
Chapter 4
Are Ionic Liquids Enabling Technology?
Startup to Scale-Up to Find Out

Julia L. Shamshina and Robin D. Rogers

Abstract Commercialization of new sustainable technology from academia to
industry is based on the technology-enabling innovation, the manufacturability, the
implementation cost, and the technology’s competitive advantage, such as function-
ality improvement(s) over the routine process or existing products. Future-minded
thinking outside the accepted margins and innovative execution are involved in cre-
ating new markets. The majority of this chapter is dedicated to our experiences
in pursuing the transition of ionic liquids (ILs)-based technology from academia
to industry for the extraction of chitin ((C8H13O5N)n), the second most abundant
biopolymer on the planet, directly from shrimp shells. While the dissolution and
extraction of chitin was demonstrated as early as 2010, the necessity of using an
IL presented hurdles for scaling the technology to a commercial level. The resul-
tant chitin polymer could be extracted while maintaining its high-molecular weight
and providing materials with high strength and unique control of the final form. In
2012, a Laboratory Demonstration Pilot Unit (LDPU) was built and tested, followed
by further scale-up to a mini-pilot plant in 2014–2015 with funding from the U.S.
Department of Energy. Currently, this mini-pilot plant provides the groundwork for
the construction of a larger plant for a scaled-up chitin extraction by Mari Signum,
Mid-Atlantic. This will allow the generation of sufficient supplies of chitin and create
new markets for this polymer. The high quality of the polymer and the ability to pro-
duce high-value products from it will give Mari Signum, Mid-Atlantic a competitive
advantage not only to enter multiple focused profitable markets but also to create
new markets. Once the polymer becomes available on a large-scale not only will the
price decrease, but it will become available for the invention of additional products.
When large-scale supply is available, it will provide confidence to investors due to
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known and manageable marketing and supply costs. The tremendous potential of
chitin will soon be exploited for a number of industrial applications utilizing the full
potential of this IL-based platform.

Keywords Biomass · Biopolymers · Chitin · Commercialization · Ionic liquid ·
Process development · Product development · Renewable polymers

4.1 Introduction

4.1.1 More Plastic than Fish

With an increase in plastic production volume from about 2 million metric tons per
year in 1950 to over 400 million metric tons per year in 2015, the global plastics
market is expected to reach $654 billion by 2020 [1, 2]. At the same time, recent
data on the lifecycle of plastics worldwide from production to utilization to recycle
suggest that as much as 76% of all plastics produced to date have ended up as waste
[3]. Only 9% of this waste has been re-processed, 12% has been incinerated, and 79%
has accumulated worldwide. At the current plastic production rate, the amount of
plastic waste accrued in the environment will practically double by 2050 compared
with 2015 [2]. The Ellen MacArthur Foundation in its 2016 report [4] claimed that
if plastic continues to be manufactured at current rates with irresponsible disposal,
there will be more plastic than fish in our oceans by 2050 [5].

The enormous negative environmental impact of the plastics industry [6] has
resulted in a major reconsideration of the role of renewables in sustainable product
development. The classic definition of sustainable product development in value-
added products’ manufacture is the use of renewable resources, that is, resources
that can be used repeatedly and are being naturally replaced. The potential of poly-
mers sourced from nature, or biopolymers isolated from biomass as a by-product of
agricultural, forestry, and marine ecosystems [7], are both vital components from a
sustainability and economic value standpoint.

4.1.2 Taking Full Advantage of What Nature Creates

The definition of biopolymers has less to do with chemistry and more to do with
semantics. Any chemist dealing with sustainable development in the last few years
has run into the recurrence of the term “renewable”, closely connected to “biore-
finery”. The well-established biorefinery model is focused on bio-based chemicals
and products in which biomass is first converted into commodity building blocks
and high-value chemicals for high-volume global markets. The production of lower-
cost chemical building blocks is understandable, and ultimately, society must move
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towards bio-based substituents to reduce our dependence on petroleum. A biorefin-
ery, however, is based on the idea that biomass needs to be “de-functionalized” at
the cost of chemicals and energy to be made into the basic building blocks found in
petroleum.

Oftentimes, these basic bio-based building blocks are utilized in polymer synthe-
sis, and the resultant chemicals are also named “biopolymers”. For instance, polylac-
tic acid (PLA) is known as a biopolymer even though it is a polyester derived from
renewably-sourced lactic acid. In this regard, the concept of using bio-based chem-
icals as precursors for polymer manufacturing is confusing, since often the same
non-degradable plastic is produced, regardless of whether this plastic is oil-based
or plant-based. The life cycle of a plastic product is more important than its origin.
For example, recently, Coca-Cola advertised its new beverage container or “plant-
bottle” [8] made of polyethylene terephthalate (PET), produced by condensation
of bio-based monoethylene glycol with terephthalic acid. Laboratory experiments
studying PET degradation predicted a life expectancy between 27 [9] and 93 [10]
years, regardless of the starting material used for manufacture.

When we talk about biopolymers in the following chapter, wemean polymers iso-
lated from naturally occurring biomass “as nature made them” [11], such as polysac-
charides (e.g., cellulose, chitin, hemicellulose), proteins (e.g., spider silk), plants
polyesters (e.g., lignin), and so forth, and not the ones produced from bio-based
chemicals. These biopolymers are viewed not as a replacement for petroleum, but as
a source of valuable chemicals andmaterials that cannot be obtained from petroleum.
Instead of chemically modifying polymers obtained from nature and making syn-
thetic analogs, we need to figure out how to take full advantage of what nature does
so well.

4.1.3 Research and Development to Commercialization
Constraints: Need of Economy of Scale

Research and development in the field of biopolymers is primarily small in scale
and academic in nature. While renewable, biodegradable replacements for plastics
are being actively developed, they have come nowhere close to completely replacing
plastics. Plastics enjoy technological maturity and an entrenched economy of scale
that have kept new technologies from competing with them.

Economic barriers include poor predictions for short-term profits, undefined
demand in the marketplace because of prevailing inexpensive alternatives (synthetic
polymers), and, most importantly, a lack of supply in needed volume. Plastics rose
to dominance through the availability of cheap oil as a feedstock and open markets
for its products, and for any replacement to be successful, those two factors must be
addressed. Because biopolymers will undeniably be more expensive than synthetic
analogs, muchworkwill be required to lower the costs. Even if some biopolymers are
shown to have advantageous properties when compared to conventional polymers,
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in only a few high-end applications, such as biomaterials (e.g., tissue engineering,
plastic surgery, and drug delivery devices), will the relatively high costs of biopoly-
mer precursors likely not interfere with market growth. In low-end and medium-end
applications, it is hard to predict whether economy-of-scale manufacturing will be
able to bring down the current high production costs.

Technical barriers are the same as for all new technologies, such as product design
and long development periods, even more so taking into consideration a need for
‘bench-to-scale’ prototyping. Besides, any new process also requires development
(or at least adaptation) of production equipment.

Finally, the enormous growth in the plastics economy during the twenty-first cen-
tury reflects a large investment in the oil-based industry. While renewable resources
are perfectly suited to provide the same rich variety of polymers and composites
as that currently available from oil, there has not been the same extent of invest-
ments for renewables that have gone into plastics manufacturing. On the other hand,
transition from non-biodegradable plastic materials to biodegradable biopolymeric
products from renewable sources will be highly advantageous to society for devel-
opment of new materials, new products, new unforeseen markets, and improvement
in the environment.

4.2 Brief Foreword to Chitin and Current Isolation
Technology

4.2.1 Chitin Polymer

Chitin, a linear carbohydrate made of N-acetyl-D-glucosamine units as shown in
Fig. 4.1, is the second most abundant biopolymer on earth (after cellulose) [12] and
a primary component of crustacean shells (e.g., crabs, lobsters, and shrimps), where
it exists in a protein-mineral matrix. Chitin is a known wound-healing accelerator
[13], has anti-inflammatory properties [14], is protein-regulating [15] and has cell-
proliferating [16] properties, and demonstrates outstanding biocompatibility [17]. It
is also biodegradable (12-weeks post-surgery degradation in the human body [18]),
non-allergenic, and non-toxic. The polymer demonstrates high mechanical strength

Fig. 4.1 Structure of chitin
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and provides the advantage of easy surface modifications [19]. Multiple reviews on
chitin and its properties are available elsewhere [20–25].

4.2.2 Chitin Market

The global chitin market was worth $803 million in 2016, increased to $893 million
in 2017, and is predicted to triple to $2,941 million by 2027 according to Global
Industry Analysis [26]. The global chitin market is projected to have a compound
annual growth rate (CAGR) of 12.7% throughout the period of 2017–2027. New
biomedical products are the main drivers of this market. Overall, the healthcare
segment, estimated at $309 million in 2017, is projected to grow at a CAGR of
14.2% throughout 2017–2027 and is anticipated to reach $1 billion by the end of
2027. For instance, chitin-based materials have been proposed for artificial organs
[27], space-filling implants [28], drug delivery systems [29, 30], tissue engineering
materials [31], wound dressings [32], treatment of burns [33], artificial skin, and
plastic skin surgery [34].

Even though there is a high demand for chitin and its derivatives, currently there
is no North American producer of chitin. In 2008, there were five companies that
dealt with chitin derivatives (namely, chitosan and glucosamine) including Biothera
Inc., CarboMer, Inc., HaloSource, Inc., V-Labs, Inc., and United Chitotechnologies
[35]. Even though some of these companies claimed chitin production, they used a
100-year-old chemical and energy-intensive process that degraded chitin by reducing
its molecular weight. This process also results in a large degree of deacetylation of
chitin, producing chitosan, a polymer with different properties. Unfortunately, the
lack of rigor in terminology has led to confusion in the markets about the actual
properties of chitin as a material versus chitosan.

In 2018, there were only two functioning facilities identified: Tidal Vision, Inc.
[36] and CarboMer, Inc. [37]. Tidal Vision is a company that manufactures chitin-
based and chitosan-based products and serves various industries including textile,
cosmetic, water treatment, agriculture, food, pharmaceutical, and so forth, and also
sells raw material to research institutions and laboratories [36]. The company claims
to use a “patent-pending, closed-loop processing system” to extract chitin from crab
shells, although the company does not provide the technology of chitin isolation. Car-
boMer, Inc. [37] is the second company that appears in numerous market reports as a
producer of chitin; however, we were unable to find either chitin or its derivative, chi-
tosan, in the company’s product list. The company sells polyamino acids, polyglycol-
ides and polylactides, collagens, poly(3-hydroxybutyrate), PLA, poly(estradiol phos-
phate), poly(ethylene adipate), poly(glycolic acid), and polyinosinic-polycytidylic
acids as biopolymers [37].

Chitin is used in animal feed as a dietary supplement. It is reported to promote
animal growth, to improve adsorption of nutrients, and to inhibit the effect of harmful
microorganisms [38]. Its properties also make the polymer an ideal material for the
following uses in agriculture: (1) as a fertilizer, (2) as a fungicide and pesticide in
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crop protection, (3) as an agent to improve seed quality (as well as crop yield and
quality), and (4) as a plant growth stimulator; it also acts as amplifier of the beneficial
chitinolytic microbes [39]. Chitin is used in environmental applications as an effec-
tive biosorbent, due to presence of both hydroxyl- and acetamide-moieties (easily
modifiable into amine functionality), which demonstrate high adsorption potential
for the removal of various metal ions from water sources [40]. Chitin, in the form of
whiskers or nanofibers, can be utilized duringmanufacturing processes as an additive
to reinforce existing materials (packaging, fibers, etc.) [41].

Key market players, however, are approaching the market with advanced high-
quality medical products of higher efficacy. Unitika, Ltd. (Japan) [42] marketed a
chitin-containing non-woven dressing (Beschitin W) for the treatment of burns and
demonstrated its superior performance in speed of healing, wound adherence, exu-
date absorption, and scar minimization. In 1970, multiple new companies appeared
on the market. Eisai Co., Ltd. produces wound dressings from chitin, Chitipack S®

and Chitipack P® [43], which are used in the treatment of traumatic wounds prevent-
ing the formation of scar tissue [44]. Syvek-Patch® produced by Marine Polymer
Technologies, Inc. ismade ofmicrofiber chitin [45], as is ExcelArrest® dressing from
Hemostasis, LLC [46]. Numerous opportunities for chitin products can be found in
selected reviews [20–25].

4.2.3 Current Chitin Isolation Methods

Chitin isolation targets a biomass source generated byU.S.-based fisheries as a costly
waste that can be turned into valuable products. Yet, currently, chitin is isolated from
crustacean biomass via a pulping process. Pulping typically includes three steps:
(1) demineralization to remove calcium carbonate present in a shell matrix (using
acids (e.g., HCl)), (2) deproteinization to remove proteins (conducted using hydrox-
ides (e.g., NaOH)), and (3) bleaching/discoloration (using organic solvents [47] or
oxidation agents [48]). Because pulping is conducted at relatively high tempera-
tures (70–100 °C) and usually for a prolonged time [49, 50], the process adequately
removes both proteins and shell inorganics but generates a large amount of waste.

Manufacturing 1 kg of chitin using the pulping method requires 10 kg of biomass,
300 L of freshwater, 9 kg of HCl, 8 kg of NaOH, and 1.2 kWh of electricity. The
liquid waste generated is equal to the input freshwater volume plus the process water;
the overall amount of waste per 1 kg of chitin exceeds 500 L [26]. In addition, the
emission of CO2 is estimated to be 0.9 kg/kg of chitin [26] Such high cost involved
in the production of chitin and the huge quantity of generated waste resulted in
the pulping process raising public and governmental concerns. As a result, there is
no chitin producing plant that uses acid/base treatment in the United States [51].
In addition, crustacean shells contain a host of potentially valuable components in
addition to chitin, including other biopolymers, such as proteins, small molecules,
such as astaxanthin that have medical value, and minerals, such as calcite that may
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be useful as construction materials; all of them get destroyed during the pulping
process.

Lastly, harsh conditions used in isolation were found to decrease the quality of
the isolated chitin, to promote deacetylation and depolymerization, and to result in a
lack of reproducible high-quality polymer product [52]. However, many applications
require specific polymer properties, and the strength of materials has been proven to
be governed by the molecular weight and the degree of acetylation. We have shown
(andwill detail it below in this chapter) that high-molecularweight chitin is critical for
the preparation of materials with different shapes (fibers, films, packages, hydrogels,
beads, and electrospun mats). This host of new materials and the preparation of
chitin composites and blends [53–68] are made possible by an ionic liquid [69]
solution-based process.

4.3 Startup to Scale-up

4.3.1 The Beginning: Business Opportunity

In 2010, Rogers demonstrated the dissolution and extraction of the biopolymer chitin
directly from shrimp shells [70]. Before that, no one had reported the direct disso-
lution of crustacean biomass or the extraction of chitin polymer from it using ionic
liquids. The IL 1-ethyl-3-methylimidazolium acetate ([C2C1im][OAc]) was shown
to be an excellent solvent for chitin [71]. Using this IL, microwave irradiation facil-
itated the dissolution and demineralization of crustacean biomass and resulted in
the extraction of all available chitin in minutes. The polymer maintained its high-
molecular weight resulting in a material with high strength and unprecedented high
quality. At that point, this extraction method was demonstrated on a 100 mL scale
using a domestic microwave.

The quantities of isolated polymers are critical to manymaterials applications and
must be produced at a larger scale. For instance, co-dissolved with alginic acid, high-
molecular weight chitin–IL solutions were shown to be suitable for the preparation of
spun chitin–calcium alginate fibers [63, 70, 72], for intracutaneous biocompatibility
testing, andwound-healing studies. Using a domesticmicrowave and a lab-scale fiber
pulling setup, it took 3weeks to prepare only 6 g of bandages [63]. Using a somewhat
larger setup, with a small manufacturing, custom-made fiber extruder, required a
minimum loading of 1 kg of the solution to produce 1,000 m of monofilament fiber.
Clearly, a prototype was necessary to make scaled-up quantities for the preparation
of sustainable, high-value chitin materials.
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4.3.2 Baby Steps: Laboratory Demonstration Pilot Unit
(Alabama Innovation Grant)

Seeking funding to scale up chitin production, we turned our attention to theAlabama
Department of Commerce’s “Accelerate Alabama” Program, particularly to the
Alabama Innovation Fund (AIF) that was established “to maximize the use of the
State’s economic development resources by leveraging annual research and devel-
opment expenditures by public institutions and generate high technology resources
which can be used to support economic development activities” [73].

The AIF Fund mainly supported research collaborations among universities and
industries working on research that could be economically beneficial to the state.
If chitin extraction at scale was successful, there would be new and better busi-
ness options for the seafood industries by utilizing shrimp shells, an industrial
waste product. A collaboration was established with the Gulf Coast Agricultural
and Seafood Cooperative [74] in Bayou La Batre, AL. They had built a seafood
waste drying/pulverizing facility with the support of the Alabama Farmers Market
Authority. The facility collects crustacean biomasswaste from resident fishermen and
biomass-handling plants that are then pressed for protein removal, passed through
a fluidized bed dryer for dewatering, and shredded before bagging. At maximum
capacity, the plant can process up to 10 tons of shrimp shells a day into sterilized,
dry chitin-containing material. Finding uses for this waste material could save the
seafood industry of Alabama hundreds of thousands of dollars a month in waste dis-
posal costs as well as opportunities for new jobs as the shrimp shells can be converted
into value-added products.

In 2012, an Alabama Innovation Fund (AIF) grant was given to The University
of Alabama researchers and startup company 525 Solutions, Inc. to build a Labora-
tory Demonstration Pilot Unit (LDPU) that would enable scaling up the process of
extracting chitin from the bench scale to a prototype scale needed for themanufacture
of chitin-based products. The Department of Commerce award was part of a more
complex project that included research and development, a business plan and market
development, product demonstration, and prototype construction. The project was
divided into several major phases: (1) design and development of a continuous pro-
cess for chitin extraction, (2) scale-up of the process, (3) construction of a LDPU,
(4) R&D of new chitin-based materials and new product-development technologies,
and (5) demonstration of new products to provide higher value to the seafood wastes.

Under this Alabama Department of Commerce award, Rogers’ group developed
a prototype capable of the continuous processing of shellfish waste. The LDPU
(Fig. 4.2) included a closed-loop where biomass and ionic liquid could be cycled
through until the dissolution was complete. This provided excellent control over
the heating rates of the solution. The unit consisted of a 3 L, glass-jacketed reactor
(Fig. 4.2a) with an overhead mechanical stirrer (Fig. 4.2b) attached to a continuous-
flow 2 kWmicrowave (Industrial Microwave Systems, Fig. 4.2c). The pumping was
conducted using a peristaltic pump (Cole-Parmer, Fig. 4.2d).
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Fig. 4.2 LDPU consisted of a 3 L glass-jacketed reactor (a), overhead mechanical stirrer (b),
continuous-flow 2 kW microwave (c), and a peristaltic pump (d)

After an optimization study, continuous chitin dissolutionwas conducted using 3L
of [C2C1im][OAc] under cylindrical, 2 kW continuous microwave heating. The IL
was fed into the unit and heated to 95–98 °C.Only 10%of themicrowave capacitywas
necessary to achieve the dissolution of the biomass and not decompose the IL. The
run suggested that the IL effectively absorbs themicrowave energy and can be treated
continuously in a microwave. To ensure that the recycled IL could be reclaimed and
reused with no significant loss, the IL was circulated through the microwave for
several cycles, and no obvious degradation was observed. This scaled dissolution of
chitin in IL by microwave heating provided essential knowledge (thermal exchange
data, microwave energy input/output, microwave energy efficiency, and cooling rate)
for scaling up to a pilot system.

In addition, as a part of the project to provide higher value to the seafood wastes,
we also focused onR&Dof new chitin-basedmaterials and newproduct development
technologies. Chitin–IL solutions were shown to be suitable for the preparation of
spun fibers, films, hydrogels, beads, and electrospun mats providing a route to a host
of new materials (Fig. 4.3): chitin fibers (wet: a, dry: b), chitin electrospun nanomat
(c, d), chitin beads (e, f), chitin hydrogel (g, h), and chitin film (i, j). [54–68].

4.3.3 Bench to Pilot Scale Prototype: Leveraging Sorbent
Production Technology

Using AIF funds, dissolution of chitin in an ionic liquid by microwave heating using
LDPU provided essential knowledge and revealed useful data needed for the further
scale-up to a 20 L pilot system. Based on our earlier results with cellulose [75], we
planned to develop and optimize the pilot scale-up process for this technology. How-
ever, from our earlier studies with cellulose we learned that there were few examples
of successful academia-to-industry technology transfers. Successful transfer would
require ensuring that both the technology and processes were scalable and, more
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Fig. 4.3 Chitin products: chitin fibers (wet: a, dry: b), chitin electrospun nanomat (SEM: c, AFM:
d), chitin beads (e), and chitin bead interior (f), chitin hydrogel (g) and hydrogel interior (h), wet
chitin film cast on a glass plate (i) andwet chitin film inwater (j). Images support the work described
in our publications [54–68]

importantly, that the development of high-value end products was possible with a
successful business plan rather than a scale-up with no purpose.

Considering that the extraction process could be key to a “chitin economy” and
would, upon its success, provide a revenue stream for shrimpers to utilize their waste
while helping to develop sustainable/green products, we started looking into ways to
leverage our chitin extraction technology. Our attention turned to a U.S. Department
of Energy (DOE) Nuclear Energy Program (uranium recovery from seawater), a part
of U.S. DOE efforts that included collaborative efforts of several universities and
small businesses.

The University of Alabama researchers and startup company 525 Solutions, Inc.
combined efforts to develop highly economical and biodegradable uranium-selective
sorbents, specifically for the U.S. DOENuclear Energy Program aimed at the extrac-
tion of uranium from seawater. The concept of sorbents was based on our previous
work, where we investigated the electrospinability of IL-extracted chitin solutions
from [C2C1im][OAc] [76]. The project focused on the delivery of the product to
government-designated mining companies and at the same time proposed leverag-
ing the U.S. DOE resources to generate a sustainable chitin products business. Such
leveraging would allow both economic development and creation of jobs in R&D
of chitin products and fishing industries. This way, the chitin nanomaterials would
serve as a platform for the delivery of chitin to U.S. markets, as well as providing a
range of medium- to high-value applications in medicine, energy, and environmental
restoration sectors.

Because there was no existing industrial base for the extraction of uranium from
seawater, the entry decision thus revolved more around how to build a successful
business for this opportunity. If the commercialization strategy was built only around
the sale of the sorbent, the company would cease to exist if government support of
the program ended before an industry emerged. However, as mentioned earlier in
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this chapter, numerousmarket opportunities were emerging based on the underlying
technology, chitin extraction. The ability to produce not only products from chitin,
but chitin itself, provided a competitive advantage to diversify the range of products
and enter several profitable specialized markets, while at the same time developing
the sorbents for the DOENuclear Energy Program. Such leveraging would lower the
bulk cost of the sorbent by building high-end markets that would help pay for the
process development and economy of scale.

For 2014–2015, a $1.5 million grant was funded by the U.S. DOE Small Business
Innovation Research Program, “Bench to pilot scale prototype for electrospinning
biorenewable chitin sorbents for uranium from seawater: Process development, cost,
and environmental analysis” (DOE-SBIR Grant No. DE-SC0010152, Phase I/II).
The ultimate goal of this project was to collect the industrial process parameters,
to conduct reliable economic estimates, and ultimately to generate data for the full-
scale operating plant design.

To address the scalability of the IL technology platform for biomass process-
ing, Rogers’ group (together with 525 Solutions, Inc.) refined the pilot plant oper-
ating conditions and plant design and prepared input-output diagrams of the pro-
cess. This provided the relationships between the major equipment of a pilot plant
facility and the piping of the process flow together with all required equipment
and instrumentation. Next, a scaled, highly automated customized 20-L early pilot
stage system amenable for chitin extraction was built. It contained a custom-design,
continuous-flow stirred-tank reactor (CSTR) and a 2 kW microwave (Fig. 4.4).

Fig. 4.4 A continuous scaled, automated, and customized 20-L early pilot stage system amenable
for chitin extraction. (a): side view, (b): top view
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After multiple, unsuccessful pilot trials, the optimal conditions (biomass load,
temperature, flow rate through the microwave, residual time in the microwave, and
process time) for the dissolution of biomass in the reactor were determined. Optimal
conditions resulted in a high yield of approximately 95% (as percent of available
chitin in biomass). A mass balance was completed using the optimal conditions of
biomass dissolution based on different reagent streams, reagent consumption, and
product recovery (i.e., using multi-parametric input). This permitted multi-step eval-
uations for the determination of the process inputs and outputs based on production
cycles.

An energy balance was completed using the overall energy consumption in each
energy-demanding step based on production. Cost analyses were conducted where
scale-up of some 30 equipment items was handled either through increasing the
size or capacity of the equipment (so-called economies of scale) or by increasing
throughput by projecting the purchase of additional units of defined capacity. To
date, no other entity has scaled this IL process to this size.

This project resulted in a fully engineered system, developed key engineering data
and diagrams, as well as determined the equipment needed in a full-scale operating
plant. Processing performance testing was conducted while manufacturing chitin
on a pilot scale. The results of these studies were used to establish manufacturing
capability and process robustness and to mitigate the risks before committing to a
full-scale production process.

4.3.4 Mari Signum, Mid-Atlantic: The First Facility to Use
Ionic Liquid-Based Chitin Extraction at a Production
Scale

The knowledge obtained in these efforts was used to raise capital investment for
building and operating a biomass/IL facility. Mari Signum,Mid-Atlantic, LLC (Mari
Signum) [77] was formed as a chitin and chitin materials production company. The
ultimate goal of Mari Signum, Mid-Atlantic, LLC is to become a sustainable source
of high-quality chitin as well as chitin-based products developed in-house.

Mari Signum acquired the worldwide exclusive license for the portfolio of intel-
lectual property (IP) that protects the manufacture of chitin. This IP will allow Mari
Signum to maintain its position in the market and protect its competitive advan-
tages. The licensing granted Mari Signum not only the rights to the chitin-extraction
patents, but also all patents associatedwith high-value products. These products from
chitin, and not chitin itself, would, indeed, be key components in the development
of a “chitin economy”.

Mari Signum’s facility will be the first of its kind to use IL-based processing on
a manufacturing scale that will allow the generation of sufficient supplies of high-
quality chitin, which is unobtainable by any known chemical pulping processes.Mari
Signum is currently building a processing plant for chitin isolation from crustacean
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biomass. The ability ofMari Signum to produce not only chitin itself but also products
from chitin will give Mari Signum a competitive advantage to diversify the range of
its products and to enter several profitable specialized markets.

4.4 Conclusion and Outcome

Chitin represents a billion-dollar industryworldwide, but despite the promising prop-
erties of chitin (and the large amounts of available shellfish waste in the United
States), its potential production at an industrial level has been scarcely explored.
There is no chitin producing plant in the United States mainly because of the current
environmentally unfriendly chitin isolation process. At the same time, chitin isola-
tion extends far beyond producing chitin itself. There are many opportunities for
the manufacture of novel chitin products from shrimp shell waste that have not yet
been tapped. Such high-value products will cause high industrial growth and have a
positive environmental impact. A large enough chitin supply will be needed for the
chitin industry to become a game-changer in a sustainable society.

Even with a billion-dollar industry opportunity, our own experience demonstrates
that the transition of technology from academia to industry is rarely a straightforward
process. As the technology progressed, it required proceeding through several time-
and effort-consuming stages with each one successively larger in scale—(bench,
pilot, demonstration, and production scale). Each stage used the knowledge accumu-
lated from the previous round of scale-up. With the benefit of hindsight, this story
might be useful for others who are ready to take this journey.

Hopefully, chitin products will make existing plastics obsolete.
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