores for the three perspective factors,
one for self-assessment and two for assessing the two socially distant groups. The
computed perspective factors scores were associated with the conventional BSOS
scores to test our study hypotheses that (1) the conventional BSOS scores are biased
because such assessment is based on information at the lower construal levels that
are less stable and more likely to be shaped by social contextual factors; and the (2)
when assessing socially distant others, participants depend primarily on their own
knowledge and beliefs stored at higher construal levels that are more stable and less
likely to be shaped by contextual factors.

Multivariate regression was used to assess concurrent predictive validity with the
following two hypotheses:

1. a CLT-based measure will perform better than a conventional measure in
predicting well-assessed outcome measures, including the highly reliable sexual
desire measure, the unplanned pregnancy assessment that is less error-prone
(Brener et al., 2002), and the STD assessment that was verified through cognitive
interview (Nguyen et al., 2015; Willis, 2015).

2. CLT-based measures will perform less well than the conventional measure in
predicting reported number of sex partners because the reported number of sex
partners is subject to over-report by males and under-report by females (Jonason
& Fisher, 2009).

Second-order factor analysis and tri-factor analysis were conducted using the
software Amos of IBM SPSS Statistics for Windows v. 22 (IBM Corp. Armonk,
NY). Other statistical analyses were conducted using the software SAS v. 9.4 (SAS
Institute, Cary, NC).
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Table 4.3 Characteristics of the study sample

Variable Female no. (% row) Male no. (% row) Total no. (% row)

Total sample, N (%) 683 (54.64) 567 (45.36) 1250 (100.00)
Age (in years)

Range 18–45 18–45 18–45
Mean (SD) 35.27 (7.48) 34.85 (7.62) 35.08 (7.54)

Education
Primary school or less 28 (53.85) 24 (46.15) 52 (4.16)
Middle school 144 (54.14) 122 (45.86) 266 (21.28)
High school 239 (53.95) 204 (46.05) 443 (35.44)
College or more 272 (55.64) 217 (44.38) 489 (39.12)

Marital status
Married 571 (57.50) 422 (42.50) 993 (79.44)
Unmarried 112 (43.58) 145 (56.42) 257 (20.56)

Having children
Yes 532 (58.21) 382 (41.79) 914 (73.12)
No 151 (44.94) 185 (55.06) 336 (26.88)

4.4.5 Sample Characteristics

Among the 1249 participants, 54.64% were female with a mean age of 35.08
(SD = 7.54), 79.44% were married and 73.12% had children. More details about
the study sample are presented in Table 4.3.

4.4.6 Performance of the BSOS as a Conventional Scale

Results in Table 4.4 indicate that BSOS as a conventional scale is good. The mean
item scores varied from 1.64 (SD = 0.99) to 2.63 (1.22), toward the middle of the
score range (0–4); the item-total correlation varied from 0.46 to 0.67, all statistically
significant at p < 0.01 and the Cronbach alpha = 0.79 for the total sample and males
and 0.73 for females. Results from IRT analysis indicated some variations in item
information with the least information for the item assessing premarital sex and
most for the item assessing extramarital sex. There were also a sex differences with
males scoring higher than females on all five items (p < 0.05 or 0.01).

The conventional BSOS data fit the five-level polytomous IRT model satisfacto-
rily as indicated by the item characteristic curves (ICC) for individual items and the
measurement scale information curves in Fig. 4.2. Based on the scale information,
BSOS has 80% or greater reliability to assess sexual openness trait within a large
range of −0.2 to 3.1 standard deviations.

As expected, all the results presented in Table 4.4 and Fig. 4.2 above suggest that
as a conventional tool, the BSOS performed good, but not excellent.
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Table 4.4 Brief sexual openness scale and its performance among urban residents in Wuhan,
China—conventional measurement approach

Parameter
Multiple
sex-partner

Premarital
sex

Extramarital
sex

Homo-
sexuality

Commercial
sex

Total sample, n = 1249
Mean (SD) 1.78 (1.08) 2.63 (1.22) 1.69 (1.01) 2.08 (1.15) 1.64 (0.99)
Item-total r 0.57 0.53 0.67 0.46 0.64
Cronbach α if deleted 0.75 0.76 0.72 0.79 0.73
Difficulty 1.35 0.58 1.26 1.36 1.39
Information 1.5 0.9 4.2 0.6 2.4
Reliability 60% 47% 81% 38% 71%

Male, n = 566
Mean (SD) 2.15 (1.17) 3.00 (1.22) 2.04 (1.12) 2.16 (1.17) 2.02 (1.09)
Item-total r 0.57 0.54 0.64 0.50 0.63
Cronbach α if deleted 0.76 0.77 0.74 0.78 0.74
Difficulty 0.98 0.13 0.96 1.11 1.05
Information 1.3 0.7 2.5 1.5 1.8
Reliability 57% 41% 71% 60% 64%

Female, n = 683
Mean (SD) 1.47 (0.89) 2.32 (1.13) 1.40 (0.79) 2.02 (1.14) 1.33 (0.76)
Item-total r 0.46 0.44 0.62 0.47 0.53
Cronbach α if deleted 0.69 0.71 0.64 0.69 0.67
Difficulty 1.93 1.22 1.66 1.45 1.85
Information 1.1 0.4 5.1 0.5 2.0
Reliability 52% 29% 84% 33% 67%

Note: The Cronbach alpha = 0.79 for the total sample, 0.79 for males and 0.73 for females

4.4.7 Performance of the CLT-Based Method for Assessing
Single Questions

When the 15 items were constructed as five single-question CLT-based measures,
results in Table 4.5 show the psychometric characteristics of these scales in
assessing the five sexual attitudes and behaviors individually. The information-based
reliability for the scales varied from 85 to 91%. The scale scores (SD) varied from
1.90 (1.04) for commercial sex, to 2.38 (1.17) for premarital sex. The difficult index
was always greater for participants’ self-assessment than their assessment of urban
and rural residents, indicating under-report of self-assessment. Opposite to difficult
index, the information and reliability increased from participants’ self-assessment
to their assessment of the two socially distant groups.

Data for the five single-question CLT-based scales also fit the five-level polyto-
mous IRT model satisfactorily as indicated by the item characteristic curves (ICC)
for individual items and the measurement scale information curves in Fig. 4.3.

Based on the results in Table 4.5 and Fig. 4.3, we can conclude that CLT-based
method can be constructed and used to assess single sensitive questions related to
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sex related attitudes and behaviors to obtain more reliable data. Further research is
needed to assess the utility of this CLT-based method in assessing other sensitive
topics for global health and epidemiological research.

4.4.8 Construct Validity of CLT-Based Method as
a Multi-contents Instrument

When data for all 15 items were organized as a second order multi-content measure,
it can help us achieve three goals: (a) Assessing the structural validity of this
complex CLT-based method, (b) assess the bias in reported data, and (c) derive
“true” measurement scores.

Results from CFA indicate good fit of the 15-item data to the two-level structure
of CLT-BSOS scale with CFI = 0.94, TLI = 0.93, and RMSEA = 0.09 (no item-
level covariance added). The modeling results in Fig. 4.4 indicate that all freely
estimated factor loadings were statistically significant at p < 0.01 level. Participants’
self-assessment and their assessments of the two socially distant groups formed
three independent subcontructs, which in turn formed the common construct sexual
openness. The free-estimated factor loadings from the three first-level factors to the
common factor were 0.27 for self-assessment, 0.80 for assessing rural residents and
1.00 (freely estimated) for assessing urban residents.
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Table 4.5 CLT-based openness to five specific sexual attitudes/behaviors by incorporating infor-
mation from two socially distant groups

Item-level character

Trait/parameter Self-assessment
Assessment of
urban residents

Assessment of
rural residents Scale

Multi-partners
Mean (SD) 1.78 (1.08) 2.27 (1.20) 2.02 (1.05) 2.02 (1.11)
Difficulty 3.76 0.81 0.99 n/a
Information 0.1 3.8 2.0 5.5
Reliability 9% 79% 67% 85%

Premarital sex
Mean (SD) 2.63 (1.22) 2.37 (1.24) 2.13 (1.05) 2.38 (1.17)
Difficulty 1.75 0.90 0.63 n/a
Information 0.1 3.6 3.8 6.8
Reliability 9% 78% 79% 87%

Extramarital
sex

Mean (SD) 1.69 (1.01) 1.97 (0.99) 2.11 (1.15) 1.92 (1.05)
Difficulty 3.98 1.02 0.84 n/a
Information 0.2 5.3 4.6 9.7
Reliability 17% 84% 82% 91%

Homosexuality
Mean (SD) 2.08 (1.15) 1.94 (1.08) 1.86 (0.96) 1.96 (1.06)
Difficulty 3.10 1.15 0.98 n/a
Information 0.1 4.1 6.9 10.4
Reliability 9% 80% 87% 91%

Commercial sex
Mean (SD) 1.64 (0.99) 2.11 (1.15) 1.96 (0.99) 1.90 (1.04)
Difficulty 3.30 1.05 0.85 n/a
Information 0.2 4.6 5.8 10
Reliability 17% 82% 85% 91%

4.4.9 Separation of Three Factors Based on CLT-Based Data

By modeling the CLT-based data with 15 items in two levels and three subconstructs
with tri-factor analysis model, we can separate the common factor (for assessing
“true” scores), perspective factors and item heterogeneity factors. Results from our
analysis indicate a satisfactory fit of the data to the tri-factor model with CFI = 0.94,
TLI = 0.92, and RMSEA = 0.09 (no item-level covariance was added).

Figure 4.5 presents the tri-factor analysis results. The common factor O on the
top provides the true measure of sexual openness. Factor loadings to O were in
general the largest for participants’ assessment of other urban residents (>0.7 for
all), followed by their own assessment (0.46–0.65) and their assessment of rural
residents (0.39–0.49).
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Fig. 4.3 Item characteristic curve (ICC) and measurement information curve of five CLT-based
measure of sex-related attitudes and behavior, n = 1249. Note: Three items were used to form
a CLT-based measure to assess five sex-related attitudes and behaviors, including multiple sex-
partners, premarital sex, extramarital sex, homosexuality and commercial sex

The perspective factor S provide a measure of bias by participants who might
have cognitively edited their answers according to social context. Perspective factors
U and R provide a measure of participants’ observation, knowledge or stereotypic
about the other urban and the rural residents respectively.

The five item-level factors corresponding to the five survey questions suggest
item-level disturbance, although the factor loadings were relatively small for all.
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Fig. 4.4 Second-order modeling of the CLT-based BSOS measure. Note. O The second-order fac-
tor of latent sexual openness, S Self-assessment, U Assessment of urban residents, R Assessments
of rural residents. Model fit: CFI = 0.94, TLI = 0.93, and RMSEA = 0.09. No covariance between
any two items was added

4.4.10 Bias Assessment

If we suspect that the score from the conventional BSOS are biased, results from tri-
factor analysis provide an opportunity to assess the bias in survey responses. Figure
4.6 depict the relationship between the standardized conventional BSOS scores
(mean = 0, SD = 1) and the CLT-based perspective factor scores of (a) themselves
and (b) urban and (c) rural residents. The conventional BSOS score would not be
associated with the three perspective scores, if there was no response bias. However,
results in Fig. 4.6a indicated a significant and positive relationship between the two
(intercept = 0.000, p > 0.05; b = 0.793, p < 0.01, and R2 = 0.69), suggesting a large
positive response bias in answering the five sex-related questions. Furthermore, the
majority of the data points were located within ±1 SD range, indicating a relatively
even over-reporting across the five points of the Likert scale. The R2 value indicated
that despite the adequate reliability of the conventional BSOS (alpha = 0.79),
reported error (information bias) could be as big as 69%.

Results in Fig. 4.6b, c indicate a weak but negative association between the
conventional BSOS scores and perspective scores for urban (intercept a = −0.000,
p > 0.05; b = −0.129, p < 0.001; and R2 = 0.04) and rural (a = −0.000, p > 0.05;
b = −0.107, p < 0.01, and R2 = 0.02) residents. The negative b’s indicate that
participants did not believe that these two socially distant groups were sexually as
open as they were, although the difference was relatively small.
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Fig. 4.5 Trifactor modeling of the CLT-based BSOS measure. Note. O The common factor, S the
perspective factor of urban residents themselves, U the perspective factor of urban residents, R
the perspective factor of rural residents, MS the latent factor assessing the item multi-partners, PS
the latent factor assessing the item premarital sex, MS the latent factor assessing the item multiple
sexual partners, HS the latent factor assessing the item homosexuality, CS the latent factor assessing
the item commercial sex. Model fit: CFI = 0.94, TLI = 0.92, and RMSEA = 0.09. No covariance
between any two items was added

Fig. 4.6 Relationship between the mean BSOS scores and the perspective scores for participants
themselves (a), urban (b) and rural residents (c)
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Fig. 4.7 Relationship between CLT-based and conventionally-based BSOS. (a) Participants them-
selves. (b) Urban residents. (c) Rural residents

Figure 4.7a plots the CLT-based O factor score with conventional BSOS score. If
no bias, all the data points were be on the diagonal with intercept = 0 and slope = 1.
Results in the figure show that intercept a = 0.000, p > 0.05; b = 0.589, p < 0.01
(R2 = 0.19). The estimated b < 1.0, indicating systematically underreport with the
conventional measure.

Figure 4.7b, c demonstrate to what extent participants rated the two socially
distant groups based on their own openness. There was a strong and positive relation
between participants’ true sexual openness and their assessment of the other urban
residents (intercept a = −0.000, p > 0.05; b = 1.219, p < 0.01; R2 = 0.85) and the
rural residents (a = −0.000, p > 0.05; b = 1.199, p < 0.01; and R2 = 0.82). The R2

indicates that greater than 80% of the assessments of the two socially distant groups
was based on participants own beliefs.

4.4.11 Predictive Validity

Table 4.6 summarizes the results from the validity analysis of different sexual
openness measures in predicting the four selected outcomes. Overall, CLT-based
measures consistently predicted the four outcome variables with greater standard-
ized regression coefficients or odds ratio (OR).

4.4.12 Summary

This section provides the most comprehensive introduction to the CLT-based
method using an empirical example. It covers the theory, application and verification
of the method with the hope to assist readers in understanding the method and
applying the method in solve their own research questions.
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Table 4.6 Predictive validity of CLT-based and conventional BSOS, overall and by single items

Linear regression standard b (R2) Logistic regression OR (95% CI)

Predictor Sexual desire # sex partners
Unplanned
pregnancy

Cognitively verified
STD

Scale scores
CLT-BSOS 0.339 (0.315) ** 0.220 (0.119) ** 1.90 (1.56, 2.31)** 2.89 (1.51, 5.55)**
BSOS 0.300 (0.285) ** 0.248 (0.127) ** 1.44 (1.24,1.67)** 1.58 (1.01, 2.48)*

Multi-partner
CLT-based 0.297 (0.292) ** 0.189 (0.108) ** 4.83 (2.63, 8.87)** 20.69 (2.92,

146.5)**
Single question 0.229 (0.255) ** 0.228 (0.120) ** 1.41 (1.24, 1.61)** 1.26 (0.80, 1.97)

Pre-marital sex
CLT-based 0.275 (0.281) ** 0.153 (0.096) ** 8.71 (4.07, 18.64)** 47.23 (4.21,

530.4)**
Single question 0.206 (0.246) ** 0.199 (0.109) ** 1.35 (1.18, 1.54)** 1.36 (0.90, 2.06)

Extra-marital
sex

CLT-based 0.239 (0.264) ** 0.093 (0.082) ** 2.74 (1.42, 5.25)** 15.05 (2.12,
106.9)**

Single question 0.148 (0.229) ** 0.122 (0.088) ** 1.21 (1.06 1.37)** 1.15 (0.75, 1.78)
Homosexuality

CLT-based 0.292 (0.291) ** 0.148 (0.095) ** 7.56 (3.69, 15.51)** 30.93 (3.37,
283.9)**

Single question 0.255 (0.267) ** 0.138 (0.091) ** 1.206 (1.05, 1.39)** 1.63 (1.09, 2.43)**
Commercial sex

CLT-based 0.297 (0.292)** 0.189 (0.108) ** 4.83 (2.63, 8.87)** 20.69 (2.92,
146.5)**

Single question 0.229 (0.254)** 0.187 (0.105) ** 1.15 (0.99, 1.33) 1.50 (0.98, 2.30)

Note: Predictive validity of the CLT-based BSOS was assessed using tri-factor modeling method,
the predictive validity for the conventional BSOS was assessed using the one-factor modeling
method, and the predictive validity for individual attitudes/behavior was assessed using linear or
logistic regression method. Age, gender and marital status were included in all predictive models
as covariates. Standard coefficients were reported for linear regressions. Odds ratios were reported
for logistic regressions. * p < 0.05 and ** p < 0.01

4.5 Application of the CLT-Based Method in an Rural
Sample

4.5.1 Data Sources and Participants

Data and variables used for this study were the same as those described in Sect.
4.4 for urban resident sample except that the study participants were rural residents.
These participants were randomly sampled from a band region 25 km wide 50 km
away from and surrounding Wuhan, the capital city of Hubei Province, China.
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4.5.2 BSOS as Conventional and CLT-Based Scale

The same BSOS as used in Sect. 4.4 was used here as a conventional instrument
to assess the openness of rural residents in China, including five items to assess
attitudes toward (1) premarital sex, (2) multiple sexual partners, (3) homosexuality,
(4) extramarital sex, and (5) commercial sex. To illustrate the CLT-based survey, we
only used the first three questions to form a brief scale.

To construct the CLT-based scale, three socially distant groups were used:
(1) rural-to-urban migrants (close), (2) urban residents (far), and (3) foreigners
(farthest). This selection utilized the natural social distance sequence in Chinese
society defined by social mobility from rural to urban to foreign countries. With
three socially distant groups and three sexual openness question, the constructed
CLT scale consists of 12 items.

4.5.3 Variables for Validity Assessment

1. Ever had sex in lifetime (Yes/No): This variable was assessed based on response
to the question: “Please recall from the time when you can recall till today.
During this period, have you ever had sex with anyone, including with the same
gender and any sexual behavior through vagina, anus or mouth?”

2. Premarital sex (Yes/No): Premarital sex was measured by the question: “Did you
have your first sex before getting married?”

3. Multiple sexual partners (Yes/No): All participants were asked, “Up to now,
with how many persons have you had sexual intercourse, including your spouse,
lovers, and strangers?” Participants who reported having two or more partners
were coded as “Yes”; otherwise, their responses were coded as “No”.

4.5.4 Statistical Analysis

Since the psychometric modeling analyses have been covered in detail in Sect.
4.4, we only focused on two analyses: (1) Tri-factor modeling of the simplified 3-
question CLT-based BSOS and (2) the predictive validity of this CLT-based measure
relative to the conventional measure. In predictive validity analysis, multiple logistic
regression models were used to assess the predictive validity. Four types of BSOS
scores were used, the simple summary scores over the total 12 items, plus the latent
scale scores for the second-order and tri-factor latent scale scores. For each of the
four outcome variables, four logistic regression models, one for each of the four
BSOS scores were used.

Data processing and general statistical analyses were completed using the com-
mercial software SAS version 9.3 (SAS Institute Inc., Cary, NC). The measurement
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modeling analyses were conducted using the software AMOS 22.0 (IBM Corp.,
Armonk, NY).

4.5.5 Sample Characteristics

Data for a sample of 1143 participants were analyzed after an exclusion of 147 who
claimed that their answers to the survey were either “not truthful at all” or “mostly
not truthful”. Among the total 1143 participants, 50.7% were male, with a mean
age of 35.9 (SD = 7.7), 99.6% Han, 89.5% married, 71.5% with middle school or
more education, and a mean family annual income between $1626 and $3250. The
sample characteristics are summarized in Table 4.7.

4.5.6 Results from Tri-factor Analysis

The three-question CLT-based data fit the tri-factor well with CFI = 0.94,
TLI = 0.92, and RMSEA = 0.09 (no item-level covariance was added). The
modeling results were presented in Fig. 4.8. Factor loadings to O were in general
the largest for participants’ assessment of other urban residents and foreigners
(>0.65 for all), followed by their assessment of rural-to-urban migrants (0.53–
0.65), and were smallest for their own assessment (0.31–0.63). The loadings for
perspective factors (S, M, U, F) were moderate (0.33–0.59). The three item-level

Table 4.7 Characteristics of the study sample

Variable Female no. (% row) Male no. (% row) Total no. (% row)

Total sample, N (%) 564 (49.34) 579 (50.66) 1143 (100.00)
Age (in years)

Range 18–45 18–45 18–45
Mean (SD) 35.27 (7.48) 34.85 (7.62) 35.95 (7.71)

Education
Primary school or less 235 (41.67) 91 (46.15) 326 (28.52)
Middle school 272 (48.23) 348 (60.10) 620 (54.24)
High school 55 (9.75) 122 (21.07) 177 (15.49)
College or more 2 (0.35) 18 (3.11) 20 (1.75)

Marital status
Married 536 (95.04) 488 (84.28) 1024 (89.59)
Unmarried 28 (4.96) 91 (15.72) 119 (10.41)

Having children
Yes 530 (93.97) 483 (83.42) 1013 (88.63)
No 34 (6.03) 96 (16.58) 130 (11.37)
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Fig. 4.8 Trifactor modeling of the CLT-based Brief Sexual Openness Scale. Note. O The common
factor, S the perspective factor of rural residents themselves, M the perspective factor of rural-
to-urban migrants, U the perspective factor of urban residents; and F the perspective factor of
foreigners, PS the latent factor assessing the item premarital sex, MS the latent factor assessing the
item multiple sexual partners, HS the latent factor assessing the item homosexuality. Data-model
fit: Chi-square = 582.81, df = 49, CFI = .93, TLI = .90, RSMEA = .10. No covariance between
any two items was added

factors were relatively small (0.00–0.25), suggesting item-level disturbance were
relatively small for all.

4.5.7 Predictive Validity

Results in Table 4.8 indicate that the three-item BSOS significantly predicted three
of the four outcome variables regardless of the scoring methods. Among the three
scoring method, the odds ratio for the simple summary scores of the 12 items and
the tri-factor latent scale scores appeared to be higher than that of the second-order
latent scale scores.
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Table 4.8 Predictive Validity (Odds Ratio) of the CLT-Based BSOS

Sexual openness
Ever had sex
(414 = yes)

Premarital sex
(214 = yes)

Multiple partners
(102 = yes)

Total (N = 1143)
Conventional scale score 2.01*** 2.50*** 2.54***
Second-order factor score 1.69*** 1.91*** 1.85***
Tri-factor score 2.02*** 2.48*** 2.28***

Male (n = 579)
Conventional scale score 2.29*** 2.41*** 2.15*
Second-order factor score 1.88*** 1.87*** 1.68***
Tri-factor score 2.25*** 2.25*** 2.01***

Female (n = 564)
Conventional scale score 1.65*** 2.20*** 2.53***
Second-order factor score 1.46*** 1.77*** 1.91*
Tri-factor score 1.73*** 2.23*** 2.21*

Note. * p < .05, ** p < .01, *** p < .001

4.5.8 Summary

In this section, we applied the same method in assessing sexual openness for rural
residents with the CLT-Based BSOS slightly modified. The purpose is to show that
the CLT-based method can be used to adapt published instruments for different
populations.

4.6 Discussion and Conclusions

In this chapter, we reported one of our research efforts in attempting to collect
reliable data for sensitive questions by reducing SDB. This method is theory-based,
supported by rigorous psychometric testing with empirical data collected from
different populations. The method is simple, noninvasive, and easy to use in any
survey studies. In addition to obtaining high quality data, the method can be used
to test sensitivity levels of a survey question and can be used to assess SDB for a
survey question.

4.6.1 Theoretical Framework of the CLT-Based Method

Our confidence in the novel CLT-based method is stemmed first from its strong and
relevant theoretical foundations. In addition to the psychology of survey responses
as its theoretical foundation (Schwarz, 2007; Tourangeau et al., 2000), this method is
built upon the one decade work of construal level theory (Liberman & Trope, 2008;
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Liberman, Trope, & Stephan, 2007), the century long development of psychometric
theories in general (Bollen, 2002; Borsboom et al., 2003; Raykov & Marcoulides,
2011; Spearman, 1904, 1931) and recent advancement in measurement modeling
in particular (Bauer et al., 2013; Cai et al., 2011; Gibbons et al., 2007; Holzinger
& Swineford, 1937). The cognitive mechanism of survey response has been
extensively studied and this body of work serves as the foundation that provides
the basic principles to improve reliability and validity of survey response (Schwarz,
2007; Tourangeau et al., 2000). Prior research indicates that deliberate editing is a
major source of unreliable survey response, suggesting the reduction of editing may
be one of the most important tasks in improving data quality for survey research
(Holtgraves, 2004; Paulhus, 1984, 1991; Tourangeau & Yan, 2007).

Different from previous attempt for better quality data by circumventing the
cognitive process involved in survey responses, our method directly works on the
cognitive process with the guidance the construal level theory (Liberman, Trope, &
Stephan, 2007). Our method works by simply asking participants, in addition to self-
assessment, to assess 2–3 socially distant groups. Since the assessment of socially
distant others are less likely to be affected by contextual factors, the assessments
of socially distant others provide another data source to correct SDB (Cai et al.,
2011; Liviatan, Trope, & Liberman, 2008; Rim, Trope, Liberman, & Shapira, 2013;
Ross et al., 1977; Trope & Liberman, 2010). With several analytical methods based
on the powerful latent variable theory (Bollen, 2002; Borsboom et al., 2003) and
factor-analytic theory (Spearman, 1904, 1931), we can integrate the data from self-
assessment and assessments of socially distant others to derive quality data.

4.6.2 Empirical Support for the CLT-Based Method

Findings of this study provide solid data supporting validity of the CLT-based
method. The first piece of supportive evidence was the fact that only sensitive
questions can form a latent construct using the CLT-based method as show in the first
study. According to the psychology of survey responses, in answering a sensitive
or intrusive question, participants may edit their responses to minimize harm and
to maximize benefit (Krumpal, 2013; Tourangeau & Yan, 2007). This mechanism
will not be activated when answering non-sensitive questions. In another word, if
participants’ self-assessment and their assessments of 2–3 socially distant others can
form a “reliable” scale, the question is sensitive; otherwise, may not be sensitive.

The second piece of supportive evidence was the improvement in data reliability
with the CLT-based method, compared to a conventional measure. Findings of this
study indicate substantial improvement in the reliability of BSOS if the CTL-based
method was used (Cronbach alpha increased from .78 to .96) for rural residents in
the third study presented in this chapter and rural-to-urban migrants (from .81 to
.96) in a published study (Chen et al., 2015). Furthermore, the increase has little to
do with the increase in measurement items as demonstrated with Spearman-Brown
prophecy formula (Brown, 1910; Spearman, 1910).
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The third piece of supportive evidence came from the existence of a latent com-
mon factor as revealed from the factor modeling analyses. Successful extraction of
the common factor from the multiple assessments provided by the same participant
for different social groups supported the latent construct hypothesis we proposed
that the assessments of different targets including self and socially distant others
are determined by one latent construct—participant’s own knowledge, attitudes and
beliefs.

The fourth piece of supportive evidence was the improved predictive validity
of a CLT-based measure. In the study presented in this chapter, sexual openness
measured using the CLT-based method is more reliable and valid because it better
predicted outcome variables measured in samples selected from three different
populations—urban residents in the second study, rural residents in the third study
and rural-to-urban migrants in a published study (Chen et al., 2015).

4.6.3 Recommendations and Future Research

The CLT-based method is easy to use. If your research needs to address a sensitive
question as the main outcome or predictor, compose a question in your survey, and
ask all participants to provide answer for themselves and for two to three socially
distant groups. After data collection, using factor modeling analysis to derive the
CLT-based scores as data.

However, one question remained on how to select the socially distant groups.
As a recommendation to using the method, a rule of thumb would be to choose
socially distant groups that are not too close or too distant. For example, for any
participants as the target, family members would be too close to consider as a
socially distant groups. For students, classmates and school mates consist of two
good socially distant groups; while friends and classmates do not. In our study of
rural residents in this chapter, the rural-to-urban migrants and the urban residents
represent two suitable socially distant groups. In the published study of rural-to-
urban migrants, the rural residents and the urban residents present two suitable
socially distant groups (Chen et al., 2015).

To ensure successful use of CLT-based method, a pilot-test is highly recom-
mended (1) to determine socially distant groups, (2) to improve the statement of the
questions, and (3) even to test the order of self-assessment and the assessments of
socially distant others. With regarding the last point in pilot testing, in our previous
studies, we present the question along with the social distance with self-assessment
first, and the most distant assessment last. We do not know if this is the best relative
to other alternatives, such as reverse-order of random order.
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Chapter 5
Integrative Data Analysis and the Study
of Global Health

Andrea M. Hussong, Veronica T. Cole, Patrick J. Curran, Daniel J. Bauer,
and Nisha C. Gottfredson

Abstract In this chapter, we introduce Integrative Data Analysis (IDA) for use in
the field of Global Health. IDA is a novel framework for simultaneous analysis
of individual-level data pooled from multiple studies. This framework has been
applied to address questions about substance use, cancer, HIV, and rare diseases
from studies around the world. Advantages of this approach include efficiency
(i.e., reuse of extant data), statistical power (i.e., large combined sample sizes), the
potential to address questions not answerable by a single contributing study (e.g.,
combining studies with overlapping ethnicities to examine cross-cultural differences
or age periods to examine longer periods of development), and the opportunity
to test replicability of effects across studies in the pooled analysis. We describe
the IDA methodological framework, emphasizing unique issues in measurement
harmonization and hypothesis testing. We illustrate the application of the method
using examples. We also describe emerging tools to handle specific harmonization
challenges. Finally, we consider the potential utility of IDA in Global Health and
epidemiological research.
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5.1 Pooled Data Analysis and Global Health Research

We are in a data rich era in our scientific history, offering opportunities to address
unanswered questions in the field of Global Health. However, better understanding
health on a global scale requires more than data. It also requires tools that can extract
meaningful knowledge from data. In some cases, this extraction requires innovative
approaches to data pooling or combining data from different data sources (Cooper,
Hedges, & Valentine, 2009). This may include integration of disparate datasets or
data streams derived from sources that assess similar predictors and outcomes with
some variation in measurement, sampling, or methodology. Methods that allow us
to pool or integrate data across different sources are expanding rapidly (e.g., Hofer
& Piccinin, 2009; Hussong, Curran, & Bauer, 2013; Pigott, Williams, & Polanin,
2012).

In the United States, the call for pooled data analysis comes from policymakers,
publishers, funders, and scientists. For example, the National Institutes on Health
(NIH) has funded international collaborative data collection efforts focused on drug
use and HIV (the STTR collaborative; Chandler et al., 2015), injection drug use (the
PRIMER study; Werb et al., 2016), and adherence to antiretroviral therapy for HIV
(the MACH14 Collaborative; Liu et al., 2013). Investigator-initiated data collabora-
tives are also increasingly common and have produced significant contributions to
our understanding of environmental influences on children’s physical development
(Jelenkovic et al., 2016; Silventoinen et al., 2016), prostate cancer (Key et al.,
2015), mammography density and aging (Burton et al., 2017), and rare diseases
(like hereditary transthyretin amyloidosis with polyneuropathy; Serrano, Atzinger,
& Botteman, 2018).

A fundamental issue in conducting pooled data analysis is data sharing. In line
with ethical guidelines (e.g., American Psychological Association, 2016), the Open
Science Movement (National Academies of Sciences, Engineering, and Medicine,
2018) encourages data sharing to monitor the quality and veracity of published
findings. In addition, NIH-supported measurement archives such as the Patient
Reported Outcomes Measurement Information System (PROMIS; Cella et al., 2007)
and the PhenX toolkit (Conway et al., 2014) serve as resources for investigators
as they initiate new data collection efforts and need to identify highly reliable,
valid, flexible, precise, and responsive assessment tools that can be widely used
in independent studies to create a potentially broad database for pooled analysis.

Over the years, researchers have introduced several methods for data pooling and
analysis. One group of methods focuses on horizontal integration or harmonization
(to adapt a term from the equating literature; Steinberg & Thissen, 2013). This
approach combines data for the same participants with data in two or more
independent datasets (e.g., arrest records and hospital records) but when no link
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exists for identifying records in each dataset that belong to the same person.
Another group of data pooling techniques combines data for different participants
collected in two or more different datasets (or vertical integration). Perhaps the
best known of these data pooling techniques is meta-analysis. Meta-analysis is
a set of techniques that traditionally focused on analyses of summary statistics
from a group of study results testing the same hypothesis (Cooper et al., 2009).
A more recent extension of meta-analysis is individual participant data Meta-
Analysis (IPD Meta-Analysis; Pigott et al., 2012). This form of meta-analysis is
more common in medical research and has been used to address the problem of
data pooling for randomized control trials as well as observational data. IPD Meta-
Analysis may incorporate primary data from each participant in the pooled studies
or a mix of primary data and summary statistics from studies for which primary
data are not available. This approach has similarities as well to Mega-Analysis
(McArdle, Hamagami, Meredith, & Bradway, 2000; McArdle, Prescott, Hamagami,
& Horn, 1998). Together, these techniques form a toolkit for researchers interested
in analyzing pooled data. We offer to this toolkit an approach that we call Integrative
Data Analysis (IDA; Hussong et al., 2013).

5.2 Integrative Data Analysis

5.2.1 Defining Integrative Data Analysis

Integrative Data Analysis (IDA) is a framework for the simultaneous analysis of
raw data pooled from multiple studies (Hussong et al., 2013). IDA is a vertical
integration technique that differs from traditional meta-analysis by performing
pooled analysis on the raw data from individual studies instead of on summary
statistics. In this way, IDA has some similarities with IPD meta-analysis. However,
IDA possesses a few unique features, most notably its ability to directly address
between-study differences in measurement.

IDA has been applied in pooled data analyses that evaluate treatments for
depression (e.g., Brown et al., 2016), map the epidemiology of rare diseases (e.g.,
Serrano et al., 2018), and describe the trajectories of symptomatology in high-risk
youth (e.g., Hussong, Flora, Curran, Chassin, & Zucker, 2008). Advantages of IDA
evident in these studies include increased efficiency (i.e., reuse of extant data),
statistical power (i.e., large combined sample sizes), and robust modeling of rare
events. Moreover, IDA has the potential to address new questions not answerable
by a single contributing study (e.g., combining studies with overlapping ethnicities
to examine cross-cultural differences) and the opportunity to test replicability of
effects across studies in the pooled analysis. Importantly, IDA can pool data from
multiple studies with some variations in measurement, sample characteristics and
methodology (Curran, Cole, Bauer, Hussong, & Gottfredson, 2016).
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5.2.2 Research Questions Suitable for IDA

Although IDA can be a potentially powerful methodological approach, it is not
appropriate for every pooled data application. Based on our own research, answers
to the following four questions can help researchers decide whether to pursue IDA
as a method for a given research problem (see Table 5.1).

First, does your research involve pooling data from separate studies that do
not contain the same individuals? To ensure independent sample distribution, IDA
requires that the data to be pooled come from separate studies that have no overlap
in study participants. Otherwise, IDA will not be an appropriate selection.

Second, does the research problem call for testing the effects of a variable (e.g.,
gender or ethnicity) that is fully confounded with study membership? IDA cannot
control for or test for study differences in a pooled analysis if study membership is
fully confounded with variation in measures of interest. For example, if study A is
all boys and study B is all girls, IDA cannot test whether there are gender differences
in some outcome by pooling participants in studies A and B. In this case, it will be
impossible to determine whether observed differences are due to study membership
or gender.

Third, do all the pooled studies have scales (or items) assessing central con-
structs? Although missing data approaches (e.g., full information maximum like-
lihood estimation) may sometimes bend this rule, IDA typically requires that all

Table 5.1 Is Integrative Data Analysis (IDA) is the right method for your research?

IDA may be used if you answer
YES to all four questions Comments

Q1: Do you have separate
studies with different
participants in each study?

IDA was developed to pool data from separate studies with
non-overlapping participants. It was not developed to match
the same participant in different datasets (e.g., to engage in
vertical equating).

Q2: Are study differences not
entirely confounded with
variables of interest for
hypothesis testing?

IDA cannot control for or test for study differences in a
pooled analysis if study membership is confounded with
variation in measures of interest. For example, if study A is
all boys and study B is all girls, IDA cannot test whether
there are gender differences in some outcome by pooling
participants in studies A and B.

Q3: Do you have scales (or
items) assessing central
constructs in each study?

IDA typically includes measures of each construct in each
study which allows testing of study differences or
replication.

Q4: Are there shared anchor
items within each cross-study
scale?

IDA assumes that some items on a scale are invariant across
studies, serving to anchor the meaning of the construct.
Identifying anchor items is part of the IDA method.
However, if there is no content overlap in the items that
make up a scale (or in the single items that tap a construct),
then IDA may not be fruitful. Making a cross-walk for your
scale is a way to answer this question.
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studies contribute measures of each construct that will be included in a given
analysis to allow testing of study differences or replication of effects.

And, fourth, is there the potential to harmonize measures (i.e., equate scores)
on the constructs across studies? If there is no content overlap in the items that
constitute a scale (or in single items that tap a construct), then IDA may not be
fruitful and will likely yield biased or misleading results. (We discuss measurement
harmonization in detail below.)

For those interested in pursuing IDA to address a research problem, we outline
the IDA methodology as a guide (and refer you to other key references such
as Curran et al. (2017) and Hussong et al. (2013). Because IDA is more of a
methodological approach than a specific analytic procedure, we offer guidelines for
researchers in making decisions about two key challenges in pooled data analysis
consistent with IDA; namely, measurement harmonization and hypothesis testing.

5.3 Measurement Harmonization

5.3.1 Need for Measurement Harmonization

A key set of challenges in pooled data analysis concern measurement. Although
many efforts by government funders and research consortiums have targeted more
consistent use of core measures within a given field to facilitate data pooling
(e.g., NIH’s PROMIS and PHEN-X), measures are often altered in various ways.
Typical reasons for these alterations include to align response scales and timeframes
on similar measures, to change outdated or culturally inappropriate language, or
to modify wording for a given reporter (e.g., adolescent versus parent report).
Although these alterations are well-intended and sometimes necessary, a long
history of psychometric research cautions that changes to an instrument’s directions,
timeframe, item stems, response scale, and even placement within a battery can
impact the validity and reliability of a scale and the comparability of the altered scale
to the original (Wainer & Thissen, 2001). Such cautions are equally noteworthy
when it comes to pooling data from measures that may have been altered across
studies because of potential differences in measurement properties for individuals in
different subsamples, for whom a single item on an instrument may have different
meaning. The more that the composition of samples differs across datasets in a
pooled analysis, the more pronounced the challenges of measurement harmonization
become.

5.3.2 Logical Harmonization

Measurement harmonization describes a set of techniques designed to address
the challenge of creating comparable measures across pooled studies (Granda,
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Wolf, & Hadorn, 2010). The most common approach is logical harmonization. In
this approach, item responses can be re-scored, if needed, to be comparable across
studies (e.g., by collapsing a response scale or combining two items; Granda et al.,
2010). Regardless of whether rescoring is needed, this approach assumes that items
with similar wording or content (based on face validity or expert ratings) function
similarly in different studies. After items from different studies have undergone
logical harmonization, three types of measurement items for the same instrument
will be generated in a pooled dataset: (a) identical items that were administered
in exactly the same way across studies, (b) logically harmonized items, and (c)
unique items that appear in some (or maybe even only one) of the pooled studies.
In practice, we often refer to identical and logically harmonized items together as
common items.

Logical harmonization is common practice, particularly for single-item scales.
For example, variation across studies assessing alcohol use may include the use
of different item stems. Although the stems appear equivalent, they may invoke a
different cognitive frame for participants in responding to the questions. “In the
past year, how often did you drink alcohol?” as an item stem may or may not be
equivalent to a more detailed item stem (i.e., “In the past year, how often did you
drink alcohol including beer, wine, hard liquor, mixed drinks, and wine coolers”),
an item stem with a different timeframe (i.e., “In the past two weeks, how often
did you drink alcohol?”), or an item stem that assesses alcohol use quantity rather
than frequency (i.e., “In the past two weeks, how many drinks of alcohol have you
consumed?”). Although each of these items provides information about alcohol use,
they may not be equivalent. If the investigator is mostly interested in whether a
participant has ever used alcohol or not (e.g., in an IDA study on drinking onset
among youth in the world), then any response to these questions other than ‘0’ or
‘never’ can be recoded as ‘yes’ and the rest as ‘no’. This would result in a logically
harmonized measure of alcohol use that attempts to equate item content (in stems,
time frames and directions) and response scales. For single-item scales, there are few
alternatives to logical harmonization so this becomes an endpoint in measurement
harmonization.

This is unfortunate because logical harmonization makes an untestable assump-
tion of invariant measurement. With multiple item scales, the investigator can go
beyond logical harmonization to test this assumption. An example of multi-item
logical harmonization is the scales for HIV-related stigma as used in a three-study
IDA as depicted in Fig. 5.1. This illustrative pooled dataset contains 18 items,
although each of the three studies contains 9 items. There are five shared items
between Studies 1 and 2; two shared items between Study 1 and Study 3; and two
shared items between Study 2 and Study 3.

In some approaches to data pooling, unique items may be discarded and
traditional scoring (i.e., creating means or sum scores) applied to the remaining
common items. The dangers of this approach are threefold. First, the smaller subset
of items may not fully capture the construct of interest (i.e., HIV-related stigma)
as well as the full set of items that include unique items, potentially reducing
construct validity but also reliability. Second, the assumption that items in the
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Same Factor

OVERLAPPING ITEMS

Different Items

Pooled:

h

Study 1:

Study 2:

Study 3:

Fig. 5.1 Harmonizing overlapping items from different studies for IDA. Solid items in Study 1
only (orange), Study 2 only (blue), and Study 3 only (yellow). Shared items combine colors from
multiple studies

pooled dataset are interchangeable (i.e., that logical harmonization was successful)
is untested and violations of this assumption are not incorporated into the scoring
model. And, third, even when items are identical across studies the potential for
scales to function differently in one sample versus another is a well-documented
psychometric challenge that may be compounded in pooled data analysis (Wainer
& Thissen, 2001). Even an identical measure may perform differently in studies
due to differences in sample composition (e.g., Study 1 has more men than Study
2), assessment protocol (e.g., study 1 primes the HIV-related stigma measure
by first administering a discrimination measure in the battery whereas study 2
primes with a self-esteem measure), settings for data collection, and a host of
methodological factors. For these reasons, the IDA framework requires that the
assumptions of logical harmonization by evaluated with a second approach to
measurement harmonization, namely psychometric harmonization.

5.4 Harmonization

5.4.1 Psychometric Harmonization and IDA

Our strategy for psychometric harmonization borrows heavily from measurement
invariance testing in factor analysis (Meredith, 1993; Millsap, 2012; Millsap
& Meredith, 2007) and on linking and equating test scores from educational
assessment (Holland, 2007; Holland & Dorans, 2006). However, as shown in
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TYPICAL STEPS IN IDA

1. Explicate theoretical question of interest

2. Identify contributing data sets

3. Conduct feasibility study

4. Create collaborative IDA research team

5. Develop pool of potential items for each construct

6. Create logically harmonized data set

7. Conduct psychometric hormonization

8. Estimate optimal scores anchored to a common scale

9. Transport scores to analyses for hypothesis testing

Fig. 5.2 Item selection for psychometric harmonization analysis

Fig. 5.2, our guidelines for conducting IDA do not begin with measurement but with
identification of a strong hypothesis, identifying datasets, conducting a feasibility
analysis and creating an IDA team. This framework is focused on variables of
interest, drawn from studies that make theoretical sense for pooling and that include
measures of all key constructs to produce a pool of common and unique items, and
is supported by a clear set of guidelines for productive collaboration (see Hussong
et al., 2013 for details about these steps).

A simple tool to guide item selection across studies and the creation of the
integrated dataset is the measurement crosswalk (see Table 5.2 for an example). The
crosswalk identifies the item pool for a given construct, documents variation in the
measure or set of items across studies (e.g., in directions, item stems, reporters, time
frames, response scales), and lays out the possibilities for logical harmonization.

This crosswalk is an important tool for IDA team communication and allows
for expert evaluation of proposed item harmonization decisions. In addition, the
crosswalk is an important guide for data management that identifies the naming
convention for common items, re-scoring algorithms for different response scales
across studies, and form of the integrated dataset. The crosswalk is also a tool for
the analyst and study team that can provide a roadmap for expected and unexpected
patterns of study differences in the pooled dataset.
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5.4.2 Psychometric Harmonization Model

After creating a pooled dataset based on the decisions embedded in a crosswalk,
psychometric harmonization may begin. Although there are multiple approaches
to psychometric harmonization, here we highlight the use of Moderated Non-
Linear Factor Analysis (MNFLA; Bauer & Hussong, 2009; Curran et al., 2016;
see Hussong, Flora, et al., 2008; Mun et al., 2015; Mun, Jiao, & Xie, 2016 for a
discussion of other approaches). MNLFA is a highly flexible approach to analytic
harmonization that blends the traditions of confirmatory factor analysis (CFA;
Bollen & Hoyle, 2012) with item response theory (IRT; Steinberg & Thissen, 2013).
The purpose of MNLFA is not to find interchangeable items across pooled studies
but to create factor scores using both common and unique items from these studies
to infer scores for an underlying factor representing the construct of interest thought
to give rise to the item responses (see Fig. 5.1). Provided that enough (but not
necessarily all) items measure the construct in the same way across studies – an
empirically testable proposition—these scores can then be compared directly across
studies. Importantly, this approach accounts for the presence of items that, despite
being logically harmonized, do not in fact measure the construct equivalently.

In, MNFLA, we assume that all items used in the pooled studies assess a single
construct (e.g., alcohol-related consequences) and can be measured by a single
underlying factor. Items are referred to as yij and the latent factor is referred to
as ηj, where i indexes items and j indexes people. For instance, for binary items, the
relationship between the factor and the items can be expressed as

logit
(
μij

) = νij + λij ηj (5.1)

where μij represents the probability that item i will be endorsed by participant j,
consistent with an item-level CFA. This probability is determined by a logistic
relationship to the latent factor defined by an intercept νij and a factor loading
(slope) λij. (Not that other item types can also be accommodated through the
selection of appropriate link functions to relate expected values to latent factors,
see Bauer & Hussong, 2009). Like a traditional CFA, these intercepts and slopes
vary across items (the i subscript) but, unlike traditional CFA, they can also vary
deterministically across persons (the j subscript).

The between-participant difference is determined by treating the parameters νij
and λij as functions of person-specific covariates. Denoting the pth covariate for the
jth subject xpj, the measurement parameters are affected by covariates as follows:

νij = ν0ij +
P∑

p=1

+κpixpj (5.2)

λij = λ0ij +
P∑

p=1

ωpixpj . (5.3)
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The parameters denoted by κpi and ωpi reflect differential item functioning (DIF)
for intercepts and loadings, respectively, indicating that these items do not measure
the latent factor equivalently for people with different values on the background
characteristic.

In typical IRT or CFA applications, these covariates are often individual demo-
graphic characteristics, such as gender or age. From the perspective of IDA, a key
insight is that a subject’s study membership can be treated as a covariate, allowing
DIF based on study to be modeled. For instance, if the wording of an item differs
across studies and this leads to an increase in endorsement of the item in one study
versus another, this would result in (intercept) DIF for this item. If any items possess
DIF, full measurement invariance is not present across studies. When a minority
of items have DIF, this is referred to as partial invariance and is generally still
considered to produce acceptable measurement comparability across studies at the
level of the latent factor. When most or all items have DIF, then the validity of direct
comparisons is dubious (Byrne, Shavelson, & Muthén, 1989).

Finally, in MNLFA, the latent factor mean (here denoted αj) and variance (here
denoted ψ j) may also vary as a function of background characteristics allowing the
mean level or variability of a construct to be higher for some participants than others.
Between-participant differences in the mean or variance of a construct are known as
impact and, as in the case of DIF, may occur based on study. For instance, if we were
measuring alcohol consequences in a harmonized dataset comprised of a clinical
sample and a community sample, we might expect mean and variance impact based
on study. Mean and variance impact are conveyed through the following equations:

αj = α0 +
P∑

p=1

γpxpj (5.4)

ψj = ψ0 exp

⎛

⎝
P∑

p=1

δpxpj

⎞

⎠ (5.5)

where γ p represents the impact of xpj on the mean and δp represents impact of xpj on
the variance. To assign a scale for the latent factor, typically one sets α0 to zero and
ψ0 to one, standardizing the scale of the factor when all background characteristics
are scored zero. This again differs from a standard CFA or IRT analysis in which
the mean and variance of the factor would typically each be assumed equal across
persons. The effects of covariates on the factor mean, denoted by γ p, and variance,
denoted by δp, are collectively referred to as impact. A depiction of the full MNLFA
model appears in Fig. 5.3.

The goal of MNFLA as an analytic harmonization approach in IDA is to test
and account for study differences in pooled data analysis for latent constructs in
terms of both study impact and DIF. This is of significance for global health and
epidemiologic research, where between-study differences may relate to both the
underlying construct of interest and the measurement process. For example, items
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Fig. 5.3 Full moderated non-linear factor analysis

from a study that has administered a measure of alcohol-related consequences in its
original form (e.g., the widely used Rutgers Alcohol Problems Inventory, RAPI,
White & Labouvie, 1989) may relate differently to the underlying construct of
alcohol-related consequences when compared to a second study in which some of
these items have been altered, a response scale changed, or items dropped. These
alterations to the scale may impact the performance of individual items or even lead
individuals to respond to the original and altered items differently. Within the CFA
tradition, such differences are said to result in non-invariant measurement. Within
the IRT tradition, such differences are said to reflect differential item performance
or DIF. Generalizing from these traditions, MNLFA provides a flexible framework
for testing patterns of DIF in a set of items posited to underlie a given latent factor as
a function of study membership. (Indeed, MNLFA provides even greater flexibility
to test whether a set of categorical and/or continuous background characteristics
uniquely as well as interactively account for DIF; see Bauer & Hussong, 2009 for a
description).

MNLFA may be used to conduct IDA in harmonized datasets using a series
of steps. We summarize these steps here and expand upon them in the empirical
example, but readers are referred to the original formulation of these steps (Curran
et al., 2014; Gottfredson et al., 2018) for further detail. The first step is to
conduct descriptive and graphical analyses to understand the distributions of the
items both within and across studies and the potential impact of covariates on
these distributions. This may entail examining frequency tables and histograms to
determine whether sparse response categories may be collapsed. The second step is
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to conduct factor analyses in order to determine the dimensionality of the construct.
Though multidimensional MNLFA is certainly possible (see Bauer, 2017), we
deal exclusively with the unidimensional case here. As with exploratory and
confirmatory factor analyses, MNLFA assumes that observations are independent.
When working with nested data (i.e., children in families, repeated measures), we
therefore recommend fitting these models to a calibration sample, constructed by
randomly sampling one observation from each cluster.

Third, MNLFA then models effects of study and covariate predictors on the mean
and variance of the latent construct. Bringing these predictors into the model not
only makes the specification of the model more accurate (by explicitly incorporating
known sources of heterogeneity), but it also provides additional information with
which to improve score estimates for the participants. We then move to testing
models that incorporate DIF. A clear advantage of the MNLFA framework is that
it allows DIF testing across studies as well as covariates (and even interactions
among them) simultaneously. This is particularly useful when study membership
is correlated with other potential sources of DIF (e.g., studies differ in proportion of
men versus women, such that it may be important to account for and parse sex DIF
from study DIF). DIF testing is accomplished by allowing variables indexing these
potential sources of DIF to moderate the intercept and factor loading for an item.
Again due to model complexity, we typically use an iterative process to estimate DIF
on an item-by-item basis and trim non-significant predictors before incorporating
all identified DIF in a summary model (Curran et al., 2014). Although this can be a
tedious process, Gottfredson et al. (2018) offer an R program called aMNLFA (for
automated MNLFA) that streamlines this analytic procedure1.

Fourth, this final model is used to generate scores of the latent variable of interest.
By incorporating DIF into the scoring model we can correct for bias in the scores
that would result from differential measurement across study (i.e., failures of logical
harmonization) and as a function of other covariates (e.g., age, sex, ethnicity). For
instance, suppose that a harmonized item was constructed from two items measuring
similar content but with slightly different item stems (e.g., an item assessing alcohol
motives worded as “to get buzzed” in one study and “to get high” in another). If
endorsement rates for these items differed in part due to wording differences in the
item stems (i.e., buzzed versus high), and not just due to underlying differences
in the construct of interest (i.e., stronger motives to use alcohol for such effects),
then we would expect to detect study DIF for this item. Failing to account for study
DIF would lead to artificially elevated scores for participants receiving the easier-
to-endorse prompt. Generating scores from a model that incorporates DIF removes
such potential sources of bias, ensuring that the scores are commensurate across
studies (or other subpopulations).

There is, however, a question of how much DIF is too much DIF. If nearly all
items display DIF, this would imply no commonality of measurement between
subpopulations and a lack of comparability of scores. DIF among some items is

1http://nishagottfredson.web.unc.edu/amnlfa/

http://nishagottfredson.web.unc.edu/amnlfa/
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often expected and just how much DIF is tolerable is a matter of debate (Cheung
& Rensvold, 1998; Reise, Widaman, & Pugh, 1993; Steenkamp & Baumgartner,
1998). Strictly speaking, only one invariant (non-DIF) item is required to put the
measures on an equivalent scale across subpopulations, but the odds of correctly
detecting which items are invariant versus not are reduced when many items display
DIF (Yoon & Millsap, 2007). The less DIF, the more confidence one can have that
the scale of measurement is truly invariant across persons.

In the final step of MNLFA, we examine the distribution and often the validity
and reliability of scores. This includes both graphical analysis of the scores and
assessments of the relationship between scores and predictors and outcomes of
interest. These steps are expanded upon in the illustrative example below.

5.5 Illustrative Example

The goal of this analysis was to create an indicator for polysubstance use, a
well-documented problem in Global Health (Hussong & Smith, 2018). Self-report
instruments were used to assess the frequency with which participants used several
common substances (e.g., alcohol, tobacco, amphetamines).

In this example we demonstrate an IDA combining data from two larger data
collections. The first, the Real Experiences and Lives in the University (REAL-
U) Study assessed substance use, psychopathology, academic functioning, and a
variety of related constructs among college students. The second, the Millennial
Friendship Study (MFS), assessed similar constructs. Additionally, MFS focused
on relationships and contains dyads rather than individual respondents as in REAL-
U; however, for the purposes of the current study, we only used one member of
each dyad. In both REAL-U and MFS, two slightly different forms of the substance
use measure were used for data collection (Table 5.2). The combination of data
collections and test forms yields four studies: Study A (REAL-U, Test Form 1,
N = 225); Study B (REAL-U, Test Form 2, N = 301); Study C (MFS, Test Form 1,
N = 236); and Study D (MFS, Test Form 2, N = 204).

5.5.1 Logical Harmonization of Individual Items

Test Forms 1 and 2 are shown in Table 5.1. The polysubstance use measure (based
on the Monitoring the Future Survey; Johnston et al., 2013) initially took the form
of fourteen self-report items, each assessing a subject’s lifetime frequency of using
a given substance. Note that, while response options were identical between Test
Forms 1 and 2, item stems were subtly different between the two forms. After a
review of item content and endorsement rates, items were logically harmonized in
two ways. First, we collapsed across some questions measuring similar substances.
Specifically, one tobacco item was created using the maximum value a participant’s
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responses to Questions 2–5; one amphetamine item was created using the maximum
value a participant’s responses to Questions 9 and 10; and one opiates/sedatives item
was created using the maximum value a participant’s responses to Questions 11–13.

Second, to deal with sparse response categories, we collapsed across response
options for the bulk of items. For tobacco, we created a three-category item, which
took a value of 0 if a subject had ever used tobacco, a value of 1 if the subject had
used tobacco 1 to 5 times, and a value of 2 if the subject had used tobacco more than
5 times. For cocaine, hallucinogens/ecstasy, amphetamines, and opiates/sedatives,
we created a binary item which took a value of 1 if a subject had ever used
the substance and 0 otherwise. The original 7-point scale was retained for binge
drinking and marijuana use, as higher categories were more frequently endorsed for
these items. The result of these data management steps was the seven substance use
items in the leftmost column of Table 5.2.

5.5.2 Steps 1 and 2: Descriptive Analysis

In order to include a covariate in an MNLFA model, configural invariance needs to
be established on the basis of this covariate—that is, the same number and general
configuration of factors should account for the covariance among the indicators
across all levels of that covariate (Meredith, 1993). In preliminary analyses, it
quickly became clear that there was not configural invariance based on gender. In
particular, the relationship between all the substances and the latent construct was
weaker, and the overall level of endorsement for all the substances considerably
higher, among male participants. Due to well-documented differences between male
and female young adults in terms of substance use (Chen & Jacobson, 2012), this
is not surprising. But due to this lack of partial invariance, our example focused
exclusively on female participants.

5.5.3 Step 3: Iterative MNLFA

After some preliminary analyses, including visual examination and exploratory
factor analyses of these items in female respondents, we proceeded to conduct
MNLFA using the aMNLFA package in R that utilizes Mplus (Curran et al., 2014;
Gottfredson et al., 2018). We also tested the impact and DIF effects from two
covariates on polysubstance use: sorority membership and the four different studies.
Given the generally higher prevalence of substance use among students involved
in Greek life (McCabe, Veliz, & Schulenberg, 2018), positive mean impact from
sorority membership on substance use was predicted. Some DIF based on study
was also predicted, given the differences in sampling and item wording across
the four samples. Sample DIF was expected for the tobacco, opioid/sedatives,
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amphetamines, and hallucinogens/MDMA items, as the wording of these items
differed between the different forms of the instrument.

A first set of models to test impact (i.e., differences in the latent variable mean
or variance based on the covariates) was fit using the aMNLFA.initial() function.
This initial set of models included: (1) a model testing the main effects of Greek
life and study membership on the mean of substance use (mean impact) and (2) a
model testing the main effects of Greek life and study membership on the variance
of substance use (variance impact). The only impact effect was a positive effect
of Greek life on the mean value of substance use, such that sorority members
reported overall higher substance use than nonmembers. There were no mean-level
differences between studies, and no variance impact for either variable.

A series of initial DIF models was then fit, also using the aMNLFA.initial()
function. This step comprised seven item-wise models testing the effects of Greek
life and study membership on the intercepts and loadings of each of the items
(intercept and loading DIF). This step returned several intercept DIF effects,
indicating differences in the overall levels of endorsement for certain substances
based on study and/or sorority membership. There were intercept effects of sample
membership on tobacco use and opiates, such that members of Studies C and D
were less likely to endorse tobacco use, and members of Study D were more
likely to endorse opioid and sedative use, than members of Study A. There was
a positive effect of Greek life on binge drinking, as well as a negative effect of
Greek life on the use of tobacco, marijuana, and amphetamines. Additionally, there
were loading effects of sorority membership such that amphetamine use was more
strongly related, and tobacco and marijuana use less strongly related, to overall
substance use liability.

These impact and DIF effects were all tested simultaneously, using the
aMNLFA.simultaneous() function, in the model shown in the left column of
Table 5.3. Effects that were rendered non-significant were pruned from this model.
The critical value for retaining a DIF effect, α = 0.05, was sequentially adjusted
using the Benjamini-Hochberg correction for multiple comparisons (Benjamini &
Hochberg, 2000). The resultant model is shown in the right panel of Table 5.3.
This model, which is denoted as the final model and fit using the aMNLFA.final()
function, retained only three threshold DIF effects. There was a positive effect
of study membership on the use of opioids and sedatives, such that members of
Study D (who were in the MFS sample originally and answered Test Form 2)
were more likely to endorse using these drugs than members of Study A (who
were in the REAL-U sample originally and answered Test Form 1). Because the
members of these samples differ both in terms of their original study membership
and test form, it is difficult to determine whether this DIF reflects differences in
measurement or sampling frame of the two studies. There was a positive effect of
sorority membership on binge drinking, such that members of sororities were more
likely to endorse binge drinking than their non-Greek counterparts, given the same
overall level of substance use.
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Table 5.3 aMNLFA results using the REAL-U IDA Analogue Study

Simultaneous model Final model
Variable Coding Estimate SE p value Estimate SE p value

Substance Use
Baseline parameters

Intercept 0 0
Variance 1 1

Mean impact
Sorority membership 0.428 0.104 <.001 0.338 0.083 <.001

Measurement
Baseline parameters

Loadings
Tobacco 1.828 0.164 <.001 1.611 0.128 <.001
Binge Drinking 1.598 0.109 <.001 1.588 0.109 <.001
Amphetamines 1.491 0.188 <.001 1.489 0.188 <.001
Opioids/Sedatives 1.528 0.178 <.001 1.563 0.181 <.001
Marijuana 2.964 0.247 <.001 2.769 0.214 <.001
Hallucinogens/MDMA 3.350 0.414 <.001 3.441 0.432 <.001
Cocaine 3.735 0.536 <.001 3.625 0.505 <.001

Thresholds
Tobacco 1 0.607 0.185 0.001 0.810 0.111 <.001

2 2.612 0.216 <.001 2.776 0.159 <.001
Binge Drinking 1 −1.705 0.126 <.001 −1.706 0.126 <.001

2 −0.485 0.107 <.001 −0.485 0.107 <.001
3 0.342 0.106 0.001 0.341 0.106 0.001
4 0.995 0.112 <.001 0.991 0.112 <.001
5 1.879 0.128 <.001 1.870 0.127 <.001
6 3.030 0.157 <.001 3.015 0.156 <.001

Amphetamines 1 2.428 0.191 <.001 2.434 0.193 <.001
Opioids/Sedatives 1 3.512 0.344 <.001 3.536 0.347 <.001
Marijuana 1 −0.445 0.160 0.005 −0.468 0.149 0.002

2 0.534 0.163 0.001 0.509 0.151 0.001
3 1.555 0.182 <.001 1.532 0.171 <.001
4 2.269 0.203 <.001 2.249 0.193 <.001
5 3.251 0.237 <.001 3.233 0.229 <.001
6 4.225 0.277 <.001 4.202 0.269 <.001

Hallucinogens/MDMA 1 5.094 0.537 <.001 5.079 0.548 <.001
Cocaine 1 6.139 0.771 <.001 5.848 0.700 <.001

Differential Item Functioning
Loadings

Sorority membership
Tobacco −0.491 0.241 0.041
Amphetamines 2.612 0.954 0.006 2.466 0.859 0.004
Marijuana −0.566 0.266 0.033

(continued)
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Table 5.3 (continued)

Simultaneous model Final model
Variable Coding Estimate SE p value Estimate SE p value

Thresholds
Sorority membership

Tobacco −0.052 0.243 0.831
Binge Drinking 0.446 0.181 0.014 0.587 0.150 <.001
Amphetamines −1.790 1.014 0.077 −1.222 0.786 0.12
Marijuana −0.097 0.289 0.737

Sample membership
Tobacco B vs. A 0.080 0.221 0.718

C vs. A −0.485 0.213 0.023
D vs. A −0.460 0.234 0.049

Opioids/sedatives B vs. A 0.565 0.371 0.127 0.576 0.372 0.122
C vs. A 0.177 0.358 0.621 0.252 0.359 0.482
D vs. A 0.923 0.365 0.011 0.986 0.367 0.007

5.5.4 Step 4: Examine MNLFA Scores

Figure 5.4 shows item characteristic curves (ICC) reflecting DIF effects based on
sorority membership. One particularly interesting finding is the strong positive
effect of sorority membership on the loading for amphetamine use. Note that the
corresponding intercept effect must be included, even though it is not significantly
different from zero. Note also that this intercept effect is negative, which would
initially suggest a lower probability of amphetamine use among sorority members,
holding overall substance use constant. However, here the positive loading effect
combines with this negative intercept effect to produce a different pattern of
response probabilities entirely. Specifically, while neither sorority members nor
non-members are very likely to endorse using amphetamines at all, the probability
of amphetamine use increases sharply for sorority members who are one standard
deviation above the mean in overall substance use. By contrast, the overall proba-
bility of amphetamine use increases much more gradually for non-members.

The final step of this analysis was to use the parameter estimates from this final
model to generate model-implied substance use scores using the aMNLFA.final()
function. These scores may then be used in subsequent analyses as measures of
overall substance use, adjusting for differences in sorority membership and study
membership.
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Fig. 5.4 Item characteristic curves for two items by group membership

5.6 Hypothesis Testing in IDA

5.6.1 Challenges to Hypothesis Testing

Common challenges and advantages of hypothesis test using IDA are highlighted
here and outlined in Fig. 5.5 using published studies as examples. The first example
integrates three longitudinal studies of children of alcoholic parents and matched
controls. The first study was the Michigan Longitudinal Study (MLS; Zucker et al.,
2000) with multi-wave data assessed from early childhood to early adulthood.
The second study was the Adolescent and Family Developmental Project (AFDP;
Chassin, Rogosch, & Barrera, 1991) with five waves of data from family-based
interview x for adolescents aged 11–15 at baseline and continued to adulthood. The
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Fig. 5.5 Building an analysis for hypothesis testing in IDA

third study was the Alcohol, Health and Behavior Project (AHBP; Sher, Walitzer,
Wood, & Brent, 1991) with 6 waves of data starting obtained from participants in
the first year of college into their thirties.

Together, these three studies span the first four decades of life when early risk
factors for later substance outcomes first emerge (childhood), when substance use
initiation typically occurs (adolescence), when peak rates of substance use disorders
are evident (young adulthood), and when deceleration in substance involvement is
first apparent (adulthood). Table 5.4 presents a summary of the pooled sample as a
function of study membership and chronological age. Each cell in the table identifies
the number of individuals assessed in a given wave of a given study at a given age.
The column totals identify the total number of individuals assessed at a given age
pooling across study and wave.

There are multiple challenges presented in this three study IDA. For example,
the three contributing studies varied substantially in design, including issues of par-
ticipant recruitment, assessment strategies and instrumentation (see Hussong et al.,
2007, 2008; Hussong, Flora, et al., 2008 for a summary of design characteristics).
One purpose of IDA is to control for such between-study differences to examine
our substantive questions of interest. The pursuit of this goal via IDA permitted us
to study a longer developmental period than could be assessed by any one study,
larger subsamples of families with specific forms of alcoholism, and trajectories of
symptomatology in analyses with greater statistical power.

The first step for hypothesis testing using IDA is to develop a strong hypothesis.
Being clear on the details of what is being examined, the measures that will
be used to examine it, and the nature of the individual and pooled samples is
essential. To gauge feasibility of the analysis, we recommend designing a statistical
model to test the hypothesis by first treating the pooled sample as if it were a
single study or for the single largest study in the pooled dataset. This approach
encourages the researcher to identify the correct statistical model for a given
hypothesis and to test whether standard assumptions for a model are met, can be
met with data manipulation or transformation, or are not viable. This includes a
careful examination of harmonized scores, including those derived from aMNLFA.
Incorporation of controls or corrections for violated assumptions will increase
internal validity in IDA models just as with any statistical model.
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Table 5.4 Cross Study (three-study) Longitudinal IDA Design

MLSA1 168 19 147 2

Participant Age
Study N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
MLS1 399 18 143 121 88 27 2
MLS2 339 7 99 115 89 28 1
MLS3 401 14 128 139 102 18
MLS4 418 13 145 133 113 12 1
MLS5 500 19 144 149 147
MLS6 482 17
MLS7 482
MLSA2 158 17 132 9
MLSA3 204 8 188 8
MLSA4 247 17 214 16
MLSA5 219 11 193 15
MLSA6 202 11 179 12
MLSA7 203 14 182
AFDP1 454 32 78 85 107 102 46 4
AFDP2 449 29 77 84 106 101 48 4
AFDP3 447 29 75 86 103 100 50
AFDP4 749 10
AFDP5 755
AFDP6 735
AHBP1 485 8
AHBP2 480
AHBP3 468
AHBP4 467
AHBP5 454
AHBP6 406
AHBP7 383
Total 18 143 121 95 126 117 103 156 191 386 496 613 657 625 509 429

For example, our first use of IDA tested the hypothesis that trajectories of
internalizing symptomatology between 10 and 33 years of age were elevated among
children of alcoholic parents relative to their peers throughout early development
(Curran et al., 2008). The pooled sample consisted of a total of 1827 individual
participants (512 drawn from the MLS, 830 from the AFDP, and 485 from the
AHBP). Everyone provided between one and five repeated measures resulting in
a total of 7377 person-by-time observations, however no individual provided data
for all age periods. Indeed, MLS provided annual assessments between ages 11–17
with ongoing assessments lagged by 3 years. AFDP used a cohort sequential design,
assessing 11–15 year olds at baseline followed by two annual assessments and then
assessments lagged by 5 years. AHBP was a college cohort study and administered
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Table 5.4 (continued)

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38+

1
31 10

143 148 144 30
17 143 148 144 30

7

4
147 116 123 128 71 45 44 38 26 1

13 34 55 50 84 100 92 143 91 62 20 11
10 30 50 50 80 105 90 140 90 60 20 10

396 70 4 4 2 1
8 394 68 4 4 1 1

8 362 88 4 4 1 1
6 340 110 6 3 2

3 283 154 8 4 0 2
112 225 59 7 1 2

31 221 113 12 5 1
736 743 724 737 352 238 417 245 118 115 234 420 200 149 126 134 361 203 72 25 11

Note: MLS Michigan Longitudinal Study, MLSA Michigan Longitudinal Study annual assessments
(see Zucker et al., 2000); AFDP Adolescent and Family Development Project, AHBP Alcohol
Health and Behavior Project. Each number appended to the study indicator indicates wave of
assessment (e.g., AFDP3 is the third assessment wave in the AFDP project)

annual assessments for four years followed by assessment lags of 4–5 years. In many
ways, the pooling of longitudinal data in this analysis raises similar challenges as
any cohort sequential study in which assumptions about sample comparability (and
negligent historical confounds) are tested by comparing individuals from different
cohorts during overlapping periods of the trajectory. In this case, we needed to
control for study differences not only in levels of internalizing symptoms at each
time point but in the overall shape of trajectories (or rate of change in internalizing
symptoms) over time.
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Given the hypothesis and structure of the data, we chose to fit a series of
multilevel piecewise growth models to examine the fixed and random effects
characterizing the developmental trajectories of internalizing symptomatology
between ages 10 and 33 and whether parent alcoholism significantly predicted
elements of these trajectories. We included main effect predictors for study
membership of both the intercepts and slopes of these trajectories. But we also
accounted for differences in the nested structure of two of the contributing studies.
For both MLS and AFDP, multiple children from the same family could participate
in the study, violating the assumption that observations are independent in this
modeling framework. To address this need, we adjusted for non-independence
within the modeling framework.

This example also highlights the critical next step in IDA hypothesis testing of
building in study differences. IDA scoring procedures and hypothesis testing work in
tandem, and accounting for study differences in all parts of the model is a core tenant
of this approach. We build in study differences into the hypothesis testing models in
two ways. First, we code for main effects of study differences. As with any nominal
variable, there are multiple ways to code for study differences. In this case, we coded
AFDP as the comparison condition (using dummy codes comparing MLS to AFDP
and AHBP to AFDP) because AFDP participants overlapped with both MLS and
AHBP in age periods assessed. For other studies, we have used alternate approaches
to coding study differences. In some cases, there was no clear comparison study
and we used effect coding to test the extent to which study membership impacted
outcomes in comparison to an overall average effect in the pooled sample (see
STTR example to follow). The choice of how to code study differences is driven
by whether testing study differences is of substantive interest and, if so, what codes
capture posited study differences for interpretation; whether there is a primary
control group or not; and how the coding scheme impacts interpretation of other
effects in the model.

The second way we build study differences into these models is by testing for
study differences in the effects of predictors on outcomes, typically via testing
interactions. In our example, we included study membership as a predictor of
internalizing trajectory intercepts but also as a moderator of the effect of age on
internalizing symptoms to test for study differences in trajectory slopes. In these
models, we controlled for child gender and parental education (as a proxy for
socio-economic status) and include interactions between these control variables and
study membership to control for study differences in the effects of these potential
confounds (given study differences in sample composition and measurement).
Although not directly a study effect, we also find that including other variables
that serve as DIF indicators in MNLFA models as main effects in hypothesis
testing reduces parameter bias. Computer simulation studies indicate that omitting
covariates from scoring models but including them in hypothesis testing models can
result in biased findings (Curran, Cole, Bauer, Rothenberg, & Hussong, 2018).

After building a complex model that tests stated hypotheses, incorporates con-
trols and study differences, and is consistent with or addresses model assumptions,
we review the model for each study to identify potential inestimable effects. We
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learned this lesson in analysis testing the time-varying effects of symptomatology
on substance use across adolescents using the same data as in this example. In that
analysis, we were interested in whether internalizing symptoms predicted substance
use 1 year later, after controlling for co-occurring externalizing symptoms, across
a 7-year developmental period (ages 11–18) using data from both MLS and AFDP.
Using a time-varying covariate model, we found that models would not estimate
when we relied on parent-reported symptomatology. In reviewing the original
study designs, we realized that parents reported on youth symptomatology only
every 3 years in MLS, though they did so every year in AFDP. Thus, one-year
time lag data were only available in AFDP, meaning that data were unavailable
to test interactions between a dummy variable indicating study membership and
internalizing symptoms predicting next-year substance use. This is one example
of the ways in which we have identified gaps in data coverage within the IDA
framework for testing a given hypothesis because we were using the data to create
a novel design, demonstrating again that knowledge of the details of contributing
studies’ designs is critical.

The result of these initial five steps in IDA hypothesis testing is an ideal final
analysis model (referring to Fig. 5.5). Sometimes, this model may be too complex
for reliable estimation. Although this may occur in any analytic model, those guided
by IDA may be at particular risk for complexity that interferes with estimation
because of the need to incorporate additional parameters to account for study
differences. We address this challenge by designing a model building approach
that allows for testing sets of parameters using a priori rationale paired with model
trimming to reduce model complexity.

A typical model building approach is was used in our example in which we
tested whether parent alcoholism predicting elevated trajectories of internalizing
symptoms over the early life course. Our initial model included study membership
as a predictor of internalizing trajectories, allowing us to establish the functional
form of change in internalizing symptoms over the age period represented in our
pooled data analysis. We then added control variables (gender and parent education)
as well as interactions between control variables and study membership as predictors
of trajectory elements (intercepts and slopes), then trimmed higher-order predictors
that were non-significant to simply the model. Next, we included our variables of
interest (parent alcoholism) indicators and their interactions with study membership
to test our hypothesis. This approach allowed us to test our central hypothesis
in a model that included only control variables that contributed to the prediction
of outcomes, reducing model complexity and potential related problems such as
multicollinearity. (For additional examples of how this method can be applied to
different research problems, we refer the reader to Hussong, Cai, et al., 2008;
Hussong, Flora, et al., 2008; Hussong et al., 2007).

In sum, hypothesis testing in IDA is heavily guided by hypothesis testing within
whatever analytic method is deemed most appropriate for the hypothesis at hand.
However, given the potential for model complexity and the need to consider study
differences at multiple points in these models, a model building approach is often
most useful. This approach as outlined here relies on incorporating study differences
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into the predictive model both as main effects (to control for study differences in the
observed outcome) but also as potential moderators of other predictors in the model.
These study moderators directly test the extent to which predictor-outcome relations
replicate over studies included in the pooled analysis.

5.6.2 Another Example of IDA in Global Health Research

The study of Global Health engenders unique complexities in measurement, data
linkage, and analysis. As an illustration, we summarize the Seek-Test-Treat-Retain
(STTR) Research Harmonization Initiative to examine HIV treatment cascade
studies conducted in many countries around the globe (Chandler et al., 2015, 2017).
A core construct examined in this initiative is alcohol-related problems, primarily
assessed by the AUDIT. Traditionally, research using the AUDIT relies on both
cut-scores (Babor et al. 2001; Saunders, Aasland, Babor, De La Fuente, & Grant,
1993) and sum scores (Chen, Miller, Grube, & Waiters, 2006; Knibbe, Derickx,
Kuntsche, Grittner, & Bloomfield, 2006). However, in the context of a multi-country
study, these approaches may be limited. For this reason, Hussong et al. (2019) used
MNLFA to create scores that psychometrically harmonized the AUDIT measures
across all studies.

We analyzed baseline AUDIT data pooled from eight STTR study sites. Sample
sizes of these studies ranged from 50 to 2405 and target populations also varied with
regard to sampling frame, geographic location, and inclusion/exclusion criteria (see
Hussong et al., 2019, Table 5.2). The pooled sample included 4667 participants and
was 82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian or Pacific
Islander, with a mean age of 38.86 (range 18–74). All studies took place across
various criminal justice settings (e.g., jails, prisons, or community supervision pro-
grams) and included both persons living with HIV and HIV-uninfected individuals.

We first conducted logical harmonization with the AUDIT items. Although
participants at all study sites completed the AUDIT to assess problem drinking,
there were study-specific alterations to the measure. Alterations to the scale included
changes in the length of the reporting window (up to 12 months), the wording of
the binge item question (to capture sex differences in recommended cut-points),
and the response scale. Across studies, we logically harmonized response scales
to match traditional AUDIT response scales such that they ranged from 0 to 4
for items assessing frequency of alcohol use, quantity of alcohol consumed during
drinking episodes, binge drinking, inability to stop drinking once started, failing to
meet obligations due to drinking, needing a first drink to get started in the morning,
feelings of guilt or remorse following drinking, and memory loss due to drinking;
and response scales of 0 (no), 2 (yes), or 4 (not in the past year) for items 9–10
assessing whether the participant or another indivdual had been injured as a result of
drinking and whether another individual has been concerned about the participant’s
drinking habits.
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With the logically harmonized dataset, we applied traditional scoring algorithms
to create cut-scores (i.e., sum scores of 8 or more (for men) or 4 or more (for women
and those over 60 years of age) following Babor, Higgins-Biddle, Saunders, &
Monteiro, 2001). We then examined item distributions within and across studies and
conducted a series of exploratory factor analyses (EFA). Based on these analyses,
we transformed all items to a binary response scale for MNLFA. In MNLFA
models, sample membership was effect-coded to capture study differences. Sample
membership was allowed to affect both the mean and variance of the latent factor
(assessing differences in drinking severity, impact) as well as the intercepts and
loadings of selected items (assessing differences in item performance across studies,
DIF).

MNLFA results indicated that there were some differences in factor mean and
variance (i.e., impact) by study samples as well as between-sample differences in
item intercepts but not factor loadings. In other words, the assumption of invariance
for logical harmonization was not supported. In comparisons across the three
scoring approaches (i.e., cut-scores, sum scores, and MNLFA scores), the sum
scores were more zero-inflated (i.e., piling up at zero) than MNLFA score, which
had greater variation and were less likely to show floor effects. The correlation
between sum scores and MNLFA scores was r = 0.90 but MNLFA scores captured
greater individual variation than either sum scores or cut-scores. This property of
MNLFA scores permits covariates to better differentiate (and predict) individuals’
drinking severity.

In subsequent predictive validity analysis, we found that MNLFA scores pre-
dicted past 30 days binge drinking more strongly did cut- and sum-scores. Between-
study differences in AUDIT scores associated with binge drinking were detected in
analyses using sum and MNLFA scores but not in those using cut-scores. Our results
suggest that relative to the other two scoring approaches, MNLFA scores captured
more information or variation in problem drinking, better predicting binge drinking
and more effectively detecting between-study differences in AUDIT-binge drinking
associations.

5.7 Advances in IDA Methods

Although there are many new developments afoot in data pooling, here we highlight
two recent tools for addressing specific challenges in measurement harmonization
that can be applied in the context of IDA.

5.7.1 New Regularization Method to Identify DIF Items

Although the aMLNFA procedure represents a tremendous improvement over
manually fitting all the models needed to identify DIF iteratively, we have recently
explored the use of regularization techniques to optimize this process.
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Regularization is a machine learning approach. It starts with a complex model
containing many parameters and/or predictors, and then simplifies the model to
reward sparsity, that is, to remove largely irrelevant parts of the model. When
used to identify DIF, the initial model includes DIF everywhere. We then impose
a penalty when fitting the model (the Least Absolute Shrinkage Selection Operator
(LASSO) penalty) to shrink some of the DIF parameters to zero, allowing them to be
removed from the model. The penalty is increased through a tuning parameter and
as it increases more and more DIF parameters are removed until no DIF parameters
remain.

The optimal value for the tuning parameter is determined by balancing model
fit with model parsimony. One way to quantify this balance is by the Bayes’
Information Criterion (BIC). The tuning parameter value generating the minimum
BIC is then taken as optimal. Ideally, this best-BIC model should contain only
those DIF parameters needed to reproduce the data well and not superfluous DIF
parameters that over-fit the data. The advantages of this approach are twofold. First,
it provides a fully automated method for MNFLA with multiple variables (i.e., study,
age, sex, and other demographic and socioeconomic factors). Second, it avoids
iterative hypothesis testing that may lead to inflated Type I errors. Preliminary
results suggest that this method outperforms traditional DIF detection approaches
in contexts that may frequently arise in IDA (i.e., when there is DIF for multiple
items and the combined sample size is large; Bauer, Belzak, & Cole n.d.).

5.7.2 Trifactor Modeling Method

An additional challenge that can arise when combining multiple data sources is the
need to incorporate assessments obtained from two or more independent reporters.
Although this introduces an added layer of complexity to the analysis, using IDA
to obtain multiple reporter assessments is a distinct advantage of this approach. It
has long been known that the use of a single reporter inextricably confounds the
assessment of the underlying trait with the perspective of the reporter (Achenbach,
Krukowski, Dumenci, & Ivanova, 2005; Renk, 2005). For example, using the
mother’s report of her child’s behavior by necessity limits the assessments as seen
through the lens of the mother (e.g., Boyle & Pickles, 1997). Other perspectives
that might provide additional insights into the child’s behavior could include the
father, a teacher, or a best friend. Although there is much consensus on the need
for multiple reporter assessments, the analytic methods available to incorporate
these separate sources of information in some principled fashion have been at
best limited (Achenbach, 2011), and this is further complicated when considering
multiple reporters within an IDA.

To address these limitations, Bauer et al. (2013) proposed a novel analytic
approach that was explicitly designed to incorporate multiple reporter assessments
within a single psychometric modeling framework. This could be applied to either
traditional single-sample designs or to more complex IDA applications. They
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referred to this approach as the trifactor model (or TFM) because three levels of
latent variables (or factors) are used to capture different sources of variability carried
by a set of items. The first is a common factor that represents the pooled information
shared by all three reporters. The second are a set of perspective factors that are
uniquely defined for each reporter. Finally, the third are a set of specific factors that
are uniquely defined for each item that is shared across the three reporters.

The TFM can be expanded in a variety of interesting ways. First, not all reporters
need to respond to the same set of items. Thus, within an IDA application some
reporters might respond to one set of items while other reporters respond to a subset
of these items but respond to additional items that are unique to their own report.
Second, complete-case data is not required such that some contributing samples
might have three reporters available, some might have two, and some might have just
one, yet these can all be combined within a single TFM. Third, the TFM allows for
the incorporation of reporter-specific characteristics as covariates in the model that
help in part determine the unique reporter perspective such as parental alcoholism
diagnosis or teacher years of experience. Finally, the TFM can generate factor score
estimates for the common factor that represent the optimal pooled combination of all
available reporters net the potentially biasing effects of the perspective and specific
factors, and these scores are then available for subsequent analysis. Complete details
about these and other aspects of the TFM are available in Bauer et al. (2013).

5.7.3 Summary and Conclusions

With the accelerating accrual of high-quality datasets assessing Global Health,
we anticipate that the demand for effective data pooling techniques will increase.
Among these techniques, IDA offers a means of vertical harmonization across
distinct datasets with overlapping measurement of core constructs. Two potentially
unique aspects of the IDA framework include the heavy emphasis placed on analytic
harmonization whenever possible and the testing of study differences (and not just
controlling for study main effects) in hypothesis testing. As pooled data analyses
become increasingly common, we anticipate that the strengths of various approaches
will become more widely adopted across all approaches and lead to more powerful
frameworks. Issues such as the appropriate ways to account for sampling and design
frames (e.g., appropriately including sample weights, retaining the integrity of a
randomized control design) remain unexplored areas in IDA. As necessity is the
mother of invention, we believe that the most important advances in IDA, and data
pooling more generally, will be driven by the need to address critical issues in fields
such as Global Health.
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Technical Appendix: Moderated Nonlinear Factor Analysis
(MNLFA)

Below are the Mplus scripts used to conduct the analyses in the chapter. As
described in the chapter, data come from two studies: the Millennial Friendship
Study (MFS) and Real Experiences and Lives in the University (REAL-U) study.
Based on all possible combinations of test battery and study, three groups were
formed: Group A (REAL-U; test form 1); Group B (REAL-U; test form 2); Group
C (MFS; test form 1); and Group D (MFS; test form 2). In the below syntax and data,
the groups have been recoded here as G1 (corresponding to the original Group C),
G2 (corresponding to the original Group B), and G3 (corresponding to the original
Group D). With this caveat, the variables are as follows:

• Items

– TBCO = Tobacco use; ordinal with 3 levels
– BDRK = Binge drinking; ordinal with 7 levels
– MNJA = Marijuana use; ordinal with 7 levels
– AMPH = Amphetamine use; binary
– HLCN = Hallucinogen use; binary
– COCN = Cocaine use; binary
– OPSD = Opioid or sedative use; binary

• Covariates

– FRAT = Sorority membership; binary. Hypothesized to produce both impact
and DIF.

– G1, G2, G3 = Study grouping, coded as described above. Hypothesized to
produce DIF only.

There are three main sets of models which are run sequentially.

• The first is the initial models. These encompass:

– A model for mean impact (the first model shown below);
– A model for variance impact (the second model shown below); and
– Item-wise models testing the presence of DIF on all items (the third model

shown below). Note that only the model for tobacco is shown; corresponding
models were run for all of the other items.

• After running these initial models, a simultaneous model is produced. This
model contains all effects that were found to be significantly different from zero
in the initial models.

• Finally, after the simultaneous model, the final model is fit. This model prunes
non-significant effects from the simultaneous model.
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After running these models, a scoring model is produced, in which parameters
are fixed at their estimated values from the final model. This step is not shown here,
as it is not discussed in the chapter.

Initial Models

Mean and Variance impact models (this page); measurement invariance model
for each item (next page)

TITLE:
Mean Impact Model

DATA:
FILE = “calibration.dat”;

VARIABLE:
NAMES = ID TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1 G2 G3;
MISSING=.;
USEVARIABLES= TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT ;
AUXILIARY= ID ;
CATEGORICAL= TBCO BDRK AMPH OPSD MJNA HLCN COCN ;

ANALYSIS:
ESTIMATOR=ML;ALGORITHM=INTEGRATION;INTEGRATION=MONTECARLO;
PROCESSORS=4;

MODEL:
[ETA@0]; ETA@1;
ETA BY TBCO∗(l1);
ETA BY BDRK∗(l2);
ETA BY AMPH∗(l3);
ETA BY OPSD∗(l4);
ETA BY MJNA∗(l5);
ETA BY HLCN∗(l6);
ETA BY COCN∗(l7);
ETA ON FRAT ;

OUTPUT:
tech1;

TITLE:
Variance Impact Model

DATA:
FILE = “calibration.dat”;

VARIABLE:
NAMES = ID TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1
G2 G3;

MISSING=.;
USEVARIABLES= TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT ;
AUXILIARY= ID ;
CATEGORICAL= TBCO BDRK AMPH OPSD MJNA HLCN COCN ;
CONSTRAINT= FRAT ;

ANALYSIS:
ESTIMATOR=ML;ALGORITHM=INTEGRATION;INTEGRATION=MONTECARLO;
PROCESSORS=4;
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MODEL:
ETA ON FRAT ;
ETA∗(veta);
ETA BY TBCO∗(l1);
ETA BY BDRK∗(l2);
ETA BY AMPH∗(l3);
ETA BY OPSD∗(l4);
ETA BY MJNA∗(l5);
ETA BY HLCN∗(l6);
ETA BY COCN∗(l7);

MODEL CONSTRAINT:
new( v1∗0 );
veta=1∗exp( v1∗FRAT);

OUTPUT:
tech1;

TITLE:
Measurement Invariance Model for TBCO

DATA:
FILE = “calibration.dat”;

VARIABLE:
NAMES = ID TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1 G2 G3;
MISSING=.;
USEVARIABLES= TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1
G2 G3 ;

AUXILIARY= ID ;
CATEGORICAL= TBCO BDRK AMPH OPSD MJNA HLCN COCN ;
CONSTRAINT= FRAT G1 G2 G3 ;

ANALYSIS:
ESTIMATOR=ML;ALGORITHM=INTEGRATION;INTEGRATION=MONTECARLO;
PROCESSORS=4;

MODEL:
[ETA@0]; ETA@1;
ETA BY TBCO∗(l1);
ETA BY BDRK∗(l2);
ETA BY AMPH∗(l3);
ETA BY OPSD∗(l4);
ETA BY MJNA∗(l5);
ETA BY HLCN∗(l6);
ETA BY COCN∗(l7);
TBCO on FRAT G1 G2 G3;

MODEL CONSTRAINT:
new(l1_00∗1
l1_1∗0
l1_2∗0
l1_3∗0
l1_4∗0);
l1=l1_00
+l1_1∗FRAT
+l1_2∗G1
+l1_3∗G2
+l1_4∗G3;

OUTPUT:
tech1;
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Simultaneous Model

TITLE:
Round 2 Calibration Model

DATA:
FILE = “calibration.dat”;

VARIABLE:
NAMES = ID TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1 G2 G3;
MISSING=.;
USEVARIABLES= TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1
G2 G3 ;

AUXILIARY= ID ;
CATEGORICAL= TBCO BDRK AMPH OPSD MJNA HLCN COCN ;
CONSTRAINT= FRAT G1 G2 G3 ;

ANALYSIS:
ESTIMATOR=ML;ALGORITHM=INTEGRATION;INTEGRATION=MONTECARLO;
PROCESSORS=4;

MODEL:
[ETA@0]; ETA@1;
ETA BY TBCO∗(l1);
ETA BY BDRK∗(l2);
ETA BY AMPH∗(l3);
ETA BY OPSD∗(l4);
ETA BY MJNA∗(l5);
ETA BY HLCN∗(l6);
ETA BY COCN∗(l7);
TBCO on FRAT G1 G2 G3;

MODEL CONSTRAINT:
new(l1_00∗1
l1_1∗0
l1_2∗0
l1_3∗0
l1_4∗0);
l1=l1_00
+l1_1∗FRAT
+l1_2∗G1
+l1_3∗G2
+l1_4∗G3;

OUTPUT:
tech1;

Final Model

TITLE:
Round 3 Calibration Model

DATA:
FILE = “calibration.dat”;

VARIABLE:
NAMES = ID TBCO BDRK AMPH OPSD MJNA HLCN COCN FRAT G1 G2 G3;
MISSING=.;
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USEVARIABLES= TBCO FRAT G1 G2 G3 BDRK AMPH OPSD MJNA
HLCN COCN;

AUXILIARY= ID ;
CATEGORICAL= TBCO BDRK AMPH OPSD MJNA HLCN COCN ;
CONSTRAINT= FRAT ;

ANALYSIS:
ESTIMATOR=ML;ALGORITHM=INTEGRATION;INTEGRATION=MONTECARLO;
PROCESSORS=4;

MODEL:
[ETA@0]; ETA@1;
ETA BY TBCO∗(l1);
ETA BY BDRK∗(l2);
ETA BY AMPH∗(l3);
ETA BY OPSD∗(l4);
ETA BY MJNA∗(l5);
ETA BY HLCN∗(l6);
ETA BY COCN∗(l7);
ETA ON FRAT;
BDRK on FRAT;
AMPH on FRAT;
OPSD on G1 G2 G3;

MODEL CONSTRAINT:
l3_00∗1
l3_1∗0
);
l_3=l3_00+l3_1∗FRAT;

OUTPUT:
tech1;
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Chapter 6
Introduction to Privacy-Preserving Data
Collection and Sharing Methods for
Global Health Research

Guanhong Miao, Hanzhi Gao, Yan Wang, and Samuel S. Wu

Abstract In global health and epidemiological research, collecting and sharing data
for sensitive topics, such as income, age, sex partners, drug use, HIV infection,
stigma, and religion, has been a long-standing challenge. In this chapter, we
introduce a range of methods for privacy-preserving data collection and sharing.
After a comprehensive review of the classic randomized response techniques and
related extensions, we present a new privacy-preserving data collection method
capitalizing on the matrix masking theory. In addition to an introduction to the
theory and principles, examples are used to illustrate the procedures in applying
the method in practice.

Keywords Privacy · Randomized response technique · Random matrix
masking · Data sharing

6.1 Introduction

In the big data era, with the explosion of data from various sources, we are facing
unprecedented challenges of how to properly protect privacy while maximizing
the opportunity to collaborate and exchange data from multiple data providers.
While Europe’s new General Data Protection Regulations (GDPR) is currently
reshaping the cyber world, the Health Insurance Portability and Accountability
Act (HIPAA) of 1996 and subsequent rulings have imposed legal requirements on
privacy protection in the data collection and handling in medical research in both
the developed and developing countries till today.
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To meet the requirement of HIPAA, a number of traditional and new privacy
protection methods have been routinely used, such as anonymity, de-identification,
encryption, access control, and personnel training. However, application of these
methods requires at least one authorized institution to store the data at a designated
server or a trustful curators to respond to queries in a limited time. That suggest
that these methods are vulnerable to internal attacks by “insiders”—system admin-
istrators, principal investigators, data analysts who have full access to the raw data.
Security breaks of this type have become more and more common as shown by
the well-publicized hacking incidences at major retailers, credit bureaus and banks
(Huffington Post, 2011; Reuters, 2015, 2017). Thus, these methods cannot ensure
high levels of confidentiality. When used in data collection they may also result in
low response rate.

To avoid privacy and confidentiality breach by a third party while minimizing the
risk of being hacked, new methods with stronger privacy-preserving data collection,
storage and sharing are needed. The ultimate goal of these methods is that with such
methods, an obfuscated dataset can be collected and transported directly between
the collaborators; there is no need for a third party in mediating data transitions
who also gain full access to the data to be shared; and it may also enhance survey
response because of the high levels of privacy and confidentiality.

Among various methods devised to collect obfuscated data, the oldest random-
ized response technique (RRT) (Warner, 1965) provides an illustrative example. In
RRT, response to a survey question is altered according to some randomization
schemes in which a survey respondent answers the question, mitigate concerns
about privacy. This method and many derivatives have been used in research.

Among various methods for data transportation and sharing, triple matrix-
masking (TM2) technique provides a powerful tool (Wu, Chen, Burr, & Zhang,
2017). After data are masked, they can be transported and shared through any
communication channels with no concerns of privacy and confidentiality. Since
RRT and TM2 serve the same purpose of privacy-preserving data collection and
both are based on randomized mechanisms, before describing TM2, we give a brief
introduction to RRT.

6.2 Randomized Response Technique and Its Extensions

Global health and epidemiology may deal with research questions that are sensitive,
invasive, or stigmatizing. In responding to a survey involving these type of
questions, survey participant may want to skip or provided edited answers. The
following are some typical questions. How old are you? What is your monthly
income? Do you have a legal visa to work in the United States? Have you ever
used heroin? Do you have any kind of communicable disease? Have you ever had a
sexual relationship with a person of the same sex? The list of such questions goes
on forever.
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In responding to any of these questions, a participant may perceive it as a threat
to provide a true answer because of potential social paneity or cost (Lee, 1993).
The threat can be intrinsic if certain responses have a negative impact on personal
image, or questions are too personal or stressful to respondents; the threat can also
be extrinsic if a true response can lead to risk of social sanctions. In these settings,
participants can either skip the questions, leading to missing data; or intentionally
give socially desirable answers; resulting biased data.

To overcome this limitation for better quality data, several indirect questioning
techniques have been devised. Typical examples include RRT, Item Count Tech-
nique, Nominative Technique, the Three Card Method, Non-randomized Response
Models, and Negative Survey. The purposes of these methods are to mitigate or fully
eliminate qualms or misperception of self-incrimination for high response rates and
unbiased data.

In this chapter, we will focus on RRT and its extensions which usually lead to
the lowest response distortion (Locander, Sudman, & Bradburn, 1976). Interested
readers can refer to Chaudhuri and Christofides (2013) for more detailed quantitative
characteristics of RRT, ICT and other indirect questioning methods.

6.3 Warner’s Method

The Mirrored Question Design developed by Warner (1965) is one of the classic
RRT. In this method, randomized responses are used to increase survey respondents’
cooperation and to estimate the proportion of true “yes” to a sensitive question many
respondents may not respond truthfully otherwise (Lensvelt-Mulders, Hox, Van der
Heijden, & Maas, 2005). Because of its simplicity and innovation, this method
has been studied extensively and subsequently further developed by many other
researchers (Boruch, 1971; Fox & Tracy, 1986; Greenberg, Abul-Ela, Simmons, &
Horvitz, 1969; Kuk, 1990; Mangat, 1994; Mangat & Singh, 1990).

6.3.1 Principles and Method

The basic idea of Warner’s method is that during the survey, an respondent is offered
a randomization device to determine whether to answer the question in its original
or reverse format. Commonly used randomization devices include spinner, dices,
coins, date of birth or any other random generators that has a known probability. By
introducing the random noise with known distribution, respondents conceal their
responses and therefore protect the privacy by their own; while researchers can
still learn the population-level prevalence. The procedure of Warnerr’s method is
illustrated in Fig. 6.1.

For example, a researcher wanted to investigate the prevalence of a range of
risky sexual behavior (e.g., involvement in unprotected sex) in under-graduate
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Fig. 6.1 Probability tree for the mirrored question design (Warner’s RRT)

students. Due to the highly intrusive and sensitive nature of this topic and related
survey questions, direct questioning may end up with large amount of missing and
misreports, jeopodizing any effort to obtain an accurate estimates of the prevalence
of these behaviors.

6.3.2 Application of Warner’s Method in Study Risky
Behaviors Among College Students

To verify Warner’s method, Arnab and Mothupi (2015) conducted a study to
investigate sexual risky behaviors among students in a university in Botswana. In
this study, results from Warner’s method was compared to those of other methods
without the option of validation of the results against a known criterion. In the
study, 200 students were interviewed. Each respondent was provided a pack of well
shuffled cards. The pack consists of two types of cards with known proportions and
all the cards were identical in appearance.

If a student drew the type 1 card, he/she was instructed to give “yes” or “no”
answer truthfully to the following question printed on the card.

A. I have been involved in unprotected sex with a partner.

If the student drew the type 2 card, he/she was instructed to give “yes” or “no”
answer truthfully to a reversed stated question printed on the ard.

A. I have never been involved in unprotected sex with a partner.
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Respondent performed the card draw in the absence of the interviewer, so the
interviewer was blind to which card the respondent picked. The privacy of the
respondent was guaranteed, since nobody else except the students who knew which
of the two questions they answered. However, data collected through this method
can be used to obtain accurate estimate of the prevalence of unprotected sex given a
relatively large sample and the pre-determined proportions of card type 1 and type
2 in the pack and observed proportion with a “yes” answers.

The proportion of card type 1 is the key parameter, p, which can be used to quan-
tify the burden of cooperation (Warner, 1965) or the privacy spent. The respondent
being interviewed is asked for less information if p is closer to 0.5. The two extreme
cases are when p equals 0.5, the interviewee would be furnishing no information at
all; and when p equals 1, the whole procedure would reduce to direct questioning.
The ideas in Warner’s original paper were formalized by researchers 40 years later
that privacy spent in the entire procedure of this method could be analytically
quantified using the idea of differential privacy (Dwork, 2008; Dwork, McSherry,
Nissim, & Smith, 2006).

Suppose the underlying true proportion (“yes” to the original sensitive question,
i.e., proportion of the students who have been involved in unprotected sex in our
example) is π , the proportion of observed “yes” is P(YES), and the number of
answers in total is n. Then the unbiased estimator of the true proportion π can be
obtained using the following formula,

π̂ = P(YES) + p − 1

2p − 1
(6.1)

And the sampling variance of this estimator is,

var
(
π̂
) = π (1 − π)

n
+ p (1 − p)

n(2p − 1)2 (6.2)

In this comparative study, the estimated proportion is 47.4% under Warner’s
method and 13.1% under “closed box” method (respondents were asked to fill the
questionnaire and put in a locked box), which means that Warner’s method provides
a more valid estimate under what Tourangeau and Yan (2007) called the “more-is-
better” assumption. Note that “more-is-better” assumption is not always warranted,
and blind reliance on it is dangerous (Höglinger, 2016).

More real-world applications of mirrored question design include but not limited
to a study of corruption among public bureaucrats in Bolivia (Gingerich, 2010), a
multi-item design on legalizing marijuana use (Himmelfarb, 2008), and a study of
whether respondents are in favor of capital punishment (Lensvelt-Mulders, Hox, &
Van Der Heijden, 2005).
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6.3.3 Limitations of Warner’s Method

Compared to direct questioning, Warner’s method may not be too superior in terms
of improvement in response rate, since the two alternative questions—the original
and its reversed form—are sensitive in nature. Survey respondents may think the
existence of some mathematical tricks for the investigators to sort out their real
status (John, Loewenstein, Acquisti, & Vosgerau, 2018; Umesh & Peterson, 1991).
In terms of efficiency, the second term on the right side of equation (6.2) represents
the variance added by the Warner’s method. It can be seen clearly that Warner’s
method is less efficient than face-to-face direct questioning if everyone answers
truthfully. Despite these disadvantages, it is no doubt that Warner has opened new
avenues to address the issue of sensitive data collection and inspired numerous
applications and extensions of research in this area (Blair et al. 2015; Christophides,
2016).

6.3.3.1 Other Extensions of Warner’s Method

Following Warner’s invention in 1965, new theoretical and practical contributions
to the RRT methodology have been reported. Typical examples include the forced
response design, the disguised response design, and the unrelated question design.
These newly established methods are now widely accepted and implemented in
epidemiology and global health research.

Forced response design, introduced by Boruch (1971) has been further developed
and simplified by Fox and Tracy (1986). In this method, respondents are instructed
to use a randomization device to determine whether to answer truthfully to a
sensitive question or simply reply with a forced answer of “yes” or “no” with
a probability p1 or p0, respectively. It is easier for respondents to understand
this method and therefore better follow the instruction. A study by Moriarty and
Wiseman (1976) showed that participants actually did believe that their privacy
was protected. However, other studies also showed that not all respondents felt
comfortable providing a forced response (Edgell, Himmelfarb, & Duchan, 1982).

The forced question design are often used in research, such as the study of vote
choices regarding a Mississippi abortion referendum conducted by Rosenfeld, Imai,
and Shapiro (2016), the study of crowdsourcing technology of Google (Erlingsson,
Pihur, & Korolova, 2014), the xenophobia and anti-Semitism study in Germany
(Krumpal, 2012), the study of consumer use of adult entertainment (De Jong,
Pieters, & Fox, 2010), the study of fabrication in job applications (Donovan,
Dwight, & Hurtz, 2003), and the study of social security fraud (Van der Heijden
& van Gils, 1996).

Disguised response design was proposed by Kuk (1990). This method was
developed to overcome the limitation of the use of sensitive questions in the two
methods described above. In Kuk’s design, the “yes” or “no” answer is replaced
with more innocuous words or other objects so that a respondent will feel hard
to give false “Yes” response (Van der Heijden & van Gils, 1996). Specifically, in



6 Introduction to Privacy-Preserving Data Collection and Sharing Methods. . . 165

Disguised response design, the randomization device used is not dice or coin but
two stacks of cards. Respondents are not forced to answer a specific question or to
give a false answer. Instead, respondents draw cards from each stack and name the
color of card from the right (or left) stack according to their underlying true answer
to the sensitive question. An example of disguised question design is the study on
non-compliance to rules in the area of social benefits in Dutch (Frank, Van den Hout,
& Van der Heijden, 2009; Van Der Heijden, Van Gils, Bouts, & Hox, 2000).

Unrelated question design or unrelated question model (UQM) is suggested by
Horvitz, Shah, and Simmons (1967), and further developed by Greenberg et al.
(1969), to address the same problem of mirrored question design and forced
question design and to improve the acceptance to sensitive questions. Under this
design, a respondent uses randomization devices to determine whether to answer a
sensitive or an unrelated insensitive question. The basic procedure of this method is
similar to Warner’ method. However, Question A from Warner’s method is replaced
with a neutral question, such as “I was born in Florida”. This design has been used
in the area of doping and illicit drug use in athletes, including studies by Ulrich et
al. (2018), Striegel, Ulrich, and Simon (2010), Dietz et al. (2013), and Schröter et al.
(2016). Also, the design has been implemented in abortion studies in Taiwan (Chow
& Rider, 1972), North Carolina (Abernathy, Greenberg, & Horvitz, 1970), Turkey
(Tezcan & Omran, 1981), and Mexico (Lara, García, Ellertson, Camlin, & Suárez,
2006; Lara, Strickler, Olavarrieta, & Ellertson, 2004).

6.4 More Sophisticated Randomized Response Techniques:
RAPPOR

Researchers at Google create a technology called Randomized Aggregatable
Privacy-Preserving Ordinal Response (RAPPOR) (Erlingsson et al., 2014). In this
method, randomized response techniques are used to analyze large amount of its
users’ data without compromising the privacy of any individual users in both one-
time and longitudinal fashion. The RAPPOR algorithm is specifically designed for
collecting statistics on values or strings over large number of clients and executed
locally on the client’s machine with privacy protection. For example, with this
method, data can be obtained about the distribution of a characteristic of all users of
an app (e.g., homepage URL domain of Chrome browsers, Windows processes, and
search engine queries).

The procedure of local report generating is illustrated in Fig. 6.2, which can be
found in the original paper (Erlingsson et al., 2014).

The first step: the client app hashes the true value v (“The number 68”, which needs
to be protected but is also of interest) onto a bloom filter, creating a bit vector B.

Hash function maps data of arbitrary size to a bit vector of a fixed size. Bloom
filter is a data structure designed to tell you whether an element is definitely not



166 G. Miao et al.

Fig. 6.2 Life of a RAPPOR report

in the set. (A nice illustration of hash function and bloom filter can be found at
https://llimllib.github.io/bloomfilter-tutorial/). If the set of strings being collected is
relatively small and well-defined, there would be no need to use a Bloom filter.

The second step is the permanent randomized response. Similar to forced response
design, we apply a coin flip randomization mechanism at each bit. A new bit
vector B′ is then created and memorized by the client.

This step essentially serves as a “safe vault” of B. Since only B′ is memorized,
meaning that even the most powerful attacker have limited ability to learn the true
value of B. In practice, learning the true value in its original format, v, is even harder.
In sum, the second step provides a long-term privacy guarantees.

The last step is the instantaneous randomized response. A new one-time bit vector, S,
is created using coin flip mechanism similar to Kuk’s disguised response design
based on B′ and then sent to the server.

This step provides a short-term privacy guarantee, which can be tuned to balance
short-term and long-term risks through the pre-determined parameters in the design.
The next time the server asks for the same value, the client server will repeat the last
step, create another randomized version S of B′ and then send that over.

Note that, the only thing stored in the client app is the permanent randomized
response B′, and the only thing that ever leaves the client app is another randomized
version S of B’, meaning that individual’s raw data v and raw bit vector B can then
be well protected. However, population-level inference on v can still be made, which
is illustrated by the following example.

Example The Chrome web browser has deployed RAPPOR to collect data among
Chrome users who have opted in to send usage information to Google (http://
www.chromium.org/developers/design-documents/rappor). Because homepage
URL domains are often targeted and hijacked by malicious software, knowing
which URL is commonly used can be very helpful for Google to find out who the
main players are. Meanwhile, with daily collection from approximately 14 million

https://llimllib.github.io/bloomfilter-tutorial/
http://www.chromium.org/developers/design-documents/rappor
http://www.chromium.org/developers/design-documents/rappor
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respondents, Google can decode RAPPOR reports to accurately detect URLs used
with high frequency.

Specifically, each user would first hash his or her homepage URL domain v (e.g.,
“www.google.com”) onto a bit vector B, then randomizes the bit vector B twice and
sends out the randomized bit vector S to Google.

Google then summarizes and recovers the frequencies of each bit in the “true” bit
vectors (B’s), using the formula similar to what we used in previous RRTs section.

Next, regression methods can be implemented based on the design matrix of bit
vectors of 8616 candidate URLs (not necessarily cover all possible users’ hompage
URLs), to find out which URLs are present and their frequencies with statistical
confidence.

As a result, even though less than 0.5% of 8616 candidate URLs are found
present with enough statistical confidence, they collectively account for approxi-
mately 85% of the total probability mass. Excluding those expected domains (e.g.,
www.google.com), more than 30 unexpected URLs are discovered by RAPPOR
analysis. At the same time, Google cannot know each user’s homepage URL domain
with absolute certainty even with randomized data from approximately 14 million
respondents each day.

The reason why RAPPOR is routinely used in Google is that (1) RAPPOR
successfully adapted RRTs from data collection over relatively small sample to
crowdsourcing over large number of clients. (2) The large number of clients mit-
igates the efficiency loss of the RRTs. (3) RAPPOR provides privacy protection in
both short-term and long-term fashion (4) RAPPOR provides rigorous mathematical
proofs of the differential privacy it achieves. (5) RAPPOR algorithm is executed
locally on the client’s machine, and does not require a trusted third party. (6) The
use of hash functions and Bloom filter enables RAPPOR to collect data in more
complicated and even messy formats.

In the next part of this chapter, we will focus on another method called triple
matrix-masking (TM2), which is also closely related to randomized response
techniques. It shares certain desirable features with RAPPOR, that is, it is also
performed locally and can be applied to collect data over large number of users.
Moreover, it does not suffer from efficiency loss, which is a common disadvantage
of previous methods we introduced.

6.5 Random Orthogonal Matrix Masking (ROMM)
for Data Sharing

Random Orthogonal Matrix Masking (ROMM) (Ting, Fienberg, & Trottini, 2008) is
a disclosure restriction method with preservation of significant statistical quantities.
Statistical results of linear model are invariant after raw data are masked using
ROMM. Some categorical data analyses, such as chi-squared test and estimation
of odds ratio and relative risk, also have identical results after orthogonal transfor-

http://www.google.com
http://www.google.com
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mation. These properties enable multiple medical entities to share health research
data using ROMM without disclosing any raw data at all.

For example, suppose k international and global health research entities have
collected data on a common set medical conditions and outcomes (i.e., common
variables). Each of them can orthogonally transform its own data and share the
masked data with each other. Because the combination of orthogonally transformed
data is an orthogonal transformation of combination of raw data, important sta-
tistical analysis (including linear regression and contingency table analysis) of the
shared data will yield exactly the same results as if the raw data are shared.

6.5.1 Basic Principles and Methodology

Linear Model Suppose Yn × 1 is the vector for the response and Xn × p is the model
matrix. The linear model can be written as

Y = Xβ + ε,

where β is a p × 1 dimensional vector of parameters and ε is a n × 1 dimensional
vector of zero-mean random error terms following normal distribution. The least

square estimate β̂ can be written as β̂ = (
XT X

)−1
XT Y where XT denotes transpose

of matrix X.
An orthogonal matrix A is a square matrix which satisfies ATA = AAT = I

where I is the identity matrix. Now left-multiply Y and X by orthogonal matrix
A and refit linear model. That is AY = AXβnew + Aε. According to the property

of orthogonal matrix, the new estimator β̂new = (
(AX)T AX

)−1
(AX)T AY =

(
XT AT AX

)−1
XT AT AY = (

XT X
)−1

XT Y which is the same as the original linear
regression estimator. In other words, applying orthogonal matrix transformation not
only protects data, but also keeps estimators invariant.

Contingency Table Analysis Next consider analyzing data in 2 × 2 tables.
Suppose raw data are two n× 1 vectors Z1 and Z2 where n is the number of
observations. The elements in Z1 and Z2 are 0 or 1. Usually the data are summarized
as counts in a 2 × 2 table. Let a denote the number of observations that are 0’s in
both Z1 and Z2, b denote the number of observations that are 0’s in Z1 and 1’s in Z2,
c denote the number of observations with 1 in Z1 and 0 in Z2 and d with 1’s in both
Z1 and Z2. The contingency table can also be expressed using vectors: ZT

1 Z2 = d,
ZT

1 Z1 = c + d and ZT
2 Z2 = b + d. It is easy to compute a, b, c and d given these

three vector multiplication values and sample size n.
Researchers can multiply Z1 and Z2 with an orthogonal matrix A before release

if they want to hide values of Z1 and Z2. The values in the contingency table are
invariant as (AZ1)TAZ1 = Z1

TZ1, (AZ2)TAZ2 = Z2
TZ2 and (AZ1)TAZ2 = Z1

TZ2.
Therefore, orthogonal transformation will not influence the analysis of contingency
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table. The common analysis, such as chi-squared test and estimation of odds ratio
and relative risk, will have identical results after an orthogonal transformation.

6.5.2 Examples of Random Transformation

The following example shows orthogonal transformation doesn’t change linear
regression estimators. A random subset of 10 observations from the LEAPS study
(Duncan et al., 2011) is used to build the linear model. Eight variables of the original
data are explained below.

Variable Description

Response Improved functional level of walking 1 year after the stroke (Yes = 1/No = 0)
� Change in walking speed from 2-month to 12-month post-stroke (m/s)
Group Treatment group, 1 = Locomotor Training Program; 0 = Home Exercise Program
Age Age at stroke onset (years)
BBS Berg Balance Scale in sitting, standing, reaching, shifting weight, and turning
IH Inpatient Hospitalization post randomization (Yes = 1/No = 0)
MIF Multiple or Injurious Falls post randomization (Yes = 1/No = 0)
ADL/iADL Activities of daily living (ADL’s) and instrumental activities of daily life (iADL’s)

Table 6.1 lists 10 randomly selected observations from the LEAPS study.
Consider a linear model with intercept. The first column of the design matrix will

be a column of ones. As orthogonal transformation is for the whole design matrix,
we add a column of ones with column name “Intercept” to the dataset in Table
6.1 before transformation. A linear model is built with change of walking speed as
response and age and Berg balance score as predictors. The design matrix would
be a 10 × 3 matrix with a column of ones. Table 6.2 below gives the transformed

Table 6.1 Random subset of 10 observations from LEAPS study

ID Response Group � Age BBS IH MIF ADL/iADL

1 1 0 0.67 57 40 0 1 62.5
2 1 1 0.52 38 39 1 1 80
3 1 0 0.34 54 29 0 0 80
4 1 1 0.34 68 48 0 0 72.5
5 1 0 0.48 65 39 0 1 47.5
6 1 0 0.12 81 40 0 0 67.5
7 1 1 0.15 84 29 0 0 42.5
8 0 1 0.20 65 33 0 0 42.5
9 1 1 0.15 66 24 0 1 55
10 1 1 0.22 90 44 0 0 100
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Table 6.2 Transformed subset of 10 observations from LEAPS study

Obs no Delta Age BBS Intercept

1 −0.07 19.12 17.62 0.24
2 −0.25 −99.09 −49.33 −1.37
3 −0.17 −49.74 −22.02 −0.76
4 0.25 43.27 29.62 0.74
5 0.45 67.79 44.01 0.77
6 0.51 105.81 59.33 1.56
7 0.52 102.41 52.5 1.56
8 −0.6 4.33 −20.69 −0.52
9 −0.22 −19.32 −19.72 −0.47
10 0.19 74.52 26.3 0.99

Table 6.3 Correspondence between two forms of counts in 2 × 2 table

Original data Orthogonal transformed data
Multiple or injurious falls Multiple or injurious falls
No Yes Totals No Yes Totals

Group HEP 5 3 8 – – –
LTP 6 6 12 – (AZ1)TAZ2 = 6 (AZ1)TAZ1 = 12
Totals 11 9 20 – (AZ2)TAZ2 = 9 20

dataset for linear model when using a key of 123 as the random seed to generate
orthogonal matrices.

It is easy to check that linear regression results based on the original data in
Table 6.1 are exactly the same as those using the orthogonally transformed data in
Table 6.2.

Using the same dataset of LEAPS study, we illustrate the invariant property of the
orthogonal transformation for contingency table analysis. The contingency table is
for group variable (Z1) and Multiple or Injurious Falls (Z2). There are two treatment
groups: locomotor training program (LTP) and home exercise program (HEP). As
shown in Table 6.3, values in the contingency table remain invariant after orthogonal
transformation. So odds ratio, relative risk estimation and chi-squared test remain
the same before and after orthogonal transformation.

6.6 Triple Matrix-Masking (TM2) Methods

Triple Matrix-Masking (TM2) method (Wu, Chen, Burr, & Zhang, 2017) is designed
for data collection based on orthogonal transformation and it keeps linear regression
estimators invariant after matrix masking. TM2 method not only prevents privacy
leakage, but also maximizes data utility.
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Fig. 6.3 This diagram shows each agency’s knowledge of the dataset. Nobody knows the original
data X1 with each data provider (participant) only knows his/her row x1

6.6.1 Principles and Methodology

There are three agencies in TM2 method: data collector, data providers (participants)
and masking service provider. The procedure (Fig. 6.3, an enhanced version of the
one presented in Wu, Chen, Burr, & Zhang, 2017) can be described as follows:

Step 1. Data collector randomly generates a p × p orthogonal matrix B and saves it
in every participant’s data collection device.

Step 2. Each data collection device collects each participant’s data x1 (a p1
dimensional vector) and merge with Gaussian noise x2 (a p2 dimensional vector)
into a p = p1 + p2 dimensional vector x = (x1, x2). Then x is right multiplied by
B on the participant’s device. Finally the device sends xB to the masking service
provider.

Step 3. The masking service provider combines individual data xB into a n × p
matrix XB after receiving data from all participants. p1 < n ≤ p = p1 + p2. Then
generates another n × n random orthogonal matrix A2. XB is left multiplied by
A2 and A2XB is sent to the data collectors.

Step 4. Data collector multiplies A2XB by B−1 to get A2X. Take the first p1 columns
to get A2X1. Another n × n random orthogonal matrix A1 is generated by data
collector and left multiply it to A2X1. Dataset AX1 (where A = A1A2) is publicly
published.

Masking service provider has access to the right-masked data XB and the public
left-masked data AX1. Theoretical analysis shows that the original data X cannot be
derived given XB and AX1.

We apply TM2 method to the dataset of 10 observations from LEAPS study.
In the dataset, Inpatient Hospitalization (IH) and Multiple or Injurious Falls (MIF)
are sensitive medical information that patients may not want to release publicly as
it could adversely affect their opportunities of employment or insurance policies.
The proposed TM2 method protects participant’s information by collecting and



172 G. Miao et al.

publishing only masked data through the following steps. In this example, p1 = 9 (8
columns of variables and one column of intercept) and p2 = 11.

Data collector generates a 20 × 20 (p = p1 + p2 = 20) random orthogonal matrix
B and sends it to every data collection device. Each participant merges his/her own
9-dimensional data with a 11-dimensional Gaussian noise vector. After getting 20-
dimensional vector x, it is immediately transformed by B and only masked data xB
are sent to the masking service provider. The masking service provider aggregates
data from 10 participants to get XB. A 10 × 10 random orthogonal matrix A2 is
generated and right multiplied by XB. A2XB is sent to the data collectors. Since B is
generated by data collector, data collector can get A2X using B−1. Take the first p1
columns to get A2X1. Data collector then generate another orthogonal matrix A1 and
left multiply it to A2X1 to get published dataset A1A2X1. Linear regression model
using masked dataset A1A2X1 has the same result as in Sect. 6.5.2.

6.6.2 Extensions of TM2 Methods

Partial Masking TM2 method can be designed to do partial masking which allows
researchers to access part of the data while keeping sensitive information masked.
Suppose response, group, change in walking speed and age are not sensitive
information in previous LEAPS data. In order to achieve partial masking, we use

orthogonal matrix B =
(

I4×4 O4×16

O16×4 B∗
16×16

)

where B∗
16×16 is an orthogonal matrix.

Then generate orthogonal matrices A1 and A2 that can keep the first 4 columns of
X invariant. After applying TM2 procedures using these three chosen matrices B,
A1 and A2, dataset X is masked except the first 4 columns which information is not
sensitive.

Collusion Resistant Multi-Matrix Masking Since orthogonal matrix B is
known to the data collector and all individual data providers, privacy protection
is not safe if one of them shares matrix B with masking service provider who knows
XB and AX1. Collusion resistant multi-matrix masking was introduced in (Wu, Chen,
Bhattacharjee, & He, 2017) which solves this problem. There are k masking service
providers in order to avoid privacy leakage.

Step 1. A participant’s data vector x (a combination of a p1-dimensional original
vector and a p2-dimensional Gaussian noise vector) is randomly decomposed
into k parts: x = v1 + v2 + · · · + vk.

Step 2. vi (i = 1, · · · , k) is first sent to i-th masking service provider and right
multiplied by Bi. Then masked data is sent to all other masking service providers
to be right multiplied by their orthogonal matrix. After going through all masking
service providers, we get viB (B = ∏k

i=1 Bi where Bi, i = 1, · · · , k are
commuting in product) and send it to data collector.

Step 3. Data collector adds up all the k parts of masked data viB (1 ≤ i ≤ k)
and get xB. Aggregate all participants’ data into XB. Send XB back to masking
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service providers to remove right multiplied orthogonal matrix B (each masking
service provider i removes its corresponding matrix Bi) and add left multiplied
orthogonal matrix A (each masking service provider i adds its corresponding
matrix Ai and A = ∏k

i=1 Ai where Ai, i = 1, · · · , k are commuting in product).
AX is sent to data collector.

Step 4. Take the first p1 columns to get AX1. Data collector releases AX1 and XB.

For collusion resistant multi-matrix masking, two orthogonal matrices A and B
are enough to protect the data as each masking service provider provides parts of
information for the generation of A and B. Unlike TM2 method discussed before, it
is hard to know matrix B in multi-matrix masking as the generation procedure is the
cooperation of k masking service providers.

6.7 Conclusion Remarks

Useful data are available from different sources elsewhere but not accessible due to
laws and regulations for privacy protection. The methods introduced in this chapter
will enable epidemiologists and global health researchers to collect and share data
overcoming these legal barriers.

The classic randomized response technique (RRT) is reviewed along with its new
extensions. In addition, the efficiency loss of the RRT method will no longer be an
issue if data from large samples are available. The method is appealing because it
has rigorous quantification of privacy spent, does not need of a trusted third party,
is flexible to collect data with various format. We also strongly believe that the new
method of RAPPOR will be of particular significance for global health research
capitalizing on large scale of data collection with privacy challenges

In addition to RRT and its extensions, we also present a privacy-preserving
data collection method using random matrix masking. Matrix masked data can be
published and freely transferred with little concern of data leaking. This method has
several advantages. First, the masked data can by analyzed directly using statistical
methods and software commonly used in research. Second, there is theoretical
formulation and proofs that no party in the data collection process is capable of
gaining insight into the data at the individual participant level.

We anticipate the need for further research in the area of privacy-preserving
data collection and sharing. While linear regression and contingency table analysis
can be directly applied to masked data with the same results, we need to develop
masking technologies that allow for other statistical analysis tools such as longi-
tudinal data analysis, missing data imputation, and machine learning. Also, new
technologies are needed for “vertical data” sharing, where each entity contribute
a subset of characteristics (variables) for the same cohort of research subjects.
Currently available “vertical data” sharing method that keep statistical utility are not
privacy-preserving—an entity can maliciously contribute fake data to obtain other
entities’ original data.
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Essential Statistical Methods



Chapter 7
Geographic Mapping for Global Health
Research

Bin Yu

Abstract Geographic mapping represents one of the most efficient approaches for
students and researchers to establish a global perspective on a specific medical,
health and behavioral issues. In this chapter, we introduce the application of the free
software R program packages available in geographic mapping. We demonstrate
various mapping methods and R program codes using country-specific data for
population and population density as examples.

Keywords Global mapping · Population distribution · Global health ·
R software

An essential part of global health and epidemiology is to gain a comprehensive
understanding of a disease or a health behavior in order to further investigate
the causes and risk factors and to develop strategies for treatment, control and
prevention. Traditional medical and health research focuses on individual persons
who suffer from a disease, such as high blood pressure, heart disease, and cancer; or
engaged in an unhealthy behavior, such as smoking cigarettes, drinking alcohol,
using illegal drugs, and committing suicide. Establishment of public health in
general and epidemiology in particularly expands our vision from focusing on
individuals to including the population. Such an expansion in our vision results in
new developments in research methodologies, and greatly increases our capabilities
to grasp the causes and risk factors of many diseases and health risk behaviors. With
new development in technologies and increased availability of public domain data,
researchers in public health and medicine started stretching from the community-
, country-, international-based approach to globe. Supported with achievements
in international health research and development during the history of public
health and medicine, more and more medical and health researchers are now
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tackling challenging questions with a cross-cultural, multidisciplinary and global
perspective. Such advancement requires new tools and methods, and global mapping
provides one of such tools for researchers to further advance their research agenda.

7.1 Importance of Global Mapping

With the massive economic globalization, rapid developments in transportation and
communication backed by accelerated advancement in information technologies,
many countries over the world have completed the State I to Stage IV epidemio-
logical transition (Omran, 1971). Along with the declines in infectious diseases, we
are facing more and more new health challenges, such as cultural shock, depression,
migration stress, cross-country or cross-board transmission of HIV/AIDS, autism,
global epidemic of obesity, substance use, depression, and internet addiction (Elsab-
bagh et al., 2012; Griffiths, Kuss, Billieux, & Pontes, 2016; Morgen & Sørensen,
2014; Murray et al., 2014; Whiteford, Ferrari, Degenhardt, Feigin, & Vos, 2015).
Furthermore, we know very little about the causes of many chronic diseases that are
common, such as cancer and cardiovascular diseases (Harris, 2013). Integration of a
global approach into our current research endeavor will be a promising approach
to improve our understanding of both new and traditional medical and health
challenges in the new era of economic and technological globalization (Chen,
Elliott, & Wang, 2018; Chen & Wang, 2017; Chen, 2014; Cochi & Dowdle, 2011;
DeLaet, 2015).

“One picture is worth a thousand words.” This English saying is particularly
relevant for public health researchers and decision-makers to establish a global
picture of a medical, public health and a behavior issue. Putting data on a world
map provides a simple but most efficient way for a person to establish a global
perspective and to understand any medical, health or behavioral problems with a
global significance. For example, we know that the total number of people in a
country differs dramatically. When we put this number into a world map, a clear
picture of global population distribution appears (see Fig. 7.7 later in this chapter).
Many people may believe that HIV infection is most prevalent in Africa, based on
scattered information from different sources. Is that true? The best way to grasp
the global epidemic of HIV is to map the distribution by countries using different
indicators (see examples in Chap. 8 in this book).

It is appealing to researchers, decision-makers and public health practitioners to
see the global pictures of a disease, a health problem, or a health risk behavior;
however, it is challenging for many people on how to map a problem on computer
because of the lack of specialized training in computer sciences and efficient
application of complex software such as the Arc-GIS (ESRI, Redlands, California,
USA) (Olson et al., 2001). It is costly to purchase these software packages and
it takes time to master the use of such software. Technical, financial and practical
barriers prevent many of us from using the global mapping approach in investigating

http://dx.doi.org/10.1007/978-3-030-35260-8_8
http://dx.doi.org/10.1007/978-3-030-35260-8_8
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global medical and health issues. In this chapter, we introduce the methods and skills
for global mapping using (1) software R that is free of charge (The R Foundation,
2018) and (2) data from sources that are freely available (see Chaps. 1 and 2 for
details regarding existing data).

This chapter is divided into two sections. In the first section, we provide some
fundamental knowledge about the free software R and preparations for geographic
mapping. In the second section, we introduce the method to draw world map with
data from individual countries as example.

7.2 Preparation for Geographic Mapping

7.2.1 Brief Introduction to R and R Studio

R is an open-source software as well as a language and environment for statistical
computing. It is available free of charge to anyone who wants to use it for research
and other practices (R Core Team, 2013). The software can do more statistical
analysis than any other commercial software alone that may cost up to thousands
of dollars. Another advantage of R is that it can produce graphics, figures and maps
with publishable quality.

R consists of two parts, a base R, plus numerous programs, or packages for use
to solve complex and/or more specific problems. For example, to draw maps using
R, in addition to the base R, a number of R packages must be installed. We will
introduce R packages in Sect. 7.3.1 when talking about mapping. Researchers keep
developing new functions, tools and packages in R, making this software a very
powerful source to solve new and challenging questions.

There are at least two ways for people to use R: (1) programming and executing
a project directly through R, and (2) using the R Studio as an interface to program
and execute a project. The former approach is more relevant for people who are
specialized in data analysis and mapping while the latter is more efficient for non-
specialized individuals. We introduce the second approach in this chapter.

7.2.2 Download and Install R

To do geographic mapping, the first thing is to download and install R on your
computer. Please start the internet, open a browser, search for “R software”, you
may see a screen like the following:

http://dx.doi.org/10.1007/978-3-030-35260-8_1
http://dx.doi.org/10.1007/978-3-030-35260-8_2
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Click on the green colored website address, the following page appears:

You can also direct come to this page by typing in the website URL address:
https://www.r-project.org/

Click “Download R” highlighted in the first paragraph, and you will see a list
of CRAN mirrors—the location where you can download R. Then scroll down to
a place close to you and click on one of the links provided. Use the USA as an
example. When scrolling down you will see the following:

https://www.r-project.org/
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From the list, we note that the National Institute for Computational Sciences,
Oak Ridge, TN is closer to the University of Florida where we located. By clicking
on the link, three download options are available for different computer systems you
are using:

Choose the one that matches with your computer and click on it. Follow the
instructions to install R on your computer.

7.2.3 Download and Install R Studio

After completion of installing R in the previous step, you can move to install
R Studio. You can do this by directly going to the R Studio website: (https://
www.rstudio.com/products/rstudio/download/). Click on the link, you will see five
versions of R Studio. For geographic mapping, the first one licensed by AGPL, free
of charge is adequate.

To install, click the button “DOWNLOAD”. From the drop down manual
“Installers for Supported Platforms”, select the version that matches your computer.
For example, if you use Windows Vista/7/8/10, click on the link, then follow the
instruction to install the R Studio.

7.2.4 Work Around R Studio

After completing the installation of the software R and the corresponding R Studio,
you can start running R through the R studio. After starting R Studio, you will see
the work interface as showing in the computer (Fig. 7.1).

The top line is the menu for programming and executing R, including files, edit,
code, view, plots, and other common functions.

There are four windows under the manual. The first box located on the top left
is the R script area. This box is also known as the syntax-highlighting editor where
you can put your R program codes and execute the program codes. This is the most
frequently used working space.

The box located on the top right is named as the work environment and history.
Particularly, it includes the datasets you use for analyzing and mapping.

The box located at the bottom left is called the Console for R. This box is for
showing the R codes that are executed and analytical results.

The box located at the bottom right is for display of maps, chart, and plots for
review. It also shows the installed packages, helps and viewers.

https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
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Fig. 7.1 The work interface of R studio

7.3 R Packages for Geographic Mapping

To conduct geographic mapping, in addition to the R base described in the previous
sections, several R packages are needed. You need to know these packages,
download and install them on your computer.

7.3.1 R Packages Needed

To conduct geographic mapping, different R packages are available. In this chapter,
five R packages will be installed and used after you installed R base and the R
Studio:

1. Package “dplyr”: This package is needed for data management (Wickham,
François, Henry, & Müller, 2019). The chapter will use this package to manage
the data used for mapping.

2. Package “maps”: This package is used for display of maps (Becker & Wilks,
2018). One function of this package is that it contains geographic information
(longitude and latitude) to describe the shape of the whole world as well as the
boundaries for specific countries in the world.

3. Package “mapproj”: This package is used to convert latitude/longitude into
projected coordinates (McIlroy, 2018). It contains the data to adjust a map
for mapping analysis, including projection methods (e.g. mercator, sinusoidal,
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cylequalarea, cylindrical, rectangular, etc.), and orientation (latitude, longitude,
rotation).

4. Package “RColorBrewer”: This package provides color schemes for graphics
and maps (Neuwirth, 2014). An R color cheatsheet can be found in
the following website (https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/
colorPaletteCheatsheet.pdf).

5. Package “ggplot2”: This package is used to make various graphics, figures and
maps in R (Wickham, Chang, et al., 2019).

7.3.2 Download and Install the Related R Packages

It is easy to install an R package after the R Base and the R Studio are installed. To
install an R package through the R Studio, you first start R Studio. In the top left R
script box, you simply type in:

install.packages(“package name”)

Put the name of the packages you want to install in the place “package name”.
Check if you spell the package name correctly. Remember that the package name is
case-sensitive, small letters and capital letters indicate different packages.

After checking the package name, you can install it now by either pressing the
key combination of “Ctrl + Enter” on your computer keyboard, or click on the
“Run” button on the top right banner of the Script Box of the R Studio.

For example, you can install “ggplot2” by typing “install.packages (“ggplot2”)”
in the Script Box, and then press “Ctrl + Enter” to start installing. For each package
that has been successfully installed, the result should appear in the R Console box
located at the bottom left of the R Studio.

To facilitate your installation, you can type or copy of the following R codes to
the Script Box on the top left of your R Studio to install all five required R packages.

install.packages(“dplyr”)
install.packages(“maps”)
install.packages(“mapproj”)
install.packages(“RColorBrewer”)
install.packages(“ggplot2”)

After all required packages are installed, the function “library” will be used to
load the installed packages before actual mapping. For example, “library (ggplot2)”
is used to load the package “ggplot2”, thus this package is activated to use in the
following steps.

library(ggplot2)

More details about loading R packages are provided in the following sections for
different mapping purposes.

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf


186 B. Yu

7.4 Mapping the World Using R

7.4.1 Creating a Base World Map

After completion of installing Base R, R Studio and the five R packages for
mapping, we are ready to draw maps. A world map is a foundation for modeling
diseases, health risk behaviors, and any other related health issues. In this section,
we demonstrate the steps to draw a blank world map.

Packages and activation. We need two packages to create a blank world map, and
they are: “maps”, and “ggplot2”. To activate or load a package into the computer so
that they can be used for drawing map, we used the command “library ()”. Copy the
following lines of command to load the two packages:

library(maps)

This package contains the geographic information of the world for mapping.
Specifically, there is a database called “world” in this package which provides
information regarding names of individual countries, longitudes, and latitudes of
the boundaries between countries.

library(ggplot2)

This package functions as a drawer to produce a world map.
Data preparation for mapping. In the Script box of the R Studio, type in the

following R code to create a data set:

world_data <- map_data(“world”)

In the code, the “world_data” is the dataset name newly created, the rest of
the code ask the computer to read data from the package “maps” about the world
map and input the data, and the code “map_data” from package “ggplot2” asks the
computer to derive the data from the package “maps” for mapping.

You can check the data in the dataset “world_data” by simply typing
“world_data” in the script window, and you will see the contents of output as
shown in Fig. 7.2.

Fig. 7.2 Display of “world” data containing geographic information
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Information in this output file is described below:
The top row is the variable name, including long, lat, group, order, region

and subregion. The variable “long” means longitude, it contains both positive and
negative values, depending on the location of the country relative to the prime
median. The values are negative if located on the left of the meridian and positive
if located on the right. The variable “lat” indicates latitude. The variable “order”
indicates the order that guides the package “ggplot2” to connect the dots defined by
both the variable “long” and the variable “lat” to draw individual countries in the
world map. The variable “group” is very important! It provides information guiding
the package “ggplot2” to draw maps by selecting the right segments to connect
by lines. If they are in the same group, then they can get connected, but if they
are in different groups then they don’t. The variables “region” and “subregion” tell
package “ggplot2” to put region (country) or subregion defined by a set of points
using “long’ and “lat”.

Drawing World Map. After reading data and data checking, now you can draw a
blank work map using the following R codes:

mapbase<-ggplot(data=world_data,mapping=aes(x=long,y=lat,group
=group)) +

coord_fixed(1.5) +
geom_polygon(color=”black”, fill=”grey”) +
labs(x=”Longitude”) +
labs(y=”Latitude”)

The object mapbase is created to store the world map created using R. Function
“ggplot()” is used to draw the map with the newly created dataset: world_data. The
function “aes” for mapping is to construct aesthetic mapping, x is longitude, and y
is latitude, group for drawing is the same as the original data.

The function “coord_fixed()” is used to define the ratio of x axis and y axis.
It fixes the relationship between one unit in the y direction and one unit in the
x direction. The function “geom_polygon()” directs “ggplot()” to draw polygons
by linking the last point back to the first point with a line. The attributes of
“geom_polygon()” help define the color of the map. “color=”black”” asks to draw
the board line black, and “fill=”grey”” asks to fill in the area of individual countries
with grey. The function “labs()” is used to define the axis labels.

To view the map just created, simply type “mapbase” in the script window. If
doing correctly you will see a world map as shown in Fig. 7.3.

7.4.2 Change Map Projections for Best View

Steps for Projection. R mapping contains a function for us to alter the projection
mode of the world map to fit our need. Several projections are available. In this
section, we introduce mapping with the rectangular projection, one of the commonly
used projections in world map presentation.

To alter map project, we first activate or load the package “mapproj” using the
following R code.
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Fig. 7.3 World map created using R

library(mapproj)

This package contains the information to convert a world map into different
views with a projection function.

After the package “mapproj” is loaded, you can convert the world map just
created using the rectangular projection by typing in the following R codes.

mapbase_p<-ggplot(data=world_data,mapping=aes(x=long,y=lat,
group=group))+

coord_fixed(1.5) +
coord_map(projection=”rectangular”, parameters=c(lat0=40),
xlim=c(-180, 180)) +
geom_polygon(color=”black”, fill=”grey”) +
labs(x=”Longitude”) +
labs(y=”Latitude”)

The R codes above are an extension of the codes to draw the base world map in
Fig. 7.3 by adding the following:

coord_map(projection=”rectangular”, parameters=c(lat0=40),
xlim=c(-180, 180)

The function “coord_map()” asks “ggplot2” to adjust the map using
projection=”rectangular” taking from the package “mapproj”, which indicates
equally spaced parallels and equally spaced straight meridians in the map and set
the parameters for mapping to the values defined by “c(lat0=40)” which indicates
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Fig. 7.4 Re-projected world map using R

the true scale used in the map. “xlim=c(-180, 180)” defines the map begins from
the longitude −180 to +180.

View Results. With this projection, a curved area on the earth surface will be
converted into a 2D flat plane like a rectangle. To see the projected map, simply type
“mapbase_p” in the script window and run. If the R codes are entered correctly, you
will see a map like the one in Fig. 7.4.

By comparing the project map in Fig. 7.4 with the original base map in Fig. 7.3,
you may not see much difference. However, a careful comparison you may find that
the areas toward both the North and South Pole are becoming larger in the projected
map than in the base map.

Although the rectangular project has been used most commonly in research, more
projection methods are available from the package “mapproj”. You can consult the
instructions for using this package for details.

7.4.3 Map Rotation for a Different Central View

Steps for Rotation. In mapping analysis, we often need to rotate the map to put the
country of interest in the center of the map. The two maps in the base map and the
projected base map, west Europe and Africa are located as the central view. If we
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Fig. 7.5 Rotated world map using R. Note: To better visualize the rotated map, the region of
Greenland was excluded

want to move China to the center, for example, we can rotate the map using the R
code: orientation=c(90,150,0).

mapbase_o<-
ggplot(data=world_data,mapping=aes(x=long,y=lat, group=group))+

coord_fixed(1.5) +
coord_map(orientation=c(90, 150, 0), xlim=c(-180, 180)) +
geom_polygon(color=”black”, fill=”grey”)+
labs(x=”Longitude”) +
labs(y=”Latitude”)

“orientation=c(90,150,0)” in “coord_map” is used to adjust the map center.
This statement is describing where the “North Pole” should be when computing
the projection. “90” is the latitude, “150” is the longitude, indicating the centered
longitude, and “0” is the degree of clockwise rotation, and we keep it “0” here.
“xlim=c(-180, 180)” sets the longitude on the map beginning from −180 to +180.

View Results. With this rotation, China will be presented roughly at the center of
the world map. To see the rotated world map, simply type “mapbase_o” in the script
window and run. If the R codes are entered correctly, you will see a map like the
one in Fig. 7.5.

Comparing to the base map in Fig. 7.3, this rotated figure put China and the West
Pacific in the central view, better-showing patterns in this region.
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The same approach can be used to rotate the world map to meet your
need for research and presentation by altering the parameters in the function
“orientation=c(latitude, longitude, rotation)”.

7.4.4 An Example with Both Projection and Rotation

After learning how to draw the base map, to project the map with different projection
methods and to rotate the map for different research needs, in this section, we
present an example on how to do both projection and rotation together. The R codes
to perform this function are a combination of the R codes for the three world maps
we have learned in the previous sections. The following are a set of R codes to
create a map with a rectangular project and a rotation with China being centered in
the view:

mapbase_op<-
ggplot(data=world_data,mapping=aes(x=long,y=lat, group=group)) +

coord_fixed(1.5) +
coord_map(projection=”rectangular”, parameters=c(lat0=40),
orientation=c(90,150,0), xlim=c(-180,180),
ylim=c(-60,90)) +
geom_polygon(color=”black”, fill=”grey”)+
labs(x=”Longitude”) +
labs(y=”Latitude”) mapbase

As in the previous two figures, the R code “projection=”rectangular”” was used
to specify the project and the “orientation=c(90, 150, 0)” was used to specify the
rotation with the same parameter values.

If you do everything correctly, you should see a map as displayed in Fig. 7.6 by
typing “mapbase_op” in the script Window and run it.

7.5 Geographic Mapping of the World Population: A
Practical Example

In this section, we demonstrate the application of R for geographic mapping using
world population and population density data. We start with the mapping of the
world population, then move to population density. The purpose is to let you exercise
your skills for mapping. After gaining familiarity with this example, you can easily
extend the approach to mapping other data you may have.

Data for population and geographic area are from World Bank (World Bank,
2018a, 2018b). The population density was calculated by dividing the total popu-
lation with the total area for individual countries. Data for a total of 148 countries
were included.
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Fig. 7.6 World map with projection and rotation. Note: To better visualize the rotated map, the
region of Greenland was excluded

7.5.1 Steps to Map a Subject Matter

With the basic skills described in the previous sections, we are now ready to map
contents of interest to address global health issues. From our previous work, we
recommend the Eight-Step approach for global mapping:

Step 1: Read data you want to map, such as population, diseases, birth, and death.
Step 2: Read the world map data as described in the previous sections.
Step 3: Merge the two datasets from the previous two steps.
Step 4: Create a base map.
Step 5: Define and select color schemes for mapping.
Step 6: Define the categories (or levels) of the data you want to be mapped.
Step 7: Add the data layer to the base map with the selected color scheme and the

categories of the data.
Step 8: View and output of the map.
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7.5.2 Data Preparation

To put data into a world map, in addition to the data for the world map previously
described, you must prepare and add your data to the dataset for mapping.

Prepare and read in the world population data. Table 7.1 lists part of the data
needed for global mapping. You can find these data from the World Bank websites
(World Bank, 2018a, 2018b). Put the data in excel format and save it as popdata.csv
(the file type csv is one of the most frequently used data types for R, although other
data types are possible).

After the dataset is saved on the computer, you can read the data into R for
mapping using the following R codes:

pop = read.csv(“C:/Users/Data/popdata.csv”, header = T)

This line of R codes tells the computer to read the data file “popdata.csv” saved in
the specified location and put the data into “pop”, a dataset R can use for mapping.
The code “header=T” means the first row of the csv dataset of yours contains the
name of all variables.

Please be advised, you must prepare your data by country so that your data
can be linked to the countries carried in the dataset for world mapping. You also
need to use exact the same name (or standardized codes) for individual countries.
You can find such information in https://www.nationsonline.org/oneworld/country_
code_list.htm.

You need name the characteristic variable as “region” for countries since this is
the variable used in the world map data to identify individual countries.

Read data for the world map. We have already learned this in the previous
sections. This is achieved using the following R codes:

worldmap <- map_data(“world”)

With this line of codes, it puts all the data for the world map into the dataset
“worldmap” for mapping.

Merge the population data with world map data. After completion of the previous
two steps and reading in “worldmap” and “pop” data into R, we will create a new
dataset named as “worldpop” by merging these two datasets. R is powerful for

Table 7.1 Example dataset used in R in Chap. 8

Region Population (1000) Geographic size (km2)
Population density
(No. of people per km2)

Afghanistan 32,527 652,860 49.82
Algeria 39,667 2,381,741 16.65
Angola 25,022 1,246,700 20.07
Argentina 43,417 2,736,690 15.86
Armenia 3018 28,470 106.01
. . . . . . . . . . . .

Zimbabwe 15,603 386,850 40.33

https://www.nationsonline.org/oneworld/country_code_list.htm
https://www.nationsonline.org/oneworld/country_code_list.htm
http://dx.doi.org/10.1007/978-3-030-35260-8_8
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merging two datasets. In our example here, you can merge the two datasets using
the following R codes:

worldpop <- inner_join(worldmap, pop, by = “region”)

With this line of the R codes, the merged data are stored in the dataset
“worldpop”. The key R function for data merging is “inner_join()”. It asks R to
combine the dataset “worldmap” with dataset “pop” by the variable “region”. The
variable for country names are presented in both the “worldpop” and the “pop”
dataset.

7.5.3 Mapping Your Data

It will take several steps to map your data just prepared and merged with the world
map data. This is achieved by first creating a base map of the world, then processing
your data, creating a data map as a map layer and over laying it on to the base map.

Create the base map. To map your data, you create a blank world map as the base
using the R codes described in Sect. 7.4.1. You can change the projection with the R
codes described in Sect. 7.4.2; rotate the map using the R codes described in Sect.
7.4.3. In this example, we used rectangular projected map in the Sect. 7.4.2 as the
base map.

Select and define color scheme for data mapping. To select and define a color
scheme for mapping, we must load the previously installed package “RColor-
Brewer” using the following R command:

library(RcolorBrewer)

This R package contains many color schemes for use. After the package is
loaded, you can select the color scheme you like for your map. At the beginning,
you may not know which one to use. The best way to find it out is to try by yourself.
As an example, we used the following R codes to define a 5-level color scheme:

mapcolor <- brewer.pal(5, “YlorRd”)

The function “brewer.pal()” from the package “RcolorBrewer” tells the computer
to select the color scheme for mapping, the parameter 5 asks the computer to use
five different colors and the code “YlorRd” asks the computer to draw the colors in
five levels from yellow to red.

Define the categories of your data matching with the 5-level color scheme. There
are different ways to categorize a variable. In this example, we manually categorize
the “pop”, population size by country in the dataset. We do this by calling the
R function “cut()” to define a new variable “popcat” and add this variable to the
merged dataset “worldpop”. This is done by reading the population data using the
point “worldpop$pop”, and use R function “breaks=c()” to divide all countries in
the dataset by population size into 5 groups using the specified cutoff values of “c(0,
10000, 35000 . . . )”. After a categorical variable is created, label the variable using
the function “lables=c()”, which will be used later as map legend.
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worldpop$popcat <- cut(worldpop$pop,
breaks=c(0,10000,35000,55000,150000,1400000)),
lables=c(“0-10000”,”10000-35000”,”35000-55000”,
”55000-150000”,”>150000”))

Create a layer of map for the population data and overlay on to the base map.
With the categorized population data described above, we now can create a map of
the population size by category and add it to the base map. This can be achieved
using the following R codes:

world_pop <- mapbase_p +
geom_polygon(data=worldpop, aes(fill=popcat),color=”black”) +
geom_polygon(color=”black”, fill=NA) +
scale_fill_manual(values=mapcolor, guide_legend
(title=”Population (1000)”, label=TRUE)) +
theme_bw()+
theme(legend.key.size=unit(0.5,”cm”),

legend.text=element_text(size=8),
legend.title=element_text(size=10),
legend.position=c(0.04,0.25))+

ditch_the_axes

From the codes above, we can see that we store the map of world population
with the file name: world_pop. The map is created by adding (+) the mapbase
with the population map to be created using the function “geom_polygon()”
and the worldpop data specified by the R codes “data=worldpop”. The R codes
“aes(fill=popcat)” asks the computer to fill data for individual countries by category
using the newly created variable popcat; “color=”black”” tells the computer to draw
the borders of all countries with black; “scale_fill_manual()” defines the colors and
legend for mapping, and the first argument “values=mapcolor” asks the computer
to draw the map with the color scheme previously defined in another step.

Lastly, the function “theme_bw()” is used to specify the classic dark-on-light
ggplot2 theme. The next function “theme()” is for specifying the legends presented
on the map, including the font, size, and position. The map code end with the
command “ditch_the_axes” to remove the axes from the map, which is not needed.

Display the mapping result—World population map. Since the created map of the
world population is stored in the file “world_pop”, it is easy to display the map by
simply typing the following R code in the script window, and then run the program.

world_pop

If you correctly do all the steps following the instruction in the previous sections,
you will see a map showing the total population by country in the world as in Fig.
7.7. If cannot obtain a map or the map you get differs from Fig. 7.7, please go
back and check your R codes. We recommend that you practice more times with the
eight-step approach to gain efficiency.

From the newly created world map, it clearly shows the global pattern of the
world population by countries. The world most populous countries are China, India,
United States, and Brazil, and the least populous countries include those in West and
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Fig. 7.7 Distribution of the world population by country

South Europe, Mongolia in Asian, a number of small countries scattered in Africa,
West Pacific and South America.

7.6 Mapping the Density of World Population by Country

After knowing how to map world population by country, it will be very simple to
model population density. What need to be done is to create a new variable for
population density and categorize the variable for mapping. The following R codes
present an example to create a categorized population density variable:

Worldpop$popdstcat <- cut(worldpop$popdensity,
breaks=c(0,6,20,50,130,7720)),
lables=c(“0-6”,”6-20”,”20-50”,”50-130”,”>130”))

The cutoff points are determined based on data. You can determine this using
frequency distribution, or use equal-length interval, or exponential intervals.

With the newly created population density variable “popdstcat”, the following R
codes can be used to generate the map of the density of world population by country
as shown in Fig. 7.8.

map_popdensity <- mapbase_p +
geom_polygon(data=worldpop, aes(fill=popdstcat),color
=”black”) +
geom_polygon(color=”black”, fill=NA) +
scale_fill_manual(values=mapcolor, guide_legend
(title=”Population density (per km2)”, label=TRUE)) +
theme_bw()+
theme(legend.key.size=unit(0.5,”cm”),
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Fig. 7.8 Global pattern of population density by country

legend.text=element_text(size=8),
legend.title=element_text(size=10),
legend.position=c(0.04,0.25))+

ditch_the_axes
map_popdensity

Compared to the global pattern of world population by country in Fig. 7.7,
population density by countries shows a very different pattern. Countries with high
population density appear to form a band stretching from Europe to Asia and South
Pacific; while countries with the lowest density are scattered around, including
Canada, Australia. Mongolia and several countries in Africa and South America.

7.7 Conclusion Remarks

In this chapter, we focus on introducing the method to map data across the globe.
The purpose is to assist researchers with limited training and resources to investigate
medical, health and behavior issues with great global significance. By using this
mapping technique, you will see the value of global mapping in assisting you
to understand and grab global health issues and to establish and use a global
perspective in your effort to examine local medical and health issues with global
significance, and in decision-making and collective action to deal with global health
challenges.
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Chapter 8
A 4D Indicator System of Count, P Rate,
G Rate and PG Rate for Epidemiology
and Global Health

Xinguang Chen, Bin Yu, and (Din) Ding-Geng Chen

Abstract How to end the HIV/AIDS epidemic is a typical global health question
since the impact of HIV/AIDS is global and it cannot be ended without collaborative
global effort. In this chapter, a new measurement system is introduced to inform
HIV/AIDS control cross the globe. All countries with data available on area
size, total population and total number of persons living with HIV (PLWH) were
included, yielding a sample of 148 countries. Four indicators, including the total
count, population-based p rate, geographic area-based g rate and population and
geographic area-based pg rate were used as a 4D system to describe the global
HIV epidemic. The total PLWH count provided data informing resource allocation
for individual countries to improve HIV/AIDS care; and the top five countries with
highest PLWH count were South Africa, Nigeria, India, Kenya, and Mozambique.
Information from the remaining three indicators provided a global risk profile
of the HIV epidemic, supporting HIV/AIDS prevention programming strategies.
Five countries with highest p rates were Swaziland, Botswana, Lesotho, South
Africa, and Zimbabwe; five countries with highest g rates were Swaziland, Malawi,
Lesotho, Rwanda, and Uganda; and five countries with highest pg rates were
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Barbados, Swaziland, Lesotho, Malta, and Mauritius. According to pg rates, two
HIV hotspots (south and middle Africa and Caribbean region) and one HIV belt
across Euro-Asian were identified. In addition to HIV/AIDS, the 4D measurement
system can be used to describe morbidity and mortality for many diseases across the
globe. We recommend the use of this measurement system in research to address
significant global health and epidemiologic issues.

Keywords Global health research · HIV/AIDS epidemic · Geographic
area-based g rate · Geographic and population-based pg rate · Global mapping

8.1 Introduction

One fundamental task for epidemiology, particularly global health epidemiology
is to provide good tools to extract information from data for accurate understand-
ing of the level, risk factors of a disease and its impact on population health
(Rothman, Greenland, & Lash, 2008; Szklo & Nieto, 2018). In addition to the
disease epidemiology, such information is essential for public health planning
and strategic decision-making, prevention intervention programming and program
evaluation (Bayer & Galea, 2015; Chen & Wang, 2017; Khoury, Iademarco, &
Riley, 2016). Since the beginning of epidemiology and public health, two indicators
most commonly used in research have been (1) the total count that informs us about
the total number of persons who suffer from or died of a disease; and (2) rate that
reflects the risk of a person suffering from or being died of a disease.

During early stages when a disease has just started to appear, the number of
new cases is counted periodical (i.e., daily, weekly, or monthly); the counts are then
accumulated to show the progress of the disease epidemic in a population, such
as SARS (Wikipedia, 2019), Ebola (Meltzer et al., 2014), and bird flu (Ferguson,
Fraser, Donnelly, Ghani, & Anderson, 2004) as being commonly practiced today.
When a disease becomes an epidemic and lasts for long time to affect more and
more people in a population, annual count of persons who suffered from or died of
the disease is used to monitor the epidemic, such as the number of persons living
with HIV/AIDS or died from AIDS each years (WHO, 2018). In vital statistics,
the number of persons suffered from or died of different causes of diseases is
documented on an annual or biannual basis as shown in many statistical yearbooks.

The headcount of a disease as an epidemiologic measure provides information
very useful for decision-making at the population level. It is the basic data used
in planning and decision-making to allocate resource for disease treatment and
prevention (Bautista-Arredondo, Gadsden, Harris, & Bertozzi, 2008). For example,
if a total of 1200 persons are diagnosed with cancer. Assuming that the government
expenditure for treating one cancer patient per year on average is $15,000, a total of
$18 million ($15,000∗1200) every year must be allocated in the country’s budget for
treating all the cancer patients. In the United States, the Centers for Disease Control
and Prevention uses this method to plan its Healthy People 2030 for resource
allocation for all public health programs, and more details can be found at the URL:
https://www.healthypeople.gov/.

https://www.healthypeople.gov/
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Despite the usefulness, information provided by headcount is inadequate for
measuring and comparing risks of a disease across regions and jurisdictions with
a country and across countries in the world. This is because given the same level
of likelihood for a disease to spread, the head count of a disease will differ for
countries and regions with different population sizes. A country or region with
a larger population will have more people at risk of suffering from a disease
than a country or region with a smaller population given the same risk level.
Epidemiologists have overcome the limitation of headcount data by using the
indicator rate. Methodologically, a rate is a measure that adjusts the impact of
population size in assessing disease risk (Chen, 2017; Chen & Wang, 2017).
Disease rates therefore provide a measure more informative than disease count for
comparison across regions within a country, and across countries in the world.

The two epidemiologic indicators, headcount and disease rate described above
have been used almost everywhere from research to practice, including the World
Health Organization, governmental and nongovernmental agencies; researchers and
students in institutes and universities; and public health workers in communities and
neighborhoods. While appreciating the value and utility of the two epidemiologic
indicators, we cannot overlook their limitations. Although measures of disease rate
are more informative than measures of headcount with regard to informing levels
of risk of a disease at the population level, both headcount and disease rate cannot
address another key factor–the size of geographic areas people reside (Chen, 2017;
Chen & Wang, 2017). To fill in this methodology gap, in this chapter, we will
introduce a new measurement system by incorporating geographic area size into
measurement. We illustrate the new measurement system using the global HIV
epidemic as an example.

8.2 Ending the HIV/AIDS Epidemic by 2030

The epidemic of the human immunodeficiency virus (HIV) and the acquired
immunodeficiency syndrome (AIDS) is a typical global health problem (Chen,
2014; Merson, Black, & Mills, 2012). Worldwide, the number of persons living
with HIV (PLWH) has totaled 36.9 million (WHO, 2018). The impact of HIV/AIDS
on human health is global; therefore, effective HIV/AIDS control and prevention
requires collaborative and global efforts (Deeks et al., 2016; International Aids
Society Scientific Working Group on H I V Cure et al., 2012). No one individual
country is immune to HIV infection and no one individual country alone can get rid
of the HIV epidemic without involving other countries and agencies in the world.

In fighting the HIV/AIDS epidemic, two strategies are widely used: (1) Antiretro-
viral therapy (ART) and (2) prevention intervention programs. The first strategy
is designated for treating persons living with HIV (PLWH) whose viral load has
not been suppressed and this strategies has been widely implemented across the
globe (Tanser, Barnighausen, Grapsa, Zaidi, & Newell, 2013; UNAIDS, 2017a).
In addition to treading the infected, appropriate implementation of ART, such
as treatment as prevention (TasP) can help PLWH to achieve viral suppression,
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reducing the number of infected persons who can infect others (Cohen, 2011;
Granich et al., 2010).

The second strategy of prevention is for all persons who are at risk for HIV infec-
tion, including the PLWH who can be re-infected (Lyles et al., 2007). These pro-
grams include school- or community-based interventions for general population and
venue-based high-risk population intervention (e.g., drug users, men who have sex
with men, sex workers). To develop and implant either an ART program or a preven-
tion intervention strategy, adequate data are always needed for strategic planning,
evidence-based decision-making, and objective program evaluation (Courtenay-
Quirk, Spindler, Leidich, & Bachanas, 2016; H. I. V. Modelling Consortium
Treatment as Prevention Editorial Writing Group, 2012; Marsh & Farrell, 2015).

Based on the epidemic of HIV/AIDS and success in treatment and prevention,
the Jointed United Nations Program on HIV/AIDS sets the goal to End the AIDS
Epidemic by 2030 (UNAIDS, 2014b). To achieve the goal, the UNAIDS further
asked that by 2020, 90% of PLWH know their HIV status, 90% of diagnosed
PLWH receive sustained ART and 90% who receive ART have their blood viral load
suppressed (90-90-90 strategy) (UNAIDS, 2017a). Pursuing these goals requires
collaborative efforts to plan and deliver patient-centered ART and population-
centered (both the general and at-risk population) prevention programs to reduce
the risk of HIV transmission by all possible venues, including sexual contact, needle
sharing and vertical maternal-child transition (AVERT, 2017; CDC, 2018b; National
Health and Family Planning Commission of PRC, 2015; WHO, 2017).

8.3 Four-Dimensional Measurement System

8.3.1 Two Conventional Measure of Headcount and P Rate

From a precision public health perspective (Chen & Wang, 2017; Khoury et al.,
2016), relevant and sufficient information is essential to plan and implement
HIV/AIDS treatment and prevention strategies to achieve the goal of ending the
HIV/AIDS epidemic by 2030. For example, the number of PLWH by country is
needed for resource allocation to achieve the 90-90-90 proposed by UNAIDS. If it
costs on average $1000 to treat one PLWH per year, a total of $39 billion will be
needed to treat all the 39 million PLWH in the world. There were 850,000 PLWH
in China in 2015, which meant China needs $850 million per year to treat these
infected persons.

Despite great significance, information conveyed by the number of PLWH for
individual countries provides limited information about between-country differ-
ences in the risk of HIV transition because of population size (Chen, 2017; Chen
& Wang, 2017). In addition to risk factors, the total number of PLWH in a country
is directly related to the population size. For example, in 2015, there were 850,000
PLWH in China and 830,000 in Brazil (see Appendix to this chapter for detailed
data). If larger number of PLWH meant higher risk of HIV transmission, people
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in China may face a higher risk than people in Brazil. However, the population of
Brazil was 208 million, only about 15% of 1.4 billion, the total population in China.
We cannot determine whether the risk of HIV transmission is higher in China or in
Brazil using only the measure of total headcount of PLWH.

To more accurately assess the risk of HIV transition, a population-based measure
has devised by dividing the number of PLWH with total population. In our 4D
measurement system, this population-based measure is termed as p rate (Chen &
Wang, 2017). Epidemiologically, a p rate is more accurate than a headcount to assess
between-country differences in risk of HIV transmission because it quantitatively
adjusts the differences in population sizes. Following the same example in the previ-
ous paragraph, the p rate for Brazil was 3.993/1000 population, 6.4 times higher than
0.630/1000, the p rate for China. Therefore, based on the p rates, we can conclude
that the risk of HIV transmission is 6.4 times higher in Brazil than in China.

8.3.2 Two New Measures of G Rate and P Rate

P rate has been one of the most commonly used measures in epidemiology and
global health. Despite its advantage in controlling for population size, p rates for
different countries are confounded by the geographic area size of a country. Again
using PLWH as examples: the total number of PLWH in 2015 was about 220,000 in
two countries: Swaziland and Mexico; however, the total area was 172,000 km2 for
Swaziland, much smaller than 19,440,000 km2, the geographic area size of Mexico.
If people from the two countries reside on a same size of a geographic area (say, like
Swaziland), the risk of HIV transmission would be 113 times (19,440,000/172,000)
higher in Swaziland than in Mexico. To consider difference in geographic area size
like the p rate for population size, a new and geographic area-based measure has
been developed and named as g rate (Chen, 2017; Chen & Wang, 2017).

G rate of a country/place was defined as the ratio of total events over the
total geographic area size of the country/place. G rate can be defined for many
medical and health events. For example, g rate can be defined and estimated for
new infections of a disease to evaluate the risk of disease transmission; g rate can
also be defined and estimated for total deaths by country to assess risk of mortality;
and certainly g rate can be used to measure PLWH and compare between-country
differences in the risk of HIV transmission. While a p rate provides a measure
that has epidemiologically adjusted the confounding from different population
sizes; a g rate provides another measure that has epidemiologically controlled the
confounding from the different geographic area sizes. With a g rate, the significance
of geographic areas in disease epidemiology (Sattenspiel, 2009) can be assessed
quantitatively.

Inspired by p rate and g rate, a natural extension would be to consider both
population size and geographic area to assess the morbidity and mortality of any
health conditions. It is based on this line of thought, another new measurement –
pg rate has been developed (Chen & Wang, 2017). As the name suggests, a pg rate
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of a health event for a country is defined as the ratio of total count of the event
over both the total population and the total geographic area of the country. Since the
confounding effect from both population and geographic areas are adjusted, pg rate
provides a measure better than p rate and g rate alone to assess the epidemiology of
any medical and health event across countries in the world.

The four epidemiological measures of headcount, p rate, g rate and pg rate
consist of a new 4D measurement system. This 4D assessment system extends
the conventional measures and can be used in assessing many medical and health
conditions to advance both research and practice in global health and epidemiology.

8.4 An Example of Global HIV Epidemic

To demonstrate the 4D measurement System and its application, we analyzed data
for PLWH in 2015. The method can be used for study any other diseases.

8.4.1 Materials and Method

Persons living with HIV (PLWH). These data were limited to 2015 and were derived
from multi-sources, including the UNAIDS, government websites and different
governmental reports. Data for a total of 148 countries with data available on PLWH
were included. Of these countries, data for 107 countries were derived from the
UNAIDS, and three from the government report or HIV/AIDS data hub, including
the United Kingdom, China and Laos (UNAIDS, 2016, 2017b). For the remaining
countries with no data in 2015, data for most closed years were used. For example,
2014 data were used for Canada, Fiji, Montenegro, Netherlands, New Zealand, and
Singapore were derived from the Progress Report by Country (UNAIDS, 2014a);
2014 data for Estonia were derived from the Evaluation Report of the World Health
Organization (WHO Regional Office for Europe, 2014); data for the United States in
2013 were from the Centers for Diseases Control and Prevention (CDC, 2018a); and
data for Guinea-Bissau in 2012 were derived from the UNICEF (UNICEF, 2013).

Geographic area size by country. Data for the size of geographic area (km2) of
individual countries are extracted from the World Bank Data Depot (World Bank,
2015a). This is a great official source of geographic data for countries in the world,
and has been globally accepted. Data from this source are also widely used in
statistical analysis and visualization to address global issues (Redding & Venables,
2004).

Population data by country. The population data by country were also derived
from the World Bank Data Depot (World Bank, 2015b). The data stored are
compiled by the United Nations Population Division, and the population data in
this source are based on multi-official sources, including census reports and other
statistical publications, the population and vital statistic report by census bureau of
various countries in the world.
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8.4.2 Estimation of P Rate, G Rate and PG Rate

P rate, g rate and pg rate for the 148 countries included in this example were
computed respectively using the following three equations:

p rate = N

P
(per 1000 population) (8.1)

g rate = N

A

(
per 100 km2

)
(8.2)

pg rate = N

P × A

(
per million population · 100 km2

)
(8.3)

Where N represents the number of PLWH, P represents the number of popula-
tion, and A represents geographic area size.

The total population and geographic area, the total counts of PLWH, and the
calculated p rates, g rates, and pg rates for individual countries were included in
Appendix.

8.4.3 Geographic Mapping

The four epidemiologic indicators by country each were mapped globally, including
the headcount of PLWH, and the calculated p rates, g rates and pg rates using
the software R. Three R packages for mapping were used, including the “maps”,
“mapproj” and “ggplot2”. A dataset “worlddata” was thus created by extracting
geographic information of individual countries (country name, longitude, latitude)
from the “maps” and merged with the derived data of the population size, geographic
area, count of PLWH, calculated p rate, g rate and pg rate by country.

After data preparation, we created a world map using the dataset “worlddata”.
Following the National Standard Map Services, we used the “ggplot2” with
“rectangular” option and orientation (latitude = 90, longitude = 150, rotation = 0)
and “mapproj” to create the world map. A color scale was used to represent different
levels of each PLWH indicators by five percentiles. Greenland located in the far
north was not included in the mapping because of the lack of HIV data. R codes for
the geographic mapping are available from the author Bin Yu upon request.
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8.5 Results

With data from the 148 countries included in this analysis, worldwide an estimate
of 35,426,911 persons who were infected and lived with the virus at the time around
2015. The global prevalence rate was 0.51 PLWH per 1000 population.

8.5.1 The Global HIV Epidemic Measured by Headcounts
of PLWH

Table 8.1 lists the 15 countries with the largest number of PLWH. Of these 15
countries, the top five were South Africa, Nigeria, India, Kenya and Mozambique
with a total of 15,600,000 PLWH, accounting for 44% of that of the total 148
countries included in the analysis.

Figure 8.1 presents the total counts of PLWH by country. Countries with the
largest number of PLWH (dark-red) were located, from left to right, in south and
middle Africa, Ukraine, India, China and most other Southeast Asian countries, the
United States, and Brazil. Overall, the number of PLWH in these countries ranged
from 200,000 to 7000,000.

The total number of PLWH provides the information needed for estimating ART
cost. One research in South Africa estimates that it costs $119 to maintain ART per

Table 8.1 Top 15 countries with the largest number of persons living with HIV (PLWH) in the
world, 2013–2015

Name of the country Continent PLWH (in 1000) Rank

South Africa Africa 7000 1
Nigeria Africa 3500 2
India Asia 2100 3
Kenya Africa 1500 4
Mozambique Africa 1500 5
Uganda Africa 1500 6
Tanzania Africa 1400 7
Zimbabwe Africa 1400 8
USA North America 1242 9
Zambia Africa 1200 10
Malawi Africa 980 11
China Asia 850 12
Brazil South America 830 13
Ethiopia Africa 794 14
Indonesia Asia 690 15
World total – 35,427 –

PLWH Persons living with HIV
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Fig. 8.1 The Global HIV epidemic measured by headcount of PLWH (1000), 2013–2015. Note:
Grey area data not available

patient per month (Martinson et al., 2009). With this data, for treating one million of
PLWH, it will cost $1.44 billion per year to cover the ART cost alone. It is estimated
that there are 7000,000 PLWH in South Africa. To provide ART to them, it will cost
the country approximately $1 trillion per year. To provide ART for the total 35.4
million of PLWH in the 148 countries, a total of $5+ trillion per year is needed.
HIV is by far the one of most expensive diseases (Alistar, Owens, & Brandeau,
2011; CDC, 2017; Martinson et al., 2009).

8.5.2 The Global HIV Epidemic Measured by P Rates
of PLWH

There were large variations in the population among the 148 countries varying from
284,000 for Barbados to 1.37 billion in China. The three countries with the smallest
populations were Barbados (284,000), Iceland (319,000) and Belize (359,000); and
the three countries with largest population were the United States (0.32 billion),
India (1.31 billion) and China (1.37 billion). P rate provides a method to consider
these between-country differences in population size for comparisons of the HIV
epidemic among countries in the globe.

The 15 countries with highest p rates per 1000 population are listed in Table 8.2.
Results in the table indicate that all the 15 countries were located in Africa, and
with the total five being Swaziland (170.9/1000), Botswana (154.7/1000), Lesotho
(145.2/1000), South Africa (127.4/1000) and Zimbabwe (89.7/1000). The p rate for
Swaziland was 33.5 times the average rate of 5.1/1000 for the 148 countries.
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Table 8.2 Top 15 countries with the highest p rates of PLWH, 2013–2015

Name of the country Continent P rate (PLWH/1000) Rank

Swaziland Africa 170.9 1
Botswana Africa 154.7 2
Lesotho Africa 145.2 3
South Africa Africa 127.4 4
Zimbabwe Africa 89.7 5
Namibia Africa 85.4 6
Zambia Africa 74.0 7
Malawi Africa 56.9 8
Mozambique Africa 53.6 9
Uganda Africa 38.4 10
Kenya Africa 32.6 11
Equatorial Guinea Africa 32.0 12
Gabon Africa 27.2 13
Cameroon Africa 26.6 14
Tanzania Africa 26.2 15
Worldwide – 5.11 –

PLWH Persons living with HIV

Fig. 8.2 The Global HIV epidemic measured by p rates of PLWH (per 1000 population), 2013–
2015. Note: Grey area data not available

Figure 8.2 presents the p rate mapping of the global HIV epidemic with
population size being adjusted. Thus, the map in this figure provides better data than
that Fig. 8.1 (headcount) on the risk of HIV epidemic for cross-country comparison.
Compared to Fig. 8.1, the first and most striking difference was that several countries
with large population and top headcounts of PLWH were no longer on the top list,
such as Brazil, China, India, Mexico, Russia, and USA.
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Second, most African countries with highest headcounts of PLWH remained the
highest with p rates (dark-red). This result suggests the risk of HIV transmission
remained high in these countries after considering the population size. Interestingly,
two from the lower PLWH-headcount countries moved to the 20% countries with
highest p rates (dark-red): Guyana in South America and Estonia in East Europe.
These two countries were rather small with regard to population size but the
headcounts of PLWH were higher (see Appendix), resulting in high p rates.

By examining the results in Figs. 8.1 and 8.2 and Table 8.1 together, it can be
seen first that a country with high PLWH count may not necessarily be the country
with high risk of HIV transmission such as Brazil, China, India, Mexico, Russia, and
USA. This is because the high counts of PLWH in these countries were primarily
due to the large number of populations.

Second, countries with both high PLWH headcounts and high p rates have high
risk of HIV transmission, such as most of the African countries with high ranks of
both PLWH headcounts and p rates. With more total PLWH and PLWH per 1000
population in these countries, higher risk of HIV spreading is anticipated.

Last, people living in countries with high p rates are at high risk for HIV
transmission regardless of PLWH headcounts, such as Guyana and Estonia.

8.5.3 The Global HIV Epidemic Measured by G Rates
of PLWH

The size of geographic area of the 148 countries also varied dramatically from
the smallest of 320 km2 for Malta to the largest of 163,769,000 km2 for Russia.
The total area of the three smallest countries (Malta, Barbados and Singapore)
accounted for only 0.001% of the world total; while the total are of the three
largest countries (Russia, China and USA) accounts for 28%. Like the p rate for
population, g rate provides a measure to gauge the HIV epidemic by adjusting these
differences in geographic sizes for cross-country comparisons. This is one of the
two new indicators we introduced in this chapter.

The world average and top 15 countries with highest g rates are listed in Table
8.3. The estimated g rate for Swaziland was 1279.1 PLWH/100km2, 44.4 times that
of the world average of 28.8. Of the top five countries, three with g rates greater than
1000 PLWH per unit geographic area of 10×10 km2.

Figure 8.3 depicts the global HIV epidemic using the estimated g rates of PLWH.
Similar to Fig. 8.2, the top 20% countries with highest g rates were colored in dark-
red; and these countries were roughly located in three regions of the world. (1)
Africa: including a strip of countries from Kenya in the north to South Africa in the
south and a small group of countries in the East Africa (Nigeria, Equatorial Guinea,
and Cameron); (2) several countries in Southeast Asia (Singapore, Thailand and
Vietnam); and (3) several other countries in Caribbean (Costa Rica, Dominican,
Hatti and Jamaica).
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Table 8.3 Top 15 countries with the highest g rates of PLWH, 2013–2015

Name of the country Continent G rate (PLWH/100 km2) Rank

Swaziland Africa 1279.1 1
Malawi Africa 1039.5 2
Lesotho Africa 1021.1 3
Rwanda Africa 810.7 4
Uganda Africa 748.1 5
Singapore Asia 697.9 6
Barbados Africa 604.7 7
South Africa Africa 577.0 8
Haiti Africa 471.7 9
Mauritius Africa 403.9 10
Nigeria Africa 384.3 11
Zimbabwe Africa 361.9 12
Burundi Africa 299.8 13
Jamaica Gulf of Mexico 267.8 14
Kenya Africa 263.6 15
Worldwide – 28.8 –

PLWH Persons living with HIV

Fig. 8.3 The Global HIV epidemic measured by g rates (PLWH/per 100 km2). Note: Grey
area data not available

As expected, g rates were lower for countries with large area sizes even if its
PLWH headcount was high, such as Brazil, Canada, China, Russian, and the United
States. Given the same area size, higher g rate in a country indicates high risk of
HIV transmission because of short distance for personal contact while lower g rate
indicates low risk of HIV transmission because of long distance for personal contact.
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Table 8.4 Top 15 countries with the highest pg rates of PLWH (per million population per
100 km2), 2013–2015

Name of the country Continent PG rate (/million pop. 100 km2) Rank

Barbados Africa 2127.9 1
Swaziland Africa 993.8 2
Lesotho Africa 478.3 3
Malta Africa 375.0 4
Mauritius Africa 319.7 5
Bahamas Caribbean 208.6 6
Trinidad and Tobago Africa 157.7 7
Cape Verde Africa 152.6 8
Singapore Asia 126.9 9
Equatorial Guinea Africa 113.9 10
Gambia Africa 104.2 11
Jamaica Caribbean 98.3 12
Guinea-Bissau Africa 85.0 13
Luxembourg Europe 74.5 14
Rwanda Africa 69.8 15
Worldwide n/a 0.005 n/a

PLWH Persons living with HIV

More details about individual countries can be found in Appendix to the end of this
chapter.

8.5.4 The Global HIV Epidemic Measured by PG Rates
of PLWH

PG rate is the second new indicator we introduced in this chapter to simultaneously
adjust both population size and geographic area. For example, in Fig. 8.3, the United
States was categorized into the top 40% countries with the risk of HIV spreading
similar to many Caribbean countries, which may not be true, because population
size was much large for the United States than for any Caribbean countries.
The estimated pg rate indicated that worldwide, there were 0.005 PLWH/million
population/100 km2.

As usual, Table 8.4 lists the top 15 countries with highest pg rates. Barbados was
now the country with the highest pg rate in the world with 2127.9 PLWH per million
population per 100 km2. This rate was 425,580 times that of the world average and
30 times that of Rwanda, the last one among the top 15. It was not surprise to
see this result because of the small area of Rwanda (24,700 km2) and population
(11,610,000) and a large number of PLWH (an estimate of 200,000).

The global HIV epidemic depicted using pg rates is presented in Fig. 8.4. Results
from this figure add addition data better than the headcount, p rate and g rate alone
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Fig. 8.4 The Global HIV/AIDS epidemic measured by pg rates of PLWH (per million persons per
100 km2). Note: Grey area data not available

to reflect the global pattern of the risk for HIV transmission. Based on the top 40%
(colored as dark and light red) with highest pg rates, countries with high threat
of HIV epidemic were distributed along with One HIV Hot-Belt and Two HIV
Hotspots.

The HIV Hot Belt: This belt comprises a list of countries scattered in a band
region, the belt starts with Iceland on the top left of the world map, moves across the
Euro-Asian, and ends at Papua New Guinea on the bottom right of the map. Other
countries on this HIV Hot Belt region were Estonia, Latvia, Netherlands, Belgium,
Luxembourg, Switzerland, Montenegro, Portugal, Moldova, Georgia, Armenia,
Azerbaijan, Uzbekistan, Kyrgyzstan, Tajikistan, Nepal, Bhutan, Myanmar, Vietnam,
Thailand, Laos, Cambodia, Malaysia, and Singapore.

The HIV Hotspot 1-Africa: These hotspot comprises all countries in South and
Middle Africa except Congo (DRC), Angola, and Tanzania. The majority of these
countries was also considered as the places where HIV affects people the most using
other three measures.

The HIF Hotspot 2-Caribbean: Countries in this hotspot were The Bahamas,
Barbados, Belize, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador,
El Salvador, Guatemala, Guyana, Hatti, Honduras, Jamaica, Nicaragua, Panama,
Trinidad and Tobago, Suriname, Venezuela.

8.6 Discussion and Conclusion Remarks

In this study, we took a 4D measurement system to describe the global HIV epidemic
by adding two newly reported indicators of g rate and pg rate (Chen, 2017; Chen &
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Wang, 2017), together with two conventionally used indicators of headcount and p
rate. The count and p rate are widely used in research; and the g rate and pg rate add
new information, forming a four-dimensional measurement system. We illustrated
the utility of the 4D measurement system using HIV data from 148 countries in the
world HIV epidemic.

The data about the number of PLWH confirm the conclusion from other studies
that it will cost the world a big fortune to end the AIDS epidemic. Providing ART
alone for 90% of 36.9 million PLWH in the world will cost $4.7 trillion per year,
based on the estimated cost of $119 per month for ART in S. African. The estimated
lifetime ART cost is $367,134 per PLWH in the United States (CDC, 2017), which
means $1357 trillion, ~17 times of $80 trillion, annul GDP produced by all countries
in the world. Of the 148 countries included in this study, financial burden will be the
greatest for those with highest counts of PLWH, including South African (seven
million), Nigeria (3.5million), and India (2.1 million).

Like the p rate to adjust for population size, g rate provides a measure of HIV
risk without the influence of the size of a country’s geographic area. High g rates
suggest greater potentials for close contact between the HIV infected and uninfected
persons. Therefore, given the same headcount and p rate, risk of HIV spreading
will be higher in countries with high g rates. Singapore provides a best example.
This country would be low at HIV transmission if the total number of PLWH (only
4900) and p rate (0.894/1000) were used; however, it became a high-risk country
and ranked number 6 in the world when assessed using g rate (126.1 per 1000,000
population per 100 km2).

On the contrary, g rates will be small for countries with large land area, such
as Russia, Canada, Australia, Brazil, the United States and China. Given the same
number of PLWH and the same p rate, the risk will be lower for HIV transmission
in countries with smaller g rate since small g rate means longer distances for inter-
personal contacts. This is consistent with the rural-urban differences in the HIV
epidemic with more infections and quicker growths in urban areas where people
crowd together than in rural areas where people reside sparsely (Mnyika et al.,
1994). Data generated using g rates of PLWH provide direct evidence supporting
the role of geographic area in disease epidemiology in general (Sattenspiel, 2009).

Another innovation is the use of pg rate controlling for both population size and
the geographic area. It is an index of the number of PLWH in a given number of
population and a geographic area. Thus, pg rates provide the most effective measure
for cross-country comparison to assess the risk of transmission of HIV as well as
many other infectious diseases. Based on the definition, pg rate will be high for
countries with large number of headcount of persons suffering from or died of a
disease, but a small population and small geographic area. For example, pg rate
was 993.861 for Swaziland, which means roughly 1000 PLWH in every million
population residing in an area of 100 km2; while the corresponding pg rate was
0.007 for China, indicating much lower risk of HIV transmission. Given all other
conditions the same, the likelihood for HIV (or any other infectious disease) to
transmit from one to another in a place with small area and a large number of
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populations will be greater than in a place with large area and small number of
populations.

With pg rate, countries in the region across Middle East and North Africa
(MENA) were categorized low risk for HIV transmission. This is consistent with
data from different sources (Gokengin, Doroudi, Tohme, Collins, & Madani, 2016)
with different interpretations (Abu-Raddad et al., 2010; Gray, 2004). The advantage
with our pg rate is that this MENA region looked much smoother and gradually
expand to connect with other higher risk regions around, very different from the
patterns shown by p rates or headcounts.

Based on pg rates, prevention of HIV transmission should pay particularly high
attention to the three regions: One HIV Hot-Belt and two HIV Hotspots to better
address the goal set by the UNAIDS to end the AIDS epidemic by 2030 (UNAIDS,
2014b). In general, countries in these high-risk belt and spots are relatively small
in geographic area but with a large number of PLWH, in favor of HIV transmission
from one to another.

In conclusion, this is the first time a 4D measurement system is formed and tested
using the global HIV epidemic. More applications of the same method are highly
recommended. For example, the same approach can be used to describe regional
differences within a country; and to describe infectious diseases other than HIV.
In addition to morbidity, the 4D approach can be used to describe mortality data.
The utility of our 4D measurement system integrating headcount, p rate, g rate
and pg rate together, providing the most comprehensive measure for researchers
and decision makers to grasp the overall pattern of a disease in global health and
epidemiology.

A.1 Appendix 1. List of countries with population, land area,
total PLWH, P rate, G rate and PG rate

Table A.1 List of countries with population, land area, total PLWH, P rate, G rate and PG rate

Country Population
(1000)

Land area
(100 km2)

PLWH
(1000)

P rate
(1/1,000)

G rate (1/100
km2)

PG rate
(1/106 pop×
100 km2)

Afghanistan 32527 6,529 6.9 0.212 1.057 0.033
Algeria 39667 23,817 8.8 0.222 0.369 0.009
Angola 25022 12,467 320.0 12.789 25.668 1.026
Argentina 43417 27,367 110.0 2.534 4.019 0.093
Armenia 3018 285 3.6 1.193 12.645 4.190
Australia 23781 76,823 27.0 1.135 0.351 0.015
Austria 8611 825 18.0 2.090 21.812 2.533
Azerbaijan 9651 827 11.0 1.140 13.307 1.379

(continued)
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Table A.1 (continued)

Country Population
(1000)

Land area
(100 km2)

PLWH
(1000)

P rate
(1/1,000)

G rate
(1/100 km2)

PG rate
(1/106 pop×
100 km2)

Bahamas 388 100 8.1 20.875 80.919 208.544
Bangladesh 160996 1,302 9.6 0.060 7.375 0.046
Barbados 284 4 2.6 9.148 604.651 2,127.480
Belarus 9513 2,029 35.0 3.679 17.249 1.813
Belgium 11286 303 20.0 1.772 66.050 5.853
Belize 359 228 3.6 10.020 15.783 43.927
Benin 10880 1,128 69.0 6.342 61.192 5.624
Bhutan 775 381 1.0 1.291 2.624 3.386
Bolivia 10725 10,833 18.0 1.678 1.662 0.155
Botswana 2262 5,667 350.0 154.697 61.758 27.296
Brazil 207848 83,581 830.0 3.993 9.930 0.048
Bulgaria 7178 1,086 3.9 0.543 3.592 0.501
Burkina Faso 18106 2,736 95.0 5.247 34.722 1.918
Burundi 11179 257 77.0 6.888 299.844 26.822
Cambodia 15578 1,765 74.0 4.750 41.922 2.691
Cameroon 23344 4,727 620.0 26.559 131.159 5.619
Canada 35852 90,935 75.5 2.106 0.830 0.023
Cape Verde 521 40 3.2 6.148 79.404 152.554
Central African 4900 6,230 120.0 24.488 19.262 3.931
Republic
Chad 14037 12,592 170.0 12.110 13.501 0.962
Chile 17948 7,435 32.0 1.783 4.304 0.240
China 1371220 93,882 850.0 0.620 9.054 0.007
Colombia 48229 11,095 150.0 3.110 13.520 0.280
Congo, DR 77267 22,671 370.0 4.789 16.321 0.211
Costa Rica 4808 511 10.0 2.080 19.585 4.074
Croatia 4224 560 1.2 0.284 2.144 0.508
Cuba 11390 1,040 22.0 1.932 21.150 1.857
Czech Republic 10551 772 2.1 0.199 2.720 0.258
Côte d’Ivoire 22702 3,180 460.0 20.263 144.654 6.372
Denmark 5676 423 6.1 1.075 14.434 2.543
Djibouti 888 232 9.4 10.587 40.552 45.674
Dominican 10528 483 68.0 6.459 140.758 13.369
Ecuador 16144 2,484 29.0 1.796 11.677 0.723
Egypt 91508 9,955 11.0 0.120 1.105 0.012
El Salvador 6127 207 20.0 3.264 96.525 15.755
Equatorial
Guinea
Guinea

845 281 27.0 31.950 96.257 113.905

Eritrea 5169 1,010 14.0 2.708 13.861 2.682
Estonia 1312 424 13.5 10.290 31.847 24.274
Ethiopia 99391 10,000 793.7 7.986 79.370 0.799

(continued)
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Table A.1 (continued)

Country Population
(1000)

Land area
(100 km2)

PLWH
(1000)

P rate
(1/1,000)

G rate
(1/100 km2)

PG rate
(1/106 pop×
100 km2)

Fiji 892 183 1.0 1.121 5.473 6.135
Finland 5482 3,039 2.9 0.529 0.954 0.174
France 66808 5,476 160.0 2.395 29.221 0.437
Gabon 1725 2,577 47.0 27.242 18.240 10.572
Gambia 1991 101 21.0 10.548 207.510 104.228
Georgia 3679 695 9.6 2.609 13.815 3.755
Germany 81413 3,489 73.0 0.897 20.923 0.257
Ghana 27410 2,275 270.0 9.850 118.660 4.329
Greece 10824 1,289 16.0 1.478 12.413 1.147
Guatemala 16343 1,072 55.0 3.365 51.325 3.141
Guinea 12609 2,457 120.0 9.517 48.836 3.873
Guinea-Bissau 1844 281 41.0 22.230 145.804 79.055
Guyana 767 1,969 7.8 10.168 3.962 5.166
Haiti 10711 276 130.0 12.137 471.698 44.038
Honduras 8075 1,119 20.0 2.477 17.875 2.214
Hungary 9845 905 4.1 0.416 4.529 0.460
Iceland 331 1,003 1.0 3.023 0.998 3.015
India 1311051 29,732 2,100.0 1.602 70.631 0.054
Indonesia 257564 18,116 690.0 2.679 38.089 0.148
Iran 79109 16,288 73.0 0.923 4.482 0.057
Ireland 4641 689 7.8 1.681 11.322 2.440
Israel 8380 216 8.5 1.014 39.279 4.687
Italy 60802 2,941 140.0 2.303 47.596 0.783
Jamaica 2726 108 29.0 10.639 267.775 98.232
Kazakhstan 17544 26,997 23.0 1.311 0.852 0.049
Kenya 46050 5,691 1,500.0 32.573 263.556 5.723
Kyrgyzstan 5957 1,918 8.1 1.360 4.223 0.709
Laos 6802 2,308 11.0 1.617 4.766 0.701
Latvia 1978 622 6.8 3.437 10.936 5.528
Lebanon 5851 102 2.4 0.410 23.460 4.010
Lesotho 2135 304 310.0 145.198 1021.080 478.253
Liberia 4503 963 30.0 6.662 31.146 6.916
Lithuania 2910 627 1.5 0.515 2.394 0.823
Luxembourg 570 26 1.0 1.755 38.610 67.775
Madagascar 24235 5,818 48.0 1.981 8.250 0.340
Malawi 17215 943 980.0 56.926 1039.457 60.380
Malaysia 30331 3,286 92.0 3.033 28.002 0.923
Mali 17600 12,202 120.0 6.818 9.835 0.559
Malta 431 3 0.5 1.159 156.250 362.252
Mauritania 4068 10,307 14.0 3.442 1.358 0.334
Mauritius 1263 20 8.2 6.494 403.941 319.925
Mexico 127017 19,440 200.0 1.575 10.288 0.081
Mongolia 2959 15,536 0.5 0.169 0.032 0.011

(continued)
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Table A.1 (continued)

Country Population
(1000)

Land area
(100 km2)

PLWH
(1000)

P rate
(1/1,000)

G rate
(1/100 km2)

PG rate
(1/106 pop×
100 km2)

Montenegro 622 135 0.5 0.744 3.442 5.531
Morocco 34378 4,463 24.0 0.698 5.378 0.156
Mozambique 27978 7,864 1,500.0 53.614 190.747 6.818
Myanmar 53897 6,531 220.0 4.082 33.687 0.625
Namibia 2459 8,233 210.0 85.406 25.507 10.374
Nepal 28514 1,434 39.0 1.368 27.206 0.954
Netherlands 16937 337 22.1 1.305 65.598 3.873
New Zealand 4596 2,633 2.9 0.631 1.101 0.240
Nicaragua 6082 1,203 9.9 1.628 8.227 1.353
Niger 19899 12,667 49.0 2.462 3.868 0.194
Nigeria 182202 9,108 3,500.0 19.209 384.290 2.109
Norway 5196 3,652 4.5 0.866 1.232 0.237
Pakistan 188925 7,709 100.0 0.529 12.972 0.069
Panama 3929 743 17.0 4.327 22.868 5.820
Papua New
Guinea

7619 4,529 40.0 5.250 8.833 1.159

Paraguay 6639 3,973 17.0 2.561 4.279 0.645
Peru 31377 12,800 66.0 2.103 5.156 0.164
Philippines 100699 2,982 42.0 0.417 14.086 0.140
Poland 37999 3,062 35.0 0.921 11.431 0.301
Portugal 10349 916 48.0 4.638 52.399 5.063
Moldova 3554 329 18.0 5.065 54.761 15.408
Romania 19832 2,301 16.0 0.807 6.954 0.351
Russian 144097 163,769 73.0 0.507 0.446 0.003
Rwanda 11610 247 200.0 17.227 810.701 69.830
Senegal 15129 1,925 46.0 3.040 23.892 1.579
Serbia 7098 875 3.5 0.493 4.002 0.564
Sierra Leone 6453 722 51.0 7.903 70.657 10.949
Singapore 5535 7 4.9 0.894 697.884 126.086
Slovakia 5424 481 0.5 0.092 1.040 0.192
Slovenia 2064 201 1.0 0.485 4.965 2.406
Somalia 10787 6,273 30.0 2.781 4.782 0.443
South Africa 54957 12,131 7,000.0 127.372 577.039 10.500
South Sudan 12340 6,197 180.0 14.587 29.044 2.354
Spain 46418 5,002 150.0 3.231 29.987 0.646
Sri Lanka 20966 627 4.2 0.200 6.697 0.319
Sudan 40235 23,760 56.0 1.392 2.357 0.059
Suriname 543 1,560 3.8 6.998 2.436 4.486
Swaziland 1287 172 220.0 170.944 1279.070 993.861
Sweden 9799 4,073 9.1 0.929 2.234 0.228
Switzerland 8287 395 20.0 2.413 50.612 6.108
Tajikistan 8482 1,388 16.0 1.886 11.529 1.359
Thailand 67959 5,109 440.0 6.474 86.124 1.267

(continued)
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Table A.1 (continued)

Country Population
(1000)

Land area
(100 km2)

PLWH
(1000)

P rate
(1/1,000)

G rate
(1/100 km2)

PG rate
(1/106 pop×
100 km2)

Togo 7305 544 110.0 15.059 202.243 27.687
Trinidad and
Tobago

1360 51 11.0 8.088 214.425 157.655

Tunisia 11108 1,554 2.6 0.234 1.674 0.151
Turkey 78666 7,696 5.5 0.070 0.715 0.009
Uganda 39032 2,005 1,500.0 38.430 748.055 19.165
Ukraine 45198 5,793 220.0 4.867 37.978 0.840
UK 65138 2,419 101.2 1.554 41.830 0.642
Tanzania 53470 8,858 1,400.0 26.183 158.049 2.956
USA 321419 91,474 1,242.0 3.864 13.578 0.042
Uruguay 3432 1,750 10.0 2.914 5.714 1.665
Uzbekistan 31300 4,254 33.0 1.054 7.757 0.248
Venezuela 31108 8,821 110.0 3.536 12.471 0.401
Vietnam 91704 3,101 260.0 2.835 83.852 0.914
Yemen 26832 5,280 9.2 0.343 1.743 0.065
Zambia 16212 7,434 1,200.0 74.020 161.423 9.957
Zimbabwe 15603 3,869 1,400.0 89.728 361.897 23.191
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Chapter 9
Historical Trends in Mortality Risk over
100-Year Period in China with Recent
Data: An Innovative Application
of Age-Period-Cohort Modeling

Xinguang Chen

Abstract History is the best teacher. It is challenging to learn from history to
address contemporary problems in the field of global health and epidemiology. A
first challenge is the lack of data to examine medical and health problems in the
past. Such challenge is more obvious in developing countries, such as China where
no data were collected due to limited resources, wars, plaques, and natural disasters.
Theoretical analysis and empirical data from age-period-cohort modeling indicate
that recent data by age of a population contains information about the past. For
example, mortality rate for people aged 90 in 1990 contains information about
mortality risk in 1900 when they were born. Therefore, information contained in
mortality by age functions like digital fossil; and the age-period-cohort modeling
provides a tool to extract the information from the fossil. In this study we examined
the mega-trends in mortality risk for China since 1901 when the 2000-year long
feudalism was throughout, to 1949 when the independence was established, and
up to 1980s when rapid economic growth emerged. We achieved the goal by
analyzing data collected in recent years from 1990 to 2010 with the age-period-
cohort modeling method and the intrinsic estimator. Findings of the study suggest
the existence of four Sunny Periods and three Cloudy Periods during 1901–2010.
These Sunny and Clouding Periods were in close coincident with significant social,
cultural, political, economic events in the history of China. Findings of the study
revealed that the highest mortality risk was associated with foreign invasion, the
second highest risk was associated with civil wars, the third highest risk was
associated with economic reform; the lower mortality risk was associated with the
post-war period and the establishment of new China, and the longest period with
reduced risk of mortality was associated with the Cultural Revolution Period. In
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conclusion, age-period-cohort modeling provide a powerful tool for researchers to
examine medical and health issues in the past with more recent data to advance
epidemiology and global health. We highly recommend the use of this method in
research in both developed and developing countries.

Keywords Historical epidemiology · APC modeling · Mortality in China ·
Social economic factors · Global health

9.1 Introduction

The development of global health and epidemiology requires us to investigate
significant medical and health issues in the past with a historical perspective.
However, it is rather challenging, if not impossible to examine things happened
long time ago in the past when no research data were collected. In this chapter, we
introduce the age-period-cohort (APC) modeling method, a classic epidemiological
modeling tool; demonstrate its use in analyzing more recent data to investigate the
time trends in the risk of mortality in China more than 100 years ago since 1906.

9.1.1 Learn from History

History can provide unique information supporting global health and epidemiology
to better understand current medical and health problems we are facing. Significant
events recorded in history, such as wars, famines, political, socioeconomic changes,
often can exert broad and substantial impact on population health. While the
majority of published studies use more recent data in research to understand current
status of health and diseases; findings from a historical epidemiologic research
studies will add new data from a different angle to strengthen current findings and
to help clarify controversial issues observed from current studies. In addition to the
advancement of our understanding of challenge medical and health issues with a
global and temporal perspective, historical data provide information at the macro-
level, guiding studies with newly collected data.

To examine historical events in medicine and public health, we often consult
qualitative method by reviewing and summarizing events occurred in history and
link them to changes in health status. For example, based on mortality recoded
in several countries and regions, the epidemiological transition model posts that
the life expectancy was rather low for people living in the developed countries in
the 1800s when infectious diseases were predominant; and we attribute the rapid
increases in life expectancy in modern society to industrialization, economic growth
and advancement in medical technology and medicine (McKeown, 2009; Omran,
2005; Zhou et al., 2019). Also, we have no doubt that wars, famine also contributed
to high mortality. However, few quantitative and systematic studies in the literature
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that have associated historical events with changes in health status of a population.
Although findings from qualitative studies provide useful information, adding more
systematic data will further enhance our mastery of historical events on current
health status and better inform decision-making to deal with significant medical
and health challenges we are facing today and in the future.

9.1.2 Challenges for Quantitative Historical Research

One reason for the lack of quantitative and systematic investigation of historical
events in epidemiology and global health is due to the lack of recorded data to
quantify health status of a population in the past. Data are lacking on diseases and
deaths during the primitive time for all countries in the world except fossils and
grave records from archeology, genealogy records, and church records. Recorded
population mortality data are not widely available before World War II because
of frequent wars, population migration, and large-scale plaques. More data have
gradually become available since the 1950s after the establishment of the World
Health Organization (WHO). However, such data are often available primarily for
industrialized and developed countries in the Europe and North America.

Collecting health and disease data could not be on agenda for poor countries
during the period when people are struggling for survival. Although, changes in the
health status of a population during difficult times may contain unique information
for researchers to under how natural (i.e., famine, flooding), social (i.e., social
movements), political (revolution that moves a country from one system to another),
economic, and technical factors may affect health; unfortunately such data are not
available. Fortunately, following the developed countries and assisted by WHO and
developed countries, many developing countries started to collect data on population
health and diseases since the 1980s. China is among one of these countries. If
data collected in more recent times contains the information about health status
in the past, it may provide an opportunity to quantitatively examine the relationship
between significant historical events and the corresponding changes in population
health.

In this chapter, we take China as an example to demonstrate how to conduct
an historical epidemiologic research with more recent data. We first list the major
historical events since 1900s after China abolished the 2000-year long feudalistic
society and entered into modern society through long-term frequently social,
political, economic, technical and cultural changes. We then demonstrate that the
health data collected since 1990 contain the information to measure health status
from 1900s to 1990, corresponding to the significant historical events.
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9.2 Timeline of Significant Events in China Since 1900

The recent history in China since 1900 presents a good case for epidemiology
and global health to examine social, political, cultural and economic factors and
population health using APC modeling method with a historical perspective. People
in China have experienced a series of historical events with largest scope and
highest impact on human kind from the 1900s till today. Relating significant
historical events with the risk of population mortality will provide evidence unique
for researchers, decision-makers and the general public to objectively assess the
history of health policy and changes in population health, to think of the health and
disease in the future based on knowledge from the past, and to make evidence-based
strategic plans for disease prevention and health promotion.

In this study we focused on the time period since 1900 in China, starting with the
period of overthrow of the 2000-year feudalistic society in 1911, the independence
of China in 1949, and the open policy and rapid economic reform since 1978. In
the following, we list the major historical events that are known to be influential to
population health.

9.2.1 Overthrow of the Feudalistic Society

1899–1901: Yehetuan Movement or Boxer Rebellion: Happened in Northcentral
China, and described as an anti-foreign invasion, anti-colonial, and anti-western
culture, triggered by the power deteriorating of the Qing Dynasty, companied by
a growing number of invasions from the earlier industrialized foreign countries.

1901–1911: Abdication of Qing Dynasty, the last feudalism society and the
establishment of the Republic of China, the first modern society in Chinese history.
The government, also the first time in Chinese history, established the Department
of Sanitary in 1905 as the central government agency in charge of health.

1914–1926: The first and second civil wars among major warlords extended
from the last administration of Qing Dynasty, after establishment of the Republic
of China. The well-known May fourth Movement occurred in 1919 led by students
and participated by people from all walks of life against Japanese and warlords.

1927–1934: Ending of the civil war through Northern Anti-Warlord Military
Campaign and starting a period of peace and country’s reconstruction, particularly
the pioneer work of village health workers as part of the Rural Reconstruction
Movement for rural uplift. A 3-year famine (1928–1930) occurred during this
period, killing millions of people.

1937–1945: The War Anti-Japanese invasion in a full scale as part of the World
War II until the Japanese surrendered in 1945. There was also a famine during 1942–
1943, killing millions of people.

1945–1949: Start and end of the last Civil Ware and the inauguration of the
People’s Republic of China.
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9.2.2 Early Period After Independence

1949–1957: Reconstruction of the country, including the high-impact Patriotic
Health and Hygiene Movement to change the unhealthy lifestyles, to improve
environmental health, and to control infectious diseases.

1957–1966: Domestic political movements, 1959–1962 famine, and the Great
Leap Forward started and the Campaign of Removing Four Harm Pests (mosquitoes,
flies, rats and sparrows) in 1958.

1966–1976: The 10-Year Cultural Revolution with destruction of traditional
cultures and cultivation of new culture, national policies and campaigns of “Pre-
vention First”, “Shifted the Priority of Healthcare from Urban to Rural”, “Barefoot
Doctors”, “Combination of Traditional Chinese Medicine with Western Medicine”,
and establishment of the 3-Tier Primary Care System.

9.2.3 The Period of Open Policy and Economic Reform

1978–present: Reform and open policy with unprecedented rural-to-urban popula-
tion movement, rapid industrialization and economic growth the influence western
culture and the 1989 Students Movement, shift from prevention first and free
healthcare to market-oriented healthcare with reduced attention to prevention, and
shift back in full scope in 2005 to re-emphasis of prevention, the free healthcare for
urban residents and collaborative healthcare for rural residents.

9.3 Age-Specific Data and APC Modeling Analysis

9.3.1 Age-Specific Data as Digital Fossils

Epidemiologists are very familiar with mortality data tabulated by age of a
population. Figure 9.1 shows how can we think of mortality data tabulated by age as
a digital fossil containing information about risk of death in the past. In the figure, it
contains a truncated part of population mortality rate per 100,000 by age groups
from 25–29 to 60–64 in 1990 in China. For example, the mortality rate for all
persons aged 60–64 was 1585.36/100,000 and this rate was the ratio of all persons
died in 1990 over the total persons who were born 60–65 years ago in 1925–1930.

This figure tells the mortality rate for persons in an age or age group contains
two important pieces of information: mortality risk in the year when the data were
collected (the year 1990 as shown in the example), and the mortality risk related to
the year of birth, the period 60–65 years ago. Although no data on mortality were
collected for China 60–65 years ago during the 1925–1930 period (indicated by the
red bracket) when the country were in the wars for domestic division and Japanese
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Fig. 9.1 Schematic illustration of age-specific mortality in a current year as digital fossil that
contains information about the mortality risk in the past in addition to informing current status.
Note: Mortality rate for persons aged 60–64 in 1990 contains information related to mortality risk
in 1926–1930 when these people were born 60–64 years ago in 1926–1930; likewise, mortality
rate for persons aged 80–84 in 1990 contains information of mortality risk in 1906–1910

invasion, it is likely to obtain data to describe the mortality risk during the period
using the information contained in the death rate for persons aged 60–65 in 1990
when systematic data are available for use. It is in this regard, we conclude that age-
specific data can be considered as digital fossils to examine the impact of historical
events on mortality and potentially other health outcomes.

Likewise, the higher the age groups for data in more recently years, and further
we can describe the past using more recent data. For example, mortality rates for
persons aged 80–84 in 1990 contains the mortality risk for the period 80–84 years
back during 1906–1910 when these persons were born. Although no data were
available for the period long time ago, mortality data from recent times do contain
the information to assess the health status during the period. The challenge is how
to extract the information from the digital fossil—the age-specific mortality data.

9.3.2 APC Model to Extract the Historical Information

APC modeling provides one method to extract information from digital fossils—
age-specific mortality data to examine the mortality risk of a population in the
past when no systematic data were available for analysis (Chen et al., 2019;
Chen & Wang, 2014a, 2014b). The basic principle of APC modeling analysis
is to decompose the observed mortality by age of a year into three independent
components. Let Mij = the mortality rate for persons in age group i and period j, Mij

can be described using a general regression model:

f
(
Mij

) = μ + αi + βj + γk + ε, (9.1)
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Fig. 9.2 Decomposition of
mortality rate into three
independent components as
age, period and cohort effects.
Note: In the endless time axis
(period), people are
continuous born to the world
(cohort). At a point in time,
one cohort was born. As time
goes, this cohort ages. When
reaching age a, this these
people are corresponding to
one point (a, p, c) in a 3D
coordinate system. Other
three meaningful points are
(a, p), (a, c) and (p, c)
respectively

where, μ represents the grant mean, αi represents the impact of age i of the
participants or “age effect”, β j represents the impact of the time period j or “period
effect”, and γ k represents the impact of birth year k or “cohort effect”, and ε are
residuals. f () is a function that links a mortality measure with the three effects, f ()
can be identity for linear model, Poison for counting data and logistic for binary
data.

From Eq. 9.1 it can be seen that the cohort effect γ k is what we need—
information extracted from more recent data to quantify the mortality risk in the
past when no data were available.

Figure 9.2 visually depicts the age, period and cohort effect from Eq. 9.1 in a 3D
format. In the chart, the three effects of age αi, period β j and cohort γ k are mutually
independent from an APC model as indicated by the three coordinators at the point
(a, p, c).

Figure 9.2 also shows other three models routinely used in APC modeling
analysis, and they are (1) the age-period model with the age and period effects
showing by the two coordinators at the point (a, p); (2) the age-cohort model with
the age and cohort effects showing by another two coordinators at the point (a, c);
and the period-cohort model with the period and cohort effects showing by two more
coordinators at the point (p, c).

9.3.3 Challenges to APC Modeling

Among many challenges to APC modeling, two are critical. The first is that APC
modeling method cannot model individual level data and the second is that an APC
model is mathematically not identifiable, therefore no valid solution is possible.
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Methods are now available for analyzing individual-level data, and more details can
be found in the book by Yang and Land (2013). Since modeling individual-level
data is beyond the scope of this chapter, we provide some description about the
non-identifiablility issue with APC modeling and progress in methodology research
to deal with the issue.

Although the APC model described in the previous section is geometrically beau-
tiful and very attractive to many researchers, the defined model is mathematically
not identifiable because the three predictor variable age, period and cohort are not
independent from each other. Given any two variable, the third one is determined,
and can be derived with the other two. For example, if we know the age of a person
and the year he/she participated in survey, the year of birth = survey year − age.
Namely,

Year of birth (c) = survey year (p) –age (a) (9.2)

A number of methodologists in demography, public health, and epidemiology
have devoted their efforts attempting to find a solution, including the dedicated work
by Mason and Winsboro (1973), Fienberg and Mason (1979), Holford (1983, 1991),
Hobcraft, Menken, and Preston (1982), Yang and colleagues (Yang, Fu, & Land,
2004; Yang, Schulhofer-Wohl, Fu, & Land, 2008). A more detailed description of
the methodology research can be found in O’Brien (2013); Yang and Land (2013),
and Chen & Chen in Chap. 10 of this book. Despite much progress, none of the
reported methods is very appealing to researchers till the report of the intrinsic
estimator (IE) method established by a group of methodologists through a series
of mathematical analyses, simulation studies and empirical application as detailed
and summarized in the book by Yang and Land (2013).

The invention of the IE method makes it possible the first time to obtain a set of
unique solution to an APC model with a minimum number of constraints that do not
affect/altering the estimated age, period and cohort effects. After invention, the IE
method has been widely used in reported studies on population mortality (Chen &
Wang, 2014a, 2014b), chronic disease mortality (Yang, 2008); suicide death (Chen
et al., 2019). In this study, we used the IE method for parameter estimation.

9.3.4 New Data Selection Method to Correctly Estimate Cohort
Effect

In APC modeling analysis, researchers almost always use the following format for
data selection: Age-specific data matched and aggregated with the years of data
collection (O’Brien, 2013; Yang & Land, 2013). I also used this approach when I
conducted my first APC modeling analysis (Chen, Li, Unger, Liu, & Johnson, 2003).
Table 9.1 presents an example with hypothetic data to demonstrate the method.

http://dx.doi.org/10.1007/978-3-030-35260-8_10
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Table 9.1 Hypothetic mortality data (1/100,000) for APC modeling analysis

Age/period 1990–1994 1995–1999 2010–2004 2005–2009 2010–2014

. . .

10–14 53 58 54 48 46
15–19 70 73 64 57 51
20–24 88 86 70 64 64
25–29 123 123 90 80 86
30–34 183 185 135 115 119
35–39 275 282 221 186 166
. . .

Fig. 9.3 Conventional
approach to determine cohort.
Note: Persons aged 20–24 in
1990–1994 are coded as born
in 1970–1975, following the
shaded boxes (a synthetic
cohort) as in most reported
studies using APC modeling,
but birth cohort defined using
this method is subject to large
error

When mortality data are tabulated with 5 years as the age-group interval, the
mortality rate must also be tabulated for 5-year period. Even if mortality data by
single year are available, such data must be aggregated by summarizing data from
five consecutive years into one group. For example, the mortality rate for 1990–1994
for each age group can be calculated by adding all deaths in an age group during
this period and divided by summation of total population of the same age group of
all 5 years.

In several of my recent studies, I was stopped by a problem using the aggregate-
data in the Table 9.1 format in estimating the birth cohort (Chen et al., 2019; Chen
& Wang, 2014a, 2014b). Figure 9.3 presents a hypothetic example. Following the
conventional method, to calculate the cohort (the years of birth) for people aged
20–24 years in 1990–1994, we simply trace back of this group of persons from the
bottom right to the top left (the shaded boxes) as if they were a cohort or synthetic
cohort. By tracking, we simple code the years of birth of the persons aged 20–24 in
1990–1994 as if they were born during 1970–1974 for analysis.
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Fig. 9.4 Miss calculation of
birth cohort using
conventional approach. Note:
Persons tabulated by 5-year
age group and 5-year period
were born not in 5 years but
10 years

From Fig. 9.3, at first no one can find anything wrong or want to challenge the
method. However, a careful examination of this method, we can see that not all
persons aged 20–24 in 1990–1994 were born in 1970–1974. This can be illustrated
with Fig. 9.4. Persons aged 20–24 in 1990–1994 including those who were 20–
24 years old in 1990, 21–34 in 1991, 22–24 in 1992 and 23–24 in 1993 who
were born in 1965–1969 as the second dashed line indicated in the figure. With
the conventional methods, these persons are treated as if they were all in the year
1994 rather than the period of 1990–1994.

Obviously, cohort or year of birth determined using the conventional methods
have two problems. First, the cohort determined is incorrect using the conventional
method because approximately 1/3 (the unshaded upper triangle in the top left of
Fig. 9.4) of the persons with the coded year of births not equal the true year of
birth. According to Fig. 9.4, the correct cohort for persons aged 20–24 in 1990–
1994 should be 1965–1974, rather than 1970–1974 as show in this figure and Fig.
9.3. The second problem because of the first problem of misclassification, is the
reduction in time resolution for cohort as seen in reported studies (Wang, Hu, Sang,
Luo, & Yu, 2017). With the conventional method, the time resolution for cohort
effect is reduced 50% from 5 to 10 years. Consequently significant change in cohort
effects over time could be smoothed out when the conventional method is used to
code year of birth with tabulated data as shown in a few studies.

9.3.5 Using Single Year of Data 5 Years Apart as a Solution

To solve the problem discussed in the previous section, we invented a new method in
our previous study—using single year of data that are 5 years apart if the mortality
data are aggregated using 5 years as the age interval (Chen et al., 2019; Chen &
Wang, 2014a, 2014b). As shown in Fig. 9.5, instead of aggregating data from all 5
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Fig. 9.5 New data selection
method to correctly determine
birth cohort

years from 1990 to 1994, data in 1990 were used. Clearly, persons aged 20–24 in
1990 were born in 5 years during 1965–1969.

With this approach we solved the two problems at the same time—the cohort
is now corrected measured, and the time resolution of the cohort has doubled. In
addition, this new approach will increase work efficiency since there is no need to
aggregate 5-year data; and there is also no need to have data year by year.

9.4 Materials and Methods

9.4.1 Source of Data

Age-specific mortality rates of urban Chinese population during 1990–2010 were
derived from the China Health Statistical Yearbook. Mortality data were collected
through the Vital Registration System and the Ministry of Health and Hygiene of
China and population data were from the National Census of China (Yang et al.,
2005). Mortality rates (1/100,000) were computed as the number of deaths over the
population, overall and by 5-year age group.

We limited the age-group range from 20–24 to 80–84 years with a total of 13 age
groups. Data for people younger than 20 years of age were excluded because the
mortality during this period showed a declining trend, different from those 20 years
of age and older. The last age group 85+ was excluded because APC model cannot
handle open-ended age group (Holford, 1991; Mason & Winsboro, 1973). With data
for participants aged 80–84 in 1990, we could assess the risk of mortality as early
as 1903–1907 (1990–84 = 1905 and 1990–80 = 1910).

In conventional APC modeling analysis, 5-year average rates are used (Holford,
1991; Mason & Winsboro, 1973; Yang, 2008) (Riggs, McGraw, & Keefover, 1996;
Skegg & Cox, 1991; Stack, 2000; Wang et al., 2016). As we discussed early in this
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Table 9.2 Age-specific mortality rate (1/100,000) of people living in urban China, 1990–2010

Age group 1990 1995 2000 2005 2010

20–24 64.25 49.08 35.1 42.22 39.27
25–29 70.18 61.08 51.145 51.64 42.46
30–34 91.17 87.37 73.995 84.72 61.91
35–39 136.15 121.33 118.15 138.12 101.79
40–44 179.63 209.75 197.915 209.68 166.06
45–49 261.68 306.02 310.135 306.01 259.72
50–54 467.12 400.97 398.63 502.66 375.04
55–59 867.79 685.52 559.18 738.03 563.96
60–64 1585.39 1434.75 1096.18 1199.14 956.08
65–69 2661.59 2464.04 2145.73 1967.18 1544.13
70–77 4614.63 4311.49 3787.095 3752.49 2766.82
75–79 7455.59 6751.83 6120.66 5938.69 4889.94
80–84 12641.64 11663.7 10043.995 10092.88 8754.1

Data sources and definition: The Health Statistical Yearbook of China with mortality rates
calculated by dividing the number of deaths with the total population. Data were collected through
the Vital Registration System and the Ministry of Health and Hygiene of China and population
data were from the National Census of China

chapter, with this method, the cohort could not be correctly defined. Also, persons
in a 5-year age group within 5-year period were born in a 10-year period, reducing
the time resolution to link years of birth with changes in the risk of mortality. To
overcome the problem, we used single-year data 5-year apart in 1990, 1995, 2000,
2005, and 2010. With this approach, data for persons in a 5-year age group in 1
year were all born within 5 years—birth cohort (Chen & Wang, 2014a, 2014b). The
mortality data were presented in Table 9.2.

9.4.2 APC Modeling Analysis

Let mij and nij be the mortality rate and number of persons in age group i and time
period j. By definition, the expected number of deaths in age group i and time period
j would be Eij = mij × nij. Assuming a Poison distribution of the number of deaths,
the following log linear model was used to extract cohort effect stretching back to
1905 with data during 1990–2010:

log
(
Eij

) = μ + αi + βj + γk + ε

where Eij = expected number of deaths in age group i and year j; μ denotes the
intercept or grant mean; αi denotes the effect of age-group i (i = 20–24, 25–29,
. . . ,80–84); β j denotes the effect of period j (j = 1990, 1995, . . . , 2010); and γ k
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denotes the effect of birth cohort k (k = 1906–2010, 1910–1914, . . . ,1986–1990);
and ε~N(0, σ ).

With this model specification, a total of 42 parameters were estimated (one grant
mean μ, 13 age effects, 5 period effects, and 17 cohort effects). The 5 period effects
plus the 25 cohort effects provided data regarding the risk of mortality among urban
Chinese over a period of more than 100 years from 1906–1910 to 2010, with the
cohort effects fill in the period from 1906–1989 with no data collection. All the
parameters were estimated using the IE method (Fu, 2000; Yang, 2008; Yang et al.,
2004). The data-model fit was evaluated using the fit deviance, AIC and BIC. The
APC modeling analysis was conducted using the STATA-based software package
apc_ie with Poisson as the distribution option and logit as the link function.

Before the full-scale APC modeling, we fit the data with three 2-component
models, including AP (age and period) model, AC (age and cohort) model, and
PC (period and cohort) model (see Fig. 9.2). These three models are identifiable,
but each of them omitted one predictor. Results from these two-component models
were compared with those from the full-scale APC model to show the differences
in the estimated effects using different methods and to deepen our understanding of
the APC modeling approach.

To effectively describe the historical dynamics of mortality risk change over time
through visualization, numerical differentiation was performed over the estimated
cohort effect (Chen & Wang, 2014a, 2014b). The numerical differentiations provide
an approximate of the changing speed in mortality risk over time. In plotting the
changes, y-axis was reversed for the change speed such that any upward trend as a
Sunny Cohort during which suicide risk was reducing and any downward trend as a
Cloudy Cohort during which suicide risk was increasing.

As a convention, before statistical modeling analysis, we also plotted the
mortality data using several methods to show the potential age, period and cohort
effect.

9.5 Main Study Findings

9.5.1 Visual Presentation of the Mortality Data

Figure 9.6 depicts the age-specific mortality by year. Data from the figure indicate
that during the 30-year period from 1990 to 2010, there was a progressive decline in
the mortality for people from all age groups. Furthermore, the mortality declining
was more pronounced for people 60 years of age and older. A careful review of the
five curves, we also noted that there were no observable declines in the mortality
from 2000 to 2005 for people in all age groups, including the older residents.

We plot the same data from Fig. 9.6 using the age-group and birth-cohort method
(Fig. 9.7). Different from Fig. 9.6, a logarithm scale was used for y-axes to better
separate the mortality curves for different age groups. In the figure, each line
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Fig. 9.6 Age-specific mortality of urban Chinese in 1990, 1995, 2000, 2005 and 2010

represents an age group with mortality rates in 1990, 1995, 2000, 2005 and 2010.
Results from the figure suggest a progressive decline in mortality associated with
year of birth from 1906 to 1990. In addition, the four lines located on the top of the
map suggest that the mortality decline was smoother and more consistent for those
aged 65 years and older, compared to those in all younger age groups. In fact, the
mortality in most of the younger working age groups increased from 2000 to 2005
before it declined.

9.5.2 Comparison of Results from Four Different APC Models

Results in Fig. 9.8 shows that the age, period and cohort effects estimated with the
AP, AC and PC models all differed from those estimated with the APC model. This
result suggests that the mortality was related to all three predictors. Specifically, with
reference to the result from the APC model, the age effect was over estimated with
either the AP or the AC model; the PC model resulted in an excaudate increasing
trend in period effect while the AP model suppressed the increasing trend. The
differences were more dramatic for the cohort effect. Cohort effect obtained from
the PC model increased for the first two cohort and then progressively decline to
way below the effect from the APC model while the effect from AC model was
progressively higher than that from the APC model.
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Fig. 9.7 Age-group and birth-cohort plotting of the mortality rate of the urban Chinese in 1990,
1995, 2000, 2005 and 2010
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Fig. 9.8 Estimated age, period and cohort effects from different APC models. Data source:
Mortality data for urban Chinese collected in 1990, 1995, 2000, 2005, and 2010

9.5.3 Period Effect for Mortality Risk Change over 1990–2010

The period effect estimated from the APC modeling over 1990–2010 is presented
in Fig. 9.9. Results in the figure indicate a progressive increase in the risk of death
from 1990 to 2005 before it declined. This effect was independent from changes
in the age composition of the urban population in China and the year of births
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Fig. 9.9 Period effect β assessing the risk of mortality for urban residents of China, 1900–2010

of all urban residents during this period. The period effect extracted through APC
modeling reflected the trends in the risk of death all urban residents experienced
during the period of 1990–2010.

9.5.4 Changes in Cohort Effect Through Numerical
Differentiation

Cohort effect is the information this study intended to extract from the mortality data
collected during 1990–2010 to describe changes in the mortality risk among urban
Chinese since the early 1900s. The estimated cohort effect estimated using the full-
scale APC model for the 1905–1990 was presented in Fig. 9.8 (blue line). Despite
an overall declining trends with small ups and downs, the estimated cohort effect did
not present any more information to associated with significant historical events in
China. To better use the historical mortality risk information derived from the APC
modeling analysis, Fig. 9.10 presents the estimated cohort effect through numerical
differentiation. For example, the number of the 1911–1915 is the differences in the
mortality risk (cohort effect) of this cohort relative to the previous cohort of 1905–
1910.

For efficient presentation, in Fig. 9.10 we purposefully reversed the y-axes such
that an increase in the curve representing a period of deceleration in mortality
risk (termed as Sunny Period) and a decline in the curve representing a period of
acceleration in mortality risk (termed as Cloudy Period).
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Fig. 9.10 Historical changes in mortality risk among urban Chinese, 1911–1990: Numerical
differentiation of the cohort effect extracted using an APC model. Note: The Y-axes is reversed
such that an upward trend indicating deceleration in mortality risk and a downward trend indicating
acceleration in mortality risk

9.5.5 Sunny Periods in Historical China

Results in Fig. 9.10 reveal three obvious Sunny Periods: 1926–1936, 1951–1955,
and 1961–1975 during which deceleration in the risk of death was observed. The
first Sunny Period (1926–1930) was corresponding to the post-civil wars after the
success of the Northern Anti-Warlord Military Campaign. The country returned to
peace and started the home reconstruction. The slowing down of the mortality risk
reduction during the latter half of the period was associated with the historically
recorded famine that lasted for 3 years during 1928–1930.

The second Sunny Period (1951–1955) was corresponding to the time after
the liberation of the country and the establishment of the People’s Republic of
China was established in 1949. Although short, the reduction of mortality risk was
reasonable. With a newly liberated and united country after a long period of anti-
foreign invasion and domestic war, people started to enjoy peace, reconstruction
of the war-broken country and their homes and reconstruction of new lives.
Furthermore, the national Patriotic Health and Hygiene Movement was launched
during this period for infectious disease control.

The third Sunny Period (1961–1975). This was the longest “healthy period”
and overlapped with most part of the 10-year Cultural Revolution from 1966 to
1976. This period is also one of the most controversial periods in contemporary
China. Despite the long-standing political and cultural movement, destruction of
the traditional Chinese culture, punishment and harsh time for many political leaders
and intellectuals, the prolonged declines in the risk of mortality for the whole urban
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population could be due to the emphasis of prevention and the construction of the
three-tier primary healthcare network system and the promotion of the combination
of the Traditional Chinese Medicine with Western Medicine. In addition to health
and medicine, researchers, politicians, policymakers and historians can learn more
from this listen in China.

9.5.6 Cloudy Period in Historical China

Results in Fig. 9.10 also showed Four Cloudy Periods: 1916–1925; 1936–1945,
1956–1960, and 1976–1990. The first Cloudy Period (1916–1925) was corre-
sponded with the first and second civil wars (1914–1926) in China after the
establishment of the Republic of China in 1911. This was only a part of the long
transitions from the 2000-year long feudalistic society to the modern society for a
country with the largest population in the world.

The second Cloudy Period (1936–1950). This period was directly related to the
Anti-Japanese War as part of the World War II from 1936 to 1945 and the War
for Liberation (1946–1949). Among the four cloudy periods, the impact of this one
is the largest. China as country dominated with agriculture was invaded by Japan,
an industrialized country that attempt to dominate Asia by occupying the largest
neighbor country and massacring millions of people with war machines. A recorded
famine in 1942–1943 further worsened the survival of the population in China. The
cohort effect revealed through this APC modeling provides the first time systematic
data showing the increased mortality by Japanese invasion.

The third Cloudy Period (1956–1960). This period, fortunately short, was
associated with a number of natural, social and political events, including the Great
Leap Forward, the Anti-Righteous Agents Movement, and the sudden destruction
of the diplomatic relationship with the former Soviet Union, and another recorded
famine in 1959 in the history of China.

The last Cloudy Period (1976–1990). This period was corresponding to the
most well-known time in recent China, the Economic Reform and the Open
Policy with unprecedented rural-to-urban migration, rapid economic growth, quick
industrialization, speedy technological advancement, and dramatic cultural change
and diversification. Unfortunately, the estimated cohort effect indicate that risk of
mortality accelerated for the urban Chinese during this period, consistent with the
recorded mortality rates in the data and the estimated period effect from 1990 to
2005.

9.6 Discussion and Conclusions

In this study, we demonstrated on how to analyze data collected in recent years
using APC modeling approach to address historical epidemiological problems. With
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data collected in more recent years from 1990 to 2010 among urban population,
systematic information was extracted from the data to accurately describe the
changes in mortality risk since the early 1900s when the country had been torn
by civil wars, foreign invasion, natural disasters, political and cultural revolutions,
industrialization, and urbanization. The type of data we used is this study are widely
available (see Chap. 1 in this book) and the APC modeling is easy to implement
with the newly invented IE method (Y. Yang & Land, 2013). The revision to use
single year data as well as the introduction to use numerical differentiation further
sharpen the APC modeling method for researchers to gain more detailed insight
into historical changes with recent data (Chen et al., 2019; Chen & Wang, 2014a,
2014b). In addition to the total mortality, the same analysis can be used to assess
individual causes of deaths as well as health behaviors as reported in the literature
(Chen et al., 2003).

9.6.1 Findings and Implications for China

Findings about the historical changes in mortality risk among urban population in
China since the early 1900s has significant implications.

Good health policies as the best health protection measure.
The first and the most striking finding is the continuous improvement in mortality

risk during the 10-year Cultural Revolution. Although substantial damages from
Cultural Revolution are reported, the mortality risk persistently declined for the
longest period in modern China, but why? A careful review of the related literature
indicated that during the Cultural Revolution period, a series of important health
policies were established and implemented, including the policy of “Prevention
First”, “Emphasis of Primary Healthcare”, “Establishment of the Three-Tiered
Primary Care System”, and “Combination of Traditional Chinese Medicine with
Modern Medicine”. Despite the large-scale and long-standing social and political
turmoil with very low levels of economy and medical technology in China during
that period, no other factor can convincingly explain the continuous improvement in
people’s health at the national level except these significant and well-known health
policies and programs.

Peace is the best and most efficient guard for population health.
The second important findings of this study is the provision of systematic data

document the impact of foreign invasion and domestic wars on increased mortality
risk. Although such risk is obvious, but no systematical and valid data has been
reported in the literature. In the history of more than 100 years in China since
the 1900s, mortality risk was the highest corresponding to the time of Japanese
invasion and the anti-Japanese War during the World War II. In addition, the impact
of domestic or civil wars was also substantial; and the least was the social political
turmoil and natural disasters, which showed the smallest impact in magnitude and
lasted short in time.

http://dx.doi.org/10.1007/978-3-030-35260-8_1
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9.6.2 Economic and Technic Advancement Not Equal to Good
Health

Finding from the historical analysis of the data in China indicate that many advance-
ments in recent China, including economy, technology, and culture since the 1970s
did not translated into population health by reducing mortality. China has made
substantial advancement in economy, technology and culture after implementing
the reform and open policy since the 1980. However, evidence from our analysis
indicate an increase in risk of mortality for urban Chinese during this period,
including the cohort effect derived from age-specific mortality during 1976–1990,
and the net period effect (after controlling for age and cohort) during the 1990–2010.
This increased mortality occurred in a period when the per capita GDP in China
increased from $156 in 1978 to $3838 in 2010 (World Bank); health expenditure
increased at 11.32% annually from 1978 to 2010 (China Embassy in the United,
2012).

Fortunately, findings of this study revealed a small decline in the population
mortality risk in China since 2005 as the economy of the country continued to
grow. This decline was exactly in consistency with the heath policy change in
China (Gao, Tang, Tolhurst, & Rao, 2001; Wang, Gusmano, & Cao, 2011) from
a market-oriented healthcare back to re-establishing the free health care system, re-
emphasizing the prevention first policy and re-building the Three-Tiered Primary
Care System that once benefited people’s health at the time before the Reform and
Open Policy started in China (Hsiao, 1995).

9.6.3 APC Modeling for Historical Epidemiology

By conducting APC modeling analysis and teaching the method to graduate
students, I proposed the term historical epidemiology with APC modeling approach
(Chen et al., 2019; Chen & Wang, 2014a, 2014b). The idea of historical epidemi-
ology started with the concept that data by age are digital fossils, and these fossils
contain information regarding the past of an issue we would like to know. Although
contained in the age-specific data, the information is indexed by the year of birth—
cohort effect. Furthermore, such information can be extracted with APC modeling
method, a readily available tool to extract the indexed information. Findings from
this study add new evidence to my previous research, supporting the historical
epidemiology research with APC modeling method and aggregated data.

Several issues are to be considered when conducting APC modeling for historical
epidemiological research. First, your data have not to be in 5-year age group, shorter
age groups are even better to describe the risk in the past. For example, if single-year
data are available, cohort effect can thus be estimated by single year of birth, more
accurate than 5-year interval. Cohort effect estimated by single year will be better
than by multi-year to associate the risk with historical events. Second, the older the
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age in data, the longer the research can trace back to the history. If data are available
up to 100 years of age, such data can be used to trace back literately to 100 years
back in the past. Third, data for only 1 year cannot be analyzed using APC modeling
method; you must have data for multiple years. Mathematically, data for a minimum
of 3 years are needed to obtain valid effect estimates.

Application of the APC modeling in research has been hindered for long time
because of the non-identifiablity issue inherited with the method. The invention of
the IE method has promoted the use of APC modeling in research (Chen et al., 2019;
Chung, Yip, Chan, & Wong, 2016; Li, Wang, Gao, Xu, & Chen, 2016; Wang et al.,
2017; Yang & Land, 2013). Despite many strengths, commercial software is needed
to implement the IE method. Furthermore, the IE method reads complex even
for researchers with training in mathematics and statistics, which may reduce the
confidence of a researcher to select the for APC modeling. In recent methodology
study, we have developed another method to deal with the identifiablity issue
inherited with the APC model—Solving APC model using generalized inverse
matrix method. This method is based on the well-established Moore and Penrose
generalized inverse matrix theory (Moore & Barnard, 1935; Penrose, 1955) and
can be executed using R, and software free of charge. Chapter 10 that follows next
provides more detailed description about this method.

9.6.4 Implication for Research in Other Countries

One purpose of this chapter is to introduce this method for anyone to conduct
research studies in countries all over the world. With research findings from more
countries, they will inform local health policy and decision-making with both a
historical and a global perspective. The success of this study indicate that similar
studies can be conducted for many countries in the world as long as data on
population health are available in recent one or two decades. For example, if the
earliest data are available for a health measure for people in a country up to 80 years
of age in 1980, such data can be used to assess health status since 1900. Such
data will help us much to investigate social, political, economic and technological
development in affecting population health. As we will see, such information is
unique and important for researchers, policy-makers, and the general public to know
the health history of their country, to make decisions and to from relevant policies
and strategies to handle challenge medical and health issues by adding a historical
perspective. When data from many countries are reported in the literature, we can
form a historical and global perspective to understand human health and to deal with
global and local health challenges with a broader spatiotemporal perspective.

http://dx.doi.org/10.1007/978-3-030-35260-8_10
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9.6.5 Limitations and Conclusion Remarks

There are several limitations. First, no mortality data by single year of age was
available from the data source. This prevented us from using single but 5-year
interval to assessing the timing of an observed change in the mortality risk over
time. Second, we did not quantify the relationship between the historical events and
the mortality risk. Conducting such studies need to have solid methods to code the
historical events, which is technically challenging. More methodological research
is needed to code these events for quantitative (i.e., correlation and regression)
analyses.

Despite the limitations described above, this study is the first one to demonstrate
the potentials to examine historical events on population health with APC modeling
methods and recent data. It sets an example for researchers in different countries
in the world to conduct historical epidemiological research, to obtain new data
supporting global health and modern epidemiology.
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Chapter 10
Moore-Penrose Generalized-Inverse
Solution to APC Modeling for Historical
Epidemiology and Global Health

(Din) Ding-Geng Chen, Xinguang Chen, and Huaizhen Qin

Abstract Age-period-cohort (APC) modeling provides a powerful method for
global health research in resource-limited countries and regions with limited data.
This method enables researchers to investigate medical and health conditions and
influential factors, potentially up to 100+ year in the past with data collected
in recent decades. Although widely used in research to examine mortality of
various diseases, suicide and quality of life, an APC model is mathematically
nonidentifiable. This is because the conlinearity among the three time-related
predictors (age, period, and birth cohort). Various methods are reported to deal with
this identifiability issue, particularly the intrinsic estimator (IE) that has been most
accepted. IE method has been developed through much effort, including mathe-
matical proof, simulations and empirical testing. In this chapter, we introduce the
application of Moor-Penrose generalized inverse matrix method (MP) in handling
the nonidentifiable issue. Relative to the IE method, the MP method is straight-
forward to understand and easy to implement. We also show that mathematically
MP method is equivalent to IE method.
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10.1 Introduction

Age-Period-Cohort (APC) modeling is a classic method widely used in research
to address challenge medical and health problems. With the method, researchers
can decomposite an observed rate of a medical and health indicators into three
independent components: age, period and cohort effect. Another name for APC
modeling is cohort analysis based on Dr. Frost’s research published in 1939
examining age and cohort differences in tuberculosis mortality (Frost, 1939). The
method has been established through continuous efforts by a number of researchers,
such as Mason and Winsboro (Mason & Winsboro, 1973), Feinber and Masion
(Fienberg & Mason, 1979), Clayton and colleagues (Clayton & Schifflers, 1987a,
1987b), Holfort (Holford, 1991), Robertson and colleagues (Robertson & Boyle,
1998), and Carstensen (Carstensen, 2007). APC modeling method is designed for
analyzing aggregate data. Dr. Yong and her colleagues expanded the method to
analyze individual-level data (Yang & Land, 2013). Researchers who want to know
more about historical development and method application can consult the book
by O’Brien with focus on aggregated data analysis (O’Brien, 2015) and Yang &
Land with focus on both aggregated and individual-level data analysis (Yang &
Land, 2013).

An APC model is designated to model demographic rates, such as mortality,
morbidity, fertility observed for a broad age range over a reasonably long time
period. The data are tabulated by year of data collection (period) and chronological
age when the data were collect; knowing the year of data collection and age at
data collection, year of birth (cohort) is derived. For readers who are familiar with
demography, the principle of APC modeling can better be understood using a Lexis-
diagram which is a coordinate system with data of follow-up along the x-axis, and
age along the y-axis with elements on the diagonal as cohort (Carstensen, 2007;
Fienberg & Mason, 1979). The purpose of APC modeling is to decomposite the
overall rate of an event by year into three independent components of age effect,
period effect and cohort effects, describing the contribution of these three time-
related factors to the observed trends in the study variables. For example, APC
modeling method can be used to computer age and cohort adjusted rate to describe
the true time trend in an vital events (as described in Chap. 9) and can used to
examine historical trends during a period in the past with no data using the estimated
cohort effect as in reported studies (X. Chen et al., 2019; Chen & Wang, 2014) and
in Chap. 9 in this book.

APC modeling has been widely used in research to examine many medical and
health problems at the population level, including the analysis of morbidity and
mortality in general (Holford, 1991; Wang, Hu, Sang, Luo, & Yu, 2017; Yang,
2008), mortality of infectious diseases (Comstock, 1995; Frost, 1939; Li, Wang,
Gao, Xu, & Chen, 2016), heart diseases (Chang, Li, Li, & Sun, 2017), stroke (Wang
et al., 2017), cancer (Clayton & Schifflers, 1987a, 1987b), and suicide (Chen et
al., 2019; Chung, Yip, Chan, & Wong, 2016). Despite widely application, the APC
model has an inheretic issue-identifiability. Generally, the APC model can be used

http://dx.doi.org/10.1007/978-3-030-35260-8_9
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to model the (log)rates as a sum of (non-linear) age- period-cohort-effects. The three
variables age (at follow-up), a, period (i.e. date of follow-up), p, and cohort (date
of birth), c with calculated as c = p-a. Hence the three variables used to describe
rates are linearly related, and the model can therefore be parametrized in different
ways, and still produce the same estimated rates. In a sense, the development in
APC model is a process to find ways to handle this nonidentifiability problem.

One most accepted method to deal with the nonidentifiability problem is the
established of a method named as intrinsic estimator (IE) (Yang, Fu, & Land, 2004;
Yang & Land, 2013). In this method, among all possible solutions to a constructed
APC model, the one with the shortest distance to the origin is selected as the
parameter estimates. The validity and efficiency of IE method has been proved
mathematically and tested through religious simulation studies (Luo, 2013; Yang
& Land, 2013). Although the IE method is now widely used, it is difficult for
users to understand this approach analytically. In our own research on unidentified
modelling, we found many strengths of Moore-Penrose (MP) generalized inverse
method, including its solid mathematically foundation, relative more straight-
forward to understand as well as convenient to implement using R, the open-source
software free of charge.

In this chapter, we described our work to develop and test the MP-based
method to solve for APC model (thereafter referred as “MP-APC”). For better
communication, we named the IE method to solve APC as “IE-APC”. After a
description of the method, we tested MP-APC with Japanese breast cancer data from
O’Brien (2015). We then compared results from MP-APC with those from IE-APC
also presented in O’Brien (2015). In the last part of this chapter, we mathematically
demonstrate the equivalence of the two method.

10.2 APC Model and Its Estimation

10.2.1 An Introduction to APC Model

APC model relates the dependent variable to the effects of age, period and cohort.
Corresponding to an aggregated age-period data table with total m age-groups and
n time periods, the APC model can be described as follows:

yij = μ + αi + βj + γm−i+j + εij (10.1)

where yij is the dependent variable in the ijth cell of the age-period table, μ is the
intercept, αi is the ith age effect, β j is the jth period effect, γm−i+j is the (m− i+ j)th
cohort effect. εij is the error term associated with the residuals in the age-period
table. In matrix form, Model (1) can be re-written as follows:

y = Xb + ε (10.2)
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where y is the vector of observed dependent observations with mn rows, X is the
design matrix associated with Model (1) which describe the intercept and the effects
of age-period-cohort and therefore has dimension of mn rows and 2(m + n − 3)
columns (i.e., 1 for intercept, m − 1 for age effects, n − 1 for period effects and
m + n − 2 for cohort effects), b is the parameter vector to be estimated which
has 2(m + n) − 3 rows, and ε is the vector of residuals with mn rows which is
typically assumed to be uncorrelated with the design matrix as X

′
ε = 0. Therefore

multiplying X′ to Eq. (10.2), we can obtained the normal equation as follows:

X′Xb = X′y (10.3)

which can be used to estimate the parameter vector, b, if X is full column rank
matrix. However, this is not the case in APC modeling where X is not full column
rank matrix due to the linear dependences among the age-period-cohort effects.
Therefore methods are needed to deal with this problem.

10.2.2 Solving APC Using MP Method

To solve APC described in Eq. (10.3) that is not identifiable, we make use of the
generalized-inverse in matrix theory. In general, a generalized-inverse for a matrix
A (for APC modeling, A = X′X) is defined as: AA− A = A, where A− is called
the generalized-inverse of A. The purpose of the generalized-inverse is to have a
general solution b = A− X′y for any linear system, such as described in Eq. (10.3),
regardless of the existence of the inverse of coefficient matrix A.

With this notation, the general solution to the APC Eq. (10.3) can be expressed
in b = A−X′

y + (I − A−A)z where I is the identity matrix and A− is any fixed
generalized-inverse of A, while z represents an arbitrary vector. Therefore, the
generalized-inverse A− is not unique which is equivalent to say that the APC in
Eq. (10.3) cannot be solved uniquely.

Inspired by the general inverse matrix theory, particularly the work by Moore
and Barnard (1935) and Penrose (1955), we make use of a mathematical approach
to this problem, i.e. MP-APC.

In his famous paper, Moore and Barnard (1935) proposed three more conditions
to the generalized inverse A− defined above. They are as follows:

AA−A = A (10.4)

The original definition of generalized-inverse matrix is to allow any admissible
APC in Eq. (10.3) to be solved easily by matrix representation regardless of
the existence of the inverse of coefficient matrix. With this extension, the only
requirement is that AA− will map all column vectors of A to the same column
vectors, respectively.

A−AA− = A− (10.5)
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This added condition makes A− a generalized reflexive inverse of A. With this
condition A−A does not need to be an identity matrix, but to map all column vectors
of A− to the same column vectors, respectively.

(
AA−)′ = AA− (10.6)

The third condition addresses the transpose of AA− to be itself. It indicates
that AA− is a Hermitian matrix. This is intuitively true that when A is invertible,
AA− = AA−1 = I and the transpose of identity matrix I is itself

(
A−A

)′ = A−A (10.7)

The fourth condition is similar to the third condition. It indicates that A−A is a
Hermitian matrix with an intuitive explanation similar to the third condition.

Moore’s extended definition did not receive any attention in the mathematics field
for 20 years until Penrose (1955) proved the uniqueness of Moore’s definition. Since
Penrose’s work, this definition has been named as Moore-Penrose generalized-
inverse and is typically denoted as A+. The Moore-Penrose generalized inverse
has several mathematical properties, and the most relevant one to APC is that the
solution of b = A+X′

y is unique as well as being the minimum-norm (i.e. minimum
length) solution. It provides a mathematical approach to overcome the challenge in
solving a APC model with a non-full rank coefficient matrix. This MP-APC can be
very easily implemented in R with function “ginv”.

We have used this MP generalized inverse to solve un-identified application in
epidemiological and public health problems, such as, to solve PDES for tobacco
control (Chen & Chen, 2015; Chen, Yu, & Chen, 2018; Hu, Chen, Cook, Chen, &
Okafor, 2016; Yu, Chen, & Wang, 2018). The MP-APC described in this chapter is
an extension of our research using MP-theory based method to handle nonidentified
systems in research.

10.3 Application with Real Data

10.3.1 Data Source and Arrangement

For illustration, we make use of the data from Clayton and Schifflers (1987a) which
described the mortality rates per 100,000 and the number of cases of breast cancer
mortality in Japan during the period 1955–1979. The data in Table 10.1 were derived
from Table 2.3 in the book by O’Brien (2015, pp. 33). As seen in Table 10.1, the
mortality data per 100,000 are organized by 5-year age group with a total of 11
groups, aggregated also by 5-year period with a total of five periods.
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Table 10.1 Breast cancer mortality rates (1/100,000) among Japanese women breast cancer

Period
Age 1955–1959 1960–1964 1965–1969 1970–1974 1975–1979

25–29 0.44 0.38 0.46 0.55 0.68
30–30 1.69 1.69 1.75 2.31 2.52
35–39 4.01 3.90 4.11 4.44 4.80
40–44 6.59 6.57 6.81 7.79 8.27
45–49 8.51 9.61 9.96 11.68 12.51
50–54 10.49 10.80 12.36 14.59 16.56
55–59 11.36 11.51 12.98 14.97 17.79
60–64 12.03 10.67 12.67 14.46 16.42
65–69 12.55 12.03 12.10 13.81 16.46
70–74 15.81 13.87 12.65 14.00 15.60
75–79 17.97 15.62 15.83 15.71 16.52

Source of the original data: Clayton, D., & Schifflers, E. (1987b). Models for temporal variation
in cancer rates. II: Age-period-cohort models. Stat Med, 6(4), 469–481

10.3.2 Modeling Analysis with MP-APC

To implement MP-APC, we first reformat the data in Table 10.1 into Eq. (10.2)
where y is the vector of log-transformed mortality rates with m = 11 age-groups
and n = 5 period-groups, i.e. y is a mn = 55 × 1 vector.

Similarly, we make the design matrix, X, for MP-APC with dimension mn = 55
rows and 2(m + n) − 3 = 29 columns (i.e., 1 for intercept, 10 for age effects, 4
for period effects and 14 for cohort effects). The model parameter estimates can be
obtained as

b̂ = (
X′X

)+
X′y. (10.8)

This MP-based Eq. (10.8) can be computed to solve for b with R program as
b = ginv(t(X) % ∗ % X) % ∗ % t(X) % ∗ % y, where t(X) is the transpose of
matrix X, “%∗%” is the matrix product and “ginv” is the Moore-Penrose generalized
inverse. The detail implementation of the entire analysis can be seen from the R
program in Appendix A.

With this computation, Fig. 10.1 illustrates the MP-APC fitted log-mortality rates
with respect to the observed log-mortality rates. It can be seen that they are very
close with R2 = 0.9994, which indicates a very satisfactory MP-APC model fitting.

We further performed a Shapiro-Wilk normality test on the residuals and yielded
a p-value of 0.9796. This result indicated that the residuals from MP-APC modeling
of the data are normally distributed. Figure 10.2 graphically illustrated the QQ-
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Fig. 10.1 The observed log-mortality rates and the MP-APC fitted log-mortality rates

plot of the residual and again confirmed that the residuals are normally distributed.
This residual diagnostic analysis validated the assumption of normally distributed
residuals of APC model in Eq. (10.1).

For further statistical inference, we programmed the computations of standard
error, t-statistics and the associated p-values for statistical hypothesis testing. The
estimates for the 52 parameters of the constructed APC model using the MP-APC
modeling analysis are presented in Table 10.2 (last four columns, including the
estimated model coefficients, standard error, t-values and the associated p-values).

The estimated parameters in Table 10.2 describe the relationship between the
three time-related variables, age, time period and birth cohort and the risk of death
due to breast cancer among women in Japan. For example, the estimated age effects
indicate the risk of breast cancer death increased progressively since age 25, peaked
at ages 55–59, followed by a declining trends. The estimated period effects indicated
a continuous increasing trends in breast cancer mortality among Japanese women
from 1955 to 1979. The estimated cohort effect indicate varying risk of breast cancer
death for Japanese women born in different periods.
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Fig. 10.2 QQ-normal plot on the residuals from MP-APC

10.3.3 Comparison with Results from IE-APC

As reported by O’Brien (2015), the first column (IE-APC) in Table 10.2 are the
estimates for the same 52 parameters using the same data in Table 10.1. This result
was reported in Table 2.5 from O’Brien original work (2015, pp. 37). By comparing
the results presented in the first and second column of Table 10.2, we noted that
parameters estimated using the MP-APC are identical with those from the IE-APC.

10.4 Relationship Between IE-APC and MP-APC

To explore potential reasons why the estimated results from our MP-APC modeling
method and those from the IE-APC method, we conducted mathematical analysis to
understand potential underlying relationships between the two methods in handling
the non-identifiability issue for APC modeling.
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Table 10.2 Results from MP-APC with comparison to IE-APC from O’Brien (2015)

IE-APC MP-APC
Est Est. Std.Err t-value Pr(>|t|)

Intercept 1.9887 1.9887 0.0338 58.9255 0.0000

Age 25–29 −2.3302 −2.3303 0.0967 −24.1022 0.0000
30–30 −0.9899 −0.9899 0.0866 −11.4336 0.0000
35–39 −0.2885 −0.2885 0.0877 −3.2904 0.0014
40–44 0.1636 0.1636 0.0896 1.8262 0.0397
45–49 0.4533 0.4533 0.0915 4.9556 0.0000
50–54 0.6057 0.6057 0.0926 6.5400 0.0000
55–59 0.6147 0.6147 0.0916 6.7147 0.0000
60–64 0.5248 0.5248 0.0898 5.8440 0.0000
65–69 0.4529 0.4529 0.0880 5.1446 0.0000
70–74 0.4070 0.4070 0.0870 4.6756 0.0000
75–79 0.3866 0.3866 0.0945 4.0924 0.0002

Period 1955–59 −0.2636 −0.2636 0.0536 −4.9151 0.0000
1960–64 −0.1977 −0.1977 0.0543 −3.6421 0.0006
1965–69 −0.0432 −0.0432 0.0543 −0.7953 0.2168
1970–74 0.1674 0.1674 0.0535 3.1262 0.0022
1975–79 0.3371 0.3371 0.0558 6.0363 0.0000

Cohort 1875–79 0.7770 0.7770 0.1848 4.2052 0.0001
1880–84 0.5997 0.5998 0.1336 4.4907 0.0001
1885–89 0.4044 0.4044 0.1124 3.5974 0.0007
1890–94 0.2194 0.2194 0.1005 2.1826 0.0191
1895–99 0.0809 0.0810 0.0918 0.8822 0.1929
1900–04 0.0314 0.0314 0.0972 0.3225 0.3748
1905–09 −0.0077 −0.0077 0.1004 −0.0768 0.4697
1910–14 −0.0277 −0.0277 0.1011 −0.2737 0.3933
1915–19 −0.0727 −0.0727 0.0993 −0.7323 0.2353
1920–24 −0.1638 −0.1638 0.0948 −1.7270 0.0480
1925–29 −0.2511 −0.2511 0.0883 −2.8439 0.0043
1930–34 −0.3945 −0.3945 0.0955 −4.1309 0.0002
1935–39 −0.3965 −0.3965 0.1070 −3.7073 0.0005
1940–44 −0.4177 −0.4177 0.1284 −3.2530 0.0016
1945–49 −0.3812 −0.3812 0.2111 −1.8055 0.0413

10.4.1 IE-APC Modeling

In IE-APC modeling, it deals with the same APC model as described in Eq. (10.2)
with the X matrix being not a full rank but one column short. Consequently, Eq.
(10.3) has an infinite number of solutions, each of which can be written as

b̂ = B + tB0, (10.9)
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where t is a real number, vector B0 the unique unit-length (B ′
0B0 = 1) eigenvector

of X with respect to the eigenvalue 0 (XB0 = 0), and B is the intrinsic estimator
(IE) B, which is orthogonal to B0 and is uniquely determined by Y and matrix X
(Yang et al., 2004; Yang, Schulhofer-Wohl, Fu, & Land, 2008). However, a unique
singular-value decomposition of the matrix X exists (Golub & Reinsch, 1970):

X = U × diag (σ1, . . . , σr−1, 0) × V ′, (10.10)

where r = 2(m + n) − 4 is the ranked of X, σ 1 > · · · > σ r − 1 > 0, U
′
U = V

′
V = Ir,

the identify matrix of order r. It follows that

A = X′X
= V × diag (σ1, . . . , σr−1, 0) × U ′U × diag (σ1, . . . , σr−1, 0) × V ′

= V × diag
(
σ 2

1 , . . . , σ 2
r−1, 0

)× V ′.
(10.11)

10.4.2 MP-APC Modeling

When using MP-APC method, the Moore-Penrose inverse of A is

A+ = V × diag

(
1

σ 2
1

, . . . ,
1

σ 2
r−1

, 0

)

× V ′. (10.12)

This MP matrix is unique and satisfies all the three Eqs. (10.4), (10.5), and (10.6).
It can be shown that

b̂I
def= A+X′y = V × diag

(
1

σ1
, . . . ,

1

σr−1
, 0

)

× U ′y (10.13)

Equation (10.13) is exactly the same as Eq. (10.11) for IE method. First, it is
uniquely determined by X and y according to the uniqueness of the SVD of matrix
X. Second,

b̂′
IB0 = y′U diag

(
1
σ1

, . . . , 1
σr−1

, 0
)

V ′B0

= y′U diag

(
1
σ 2

1
, . . . , 1

σ 2
r−1

, 0

)

× diag (σ1, . . . , σr−1, 0) × V ′B0

= y′U diag

(
1
σ 2

1
, . . . , 1

σ 2
r−1

, 0

)

U ′U × diag (σ1, . . . , σr−1, 0) × V ′B0

= y′U diag

(
1
σ 2

1
, . . . , 1

σ 2
r−1

, 0

)

U ′XB0 = 0.

(10.14)

Third, it follows from Eqs. (10.13) and (10.14) that
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X′Xb̂I = V × diagdiag (σ1, . . . , σr−1, 0) × U ′U × diag (σ1, . . . , σr−1, 0) × V ′ V

× diag
(

1
σ1

, . . . , 1
σr−1

, 0
)

× U ′y
= V × diagdiag (σ1, . . . , σr−1, 0) × U ′y

= X′y.

(10.15)

In other words, b̂I is a solution to Eq. (10.3). According to Eqs. (10.12) and
(10.13), for an arbitrary t, b̂ = b̂I + tB0 is an also solution to Eq. (10.3).

10.5 Discussion and Conclusions

In this chapter, we first briefly introduced the APC modeling method and listed
its application research. We then introduced in detail about the MP-APC modeling
method, including its principle, and application in handling the nonidentifiability
issue, test the method with real data, and compared the results from MP-APC we
proposed with those from the widely accepted IE-APC method. After we observed
the identical results from the two methods, we further demonstrate that these two
approaches are mathematically identical.

There are several advantages with our MP-APC modeling method than the IE-
APC modeling and so as for many other methods previously reported. The MP-APC
modeling method is based on a well-established Moore-Penrose generalized inverse
matrix theory (Moore & Barnard, 1935; Penrose, 1955). We also used this approach
in our previous research to dealing with under-defined systems (Chen & Chen, 2015;
Chen et al., 2018; Hu et al., 2016; Yu et al., 2018).

Relative to the IE-APC, the MP-APC modeling approach is mathematically more
straight forward. It simply mimic the method to solve for a linear matrix system
but with a X matrix short of one column to be a full-ranked matrix. This will be
much easier for researchers with limited mathematical background to understand
the method, therefore may be more confident to use it in their own research. No one
wants to use a method he/she has little understanding of it.

Relative to IE-APC, MP-APC can be implemented using the well-tested and
widely available packages/functions from the free software R. In addition to facil-
itating programing and statistical computing, this advantage will allow researchers
in middle- and low-income countries with limited sources to use the powerful
APC modeling method in advancing their research to promote global health and
epidemiology. To facilitate application of the MP-APC modeling method, in the
Appendix, a set of R programming codes is provided for use.

It is worth mentioning that the MP-APC method provides a method for us to
obtain an unique solutions for a constructed APC model, this does not mean that the
nonidentifiability of the APC model has been solved. It is likely a solution obtained
using the MP-APC modeling may be biased in some special conditions when a large
number of information carried by the missed column cannot be represented by the
rest of the data.
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Appendix: R Program for MP-APC

### 1. Get the data in Table 2.3 from O’Brian, page 33:
# Note: a. data should be in .csv format
# b. The 1st col is the “Age”
# c. The rest cols are the mortality rates by “period”
dd = read.csv(“table2.3.csv”, row.names=“Age”,header=T)
# get the data dimension
dat.dim = dim(dd); a = dat.dim[1];a; p = dat.dim[2];p;
# age/period
# make the y-vector corresponding to the parms
y = matrix(t(as.matrix(dd)), ncol=1)
# log-transformation to the mortality rate
y = log(y); nobs = length(y)
# Call the apcmat to make the parameters with constraints
source(“apc_fun.r”)
xmat = apcmat(a, p); nparm = dim(xmat)[2]
### 2. MP now #####
library(MASS)
# parm estimates
estparm = ginv(t(xmat)%∗%xmat)%∗%t(xmat)%∗%y
# calculate the parm estimates for the last effects
muhat = estparm[1]; alphahat1=estparm[2:a];
betahat1=estparm[(a+1):(a+p-1)];gammahat1=estparm[(a+p):
(2∗a+2∗p-3)]
alphahat = c(alphahat1, -sum(alphahat1))
betahat = c(betahat1,-sum(betahat1))
gammahat = c(gammahat1,-sum(gammahat1))
# put all the parm together for MP-APC
estparm.vec = c(muhat, alphahat,betahat,gammahat)
round(estparm.vec,4) # compare this to Table 2.5 at page 37

############################################
## The subroutine function of “apc_fun.r”
apcmat <- function(a, p){
## matrix for APC model, see Fu (1998)

alpha <- rbind(diag(rep(1, a - 1)), rep(-1, a - 1))
beta <- rbind(diag(rep(1, p - 1)), rep(-1, p - 1))
gamma <- rbind(diag(rep(1, a + p - 2)), rep(-1, a + p - 2))
x <- rep(0, 2 ∗ (a + p) - 3)
for(i in 1:a) {

for(j in 1:p) {
rr <- c(1, alpha[i, ], beta[j, ], gamma[a - i + j, ])
x <- rbind(x, rr)

}
}
x <- x[-1, ]
x

} # end of “apcmat”
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Chapter 11
Mixed Effects Modeling of Multi-site
Data-Health Behaviors Among
Adolescents in Hong Kong, Macao,
Taipei, Wuhan and Zhuhai

Xinguang Chen

Abstract An important approach for global health and epidemiology research is
to collect and use data from multiple study-sites within one or between various
cultures to address high impact medical and health issues. When multisite data are
used, it is challenge to deal with data heterogeneity, since such heterogeneity cannot
be efficiently addressed using conventional multivariate regression methods. In this
chapter, we describe application of mixed effects modeling, a statistical method
designated for analyzing longitudinal trials, in analyzing cross-sectional multisite
data. We demonstrate the application using data collected among middle and high
school students in five Chinese cities (n = 13,950), including Hong Kong, Macau,
Taipei, Wuhan, and Zhuhai. Data for lifestyle (sedentary, dietary, physical activity)
and addictive behaviors (cigarette smoking, alcohol consumption and participation
in gamble) were analyzed as outcomes. Factors at the individual and contextual
level, as well as interventions between the two were associated with the outcome
variables. Findings of this study indicate that although sharing a similar mainstream
Chinese culture, these adolescent participants were significantly different from each
other with regard to engagement in health-related behavior and the differences were
associated with both individual- and contextual-level factors.
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11.1 Introduction

Rapid globalization since the last century presents a challenge to today’s health
problems for all people across the globe (Blum & Nelson-Mmari, 2004; Woodward,
Drager, Beaglehole, & Lipson, 2001; Yu, Chen, & Li, 2014). It is challenge for
many of us to adapt to the rapid economic and social changes along with the
globalization (Labonte, Mohindra, & Schrecker, 2011; Martens, Akin, Maud, &
Mohsin, 2010; Taylor, 2009). The unevenly-paced development, a major driving
force for population migration, leads to health disparities not only among countries
across the globe but also across different regions within a country (Charlson et al.,
2015; Lopez, Mathers, Ezzati, Jamison, & Murray, 2006; Walker, Mcgee, & Druss,
2015). The unevenly-paced development also leads to increased frequency of travel-
ing and large-scale population migration, while rapid advancement in technologies
gives people more options to adopt different cultures and lifestyles. In addition to
accelerating the spread of infectious diseases such as HIV/AIDS, tuberculosis, and
Dengue (Cain, Benoit, Winston, & Mac Kenzie, 2008; Chen, Yu, Zhou, et al., 2015;
Fredericks & Fernandez-Sesma, 2014), globalization and population migration put
migrants under stress (Chen, Yu, Gong, Zeng, & MacDonell, 2015; Hertz, 1993; Yu
et al., 2019) and make more people adopt unhealthy lifestyles, including reductions
in physical activities, increases in unhealthy diet with more calories and less
vegetables and fruits, increases in abuse of internet, tobacco, alcohol, and illicit
drugs (Chen, Unger, Cruz, & Johnson, 1999; Gil, Wagner, & Vega, 2000; McLeod,
Buscemi, & Bohnert, 2016). Although many of us may already be aware that it is
unwise to risk health for money, but we often forget health. Evidence from empirical
research study is needed to inform all individuals and the society as a whole to make
wise choices for healthy life.

Despite numerous challenges, globalization also provides opportunities to
address these challenges. The rapid economic and technological development
make it possible for researchers to assess medical, health, and behavioral problems
across different cultures and countries distant apart (Sperber, 2009). For example,
many researchers from the World Health Organization and the United States have
conducted collaborative international and global studies to understand tobacco
use and to test and implement evidence-based intervention programs for tobacco
use prevention and cessation (Global Youth Tobacco Survey Collaborating Group,
2003; Warren, Jones, Eriksen, Asma, and Global Tobacco Surveillance System
(GTSS) Collaborative Group, 2006; Yach, 2014). In addition to healthy lifestyles,
collective effort for international and global research, intervention and control of
the HIV/AIDS epidemic becomes a mainstream in global health and epidemiology
(Decker et al., 2014; Gouws, Cuchi, and International Collaboration on Estimating
HIV Incidence by Modes of Transmission, 2012; Mathers et al., 2010).

Globalization also makes it possible to conduct global epidemiological research
without traveling to different countries. One consequence from globalization is
that it brings people from different cultures, regions and countries together in one
place. Colleges and universities with international students represent best examples
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in favor of conducting global health research without traveling. International
students, particularly graduate students bring with them much of their native culture,
beliefs, and lifestyles. Data collected from them provide a very useful source for
epidemiology and global health research. This approach has been widely used in
studing stress, depression, smoking, dietary factors, and physical activities with
a cross-cultural and global perspective (Haase, Steptoe, Sallis, & Wardle, 2004;
Steptoe et al., 2002; Wang & Mallinckrodt, 2006).

Industrial zones in both developed and developing countries present another
example for international and global health research without traveling. In these
settings, data can be collected among people come from multiple countries who
join the workforce in one location. Capitalizing on this advantage, researchers
can investigate medical and health issues related to population migration (such as
vulnerability to poor health, tuberculosis, HIV spreading and control, and migration
stress) with a cross-cultural/country data without cross-country traveling (Chen, Yu,
Zhou, et al., 2015; Jia et al., 2008; Organista et al., 2013; Quesada, Hart, & Bourgois,
2011).

11.2 Methodology Challenge and Alternatives

Relative to commonly reported studies, research with a global focus must deal
with data heterogeneity—data for participants coming from different countries and
places with greater between-group difference than within group difference. In this
case, using conventional statistical methods designated for homogenous samples
will lead to false conclusions. Therefore, the commonly used statistical methods
such as student t-test, ANOVA, linear correlation and regression will no longer
be appropriate. Fortunately, there is an alternative—the mixed effects modeling
method. This advanced statistical method was originally devised for analyzing
multi-center randomized controlled trials with longitudinal data; and it can be
adopted to analyze multi-site cross-sectional data collected among participants from
different countries and places.

11.2.1 Heterogeneity Data for Global Health Research

A study with data collected from participants in different cultures, countries and/or
regions is somewhat like a natural experimental design to examine medical and
health issues with a cross-cultural or global perspective. For example, by comparing
women living in Japan with Japanese American women who migrated to or born
in the United States, one can examine the role of genetic factors, diet and lifestyle
factors for breast cancer (Severson, Nomura, Grove, & Stemmermann, 1989). The
advantage of such design is obvious. It provides an ideal approach for researchers
to exam the complex genetic, environmental factors and interactions between the
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two; and findings from such research will provide unique data supporting culturally
appropriate cancer prevention interventions.

However, a “side-effect” from this cross-country approach is that data collected
from a cross-country sample are highly heterogeneous. Relative to data collected
from a homogenous sample of one country (site), the between-site variance in a
study variable is often greater than the within-site variance (McGraw & Wong, 1996;
Verbeke & Lesaffre, 1996). This data heterogeneity, if not considered, will result in
underestimate of variance and inflation of type I error, leading to false statistical
inferential conclusion (Bonett, 2002; Verbeke & Lesaffre, 1996). That is, a non-
significant result could be mistakenly concluded as statistically significant.

11.2.2 Understand Multi-site and Multi-level Data

With a multi-site (i.e., cities, states, or countries) design, data can be collected at
both the individual participant level and the study site-level. Table 11.1 presents a
data structure for a five-city study project we used in this chapter (detailed in next
section). As shown in the table, data will be collected among middle and high school
students from five Chinese cities, Hong Kong, Macau, Taipei, Wuhan and Zhuhai.
With the design we can collect data for five individual participating cities: the site-
level data Xj (j = 1, 2, . . . , 5). Any data in all J study cites that may affect the
study problems can be collected. Typical data include population size, geographic
area, economy, healthcare systems, physicians, nurses, hospital beds, and health
expenditure. We listed two variables (population and per capita GDP) as an example
in the table. In addition to describing the study site, these variables can be used as
predictors in statistical analysis for other study purposes.

When site-level data are not available, an alternative approach is to calculate the
mean of the individual level data as a proxy of the site-level measure. The calculated
mean provides an unbiased estimate for the site if individual participants of a site
are randomly selected. For example, the amount of money students spend per week

Table 11.1 Multi-site two-level data structure for a five-city school-based survey study

Site/variable Hong Kong J = 1 Macau J = 2 Taipei J = 3 Wuhan J = 4 Zhuhai J = 5

Site level (Xj)
Population
Per capita GDP
. . .

Individual level (Xij)
Age
Sex
Grade
Smoking

. . .
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can be estimated using data collected from individual participants of a city and used
as a proxy of the site-level socioeconomic status.

In addition to site-level data, individual-level data are collected. As shown also in
Table 11.1, individual-level data are expressed using Xij for individual participant
i (i = 1, 2, . . . , nj) in site j (j = 1, 2, . . . , 5). Obviously, the individual participant-
level data are simply an aggregation of a single-site study to a multi-site study by
adding more sites with the same or similar variables across all sites. In practice,
individual sites with slightly different variables can be used to accommodate actual
situations and different needs. More details about multi-site study with slightly
different variables are discussed in Chap. 5 in this book.

11.3 A Study Across Five Chinese Cities: An Example

11.3.1 Purposes and Rational

Differences between a developing and a developed country (such as China and
United States) may provide unique data to assess the impact of economic and
technological factors on the risk of health and diseases (Strong et al., 2015; Turbin
et al., 2006; Yoshino et al., 2006). However, results from cross-country comparisons
can be confounded by differences in the mainstream cultures if participants are
recruited from countries with different cultural traditions and practices (Dummer &
Cook, 2008; Michaud, Blum, & Slap, 2001; Weinehall et al., 2001). To understand
the impact of contextual factors on health behavior while avoid confounding
by mainstream cultures, this example study take another approach, comparing
participants from different cities but share a similar mainstream culture.

The study was a part of the Chinese Student Health Project (CSHP), and it
was conducted by a group of researchers from the United States and the five
Chinese cities, including Hong Kong, Macau, Taipei, Zhuhai and Wuhan (Chen
et al., 2016). A fundamental hypothesis of this project is that people living in
these five cities share the mainstream Chinese culture but the five cities are located
in different geographic regions (Fig. 11.1) with different subcultures and large
variations in socioeconomic development (Table 11.1)—the contextual factors.
Therefore, a research study with such a cross-Chinese city design will enable
researchers to investigate the impact of contextual factors such as economic growth
and technological development and their interaction with individual-level factors
on many health outcomes, including health related behaviors in adolescents; but
with little or no worry about confounding effect from differences in the mainstream
culture.

http://dx.doi.org/10.1007/978-3-030-35260-8_5
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Wuhan

Taipei

Zhuhai

Macau
Hong Kong

Fig. 11.1 Location of the five study sites

11.3.2 Participants and Procedure

The study targeted students in grades 7 through 9. The participants were selected
randomly using the following schedule. A project leader in each participating
city first selected schools that agreed to participate. From each school agreed to
participate, one single grade was selected using the random digits method, and all
classes of the selected grade in the school were invited to participate. The study was
approved by IRB in the corresponding cities. Informed consents were first obtained
from the schools in which they acted as loco parentis.

The paper-pencil survey was administered in classroom settings. All students
were well-informed that their participation in the survey was voluntary. The students
were also informed that they had the rights not to participate and to quit during
any time of the survey. Data were collected using the Chinese Students Health
Survey Questionnaire (CSHSQ). This questionnaire was developed by the CSHP
investigators based on previous studies among Chinese youth in China and the
United States (Chen et al., 2006; Jessor, 1992) and survey questions used in the
Global School-based Student Health Survey (Centers for Disease Control and
Prevention & World Health Organization, 2011).

Since students in the five Chinese cities speak different dialects, the CSHSQ was
developed in two steps. Step 1, a master copy of the questionnaire was developed by
the leading investigators of the CSHP, together with all other investigators through
several cycles of a draft-revision to obtain the finalized copy. Step 2, investigators



11 Mixed Effects Modeling of Multi-site Data-Health Behaviors Among. . . 267

at individual participation sites created their own questionnaire in local dialect
by rewording/translating the survey questions from the master copy. The finalized
CSHSQ contains 50 questions with a brief introduction sheet to the survey. The
survey can be completed in approximately 15–20 min for a typical middle and high
school student.

11.3.3 Measurement of Lifestyle Behavior

Three lifestyle behaviors were measures: (1) Time spent on sitting position. This
variable was assessed using the question: “In general, how much time do you
often used to watch TV, play electronic games, chatting with friends or any other
sedentary activities (e.g., reading, play cards, etc.)?” Answer options were: <1 h, 1–
2, 3–4, 5–6, 7–8, and 8 or more hours per day. A student was coded as sedentary if
he/she reported spending 3 or more hours on siting position in a day. (2) Frequency
of eating vegetables. This variable was assessed using the question: “Please recall
the past 30 days. How many times do you often have vegetables in a day, including
salad and other vegetables?” Answer options were: none, <1 time a day, once a day,
twice a day, 3 times a day, 4 times a day, and 5 or more times a day. A student
was coded as eating vegetables if he/she reported having had vegetables at least
once daily. (3) Frequency of having fruits. This variable was assessed using the
question: “Please recall the past 30 days. How many times do you have fruits in a
day, including apples, oranges, etc.?” Answer options were: none, <1 time a day,
once a day, twice a day, 3 times a day, 4 times a day, and 5 or more times a day.
Likewise, a student was coded as having fruits if he/she reported having had fruits
at least once daily.

11.3.4 Measurement of Addictive Behaviors

Three addictive behaviors were measured. (1) Alcohol consumption. This variable
was assessed using the question: “In the past 30 days, on how many days did you
drink at least one couple of alcoholic beverage?” (Answer options were: 0, 1–2 days,
3–5 days, 6–9 days, 10–19, days, 20–29 days, and every day). Students who reported
having a drink at least on one day in the past 30 days were coded as a drinker. (2)
Cigarette smoking. This variable was assessed using the question: “In the past 30
days, on how many days did you smoke cigarette?” (Answer options: Never smoked,
no smoking in the past 30 days, smoked in 1–2 days, in 3–5 days, 6–9 days, 10–
19 days, 20–29 days, daily). Students who reported having smoked at least on one
day were coded as a smoker. (3) Ever participation in gambling. This variable was
assessed using the question: “How many times have you participated in gambling
in your whole life?” (Answer options were: 0 times, 1–2 times, 3–9 times, 10 times
or more). Students who reported having participated at least one to two times were
coded as ever participated in gambling.
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11.3.5 Measurement of Student-Level Factors

Demographic factors were age (in years), gender (male/females), school perfor-
mances (below average, average and above average, self-report), parental monitor-
ing (scale scores), and parental education (from no formal education to college or
above, student reported). Perceived parental monitoring was assessed using a 3-item
instrument with 5-point Likert scale (alpha = 0.67) (Centers for Disease Control and
Prevention & World Health Organization, 2011; Lau, Chen, & Ren, 2012). Parental
monitoring scores were calculated by adding up the scores for the three items such
that higher scores meaning closer monitoring from parents as perceived by youth.

11.3.6 Measurement of Site-Level Factors

Three site-level factors were assessed, including total population (as measure of
the scale of a city), per capita GDP (as a measure of economic development) and
literacy rates (as a measure of education). Data for these variables were extracted
from official statistics for the corresponding cities, up to, or close to the time period
when the survey was conducted.

11.4 Statistical Analysis and Results

11.4.1 Data Analysis

As an example for analyzing multi-site study, the following statistical analysis was
conducted. A descriptive analysis was conducted to summarize the sample, overall
and by individual study site (i.e., the five participating cities). Following the sample
description, prevalence rates of the six behavior measures were computed and
compared among the five cities. Lastly, the variable time spent on siting position
in predicting the outcome variables was analyzed using both linear regression
and mixed effects modeling analyses. In the mixed effects modeling, intraclass
correlation was calculated to assess the with- and between-site variance differences.
Statistical analysis was conducted using the commercial software SAS version 9.4
(SAS Institute Inc., Cary, NC).

11.4.2 Study Site and Sample

The basic characteristics of the study sites and the samples by sites were presented
in Table 11.2. There were substantial differences in per capita GDP and rate of
illiteracy across the five study sites. Per capita GDP was USD $40,000 for Macau,
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the highest among the five study sites while the per capita GDP was only USD
$6000 for Wuhan, the difference between the two was 6.7 times.

Data for a total of 13,950 students (52% male and 48% female) were included
in the analysis. Among these participants, 6466 (46.4%) were from Hong Kong,
547 (3.9%) from Macau, 1782 (12.8%) from Taipei, 3381 (24.2%) from Wuhan,
and 1774 (12.7%) from Zhuhai. Different sample sizes were used for different
cities mainly because of the limitations of funds available for the research. Gender
composition also differed across study sites with the largest difference for Macau
(62.3% boys and 37.7% girls) and the smallest difference for Taipei (49.7% boys and
50.3% girls) and Hong Kong (51% boys and 49% girls). On average, participants
were 13.6 (SD = 1.0) years of age and the mean age slightly different across study
sites. More detailed data are presented in Table 11.2.

11.4.3 Prevalence of Life Style Variables

The age-standardized prevalence rates in Fig. 11.2 indicate that the percentage of
participants in sedentary positions (yellow bars) for 3 or more hours per day was
the highest for Hong Kong sample (75.2%), and the lowest for Wuhan sample
(45.2%). For dietary behaviors, approximately 90% of students reported having had
vegetables at least once daily (blue bars) and approximately 70% reported having
had fruit at least once daily (green bars). The highest rates of vegetable and fruit
intake were for youth in Taipei (94.9% for vegetables and 81.1% for fruits) while
the lowest rates for youth in Macau (88.5% for vegetables and 65.7% for fruits).

Fig. 11.2 Standardized prevalence rate of three lifestyle behaviors among students in Hong Kong,
Macau, Taipei, Zhuhai and Wuhan
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11.4.4 Prevalence of Addictive Behaviors

The age-standardized prevalence rates in Fig. 11.3 indicate that the percentage of
youth used alcoholic beverage in the past month was the highest for youth in Hong
Kong (39.5%), the lowest in Wuhan (23.2%), with other three cities in in between.
The past 30-day smoking rate varied from 4 to 5% across the study sites except
Macau where the rate was 9.8%, the highest among all five sites. The percentage of
youth participation in gambling was the highest in Taipei (37.1%) and Hong Kong
(35.9%) but not Macau, while the lowest was Wuhan (20.7%).

11.4.5 Intraclass Correlation for the Variable Time on Siting
Position

To demonstrate on how to quantitatively assess the data heterogeneity, the intraclass
correlation (ICC) was calculated. ICC represents the proportion of the variance
explained by the group variable (city in this study) over the total variance. ICC
was estimated by fitting the data to an empty mixed effect model (no predictors, see
the SAS code below). With data in this study, the estimated ICC was 0.06 for the
variable time on sitting position. It means that 6% of the total variance of the sitting
time variable was explained by the between-city difference. This is a relatively small
ICC, suggesting certain homogeneity among the five participating cities. This result
appears reasonable since the five cities share the same mainstream Chinese culture.

SAS code for ICC calculation:
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Fig. 11.3 Standardized prevalence rate of three addictive behaviors among students in Hong
Kong, Macau, Taipei, Zhuhai and Wuhan

11.4.6 Results from Mixed Effects Model and Linear
Regression

Results from the multilevel mixed effects modeling analysis are presented in second
column of Table 11.3. Data in the table indicate that at the site level, higher
GDP was positively associated with hours of sitting. At the individual level, age
was positively associated with hours of sitting; self-rated school performance and
perceived parental monitory each were negatively associated with hours of sitting.

Results in the mid-panel of Table 11.3 indicate significant interactions between
the two individual levels factors (e.g., perceived parental monitory and self-rated
school performance) and the five participation cities. For example, compared to
students in Hong Kong, perceived paternal monitoring was associated with longer
hours of sitting positions for students in Macau (regression coefficient = 0.1832,
p < 0.01) and Wuhan (regression coefficient = 0.1213, p < 0.01), although parental
monitoring overall was negatively associated with hours of sitting positions.

The third column of Table 11.3 presents the results from linear regression
analysis in which city was included as a covariate. Similar results were found as the
mixed effects model for most parts except some differences. In addition to the small
magnitude change of the coefficients, the significance level has changed differed for
several variables, including the city level variable population size, and individual
level variables and the interaction term between school performance and city. We
also compared the R square between the two models used in Table 11.3, and found
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Table 11.3 Association of individual and city-level variables on Time spending on siting position
among Chinese Students in Hong Kong, Macau, Taipei, Wuhan, and Zhuhai

Variables at city and student levels Mixed effects model Linear regression model

City level
Population (million) 0.0333 0.0305**
Literacy rate (%) 0.1194 0.0544
GDP per capita ($10,000) 0.4278** 0.5008**

Individual student level
Age (years) 0.0761** 0.0762**
If female 0.0286 0.0285
Perceived parental monitoring −0.1911** −0.1929**
Self-rated school performance −0.0781** −0.0800**

Cross-level interaction of parental monitoring with city
Hong Kong Ref Ref
Macau 0.1832** 0.1852**
Taipei 0.0063 0.0106
Zhuhai 0.0499 0.0531
Wuhan 0.1213** 0.1227**

Cross-level interaction of school performance with city
Hong Kong Ref Ref
Macau −0.1558* −0.1357
Taipei −0.0387 −0.0347
Zhuhai 0.1657** 0.1691**
Wuhan 0.0229 0.0245

Data-model fit
R2 0.11 0.08

Results (Standard Regression Coefficients) from Multilevel Modeling Analysis and Linear Regres-
sion
Note: *p < 0.5 and **p < 0.01; Ref: Reference group

that the variance explained by the mixed effects model was higher than the linear
regression model (0.11 vs. 0.08).

SAS Code for the results in Table 11.3:



11 Mixed Effects Modeling of Multi-site Data-Health Behaviors Among. . . 275

11.5 Discussion and Conclusions

In this chapter, we demonstrated the significance to conduct cross-culture and multi-
site studies in addressing significant medical and public health issues in global
health and epidemiology. We introduced the multilevel mixed effects method to
analysis multisite studies using a five-city project as an example. This example
project collected cross-sectional data in Hong Kong, Macau, Taipei, Zhuhai, and
Wuhan with a total sample size of 13,950 students in grades 7–9. In addition
to handling the multisite design for correct variance estimation and statistical
inference, factors at the students and city level as well as the interaction between the
two are analyzed to assess their impact on health behaviors among these students.

11.5.1 Significance of the Mixed Effects Modeling Methods

Multisite cross-cultural design is a powerful and useful approach for global health
and epidemiology. In addition to influential factors at the individual, contextual
factors characterizing different communities, cities, states and countries can be
examined. Furthermore, it provide a tool to investigate the interactions between
the individual and contextual level factors. As we demonstrated in this study,
factors for individual students (i.e., age, gender, perceived parental monitoring) and
participating cities (i.e., population size, GDP) as well as the interactions for some
variables between the two levels were modeled simultaneously.

With a multi-site design, the mixed effects modeling method provides one of the
most relevant approaches for data analysis to address many epidemiological and
global health issues. Although the method was originate for analyzing longitudinal
data, it can be used to handle data collected using cross-sectional designs. The big
threat to the internal validity of a study with multi-site design is ICC. In a multisite
study, the between-study site variance is often greater than the within-study site
variance, showing as an increase in ICC. Large ICC will result in inflated variance,
leading to invalid statistical inference if data from multisite studies are analyzed
using methods that cannot handle this design effect such as the student t-test, chi-
square test, correlation and regression analyses. In addition to handling the design
effect for internal validity, the mixed effects modeling analysis provide an approach
to assess cross-level interactions.

11.5.2 Implications of the Findings from This Study

Findings of this study provide useful information to understand the difference in
adolescent health behaviors and the influential factors. Previous studies on Chinese
adolescent health behaviors were all individually undertaken in the Mainland China
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(Chen et al., 2006; Tian, Zhang, & Qian, 2007; Unger et al., 2001; Xing, Ji, & Zhang,
2006), Taiwan (Chen, Tang, & Huang, 2008; Wang et al., 2005; Yeh, Chiang, &
Huang, 2006), Hong Kong (Lai, Ho, & Lam, 2004; Lau & Kan, 2010; Lee, Tsang,
Lee, & To, 2001), and Macau (Wong, 2010). This study was the first to document
health behaviors among Chinese youth across different cities, informing further
etiological and intervention research. Age- and gender-standardized rates indicate
that sedentary behaviors are most prevalent among students in Hong Kong, such as
watching TV, playing games, and the lowest for students in Wuhan. The highest rate
of vegetable and fruit consumption is for students in Taipei and the lowest rate for
youth in Macau.

With regard to addictive behaviors, the standardized prevalence rates of past 30-
day alcohol consumption was the highest among students in Hong Kong and the
lowest in Wuhan; the standardized 30-day smoking rate was the highest for students
in Macau and the lowest was for Zhuhai; and the rate of participation in gambling
was the highest for students in Taipei and Hong Kong and the lowest for students in
Wuhan.

Findings of this study showed the impact of city-level factors. The scale of a
city (as measured with population size) was associated with higher frequencies of
vegetable consumption; literacy rates were associated with longer hours of sitting
position (e.g. playing electronic games or surfing the internet) and higher rates of
participation in gambling; higher per capita GDP was associated with longer sitting
hours and more frequent of alcohol use. An increase in sedentary behavior may
be attributable to increased urbanization with a high population density, lack of
public leisure facilities, high-density traffic and population (Centers for Disease
Control and Prevention & World Health Organization, 2011). Besides, GDP growth
and rise of information and communications technology have significantly changed
people’s lifestyles. A high prevalence of public Wi-Fi internet service and increasing
affordability of home computer with internet connection may contribute to longer
sitting hours as people can accomplish their daily work online (like online shopping)
and play online games for leisure (Centers for Disease Control and Prevention
& World Health Organization, 2011; Mythily, Qiu, & Winslow, 2008). The GDP
growth also corresponds to people’s daily consumption patterns (like food and
alcohol consumption) (Centers for Disease Control and Prevention & World Health
Organization, 2011; Li & Zhou-ping, 2012). Data derived from the city-level
findings are of great significance for public health planning and decision making.

Findings of this study also indicate the significance of factors at the individual
student level. Overall, perceived parental monitoring was consistently associated
with protective behaviors, including reductions in sitting position, increases in
frequency of vegetable and fruit intake, declines in cigarette smoking, alcohol drink-
ing and gambling. However, the perceived parental monitoring-student behavior
associations varied substantially across the five study sites. Relative to Hong Kong,
the association was stronger for students in other sites with regard to lifestyle and
addictive behaviors, except vegetable and fruit consumption in Macau.

Likewise, overall students self-rated school performance was positively asso-
ciated with long-hour sitting position, vegetables and fruit consumption, and
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negatively associated with cigarette smoking and gambling. However, when com-
pared with Hong Kong, students with better school performance in Macau were
less likely to be in sitting position for longer time but more likely to consume
more fruits; while a reverse pattern existed for students in Wuhan. In the aspect
of addictive behaviors, the associations between student’s school performance and
their involvement in cigarette smoking and gambling in Wuhan were weak when
comparing with Hong Kong.
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Chapter 12
Geographically Weighted Regression

Yang Yang

Abstract The family of geographically weighted regression (GWR) methods has
seen its wide applications in a variety of fields including ecology, agriculture,
social science, and public health. The popularity of these methods stems from
their ability to depict spatial heterogeneity, easy interpretation of outputs, and the
availability of user-friendly software tools. These methods have evolved extensively
in the recent decade to address the challenges of multicolinearity in predictors and
variable selection in the era of big data, and a comprehensive review is needed to
raise both awareness and practical validation of these progresses. Equally needed
is an up-to-date introduction to the associated software packages, especially those
developed on the popular statistical software platform R. This chapter provides a
systematic overview of the foundation and recent development of the methodology
of GWR, with a balance between rigidity and practicality. Via a case study, this
chapter also offers step-by-step guideline to the use of three major GWR-dedicated
R packages, including their facilities for multicolinearity diagnosis and variable
selection. We hope a broadened user group of these methods will in turn motivate
more methodological advances and improve the contribution of GWR methods to
global health.

Keywords Geographically weighted regression · Spatial heterogeneity · Variable
selection · Multicolinearity · GWR software

12.1 Introduction

Health outcomes such as chronic conditions and infectious diseases typically exhibit
spatial and temporal variation, driven by both risk factors and random errors. While
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changes in risk factors explain a significant amount of variations in health outcomes,
it is quite often they do not explain all. Additional variation may be accounted for by
spatial or temporal heterogeneity in the effects of risk factors. An example is shown
in Fig. 12.1, where the effects of drug infection history (left) and drug rehabilitation
history (right) on the risk of HCV infection in a Yi Ethnicity Autonomous Prefecture
in Southwestern China were estimated using the geographically weighted regression
(GWR) approach (Zhou et al. 2016). This figure clearly demonstrates spatial
heterogeneity in the estimated effects. Such heterogeneity is more prominent at
larger spatial scales, e.g., states, countries or continents.

Figure 12.2 shows the spatial distributions of local R-squares (upper left) and
selected GWR-estimated regression coefficient estimates for teenage birth rate in
rural counties of the United States during 2003 (Shoff & Yang, 2012). The effects
of some factors such as clinic rate have opposite signs across different regions.
If such heterogeneity is ignored and the covariate effects are assumed spatially
homogeneous, the effects could be estimated as null and are thus very misleading.

A natural and widely used solution to spatial heterogeneity is to group data points
by spatial regions, where the regions are usually defined as administrative units,
e.g., counties or states, or as ecological zones. A categorical variable indicating
the regions is then incorporated into the analysis. As a main effect, this variable
can capture spatial variation in the intercept, i.e., the mean level of the dependent
variable. Spatial variation in the effects of other predictors can be investigated by
formulating interaction terms between these predictors and the region indicator
variables. Assuming that n individuals are observed in a total of J spatial regions, a
typical statistical presentation of the model is

Fig. 12.1 Spatial distribution of GWR-fitted adjusted odds ratios for drug injection history (left)
and drug rehabilitation history (right) with regard to their effects on HCV infection in Southwestern
China (Zhou et al. 2016)
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Local R-Squared Values

Significant Local
Parameter Estimates

Local R-Squared

Percentage Black Percentage Native American

Clinic Rate

0.128 - 0.360
0.361 - 0.445
0.446 - 0.532
0.533 - 0.622
0.623 - 0.845

0.142 - 0.263
0.264 - 0.418
0.419 - 0.739
0.740 - 1.947
1.948 - 7.944

Metropolitan County

Metropolitan County
Not Significant

Significant Local
Parameter Estimates

-6.824 - -4.792
-4.791 - -3.787
0.300 - 1.199
1.200 - 2.507

Metropolitan County
Not Significant

Significant Local
Parameter Estimates

-1.391 - -0.768
-0.767 - -0.391
0.560 - 0.834
0.835 - 1.099

Metropolitan County
Not Significant

Fig. 12.2 Spatial distribution of GWR-fitted local R-squares and estimated coefficients of pre-
dictors for average teenage birth rates during 1999–2001 among non-metropolitan counties in the
United States (Shoff & Yang, 2012)

yi = α + βxi +
J−1∑

j=1

ηj zij +
J−1∑

j=1

ξj zij xi + εi, i = 1, . . . , n,

where, for individual i, yi is the response, xi is a risk factor of interest, zij indicates
whether observation i is in region j (1=yes, 0=no), j = 1, . . . , J − 1, and εi is the
error term that is often assumed identically and independently distributed (i.i.d.) as
normal with mean 0 and an unknown variance σ 2. We assume only one risk factor
for illustrative purpose. The coefficients α and β are the intercept and slope for the
reference region defined by zi1 = . . . = zi(J−1) = 0. For the region associated
with zij = 1, the intercept and slope are α + ηj and β + ξj , respectively. Several
disadvantages of this approach are worth noting. First, the grouping of data points
into regions is often a choice of convenience, not necessarily matching the true
geographic pattern in data-generating mechanism. For example, the spatial variation
of data-generating mechanism may be smooth over the whole study area rather
than with abrupt changes at boundaries of regions as assumed by the grouping
approach. Second, there is no widely accepted guideline on choosing the level and
number of spatial regions. A few large regions may not be adequate to delineate
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the spatial heterogeneity, creating issues such as ecological fallacy, whereas too
many small regions may encounter the identifiability issue because of sparse data
in some regions. Ecological fallacy refers to the phenomenon that heterogeneous
individual trends within a region are represented by a homogeneous but misleading
trend for the whole region when individual data are aggregated by region for
analysis (Wakefield 2008).

An extension of the grouping approach is the expansion method (Casetti 1972;
Jones 1992), which models the regression coefficients as continuous functions of
the geocoordinates. A general presentation of the expansion method is

yi = α(ui, vi) + β(ui, vi)xi + εi,

where (ui, vi) are the geocoordinates of individual i, e.g., longitude and latitude. A
simple example is the linear mapping

αi = α0 + α1ui + α2vi,

βi = β0 + β1ui + β2vi .

Higher orders of ui and vi as well as their interactions can be added when needed.
A major limitation of the expansion method is that spatial patterns in real life are
often much more complex and cannot be satisfactorily captured by polynomials
of geocoordinates. In addition, the interpretation of the estimated coefficients can
be very difficult. Fotheringham, Charlton, and Brunsdon (1998) compared the
expansion method and the geographically weight regression (GWR) using the data
of limiting long-term illness (LLTI) in Northeastern England. Risk predictors under
consideration were unemployment rate, household crowdedness, proportion of
single-parent families among children <5 years, social class and population density.
All predictors were modeled as linear effects in all models. Figure 12.3 shows the
spatial distribution of (a) standardized LLTI in the study area; (b) intercept under the
expansion method when linear expansion was applied to intercept and all slopes;
(c) intercept under the expansion method when quadratic expansion (including
interaction) was applied to intercept and all slopes; and (d) intercept under the GWR
approach. The gradients of intercept under linear expansion (Fig. 12.3b) is largely
consistent with the observed pattern of LLTI, although the direction of decrease
appeared more from northeast to southwest for the model than from north to south
as shown by the data. Under the quadratic expansion (Fig. 12.3c), however, the
direction of gradients flipped, now increasing from northeast to southwest. The
distribution of the intercept term of the GWR (Fig. 12.3d) reflects the spatial pattern
observed in the data and reserves some non-directional spatial differences compared
to the linear expansion method.
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Fig. 12.3 (a) Spatial distribution of limiting long-term illness data in Northeastern England; (b)
distribution of the intercept term under linear expansion; (c) distribution of the intercept term
under quadratic expansion; (d) distribution of the intercept term fitted by the GWR method. The
subfigures are adapted from Fotheringham et al. (1998)

12.2 Theory

12.2.1 Basic Model Structure and Inference

The model expression of GWR is very similar to that of the expansion method,
except that no specific functional form is assumed for the dependence of coeffi-
cients on geocoordinates. Suppose we are regressing an dependent variable on p

predictors. For notional simplicity, define s = (u, v) for the geocoordinates. For a
given individual i at location si = (ui, vi), the model to be fitted is

yi = β0(si) +
p∑

k=1

βk(si)xik + εi = Xτ
i β(si) + εi, (12.1)

where Xi = (1, xi1, . . . , xip)τ and β(si) = (β0(si), . . . , βp(si))
τ are the vectors

of covariates and coefficients, respectively, and τ denotes transpose of vectors or

matrices. As usual, we assume ε1, . . . , εn
i.i.d.∼ Normal(0, σ 2). The coefficients,
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β0(s), . . . , βp(s) can be viewed as continuous spatial functions defined at any
point s in the study area rather than only at the observed locations s1, . . . , sn. The
essence of GWR is the construction of the diagonal weight matrix W (si)n×n =
diag

(
w1(si), . . . , wn(si)

)
, where each diagonal element wj(si) is determined by a

predefined distance between si and sj , j = 1, . . . , n. Let X be a n × (p + 1) matrix
with Xi as its ith row, i = 1, . . . , n, and let Y = (y1, . . . , yn)

τ be the column vector
of the dependent variable. Following standard linear model theory, minimizing the
sum of weighted squares of residuals chosen as the objective function

arg min
β(si )

||W (si)
1/2(Y − Xβ(si))||2 = arg min

β(si )

n∑

j=1

wj(si)
(
yj − Xτ

jβ(si)
)2 (12.2)

yields the WLS estimates for the coefficients

β̂(si) = B(si)Y , where B(si) = (
XτW (si)X

)−1
XτW (si).

This is also the maximum likelihood estimate (MLE) of β(si) under the normal
assumption for εi’s with a correlation matrix W (si). Model (12.1) is to be fitted n

times, one at each individual location in the data. It can also be fitted at an arbitrary
location s in the study area, but the model need to be restated in a more general form

y(s) = β0(s) +
p∑

k=1

βk(s)xk(s) + ε(s) = X(s)τβ(s) + ε(s).

However, y(s) and X(s) are observed only at the locations of the study-sampled
individuals, i.e., si , i = 1, . . . , n.

To obtain a variance estimate for β̂(si) so that we can construct confidence
intervals for all the local coefficients, we need to estimate σ 2, the variance of
the error term. Let ŷi = Xτ

i β̂(si) be the model-fitted value at si , and let Ŷ =
(ŷ1, . . . , ŷn)

τ . We can write Ŷ = HY , where

H =

⎛

⎜
⎜
⎜
⎝

Xτ
1B(s1)

Xτ
2B(s2)

...

Xτ
nB(sn)

⎞

⎟
⎟
⎟
⎠

is analogous to the hat matrix in the ordinary linear regression setting. Let ε̂ = Y−Ŷ

be the vector of residuals. An important statistic is the residual sum of square

RSS =
n∑

i=1

(
yi − ŷi

)2 = ε̂
τ
ε̂

= (Y − Ŷ )τ (Y − Ŷ ) = Y τ (I − H )τ (I − H )Y ,
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where I is the n × n identity matrix. Following Leung, Mei, and Zhang (2000),
under the assumption that E(Ŷ ) = E(Y ), RSS can further written as

RSS = [
Y − E(Y )

]τ
(I − H )τ (I − H )

[
Y − E(Y )

]

= ετ (I − H )τ (I − H )ε

Note that

E(RSS) = E
[
ετ (I − H )τ (I − H )ε

]

= E

[
trace

(
ετ (I − H )τ (I − H )ε

)]

= E

[
trace

(
(I − H )τ (I − H )εετ

)]

= trace
[
(I − H )τ (I − H )E

(
εετ
)]

= σ 2ν1

where ν1 = trace
(
(I − H )τ (I − H )

) = n − [
2tr(H ) − tr(H τH )

]
is the degree

of freedom of the RSS, and 2tr(H ) − tr(H τH ) represents the effective number of
parameters (Fotheringham, Brunsdon, & Charlton, 2002). The trace function of a
matrix is simply the sum of diagonal elements of that matrix. An unbiased estimate
for σ 2 is then σ̂ 2 = RSS/ν1, and the variance-covariance matrix of β̂(si) can then
be estimated as

Ĉov
[
β̂(si)

] = B(si)B(si)
τ σ̂ 2. (12.3)

The Wald-type 95% confidence interval for each coefficient can be established as

β̂k(si) ± 1.96 ×
√

V̂ar
[
β̂k(si)

]
,

where V̂ar
[
β̂k(si)

]
is the kth diagonal element of Ĉov

[
β̂(si)

]
, k = 0, 1, . . . , p.

12.2.2 Constructing Weights

The choices of the weights wj(si) depends on the nature of the data. When the
individuals under observation are relatively large spatial units such as zip codes,
counties or states, the neighbor indicator is a reasonable choice, i.e., wj(si) = 1 if
units i and j share a common border and 0 otherwise. The concept of adjacency-
based weighting can be generalized to k-order neighbors (Zhang & Murayama,
2000). The neighbor structure can be viewed as an undirected graph with directly
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neighbored units connected by edges. If the shortest path between two units has
k edges, then the two units are k-order neighbors. Consequently, a more general
adjacency-based weighting scheme is to let wj(si) = 1 if units i and j are k-order
neighbors for any k ≤ h, where h is called the bandwidth. When it is appropriate
to consider predefined geographic distances between individuals, a kernel function
of the distance subject to a bandwidth constraint is often used, e.g., the bisquare
function

wj(si) =
{(

1 − d2
ij /h2

)2
, if dij < h,

0, otherwise
,

where h is the bandwidth. Two other popular choices are the Gaussian density ker-
nel, wj(si) = exp(−d2

ij /h2), and the exponential kernel, wj(si) = exp(−dij /h).
Any kernel function, K(d), of distance d that satisfies (1) K(0) = 1, (2) K(∞) = 0,
(3) K(d) > 0 for d > 0 and (4) non-increasing can be considered. A monotone
decreasing kernel function ensure that higher weights are put on observations that
are closer to the current location si . The bandwidth, h, further controls how fast
the weight should decay according to the distance, and its choice is crucial for
the inferential performance of the method. If h is large so that the decay is slow,
then distant observations contributed almost equally as the nearby ones. On one
hand, the effective sample size increases and thus the estimates will be more stable
and less variant; on the other hand, however, if the coefficients vary substantially
over the space, severe bias is likely to occur. This is a large-bias-small-variance
situation. Conversely, if h is too small, only close-by observations will contribute,
leading to small bias but large variance. Consequently, the choice of h is actually
an issue of balance between bias and variance, and cross-validation (CV) procedure
is recommended to choose the bandwidth (Brunsdon, Fotheringham, & Charlton,
1996). Let ŷ(i)(h) = Xτ

i β̂(si, h) be the fitted value at the location of individual i

with a given value of h, where the model is fitted with individual i excluded. We
use the notation β̂(si, h) instead of β̂(si) to reflect its dependence on h. Then, h is
chosen by minimizing the sum of squares of residuals:

h� = arg min
h

n∑

i=1

[
yi − ŷ(i)(h)

]2
.

Another popular objective function for bandwidth calibration is related to the
Akeike Information Criterion (AIC) that balances between goodness-of-fit and
model parsimony,

AICc(h) = log
[
RSS/n

]+ n + trace(H)

n − 2 − trace(H)
,
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where both RSS and H depend on h (Fotheringham et al. 2002). The optimal
bandwidth is then h� = arg minh AICc(h). In practice, empirical data or expert
opinions may also inform the choice of h.

12.2.3 Testing Spatial Nonstationarity

Two questions naturally arise with the use of GWR:

1. Is the GWR fitting the data better than the ordinary least squares (OLS)
regression that assumes spatial stationarity in covariate coefficients?

2. Which covariate coefficients have significant spatial heterogeneity?

The first question is about testing the global presence of spatial nonstationarity,
while the second is about testing spatial variation for each individual predictor.
Statistically, the null hypotheses to be tested are

1. H0a : β(s1) = β(s2) = · · · = β(sn).
2. H0b: βk(s1) = βk(s2) = · · · = βk(sn) for a given k.

For the global testing, Brunsdon et al. (1996) suggested the CV-derived bandwidth
parameter h� as a test statistic, as the smaller the bandwidth the larger the spatial
heterogeneity. A GWR with h� = ∞ is equivalent to the OLS. For the testing of
specific coefficients, Brunsdon et al. (1996) recommended the sample variance (or
standard deviation) of each location-specific coefficient, i.e., Sk = 1

n

∑n
i=1

(
β̂k(si)−

1
n

∑n
j=1 β̂k(sj )

)2. As the theoretical distribution under each null hypothesis is not
easy to derive, a permutation-based approach was proposed (Brunsdon et al. 1996).
Under the global null hypothesis H0a , the data (yi,Xi ) can be randomly permuted
across all locations. Suppose M permuted sample data sets are generated, and let
the bandwidth derived based on the mth sample dataset by hm. The p-value of the
observed value h� from the original data for testing H0a is given by

Pr(h ≤ h�) = 1

M

M∑

j=1

I(hm ≤ h�),

where I(c) is the indicator function taking 1 if condition c is true and 0 otherwise.
Although h = ∞ corresponds to spatial stationarity theoretically, the meaningful
null distribution of h in reality is bounded by the size of the study area. Brunsdon
et al. (1996) suggested using the sample permutation approach to find the null
distribution of Sk; however, the obtained distribution is under H0a instead of H0b. As
the parameter space under H0a is a subspace of that under H0b, using the distribution
of Sk under the global null will not necessarily yield a valid type I error, and will
likely lack sufficient statistical power.

The computational burden of the permutation approach is heavy for large n,
especially for the calculation of hm which itself involves a search for the optimal
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bandwidth for each sample dataset. Leung et al. (2000) explored the possibility
of asymptotical tests for the two hypotheses. The test statistic they proposed for

H0a is Fa = RSSgwr/ν1

RSSols/(n−p−1)
, where RSSgwr = Y τ (I − H )τ (I − H )Y and

RSSols = Y τ (I − X(XτX)−1Xτ )Y are the residual sums of squares based on
GWR and OLS, respectively. Leung et al. (2000) suggested the null distribution
of F1 be approximated by the F(ν1/ν2, n − p − 1) distribution, where ν2 =
trace

[(
(I − H )τ (I − H )

)2
]
. H0a is rejected if the observed value of F1 is less

than the α × 100% percentile for a given type I error α. To test H0b, the suggested

test statistic is Fb = S2
k /γ1

σ̂ 2 , where γ1 = 1
n
trace

[
Bτ (I − 1

n
J )B

]
, J is a n×n matrix

with all elements equal to one,

Bk =

⎛

⎜
⎜
⎜
⎝

eτ
kB(s1)

eτ
kB(s2)

...

eτ
kB(sn)

⎞

⎟
⎟
⎟
⎠

,

and ek is a vector of zeros of length p + 1 except for the (k + 1)th element being
one. The null distribution of Fb is approximated by F(γ 2

1 /γ2, ν
2
1/ν2), where γ2 =

trace
[( 1

n
Bτ (I − 1

n
J )B

)2
]
. H0b is rejected if the observed Fb exceeds the (1−α)×

100% percentile of the null distribution.
These approximate asymptotic null distributions, however, remain to be rigor-

ously justified in the sense that the numerators and denominators are not necessarily
independent. In addition, Fotheringham et al. (2002) noted that the computation load
of these asymptotic tests is as heavy as the permutation tests in practice. Finally, the
F1 statistic could be used as an alternative to h in the permutation test for the global
null hypothesis H0a , in particular when h is fixed rather than calibrated in cross-
validation, e.g., the binary neighbor indicator matrix.

Mei, Wang, and Zhang (2006) proposed a resampling based approach to test the
hypotheses in a more general form

• H0: βk(s1) = βk(s2) = · · · = βk(sn) for k ∈ �, where � is a given subset of
{1, . . . , p}.

• H1: All coefficients vary over space.

The set � could be a single coefficient, a subset of or all of the coefficients. This
bootstrap procedure goes with the following steps:

1. Fit the unrestricted model to obtain the residuals ε̂ = (ε̂1, . . . , ε̂n)
τ = (I −H 1)Y

and the residual sum of squares RSS1 = Y τ (I − H 1)
τ (I − H 1)Y , where H1

is the hat matrix. Let ε̂c = (ε̂c1, . . . , ε̂cn)
τ be the centered residuals, i.e., ε̂ci =

ε̂ci − 1
n

∑n
j=1 ε̂j .
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2. Fit the null model using the two-step method of Fotheringham et al. (2002) to
obtain the residual sum of squares RSS0 = Y τ (I − H 0)

τ (I − H 0)Y , where H0
is the hat matrix under the null.

3. Compute the observed statistic T = RSS0−RSS1
RSS1

.

4. For m = 1, , . . . , M , draw with replacement random samples ε̃(m) =
(ε̃

(m)
1 , . . . , ε̃

(m)
n )τ from the centered residuals ε̂c, formulate new responses

as Ỹ
(m) = (ỹ

(m)
1 , . . . , ỹn)

(m))τ = H 0Y + ε̃(m), and calculate the statistics

T̃ (m) = R̃SS
(m)
0 −R̃SS

(m)
1

R̃SS
(m)
1

, where R̃SS
(m)
k = (Ỹ

(m)
)τ (I − H k)

τ (I − H k)Ỹ
(m)

,

k = 0, 1.
5. The p-value is calculated as p = 1

M

∑M
m=1 I(T̃ (m) ≥ T ).

12.2.4 Geographically Weighted Generalized Linear Models

Analogous to the generalized linear global models (GLM) for fitting binary and
count data, geographically weighted generalized linear models (GWGLM) have also
been developed. The GLM theory is based on the exponential family of statistical
distributions in the form

f (y|θ, φ) = exp

{
yθ − b(θ)

a(φ)
− c(y, φ)

}

,

to which many commonly seen distributions such as normal, binomial, Poisson
and negative binomial (when the overdispersion parameter is assumed known)
belong. Parameters θ and φ are called the canonical parameter and the dispersion
parameter, respectively, and the functions a(·), b(·) and c(·, ·) are assumed known.
For example, the Poisson distribution with parameter λ can be written as

f (y|λ) = exp

{
y log(λ) − λ

1
− log �(y + 1)

}

,

with θ = log(λ), b(θ) = exp(θ), a(φ) = 1, and c(y, φ) = log �(y + 1). The mean
and variance of y are related to this parameterization via E(Y ) = μ = b′(θ) and
Var(Y ) = a(φ)b′′(θ), where b′(θ) and b′′(θ) are the first and second derivatives of
b(θ). The mean μ is related to linear predictors η = β0 +β1x1 + . . .+βpxp = xτβ

via the link function η = g(μ). Table 12.1 lists the model components for several
distributions in the exponential family.

A general Iteratively Reweighted Least Squares (IRLS) algorithm is available
to fit these models (Nelder & Wedderburn, 1972), which can be adapted to the
GWGLM setting (da Silva & Rodrigues, 2014; Fotheringham et al. 2002; Nakaya,
Fotheringham, Brunsdon, & Charlton, 2005). The following algorithm is modified
from Fotheringham et al. (2002). The algorithm is applied to the local fitting at
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Table 12.1 GLM components for selected distributions

Distribution θ φ a(φ) b(θ) c(y, φ) g(μ)

Normal(μ, σ 2) μ σ 2 φ θ2/2 − 1
2

[ y2

φ
+ log(2πφ)

]
μ

Binomial(n, p)a log
( p

1−p

)
1/n log(1 + eθ ) log

[(
n
ny

)]
log
(

μ
1−μ

)

Poisson(μ) log(μ) 1 eθ − log(y!) log(μ)

NB(μ, α)b log
(

μ
r+μ

)
1 −r log

(
1 − eθ

)
log �(r+y)

y!�(r)
log(μ)

a y/n is viewed as the random variable
b For negative binomial to be in exponential family, r is assumed known

each location si separately, i.e., all parameters (β, η, μ, θ , φ) depend on si , but we
suppress such dependence in notation for simplicity. η, μ and θ further depend on
xj at all observation locations when we fit the local model centered around si , and
thus we use ηj , μj and θj , j = 1, . . . , n to reflect such dependence.

1. Choose initial estimate β(0) and φ(0), and obtain η
(0)
j = xτ

jβ
(0), μ

(0)
j =

g−1(η
(0)
j ), and θ

(0)
j = b′−1

(μ
(0)
j ), where g−1(·) and b′−1

(·) are inverse functions
of g(·) and b′(·) respectively. For iterations k = 0, 1, . . ., do the following steps:

2. Derive the adjusted dependent variable z
(k)
j = η

(k)
j + g′(μ(k)

j )(yj − μ
(k)
j ).

3. Construct a diagonal matrix A(k) with its j th diagonal element being

a
(k)
jj =

{[
g′(μ(k)

j )
]2

a(φ(k))b′′(θ(k)
j )
}−1

.

4. Update the coefficients as

β(k+1) = (XτWA(k)X)−1XτWA(k)Z(k),

where X and W are the covariate matrix (including first column of 1s) and weight
matrix as defined before, and Z(k) is the column vector (z

(k)
1 , . . . , z

(k)
n )τ .

5. Estimate the dispersion parameter using the Newton Raphson approach, i.e.,

φ(k+1) = φ(k) −
{[∂2l(φ,β(k+1))

∂φ2

]−1 ∂l(φ,β(k+1))

∂φ

}

φ=φ(k)
,

where l(φ,β(k+1)) is the log-likelihood function with β fixed at β(k+1).
6. Repeat steps 2–5 until convergence of the parameter estimates.
7. Let β̂, φ̂ and A be the final estimates after convergence. The variances can be

estimated by

Ĉov(β̂) = B̃A−1B̃, V̂ar(φ̂) = [− ∂2l(φ, β̂)

∂φ2

]−1
∣
∣
∣
φ=φ̂

,

where B̃ = (XτWAX)−1XτWA.
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Table 12.2 Expression of zj

and ajj in the IRLS algorithm
for selected distributions

Distribution zj ajj

Normal(μ, σ 2) yj 1

Binomial(n, p) ηj + yj /nj −pj

pj (1−pj )
njpj (1 − pj )

Poisson(μ) ηj + yj −μj

μj
μj

NB(μ, α) ηj + yj −μj

μj

μj r

μj +r

If the model does not involve an overdispersion parameter such as binomial and
Poisson, step 5 is skipped. Table 12.2 gives zj and ajj (iteration index suppressed)
for Gaussian, logistic, Poisson and negative binomial geographically weighted
regression models. Note that the expressions of zj and ajj are based on Fisher
information, i.e., the negative of the expectation of the second derivative of the log-
likelihood with regard to ηj . They can be based on the observed Fisher information
(without taking expectation) as well, as da Silva and Rodrigues (2014) did for the
negative binomial model.

12.2.5 Colinearity and Remedies

Hereinafter, we assume each model has a total of p rather than p + 1 covariates,
which may or may not include an intercept. This is because some of the regularized
models require or recommend the response variable Y to be standardized which will
eliminate the intercept. Typically, GWR fits models with n × p parameters, using
only n observations. This overfitting is constrained by local weight matrices to yield
valid inference, but probably at certain price. Wheeler and Tiefelsdorf (2005) took
a close look at how the multicolinearity among predictors (covariates) might affect
the correlation among GWR-estimated coefficients and their interpretability. The
correlation between estimated coefficients is twofold. First, at any given location,
the estimated local coefficients are correlated in terms that the estimated covariance
between them are nontrivial. Second, and more importantly, the estimated coeffi-
cients for a given pair of covariates are correlated across all observation locations.

Wheeler and Tiefelsdorf (2005) first showed the possibility of local coefficient
estimates contradicting the global regression results and scientific evidence by
analyzing the bladder cancer mortality data from the Atlas of Cancer Mortality from
the National Cancer Institute. Bladder cancer mortality was expected to be positively
associated with population density (a proxy for urban vs. rural environment) and
lung cancer mortality rate (a proxy for smoking prevalence), consistent with the
global regression results. However, the GWR showed vast geographic heterogeneity,
and the local coefficient estimates were negatively correlated. Counter-intuitive
negative association with the outcome variable was found for population density
in the West and Northeast and for lung cancer in the Midwest.
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They then performed a series of simulation studies and found that the local
coefficient estimates could be substantially correlated with each other, even when
the corresponding covariates are not correlated globally. (Figs. 12.8and 12.9),
adapted from Wheeler and Tiefelsdorf (2005), illustrates the correlation in the
second sense. The two covariates, called exogenous variables, are generated for two
scenarios according to

Scenario A (dashed curve) : x1 = Evac3, x2 = sin(θ)Evac3 + cos(θ)Evac1,

Scenario B (solid curve) : x1 = Evac4, x2 = sin(θ)Evac4 + cos(θ)Evac1,

where Evack , k = 1, . . . , n are eigenvalues of the spatial adjacency matrix based
on all the counties of the Georgia State in the U.S., after certain transformation
and re-scaling. These eigenvalues capture orthogonal spatial characteristics. The
parameter θ induces correlation between x1 and x2 via corr(x1, x2) = sin(θ). Both
scenarios indicate strong negative associations: the higher the correlation between
the covariates, the lower the correlation between the coefficient estimates. Most
surprisingly, zero correlation between the covariates is associated with a high level
of negative correlation, −0.8, between the coefficient estimates for scenario B.

Wheeler and Tiefelsdorf (2005) speculated that when two covariates are highly
positively correlated, the GWR model tends to explain the variation in the outcome
by one coefficient, while pushing the other coefficient to the opposite direction.
However, this speculation does not explain the strong positive correlation in
coefficient estimates when the covariates are highly negatively correlated as seen
in Fig. 12.4. In addition, although the negative correlation between coefficient
estimates is obvious in their simulations even when the covariates are not correlated
(Figs. 12.8 and 12.9 in Wheeler and Tiefelsdorf (2005)), it is not clear whether
such negative correlation matters in practice because the coefficient estimates are
mostly close to their global true values (statistical significance level was not given).
When nontrivial multicolinearity among covariates is present, however, caution
and diagnostic efforts need to be taken, like in global regressions, e.g., examining
correlation in the coefficient estimates and the sensitivity of coefficient estimates to
addition or deletion of other covariates.

Local Linear Estimation

The local linear estimation approach was proposed by Wang, Mei, and Yan (2008)
to target reduction of bias in coefficient estimates of GWR, not to directly address
the issue of multicolinearity. In particular, they were concerned about the boundary-
effect problem, that is, the GWR estimates tend to be more biased at the boundaries
than in the interior part of the study area. Nevertheless, multicolinearity could
contribute to bias as evidenced by above discussion. Therefore, the local linear esti-
mation approach can potentially alleviate the problem caused by multicolinearity,
while being able to reduce bias from other sources. The idea of this approach is
based on first-order Taylor expansion of local coefficients with regard to spatial
points:
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Fig. 12.4 Overall correlation between two coefficient estimates as a function of correlation
between the two corresponding covariates, adapted from Wheeler and Tiefelsdorf (2005)

βk(u, v) ≈ βk(ui, vi) + β
(u)
k (ui, vi)(u − ui) + β

(v)
k (ui, vi)(v − vi),

where β
(u)
k (ui, vi) and β

(u)
k (ui, vi) are partial derivatives of βk(u, v) with regard to

u and v, respectively, evaluated at sj = (ui, vi). For each local regression centered
at (ui, vi), it is no longer necessary to assume the same coefficients as at (ui, vi) for
all other observation locations. Instead, the objective function becomes

Li

(
β(si)

) =
n∑

j=1

wj(sj )
{
yj −

p∑

k=1

xjk

[
βk(ui, vi) + β

(u)
k (ui, vi)(uj − ui)

+ β
(v)
k (ui, vi)(vj − vi)

]}2

= ||W (si)
1/2(Y − Xβ(si)||2

(12.4)

The fitting of the model is as usual
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β̂(si) = (
X(si)

τW (si)X(si)
)−1

X(si)
τW (si)Y ,

except that the coefficient vector and design matrix are of an extended form:

β(si) = (
β1(si), β

(u)
1 (si), β

(v)
1 (si), . . . , βp(si), β

(u)
p (si), β

(v)
p (si)

)τ

and

X(si) =

⎡

⎢
⎢
⎢
⎣

x11 x11(u1 − ui) x11(v1 − vi) · · · , x1p x1p(u1 − ui) x1p(v1 − vi)

x21 x21(u2 − ui) x21(v2 − vi) · · · , x2p x2p(u2 − ui) x2p(v2 − vi)
...

...
...

...
...

...
...

xn1 xn1(un − ui) xn1(vn − vi) · · · , xnp xnp(un − ui) xnp(vn − vi)

⎤

⎥
⎥
⎥
⎦

.

Note that X(si) depends on location si , different from the traditional GWR. In
their simulation studies, Wang et al. (2008) generated two coefficients as nonlinear
continuous functions of the spatial coordinates (Fig.12.5), and the local linear fitting
approach (Fig. 12.6b, d) clearly demonstrated its bias reduction utility in comparison
to the traditional GWR (Fig. 12.6a, c).

Regularized Fitting

Ridge Regression To further constrain the coefficient estimates which serves both
purposes of reducing correlation in coefficient estimates and variable selection,
Wheeler (2007) suggested the coupling of GWR with ridge regression (GWRR),
i.e., adding a penalty term for the L2 norm of the coefficients:

Fig. 12.5 True coefficient functions of geocoordinates in a simulation study in Wang et al. (2008):
(a) coeficient β1(u, v) for predictor 1; (b) coeficient β2(u, v) for predictor 2
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Fig. 12.6 Coefficient functions fitted by GWR (left) and local linear fitting (right) in a simulation
study in Wang et al. (2008)

β̂(si) = arg min
β

{ n∑

j=1

wj(si)
[
ỹj − X̃

τ

jβ(si)
]2 + λ

p∑

k=1

β2
k (si)

}
(12.5)

= [
X̃

τ
W (si)X̃ + λI

]−1
X̃

τ
W (si)Ỹ , (12.6)

where X̃j and ỹj are standardized covariates and response, X̃ and Ỹ are the
standardized version of the covariate matrix and response vector, and λ is the global
shrinkage parameter. Several standardization schemes were discussed by Wheeler
(2007), but here we only introduce the most straightforward scheme:

x̃jk = xjk − x̄k

(
W (si)

)

σ̂
(x)
k

, ỹj = yj − ȳ
(
W (si)

)

σ̂ (y)
,

where

x̄k

(
W (si)

) =
n∑

i=1

√
wj(si)xjk/

n∑

i=1

√
wj(si),

ȳk

(
W (si)

) =
n∑

i=1

√
wj(si)yjk/

n∑

i=1

√
wj(si)
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Fig. 12.7 Spatial distributions of coefficient estimates based on GWR and GWRR of crime rate
on household income and housing value in Columbus, Ohio: (a) Household income, GWR; (b)
Housing value, GWR; (c) Household income, GWRR; and (d) Housing value, GWRR (adapted
from Wheeler (2007))

are the weighted means, and σ̂
(x)
k and σ̂ (y) are the unweighted sample standard

deviations, of the kth covariate and the response. Standardization matters for ridge
regression, because centering removes the intercept from the model, as ridge
regression does not regulate intercept, and rescaling by sample standard deviation
ensures fair shrinkage of the regression coefficients. Similar to the bandwidth h,
the shrinkage parameter λ can be chosen by cross-validation, and Wheeler (2007)
recommended tuning h and λ simultaneously. In his example of fitting crime
rate on household income and housing value in Columbus, Ohio, Wheeler (2007)
showed appreciable reduction in the correlation between coefficient estimates and
more reasonable local coefficient estimates (Fig. 12.7) provided by the GWRR as
compared to traditional GWR. Indeed, in Fig. 12.7, the negative association between
the coefficient estimates by contrasting (c) with (d) for GWRR is much less obvious
than that by contrasting (a) with (b). In addition, the counter-intuitive positive
association between crime rate and housing value in East Columbus with GWR
(b) become largely negative with GWRR (d).

GWGlasso Analogous to the ridge regression, Wang and Li (2017) proposed a
method that couples GWR with adaptive group LASSO to identify model structure
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and select variables, and named it GWGlasso. The shrinkage of classic lasso is
reached by using the L1-norm penalty, λ

∑p

k=1 |βk(si)|, instead of square of the
L2 norm, λ

∑p

k=1 β2
k (si). One major distinction between ridge regression and lasso

is that the former tends to allow for small coefficients close to 0 whereas the latter
shrinks small coefficients to 0 exactly (Wheeler 2007). Group lasso applies L2 norm

to the each group of coefficients, λ
∑G

g=1

√∑pg

k=1 β2
k (si), where G is the number

of groups and pg is the number of coefficients in group g. It reduces to classic
lasso when pg = 1 for all groups. Rather than shrinking each coefficient separately,
group lasso shrinks the whole group of coefficients to 0, if shrinkage does occur.
As a result, group lasso serves better as a model selector. Adaptive group lasso

attaches a different tuning parameter to each group,
∑G

g=1 λg

√∑pg

k=1 β2
k (si). Due

to the adaptive feature, it is not necessary to remove the intercept by centering the
responses and covariates.

To facilitate the description of GWGlasso, the following notation is defined. Let a
be a n×p matrix with its element at ith row and kth column being aik = βk(si). We
denote the columns and rows of a by a,k = (βk(s1), . . . , βk(sn))

τ , k = 1, . . . , p,
and ai, = (β1(si), . . . , βp(si))

τ , i = 1, . . . , n, respectively. Note that both a,k and
ai, are column vectors. Let b be a 2n × p matrix with its element at ith row and kth
column being

bik =
{

β
(u)
k (si), 1 ≤ i ≤ n,

β
(v)
k (si−n), n < i ≤ 2n

.

Similarly, the columns of b are represented by b,k = (
β

(u)
k (s1), . . . , β

(u)
k (sn),

β
(v)
k (s1), . . . , β

(v)
k (sn)

)τ , k = 1, . . . , p. The rows of b are represented by bi, =
(
β

(u)
1 (si), . . . , β

(u)
p (si)

)τ for 1 ≤ i ≤ n, and bi, = (
β

(v)
1 (s1), . . . , β

(v)
p (si)

)τ for
n < i ≤ 2n. The objective function to be minimized is

L(a, b) =
n∑

i=1

Li

(
β(si)

)+ 2λ

p∑

k=1

(
ω1k||a,k||2 + ω2k||b,k||2

)
, (12.7)

where Li

(
(β(si) is given in (12.4), ||a,k||2 =

√∑n
i=1[βk(si)]2, and ||b,k||2 =

√∑n
i=1[β(u)

k (si)]2 + [β(v)
k (si)]2. || · ||2 is the L2 norm (also called Euclidean norm).

The weights, ω1k = √
n/||â(0)

,k ||2 and ω2k = √
2n/||b̂(0)

,k ||2, are used to account for
the scales of the coefficient groups and turn multiple tuning parameters to a single

one, where â
(0)
,k and b̂

(0)

,k are estimates of a,k and b,k without the penalty (Wang & Li,
2017). The objective function is not differentiable at the origin for the same reason
that f (x) = |x| is not. To circumvent this difficulty, a local quadratic approximation
can be used (Wang & Li, 2017). For example, suppose the current estimate of a,k is
â

(m)
,k at the mth iteration in an iterative evaluation procedure. Based on the first-order

Taylor expansion of f (y) = √
y, the approximation is
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||a,k||2 ≈ ||â(m)
,k ||2 + ||a,k||22 − ||â(m)

,k ||22

2||â(m)
,k ||2

.

||ak||22 is differentiable everywhere. The same approximation applies to ||bk|| as
well. With such approximations plugged in, the objective function becomes

L(a, b) ∝
n∑

i=1

[
Li

(
β(si)

)+ λ
(
aτ

i,D
(m)
1 ai, + bτ

i,D
(m)
2 bi, + bτ

n+i,D
(m)
2 bn+i,

)]
,

where D
(m)
1 = diag

(
ω11/||a(m)

,1 ||2, . . . , ω1p/||a(m)
,p ||2

)
and D

(m)
2 = diag

(
ω21p/||b(m)

,1 ||2, . . . , ω2p/||b(m)
,p ||2

)
.

Depending on whether the coefficient groups are shrunk to 0 or not, the model is
naturally structured:

• When â,k = b̂,k = 0, then we conclude βk(si) = 0 for all i, i.e., the kth covariate
is not influential.

• When b̂,k = 0 but â,k �= 0, then βk(si) = βk for all i, i.e., there is no
spatial heterogeneity in the effect of the kth covariate, and βk is estimated by
1
n

∑n
i=1 β̂k(si), where β̂k(si)’s are elements of â, k.

• When â,k �= 0 and b̂,k �= 0, then there is spatial heterogeneity in the effect of the
kth covariate, and βk(si) is estimated by β̂k(si).

To alleviate computational overhead, Wang and Li (2017) suggested the optimal
bandwidth, h�, be chosen using cross-validation based on the unpenalized local
linear estimation approach. After fixing the bandwidth, the shrinkage parameter λ

can be chosen to minimize the Bayesian information criteria,

BIC = log
[ 1

n2

n∑

i=1

Li

(
β̂λ(si)

)]+ dfλ

log(nh)

nh
+ (p − dfλ)

log(n)

n
,

where dfλ is the number of spatially-varying coefficients, Li

(
β̂λ(si)

)
is given

in (12.4), and β̂λ(si), i = 1, . . . , n, are the estimated coefficients in a and b under a
given value of λ.

While GWGlasso is able to identify model structures, it is often desired to find
sparse local coefficients within groups. Such desire entails the need for a method
between lasso and group lasso, where the sparse group lasso fits (Simon et al. 2001).
A possible extension of (12.7) is to incorporate sparse group lasso into GWGlasso
is

L(a, b) =
n∑

i=1

Li

(
β(si)

)+ 2λ1

p∑

k=1

(
ω1k||a,k||2 + ω2k||b,k||2

)

+ λ2

p∑

k=1

(
ω�

1k||a,k||1 + ω�
2k||b,k||1

)
,
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where ||a,k||1 = ∑n
i=1 |aik| is the L1 norm. Whether this is a valid extension, as

well as what form should ω�
1k and ω�

2k take, are open questions.

GW Elastic Net lasso is able to identify influential covariates to form a parsimo-
nious model, sacrificing the predictive power of the model to some level. On the
other hand, ridge regression is able to reduce the impact of multicolinearity without
compromising predictive performance, but it may retain non-predictive covariates.
To find a balance between parsimony and predictive performance, a geographically
weighted elastic net (GWEN) blends lasso and ridge penalties (Li & Lam, 2018):

Li

(
β(si)

) =
n∑

j=1

wj(si)
[
yj − β0(si) −

p∑

k=1

βk(si)xjk

]2

+ λ

p∑

k=1

[
(1 − α)β2

k (si) + α|βk(si)|
]

Similar to (12.5), one can center and rescale covariates and responses to remove the
intercept:

Li

(
β(si)

) =
n∑

j=1

wj(si)
[
ỹj − X̃

τ

jβ(si)
]2 + λ

p∑

k=1

[
(1 − α)β2

k (si) + α|βk(si)|
]

where X̃j and ỹj , j = 1, . . . , n, are standardized covariates and responses.
In an analysis of population size change from 2000 to 2010 regressed on thirty-

five socio-environmental variables in the Lower Mississippi River Basin, Li and
Lam (2018) compared the results between several GWR models as shown in
Table 12.3. In this table, root MSE measures goodness of fit, mean VIF measures
multicolinearity among covariates, and global Moran’s I measures spatial assesses
spatial autocorrelation among residuals. For all these quantities, the lower the
better. GWEN resembles GWR-lasso in model parsimony and explaining spatial
correlation, and is comparable to GWR-Ridge in terms of goodness-of-fit and mul-
ticolinearity. As expected, GWEN offers a reasonable trade-off between parsimony
and goodness-of-fit.

Table 12.3 Comparison between various GWR models

Metrics Classic GWR GWR-Ridge GWR-lasso GWEN

Root MSE 0.42 0.51 0.59 0.55

Mean VIF 252.64 4.92 2.78 4.04

Average # of selected covariates 35.00 35.00 10.18 10.18

Global Moran’s I 0.009 0.019 0.046 0.045

This table is adapted from Li and Lam (2018)



302 Y. Yang

12.3 Software and Case Study

Currently, there are multiple choices of software tools implementing various
versions of GWR. GWR4 is a standalone software package dedicated to GWR,
implementing GWR for three distribution families (Gaussian, Poisson and Logistic),
with useful features such as variable selection and simultaneously considering
global and local regression coefficients (Nakaya, Fotheringham, Charlton, & Bruns-
don, 2009). GWR has also been integrated into several commonly used GIS or
spatial statistics software tools such as ArcGIS (Environmental Systems Resource
Institute 2013), SpaceStat (BioMedware 2011), and SAM (Rangel, Diniz-Filho,
& Bini, 2010). Both ArcGIS and SpaceStat are commercial software packages
that are not free. We introduce three GWR-related R packages, spgwr, gwrr and
GWmodel using a case study with a real data set, mainly for the free availability
and versatility of R as a software platform for data manipulation, data presentation,
and statistical analysis. To facilitate our description, we refer to the three regularized
models (GW ridge regression, GWR with lasso and GWR with locally compensated
ridge) available in packages gwrr and GWmodel as GWR-Ridge, GWR-LASSO
and GWR-LCR. A brief comparison of features of the three packages is shown
in Table 12.4. Clearly, these packages have some non-overlapping features, and it
could be fruitful to use them in combination.

12.3.1 Data

For the case study we use the hand, foot and mouth disease (HFMD) surveil-
lance data during 2009 in China, provided by the courtesy of Chinese Center
for Disease Control and Prevention (CCDC). Epidemiological description and
statistical analyses of these data can be found elsewhere (Tang, Yang, Yu, Liao,
& Bliznyuk, 2019; Wang et al. 2011). Briefly, HFMD is a disease mainly among
children under 6 years of age caused by a spectrum of enteroviruses. In China,
mandated reporting of this disease was initiated by a large outbreak in 2008.
The reporting became well established and relatively complete since 2009. As
in Wang et al. (2011), we will analyze the data at the prefecture level, which
is an administrative level between province and county. The dependent variable
(outcome) of interest is disease incidence, i.e., number of cases per year and 100,000
people, after log-transformation. The independent variables (predictors) are log-
transformed population density, (log-popden) temperature (temp), relative humidity
(rh), and wind speed (ws), and all three climatic predictors are taken as annual
averages. All predictors have been standardized to have 0 for sample means and
1 for sample variance. The spatial distributions of case numbers and incidences
are shown in Fig. 12.8. High disease incidences are found in Guangxi, Guang and
northern Hunan provinces. Moron’s I statistic based on Euclidean distances as the
weights is −0.056 with a p-value <0.001, indicating a pattern of more spatially
dispersed than expected.
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Table 12.4 Comparison of features between various GWR-related R packages, partially adapted
from Gollini et al. (2015)

Packages

Model Function Option spgwr gwrr GWmodel McSpatial

All Kernela Gaussian Y Y Y Y

Bi-square Y Y Y

Tri-cube Y Y

Exponential Y Y

Classic Bandwidth CV Y Y Y Y

GWR Selection AICc Y Y

Adaptive

Bandwidth Y Y

Colinearity VIF Y

Diagnosis VDP Y Y

Condition number Y Y

Colinearity Global ridge Y Yb

Solution Local ridge Yb

LASSO Y

Test global vs.

local coefficients Y Y

Generalized Distributionc Poisson Y Y

GWR Binomial Y Y Y

Multinomial Y

Quasi-Poisson Y

Bandwidth CV Y Y Y

Selection AICc Y

Adaptive

Bandwidth Y Y
a GWmodel and McSpatial provide additional kernel functions
b GWmodel requires users to provide ridge parameters, i.e., no optimization
c spgwr offers additional distributions as specified in glm() function

12.3.2 Data Analysis with R Packages

We use R 3.3.0 for all the analyses (R Core Team 2013). The following packages
are to be loaded.

Packages < c (” maptools ” , ” s h a p e f i l e s ” , ”RColorBrewer ” , ” rgda l ” , ” spdep ” ,
” sp ” , ”spgwr ” , ”gwrr ” , ”GWmodel” , ” l a t t i c e ” , ”ape ”)

i n v i s i b l e ( l app ly ( Packages , l i b r a ry , cha rac t e r . only = TRUE))

To load an individual package, e.g., gwrr, simply use “library(gwrr)”. To load the
data, use either of the following options:
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(a) Number of Cases

under 1200.6
1200.6 − 1735.8
1735.8 − 2349
2349 − 4217.6
over 4217.6

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b) Incidence (/100,000)

under 33.35
33.35 − 54.27
54.27 − 73.41
73.41 − 94.93
over 94.93

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.8 Spatial distributions of (a) numbers of cases and (b) annual incidences at the prefecture
level in five southern provinces of China during the 2009 epidemic of the hand, foot and mouth
disease

# Option 1
setwd ( path ) ; load ( case s tudy gwr . RData)
# Option 2
load ( paste ( path , ” case s tudy gwr . RData” , sep = ’ ’))

where path is the directory where your put the data, e.g., “C:/gwr/data/”.
Three data sets will be loaded, two spatial data objects (of type SpatialPoly-
gonsDataFrame in R spatial statistics packages), named “south5.shp” and
“south5_province_line”, and one usual data frame, named “my.data”,
which contains the same data as in south5.shp but no polygon structures.
“south5_province_line” is only for drawing provincial boundaries.

To assess Moran’s I for disease incidence, use the code

c en t r o i d s < coo rd ina t e s ( south5 . shp )
my. dMat < gw . d i s t ( c en t r o i d s )
Moran . I (my. da ta$ l og inc id ence , my. dMat)

We first examine the relationship between the outcome and the predictors to see
if nonlinear trend exists. There appears to moderate levels of nonlinear trends for
population density, temperature and wind speed (Fig. 12.9). However, for illustrative
purpose, we move ahead with only linear terms. To select a bandwidth via cross-
validation using the Gaussian kernel and to fit a classic GWR with the chosen
bandwidth, one can use the following functions from the spgwr package:

bw. gwr< gwr . s e l ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=south5 . shp ,
adapt=FALSE, gweight=gwr . Gauss , verbose=TRUE)

f i t . gwr< gwr ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=south5 . shp ,
bandwidth=bw. gwr , gweight=gwr . Gauss , hatmatrix=TRUE)
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Fig. 12.9 Scatter plots of the outcome with (a) log(population density), (b) temperature, (c)
relative humidity and (d) wind speed. The red solid curves represent loess smoothing

The option adapt=FALSE tells gwr.sel() that a fixed rather than adaptive band-
width is desired. If adapt=TRUE, then a fraction is returned. For example, if the
optimal fraction found by gwr.sel() is 0.8, then the nearest 80% of all data points
will be included for analysis at each location. The option hatmatrix=TRUE specifies
that the hat matrix is to be included in the returned object fit.gwr, in addition to other
model outputs. The spatial distributions of the estimated coefficients, as shown in
Fig. 12.9, are produced by

par (mfrow=c (2 , 2 ) )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$log popden , ’ ( a ) l og (Pop Density ) ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$temp , ’ ( b) Temperature ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$rh , ’ ( c ) Rel . Humidity ’ )
do .map( f i t . gwr$SDF , f i t . gwr$SDF$ws , ’ ( d) Wind Speed ’ )

and the function do.map() can be found in the accompanying online code
with this book. Figure 12.10 appears to indicate geographical clustering of
different levels of regression coefficients for each predictor, particularly relative
humidity and wind speed; nevertheless, such geographic heterogeneity may not
be of practical importance. For example, the absolute value of the coefficient
of variation is 0.23 for the estimated coefficients for temperature, much lower
than 3.33 and 3.35 for relative humidity and wind speed, suggesting a lesser
degree of spatial heterogeneity for temperature. The coefficient of variation
is simply the ratio of standard deviation to mean and can be computed by
sd(fit.gwr$SDF$temp)/mean(fit.gwr$SDF$temp). Formal statistical
tests can be used to test for spatial nonstationary in all or specific predictors:
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(a)

under 0.01
0.01 − 0.07
0.07 − 0.11
0.11 − 0.15
over 0.15

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0.86
0.86 − 0.94
0.94 − 1.03
1.03 − 1.2
over 1.2

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −0.58
−0.58 − −0.03
−0.03 − 0.17
0.17 − 0.24
over 0.24

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under −0.09
−0.09 − −0.02
−0.02 − 0.02
0.02 − 0.18
over 0.18

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.10 Spatial distributions of local coefficients estimated by classic GWR with a fixed
Gaussian kernel for (a) log(population density), (b) temperature, (c) relative humidity, and (d)
wind speed

> BFC02 . gwr . t e s t ( f i t . gwr ) $p . va lue
0.1932179
> LMZ.F1GWR. t e s t ( f i t . gwr ) $p . va lue
0.4162748
> LMZ.F2GWR. t e s t ( f i t . gwr ) $p . va lue
0.2315591
> LMZ.F3GWR.test(fit.gwr)
Leung et a l . (2000) F(3) t e s t

F s t a t i s t i c Numerator d . f . Denominator d . f . Pr(>)
( I n t e r c ep t ) 0 .87779 34.29761 58.356 0.65434
log popden 0.96944 23.37794 58.356 0.51567
rh 4.21961 31.52168 58.356 1 .008 e 06 ∗∗∗
temp 0.57866 22.33473 58.356 0.92288
ws 1.71297 23.17358 58.356 0.05019 .

S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1
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BFC02.gwr refers to the resampling-based test (Brunsdon et al. 1996; Fothering-
ham et al. 2002), and LMZ.F1GWR and LMZ.F2GWR refer to the asymptotic
test (Leung et al. 2000), for the global null (spatial stationarity in all coefficients).
LMZ.F3GWR refers to the asymptotic tests for specific predictors (Leung et al.
2000). Spatial nonstationarity seems to be significant for relative humidity and
marginally significant for wind speed. However, none of the global tests are
significant. Statistically speaking, one should take the tests for specific predictors
seriously only if the global test is significant.

To assess colinearity in predictors and its impact on GWR, we look at local
weighted correlations among predictors’ values (weights determined by the same
distance matrix as in GWR) and correlations among GWR-estimated local coeffi-
cients of these predictors.

> var . l i s t < c ( ’ log popden ’ , ’ temp ’ , ’ rh ’ , ’ws ’ )
> cov . gwr< gw . cov ( f i t . gwr$SDF , vars=var . l i s t ,

)ssuaG.rwg=thgiewg,rwg.wb=wb+
> mean . cor . gwr< with ( cov . gwr$SDF@data , apply ( cbind ( cor . log popden . temp . ,

gol.roc+ popden . rh . , cor . log popden . ws . , cor . temp . rh . ,
))naem,2,).sw.hr.roc,.sw.pmet.roc+

> b< matrix (0 , nrow=4, nco l =4, dimnames=l i s t ( var . l i s t , var . l i s t ) )
> b [ lower . t r i (b , d iag=FALSE) ] < mean . cor . gwr
> t (b)

log popden temp rh ws
log popden 0 0.6352849 0.3803019 0.01462292
temp 0 0.0000000 0.4499036 0.16462085

0000000.00000000.00hr 0.81590363
00000000.00000000.00000000.00sw

> with ( f i t . gwr$SDF@data , cor ( cbind ( log popden , temp , rh , ws ) ) )
log popden temp rh ws

log popden 1.0000000 0.5994083 0.4320501 0.1735663
temp 0.5994083 1.0000000 0.5898919 0.4249700
rh 0.4320501 0.5898919 1.0000000 0.9482771
ws 0.1735663 0.4249700 0.9482771 1.0000000

The local weighted correlations flagged alarming colinearity between population
density and temperature, −0.63, as well as between relative humidity and wind
speed, −0.82. The impact of colinearity of the latter pair on GWR is confirmed by
the high negative correlation, −0.95, in local coefficients between relative humidity
and wind speed. The colinearity associated with relative humidity and wind speed
are visualized as the scatter plot of the estimated local coefficients (Fig. 12.11a)
and the mapping of estimated local correlation based on Fisher information in the
estimates of local coefficients (Fig. 12.11b). Unfortunately, the package spgwr does
not provide means of addressing colinearity. It is probably worth mentioning that,
for colinearity in the GWR setting, it could be misleading to only check the global
correlations among the predictors, as the following code shows.
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Fig. 12.11 Colinearity between relative humidity and wind speed is examined by (a) scatter plot
of estimated local coefficients and (b) spatial distribution of estimated local correlation (using
Fisher information) in the estimates of local coefficients

> with (my. data , cor ( cbind ( log popden , temp , rh , ws ) ) )
log popden temp rh ws

log popden 1.00000000 0.27318920 0.05270545 0.44078059
temp 0.27318920 1.00000000 0.11509446 0.04691729
rh 0.05270545 0.11509446 1.00000000 0.34480512
ws 0.44078059 0.04691729 0.34480512 1.00000000

The package spgwr does provide generalized GWR models, and the distribution
families are as many wide as specified by glm(). The Poisson family is appropriate
if we model the number of cases directly with population size as an offset.

bw. ggwr< ggwr . s e l ( n ca s e s ˜ log popden+rh+temp+ws+o f f s e t ( l og ( pop ) ) ,
data = south5 . shp , fami ly=poisson , adapt = FALSE,
gweight = gwr . Gauss , verbose = TRUE)

f i t . ggwr< ggwr ( n ca s e s ˜ log popden+rh+temp+ws+o f f s e t ( l og ( pop ) ) ,
data = south5 . shp , fami ly=poisson ,
bandwidth=bw. ggwr , gweight=gwr . Gauss )

This Poisson GWR yields largely similar spatial patterns of local coefficient
estimates (Fig. 12.12) as compared to the classic GWR (Fig. 12.10), except that large
coefficients for temperature became more clustered in the southwest corner of the
study region. However, spgwr does not offer predicted values of generalized models
(mean rate in the Poisson case) or any measure for goodness-of-fit to the data.

Before exploring the ridge regression and LASSO facilities in the gwrr package,
we first introduce the function vdp.gwr() in this package for diagnosing colinearity.
Unlike spgwr, functions in gwrr do not handle spatial data structure (such as
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(a)

under −0.01
−0.01 − 0.05
0.05 − 0.08
0.08 − 0.17
over 0.17

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0.82
0.82 − 1.14
1.14 − 1.33
1.33 − 1.73
over 1.73

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −1.4
−1.4 − −0.32
−0.32 − 0.01
0.01 − 0.07
over 0.07

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under −0.07
−0.07 − 0
0 − 0.05
0.05 − 0.32
over 0.32

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.12 Spatial distributions of local coefficients estimated by Poisson GWR with a fixed
Gaussian kernel for (a) log(population density), (b) temperature, (c) relative humidity, and (d)
wind speed

south5.shp used above) directly; instead, they require usual data frames with geo-
coordinates as a separate argument.

bw. gwr . exp< gwr .bw . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ”)

vdp . gwr< gwr . vdp ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , phi=bw. gwr . exp$phi ,
s e l . c i = 30 , s e l . vdp = 0 . 5 )

The first command optimizes the bandwidth via cross-validation, using the exponen-
tial kernel. Only two kernels are available in gwrr, Gaussian (“gauss”) or exponential
(“exp”). We got an numeric error by using the Gaussian kernel on the HFMD
data, which leaves exponential as the only feasible option. Function gwr.bw.est()
returns a structure rather than a value, and the selected bandwidth can be retrieved
with bw.gwr.exp$phi. Function gwr.vdp() outputs both variance decomposition
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proportions (VDP) and condition numbers (CN), both derived from the weighted
covariance matrix

√
W (si)X. According to Wheeler (2007), let the singular value

decomposition of
√

W (si)X be
√

W (si)X = UDV τ , where U is a n × (p + 1)

matrix with orthogonal columns, D is a (p + 1) × (p + 1) diagonal matrix, and
V is a (p + 1) × (p + 1) matrix with orthogonal columns. The diagonal elements
(d1, . . . , dp+1) of D are called singular values, and the columns of V are called
(right) singular vectors. CNs are defined as CNj = max(d1, . . . , dp+1)/dj for

j = 1, . . . , p + 1, and VDPs are defined as a matrix � = {φij = v2
ij

d2
j

}(p+1)×(p+1)

rescaled by its row sums, i.e., V DPij = φij /φi , where φi = ∑p+1
k=1 φik . The

rationale behind VDP is Var(β̂k(si)) = σ 2φi . However, function gwr.vdp() returns
only a single value rather than a vector for CN and a vector rather than a matrix for
VDP. After some investigation (see the online R code associated with this book), we
found that the returned CN is the ratio of the largest to the smallest singular value,
and the returned VDP vector is the column of the matrix {V DPij } associated with
the smallest singular value. This CN definition is analogous to (not exactly the same
as) the one introduced in Gollini, Lu, Charlton, Brunsdon, and Harris (2015) for the
package GWmodel. CN values > 30 or VDPs > 0.5 are thought to flag potential
issues of colinearity, and that is why 30 and 0.5 are used for threshold options sel.ci
and sel.vdp in the above code to indicate which locations have alarming RNs and
VDPs. CN is also called condition index in Wheeler (2007), which explains the
naming of the option sel.ci.

> summary(vdp . gwr$condit ion )
Min . 1 s t Qu. Median Mean 3rd Qu. Max.
1 .831 2 .344 2 .581 2 .616 2 .787 3 .978

> apply ( vdp . gwr$vdp , 2 , summary)
[ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]

Min . 6 .206 e 05 0.01967 2 .764 e 05 0.0001593 0.02339
1 s t Qu. 1 .260 e 02 0.23340 4 .909 e 02 0.3273000 0.16460
Median 2.410 e 01 0.35770 1 .298 e 01 0.6547000 0.31700
Mean 2.994 e 01 0 .39300 2 .208 e 01 0.5513000 0.39120
3rd Qu. 5 .281 e 01 0.52170 4.188 e 01 0.8028000 0.66820
Max. 8 .384 e 01 0 .84120 6 .724 e 01 0.8949000 0.86160

For the HFMD data, none of the CNs are over the threshold, but a substantial
amount of VDPs are exceeding 0.5, suggesting that a certain level of colinearity.
The following code fits classic GWR and GWRs with ridge and LASSO penalties
using functions in the gwrr package, where both bandwidth and shrinkage parameter
are automatically chosen via cross-validation.

f i t 2 . gwr< gwr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , bw=bw. gwr . exp$phi )

f i t . gwrr< gwrr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws , data=my. data ,
l o c s=cent ro id s , k e rne l=”exp ” , bw=TRUE, rd=TRUE)

f i t . gwl< gwl . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
data=my. data , l o c s=cent ro id s , k e rne l=”exp ”)
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We found that the ridge shrinkage parameter chosen by gwrr.est() for the HFMD
data was 0, i.e., no shrinkage at all. For illustration, we fitted a GWR-Ridge model
with a bandwidth equal to bw.gwr.exp$phi and an rather arbitrary shrinkage
parameter of 0.01, and presented all results about GWR-Ridge based on this model.

> f i t . gwrr< gwrr . e s t ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
,”pxe”=lenrek,sdiortnec=scol,atad.ym=atad+

)10.0=dr,ihp$pxe.rwg.wb=wb+
> go f < rbind ( c ( f i t 2 . gwr$rsquare , f i t . gwrr$rsquare , f i t . gwl$rsquare ) ,
+ c ( f i t 2 . gwr$RMSE, f i t . gwrr$RMSE , f i t . gwl$RMSE) )
> dimnames ( go f)< l i s t ( c ( ’R square ’ , ’RMSE’ ) ,

RWG’,’RWGcissalC’(c+ Ridge ’ , ’GWR LASSO’ ) )
> go f

C l a s s i c GWR GWR Ridge GWR LASSO
R square 0.4584649 0.5085547 0.6956734
RMSE 0.5431182 0.5173908 0.4071468

The approximate R-squares of the regularized GWRs are larger, whereas the root
mean square errors (RMSE) are smaller, than those of the classic GWR, indicating
better goodness-of-fit to the data for the regularized regressions. Nonetheless,
this does not necessarily imply better predictive power on new data. The scales
and spatial distributions of local coefficients are shown in Fig. 12.13 for GWR-
Ridge and in Fig. 12.14 for GWR-LASSO. Compared to classic GWR (Fig. 12.10),
GWR-Ridge yielded more or less similar spatial patterns of coefficients except for
temperature for which large coefficients in southern Guangxi province shifted to
northern Hunan province. Shrinkage of coefficients towards zero is only noticeable
for temperature. GWR-LASSO clearly shrank local coefficients towards 0 more
aggressively, and led to more scattered spatial patterns of coefficients than the other
two models.

Gollini et al. (2015) proposed a GWR approach with locally compensated
ridge (GWR-LCR) parameters which is implemented in the R package GWmodel.
However, the statistical presentation in the paper was a little loose, and we were not
able to find further technical details elsewhere. As a result, we briefly summarize the
rationale here, per our understanding of the paper. In a global regression setting, the
standard solution to ridge regression is expressed as β̂ = (XτX + λI )−1XτY ,
where λ is the ridge penalty tuning parameter and I is the identity matrix. Let
θ1, . . . , θp be the eigenvalues of XτX in decreasing order, i.e., θ1 and θp are the
largest and smallest eigenvalues. Eigenvalues returned by R functions usually are
also ordered decreasingly. Gollini et al. (2015) defined the condition number as
θ1/θp. The eigenvalues of the ridge-adjusted cross-product matrix XτX + λI is
θ1 + λ, . . . , θp + λ, and the associated CN is (θ1 + λ)/(θp + λ). To have CN ≤ κ

for some threshold κ , one can choose λ ≥ (θ1 − κθp)/(κ − 1). In a GWR-Ridge
setting where a local ridge penalty is applied to each location, the local solution
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Fig. 12.13 Spatial distributions of local coefficients estimated by GWR-Ridge with an exponential
kernel and a fixed bandwidth for (a) log(population density), (b) temperature, (c) relative humidity,
and (d) wind speed

is given by β̂(si) = (XτW (si)X + λiI )−1XτW (si)Y . The local ridge parameters
λi’s can be tuned separately to reach acceptable local CNs. This is in contrast to the
usual GWR-Ridge where a global λ is tuned to minimize prediction error via cross-
validation. Tuning of either fixed or adaptive bandwidth proceeds as usual, using
either cross validation or AICc.

We want to point out that, the definition of CN differs from that in Wheeler
(2007). The eigenvalues of XτW (si)X and the singular values of

√
W (si)X do not

yield exactly the same CN because of their relationship θj = d2
j . If the definitions

of CN are accurate in the two papers, we suspect that CNs produced by GWmodel
are squares of those produced by gwrr. We compared the CNs produced by the two
packages in Fig. 12.15, which was generated by the following code:
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(a)

under 0
0 − 0
0 − 0.02
0.02 − 0.15
over 0.15

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0
0 − 0
0 − 0.79
0.79 − 1.39
over 1.39

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −0.74
−0.74 − 0
0 − 0
0 − 0.01
over 0.01

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under 0
0 − 0
0 − 0
0 − 0.35
over 0.35

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.14 Spatial distributions of local coefficients estimated by GWR-LASSO with an expo-
nential kernel and a fixed bandwidth for (a) log(population density), (b) temperature, (c) relative
humidity, and (d) wind speed

f i t 0< gwr . l c r ( l o g i n c i d e n c e ˜ log popden+rh+temp+ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ ,
bw=bw. gwr$phi , lambda=0, adapt ive=FALSE, dMat=my. dMat)

bound< max( c ( fit0$SDF$Local CN , vdp . gwr$condit ion ) )
p l o t ( fit0$SDF$Local CN , vdp . gwr$condit ion , xl im=c (0 , bound ) ,

ylim=c (0 , bound ) , xlab=’GW LCR’ , ylab=’GWR’ , type=’p ’ ,
pch=19, main=’Local cond i t i on ind i c e s ’ )

po in t s ( s q r t ( fit0$SDF$Local CN ) , vdp . gwr$condit ion , pch=1, c o l =’blue ’ )
ab l i n e ( c o e f = c ( 0 , 1 ) )

The original CN outputs of the two packages are very different, shown by the black
dots. The square roots of the CNs produced by GWmodel are close to the CNs
produced by gwrr, but not exactly. We are not sure about the source of the subtle
differences even after taking square root. Both packages recommended the same
threshold (30) for flagging potentially problematic CNs.
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Fig. 12.15 Comparison
between condition numbers
produced by function
gwr.vdp() in gwrr and those
by function gwr.lcr() in
GWmodel. Black solid dots
are scatter plot of the CNs
from the two functions. Blue
circles are scatter plot after
applying square root to the
CNs produced by gwr.lcr()
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The following code selects bandwidth for and fits the GWR-LCR model, using
the exponential kernel and an adaptive bandwidth.

bw. l c r < bw. gwr . l c r ( l o g i n c i d e n c e ˜ log popden + rh + temp + ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ ,
adapt ive=TRUE, lambda . ad jus t=TRUE, cn . thresh=30)

f i t . l c r < gwr . l c r ( l o g i n c i d e n c e ˜ log popden + rh + temp + ws ,
data=south5 . shp , k e rne l =’ exponent ia l ’ , bw=bw. l c r ,
adapt ive=TRUE, lambda . ad jus t=TRUE, cn . thresh=30)

The AIC, AICc and residual sum of squares obtained from GWR-LCR are 178, 191
and 24.4 respectively, compared to 137, 157 and 24.9 for the classic GWR. The less
satisfactory AIC and AICc of GWR-LCR compared to the classic GWR could be
due to the weak association of the predictors with the outcome and the substantially
more parameters in the GWR-LCR model. The spatial patterns of local predictor
coefficients fitted by GWR-LCR are shown in Fig. 12.16. The shrinkage effect of
GWR-LCR is clear for relative humidity and wind speed. Interestingly, the spatial
patterns are more comparable to the results of the classic GWR (Fig. 12.10) than
to those of GWR-Ridge (Fig. 12.13), especially for temperature and population
density.

The following code uses Moran’s I to test spatial randomness of residuals
for all four models. No special spatial patterns were found as all p-values are
relatively large. This result suggests that, while the predictors did not show high
predictive power overall, they indeed explain the spatial auto-correlation in the
HFMD incidences.
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(a)

under 0.06
0.06 − 0.08
0.08 − 0.11
0.11 − 0.13
over 0.13

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(b)

under 0.82
0.82 − 0.87
0.87 − 0.91
0.91 − 1.01
over 1.01

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(c)

under −0.29
−0.29 − −0.04
−0.04 − 0.12
0.12 − 0.18
over 0.18

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

(d)

under −0.08
−0.08 − −0.05
−0.05 − −0.02
−0.02 − 0.05
over 0.05

Guangxi

Hunan

Jiangxi

Fujian

Guangdong

Fig. 12.16 Spatial distributions of local coefficients estimated by GWR-CLR with an exponential
kernel and a adaptive bandwidth for (a) log(population density), (b) temperature, (c) relative
humidity, and (d) wind speed

> r e s . gwr < f i t . gwr$SDF$pred my. da t a$ l o g i n c i d en c e
> r e s . gwrr < f i t . gwrr$yhat my. da t a$ l o g i n c i d en c e
> r e s . gwl < f i t . gwl$yhat my. da t a$ l o g i n c i d en c e
> r e s . l c r < f i t . lcr$SDF$yhat my. da t a$ l o g i n c i d en c e
> out< rbind (Moran . I (my. da ta$ l og inc id ence , my. dMat ) ,
+ Moran . I ( r e s . gwr , my. dMat ) , Moran . I ( r e s . gwrr , my. dMat ) ,
+ Moran . I ( r e s . gwl , my. dMat ) , Moran . I ( r e s . l c r , my. dMat ) )
> rownames ( out ) < c ( ’Raw Response ’ , ’ Res idual :GWR’ ,
+ ’ Res idua l :GWR Ridge ’ , ’ Res idua l :GWR LASSO’ , ’ Res idua l :GWR LCR’ )
> out

observed expected sd p . value
Raw Response 0.05610592 0.01470588 0.008402828 8.353727 e 07
Res idual :GWR 0.007730267 0.01470588 0.008427097 0.4078063
Res idual :GWR Ridge 0.008066695 0.01470588 0.00844284 0.4316514
Res idual :GWR LASSO 0.009189744 0.01470588 0.008329576 0.5078205
Res idua l :GWR LCR 0.007598853 0.01470588 0.008431426 0.3992724
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Fig. 12.17 Comparison of correlations among local regression coefficients for classic GWR
(upper left), GWR-Ridge (upper right), GWR-LASSO (lower left) and GWR-LCR (lower right)

We further compared at colinearity in local coefficients of all four models, classic
GWR, GWR-Ridge, GWR-LASSO and GWR-LCR in Fig. 12.17. The regularized
models all reduced colinearity to some extent, and GWR-LASSO did a more
satisfactory job. GWR-LCR shrank the ranges of coefficients for all parameters,
particularly so for temperature and population density, but such shrinkage is not
necessarily towards 0. Although the linear correlation in coefficients between
relative humidity and wind speed still remains clear in the regularized models, it is
generally not wise to increase the shrinkage level too much, as the price paid for
less colinearity is bias in the estimated coefficients (Gollini et al. 2015).

12.3.3 Conclusion

We have introduced the theoretical background of the classic GWR and several
regularized versions that impose different constraints on the magnitude of regression
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coefficients. We also touched the base of some diagnostic statistics such as VDP
and condition number. In the case study, we reviewed the use of three R packages
dedicated to GWR. We conclude this chapter with comments on future development
of GWR and a brief introduction of a Bayesian GWR framework. Thus far,
most applications of GWR are limited to cross-sectional data, despite valuable
information such as seasonality contained in longitudinal data. There seems to
be no theoretical obstacle to the application of GWR to longitudinal data, as
long as a reasonable distance can be defined in space-time. However, there is no
consensus or guideline on such definitions. One possibility is to introduce an extra
tuning parameter for the importance of time relative to space in the construction of
distance, and let data guide the choice of this parameter, e.g., via cross-validation.
Through the case study, we have seen the difficulties in real data analysis. The
existing software packages may not offer the desired tools or output for diagnosis
or inference. Documentation of most packages is far from sufficient. For instance,
we had to do our own investigation to find out how VDP and condition number
are calculated in some packages, and yet did not succeed in such investigation for
other packages. Better documentation and literature support will greatly increase
the popularity of GWR methods. Finally, there appears to be a gap in the GWR
literature about how to handle missing data.

All the methods formally introduced in this chapter are likelihood- or frequentist-
oriented. The Bayesian approach is known to be able to incorporate prior knowledge
about parameters, which is useful when data are inadequate to support inference
about some parameters. Another advantage of the Bayesian approach is its con-
venience in handling complex likelihood with latent or missing data, when the
inference is performed by Markov chain Monte Carlo (MCMC), e.g., using either
Gibb’s sampler or the Metropolis-Hasting’s algorithm (Gelman, Carlin, Stern, &
Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996). A promising direction
that has been researched in the past two decades is the Bayesian spatially varying
coefficient (SVC) models (Banerjee, Carlin, & Gelfand, 2004; Finley 2011; Gelfand,
Kim, Sirmans, & Banerjee, 2003; Wheeler & Calder, 2007; Wheeler & Waller,
2009). The basic hierarchical structure of the Bayesian SVC model is

Y = X�β + ε

ε ∼ N (0, σ 2
ε I )

β ∼ N (1n×1 ⊗ μ,H (φ) ⊗ T )

μ ∼ N (η, σ 2
μI )

T ∼ InverseWishartν(�
−1)

φ ∼ gamma(aφ, bφ)

σ 2
ε ∼ InverseGamma(aτ , bτ )

(12.8)
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where Y is the outcome vector of length n, β is a vector of length n × p stacking
regression coefficients at all locations together, X� is a n × np block diagonal
matrix with Xi (ith row of X) as each diagonal block ad 0 elsewhere, and ε is
the vector of i.i.d. normal errors. The prior distribution of β is the essence of
the Bayesian SVC model. The notation A ⊗ B denotes the Kronecker product
which multiplies every element of matrix A with matrix B and yields a block
matrix of dimensions as the products of corresponding dimensions of A and B.
For example, the mean of β, 1n×1 ⊗ μ, gives a column vector with n μ’s stacked
together, where 1n×1 is a column vector of n 1’s. The covariance matrix of β is
the Kronecker product of a n × n correlation matrix H (φ) and a p × p covariance
matrix T . H (φ) captures spatial correlation between study locations and is assumed
to depend only on distance and a decay parameter φ, e.g., the (i, j)th element being
hij = exp(−dij /φ), where dij is the distance between locations i and j . T is the
covariance among regression coefficient at any location. This Kronecker product
structure ensures � is positive definite and hence a valid covariance matrix. The
last four expressions in (12.8) specify prior distributions of μ, T , φ and σε with
known hyper-parameters. The inference of model was implemented via MCMC
in Wheeler and Calder (2007). Due to the high-dimension nature of GWR (number
of coefficients increases with locations), the computational burden of this model
can be heavy. There are two R packages, spBayes (Finley 2011; Finley & Banerjee,
2019) and spTDyn (Bakar, Kokic, & Jin, 2016), implementing Bayesian SVC
models. In particular, parallel computing via openMP is available in spBayes to
expedite computation. As computer engineering continues to advance at a fast pace,
we can see that Bayesian approach will become more computationally affordable
and popular.
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Chapter 13
Bayesian Spatial-Temporal Disease
Modeling with Application to Malaria

Ropo Ebenezer Ogunsakin and (Din) Ding-Geng Chen

Abstract Background: Malaria remains a major public health challenge in Nigeria.
Considerable effort has been made to reduce the prevalence and impact of the
disease. The National Malaria Control Programme conducted a nationally repre-
sentative Malaria Indicator Survey (MIS) within the malaria peak transmission
season in 2008, 2010, 2013 and 2015 which comprises of all the six region of
Nigeria. In this study, the spatial and temporal modeling of malaria risk within each
region of Nigeria were studied using the MIS survey data. Methods: This study
used data obtained from the Nigeria demographic health survey (NDHS) database
to assess models; data were collected in 37 states between 2008, 2010, 2013 and
2015. We examine associations between malaria risk and socio-demographic factors
using 16 Bayesian Poisson spatial-temporal models that incorporate spatial and
temporal autocorrelations. The optimum model selected according to the deviance
information criterion and effective number of parameters in the Bayesian paradigm.
The models were implemented in R-INLA package. Results: The model included
spatially uncorrelated heterogeneity, temporally correlated random-walk autocor-
relation, and spatial temporal interaction model had small deviance information
criteria. This model was the best in examining the association between malaria risk
and socio-demographic factors using NDHS. The relationship between malaria risk
and socio-demographic factor is statistically significant. Conclusion: The spatial-
temporal interaction was statistically meaningful and the prevalence of malaria
was influenced by the time and space interaction effect. Wealth index and place
of residence have influence on malaria. To further reduce malaria burden, current
tools should be supplemented by socio-demographic development.
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13.1 Introduction

Malaria is endemic in Nigeria and remains a major public health burdens affecting
the world despite the remarkable accomplishment made towards its control and
prevention. Most of the burden of malaria is concentrated in Sub-Saharan Africa
(SSA) (Israel et al. 2018). Estimates in 2016 affirmed that 90% and 92% of the
global proportion of malaria cases and death were recorded in this region (Awuah
et al. 2018; Israel et al. 2018; Odugbemi et al. 2018; World Health Organization
2015) and Nigeria accounts for about 29% of this burden. Malaria is the third
leading cause of death among under five children globally and accounts for almost
one out of every five deaths in under five children (Abah & Temple 2015; Israel et al.
2018; Singh, Musa, Singh, & Ebere 2014). In Nigeria, it is estimated that about 110
million clinically diagnosed cases of malaria and nearly 300,000 malaria-related
childhood deaths occur each year (Israel et al. 2018; Kyu, Georgiades, Shannon,
& Boyle 2013). Evidence shows that the disease contributes to about 60% of all
outpatients visits, 30% of hospitalizations and 11% of maternal mortality in the
country (Bennett et al. 2017; Kassegne et al. 2017).

Considerable effort has been made to reduce the prevalence and impact of the
disease, however, the last decade of malaria control has witnessed increased support
by government and its partners in the areas of insecticide-treated nets (ITNs),
intermittent preventive treatment (IPT), indoor residual spraying (IRS), integrated
programme (IVM) and environmental management (EM), long-lasting insecticidal
net (LLIN) campaigns, replacement campaigns, intermittent preventive treatment
(IPT), and a massive scale up in malaria case management. The National Malaria
Control Programme (NMCP) in collaboration with Roll Back Malaria (RBM) also
keying into these global strategies plan (2009–2013) (Kilian, Boulay, Koenker, &
Lynch 2010). In 2010, more than 24 million long lasting impregnated net (LLIN)
were distributed across 14 states of Nigeria through a campaign supported by the
partners (Adigun, Gajere, Oresanya, & Vounatsou 2015). Preceding this time, one of
the state in South-South Nigeria have received more than 600,000 LLINs between
2008 and part of 2009 through the help of United State Agency for International
Development (USAID) (Kyu et al. 2013) for children under the age of five. These
efforts resulted into about 425 of households having at least one ITN (Adigun et al.
2015).

In addition, more than 70 million rapid diagnostic tests (RDTs) were distributed
among all the health facilities in the country between 2008 and 2010 which could
be freely used in malaria diagnosis and to provide immediate treatment based on the
results (World Health Organization 2015). It was further reported that 5% of malaria
cases were screened with RDTs in 2008. But in 2010, the number of pregnant
women who received preventive therapy during their routine antenatal care reached
13% which is an indication of low turnout for health care seeking behavior. In
view of the aforementioned, the effective malaria control strategies suggest a better
and comprehensive map of the spatial distribution of malaria prevalence. This can
help in efficient resource allocation for planning and intervention implementation
as well as the evaluation of their impact (Gemperli et al. 2006; Giardina et al. 2012;
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Gosoniu, Msengwa, Lengeler, & Vounatsou 2012; Hay & Snow 2006; Riedel et al.
2010). It is essential to identify the association between malaria risk and socio-
demographic factors. Such a study of the identification of the socio-demographic
risk factors is helpful in identifying region who have a critical need for intervention.
In Nigeria, previous studies have concluded that malaria risk are associated with
environmental and climatic factors (Adigun et al. 2015; World Health Organization
2017). In particular it was noted that intervention appear not to have important
effect on malaria risk. Nevertheless the spatial distribution of malaria was not
investigated (Adigun et al. 2015). However, the modeling of malaria risk in each of
the region in Nigeria has to be explored. Meanwhile, the spatial pattern of malaria
risk is known to vary, its temporal evolution has yet to be evaluated. Therefore, the
objective of this study was to determine the spatial-temporal modeling of malaria
risk in Nigeria taking into consideration socio-demographic factors.

In this research, we introduce Bayesian spatial-temporal modeling that incorpo-
rate spatial information in such a way that not only reflect the influences of space
and time but also reflect the interaction of space time on the preferred variable of
interest. In doing so, we use 16 Bayesian Poisson spatial-temporal techniques in
estimating model parameters.

13.2 Spatial-Temporal Data in Nigeria

13.2.1 Study Area

Nigeria is the most populous country in the continent of Africa, which is located
in the west sub region of Africa. The country is divided into 37 states grouped into
six (13.6) regions and covers an area of about 923,768 km2. Nigeria has the largest
population in Africa and the seventh largest in the world. The current population is
estimated at 177.1 million based on an annual growth rate of 3.2% (National Popu-
lation Commission [NPopC] 2016). Nigeria’s population is young, with persons age
0–24 accounting for more than 62% of the country’s residents (National Population
Commission 2010). According to the World Bank’s definition, Nigeria is a lower
middle income country. The country has tropical climate with two rainfall seasons
in a year (wet and dry season) which is accompanied with the movement of two
dominant winds: the rain bearing south westerly winds, and the cold, dry and dusty
north easterly wind generally referred to as the Harmattan. The wet season occurs
from April to September, and the dry season from October to March. The annual
rainfall ranges between 550 mm in some part of the north mainly in the fringes of
Sahara desert to 4000 mm in the coastal region around Niger delta area in the south.
The temperature in Nigeria ranges between 25 and 40 ◦C . The geographic location
of Nigeria makes suitable climate for malaria transmission throughout the country
and it is all year round in most part of the country (Adigun et al. 2015). Plasmodium
falciparum is the most prevalent malaria parasite species in Nigeria (Mouzin et al.
2012; National Population Commission 2012). Malaria transmission intensity, and
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seasonality vary among the country’s five ecological strata that extend from south to
north (National Population Commission 2012). Considering population density and
distribution of risk areas, an estimated 3%, 67% and 30% live in very low to low,
moderate, and high to very high transmission intensities area, respectively (Mouzin
et al. 2012). The transmission season increases from north to south in terms of
duration, in the space of 3 months in the north area bordering Chad to perennial
in the most southern part (Mouzin et al. 2012).

13.2.2 Country Profile

The data were collecteds using the standard malaria indicator questionnaires devel-
oped by the RBM and the demographic health surveillance programme. The dataset
consists of information such as, demographic characteristics and socio-economic
status which is on a nationally representative sample of around 6000 households
from about 240 clusters. Detail description of the sampling strategies is reported in
the final report of NMIS 2010 (National Population Commission 2012). The blood
samples were taken from 239 clusters due to some security challenges in one of
the clusters in northern part of Nigeria (National Population Commission 2012).
The prevalence from two diagnostic methods: RDT and microscopy was recorded
in the data (Wongsrichanalai, Barcus, Muth, Sutamihardja, & Wernsdorfer 2007). In
2015, malaria testing was done through both rapid diagnostic testing (RDT) as well
as blood smear microscopy. Of the 6316 eligible children, 95% provided blood for
RDT and 91% for malaria microscopy. The 2015 NMIS shows a malaria prevalence
of 45% by RDT and 27% by microscopy. The geographical representation of the
clusters involved and observed prevalence in the NMIS is displayed in Fig. 13.1.
Figure 13.1 shows the map of Nigeria divided into various regions.

13.2.3 Ethical Approval

This study was based on the analysis of existing survey data-sets in the public
domain that are available free online. The first author obtained permission for the
download and usage of the NDHS dataset from http://www.dhsprogram.com/data/
dataset_admin/login_main.cfm.

13.2.4 Predictor Variables

The transmission of malaria is known to be influenced by several factors such
as socioeconomic, demographic factors and environmental/climatic. Demographic

http://www.dhsprogram.com/data/dataset_admin/login_main.cfm
http://www.dhsprogram.com/data/dataset_admin/login_main.cfm
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Fig. 13.1 Map of Nigeria showing the 37 states with six Geo-political region

variables were captured on survey tools, which include area type of the household,
age, and mother’s educational level. Information on socioeconomic status was
measured by a wealth index. It was calculated as a weighted sum of household
assets using principal component analysis.

13.3 Statistical Methodology

13.3.1 Malaria Spatial-Temporal Modeling

Spatial-temporal disease mapping has become an important tool in passive surveil-
lance of diseases. Understanding how disease risks and prevalence and/or incidence
vary over time may provide information that may be of great epidemiological
significance. Spatial-temporal models are extensions of the basic spatial models
by simply including a linear or a non-parametric trend in time, time space, time
covariate and time-space-covariate interactions. When using spatial-temporal data
to study occurrences such as diseases, researchers are often interested in both the
spatial and temporal aspects of these data. For instance, researchers might want to
investigate disease location and time of diagnosis along with the disease counts. This
goal could be achieved by modeling the disease counts as a Poisson process while
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concurrently incorporating the space and time data with all other risk covariates.
Because of the spatial-temporal autocorrelations, spatial-temporal disease data are
typically modeled as multivariate with correlated observations of Poisson disease
counts at a fixed spatial location that evolves over time.

In this study, our focus is on malaria data collected over a 4-year period (2–4)
from 37 States in Nigeria. Suppose we let i represent the spatial location i = 1,. . . . . . ,
K (=37) states and t = 1,. . . . . . ,T(=4) years, the number of malaria cases, yit , is
modeled as a Poisson spatial-temporal model with the expected incidence rates Eit ,
and the associated risk θit . The standard Besag-York-Mollie spatial analytic model
is represented as follows:

Data Distribution

yit ∼ Pois(Eit × θit ) (13.1)

where yi counts in area i are independently identically Poisson distributed and have
an expectation in area i of Ei , the expected count, times θi , the risk for area i

Spatial-Temporal Mixed-Effects Regression Model

log(θit ) = βo + β1x1it + · · · + βjxjit + Si + Tt + STit (13.2)

where S represent the random spatial term, T is the random temporal term, and ST
is the random space-time interaction. Meanwhile, the fixed-effects component is
βo + β1x1it + · · · + βjxjit where x1it , . . . , xjit are the risk factors to be modeled
with the disease risk θit . In the present study, the two covariates included is wealth
index (WI), and area type (AT). Hence, the model (13.2) is simplified as

log(θit ) = βo + β1WI1it + β2AT1it + Si + Tt + STit (13.3)

From model (13.1), Eit represent the expected incidence rates and its values can
be estimated by several approaches. The simplest overall average for the expected
counts is given by:

Eit = pit ×
∑K

i=1
∑T

t=1 yit
∑k

i=1
∑T

t=1 pit

(13.4)

where pit is the population at ith location (i.e., state) and tth time point (i.e., year)
in this malaria data.
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Specifically, eight models were constructed by considering the spatial effect, and
the interaction between time and space (see Table 13.2). To evaluate the regional
effects, the spatial-temporal model in expression (13.3) is built to include the six
Nigeria region (Region) as:

log(θit ) = βo + β1WI1it + β2AT1it + β4Regionit + Si + Tt + STit (13.5)

Hence, additional of eight spatial-temporal models are included, yielding a total
of 16 fitted spatial-temporal models. These eight models comprises of different
combinations of spatial random effect (UH), spatially structured heterogeneity,
linear time trend, identically independent distributed time variable, random walk
as well as spatial-temporal interactions (see Table 13.2 for the description of those
models).

13.4 Bayesian Spatial-Temporal Models with INLA

In this section, we introduce how Bayesian spatial-temporal model can be imple-
mented using R-INLA. Spatio-temporal disease mapping models are a well-known
tool to explain the pattern of disease counts. Model of this kind is usually
formulated within a Bayesian framework (Banerjee, Carlin, & Gelfand 2004) and
computationally expensive Markov Chain Monte Carlo (MCMC) are needed to
obtain the respective parameter estimates. Also, in order to get a reliable estimate
for a complex spatial and spatio-temporal models, a specific block-sampling algo-
rithms have to be applied. Furthermore, Bayesian spatial-temporal disease mapping
via MCMC methods involve computationally and time intensive simulations to
obtain the posterior distribution for the parameters. An approximate technique for
parameter estimation in latent Gaussian models was proposed by Banerjee et al.
(2004). This technique uses Integrated Nested Laplace Approximation (INLA). The
advantage of INLA method is that it does not use iterative computation techniques
like MCMC and it returns precise parameter estimates. The posterior approximation
is achieved by applying numerical integrations for fixed effects and Laplace integral
approximation to the random effects (Chen, Wakefield, & Lumely 2014). Primarily,
INLA is designed for latent Gaussian models, a very wide and flexible class of
models like spatial and spatio-temporal models, making INLA to be used widely
in a great variety of applications (Spiegelhalter, Best, Carlin, & van der Linde
2003). In addition, the deviance information criterion (DIC) is provided by INLA for
Bayesian model choice. For our analysis, INLA was implemented in the R package
“INLA” (R-INLA). We used R for data management and R package , maptools for
reading the shapefile.
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13.4.1 Goodness of Fit Statistics

Modeling was done in R using the R-INLA package. The model were compared
using the Deviance Information Criterion (DIC) as recommended by Khana,
Rossen, Hedegaard, and Warner (2018) and Spiegelhalter, Best, Carlin, and Van
Der Linde (2002). The ability to fit complex multilevel models using Markov
Chain Monte Carlo (MCMC) techniques presents a need for methods to compare
alternative models. The standard model comparison techniques such as AIC and
BIC require the specification of the number of parameters in each model. For
multilevel models which contain random effects, the number of parameters is not
generally obvious and as such an alternative technique of comparison is demanded.
The most widely used of such alternative technique is the Deviance information
Criteria (DIC) as suggested by Spiegelhalter et al. (2002). The DIC statistic is a
generalization of the AIC, and is based on the posterior mean of the deviance, which
is also a measure of model complexity and fit. The deviance is defined as

D(θ) = −2 log f (y|θ).

since DIC is a measure of model complexity, it considers a measure of the effective
number of parameters in a model, and is defined by

pD = D̄(θ) − ˘(θ).

where D̄(θ) is the posterior expectation of the deviance, given by

D̄(θ) = −2E

[

log f (y|θ)|y
]

.

and ˘(θ) is the deviance evaluated at some estimate θ̆ of θ . Therefore, we now define
the deviance information criteria (DIC) by

DIC = D̄(θ) + pD = 2D̄(θ) − θ̂ . (13.6)

where D̄ is the posterior mean of the deviance that measures the goodness of fit, and
pD represent the effective number of parameters in the model. In the case of the
Bayesian and bootstrapping models, low values of D̄ imply a better fit, while small
values of pD imply a parsimonious model. pD is higher for a more complex model,
and DIC appears to select the correct model. The best fitting model is one with the
smallest DIC, as suggested by Lesaffre and Lawson (2012) and Spiegelhalter et al.
(2002). When comparing different models, how big the difference between the DIC
value of the models need to be revealed so as to declare that one model is better than
the other. Previous studies have shown that a difference of 3 in DIC between two
models cannot be distinguished while a difference of between 3 and 7 can be weakly
differentiated (Kazembe, Chirwa, Simbeye, & Namangale 2008; Spiegelhalter, Best,
Carlin, & Linde 2014). For context, a DIC difference 3 to 5 is considered significant.
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13.5 Results

To illustrate how the 16 Bayesian Poisson spatial-temporal models can be applied
to real life data, we used the data on malaria risk from 37 states of Nigeria
(see Fig. 13.1). In Table 13.1, we grouped the 37 states into six regions (i.e.,
North central, North east, North west, South east, South south and South west) to
investigate regional differences. We extracted the malaria prevalence rate for the 4-
year period. To obtain the malaria incidence rates, we merged these data to calculate
the associated malaria incidences rates yit and the expected incidence rates Eit to
be used in Eqs. (13.1) and (13.4). As mentioned previously, malaria can be related
to many risk factors. From the epidemiological perspective, malaria risk factors
includes environmental/ climatic, socioeconomic status and socio-demographic and
so on. The DHS database consists an extensive list of risk covariates that could
be used to model the predictability of these risk factors to malaria prevalence rates;
meanwhile, most of the covariates have a higher percentage of missing data (>90%).
Hence, for demonstration purposes the current study utilizes wealth index, and area
type as a possible covariates.

Meanwhile all the spatial-temporal data from 37 states collected for 4 years
period were incorporated for a unified Bayesian spatial-temporal modeling.
Table 13.2 presents series of spatial-temporal models fitted with the R-INLA
package. Comparison results among different models affirmed that the DIC values
of the two models with only spatial heterogeneity effect were: 1358.55 and 1358.36
respectively while the DIC values for models incorporating temporal heterogeneity
were: 1338.26, 1336.49, 1339.86, and 1336.59, respectively. The last sets of two
models considered assesses the spatial-temporal interaction. DIC values of the two
UH random effect and convolution model with interaction term were: 1126.44 and
1125.92 respectively. Among the two interaction models, model taking the spatially
temporally uncorrelated heterogeneity + UH, temporally correlated random walk
autocorrelation, and spatial temporal interaction effect into consideration was the
best fitting one with a smallest DIC as well as pD value. It should be acknowledged
that the DIC values from the models 1–8 space-time interaction do not exhibit
extreme differences. This can be attributed to all models taking the form shown in
Eq. (13.3). Between the eight models fitted, model 7 and 8 has larger pD values
which indicate that the two models are more complex, apparently because it
incorporates a spatio-temporal interaction effect that is not part of model 1–6.
Although, model 7 and 8 is weakly indistinguishable because of the differences
between the DIC value is lesser than 3. Therefore, the higher complexity was
beneficial as it led to lower DIC values in model 8 which indicates a better fit model
to the data. Therefore, the best fitting DICs are seen with the interaction models.

With model 8 as the best fitting model, the estimated coefficients of place of
residence (rural) and wealth index (poorer), (middle), (richer) and (richest) were:
0.04525, 0.01380, 0.11115, 0.000180 and 0.05793 respectively. Moreover, the
estimated β for these socio-demographic variables were 1.04629(95% BCI: 0.905–
1.209), 1.01389 (95% BCI: 0.887–1.158), 1.11797 (95% BCI: 0.966–1.292), 1.0001
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Table 13.1 List of 37 Nigeria states and associated state code

RegionNum RegionName StateName StateCode RegionCode

1 North West Sokoto YYB 1.YYB

1 North West Zamfara ZAM 1.ZAM

1 North West Katsina KAT 1.KAT

1 North West Jigawa DTI 1.DTI

1 North West Kano KAN 1.KAN

1 North West Kaduna KAD 1.KAD

1 North West Kebbi KEB 1.KEB

2 North East Yobe DTR 2.DTR

2 North East Borno BOR 2.BOR

2 North East Adamawa YOL 2.YOL

2 North East Gombe GME 2.GME

2 North East Bauchi BAU 2.BAU

2 North East Taraba TAR 2.TAR

3 North Central Niger KNT 3.KNT

3 North Central Abuja FCT 3.FCT

3 North Central Nasarawa NAS 3.NAS

3 North Central Plateau JOS 3.JOS

3 North Central Benue BEN 3.BEN

3 North Central Kogi LOK 3.LOK

3 North Central Kwara ILO 3.ILO

4 South West Oyo OYD 4.OYD

4 South West Osun SGB 4.SGB

4 South West Ekiti ADK 4.ADK

4 South West Ondo ODK 4.ODK

4 South West Lagos KJA 4.KJA

4 South West Ogun ABG 4.ABG

5 South South Edo BED 5.BED

5 South South Cross River CAL 5.CAL

5 South South Akwa Ibom AKI 5.AKI

5 South South Rivers PHC 5.PHC

5 South South Bayelsa YEN 5.YEN

5 South South Delta WAR 5.WAR

6 South East Anambra ANA 6.ANA

6 South East Enugu ENU 6.ENU

6 South East Ebonyi EBO 6.EBO

6 South East Abia ABI 6.ABI

6 South East Imo WER 6.WER

Note: These 37 states are grouped into 6 regions (“RegionNum”) under the region names
(“RegionName”). For ease of representation in Figs. 13.1 and 13.2, we created the RegionCode
abbreviation that combines the RegionNum and the StateCode
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Table 13.2 Specific spatial-temporal models and associated fit statistics

Model Details DIC n.eff

1 Spatial Only (UH) 1358.55 33.633

2 Spatial Only (UH+CH) 1358.36 33.664

3 Spatial(UH+CH) +Temporal trend 1338.26 34.364

4 Spatial(UH+CH) +Temporal(UH) 1336.49 36.358

5 Spatial(UH+CH)+Temporal(CH) 1339.86 42.938

6 Spatial(UH+CH)+Temporal(UH+CH) 1336.59 36.056

7 Spatial(UH)+Temporal(CH)+ST 1126.44 109.213

8 Spatial(UH+CH)+Temporal(CH)+ST 1125.92 108.740

Abbreviations: Spatial—UH: uncorrelated effect model; CH: correlated effect model. Temporal—
UH: uncorrelated heterogeneity, CH: random walk; spatial-temporal interaction. ST: spatial-
temporal. DIC: deviance information criterion, n.eff: effective number of parameters

Fig. 13.2 Temporal trends for malaria incidence rates (logged) for 37 States of Nigeria from six
regions included in the analyses

(95% BCI: 0.860–1.162) and 1.0596(95% BCI: 0.897–1.250). Both the place of
residence and wealth index had a positive influence on the prevalence of malaria
risk. Moreover, the malaria rates as depicted in Figs. 13.1, 13.3, and 13.5 reveal
some signs of spatial trends despite the fact that there are no statistically significant
spatial patterns. As shown in Fig. 13.2, reported cases of malaria prevalence in
Nigeria declined year by year across the 37 states over the 4-year period.

Also, the map depicted in Fig. 13.3 shows the estimated overall pattern in the
spatial random-residual effects revealing spatial autocorrelation as represented by
Si in expression (13.3). The implication of the map is that all the six regions in
the country have had a mix of high and low malaria prevalence over time, which is
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Fig. 13.3 Spatial random-residual effects showing spatial autocorrelation as indicated by Si in
expression (13.3)
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Fig. 13.4 Temporal random-residual effects showing temporal autocorrelation as indicated by Tt

in expression (13.3)

indicated by the random effects Si and fixed effects presented in expression (13.3).
Figure 13.4 depicts only the overall temporal pattern of the malaria risk prevalence
as reported by Tt in expression (13.3); the map indicates that Nigeria experienced
uneven risk of malaria infection without giving much knowledge about differences
across the geopolitical zone of the country. Hence, both the spatial-only patterns in
Fig. 13.3 and temporal-only trends in Fig. 13.4 should be interpreted simultaneously.
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Fig. 13.5 Spatial and temporal random-residual effects showing spatial and temporal autocorrela-
tion as indicated by STi t in expression (13.3)

Table 13.3 Bayesian spatial-temporal models with regional effect

Model Details DIC n.eff

9 Spatial Only (UH) 1359.45 35.221

10 Spatial Only (UH+CH) 1359.31 35.162

11 Spatial(UH+CH) +Temporal trend 1339.11 35.778

12 Spatial(UH+CH) +Temporal(UH) 1337.05 37.694

13 Spatial(UH+CH)+Temporal(CH) 1339.39 42.581

14 Spatial((UH+CH)+Temporal(UH+CH) 1337.21 37.427

15 Spatial(UH)+Temporal(CH)+ST 1126.34 112.183

16 Spatial(UH+CH)+Temporal(CH)+ST 1125.58 109.873

In addition, the interaction of spatial and temporal factors during 4 year period sug-
gests the presence of convoluted spatial and temporal autocorrelation as indicated by
STit in expression (13.3). Figure 13.5 also indicated some considerable differences
in the relative risk of malaria across the six regions of Nigeria.

Moreover, in order to account for the remaining eight (8) models of our 16
Bayesian spatial-temporal model, we fitted a model accounting for the regional
effects. The findings affirmed that the regional effects were statistically significant
and the result is presented in Table 13.3. The results presented in Figs. 13.2, 13.3,
13.4 and 13.5 are for the first eight (8) models without the regional effect.

13.6 Conclusion and Summary of Findings

In this study, different models were compared for modeling and mapping of malaria
risk in Nigeria. In particular, we considered series of Bayesian spatial-temporal
models to examine the association or effects of socio-demographic on the malaria
risk across the 37 states of Nigeria. This relationship is important to enable an
effective policies as well as tools to tackle the menace of malaria transmission
in Nigeria. These models were fitted to NDHS malaria prevalence data for 4-
year period. Among the different spatial-temporal models examined, the model
with spatial-temporal interaction fit the data well but model 8 appears better than
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model 7. The findings indicate that model with spatially uncorrelated heterogeneity,
temporally correlated random-walk autocorrelation, and spatial temporal interaction
was the best model for goodness of fit for modeling malaria risk. The finding is
similar with previous studies (Abellan, Richardson, & Best 2008; Popoff 2014)
which found potential use of spatial and temporal terms in the model. Although our
study did not use the Bayesian hierarchical but previous studies that used Bayesian
hierarchical framework for diseases mapping as well as ecological studies of health
environment association (Ehlers & Zevallos 2015; Popoff 2014) affirmed that if data
are collected over space and time, spatial and temporal terms in the model becomes
necessary. The reason for this could be due to the complex dependence patterns
over space and over time of the occurrence of malaria deaths. The study findings
indicated an estimated positive association between socio-demographic factors and
malaria risk. This finding confirms previous results that showed that malaria risk
is positively associated with socio-economic status (Adigun et al. 2015; Giardina
et al. 2012; Gosoniu et al. 2012; Gosoniu, Veta, & Vounatsou 2010). Moreover, we
observed that the overall malaria risk among the 37 states was spatially uncorrelated
when viewed from a historical point for the 4 years period. Estimations from model
8 affirmed that wealth index could be an influential factor on the prevalence of
malaria. Specifically, with one unit increase of wealth index (poorer), the risk of new
malaria case increased by 1.0139 times. This finding is similar to what the previous
findings on Bayesian geostatistical modeling of malaria from Nigeria (Adigun et al.
2015). Therefore, the results of this study provide evidence on the spatial-temporal
distribution of socio-demographic risk factors in the occurrence of malaria. Hence,
the utilization of socio-demographic data on malaria rapid diagnosis test (RDT),
clarifies the association of these factors. From the study it was affirmed that those
people living in the North Central region were found to be more at risk of malaria
compared to those living in the South West.

Meanwhile, the malaria map produced in this study affirms considerable shrink-
age in malaria burden in comparison to results from the first MIS survey of
2010 that showed a high burden of malaria in the entire country. There are some
limitations to consider when interpreting the findings of this study. Foremost, the
current study relied on malaria test results from RDT. Secondly, one can think of
the limitation of the current study in line with the data used which may contain
spatially correlated malaria prevalence trends across the local government or towns
that are not noticeable at the state level. Hence, for future study it is advisable to
perform a sensitivity analysis in case of a study utilizing Bayesian spatial temporal
modeling to check whether the results vary at different geographical scales. Thus,
this will help the researchers to discuss the research policy in case the results
differ. Moreover, in obtaining the incidence rates when using Bayesian spatial-
temporal approaches, decisions as to whether to calculate the incidence rate as
population-based, geographical area-based, or combination of both should be put
into consideration. In case of the current study, the incidence rate in Eq. (13.4) is
obtained using the population-based. As pointed out by Lesaffre (Lawson 2013;
Lesaffre and Lawson 2012), that is the most commonly used incidence rate in
spatial-temporal disease mapping. An important aspect that needs to be highlighted
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regarding this study is that the regional effects is statistically significant which
requires the attention of the health policies makers in controlling the prevalence
of malaria. Therefore, adequate effort should be targeted further in order to uncover
factors that is responsible for the transmission so as to allow for the development of
better malaria control measures.

A.1 Appendix 1: R Program Codes for Analysis.

StateList = rep(State,each=T)
CodeList = rep(Code, each=T)
region<-rep(1:m,each=T)
region2<-region
ind2<-rep(1:(m*T))
data<-data.frame(Mal,E,year,Year,region,region2,CodeList,

StateList,ind2,Res, Weat)
data
####1. Spatial-temporal data are pre-processed and load them in

source("dataMALARIA.R")
# check the data
print(data)
summary(data)
subregion = read.csv("subregionMALARIApaper.csv", header=T)
data = merge(data,subregion)

#calculation of the population
ff = mean(data$Mal/data$E)
data$pop = data$Mal/ff

#create a new variable for plotting since the State names are
to long

data$NewRegion = paste(data$subregion1,".",data$CodeList, sep
="")

# order the data by the new var
data= data[order(data$NewRegion),]
head(data)

#make table 1
d1 = data.frame(StateList=unique(data$StateList),Code=unique(

data$CodeList),Region= unique(data$NewRegion))
d2 =merge(d1, subregion)
d3 = data.frame(RegionNum = d2$subregion1, RegionName =

d2$subregion, RegionCode=d2$Region,StateName= d2$StateList,
StateCode = d2$Code)

d3
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###2. pre-analysis for to identify the relationship for
modelling

library(lattice)
# incidence time series
xyplot(log(Mal)~Year|as.factor(NewRegion),type=c("b","r"), data

, xlab="Year", ylab="logged MALARIA Incidences")

xyplot(log(Mal)~Year|as.factor(NewRegion),layout = c(7, 6),type
=c("b","r"), data, xlab="Year", ylab="logged MALARIA
Incidences")

### 3. Now Spatial-temporal modelling
#
# R libraries
# load neccessary packages and download the map shapefile and

therefater, read it into R \\

library(maptools)
# get INLA
library(INLA)
inla.setOption(scale.model.default=FALSE)
require(splancs)
require(sp)
require(fields)
require(maptools)
require(abind)
library(rgdal)

## Meaning###
## The R tools maptools::readShapePoly() will read shapefiles

into R, and spdep::poly2nb() followed by INLA::nb2INLA()
are used to create the adjacency matrix neighbor structures
for use with a CAR model. To map results, you can use sp::

spplot()

source("Malaria3.R")

# model 1: spatial only UH
model1 = Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(

region,model="iid")
result1 = inla(model1,family="poisson",data=data,E=E,control.

compute=list(dic=TRUE,cpo=TRUE))
UH<-result1$summary.random$region[,2]
summary(model1)

## where:

# Mal is the disease count or outcome from your dataset.
## 1 forces an intercept onto the model.
## f() specify the spatial region and how it should be modeled.
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## In the case of our study, spatial region is modeled as "iid"
which is a random effects term. One of the advantage of

this function is that it is useful when invoking any
spatial model, especially the geograhically weighted
regressions.

## Also, f() functions can be added to each other in order to
build up models.

## model1 refers to and invokes the previously defined model.
## family = specifies the likelihood.
## data = specifies the data.

## control.compute specifies options like DICand DCO.
## Note: CPO is the conditional predictive ordinate, a cross

validation tool that predicts an area value using all the
data except that area and compare that value to the actual
value.

## E = specifies the offset variable required for a Poisson
likelihood

# model 2: UH and CH effects
model2<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")

result2<-inla(model2,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE))

summary(result2)

# model 3: spatial + time trend (model 1a)
model3<-Mal~1+as.factor(Res)+as.factor(Weat)+year+subregion+f(

region,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")

result3 = inla(model3,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result3)

# model 4: UH + CH + year IID
model4<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="iid")

result4<-inla(model4,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result4)

# model 5: UH + CH + year RW1 (model 1b)
model5<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid",param=c(2,1))+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1",
param=c(1,0.01))

result5<-inla(model5,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

summary(result5)
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UH<-result4$summary.random\$region[,2]
yearR<-result4$summary.random\$year[,2]

# model 6: UH +CH +year UH +CH (model 2)
year2<-year
model6<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1")
+f(year2,model="iid")

result6<-inla(model6,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

# modle 7: UH+ year RW1 +INT IID
model7<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(year,model="rw1")+f(ind2,model="iid")
result7<-inla(model7,family="poisson",data=data,E=E,control.

compute=list(dic=TRUE,cpo=TRUE))

# model 8: UH +CH + year RW1 + INT IID (model 3)
model8<-Mal~1+as.factor(Res)+as.factor(Weat)+subregion+f(region

,model="iid")+f(region2,model="bym",graph="
nga_admbnda_adm1_osgof_20161215.graph")+f(year,model="rw1")
+f(ind2,model="iid")

result8<-inla(model8,family="poisson",data=data,E=E,control.
compute=list(dic=TRUE,cpo=TRUE))

result1$dic$dic;result1$dic$p.eff
result2$dic$dic;result2$dic$p.eff
result3$dic$dic;result3$dic$p.eff
result4$dic$dic;result4$dic$p.eff
result5$dic$dic;result5$dic$p.eff
result6$dic$dic;result6$dic$p.eff
result7$dic$dic;result7$dic$p.eff
result8$dic$dic;result8$dic$p.eff

##The best model is model 8
#
# summary of the model 8
summary(result8)
# fixed effects
betas = result8$summary.fixed
betas

exp(betas)

## results for model 8

# get the shape file
library(maptools)
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cities <- readOGR(dsn=dsn,layer="
nga_admbnda_adm1_osgof_20161215")

plot(cities)
names(cities)
# extract the data
UH = result7$summary.random$region[,2]*100000
yearR<-result7$summary.random$year[,2]*100000
STint<-result7$summary.random$ind2[,2]*100000

# plot risk rate by state
fillmap(cities,"Spatial Pattern for Nigeria Malaria Prevalence

Risk ",UH,n.col=10)
fillmap(cities,"",UH,n.col=5)

plot(cities)
fillmap(cities,"",UH,n.col=5)

# plot risk rate by year
time<- c("2008", "2010","2013","2015")
plot(time,yearR, xlab="Year", ylab = " Risk Rates",main="

Temporal Pattern for Malaria Risk Rates")
plot(time,yearR, xlab="Year", ylab = " Malaria Risk Rate")
lines(time,yearR)

# the S-T interaction
STest<-matrix(STint,ncol=4, byrow=T)

ST1<-STest[,1]
ST2<-STest[,2]

par(mfrow=c(1,2), mai=c(0,0,0.3,0),mar=c(2,1,1,1))
for(i in 1:4){

#x11()
fillmap(cities,paste("Spatial-Temporal in Year",2008+i,sep="

"),STest[,i]*5,n.col=10)
}

x11()
for(i in 3:4){

fillmap(cities,paste("Spatial-Temporal in Year",2008+i,sep="
"),STest[,i]*10,n.col=10)

}

STest<-matrix(0,nrow = 88, ncol=10)

for(i in 1:4){i=ceiling(i/10) j=i-10*(k-1) STest[i,j]<-STint[i]
}
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Chapter 14
BCEWMA: A New and Effective
Biosurveillance System for Disease
Outbreak Detection

Kai Yang and Peihua Qiu

Abstract Disease outbreaks need to be detected in a timely manner for effective
disease control. For disease surveillance, conventional statistical process control
charts are often included in public health surveillance systems, without taking into
account the complicated structure of the disease incidence data and/or additional
covariate information. This chapter presents a novel prospective disease surveillance
system, named BCEWMA (Biosurveillance via Covariate-Assisted Exponentially
Weighted Moving Average Control Chart), which can accommodate seasonality
and arbitrary distribution of disease incidence data. Methodologically, BCEWMA
is based on the widely used exponentially weighted moving average control chart,
incorporating useful information in covariates. This new surveillance system is
applied to two real disease incidence datasets: one regarding the hand, foot and
mouth disease in Sichuan province of China and the other about the influenza-like-
illness in Florida. These real-data examples show the reliability and effectiveness of
BCEWMA in disease outbreak detection.

Keywords Control chart; Covariates; Disease surveillance; Exponentially
weighted moving average; Semiparametric regression; Statistical process control.

14.1 Introduction

Prospective disease surveillance, also referred to as biosurveillance, aims to monitor
disease incidence data sequentially and detect disease outbreaks or other unusual
disease patterns in a timely manner, so that effective disease control and prevention
measures can be implemented promptly. In recent years, numerous statistical and
epidemiological methods concerning prospective disease outbreak detection have
been developed. A recent review paper by Unkel, Farrington, and Garthwaite
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(2012) classifies existing biosurveillance methods into five categories, including
regression techniques, time series methods, statistical process control (SPC) charts,
surveillance methods using spatial information, and multivariate outbreak detection
methods. This paper aims to develop a new and effective biosurveillance method
using SPC.

Among all existing biosurveillance methods, SPC charts has a long history of
application to public health surveillance problems. To monitor disease incidence
data, Dong, Hedayat, and Sinha (2008) suggested an exponentially weighted moving
average (EWMA) control chart based on the assumption that the disease incidence
rates are normally distributed. Instead of using normality assumption, Zhou and
Lawson (2008) assumed that the observed number of disease cases was Poisson-
distributed, and then they proposed a likelihood-ratio-based control chart to detect
possible disease outbreaks. Based on the assumption that disease incidence is either
Bernoulli or Poisson distributed, Kulldorff (1997) suggested a spatial scan statistic
to analyze disease incidence data. The generalized versions of this scan statistic
have also been developed for analyzing ordinal data (Jung, Kulldorff, & Klassen
2007) or continuous data (Kulldorff, Huang, & Konty 2009). Based on the scan
statistic, Sonesson (2007) established a cumulative sum (CUSUM) control chart to
detect unusual disease clusters in space-time setting. In the literature, there are some
other control charts for prospective disease surveillance, including the CUSUM
chart using a local Knox statistic to detect unusual space-time disease interactions
(Marshall, Spitzner, & Woodall 2007) and the Shewhart chart that can accommodate
the day-of-week variation (Zhao et al. 2011).

Conventional SPC charts were originally designed for detecting defective prod-
ucts in industrial production processes. Recently, they are used in many biosurveil-
lance applications. This is because the detection of disease outbreaks has a similar
nature to the detection of defective products. However, conventional SPC charts are
usually based on the assumptions that process observations are independent and
identically distributed (i.i.d.) and they follow a parametric distribution (e.g., normal
or Poisson distribution), which are often invalid in biosurveillance applications.
For instance, seasonality is common in disease incidence, and their distribution
is often too complicated to be described by a parametric form. Furthermore,
conventional SPC charts use the observed disease incidence data only. In practice,
disease incidence is often associated with covariates like humidity, temperature
and other weather or environmental factors. Information in these covariates should
be incorporated to improve model performance in detecting disease outbreaks.
Recently, Yang and Qiu (2020) suggested an exponentially weighted moving
average (EWMA) control chart for online process monitoring, and this method
can utilize information in covariates. However, this method assumes a steady in-
control (IC) process distribution. In this chapter, we generalize the EWMA chart in
Yang and Qiu (2020) to cases when the IC process distribution changes over time
to accommodate seasonality and other IC longitudinal patterns. The generalized
method can accommodate arbitrary data distribution as well.

The rest of the chapter is organized as follows. In Sect. 14.2, we will introduce
some basic SPC concepts and control charts. In Sect. 14.3, our approach BCEWMA
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will be described in detail. In Sect. 14.4, BCEWMA will be tested with two real
datasets as examples. Finally, some remarks conclude the chapter in Sect. 14.5.

14.2 Some Basic SPC Concepts and Methods

Since the first control chart introduced by Shewhart (1931), SPC charts have become
a major statistical tool for monitoring production processes in manufacturing
industries to ensure the stability of the processes over time. The main objective of
SPC is to distinguish any special cause variation from the common cause variation
in a production process of interest. A common cause variation is the variation due
to random noise, and is considered to be an inherent part of the production process.
It cannot be changed without changing the process itself (cf., Qiu 2014). In cases
when only common cause variation is present, the production process is considered
to be in-control (IC). When some components of the process (e.g., raw materials)
become out-of-order, the product quality would have a systematic shift, and the
resulting variation is referred to as special cause variation. When a special cause
variation occurs in a production process, the process is considered to be out-of-
control (OC). SPC charts are designed to detect possible special cause variation and
give a signal as soon as it occurs. In the SPC literature, there are four main types of
control charts, including Shewhart, CUSUM, EWMA and change-point detection
(CPD) charts, each of which will be briefly discussed below.

The first control chart by Shewhart (1931) is called Shewhart chart nowadays,
where the observed quality variable at the n-th time point, denoted as Yn, is assumed
to be normally distributed when the process is IC, i.e., Yn ∼ N(μ0, σ

2). The two
IC parameters μ0 and σ 2 are assumed to be known or can be estimated from an IC
dataset. Then, if

|Yn − μ0|
σ

> Z1−α/2, (14.1)

the chart will give a signal of process mean shift, where Z1−α/2 is the (1 − α/2)-
quantile of the standard normal distribution and α is a significance level. In (14.1),
if a batch of m observations are available at each time, then Yn should be replaced
by the sample mean of the observations in the batch and σ should be replaced by
σ/

√
m accordingly. In some real-world applications, including disease surveillance,

we are only concerned about upward mean shifts. In such cases, we can compare
(Yn − μ0)/σ with Z1−α , and the chart will give a signal of upward mean shift if
(Yn − μ0)/σ > Z1−α .

To evaluate the performance of a control chart, we usually use the IC average run
length (ARL), denoted as ARL0, which is defined to be the average number of time
points from the beginning of process monitoring to the signal time when the process
is IC, and the OC ARL, denoted as ARL1, which is the average number of time
points from the occurrence of a shift to the signal time after the process becomes
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OC. Usually, ARL0 is specified at a specific level, and the chart performs better if
its ARL1 value is smaller for detecting a given shift.

From Eq. (14.1), it is clear that the Shewhart chart only uses the observed data
at the current time when making a decision whether or not the process is IC. All
past observations {Y1, Y2, . . . , Yn−1} are ignored. To overcome this limitation, Page
(1954) suggested the following CUSUM chart:

C+
n = max{0, C+

n−1 + Yn − μ0

σ
− k}, for n ≥ 1, (14.2)

where C+
0 = 0 and k > 0 is an allowance constant. This chart gives a signal of

upward mean shift if C+
n > ρ, where ρ > 0 is a control limit. From (14.2), it is

obvious that past observations have been used in the charting statistic C+
n . In the

CUSUM chart (14.2), the allowance constant k is often specified in advance, and it
has been well studied in the SPC literature that small k values are ideal for detecting
relatively small mean shifts and large k values are ideal for detecting relatively large
mean shifts. After k is specified, the control limit ρ can be chosen to achieve a
given ARL0 value. For the CUSUM charting statistics C+

n defined in (14.2), it is
obvious that C+

n is reset to 0 each time when C+
n−1 + (Yn − μ0)/σ ≤ k. This is

the so-called re-starting mechanism of CUSUM chart, and under some regularity
conditions, Moustakides (1986) showed that the CUSUM chart had some good
theoretical properties.

Although the CUSUM chart (14.2) has certain good theoretical properties, it
is difficult to follow for many users, partly due to the re-starting mechanism. To
overcome this difficulty, Roberts (1959) proposed the EWMA control chart:

En = λ
Yn − μ0

σ
+ (1 − λ)En−1 = λ

n∑

i=1

(1 − λ)n−i Yn − μ0

σ
, for n ≥ 1, (14.3)

where E0 = 0 and λ ∈ (0, 1] is a weighting parameter. The EWMA
chart gives a signal of upward mean shift if En > ρ, where ρ > 0 is
a control limit. From (14.3), it is clear that En is a weighted average of
(Y1 − μ0)/σ, (Y2 − μ0)/σ, . . . , (Yn − μ0)/σ , and the weight (1 − λ)n−i decreases
exponentially fast when i moves away from n. For the EWMA chart, the weighting
parameter λ is often pre-specified, and small λ values are ideal for detecting
relatively small mean shifts and large λ values are ideal for detecting relatively
large mean shifts. Similar to the CUSUM chart, after the weighting parameter λ

is given, the control limit ρ can be chosen to achieve a given ARL0 value. In the
SPC literature, it has been well discussed that CUSUM and EWMA charts are
more effective to detect small and persistent shifts in a process, compared with the
Shewhart chart (cf., Qiu 2014).

For the Shewhart, CUSUM and EWMA charts, they require the IC parameters μ0
and σ 2 to be known in advance or they can be estimated from an IC dataset, which
makes them inconvenient to use in some applications. To overcome this difficulty, a



14 BCEWMA: A New and Effective Biosurveillance System for Disease. . . 349

CPD chart was suggested by Hawkins, Qiu, and Kang (2003). Assume that process
observations {Y1, Y2, . . . , Yn} by the current time point n follow the change-point
model

Yi ∼ N(μ0, σ
2), for i = 1, 2, . . . , τ ;

Yi ∼ N(μ1, σ
2), for i = τ + 1, . . . , n,

(14.4)

where τ is an unknown change-point, μ0 < μ1 are the process means before and
after the change-point τ , and σ 2 is the process variance. So, in the above change-
point model (14.4), it is assumed that the process mean has an upward shift at τ and
the process variance does not change. To test the existence of the change-point, the
related likelihood ratio test (LRT) statistic is defined as

Tmax,n = max
1≤j≤n−1

√
j (n − j)

n

(
Y

∗
jn − Y jn

σ̂jn

)

, (14.5)

where Y jn and Y
∗
jn are the sample means of {Yi, i = 1, . . . , j} and {Yi, i = j +

1, . . . , n}, respectively, and σ̂jn = ∑j

i=1(Yi − Y jn)
2 +∑n

i=j+1(Yi − Y
∗
jn)

2. The
CPD chart gives a signal of upward mean shift when

Tmax,n > ρn, (14.6)

where ρn > 0 is a control limit chosen to achieve a given ARL0 value. After a
signal is given by the CPD chart defined above, the change-point τ can be estimated
immediately by

τ̂ = arg max
1≤j≤n−1

√
j (n − j)

n

(
Y

∗
jn − Y jn

σ̂jn

)

. (14.7)

From the description above, the CPD chart does not require the parameters μ0, μ1
and σ 2 to be known in advance, and it can report a shift position immediately after
a signal is given. However, the computational burden to calculate the time-varying
control limit ρn and the charting statistic Tmax,n is quite heavy. Also, a shift could
be left undetected if it cannot be detected early by the chart. See Chapter 6 in Qiu
(2014) for a more detailed discussion.

The SPC control charts discussed above are mainly for detecting upward mean
shifts when the quality variable is univariate and continuous. Other cases, including
the ones when we are interested in detecting downward or arbitrary mean shifts or
when the quality variable is multivariate and/or discrete, can be discussed similarly.
There are also control charts designed for detecting variance shifts or shifts in other
parameters of the process distribution. See Qiu (2014) for a related discussion on all
these topics.
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14.3 A New Biosurveillance System

In this section, the newly proposed biosurveillance system BCEWMA is discussed
in detail. BCEWMA is a generalization of the EWMA chart discussed in Yang and
Qiu (2020), and it consists of three main steps: (i) estimation of a semiparametric
baseline model to describe regular disease incidence pattern for cases when no
disease outbreaks are present, (ii) extraction of useful information from covariates
by applying an EWMA chart on the covariates, and (iii) detection of unusual disease
incidence pattern (or disease outbreak) by another EWMA chart, in which the
weighting parameter is determined by the extracted covariate information. All the
details of these three steps are described below.

14.3.1 A Baseline Model and Its Estimation

Recall that, when no special cause variation is present in a process, the process is
considered to be IC, and a dataset collected in cases when the process is in IC is
referred to as an IC dataset. For disease surveillance, IC data refer to observations
collected in time periods when no disease outbreaks are present. In the first step of
BCEWMA, we aim to describe the IC longitudinal disease incidence pattern by a
baseline model, and then this baseline model can be estimated from an IC dataset.

Let [0, T ] be the basic time interval of the baseline model. In practice, this time
interval [0, T ] is often chosen to be a whole year. For any t ∈ [0, T ], let N(t; dt)

be the number of disease cases in the time interval [t, t + dt], and M(t) be the
population size at time t . Then, Y (t) = N(t; dt)/[M(t)dt] is defined to be the
disease incidence rate. This is a commonly used definition in the epidemiological
literature. See, for instance, Last (2001) for a related discussion. Assume that
{Y (ti), i = 1, 2, . . . , n} is an observed IC disease incidence dataset, and X(ti) =
(
X1(ti), X2(ti), . . . , Xp(ti)

)T is a measurement of a p-dimensional covariate vector
X at the time point ti ∈ [0, T ], for 1 ≤ i ≤ n. In cases when no disease outbreaks are
present, the observed IC incidence rates are assumed to follow the semiparametric
baseline model

Y (ti) = f (ti) + X(ti)
T β + ε(ti), for i = 1, 2, . . . , n, (14.8)

where f (t) is an unknown smooth function used to describe the temporal variation
(e.g., seasonality) of the disease incidence rate, β = (β1, β2, . . . , βp)T are the
regression coefficients, and {ε(ti), i = 1, 2, . . . n} are the zero-mean random errors.
Furthermore, for i = 1, 2, . . . , n, denote

E(X(ti)) = μX(ti), Var(X(ti)) = �X(ti), (14.9)

and
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Var(Y (ti)) = σ 2
Y (ti), (14.10)

where μX(ti) is a vector with length p, �X(ti) is a p × p matrix, and σ 2
Y (ti) ≥

0 is the variance of the observed incidence rate Y (ti). In Eqs. (14.8)–(14.10),
no parametric assumptions are imposed on f (t), μX(t), �X(t), σ 2

Y (t), and the
distributions of X(t) and ε(t), to ensure high flexibility and generalizability.

The β and f (t) in Eq. (14.8) can be estimated in the following four steps: (i)
provide an initial estimate of f (t), (ii) estimate the parametric part β, (iii) estimate
the nonparametric part f (t), and (iv) iterate steps (ii) and (iii) until convergence.
Next, we will describe these four steps in detail.

In step one, an initial estimate of f (t) is needed. To this end, β is assumed to
be 0, and the following local linear kernel smoothing (LLKS) procedure is used to
estimate f (t):

arg min
α∈R2

n∑

i=1

mi∑

j=1

[Y (ti) − α0 − α1(ti − t)]2 Kh(ti − t), (14.11)

where α = (α0, α1)
T , Kh(ti − t) = K((ti − t)/h), h > 0 is a bandwidth and K(·)

is a kernel function. Let Gi = (1, (ti − t))T , for i = 1, 2, . . . , n, then the solution
of (14.11) to α0 is the LLKS estimate of f (t), which can be expressed as

f̂ (t) = eT
1

(
GT WG

)−1
GT WY, (14.12)

where e1 = (1, 0)T , G = (G1, . . . , Gn)
T , W = diag{Kh(ti − t), . . . , Kh(tn − t)},

and Y = (Y (t1), . . . , Y (tn))
T . The estimate f̂ (t) is actually a weighted average of

all observations in a neighborhood of t , with the weights controlled by K(u) and
the neighborhood size controlled by h.

To ensure that the LLKS procedure works well, the kernel function K(u) and
the bandwidth h should be chosen properly. For the kernel function, since the
Epanechnikov kernel function Ke(u) = [3(1 − u2)/4]I (|u| ≤ 1) has some
good theoretical properties, it is chosen for K(u). Regarding the choice of the
bandwidth h, note that disease incidence rates at different observation times are
often correlated, and it has been well discussed in the literature that conventional
bandwidth selection approaches like the leave-one-out cross-validation (CV) would
not perform well when the observations are correlated, because these conventional
bandwidth selection procedures cannot properly distinguish the data correlation
structure from the data mean function. See, for instance, Altman (1990) and
Opsomer, Wang, and Yang (2001). To overcome this difficulty, Brabanter, Brabanter,
Suykens, and De Moor (2011) suggested a modified CV (MCV) procedure to handle
the correlated data. According to their suggestion, we can choose the bandwidth h

by minimizing the following MCV score:
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MCV(h) = 1

n

n∑

i=1

[
f̂−(i)(ti) − Y (ti)

]2
, (14.13)

where f̂−(i)(ti) is the leave-one-out estimate of f (ti) by (14.11) when the obser-
vation Y (ti) is left out and when the kernel function is chosen to be the following
bimodal kernel

K̃ε(u) = 4

4 − 3ε − ε3

{
3
4 (1 − u2)I (|u| ≤ 1), if |u| ≥ ε;
3(1−ε2)

4ε
|u|, if |u| < ε,

(14.14)

and ε ∈ (0, 1) is a constant. By using this bimodal kernel function, observations
around ti are down-weighted when computing f̂−(i)(ti) in (14.13) to reduce the
impact of data correlation on bandwidth selection. Based on a large simulation
study, Brabanter et al. (2011) suggested choosing ε to be 0.1, and this suggestion is
adopted throughout this chapter.

In step two of model estimation, we estimate the parametric component
β. Denote X = (X(t1), . . . , X(tn))

T , Z(ti) = Y (ti) − f̂ (ti), and Z =
(Z(t1), . . . , Z(tn))

T . In order to estimate the parametric part β, the following
ordinary least square procedure can be considered:

β̂ =
(

XT X
)−1

XT Z. (14.15)

In step three, we can specify β to be β̂, and update the estimate of the
nonparametric part f (t) by the LLKS procedure (14.12), with Y (ti) replaced by
Ỹ (ti) = Y (ti) − X(ti)

T β̂. In this step, for simplicity, the same bandwidth as in
calculating the initial estimate of f (t) is recommended for use.

As last step of model estimation, we can iterate between the second and the
third steps described above to obtain the final estimates of β and f (t), after certain
convergence criteria are met. Suppose the estimate of β at the k-th iteration is β̂(k),
the iterative procedure will stop at the k-th iteration if the following criterion is
satisfied:

||̂β(k) − β̂(k−1)||1/||̂β(k−1)||1 ≤ err,

where err > 0 is a pre-specified small number (we use err = 10−6 in real data
examples), and || · ||1 is the summation of the absolute values of all the elements in
a vector.

For μX(t) and �X(t) defined in (14.9), they can be estimated from the observed
covariate vectors {X(ti) : i = 1, 2, . . . , n} directly. More specifically, μX(t) can be
estimated by

μ̂X(t) =
∑n

i=1 Kh(ti − t)X(ti)
∑n

i=1 Kh(ti − t)
, (14.16)
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and we can estimate �X(t) by

�̂X(t) =
∑n

i=1 Kh(ti − t) (X(ti) − μ̂X(ti)) (X(ti) − μ̂X(ti))
T

∑n
i=1 Kh(ti − t)

. (14.17)

From (14.8), it is clear that the mean of Y (t) is μY (t) = f (t) + μX(t)T β. After
obtaining the estimates β̂, f̂ (t) and μ̂X(t), we can define μ̂Y (t) = f̂ (t) + μ̂X(t)T β̂

to be the estimate of μY (t). Then, let ê(ti ) = Y (ti) − μ̂Y (ti). For t ∈ [0, T ], the
variance function of Y (t) can be estimated by

σ̂ 2
Y (t) =

∑n
i=1 Kh(ti − t )̂e2(ti)
∑n

i=1 Kh(ti − t)
. (14.18)

So far, we have discussed the estimation of μX(t), �X(t), μY (t), and σ 2
Y (t)

in (14.16)–(14.18) for cases when t ∈ [0, T ]. With the assumption that these
functions are periodic in time with a period of T , these estimates can be extended to
the entire time interval [0,∞).

14.3.2 Sequential Monitoring of Disease Incidence Rates

In the EWMA chart proposed by Yang and Qiu (2020), the IC distributions
(including the means and the variances) of Y (t) and X(t) are assumed to be
time-independent. In biosurveillance applications, however, these IC distributions
are usually time-varying, as discussed in Sect. 14.1. In the previous subsection,
estimation of the means, variances and other related IC quantities of Y (t) and X(t)

has been discussed. More specifically, the estimates f̂ (t), μ̂X(t), �̂X(t), β̂, μ̂Y (t)

and σ̂ 2
Y (t) have been obtained from an IC dataset. These estimates can thus be used

to describe IC longitudinal patterns of disease incidence rates and the corresponding
covariates for online sequential monitoring. A unique notion of the generalized
EWMA chart proposed in this chapter is that the estimated IC quantities of Y (t)

and X(t) can be used to standardize the future observations of Y (t) and X(t), and
then the chart in Yang and Qiu (2020) can be applied to the standardized future
observations. Detailed description of the generalized EWMA chart is provided
below.

Suppose the incidence rates for a disease to be monitored are observed at times
{t∗i : i = 1, 2, . . .}, and let the observed incidence rates and the corresponding
covariates be {Y (t∗i ), i = 1, 2, . . .} and {X(t∗i ), i = 1, 2, . . .}, respectively. From
the equation in (14.8), we know that the p-dimensional covariate vector X(t) can
affect Y (t) through a linear combination X(t)T β such that changes in X(t)T β result
in a mean shift in Y (t). So, the covariates could contain information about disease
incidence. In BCEWMA, the covariate information can be extracted by using the
following EWMA charting statistic
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EX,i = λ

⎡

⎣
(X(t∗i ) − μ̂X(t∗i ))T β̂
√

β̂
T
�̂X(t∗i )β̂

⎤

⎦+ (1 − λ)EX,i−1, for i ≥ 1, (14.19)

where EX,0 = 0, and λ ∈ (0, 1] is a weighting parameter.
Note that a large absolute value of EX,i implies that it is likely to have a shift in

the mean of X(t)T β. Therefore, EX,i can be used for measuring the possibility of
a mean shift in X(t)T β. For disease outbreak detection, usually only upward shifts
in the disease incidence rate Y (t) are of interest. Thus, we focus on upward shifts
in X(t)T β as well, because of the relationship between X(t)T β and Y (t) described
in (14.8). For the EWMA chart (14.19), it would give a signal of an upward shift in
X(t)T β if

EX,i > ρX, (14.20)

where ρX > 0 is a control limit chosen to achieve a pre-specified value of ARL0,
denoted as ARLX,0.

Given the value of ARLX,0 and λ, ρX can be computed by a resampling approach
from an IC dataset (cf., Chatterjee & Qiu 2009). Because the observed covariate
vectors at different time points are often correlated, we suggest using a block
bootstrap procedure that is described below. Suppose the IC dataset used to search
for the control limit ρX is {(X(t∗∗

i ), Y (t∗∗
i )), i = 1, 2 . . . , ñ}. Then, the block

bootstrap procedure with block length l can be described as follows:

1. Calculate Q̃(t∗∗
i ) = (X(t∗∗

i )−μ̂X(t∗∗
i ))

T
β̂

√

β̂
T
�̂X(t∗∗

i )β̂
, for i = 1, 2, . . . , ñ. Then, there are ñ −

l + 1 possible blocks of length l, with the k-th block being {Q̃(t∗∗
i ), k ≤ i ≤

k + l − 1}, for k = 1, 2 . . . , ñ − l + 1;
2. Randomly select a sequence of blocks from all ñ − l + 1 possible blocks with

replacement. The selected blocks are placed one after another according to the
selection order, and they form a bootstrap sample, denoted as {Q̃∗

i : i = 1, 2 . . .};
3. Compute the EWMA charting statistic Ei = λQ̃∗

i +(1−λ)Ei−1, for i ≥ 1, where
E0 = 0. For a given control limit ρX, define RL0(ρX) = min{i : Ei > ρX};

4. Repeat the second and third steps for B times, and define ARL0(ρX) to be the
average of B RL0(ρX) values obtained from the B replications;

5. Use the bisection search method to search for ρX such that ARL0(ρX) equal to
the pre-specified ARL0,X level.

To detect a disease outbreak using EX,i , we propose to use the following EWMA
chart:

EY,i=φ(EX,i; λ, ρX)

(
Y (t∗i )−μ̂Y (t∗i )

σ̂Y (t∗i )

)

+ (1−φ(EX,i; λ, ρX)
)
EY,i−1, for i ≥ 1,

(14.21)
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where EY,0 = 0, and φ(EX,i; λ, ρX) ∈ (0, 1] is a weight that depends on EX,i and
(λ, ρX). This chart will trigger a signal of a disease outbreak if

EY,i > ρY , (14.22)

where ρY > 0 is a control limit chosen to achieve a pre-specified value of
ARL0, denoted as ARLY,0. The weighting function φ(EX,i; λ, ρX) and the value
of ARLY,0 need to be chosen in advance, then ρY can be determined by the block
bootstrap procedure from the IC dataset, similar to the determination of the control
limit ρX in (14.20).

As mentioned previously, the weighting function φ(EX,i; λ, ρX) must be speci-
fied and used in the chart (14.21)–(14.22). It is obvious that more weight should be
put on the current observation Y (t∗i ) when we calculate the charting statistic EY,i if
the possibility of an upward shift in X(t)T β is larger at time t∗i . So, φ(EX,i; λ, ρX)

should be chosen as a nondecreasing function of EX,i . In this chapter, we suggest
using the following weighting function:

φH (x; λ, ρX) =
{

1 − (1 − λ)
/
(x/ρX) , if x > ρX,

λ, otherwise; (14.23)

The function φH (x; λ, ρX) in (14.23) is inspired by the Huber’s function (Huber
1981), and the resulting disease surveillance system is denoted as BCEWMA-H,
where the last letter “H” denotes the fact that φH (x; λ, ρX) is used as the weighting
function. From (14.23), it is obvious that ρX is a scale parameter of EX,i when we
calculate the weight φH (EX,i; λ, ρX).

14.4 Real Data Examples

In this section, we apply the new biosurveillance system BCEWMA to monitor
the incidence rates of hand, foot, and mouth disease (HFMD) in China and the
influenza-like-illness (ILI) in Florida. Besides the proposed approach using the
weighting function φH (x; λ, ρX) (denoted as BCEWMA-H), we also consider the
following three alternative methods:

• the proposed control chart with the weighting parameter to be a constant λ,
denoted as BCEWMA-C,

• the EWMA chart for detecting upward mean shifts suggested by Dong et al.
(2008), denoted as EWMA, and

• the Shewhart chart for detecting upward mean shifts, denoted as Shewhart.

For the alternative chart BCEWMA-C, the weighting parameter is chosen to be a
constant. So, the covariate information is totally ignored by this chart. To investigate
the benefit of using covariate information, we can compare the performance of
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BCEWMA-H with that of BCEWMA-C. In the EWMA chart by Dong et al. (2008),
the observed disease incidence rate is assumed to be normally distributed and this
chart cannot handle the seasonality and other time-varying IC patterns. Besides the
limitations of the EWMA by Dong et al. (2008), the Shewhart chart has another
major disadvantage that it is ineffective in detecting small shifts.

14.4.1 The Hand, Foot and Mouth Disease Data

Hand, foot and mouth disease (HFMD) is a common infectious disease that often
occurs in children under 5 years of age. During 2008–2015, the number of HFMD
patients reported in China is about 13 millions, including 123,261 severe cases
and 3322 deaths (c.f., Huang et al. 2018). Due to its high death rate, an effective
biosurveillance system is needed to detect the disease outbreaks at an early stage,
so that some disease control measures can be taken in a timely fashion to minimize
its damage. In a HFMD dataset obtained from Chinese Center for Disease Control
(CDC), we have the weekly disease incidence rates in Sichuan province of China
during years 2012–2014. For HFMD, it has been well studied that it is closely
associated with certain weather conditions like air temperature. See, for example,
Wang et al. (2011). On the webpage of the National Oceanic and Atmospheric
Administration (NOAA) of the United States, we can download the weekly average
of temperature of Sichuan province during years 2012–2014. The observed weekly
HFMD incidence rates and temperature levels are presented in Fig. 14.1. From
Fig. 14.1, it is clear that the observed incidence rates in years 2012 and 2013 are
quite stable, and we use these observations as IC data. The IC dataset is then divided
into two parts. The observations in year 2013 are used to estimate the regular
disease pattern, while the IC data in year 2012 is used to determine the control
limits ρX and ρY of the proposed method BCEWMA-H, by the block bootstrap
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Fig. 14.1 Observed HFMD incidence rates and air temperatures in Sichuan province during years
2012–2014
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procedure after the weighting function is chosen to be φH (x; λ, ρX), λ = 0.3 and
ARLX,0 = ARLY,0 = 50.

Then, we sequentially monitor the disease incidence rates from the beginning of
year 2014, and this chart is presented in Fig. 14.2a. For comparison, the results of
the BCEWMA-C chart with the weighting parameter λ = 0.3, the EWMA chart
with λ = 0.3, and the Shewhart chart are presented in Fig. 14.2b–d. When we
implement the four control charts in this example, all the control limits are chosen
by the block bootstrap procedure with the bootstrap sample size B = 10,000 and
the block size l = 5, using the IC data in year 2012. For the BCEWMA-C, EWMA
and Shewhart charts, their ARL0 values are also fixed at 50. From Fig. 14.3, we
find that these four charts give signals of disease outbreak at the 11th, 12th, 14th,
and 14th week, respectively. Next, the observed disease incidence rates in year
2014 is compared with their predicted values using the estimated regular pattern.
In Fig. 14.3, the dark points denote the observed HFMD incidence rates in 2014,
the solid curve denotes the predicted incidence rates using the estimated regular
pattern obtained from the IC data, and the vertical dashed line denotes the signal
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Fig. 14.2 The (a) BCEWMA-H, (b) BCEWMA-C, (c) EWMA and (d) Shewhart charts for
monitoring the weekly HFMD disease incidence rates in year 2014, where the horizontal lines
denote the control limits for the corresponding control charts
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Fig. 14.3 Observed weekly HFMD incidence rates in year 2014 (little dots) and their predicted
values from the estimated baseline model (solid curve). The vertical dashed line is the signal time
of BCEWMA-H

time from BCEWMA-H. It can be seen that the observed HFMD incidence rates
are indeed much higher than their predicted values, and BCEWMA-H catches this
shift quite promptly. To investigate whether this shift is associated with temperature,
we calculate the average temperature during years 2012–2013, and compare it with
the yearly average temperature in 2014. We find that the average temperature in
the year 2014 is 63.9 ◦F, which is a little bit lower than the average temperature of
64.1 ◦F during the years 2012 and 2013. So, the temperature during 2014 is indeed
colder than that in 2012–2013, which might contribute to the higher incidence rates
of HFMD in 2014. As a result, BCEWMA-H gives a signal 1 week earlier than
BCEWMA-C, after using the temperature information.

14.4.2 The Influenza-Like-Illness Data

The second example is about the Florida influenza-like-illness (ILI) data. ILI is
a severe respiratory infection that can cause serious illness and even death (Hu
et al. 2018). Thus, it is critically important to provide an effective real-time disease
monitoring such that its damage can be minimized. The ILI disease surveillance data
are provided by the Florida Department of Health (FDOH), covering the years of
2012–2014 in Florida state. Due to the fact that ILI is highly associated with weather
conditions such as temperature (cf., Noort, Aguas, Ballesteros, & Gomes 2012),
we included the Florida temperature data obtained from the NOAA of the United



14 BCEWMA: A New and Effective Biosurveillance System for Disease. . . 359

2e
−

05
4e

−
05

6e
−

05
8e

−
05

Time

In
ci

de
nc

e 
ra

te

2012 2013 2014

40
50

60
70

80

Time

Te
m

pe
ra

tu
re

2012 2013 2014

Fig. 14.4 Observed daily ILI incidence rates and air temperature data in Florida during years
2012–2014

States in our disease monitoring so that the helpful temperature information can be
properly used to improve the disease outbreak detection. The observed Florida ILI
incidence rates are presented in Fig. 14.4, together with the temperature data. From
the figure, we can see that the observation disease incidence rates in years 2012 and
2013 are more stable, compared to those in year 2014. So, the observed data in these
2 years are used as the IC data. Based on the IC data, we can estimate the regular
disease longitudinal pattern and determine the control limits used in our proposed
chart as well. To this end, the data in year 2013 are used for estimating the baseline
model and those in 2012 are used for determining the control limits of the chart
BCEWMA-H by the block bootstrap approach.

Then, we apply the related control charts to the observed data in 2014 for online
disease monitoring. In BCEWMA-H, both ARLX,0 and ARLY,0 are fixed at 500.
For the three competitive charts BCEWMA-C, EWMA and Shewhart, their ARL0
values are also specified to be 500. In all the charts, λ is chosen to be 0.3, and their
control limits are determined by the block bootstrap procedure with B = 10,000
and l = 5. The four charts are presented in Fig. 14.5, where the dotted horizontal
lines denote the related control limits. From the plots in the figure, the BCEWMA-
H, BCEWMA-C, EWMA and Shewhart charts give signals on Oct 7th, Oct 19th,
Nov 13th, and Nov 13th, respectively. Therefore, the signal from of BCEWMA-
H is about 2-week earlier than that of BCEWMA-C, and the signals from EWMA
and Shewhart are more than 1-month later. To better perceive the observed disease
incidence rates in year 2014, we present the observed data in that year and the
corresponding predicted values from the estimated baseline model in Fig. 14.6 by
the dark points and the solid curve, respectively. From the plot, it can be seen that
major difference between the observed data and their predicted values starts in early
September and the difference becomes more significant later on. The vertical dashed
line in the plot denotes the signal time from BCEWMA-H. It can be seen that
BCEWMA-H can detect such difference in a quite timely manner. In this study,
we also compare the average temperature in year 2014 with that of years 2012 and
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Fig. 14.5 The (a) BCEWMA-H, (b) BCEWMA-C, (c) EWMA and (d) Shewhart charts for
monitoring the daily ILI disease incidence rates in year 2014. The horizontal lines denote the
control limits of the related control charts

2013. Because the major difference between the observed and predicted incidence
rates starts at the beginning of September, we only take average of the temperatures
during 09/01 and 12/31. By some simple calculations, the average temperature
during this time period in 2014 is 71.5 ◦F, which is 1.5 degrees lower than that
in the previous 2 years. Therefore, temperature information should be helpful to
predict the occurrence of unusual disease incidence patterns. This might explain the
reason why the BCEWMA-H chart can detect the disease outbreak earlier than the
other three charts.

14.5 Concluding Remarks

In this paper, we have proposed a new biosurveillance system BCEWMA for
monitoring disease incidence data. The new biosurveillance system is a gen-
eralization of the online monitoring approach that was originally discussed in
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Fig. 14.6 Observed daily ILI incidence rates in year 2014 (little dots) and their predicted values
from the estimated baseline model (solid curve). The vertical dashed line is the signal time of
BCEWMA-H

Yang and Qiu (2020) for sequential monitoring of processes with time-independent
IC distributions. The generalized method can accommodate helpful information
from covariates, time-varying longitudinal pattern of the process observations (e.g.,
seasonality), and arbitrary data distribution. BCEWMA is applied to two real-data
examples, and the results indicate that it works well in practice. In addition to
disease surveillance, BCEWMA should also be useful for many other applications,
including sequential monitoring of some environmental indexes like PM2.5 concen-
tration levels. However, there are still some issues regarding BCEWMA that need
to addressed in the future work. For instance, in practice, there could be a lot of
covariates that might be relevant to the incidence rates of a disease in concern. In
such cases, only those covariates that are strongly related to the disease incidence
rates would be helpful for disease surveillance and thus should be included in the
proposed surveillance system. Therefore, we need to decide which covariates should
be included in the system in advance. To address this issue, an effective and reliable
variable selection procedure should be developed, which will be studied in our
future research.
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Chapter 15
Cusp Catastrophe Regression Analysis
of Testosterone in Bifurcating
the Age-Related Changes in PSA,
a Biomarker for Prostate Cancer

Xinguang Chen, Kai Wang, and (Din) Ding-Geng Chen

Abstract Advancing cancer research needs to adapt nonlinear dynamic systems
(NDS) approach in addition to the linear dynamic systems (LDS). Dynamic changes
in prostate-specific antigen (PSA), a biomarker of prostate cancer showed NDS
character but this character has not been examined in literature. In this study,
we examine PSA guided by a NDS paradigm. Participants were urology patients
diagnosed with either prostate cancer (n = 27) or benign prostate disorder (n = 352)
from a tertiary hospital in northcentral Florida. Data were derived from the 2001 to
2015 electronic medical records (EMR). PSA levels (ng/mL) were analyzed with
cusp catastrophe mode in which participants’ age at the PSA level was used as
the asymmetry variable, and testosterone levels (ng/dL) as the bifurcation variable.
Modeling analyses were executed in the open source R software. LDS-based linear
correlation and regression analyses were also conducted as a comparison purpose.
The mean age of the participants was 66.1 (SD = 9.8) years old; the PSA range
was 0.05–13.8 with mean = 1.7 (SD = 1.2) ng/mL; and the total-testosterone
range was 27.00–1297.00 with mean = 318.0(SD = 191.6) ng/dL. Results from
Chen-Chen cusp regression indicate better data-model fit for cusp (R2 = 0.47) than
for linear regression (R2 = 0.027). Serum PSA was significantly associated with
age (a1 = 0.2691, p < .001) and bifurcated by blood testosterone (b1 = 1.0265,
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p < .00) with the estimated cusp point = (age = 63, testosterone = 630 ng/mL). The
estimated cusp point was close to the epidemiology data that the risk of prostate
cancer started to accelerate at about ages 60–65 years; and testosterone level of
630 ng/mL, closer to the up-limit 800 ng/dL of normal range (280–800) by the
American Association of Clinical Endocrinologists (AACE). In conclusion, this
is the first study that examined the dynamics of PSA in men and demonstrated
that serum PSA level follow the NDS. In addition to confirming the relationship
between age, testosterone and PSA, findings of this analysis provide a reasonable
explanation of the large PSA-range in healthy men and the small difference in mean
PSA between healthy men and men with prostate cancer (1.2 vs. 2.6). There is a
need to re-evaluate the role of PSA for prostate cancer screening guided by NDS
paradigm.

Keywords Prostate cancer · PSA · Testosterone · Nonlinear dynamics systems ·
Cusp catastrophe modeling

15.1 Introduction

Worldwide, approximately 1.1 million men diagnosed with prostate cancer every
year, one of the leading cancers for men (Bray et al., 2018; Khazaei et al., 2016).
In the developed countries, a diagnosis of prostate cancer is based on the prostate
biopsies to identify cancer cells located in the prostate tissues (Mottet et al., 2017).
To date, more than one million prostate biopsies are performed annually in the
United States alone, with the majority revealing no prostate cancer or low-risk
prostate cancer that is unlikely to impact survival (Loeb, Carter, Berndt, Ricker, &
Schaeffer, 2011). Prostate biopsy, particularly overuse of the procedure is associated
with increased risk of medical complications, including pain, bleeding and infec-
tions (Borghesi et al., 2017; Loeb et al., 2011, 2012). To reduce unnecessary use of
prostate biopsy while not missing men with prostate cancer, a biomarker—prostate
specific antigen (PSA) has been identified, reference point established, and widely
used as a screening tool in practice (Mottet et al., 2017). Prostate biopsy will be
recommended for men whose blood PSA level is ≥4.0 ng/mL. Unfortunately, data
from worldwide practice indicate poor sensitivity and specificity of PSA, calling for
new evidence supporting the utility of PSA as a screening marker (Andriole et al.,
2009; Schröder et al., 2009).

15.1.1 Challenges to Using PSA as Prostate Cancer Screener

Research findings show a large overlap in PSA between men with and without a
clinically diagnosed prostate cancer with a large variation coefficient in measured
PSA (Habibzadeh, Yadollahie, & Habibzadeh, 2017). To improve the utility of PSA
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as a screening biomarkers, several PSA derivatives have been proposed for use to
aid the screening and early detection of prostate cancer (Gaudreau, Stagg, Soulieres,
& Saad, 2016). Typical examples include PSA velocity measuring the rate of PSA
change over time, PSA density assessing the ratio of PSA to prostate volume, age-
specific PSA levels and PSA doubling time (Benson, Whang, Olsson, Mcmahon,
& Cooner, 1992; Carter et al., 1992; Harris, Dalkin, Martin, Marx, & Ahmann,
1997; Oesterling, Jacobsen, & Cooner, 1995). In addition to PSA, unbounded or free
PSA (fPSA), total PSA (tPSA), and % fPSA were proposed and evaluated through
randomized trials, with % fPSA showed an improved sensitivity and specificity and
being approved by FDA for use (Catalona et al., 1998; Partin et al., 1998). As
presented in an updated literature review (Gaudreau et al., 2016), advancements
in proteomics and genomics have created lots of opportunities to discover new
biomarkers other than SPA with potentials to improve sensitivity and specificity
than using PSA alone (Benecchi, 2006; Bjurlin & Loeb, 2013; Carter & Pearson,
1993).

Despite much progress in improving existing PSA-based biomarkers and in
discovering new markers, the utility of these markers is often questioned because
of unsatisfactory results in practice in assisting screening, diagnosis and treatment
(Loughlin, 2014; Partin et al., 1996; Uchio et al., 2016; Vickers, 2013; Vickers &
Brewster, 2012). Technically, there is nothing wrong with the selected biomarkers
and the evaluation studies to determine the utility of these markers. Randomized
controlled design is used for biomarker evaluation, which is termed as gold standard
in research and clinical practice. The statistical methods used in analyzing the
data, including linear and logistic regression are well-established mathematically
and widely used in research. One reason for the controversy about PSA and other
biomarkers could be due to the linear dynamic systems we used in our research.
Studies to evaluate a biomarker such as PSA naturally assume the kinetics of a
biomarker as a linear process (Uchio et al., 2016). When PSA is used as a biomarker,
we automatically believe that a men with a higher PSA level is more likely than a
man with a lower PSA to have prostate cancer, or if a man experiences an increase
in PSA, the likelihood increases for this man to be diagnosed with prostate cancer.
However, the relationship between a biomarker (i.e., PSA) and the likelihood to
develop prostate cancer could follow a nonlinear and a discrete process with increase
and decline in PSA following different paths conditioned on other influential factors
as we observed in studying other health and behavioral related issues (Chen & Chen,
2015, 2019; Chen, Lin, Chen, Tang, & Kitzman, 2014).

15.1.2 Age Pattern of PSA Changes

PSA is a small protein named as serine protease, and it is produced by the epithelial
cells in the prostate, including normal cells, hyperplastic cells and cancerous cells
within the prostatic gland (Nixon, Lilly, Liedtke, & Batjer, 1997). This is one reason
why we cannot depend on PSA alone to separate men with and without prostate
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cancer. PSA level in men’s blood increases as age increases (Battikhi & Hussein,
2006; Oesterling et al., 1995; Resim et al., 1999). For example, one study with a
large sample (n = 1150) of urologic patients free from prostate cancer and aged
40–79 indicated that the total PSA level (SE) by age groups was 2.4 (0.4) ng/mL
for men aged 40–49, 2.7 (0.2) ng/mL for men aged 50–59, 3.6 (0.2) ng/mL for men
aged 60–69, and 4.1 (0.23) ng/mL for men aged 70–79 (Battikhi & Hussein, 2006).

Given the age patterns of PSA, researchers proposed age-specific reference
ranges for use in practice particularly in the 1990s. For example, a review study
by Luboldt, Schindler, and Rubben (2007) suggested using 2.0 ng/mL as cutoff
for men age 50 at the first time to recommend for prostate biopsy, 3.0 ng/mL at
age 55, and 4.0 ng/mL for any men older than 55. However, as described early in
this chapter, adaptations of age-specific references rather than the standard cutoff of
4.0 ng/mL for all have not solved the problem over the utility of PSA in prostate
in cancer screening due to unsatisfactory sensitivity-specificity, although with some
improvement (Partin et al., 1996). As indicated by Battikhi and Hussein (2006), for
urological patients aged 70–79 years old with no prostate cancer, the mean PSA is
greater than 4.0 ng/mL, suggesting a large number of non-cancer patients will be
misclassified as cancer patients. The large standard error of measured PSA levels
across all age ranges suggest that the relationship between PSA and age may follow
a nonlinear discrete dynamics rather than a linear continuous dynamics (Chen &
Chen, 2015; Guastello & Gregson, 2011).

15.1.3 Relationship Between Testosterone and PSA

Testosterone is a major component of androgens for male reproduction. Total
testosterone level declines with age for healthy men. Data from the Massachusetts
Male Aging Study indicated that mean (95% CI) ng/ml of total testosterone for
heathy men is 538.9 (187.3, 890.4) at age 40–49, 500 (149.9, 847.2) at age 50–59,
501 (178.7, 821.3) at age 60–69, 423.6 (115.3, 734.8) (Mohr, Guay, O’Donnell, &
McKinlay, 2005). In addition to declines by age, the testosterone has a very large
95% CI, suggesting large variations in testosterone levels even for men in the same
age range. The role of testosterone has long been recognized since the Nobel Prize
Award research by Dr. Huggins & Hodges started in 1941 (Huggins & Hodges,
1941), supporting today’s androgen deprivation for prostate cancer therapy (Polotti
et al., 2017). The effect from androgen reduction in treating prostate cancer makes
people to link testosterone levels with PSA, an early biomarker for prostate cancer
as previously described in this chapter.

To further understand the role testosterone in prostate cancer for prevention
and treatment, several studies report a positive relationship between levels of
testosterone and PSA—men with higher testosterone often have higher PSA,
although the relationship is not very strong (Elzanaty, Rezanezhad, & Dohle, 2017;
Peskoe et al., 2015; Rastrelli et al., 2013). For example, data from the National
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Health and Nutrition Examination Survey (NHANCES) indicated that along with
increases in total testosterone by quintile from <3.16 ng/mL to ≥6.02 ng/mL, the
adjusted PSA level (ng/mL) increased from 0.79 at the first quintile to 1.12 in the
third quintile to 1.16 in the last quintile (Peskoe et al., 2015).

In addition to a positive relationship, different results are reported in the
literature. For example, in a study by Corona et al. (2010) with a large sample
of urologic patients (n = 2291), no significant relationship was found between
total testosterone levels and the levels of PSA except a weak positive association
for patients younger than 50 years of age. Unfortunately prostate cancer risk is
rather low for men younger than 50 years of age. The inconsistent findings from
the reported studies and the large variations in testosterone levels among healthy
men suggest that the relationship between PSA and testosterone may also follow a
nonlinear discrete dynamic process rather than a linear continuous dynamic process.
When the relationship between two variables is nonlinear and discrete, findings with
weak or inconsistent relationship would be highly likely if such data were analyzed
using methods for linear and continuous relationship, such as student t-test, ANVOA
and linear regression (Chen & Chen, 2015, 2019).

15.1.4 A Cusp Catastrophe Model of PSA as Function of Age
and Testosterone

In the present study, we explored another approach to quantify the relationship of
PSA levels with chronological age, and blood testosterone, guided by a nonlinear
discrete dynamics. We proposed that changes in circulating PSA level follows a
cusp catastrophe process (Thom, 1975). Figure 15.1 depicts the proposed cusp
catastrophe model where y-axis indicates PSA level, x1 indicates chronological age,
and x2 indicates testosterone level and the curved plane depicts the equilibrium
of PSA level in a population. The curved equilibrium plane contains roughly four
different regions, including two regions for the stable status of PSA, one region for
continuous change in PSA and one region for discrete and sudden change in PSA.

The two stable regions in the figure are marked as High PSA and Low PSA,
within which changes in both age and testosterone results very small changes in
PSA. The continuous change region is located backward of the plane, corresponding
to the belt area below the label “Equilibrium plane. In this region, testosterone in the
blood is low and the relationship between PSA and age following the conventional
continuous and linear relationship.

The unstable region is the area located between the two stable regions and marked
by the two lines OQ (the threshold for sudden jump in PSA level) and OR (the
threshold line for sudden drop in PSA level). In this region, the relationship between
PSA and age becomes more complex with zero- positive and negative associations
all likely. Within the cusp region, two men with exact the same age and testosterone
level can have very different levels of PSA, one being on the upper part of the curved
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Fig. 15.1 Proposed cusp catastrophe model for PSA dynamics as it relates to chronological age
and testosterone levels in men

plane and another being on the lower part of the curved plane. It is this complex
relationship of PSA with age and testosterone levels that cannot be captured with
the conventional linear modeling methods, such as t-test, ANOVA, and linear and
logistic regression.

15.1.5 Purpose of This Study

The purpose of this study is to test the proposed cusp catastrophe model presented
in Fig. 15.1 that links PSA with age and testosterone, and to provide new data
advancing our understanding of the PSA dynamics and supporting further research
for prostate cancer prevention screening and early diagnosis for better treatment
outcomes by better using PSA and other data, such as age and testosterone. We will
address the research goal using data derived from electronic medical records and
new nonlinear discrete paradigms and modeling methodology we established for
cusp catastrophe modeling analysis (Chen & Chen, 2015, 2017, 2019).
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15.2 Materials

15.2.1 Participants and Data

This study targeted patients with any prostatic disease. We derived data from the
Medical Registry Database of a tertiary-level hospital in southeast of the US. The
records were linked with medical visits, hospitalizations, drug prescriptions, lab
results, and medical diagnoses. Patients from 2001 to 2015 were screened for
eligibility. A patient was included as case if he was diagnosed of PCa and had at
least one measurement of serum total testosterone prior to the first PCa diagnosis. If
a patient was not diagnosed of PCa and had at least one measurement of serum total
testosterone prior to the most recent diagnosis of benign prostatic diseases (BPD),
he was included as a control. With this criterion, 27 PCa patients and 352 BPD
patients were included, yielding a total sample of 379 patients.

15.2.2 Variables and Measurement

Changes in PSA along with age may better be explained with the cusp catastrophe
model (Chen & Chen, 2017; Chen et al., 2014). In this model, a man’s age is
conceptualized as the asymmetry factor, reflecting a fundamental and relatively
stable characteristic governing the dynamics of PSA level over time. Changes in
circulating testosterone level are conceptualized as the bifurcation factor that has the
function to trigger sudden surge or drop in PSA. PSA will increase gradually and
continuously, being observed as a linear process, when testosterone level declines
normally with age (at the speed below the cusp point). When the age-related decline
in blood testosterone accelerates (moving forward) to greater than the cusp point, it
will trigger a surge in blood PSA when a man’s age passes the threshold line OQ.
When the speed of blood testosterone declines from high to low (moving backward),
it will trigger sudden drop in blood PSA for all men with their ages below the
threshold line OR till the speed of testosterone decline further to below the cusp
point.

PSA levels will be stable for men who are outside of the cusp region between
the two threshold lines; however, PSA levels may experience sudden increase or
decline for men who are within the cusp region. Depending on the direction and
age, both sudden increase and sudden declines in blood PSA are likely for men
in different age ranges with different speed of testosterone declines. Conventional
paradigms and models are effective to characterize only the first part of the PSA
dynamics while the cusp catastrophe approach can capture all three characters using
one model.
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15.3 Statistical Analysis and Cusp Modeling

15.3.1 Statistical Analysis

Descriptive statistics, such as mean and standard deviation (SD), median and inter-
quarter range (IQR) were used to describe the study sample. Student t-test and chi-
square test were used for simple comparison analysis, and Pearson correlation was
used to assess the linear relationship between PSA and other predictors.

15.3.2 Cusp Catastrophe Modeling

A progressive strategy was used to test the proposed cusp catastrophe model of
PSA in relation with age and testosterone levels (in Fig. 15.1). We started the
analysis with a multiple linear regression modeling analysis in which PSA levels
were used as outcome, and age (in years) and testosterone levels (ng/mL) were
used as predictors. The linear regression model was used to test the hypothesis that
variations in PSA level follow a linear and continuous dynamics.

To prepare for cusp catastrophe modeling, we examined whether PSA levels
revealed a bimodality distribution along with the two predictors variables age and
testosterone levels. We checked the bimodality using bwplot() function from R.
In preparing the violin plot, we categorized both age and testosterone levels into
five groups using quintile. The existence of bimodality is a prerequisite for cusp
catastrophe modeling (Chen, Wang, & Chen, 2019; Guastello, 1982).

In cusp catastrophe modeling analysis, the blood PSA level (ng/mL) was used
as the outcome as in the linear regression model. Age (in year) of the participants
was modeled as the asymmetry control variable while testosterone level (ng/mL)
was modeled as the bifurcation control variable. We first analyzed the data using the
Cobb-Grasman’s stochastic density equation cusp catastrophe modeling (SDECusp)
(Cobb, 1981, 1998; Grasman, van der Maas, & Wagenmakers, 2009), in which the
outcome and the two control variables were modeled as follows:

Asymmetry variable : a = a0 + a1 age (15.1)

Bifurcation variable : b = b0 + b1 testosterone (15.2)

Outcome variable : y = w0 + w1 PSA (15.3)

The analysis was implemented using the published R package “cusp” (Grasman,
van der Mass, & Wagenmakers, 2009). The “cusp” package also produces results
from alternative linear regression modeling and R2 based on least square estimates
for data-model fitting. This was contrasted with the pseudo-R2 for cusp catastrophe
model estimated using the maximum likelihood method.
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Since the Cobb-Grasman’s SDECusp implemented using the “cusp” package is
degenerative, the estimated parameters can be biased (Grasman et al., 2009; Oliva,
Desarbo, Day, & Jedidi, 1987). We thus modeled the same data using the Chen-
Chen regression cusp catastrophe model we developed and used in other studies
(Chen & Chen, 2017; Chen et al., 2014, 2019). In this modeling approach, the two
control variables were modeled as in the Cobb-Grasman’s modeling approach (see
Eqs. 15.2 and 15.3). However, the outcome variable PSA was modeled as a latent
variable:

yi = Yi + εi, (15.4)

where yi is the PSA measured in the clinic; the true level of PSA Yi is a latent
variable we cannot directly measure or observe; while εi represents the errors in
measured PSA level. With Eq. 15.4, the procedure to obtain the model parameters
is to substitute Yi to the cusp catastrophe equilibrium equation and let it equal zero:

αi + βiYi − Y 3
i = 0, (15.5)

To assess data-model fit, R2 was also calculated based on the covariance between
the observed and model predicted PSA levels. In addition, cusp point was estimated
based on the Cardan discriminant � = 27α2 − 4β3. With the estimated cusp points,
the two threshold lines were estimated and the cusp regions defined by the estimated
cusp point and the two threshold lines were presented.

All statistical analyses were conducted using the software R.

15.4 Analytical Findings

15.4.1 Sample Characteristics

Results in Table 15.1 show that among the total sample of 376 patients with
complete data, 27 (7.1%) were diagnosed with prostate cancer and the rest with
BPD. The subjects were 66.5 (SD = 9.8) years old, 76.0% were white, 2.9%
with someone in the family members with prostate cancer. Student t-test indicated
extremely significantly higher PSA in subjects with PCa than BPD (4.0 vs. 1.1,
p < .01).

15.4.2 Results from Linear Correlation Analysis

Results in Table 15.2 show the correlation between PCa and the predictor variables.
PCa was positively associated with testosterone (r = 0.13, p < 0.01) and PSA
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Table 15.1 Characteristics of the study sample

Character PCa BPD Total

N (%) 27 (7.1) 351 (92.9) 376 (100)
Age in years

Median (IQR) 65.0 (60.0, 73.0) 67.0 (60.0, 73.0) 66.5 (60,0, 73.0)
Mean (SD) 66.3 (7.9) 66.1 (10.0) 66.1 (9.8)

Race, n (%)
White 20 (74.1) 268 (76.1) 228 (76.0)
Black 2 (7.4) 40 (11.4) 42 (11.1)
Other 5 (18.5) 44 (12.5) 49 (12.9)

Family history of PCa
Yes 1 (3.7) 10 (2.8) 11 (2.9)
No 342 (96.3) 26 (97.2) 368 (97.1)

BMI
Median (IQR) 25.4 (24.0, 28.7) 27.6 (24.7, 30.9) 27.5 (24.7, 30.8)
Mean (SD) 25.9 (3.3) 28.3 (6.3) 28.2 (6.2)

Testosterone*
Median (IQR) 362.0 (280.0, 541.0) 316.5 (230.0, 441.0) 318.0 (233.0, 445.0)
Mean (SD) 452.5 (282.6) 351.8 (181..4) 359.0 (191.6)

PSA**
Median (IQR) 4.0 (2.4, 6.3) 1.1 (0.6, 2.0) 1.2 (0.7, 2.2)
Mean (SD) 4.3 (2.3) 1.6 (1.5) 1.7 (1.2)

Note: PCa prostate cancer, BPD benign prostate disorder, BMI body mass index, PSA prostate
specific antigen, IQR inter-quarter range, SD standard deviation. ** P < .01, * P < .05

Table 15.2 Correlations of variables associated with prostate cancer

Mean (SD) V1 V2 V3 V4 V5 V6

1. Age in year 66.13 (9.85)
2. Race 1.37 (0.70) −0.10
3. BMI 25.9 (3.3) −0.22** −0.06
4. Family history 0.03 (0.17) −0.06 −0.00 0.06
5. Testosterone 358 (192) 0.03 0.04 −0.11 0.08
6. PSA 1.73 (1.68) 0.14** −0.02 −0.01 0.08 0.11*
7. Prostate cancer 0.07 (0.26) 0.01 0.03 −0.08 0.01 0.13** 0.40**

Note: Coding for three categorical variables: Race: 1 = white, 2 = black and 3 = others; family
history: 1 = yes, 0 = no; prostate cancer: 1 = yes, 0 = no. ** P < .01, * P < .05

(r = 0.40, p < 0.01). In addition, PSA was positively correlated with age (r = 0.14,
p < 0.01) and testosterone (r = 0.11, p < 0.05).

15.4.3 Results from Linear Regression Modeling

Results in Table 15.3 indicate that PSA levels were positively associated with age
and testosterone whether these two variables were analyzed separately as in Model
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Table 15.3 Associations of age and speed of testosterone decline with PSA levels, results from
linear regression analysis

Variables
Regression model I
Beta (SE)

Regression model II
Beta (SE)

Regression model III
Beta (SE)

Intercept 0.2554 (0.6290) −0.0048 (0.8303) −1.3570 (1.0118)
Age (10 years) 0.2237 (0.0094)* n/a 0.2156 (0.0093)*
Testosterone level n/a 0.3053 (0.1441)* 0.2911 (0.1435)*
Data-model fit
F test (df) 5.70 (1, 357)* 4.48 (1, 357)* 4.94 (2, 356)*
R2 0.016 0.013 0.027

Note: ** P < .01, * P < .05

I and II, or together as in Model III. According to the results, PSA will increase
0.22 ng/mL with 1 year increase in age; and increase 0.29 ng/mL with addition
1 ng/mL of testosterone.

15.4.4 Bimodality of the PSA Level in Men

Results in Fig. 15.2 suggest the bimodality of blood PSA level along with levels
of testosterone (Panel A). At each of the five testosterone levels, participants with
different PSA levels tended to clustered in two groups with PSA = 2 as a proximate
cutoff. In another word, at the same testosterone level, PSA for a man can be less
than 2, not suitable for prostate biopsy or greater than 2, eligible for biopsy.

Likewise, a similar relationship was also revealed between PSA levels and
chronological age (Panel B in Fig. 15.2). Across various age ranges, particularly
those above median age of 65 (quartile 3), some participants with PSA higher than
2 ng/mL while others with PSA levels lower than 2 ng/mL.

15.4.5 Results from Cobb-Grasman Cusp Modeling

To test the proposed cusp model, we first analyzed our data using the published
Cobb-Grasman’s stochastic cusp modeling method (Grasman et al., 2009). The
main results are summarized in Table 15.4. Results in the table indicate that age was
positively associated with PSA (alpha 1 = 0.2068, p < 0.01), and this relationship
was significantly bifurcated by testosterone level (beta 1 = −0.1293, p < 0.01).
However, this negative beta 1 coefficient was inconsistent with the results from the
correlation and regression analysis reported in Tables 15.2 and 15.3.
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Fig. 15.2 Bimodality of prostate specific antigen (PSA) in relation to testosterone level (Panel a)
and age (Panel b)
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Table 15.4 The association of participants’ age and testosterone levels with PSA levels: results
from Cobb-Grasman SDECusp modeling analysis

Group/variable/parameter Estimate SE Z p value

Variables centered
Asymmetry: age in years

Alpha 0 −1.3287 0.0047 283.86 <0.01
Alpha 1 0.2068 0.0047 44.15 <0.01

Bifurcation: testosterone (ng/dL)
Beta 0 2.7481 0.0046 597.34 <0.01
Beta 1 −0.1293 0.0046 28.10 <0.01

Outcome: PSA level (ng/mL)
w0 −1.6595 0.0231 71.74 <0.01
w1 0.6259 0.0222 28.18 <0.01

Note: Non-centered variables produce similar results with the values of the estimated parameters
slightly greater than those from the centered variables. R2 = 0.027 from the least square linear
regression method and pseudo-R2 = 0.32 from likelihood cusp model, and the difference was
statistically highly significant (p < 0.001)

Table 15.5 The association of participants’ age and testosterone levels with blood PSA levels:
results from Chen-Chen RegCusp

Group/variable/parameter Estimate SE Z p value

Asymmetry: age

Alpha 0 0.0781 0.0183 4.27 <0.01
Alpha 1 0.1691 0.0179 9.425 <0.01

Bifurcation: T declines

Beta 0 −1.4390 0.0180 79.88 <0.01
Beta 1 1.0265 0.0181 56.74 <0.01

Cusp point (62 years, testosterone = 630 ng/dL)

R2 = 0.47, indicating good data-model fit

15.4.6 Results from Chen-Chen Cusp Regression Modeling

As the last step, we analyzed the same data using Chen-Chen cusp regression
method, the results were presented in Table 15.5. The R2 was 0.47, suggesting good
data-model fit. As shown in in the table, results from Chen-Chen cusp regression
modeling first replicated the positively relationship between age and dynamic
changes in PSA (alpha 1 = 0.1691, p < .0.1) as well as the effect of testosterone in
bifurcating the relationship (beta 1 = 1.0265, p < 0.01) with beta 1 being positive,
consistent with the results from correlation and regression analyses.
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Fig. 15.3 Estimated cusp point, threshold lines and cusp region from Chen-Chen cusp regression
modeling analysis

15.4.7 Cusp Point, Threshold Lines and Cusp Region

Based on the parameter estimates in Table 15.5, the estimated cusp point, cusp
region and the two threshold lines using the Cardan discriminant � = 27α2 − 4β3

are presented in Fig. 15.3. Results in the figure indicate that when testosterone levels
by age were below the two threshold lines where � > 0, the positive relationship
between age and PSA was not bifurcated by testosterone, but continuous. However,
when testosterone levels by age were above the two threshold lines where � < 0, the
relationship between age and PSA was not continuous but bifurcated—at the same
age, PSA levels were higher for subjects with higher levels of testosterone and lower
for subjects with lower testosterone. This non-continuous region defined by the two
threshold lines consists of the cusp region and the cusp point (age = 63 years and
testosterone = 630 ng/dL) was the starting point of the cusp region.

15.5 Discussion and Conclusions

To date, few reported studies in the medical and health issues have considered
the nonlinear discrete dynamics as guidance to examine the complex relationship
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among various variables in predicting a health outcome or in developing screening
tools using biomarkers, leaving a lot of unsolved questions in medicine and public
health. To our knowledge, we are the first to use a nonlinear discrete modeling
approach to examine the PSA dynamics as it related to age and testosterone levels.
Data for this study were derived from the electronic medical records from academic
hospital and managed through the Clinical and Translational Science Institute.
Modeling analysis was conducted using the newly established Chen-Chen cusp
regression method (Chen & Chen, 2017) with a lot of advantages over the published
methods as showing in this and other published studies (Chen & Chen, 2017).

15.5.1 PSA Dynamics Is Nonlinear and Discrete

First and the most important findings of this study is the demonstration of the
nonlinear dynamics of PSA in men. Relative to correlation and linear regression
that are guided by the linear continuous dynamics approach, the cusp catastrophe
modeling guided by the nonlinear discrete dynamics approach performed much
better in characterizing the dynamic changes in PSA over age and by testosterone
levels. Findings of this study indicate that PSA distribution is not Gaussian but
with obvious bimodality, which is consistent with the large variations in measured
PSA levels (Adegun, Adebayo, & Atiba, 2015; Arneth, 2009). In addition to the
bimodality, the data-model fit is much better for the cusp catastrophe modeling than
for the linear regression modeling. With the analysis of the same data, R2 = 0.32 for
the Cobb-Grasman cusp modeling, R2 = 0.47 for the Chen-Chen regression cusp
modeling, and R2 = 0.027 for the linear regression.

The demonstration of PSA dynamics as a nonlinear discrete process is of great
significance to re-consider all published studies in prostate cancer research and
practice with a focus on PSA. Findings of this study, including the estimated cusp
point indicate that distribution of PSA by age consists of two components, one being
continuous for men with testosterone levels lower than 630 ng/dL and other being
discrete for men with testosterone greater than 630 ng/dL. We need to consider
this evidence in assessing the utility of PSA in preventive screening, screening for
prostate biopsy and treatment. Using age-specific reference range of PSA provides
an alternative to improve the sensitivity and specificity (Battikhi & Hussein, 2006;
Luboldt et al., 2007; Partin et al., 1996); such approach can further be improved
by using nonlinear discrete dynamics approach. In addition to PSA, many derived
biomarkers such as PSA velocity, PSA density, % fPSA as well as new biomarkers
based on genomics and proteomics for prostate cancer. According to our previous
research (Chen & Chen, 2015; Chen et al., 2014) and findings of this study, these
markers may also follow a nonlinear discrete dynamics (Gaudreau et al., 2016), thus
their utility in cancer screening must be reevaluated using nonlinear discrete systems
modeling approach.
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15.5.2 Co-use of Testosterone and PSA for Screening

Guided by the nonlinear discrete dynamics, findings of this study, particularly the
results from Chen-Chen cusp regression modeling approach have demonstrated a
consistent and positively relationship of PSA with both age and testosterone levels.
This is particularly true for the estimated cusp point, threshold lines and cusp region.
First of all, testosterone = 630 ng/dL at the cusp point is reasonable since this level
is close to the upper limit of the normal ranges (280, 800 ng/dL) as recommended by
the American Association of Clinical Endocrinologists (Petak et al., 2002). Based
on the findings on cusp point and threshold lines, sudden increases in PSA is likely
for all men aged 63 years or older with testosterone level of 630 ng/dL or higher.
The threshold is not fixed but changes with age and testosterone levels. Beyond
age 63, either younger or older, testosterone higher than 630 ng/dL will enhance
the likelihood for sudden PSA increase. Although the relatively small sample of
this study prevented us from further analysis to establish criteria for prostate cancer
screening, findings of this study provide useful data for future research with large
and representative samples and longitudinal data.

It is worth noting that findings from cusp catastrophe modeling in this study
although appearing to be an interaction between age and testosterone in predicting
PSA, but it is not. Although findings of this study indicate that the relationship
between age and PSA varied by testosterone level, such relationship is assumed to be
linear in the conventional statistical and epidemiological analysis. However, as we
can see from the estimated threshold lines, the “interaction” is much more complex –
it occurred at the cusp point, which is theory-based, therefor can be determined and
meaningful; while in the conventional interaction analysis, the cross-point is not
theory-based, therefore totally driving by data, and only used to assess the type of
interactions (VanderWeele, 2009).

15.5.3 Limitations and Future Research

There are limitations to this study. First, data used for this study were derived from
patients attending one hospital in north central Florida, thus the generalizability of
the findings from this study needs to be assessed with data from different hospitals
located in other areas/places within and outside of the United States. Second, the
sample size is relatively small, particularly the number of subjects with prostate
cancer (only 27). This prevents us from investigating the relationship between PSA,
testosterone level and prostate cancer. In addition, using prostate cancer as outcome
requires new methods capable of handling binary variable, which has not been
established at the time when this study was conducted. We will further our analysis
with focus on prostate cancer using the newly established logisticCusp modeling
method introduced in Chap. 16 in this book.

http://dx.doi.org/10.1007/978-3-030-35260-8_16
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Despite the limitations, this study is the first to model PSA with cusp catastrophe
modeling method guided by the nonlinear dynamic systems approach. It is our
anticipation that the adaptation of this new approach may generate revolutionary
advancement in medical and health research and practice in the era of global health.
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Chapter 16
Logistic Cusp Catastrophe Regression for
Binary Outcome: Method Development
and Empirical Testing

(Din) Ding-Geng Chen and Xinguang Chen

Abstract Cusp catastrophe models are unique to advance life sciences, psychol-
ogy and behavioral studies. Extensive progresses have been made to utilize this
modeling technique for continuous outcome and there is no development for binary
data. To fill this gap, this chapter is then aimed to develop a cusp catastrophe
modelling method for binary outcome. Building upon our previous research on the
nonlinear regression cusp (RegCusp) catastrophe model for continuous outcome,
we propose a logistic cusp catastrophe regression (LogisticCusp). LogisticCusp
is based on the principles of logistic regression for binary outcome variable y
(yes/no) being expressed as a latent binary variable Y through a logit link. This
latent regression provides a mathematical connection between an observed outcome
variable as a binomially distributed random variable and the deterministic cusp
catastrophe at its equilibrium. By connecting the two, Y in the LogisticCusp is
considered as one of the true roots of the deterministic cusp catastrophe model
determined using the Maxwell or Delay conventions. We validate the method using
a 5-step Monte-Carlo simulation with two predictors and three parameters for
both bifurcation and asymmetry control variables. We further tested the method
with binge drinking behavior in youth with data from the Monitoring the Future
Study. Results from 5000 Monte-Carlo simulations indicate that the parameter
estimates obtained through LogisticCusp are unbiased and efficient using maximum
likelihood estimation with quasi-Newton numerical search algorithm. Results from
empirical testing with real data are consistent with those estimated using other
methods. LogisticCusp adds a new tool for researchers to examine many issues in
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psychology, life sciences, and behavioral studies, particularly, issues in medicine
and public health with the powerful cusp catastrophe modeling for binary outcome.

Keywords Cusp catastrophe model · Logistic cusp catastrophe regression ·
Bifurcation · Asymmetry · Binary outcome

16.1 Background

Up to date, the statistical models commonly used to examine medical, health,
psychological, and socio-behavioral outcomes depends on the linear regression and
continuous change approach (Chen & Chen, 2015, 2019; Chen, Stanton, Chen,
& Li, 2013). However, in the real world, these outcomes are rarely linear and
continuous because of the nature of the medical, health, and behavioral outcomes
and the multiple, complex influences of environmental, behavioral, psychological,
and biological factors (Chen, Lin, Chen, Tang, & Kitzman, 2014; Chen et al.,
2010; Witkiewitz, van der Maas, Hufford, & Marlatt, 2007; Xu & Chen, 2016).
What might appear to be small and inconsequential changes in one of these factors
can lead to abrupt and sudden changes in an outcome (Thom, 1975). Under these
conditions, a linear and continuous approach seriously limits the predictability of
the influence of hypothesized factors on a particular outcome variable (Chen &
Chen, 2015, 2019; Chen, Wang, & Chen, 2019) and therefore a new paradigm to
incorporate nonlinear and discrete behaviors is needed to fill this knowledge gap.

16.1.1 Cusp Catastrophe for Nonlinear Discrete Systems

To account for nonlinearity and discrete characteristics in low-dimensional sce-
narios, researchers often turn to natural extensions of a linear regression model,
including the kernel regression or regression/smoothing splines (Berk, 2008; Far-
away, 2009; Guastello & Gregson, 2011). In addition to these nonparametric
methods, other techniques for use with high-dimensional data include additive
models, multivariate adaptive regression splines, random forests, neural networks,
and support vector machine. These techniques have been discussed extensively
elsewhere (Chen & Chen, 2017; Faraway, 2009). Despite much strength, these
nonparametric methods do not have a mechanism to identify and incorporate a
medical, health and behavior outcomes with sudden and discrete changes and multi-
modes. Cusp catastrophe model is one that is capable to quantify such a mechanism.

As a complement to many traditional analytical approaches, the cusp catastrophe
model offers distinct advantages given its capacity to not only simultaneously
handle complex linear and nonlinear relationships in a high-order probability
density function but also to incorporate sudden jumps in outcome measures, as
outlined in Zeeman (Zeeman, 1977) and Gilmore (Gilmore, 1981). Catastrophe
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theory was proposed in the 1970s (Thom, 1975) to understand a complicated set of
behaviors that included gradual, continuous changes as well as sudden and discrete
or catastrophic changes in general. The cusp catastrophe model has been used
extensively in a wide range of research fields, including the modeling of tobacco
use (Xu & Chen, 2016), adolescent alcohol use (Clair, 1998), changes in adolescent
substance use (Mazanov & Byrne, 2006), binge drinking among high school and
college students (Chen et al., 2019; Guastello, Aruka, Doyle, & Smerz, 2008) adult
population (White, Tapert, & Shukla, 2017) and problem drinking among persons
living with HIV (Witkiewitz et al., 2007), sexual initiation and condom use among
young adolescents (Chen et al., 2010, 2013), nursing turnover (Wagner, 2010),
HIV prevention (Xu, Chen, Yu, Joseph, & Stanton, 2017), therapy and program
evaluation (Guastello, 1982), health outcomes (Chen et al., 2014), and accident
process (Guastello, 1989; Guastello & Lynn, 2014).

16.1.2 Established Methods for Cusp Catastrophe Modeling

Historically, three main implementation approaches have been established for data
analysis to conduct cusp catastrophe modeling.

The first method test the outcome variable if it follows cusp catastrophe by insert-
ing regression coefficients into the deterministic cusp model and the method was
operationalized by Guastello using a polynomial regression approach (Guastello,
1982; Guastello et al., 2008). This method is straight forward to understand and
the analysis can be completed using any software packages with regression analysis
functionality (Guastello & Gregson, 2011).

The second method uses a stochastic differential equation from Cobb and
his colleagues (Cobb, 1981; Cobb & Zacks, 1985; Grasman, van der Maas, &
Wagenmakers, 2009) with likelihood estimation implemented in an R package
“cusp”. Since the method was established by Cobb and implemented through
Grasman’s work, this approach has been named as Cobb-Grasman cusp modeling
(Chen et al., 2019).

The third method takes a different approach to solve the deterministic cusp
catastrophe model with a statistical approach. Different from the Cobb-Grasman’s
approach described above, in this method, the deterministic cusp catastrophe is
directly casted into the classical multiple regression with the outcome variable being
measured with a latent variable and the two control variables each being measured
as linear combination. In this modeling approach, method for estimation of the cusp
region is also provided (Chen & Chen, 2017). This Chen-Chen method has been
used in modeling harm perception and social influence on binge drinking among
high school students in the United States (Chen et al., 2019). In Chap. 15 of this
book, this method was used to model prostate-specific antigen (PSA), a biomarker
of prostate cancer in men.
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16.1.3 Need for Methods to Model Binary Data

All the methods described above for cusp catastrophe modeling are for continuous
outcome variables, and no one method is available for other types of outcomes, to
the best of our knowledge. To fill this methodology gap, in this chapter we attempted
a method to analyze binary outcome with cusp catastrophe model. In our previous
research, we developed a regression-based approach to solve for cusp catastrophe
model for continuous outcomes (Chen & Chen, 2017) and used it in analyzing
binge drinking among youth (Chen et al., 2019). We used the same regression-based
approach in this new method with the continuous outcome being replaced by binary
outcome for cusp catastrophe modeling of binary data in the framework of statistical
logistic regression.

16.2 An Overview of the Cusp Catastrophe Model

Catastrophe theory was proposed in the 1970s by Thom (1975) and popularized over
the next two decades by several leading researchers (Cobb, 1981; Cobb & Ragade,
1978; Cobb & Watson, 1980; Cobb & Zacks, 1985; Gilmore, 1981; Thom & Fowler,
1975; Zeeman, 1977). Thom (1975) originally proposed the catastrophe theory to
understand complicated phenomena that included both gradual, continuous change
and sudden, discontinuous or catastrophic change.

16.2.1 Deterministic Cusp Model

To apply this model in research, the deterministic cusp catastrophe model can be
specified with three components: two control factors (i.e., α and β) and one outcome
variable (i.e., y). This model is defined by a dynamic system:

dy

dt
= −dV (y;α, β)

dy
(16.1)

where V, commonly called the potential function, is defined as

V (y;α, β) = −αy − 1

2
βy2 + 1

4
y4 (16.2)

In this potential function V, α is the asymmetry or normal control factor, and β

is the bifurcation or splitting control factor. Both α and β are linked to determine
the outcome variable y in a three-dimensional response surface. When the right side
of Eq. (16.1) moves toward zero, change in the outcome y also tends toward zero
with change in time; this status is called equilibrium. In general, the behavior of the
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outcome y (i.e., how y changes with time t) is complicated, but all subjects tend to
move toward equilibrium the surface.

16.2.2 Characteristics of the Cusp Catastrophe Model

Figure 16.1 graphically depicts the equilibrium surface that reflects the response
plan of the outcome measure (y) at various combinations of the asymmetry control
factor (the measure of α in Fig. 16.1) and the bifurcation control factor (the measure
of β in Fig. 16.1).

As shown in Fig. 16.1, dynamic changes in y have two stable regions (attractors),
which are the lower area in the front left (lower stable region) and the upper area
in the front right (upper stable region). Beyond these stable regions, y becomes
sensitive to changes in α and β. The unstable region can be projected to the control
plane (α, β) as the cusp region. The cusp region is characterized by line OQ (the
ascending threshold) and line OR (the descending threshold) of the equilibrium
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Fig. 16.1 Cusp catastrophe model for outcome (y) in the equilibrium plane with an asymmetry
control variable (the measure of α) and a bifurcation control variable (the measure of β)
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surface. In this region, y becomes highly unstable with regard to changes in α

and β, jumping between the two stable regions when (α, β) approaches the two
threshold lines OQ and OR. In Fig. 16.1, paths A, B, and C depict three typical but
distinct pathways of change in the health outcome measure (y). Path A shows that in
situations where y < O, a smooth relation exists between y and α. Path B shows that
in situations when y > O, if α increases to reach and pass the ascending threshold
link OQ, y will suddenly jump from the low stable region to the upper stable region
of the equilibrium plane. Path C shows that a sudden drop occurs in y as α declines
to reach and pass the descending threshold line OR.

The cusp catastrophe model can be used as both a qualitative and a quantitative
analytical method in research to investigate the relationship between predictors and
outcome variables (e.g., behaviors or health outcomes). The qualitative approach
focuses on identifying the five catastrophe elements (i.e., catastrophe flags) outlined
by Gilmore (1981), whereas the quantitative approach uses numerical data to
statistically fit the model.

16.3 Implementation of a Cusp Catastrophe Model

As described in the Introduction, since the introduction of the cusp catastrophe
model, three quantitative approaches have been developed and used to implement
the model for data analysis: Guastello’s polynomial regression, Cobb-Grasman
stochastic differential equation implemented in an R package “cusp”, and Chen-
Chen approach to cast the cusp catastrophe model into the nonlinear regression.

16.3.1 Guastello’s Polynomial Approach

Specifically, as the first implementation, Guastello’s approach is derived by refor-
mulating the cusp dynamic system in Eq. (16.1) in the differential equation form into
a difference equation system as outlined in Guastello (1982), Guastello et al., 2008).
Since its first publication, this approach has been widely used in analyzing research
data because this approach can be implemented in common statistical software
packages, including SAS, SPSS, STATA, and R. This approach makes it possible
the first time for many researchers to modeling social and behavioral issues with
cusp catastrophe modeling. Guastello’s approach is suitable for longitudinal data
with outcome variables measured at two time points that are not vary far from each
other.
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16.3.2 Cobb-Grasman’s Approach

As the second approach in implementing the cusp catastrophe model is Cobb-
Grasman’s stochastic differential equation method (named thereafter as “SDE-
Cusp”). In this SDECusp approach, the deterministic cusp model in Eq. (16.1) is
first extended with a probabilistic/stochastic Wiener process. With this extension,
the modeling process incorporates measurement errors in the outcome variable.
Using this approach, the response surface of cusp catastrophe is modeled as a
probability density function where the bimodal nature of the outcome corresponds to
the two states of outcome variable. Mathematically, Cobb and his colleagues (Cobb
& Ragade, 1978; Cobb & Watson, 1980; Cobb & Zacks, 1985; Hartelman, van der
Maas, & Molenaar, 1998; Honerkamp, 1994) cast the deterministic cusp model in
Eq. (16.1) into a stochastic differential equation (SDE) as follows:

dz = ∂V (z, α, β)

∂z
dt + dW(t) (16.3)

where dW(t) is a white noise Wiener process with variance σ 2.
This extension is in fact a special case of general stochastic dynamical systems

modeling with a constant diffusion function defined by dW(t). Since the model
Eq. (16.2) cannot be solved analytically, computational implementation of this
stochastic model is limited. However, at the equilibrium state when time (t)
approaches the infinity, it is easier to estimate the probability density function
of the corresponding limiting stationary stochastic processes. In other words, the
probability density function of the outcome measure (y) can be expressed as follows:

f (y) = Ψ

σ 2 exp

[
α (y − λ) + 1

2β(y − λ)2 − 1
4 (y − λ)4

σ 2

]

(16.4)

where the parameter ψ is a normalizing constant and λ is used to determine the
origin of y.

With this probability density function, the regression predictors α and β can
be incorporated as linear combinations to replace the canonical asymmetry factor
(i.e., α) and bifurcation factor (i.e., β). Note that as a distribution for a limiting
stationary stochastic process, this probability density function in Eq. (16.3) is
independent from time t, thus it can be used to model cross-sectional relationship
with the advantage to detect and quantify its potential cusp nature comprising both
sudden and continuous states. Moreover, the probability density function allows
the well-known statistical theory of maximum likelihood to be used for model
parameter estimation and statistical inference. R Package “cusp” has been developed
to implement this SDECusp (Grasman et al., 2009). This SDECusp model with R
package “cusp” is extremely well-suited for use with cross-sectional data. We have
used this SDECusp model extensively for research and publications (Chen, Lin, et
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al., 2014; Chen et al., 2013; Diks & Wang, 2016; Katerndahl, Burge, Ferrer, Wood,
& Becho, 2015; Xu & Chen, 2016; Xu et al., 2017; Yu et al., 2018).

16.3.3 Chen-Chen’s Cusp Regression Approach

As the third approach, Chen and Chen (2017) developed a cusp catastrophe
nonlinear regression model (“RegCusp”) for continuous data as a conceptual model
that is guided by the statistical theory of nonlinear regression models (Seber & Lee,
2003). Following Eq. (16.1), the RegCusp model can be formulated as following:

yi = Yi + εi, (16.5)

where yi (i = 1, . . . ,n) are the observed outcome values and εi are the residuals from
n observations, and are assumed to be normally distributed as εi~N(0, σ 2).

Mathematically, it can be seen that the latent variable Yi in Eq. (16.5) is one of
the real roots of the deterministic cusp catastrophe equation:

αi + βiYi − Y 3
i = 0, (16.6)

where αi and β i are two control variables which is discussed later in the section of
cusp catastrophe conventions. For any observed data with p independent variables
(x1, . . . , xp) and the outcome variable yi, the variables αi and β i are the control
variables for ith subject.

In modeling analysis, these two control variables αi and β i are modeled in a way
similarly to the Cobb-Grasman (Cobb & Zacks, 1985; Grasman et al., 2009):

αi = a0 + a1x1i + · · · + apxpi =
p∑

j=0

ajxji (16.7)

βi = b0 + b1x1i + · · · + bpxpi =
p∑

j=0

bjxji (16.8)

With the formulations of Eqs. (16.5)–(16.8), a nonlinear regression method
can be used to estimate the model parameters of a = (a0, a1, . . . , ap),
b = (b0, b1, . . . , bp) from Eqs. (16.7) and (16.8). The model parameters can
be estimated using maximum likelihood estimation with the likelihood function
formulated as follows:

L
(
a, b, σ 2|data

)
=
(

1√
2πσ

)n

exp

(

−
∑n

i=1 (zi − Zi)
2

2σ 2

)

(16.9)
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With the likelihood function defined in Eq. (16.10), the theory of likelihood
estimation can be readily applied to estimate RegCusp parameters as well as the
associated statistical inferences on parameter significance and model selection.

16.4 Cusp Catastrophe Modeling of Binary Data

To establish the logistic cusp catastrophe regression model, we start with the binary
data structure, then introduce logistic cusp catastrophe regression, conventions and
algorithm for parameter estimation, and the method for cusp region estimation.

16.4.1 The Binary Data Structure

Suppose data from n participants are available as data = (yi, x1i, . . . , xpi)
(i = 1, . . . , n) where yi is observed binary outcome with 0/1 from the ith
participants, x1i, . . . , xpi are the corresponding p-independent variables. Then
yi will be binary distributed as:

yi ∼ Binary (pi) (16.10)

where pi = Pr(yi = 1) is the probability to observe category 1.

16.4.2 The Binary Cusp Catastrophe Model

We make use of the logistic type of regression to model the logit of pi to the latent
variable Yi, such that

pi = exp (Yi)

1 + exp (Yi)
(16.11)

is one of the real roots of the deterministic cusp catastrophe equation:

αi + βiYi − Y 3
i = 0, (16.12)

where αi and βi are two control variables which is discussed later in the section of
cusp catastrophe conventions.

The two control variables of αi and β i are modeled in a way similarly to
SDECusp with the linear combination of multiple independent variables in Eqs.
(16.7) and (16.8)
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16.4.3 Maximun Likelihood Estimation

With the formulations of Eqs. (16.10) to (16.12), a maximum likelihood procedure
can be developed to estimate the model parameters of a = (a0, a1, . . . , am),
b = (b0, b1, . . . , bm) from Eq. (16.7) and (16.8) as well as the associated sta-
tistical inferences on parameter significance and model selection. Based on the
theory of maximum likelihood estimation, the parameters of a = (a0, a1, . . . , am),
b = (b0, b1, . . . , bm) are estimated by solving the system of gradient equations
and their associated variances can be obtained by the Fisher information matrix
or Hessian matrix.

Specifically, we construct the likelihood function from Eq. (16.10) as follows:

L (a, b|data) =
n∏

i=1

p
yi

i (1 − pi)
1−yi (16.13)

To maximize the likelihood function defined in Eq. (16.13) is equivalent to
maximize the log-likelihood function as follows:

logL (a, b|data) =
n∑

i=1

[
yi log (pi) + (1 − yi) log (1 − pi)

]

=
n∑

i=1

[
yiYi + log (1 − pi)

]
(16.14)

16.4.4 Cusp Catastrophe Conventions

The cusp catastrophe model is not the traditional statistical model in which
each combination of independent variables is associated with one and only one
outcome value. In fact, the RegCusp model formulated from Eq. (16.6) and the
LogisticCusp model formulated from Eq. (16.12) could have one, two, or three roots
for each αi and β i combinations depending on the locations on the control plan,
defined by Eqs. (16.7) and (16.8). There three roots can be solved analytically as
follows:

Y1 = 1

6

∇2/3 + 12β

∇1/3 Y2 = 1

12

√
3I∇2/3 − 12

√
3Iβ − ∇ 2

3 − 12β

∇1/3 , and

Y3 = − 1

12

√
3I∇ 2

3 − 12
√

3Iβ + ∇ 2
3 + 12β

∇1/3

(16.15)
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where I = √−1 as the imaginary unit, ∇ = 108α + 12
√

3Δ and � = 27α2 − 4β3

is the well-known Cardan discriminant. Which one to choose to fit the likelihood
function in Eq. (16.13) for the latent variable Y in Eq. (16.12) would have to be
determined using the Cardan discriminant.

From Eq. (16.15), it can be derived that when � > 0, Eq. (16.12) has one real
root; but when � ≤ 0, Eq. (16.12) has three real roots. Among these three roots,
there are three cases: (a) if α = β = � = 0, the three roots are the same, which is
referred as the cusp point (labeled O in Fig. 16.1); (b) if � = 0, but α �= 0 or β �= 0,
two roots are the same, which are the two lines OQ and OR forming the boundary
for the cusp region (Fig. 16.1); and (c) if � < 0, and α �= 0 or β �= 0, the three roots
are distinct, which characterizes the cusp region between OQ and OR also indicated
in Fig. 16.1. Therefore, this LogisticCusp model is no longer within the traditional
domain of mathematical and statistical modeling. Further investigation is needed to
identify the statistical properties of this LogisticCusp model.

To select the correct root for the cusp catastrophe model described by Eq. (16.12),
we used two modeling conventions: delay convention and Maxwell convention. The
delay convention is used to select the root from the cusp surface of dV (y;α,β)

dy
= 0

in Eq. (16.1) that are close to the observed y. The Maxwell convention is used to
select the roots on the cusp surface of dV (y;α,β)

dy
= 0 in Eq. (16.1) corresponding to

the minimum of the associated potential function V (y;α, β) = αy + 1
2βy2 − 1

4y4.

16.4.5 Cusp Region Estimation

Based on the discussion above, the boundary of the cusp region depicted in Fig.
16.1 can be constructed from � = 0. Since � = 27α2 − 4β3, this can be solved
at β = 3

√
27α2/4. Therefore for the asymmetric parameter α from a range of lower

limit (say, αLower Limit) to upper limit (say, αUpper Limit), β can be calculated by at
β = 3

√
27α2/4 which would correspond to the two lines OQ and OR forming the

boundary for the cusp region (Fig. 16.1).
When α = β = 0, then � = 0 which would be the cusp point as commonly

referred as the cusp point (labeled O in Fig. 16.1). When � < 0, the values of (α,
β) are within the cusp region and when � > 0, the values of (α, β) are outside the
cusp region.

This cusp region under (α, β) coordinate system can be easily transformed into
the original data coordinate system of the interest based on the estimated Eqs. (16.7)
and (16.8). For example, if the interest is for (x1, x2), we can plug the estimated Eqs.
(16.7) and (16.8) with x1 and x2 varying and the other xs fixed into β = 3

√
27α2/4

and solve for x2 as a function of x1. This is illustrated in the real data analysis in
Sect. 4.
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16.4.6 Numeric Search Algorithms for Parameter Estimates

There are several methods to be used to maximize the log-likelihood function
in Eq. (16.13). We make use of R function “optim”. The default method is an
implementation of that of Nelder and Mead (1965) which uses only function values
and is robust but relatively slow. It will work reasonably well for non-differentiable
functions. Another commonly-used method is a quasi-Newton method (also known
as a variable metric algorithm), specifically that published simultaneously in 1970
by Broyden, Fletcher, Goldfarb and Shanno which is named as BFGS. The BFGS
uses function values and gradients for the optimization. Specifically, with the
log-likelihood function in Eq. (16.14), the parameters of a = (a0, a1, . . . , ap),
b = (b0, b1, . . . , bp) are estimated by solving the system of 2p + 2 gradients as:

(
∂logL

∂a
∂logL

∂b

)

(2p+2)×1

=
(

∂logL

∂a0
,
∂logL

∂a1
, . . . ,

∂logL

∂aj
, . . . ,

∂logL

∂ap
,
∂logL

∂b0
,
∂logL

∂b1
, . . . ,

∂logL

∂bj
, . . . ,

∂logL

∂bp

)’

= 0
(16.16)

where (.)’ in Eq. (16.16) denotes the vector transpose and the partial derivatives

in Eq. (16.16) can be derived as

⎧
⎪⎪⎨

⎪⎪⎩

∂logL
∂aj

=
n∑

i=1

[
yi

∂Yi

∂aj
− 1

1−pi

∂pi

∂aj

]

∂logL
∂bj

=
n∑

i=1

[
yi

∂Yi

∂bj
− 1

1−pi

∂pi

∂bj

] for all j = 0,

1, . . . , p. In addition, the partial derivatives of ∂Yi

∂aj
and ∂Yi

∂bj
in the gradients can

be derived from Eq. (16.12) as ∂Yi

∂aj
= − xji

βi−3Y 2
i

and ∂Yi

∂bj
= − xjiYi

βi−3Y 2
i

. Also the

partial derivatives of ∂pi

∂aj
and ∂pi

∂bj
in the gradients can be derived from Eq. (16.11)

as ∂pi

∂aj
= pi (1 − pi)

∂Yi

∂aj
and ∂pi

∂bj
= pi (1 − pi)

∂Yi

∂bj
.

Equation (16.16) is highly complicated and it’s obvious that there are no
analytical solutions to solve the 2p + 2 gradients from Eq. (16.16) to estimate the
2p + 2 parameters of a = (a0, a1, . . . , ap) and b = (b0, b1, . . . , bp). Therefore,
a numerical iterative search algorithm has to be used to obtain the parameter
estimators from Eq. (16.16). We make use of Newton’s method (Nocedal & Wright,
1999) to solve Eq. (16.8) iteratively using following iterative scheme with a large
number of iterations of s = 1, . . . ,S (i.e. S > 1000):

(
a(s+1)

b(s+1)

)

=
(

a(s)

b(s)

)

−
(

∂2logL

∂a2 ,
∂2logL
∂a∂b

∂2logL
∂a∂b

,
∂2logL

∂b2

)−1

⎛

⎝
a(s)

b(s)

⎞

⎠

(
∂logL

∂a
∂logL

∂b

)

⎛

⎝
a(s)

b(s)

⎞

⎠

(16.17)
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Note that in the right side of Eq. (16.17),

(
∂logL

∂a
∂logL

∂b

)

and

(
∂2logL

∂a2 ,
∂2logL
∂a∂b

∂2logL
∂a∂b

,
∂2logL

∂b2

)

are the

gradient vector in Eq. (16.16) and the Hessian matrix evaluated at the sth iteration of

the parameters

(
a(s)

b(s)

)

. The Hessian matrix is a (2p + 2) × (2p + 2) matrix with its

elements of the associated second derivatives. Specifically, in the Hessian matrix,

• The upper-left matrix ∂2logL

∂a2 is a (p + 1) × (p + 1) matrix with diagonal

elements as ∂2logL

∂a2
j

=
n∑

i=1

[

yi
∂2Yi

∂a2
j

− 1
1−pi

∂2pi

∂a2
j

+ 1
(1−pi)

2

(
∂pi

∂aj

)2
]

for all j = 1,

. . . , p, and the off-diagonal elements as ∂2logL
∂aj ∂ak

=
n∑

i=1

[
yi

∂2Yi

∂aj ∂ak
− 1

1−pi

∂2pi

∂aj ∂ak

+ 1
(1−pi)

2
∂pi

∂aj

∂pi

∂ak

]
for all j, k = 1, . . . , p and j �= k.

• The upper-right matrix ∂2logL
∂a∂b

is the same as the lower-left matrix which is a

(p + 1) × (p + 1) matrix with elements as ∂2logL
∂aj ∂bk

=
n∑

i=1

[
yi

∂2Yi

∂aj ∂bk
− 1

1−pi

∂2pi

∂aj ∂bk

+ 1
(1−pi)

2
∂pi

∂aj

∂pi

∂bk

]
for all j, k = 1, . . . , p.

• The lower-right matrix ∂2logL

∂b2 is a (p + 1) × (p + 1) matrix with diagonal

elements as ∂2logL

∂b2
j

=
n∑

i=1

[

yi
∂2Yi

∂b2
j

− 1
1−pi

∂2pi

∂b2
j

+ 1
(1−pi)

2

(
∂pi

∂bj

)2
]

for all j = 1,

. . . , p, and the off-diagonal elements as ∂2logL
∂bj ∂bk

=
n∑

i=1

[
yi

∂2Yi

∂bj ∂bk
− 1

1−pi

∂2pi

∂bj ∂bk

+ 1
(1−pi)

2
∂pi

∂bj

∂pi

∂bk

]
for all j, k = 1, . . . , p and j �= k.

• In addition, all the second-order derivatives ∂2Yi

∂a2
j

, ∂2Yi

∂aj ∂ak
, ∂2Yi

∂b2
j

, ∂2Yi

∂bj ∂bk
, ∂2pi

∂a2
j

,

∂2pi

∂aj ∂ak
, ∂2pi

∂b2
j

and ∂2pi

∂bj ∂bk
in the above calculations of Hessian matrix can be

similarly obtained using the first-order derivatives from the calculations in Eq.
(16.16).

We name the above estimation process as “LogisticCusp” with respect to the
“RegCusp” in Chen and Chen (2017).

16.5 Test the Logistic Cusp Catastrophe Model Through
Monte-Carlo Simualtion

As the first step to examine the logistic cusp regression method described above, we
conducted Monte Carlo simulation studies with known parameters.
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16.5.1 Model Settings for Simulation

To conduct Monte Carlo simulation, surrogate data are generated using Eqs.
(16.10) to (16.12) with the number of observations n = 300. Two (i.e., p = 3)
independent variables x1 and x2 are simulated independently from the standard
normal distribution.

To test whether the novel model can correctly distinguish and determine the
model variables, we make use of the true parameters of a = (2, 2, 0), b = (2, 0,
2) from Eqs. (16.3) and (16.4) where a2 = 0 in Eq. (16.3) to represent the correct
model selection of x1 from Eq. (16.3) and b1 = 0 to represent the correct model
selection of x2 from Eq. (16.4).

16.5.2 Steps of Simulation Study

The simulation is an iterative process, and it was completed in the following seven
consecutive steps:

Step 1: With n = 300, simulate x1 and x2 from the standard normal distribution;
Step 2: With the true parameters a = (2, 2, 0) and b = (2, 0, 2) and the x1 and x2

from Step 1, calculate αi and β i from Eqs. (16.7) and (16.8);
Step 3: With the αi and β i from Step 2, solve Eq. (16.12) to obtain Yi and select

the one root corresponding to the Maxwell convention, or the minimum of the
associated potential function V(Yi, αi, β i);

Step 4: With the selected Yi from Step 3, generate the outcome variable yi using Eq.
(16.10);

Step 5: Using the data generated from Steps 1 through 4, the objective function
can be formed to estimate the parameters a and b based on Eq. (16.13) using
maximum likelihood estimation.

Step 6: Repeated Steps 1 to 5 for a large number of simulations (we used 5000
times) and record the estimated parameters

Following the steps described above, we first investigated the default Nelder and
Mead optimization and we found that the estimation from the maximum likelihood
is unbiased, but lack of efficiency of the Fisher information matrix for variance
estimation. We further investigated the gradients and Hessian matrix from Eqs.
(16.16) and (16.17) with the quasi-Newton (BFGS) and we found that BFGS
produced very satisfactory variance estimation. As a routine, we run the simulation
for 100,000 times to obtain the modeling results.
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Table 16.1 Summary of the
result for BFGS from 100,000
simulations

Parameter True Mean Median ECP

a0 2.0000 2.0412 2.0191 0.8491
a1 2.0000 2.0486 2.0231 0.7649
a2 0.0000 0.0129 0.0170 0.7176
b0 2.0000 2.0199 2.0114 0.8341
b1 0.0000 0.0032 0.0121 0.7721
b2 2.0000 2.0370 2.0180 0.6823

16.5.3 Results and Interpretation

Table 16.1 summarizes the main results from the simulation analysis. It can be
seen from Table 16.1 that the parameters are estimated unbiased (i.e., the “Mean”
and “Median” of the 100,000 estimated parameters are close to the “True” values)
and the empirical coverage probabilities (ECP) are very reasonable with more than
70%. We also investigated this BFGS estimation with 200,000 simulations, similar
conclusions are found.

Results from the simulation studies indicate that the LogisticCusp performed
quit well to estimate the known parameters of as and bs for the asymmetry and
the bifurcation control variables, including the intercept and the slope with small
differences between the known values and estimates. For example, the true value
for b1 is 2.0000, and the mean estimate is 2.0370.

16.6 Modeling Analysis with Real Data: Binge Drinking

We have known from the above simulation studies that the logistic cusp catastrophe
regression works well. To further demonstrate the utility of the newly established
method, we analyze real data using the logistic cusp regression method that
validated from the Monte-Carlo simulations.

16.6.1 Data Sources and Variables

Data used for empirical testing were 1122 youth lifetime drinkers derived from
the 2015 Monitoring the Future Study: A Continuing Study of American Youth
(12th-Grade Survey) (ICPSR 36408, URL: https://www.icpsr.umich.edu/icpsrweb/
ICPSR/studies/36408). Of the total sample, 48.6% were male, and 50.1% were
White and 24.4% were Black, 39.8% less than 18 years of age and 60.2% were
older than 18. The response variable in this study is the number of drinks (denoted
by “y”) in binge drinking. Based on self-reported data, 848 (75.6%) did not engage
in binge drinking in the past month, 130 (11.6%) engaged once, 72 (6.4%) engaged

https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36408
https://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36408


398 (Din) D.-G. Chen and X. Chen

twice and 72 (6.4%) engaged in three or more times. A binary variable if binge
drinking (y/n) (denoted by “y2”) was created for modeling with participants who
engaged in binge drinking at least once in the past month as yes; otherwise no.

Perception of alcohol harm was modeled as the asymmetry variable (denoted by
“x1”). The variable was measured using responses to the question: “How much do
you think people risk harming themselves (physically or in other ways), if they: (1)
Take one or two drinks nearly every day? (2) Take four or five drinks nearly every
day? (3) Have five or more drinks once or twice each weekend? Answer options to
these questions were: 0 (no risk), 1 (slight risk), 2 (moderate risk), 3 (great risk).
Items were reverse coded and mean scores (range: 0–3) were computed for analysis
such that 0 (most risk or highest level of harm) and 3 (least risk or lowest level
of harm). This measure was used in MTF’s research (Johnston, O’Malley, Miech,
Bachman, & Schulenberg, 2017) and reported studies indicate perceived harm is a
significant predictor of alcohol use in adolescents (Pedersen, Fjaer, & Gray, 2016).

Frequency of drinking in social settings was modeled as the bifurcation variable
(denoted by “x2”) based on the responses to the question: “When you used alcohol
during the last year, how often did you use it in each of the following situations?”
(1) With 1 or 2 other people; and (2) at a party. Answer options to the questions were
0 (not at all), 1 (few times), 2 (sometimes), 3 (most times), and 4 (every time). The
highest frequency (range: 0–4) at either of the two settings was used for modeling
analysis. Social setting has been reported as an influential factor for alcohol use in
high school and college students (Weitzman, Nelson, & Wechsler, 2003).

16.6.2 Modeling Analysis

Modeling analysis was conducted using the R program we developed and used in
the simulation studies presented in Sect. 4. For comparison purposes, we analyzed
the same data with Cobb-Grasman’s SDECusp and Chen-Chen’s RegCusp. In the
modeling analysis the asymmetry variable is the perceive alcohol as less risk,
and the bifurcation variable is the social setting for drinking. We consider two
types of outcome variable of binge drinking, y, as continuous variable and y2, as
the binary variable. Using continuous outcome, y, we can fit the typical multiple
linear regression (“Linear Regression”), the stochastic cusp catastrophe model
(“SDECusp”) and the regression cusp (“RegCusp”) catastrophe model. With the
binary outcome, y2, we can fit the LogisticCusp model in this chapter.

16.6.3 Parameter Estimates and Comparison

Results in Table 16.2 summarizes the parameter estimates and their associated
standard errors with standardized data on y, x1 and x2. Parameter estimates from
the linear regarrison and the three cusp catastrophe modeling methods are all
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Table 16.2 Results from linear and 3 cusp regression modeling methods

Model
Binge drinking
(outcome, y)

Perceived alcohol
as less risk (x1)

Social setting for
drinking (x2)

Cusp point
estimated

Linear
regression

Continuous (y) a1 = 0.187
(0.028)∗∗∗

b1 = 0.299
(0.028)∗∗∗

NA

SDECusp Continuous (y) a0 = −0.595
(0.031)∗∗∗

a1 = 0.169
(0.023)∗∗∗

b0 = 3.739
(0.087)∗∗∗

b1 = −0.221
(0.043)∗∗∗

(−1.545,
15.950)

RegCusp Continuous (y) a0 = −0.002
(0.035)
a1 = 0.132
(0.034)∗∗∗

b0 = −0.821
(0.033)∗∗∗

b1 = 0.916
(0.035)∗∗∗

(1.082, 2.483)

LogisticCusp Dichotomous
(y2)

a0 = 0.129
(0.002)∗∗∗

a1 = 1.252
(0.037)∗∗∗

b0 = −0.886
(0.008)∗∗∗

b1 = 2.948
(0.017)∗∗∗

(0.996, 1.982)

Note: values in the parenthesis are standard error

statistically highly statistically significant at p-value <0.001, except the a0 from the
RegCusp that is not (p > 0.05).

16.6.4 Comparison of the Estimated Cusp Regions

With SDECusp, RegCusp and LogisticCusp models, we can estimate the cusp point
in the cusp region as denoted by point O in Fig. 16.1. This can be done by setting
the estimated α and β in Eqs. (16.7) and (16.8) to be zero and solving for the
corresponding values of x1 and x2 which would be the estimated cusp point as
described in Section “Cusp Region Estimation”. As seen in Table 16.2, the cusp
point is estimated at (−1.545, 15.950) for SDECusp catastrophe model which is
out of data region. The estimated cusp point using RegCusp and BinaryCusp are
(1.082, 2.483) and (0.996, 1.982), respectively. The cusp point estimated using
these two method are reasonable compared to the cusp point estimated with the
SDECusp method. The estimated cusp point from the SDECusp was far off the data
range of the two predictor variables with x1 ranging from 0 to 3 and x2 from 0
to 4. According to the cusp point estimated with the RegCusp, sudden changes in
binge drink behavior would occur only when x1, the perceived alcohol harm was
slightly greater than 1 (somewhat harmful); and x2, the frequency of drinking in
social settings was about in the middle between 2 (sometimes) and 3 (most times).
If results from LogisticCusp is used, the values in the two control variables reduced
a bit. Sudden changes in binge drinking would occur when x1 is approaching 1.0
(perceive alcohol use as “somewhat harmful) and x2 is approaching 2 (sometimes
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Fig. 16.2 Estimated cusp point along with cusp region for both RegCusp (black line) and
LogisticCusp (red line) models

drinking in social settings). In another word, with a binary outcome, the estimated
sudden change becomes more sensitive than with a continuous outcome.

Figure 16.2 graphically illustrates the estimated cusp points and the associated
cusp regions for both RegCusp and LogisticCusp models. As seen in Fig. 16.2, the
dashed lines are for RegCusp model where the estimated cusp point is at ((1.082,
2.483) and the solid lines are for LogisticCusp model where the estimated cusp point
is at (0.996, 1.982).

16.7 Discussion and Conclusions

In this chapter, we report our research in successfully establishing the LogisticCusp
method for modeling binary outcome variables. The method is grounded on the
well-established logistic regression to solve for high-order cusp catastrophe models.
The innovative use of a latent binary variable creates a mathematical bridge
linking the deterministic cusp catastrophe with a statistical logistic regression. By
application of the log likelihood method and numerical search approach with either
Maxell or delayed convention, unbiased parameter estimates can be obtained; and
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by application of the bootstrapping, correct model variances can also be estimated.
In addition to validation through simulation, we empirically test the method using
data from national probability sample of youth with a binary variable for binge
drinking. Binary variables are more common than continuous variables in research.
The LogisticCusp provide a new and only tool, the first time for researchers to
examine challenge questions with binary outcome variables. Binary variables are
widely used by researchers in almost all scientific fields in addition to life sciences,
psychology and behavioral studies.

There are several advantages with the LogisticCusp method we developed. First,
all binary variables suitable for logistic regression can be used for cusp catastrophe
modeling to nonlinearity and discreteness of a phenomenon. Second, both the
asymmetry and bifurcation variables in a logistic cusp regression can be modeled
as either a single or multi-variate variable, greatly enhancing the flexibility for
modeling analysis. Research from this and previous analysis (Chen et al., 2019) also
indicate adequate validity of the estimated the cusp point, and the corresponding
cusp region and the two threshold lines with the LogisticCusp method. In addition
to assessing the validity of the estimated parameters, determination of the threshold
lines provide important data guiding practice to avoid sudden changes moving
toward unfavorable outcomes and to promote sudden changes leading to favorable
outcomes. Third, as in other method, R2 or the variances explained by a cusp model
can also be estimated as in the traditional regression analysis, facilitating model
comparisons to help determine whether a study variable is nonlinear discrete or
linear and continuous. Last, the method can be executed in R, free of charge.

There are a couple of limitations to the LogisticCusp method. Like many
statistical methods with numerical search for parameter solutions, the LogisticCusp
method is sensitive to initial values. Several measures can be used to help determine
initial values: a) Generate initial values using parameter estimates for the same data
but using other methods such as linear regression, logistic regression, RegCusp, and
SDECusp. (b) Check if the estimated cusp point, cusp region and the two threshold
lines are within the data range with a meaningful interpretation. Another limitation
is the variance estimation. Like in RegCusp, the estimated variances tended to be
too small for LogisticCusp. Despite that the bootstrapping provides as a remedy to
this issue, we will conduct further research to understand this issue.

Despite these limitations, the establishment of the regression-based approach,
including the LogisticCusp in this study and the RegCusp in our previous studies
(Chen & Chen, 2017; Chen, Chen, & Zhang, 2016) provide an innovative and highly
needed approach for researchers to solve for a deterministic cusp catastrophe model
with a statistical method capable of handling sampling and measurement errors. In
addition, the accurate estimation of the cusp point, cusp research and the threshold
lines advanced cusp catastrophe modeling from qualitatively detecting the cusp to
quantitatively describing cusp catastrophe. It is our anticipation that the application
of the regression-based cusp catastrophe modeling methods we established will
provide a set of great analytics to advance medical, health, social and behavioral
studies.
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