
TSRuleGrowth: Mining Partially-Ordered
Prediction Rules From a Time Series
of Discrete Elements, Application

to a Context of Ambient Intelligence

Benoit Vuillemin1,2(B), Lionel Delphin-Poulat1, Rozenn Nicol1,
Laetitia Matignon2, and Salima Hassas2

1 Orange Labs, Lannion, France
benoit.vuil@gmail.com

2 Univ Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205, 69622 Lyon, France

Abstract. This paper presents TSRuleGrowth, an algorithm for mining
partially-ordered rules on a time series. TSRuleGrowth takes principles
from the state of the art of transactional rule mining, and applies them to
time series. It proposes a new definition of the support, which overcomes
the limitations of previous definitions. Experiments on two databases of
real data coming from connected environments show that this algorithm
extracts relevant usual situations and outperforms the state of the art.

Keywords: Rule mining · Ambient intelligence · Habits ·
Automation · Support · Time series

1 Introduction

Searching for prediction rules in a time series is a major problem in data mining.
Used in stock price analysis and recommendation of items for consumers among
other fields, this problem has been studied increasingly as the field of ambient
intelligence (AmI) expands. AmI is the fusion between artificial intelligence and
the Internet of Things, and can be described as: “A digital environment that
proactively, but sensibly, supports people in their daily lives” [2]. This work falls
within the field of AmI: we want to make a system that finds the habits of users
in a connected environment, i.e. an environment in which connected objects are
present, in order to provide users with automation.

This paper describes TSRuleGrowth, a new algorithm used in our AmI sys-
tem, that searches for prediction rules over a time series. Here, this time series
represents events sent by connected objects. These prediction rules will then be
proposed to users as automation possibilities. TSRuleGrowth uses the principles
of a rule mining algorithm on transactions, TRuleGrowth, while adapting them
to time series. Also, a new definition of support on time series is described, which
overcomes the limitations of the state of the art. In the scope of this paper, the

c© Springer Nature Switzerland AG 2019
J. Li et al. (Eds.): ADMA 2019, LNAI 11888, pp. 119–134, 2019.
https://doi.org/10.1007/978-3-030-35231-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35231-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-35231-8_9

120 B. Vuillemin et al.

time series is composed only of categorical values, rather than continuous, that
can occur at any time, i.e. there is no fixed sampling frequency in the time series.
The structure of these rules is described, as well as the state of the art of the
fields concerned, which will explain the choices made for this algorithm.

2 Context and Definitions

2.1 Input of Our Ambient Intelligence System

There are two types of connected objects: sensors and actuators. Sensors mon-
itor environmental variables. A sensor returns events, corresponding to changes
in the state of the observed variable. For example, for a door opening sensor,
opening and closing events are sent over time. Sensors can measure categorical
or continuous variables. For example, the temperature of a room, expressed
in degrees, can be considered as a continuous variable, while the selection of a
radio station, or the opening of a door are categorical variables. A discretization
process can convert continuous data into categorical data. In this paper, only
sensors that monitor categorical variables are considered. Actuators
act on the environment. An actuator returns an event when it has made an
action. For example, a connected shutter will return an event when it closes or
opens. Actuators can perform categorical actions, such as opening a shutter, or
continuous actions, like increasing the temperature to a certain value. As with
sensors, only actuators that make categorical actions are considered.

Each object, whether it is a sensor or an actuator, sends elementary events.
In this paper, they are referred to as elements. All the elements sent by all
the objects are gathered in a set noted E. Let us take the example of a room
containing two connected objects: a presence sensor, used to define whether a
person is in the room or not, and an actuator: a radio. The presence sensor can
detect the following: “Present” and “Absent”. The radio can act in two ways:
its power status can be: “Radio on” or “Radio off”, and it can select one of the
following stations: “Music”, “News”, “Talk”. Therefore, the set of all elements
is E = {Present, Absent, Radio on, Radio off, Music, News, Talk}.

Our proposed AmI system collects data streams from several connected
objects. Each data stream is composed of a succession of elements, each of which
may occur once or several times. Each occurrence is time stamped. Thus, each
element is potentially associated with several time data corresponding to its
multiple occurrences. For further processing, all collected data from the various
objects are aggregated into one single time series. In other words, a time series
is obtained by a time-ordered concatenation of elements provided by all the
individual objects. It is noted TS=〈(t1, I1), ..., (tn, In)〉, I1, ..., In ⊆ E, where:

– ti is a time stamp. It defines a fixed point in time.
– Ii ⊆ E is called an itemset. It is the set of individual elements of E which

are observed at time stamp ti

Please note that a given element can only be seen once in an itemset. Also,
time stamps are not necessarily equally distributed. The Fig. 1 is an example of

TSRuleGrowth 121

a time series created from the environment mentioned in Sect. 2.1. Its mathe-
matical representation is: TS = 〈(10:00 am, {Present}), (10:44 am, {Radio on,
Music}), (11:36am, {Radio off}), (12:11 am, {Absent}), (2:14 pm, {Present}),
(2:52 pm, {Radio on, News}), (3:49 pm, {Music}), (5:14 pm, {Radio off}), (5:57
pm, {Absent})〉. TS represents activities of a user in the environment. The fol-
lowing section details what the system must find from a time series.

Fig. 1. Representation of a time series

2.2 Output of Our Ambient Intelligence System

The proposed system needs to find prediction rules, to express the user’s
observed habits. A prediction rule is noted R : Ec ⇒ Ep, where Ec ⊆ E is
the condition, and Ep ⊆ E is the prediction of the rule. R states that if Ec

is observed, Ep will be observed after a certain time. A rule must be frequent
and reliable to be validated. One could also search for rules in the context of
anomaly detection, i.e. very infrequent but highly interesting rules, but this
does not fall within the scope of this paper. In the proposed use case, we want
to limit the search for rules for which the prediction part Ep must only be
composed of elements originating from actuators. Indeed, the rule search
process being highly combinatorial, this makes it possible to limit this aspect
while being adapted to the use case: the system’s goal is to propose automatic
actions according to situations. According to the time series example in Sect. 2.1,
a rule can be {Present} ⇒ {Radio on}. This is a basic rule, where condition
and prediction are composed of a single element. It should be noted that we
do not want, for example, to find the {Radio off} ⇒ {Absent} rule because its
prediction part, {Absent}, comes from a sensor (the presence sensor) and not
from actuators (the radio). Several types of prediction rules are possible [7]:

– Fully-ordered sequential rules, where the condition Ec and the prediction
Ep are sequences, i.e. time ordered successions of elements

– Partially-ordered sequential rules [8], where Ec and Ep are both
unordered, but an order still exists as Ep comes after Ec. Two mathematical
structures are possible for Ec and Ep: sets, where an element can only appear
once, and multisets, where multiple instances of elements are allowed. The
number of instances of an element in the multiset is called the multiplicity.
For example, the multiplicity of the element x in the multiset {x, x, y} is 2.

After experimenting with each of them, we chose to use partially-ordered
sequential rules containing multisets. The problem with fully-ordered

122 B. Vuillemin et al.

sequential rules is that multiple rules can characterize the same situation.
Partially-ordered rule mining generates fewer candidates, and fewer rules, by
definition. Furthermore, they are described as more general, with a higher pre-
diction accuracy than fully-ordered sequential rules, and they have been used in
real applications [7]. In the proposed use case, describing a situation does not
necessarily require an order, but the multiplicity of an element can be important.
To explain this choice, we can take the example of a sound detection lamp: when
one claps twice, i.e. when one makes the same sound twice, the lamp lights up.

3 Related Work

As said before, the system must search for partially-ordered prediction rules over
a time series of elements coming from sensors and actuators. Thus, in the state
of the art, two major areas of research should be considered: rule mining on time
series and partially-ordered rule mining. Let us first recall some definitions. A
prediction rule R : Ec ⇒ Ep must be frequent and reliable. In rule mining, to
check that a rule is frequent, its support is calculated. The notion of support
depends on the structure of the input, but estimates the frequency of a rule, a
set of elements, or an element. To ensure that a rule is reliable, its interest is
calculated. Several measures can estimate the interest of a rule. The most known
is confidence [3], but alternatives exist, such as conviction [3], lift [3] or netconf
[1]. These measures depend on the supports of R, Ec and Ep.

3.1 Rule Mining on Time Series

[5] proposes a system mining basic rules on a sequence of elements, where one
element predicts another. Those elements represent simple variations of stock
market data. It can also search for more complex rules, where the condition is a
sequence. This system therefore makes it possible to mine prediction rules over a
time series. However, it seeks fully-ordered prediction rules, rather than partially-
ordered ones. Also, the prediction part of the rules is limited to a single element, a
limitation that we want to avoid in our AmI system. [11] can be considered as an
improvement over [5], because this system looks for rules where the prediction
is not limited to a single element. But, since it seeks fully-ordered rules, this
system cannot be applied in our case. [10] introduces a notion of support for a
time series, via a sliding window with a determined duration. The support of
an element, a set of elements or a rule is the number of windows in which this
element, set or rule appears. This algorithm finds partially-ordered rules, first
finding sets of elements that are frequent, then combining these sets to generate
rules. Other algorithms use this notion of support, including [6] which finds rules
whose prediction is composed of one single element. The algorithm presented in
[10] can therefore be applied in our case. But this definition of the support can
be problematic: the elements of Ep being strictly later than Ec, the number of
windows covering the rule R will be strictly lower than the number covering Ec.
Even if Ep always appears after Ec, the support of the rule will be lower than

TSRuleGrowth 123

that of Ec, reducing its interest. Also, since the search is structured in two steps
(mine frequent sets, then search for rules), the algorithm is not fully efficient.

3.2 Partially-Ordered Rule Mining

To our knowledge, few algorithms of partially-ordered sequential rule mining
exists. The most known are RuleGrowth [8], and its variations, TRuleGrowth
(TRG) [8] and ERMiner [7]. These algorithms take as input a set of transac-
tions. A transaction is a time-ordered sequence of itemsets, but, unlike time
series, without associated time stamp. RuleGrowth searches directly for predic-
tion rules, unlike [10] that searches for frequent itemsets and then searches for
rules on these itemsets. In addition, the incremental architecture of this algo-
rithm allows to limit the size of the searched rules, and to limit the elements
in which rules are searched. In our use case, we want to mine rules whose pre-
dictions are made only of elements from actuators. RuleGrowth allows this lim-
itation directly during the search, reducing the total computation time. TRG
is an extension of RuleGrowth that accepts the constraint of a sliding window,
determined by a number of consecutive itemsets. It allows to limit the search
to rules that can only occur in this window. ERMiner is presented as a more
efficient version of RuleGrowth, but without an extension that accepts a sliding
window. But those algorithms have a major problem in the proposed use case:
they take transactions instead of a time series. The notion of support depends
directly on the structure of transactions, and cannot be applied on a time series.
Despite the advantages of these algorithms, they cannot be applied directly to
our input data.

3.3 Scientific Problems

To our knowledge, the state of the art algorithms are not satisfactory enough to
solve the initial problem. Two major issues need to be solved:

1. How to define the support of a rule in a time series that avoids the problem
encountered in Sect. 3.1?

2. How to build a rule mining algorithm upon this new support measure?

In addition, this algorithm must address the following:

3. How to limit the duration of the found rules?
4. How to limit the search to certain elements in the condition or prediction?
5. How to avoid that a rule is found twice?

RuleGrowth answers points 4 and 5, but only takes transactions as input. Its
extension, TRG, uses a sliding window that can be used to answer to the third
problem with some modifications. The following section describes an adaptation
of the AmI data to be accepted by TRG, and raises limitations of this adaptation.
After, we describe our algorithm: TSRuleGrowth. It uses the principles of TRG,
but applies them to time series, to deal with the first two problems.

124 B. Vuillemin et al.

3.4 Adapting Time Series to TRuleGrowth

To solve the problem of the input data of these algorithms, one can simply
convert the time series into a list of transactions, as in Fig. 2. To do this, this
time series is divided (1 in the figure) into smaller ones with a defined duration
noted Δtr (2 and 3 in the figure). Then the notion of time of the small time
series is removed, to keep only the order of appearance of the elements (4 in the
figure). Without this notion of time, they are no longer time series, but rather
sequences of elements, in other words, transactions.

Fig. 2. Example of conversion of a time series into transactions

But the main problem of this implementation is the calculation of the support
of a rule. Let us take the following example with three transactions:

〈{x}, {x}, {y}, {x}, {x}〉
〈{x}, {y}, {x}, {x}, {x}〉
〈{x}, {x}, {y}, {x}, {x}〉

Here, x ⇒ y is considered valid, because its support is 3, the same as x and
y. As long as a rule has only been seen once in a transaction, it is considered
valid throughout that transaction, even if it could have been invalidated, as in
the example: x can be seen without y after, in all the transactions. Cutting a
time series into transactions can lead to rules that are validated by mistake.
There are other problems, inherent in Δtr. Having a small Δtr can increase the
risk of a rule being “split in two”, i.e. whose occurrence is separated between
two transactions, which reduces interest. Having a large Δtr, over a time series,
can reduce the absolute support of the rules the system is looking for.

Converting a time series into a set of transactions can be applied in the
proposed use case. However, the above limitations have led us to create a new
algorithm, inspired by TRG, which is fully adapted to time series.

4 TSRuleGrowth

4.1 Inputs, Outputs

This paper outlines the proposed rule mining algorithm on a time series of dis-
crete elements : TSRuleGrowth, for “Time Series RuleGrowth”, abbreviated to

TSRuleGrowth 125

TSRG. This algorithm is incremental, and can limit the search to certain ele-
ments in the condition and prediction. TSRG takes as inputs:

– TS = 〈(t1, I1), ..., (tn, In)〉, I1, ..., In ⊆ E: A time series of discrete elements
– minsup: The minimum absolute support for a rule to be frequent
– minint: The minimum interest for a rule to be reliable
– window: A time frame in which the rules must occur

TSRG produces partially-sequential prediction rules using multisets, detailed
in Sect. 2.2. In the proposed use case, the prediction part of the rules is only
composed of elements coming from actuators. Since TSRG takes a time series
as input instead of a list of transactions, some notions need to be redefined: the
support, the interest, and how to record the occurrences of a rule.

Fig. 3. Support calculation examples. Each column represents a step-by-step example
of support calculation

Algorithm 1: Count : support counting algorithm
Data: A: multiset, TS = 〈(t1, I1), ..., (tn, In)〉, I1, ..., In ⊆ E: time series, window: duration
// Initialization

1 Assign a blacklist b(a) to every unique element a ∈ A;
2 sup(A) ← 0; // Support of A

// Sliding window through the time series
3 while the window has not reached the end of TS do
4 found ← True;
5 Scan the window, record the time stamps of a ∈ A in T (a);
6 foreach element a ∈ A do
7 T (a) ← T (a) \ b(a);
8 if |T (a)| < multiplicity of a in A then
9 found ← False ; // No distinct occurrence

10 if found is True then
11 sup(A) += 1;
12 foreach element a ∈ A do

// Add the earliest time stamps of T (a) to the blacklist of a
13 m ← multiplicity of a in A;
14 b(a) ← b(a) ∪ m earliest time stamps of T (a);

15 Slide the window by one itemset;

16 Return sup(A);

126 B. Vuillemin et al.

4.2 Metrics

Support. For a time series TS noted 〈(t1, I1), ..., (tns
, Ins

)〉 where Ii is an item-
set and ti is an associated time stamp, the support of element x, noted sup(x),
is defined as the number of itemsets containing x (Eq. 1).

sup(x) =
∣
∣(tz, Iz) ∈ TS|x ∈ Iz

∣
∣ (1)

The absolute support of a multiset of elements A is the number of distinct
occurrences of all elements of A within the time window. If an occurrence of
an element of A has contributed to an occurrence of the multiset A, it can no
longer contribute to other occurrences of A. The examples in Fig. 3 can help
to understand this concept more easily. The support counting algorithm, Count
(Algorithm 1), scrolls a window on the time series. If all elements of A are
seen, their occurrences will be blacklisted to prevent them from being involved
in another occurrence of A. This ensures that the definition of the support is
respected. If several occurrences of the same element of A are seen in the same
window, only the earliest ones are blacklisted. It leaves newer ones the possibility
to contribute to a future occurrence of A. The absolute support of R : Ec ⇒ Ep

is the distinct number of occurrences where all the elements of Ec are observed,
followed by all the elements of Ep. The elements of Ec and Ep also have black-
lists, grouped into two sets: one for the elements of Ec, and one for those of Ep.
The relative support of an element x, a multiset A or a rule R, noted relSup, is
its absolute support divided by the total number of itemsets in the time series
(Eq. 2). This support can be applied to partially-ordered rules, unlike [5,11], and
avoids the case expressed in Sect. 3.1.

relSup(R) =
sup(R)

|(tz, Iz) ∈ TS| (2)

Interest. In TSRG, one can compute the interest of a rule through its con-
fidence, conviction or lift as mentioned in Sect. 3.2. In the proposed use case,
we chose netconf [1]. Unlike confidence, netconf tests the independence between
occurrences of Ec and those of Ep. Also, unlike conviction and lift, it is bounded
between −1 et 1, 1 showing that Ep has a high chance of appearing after Ec, −1
that Ep has a high chance of not appearing after Ec, and 0 that this chance is
unknown. For a rule R : Ec ⇒ Ep:

netconf(R) =
relSup(R) − relSup(Ec) × relSup(Ep)

relSup(Ec) × (1 − relSup(Ec))
(3)

4.3 Recording of Rule Occurrences

Let us take the example of R : {a, b, c} ⇒ {x, x, y}. An occurrence of R is
decomposed as the occurrence of Ec and Ep. Indeed, an element can be found

TSRuleGrowth 127

in both Ec and Ep, and it is necessary to distinguish the occurrences of this
element in Ec from those in Ep. An occurrence of a multiset is recorded in an
associative array, where the keys are the distinct elements of the multiset, and
their values are the set of time stamps where the elements are observed. In Fig. 4,
the occurrence of Ec is {a:{2}, b:{2}, c:{1}} and the occurrence of Ep is {x{5, 6},
y:{4}}. Two time stamps are recorded for x, because it is present twice in Ep.
To lighten the memory, an occurrence of a multiset can also be stored on a list
of time stamps, provided that the multiset is ordered. On the list, the index of a
time stamp is the same one as the index of the linked element in the multiset. In
the previous example, the occurrence of Ep = {x, x, y} is [5, 6, 4]. The recording
of multiple occurrences of a multiset is a list of these structures. All occurrences
of the rule are recorded in two lists, for Ec and Ep.

Fig. 4. Rule and time series example Fig. 5. Rule and time series example

4.4 Principles

Principles Shared with TRuleGrowth. TSRG takes the principles of TRG
and applies them to time series. The algorithm uses a sliding window, to limit the
search. But, unlike TRG where the window is a number of consecutive itemsets,
TSRG has a time sliding window. It allows to restrict the search, and to have
an estimate of the lifetime of a rule. Also, this algorithm will find basic rules,
where one element can predict another. Then, recursively, it will extend them,
by adding an element in Ec or Ep, via ExpandCondition and ExpandPrediction.
This mechanism allows, if necessary, to limit the maximum length of the rules to
be searched, i.e. the maximum number of elements in Ec and Ep. Then, TSRG
applies two principles of TRG to avoid finding duplicate rules. First, Expand-
Prediction cannot be called by ExpandCondition. Second, ExpandCondition and
ExpandPrediction can add an element only if it is larger than all the elements
of Ec or Ep, according to the lexicographic order.

New Principles. Let us take the example in Fig. 5. For this rule R, even if
sup(R) = 1, two occurrences of the rule are possible: {x:{1}, y:{3}} and {x:{2},
y:{3}}. This problem is inherent in time series: we cannot know a priori which
occurrence will be useful for an extension of this rule. To do this, TSRG tries
to extend all seen occurrences of this rule. In addition, TSRG does not use
the same rule structure as TRG: instead of being sets, Ec and Ep are multisets.
Therefore, a principle coming from TRG needs to be modified: ExpandCondition

128 B. Vuillemin et al.

and ExpandPrediction can add an element if it is larger than all the elements of
Ec or Ep, but also if it is equal to the greatest element of Ec or Ep, according to
the lexicographic order. But a new problem of duplication arises. In Fig. 5, if we
try to grow {x}⇒{y} to {x, x} ⇒ {y}, the same occurrence will be found twice.
{x:{1}, y:{3}} will extend to {x:{1,2}, y:{3}}, by adding the time stamp 2, and
{x:{2}, y:{3}} will extend to {x:{1, 2}, y:{3}}, by adding the time stamp 1. To
avoid this, TSRG does the following: if the rule extends to the greatest element
of Ec or Ep, it should only record the time stamps of that element that occur
strictly later than the last time stamp of that element in the base rule. Thus,
in the previous example, the first occurrence is recorded, not the second.

4.5 Algorithm

Main Loop. Like TRG, the main loop (Algorithm 2) tries to find basic rules,
i.e. rules whose conditions and predictions are composed of only one element. To
do this, it computes the support for all basic rules that can be created in the time
series. If one of these rules has a support higher than minsup, it tries to make it
grow, by adding an element in Ec (ExpandCondition), and in Ep (ExpandPre-
diction). Finally, it computes its interest for validation. As mentioned earlier,
the algorithm computes all distinct occurrences of the rule for its support, but
also all possible occurrences for the expansion of the rule. To do this, TSRG
uses a blacklist system to discern occurrences. Multiprocessing can be added to
TSRG, by treating all basic rules in parallel, to reduce the execution time.

Algorithm 2: TSRuleGrowth
Data: TS: time series, minsup: minimum support, minint: minimum interest, window:

duration
1 Scan TS once. For each element e found, record the time stamps of the itemsets that

contains e in T (e);
// Creation of basic rules

2 foreach pair of elements i, j do
3 sup(i ⇒ j) ← 0; // Support of the rule
4 Oc(i ⇒ j), Op(i ⇒ j) ← []; // Occurrences of the condition and the prediction
5 b(i), b(j) ← ∅; // Blacklists
6 foreach ti in T(i) do
7 foreach tj in T(j) do
8 if 0 < tj − ti ≤ window then

// New occurrence of the rule
9 Add ti to Oc(i ⇒ j);

10 Add tj to Op(i ⇒ j);
11 if ti /∈ b(i) and tj /∈ b(j) then

// New distinct occurrence
12 sup(i ⇒ j) += 1;
13 b(i) ← b(i) ∪ {ti};
14 b(j) ← b(j) ∪ {tj};

// Growth of basic rules
15 if sup(i ⇒ j) ≥ minsup then
16 Run ExpandCondition and ExpandPrediction on the rule i ⇒ j;

17 if netconf(
|T (i)|
|TS| ,

|T (j)|
|TS| ,

sup(i⇒j)
|TS|))≥ minsup then output rule

TSRuleGrowth 129

Algorithm 3: ExpandPrediction
Data: TS: time series, Ec ⇒ Ep: rule, sup(Ec), occurrences of Ec ⇒ Ep, minsup: minimum

support, minint: minimum interest, window: duration
// Growth of the original rule Ec ⇒ Ep

1 for each occurrence of the rule Ec ⇒ Ep do
2 foreach element k seen in the search area do
3 if k has never been seen before then
4 Create a new rule Ec ⇒ Epk, its lists of occurrences and its blacklists;
5 sup(Ec ⇒ Epk) ← 0;

6 foreach time stamp of k tk inside the window (ascending order) do
7 if k > max(e), e ∈ Ep or tk > occurrences of k in the prediction part of the

rule then
8 Create a new occurrence of Ec ⇒ Epk;
9 if time stamps are not in the blacklists then

10 sup(Ec ⇒ Epk) += 1;
11 Add the time stamps to the blacklists;

// Growth of the new rules found
12 foreach item k where sup(Ec ⇒ Epk) ≥ minsup do
13 sup(Epk) ← Count(Epk, TS, window);
14 Run ExpandCondition and ExpandPrediction;

15 if netconf(
sup(Ec)

|TS| ,
sup(Epk)

|TS| ,
sup(Ec⇒Epk)

|TS|) ≥ minint then output rule

Fig. 6. ExpandCondition search area Fig. 7. ExpandPrediction search area

Expanding the Rules. ExpandCondition (Algorithm 3) tries to expand a
rule by adding an element to its condition. It goes through all the possible
occurrences of the rule, from the earliest to the most recent. To respect the
time constraint imposed by window, the condition of a rule can only expand
between two time stamps, noted starts and ends, as seen in the Fig. 6. As for
ExpandCondition, ExpandPrediction searches for new elements for Ep in the
area described in Fig. 7. After having found new rules, ExpandCondition and
ExpandPrediction try to grow them again, and verify their interest. Here, the
simplified pseudocodes of TSRG and ExpandPrediction are described.

5 Experiments and Results

5.1 Results of TSRuleGrowth on Two Databases

We tested this algorithm on two databases: ContextAct@A4H (A4H) [9] and
Orange4Home (O4H) [4]. Both databases contain daily activities of a single occu-
pant. The characteristics of these databases and the parameters applied to TSRG

130 B. Vuillemin et al.

Table 1. Database characteristics, and parameters applied to TSRuleGrowth

ContextAct@A4H Orange4Home

Recording period 7 days in July and 21 days
in November

4 consecutive weeks

Number of connected objects 213 222

Data records 35634 746745

TSRuleGrowth parameters

minsup 7 20

minint 0.9 0.9

window (in seconds) 1,2,5,20,40,60,80,100,120,
140,160,180

1,2,5,10,15,20,25,30

are described in Table 1. The A4H database is located on the same physical loca-
tion as O4H, but it has differences: the objects, as well as their names, are not the
same. Also, the observed person is different, as is the observation period. Thus,
the observed habits are different from one database to another. Some objects
were specified manually to be actuators: shutters, doors, and lights for example.
In addition, an amplitude discretization process was carried out on objects that
reported continuous data, such as a temperature sensor. As a reminder, only
actuators can provide elements for the predictive part of the rules. Also, the
timestamps have been rounded to the nearest second on both databases. TSRG
has been implemented in Python with multiprocessing1. First, let us look at
TSRGs results on the two databases. Two aspects of the algorithm are evident
in Fig. 8. The execution time and the number of rules increase exponentially with
the window size. Indeed, when the window is larger, so is the search space. Thus,
TSRG considers more and more elements, exponentially increasing the number
of possible rules. For example, on the O4H database, 43 rules are observed on a
one-second window, and 57103 on a 30-s window. This is explained by two com-
plementary reasons. In a connected environment, several objects can be used to
characterize a situation. For example, a person’s entry into their home can be
observed by a presence, noise, or door opening sensor. Thus, the rules can be
formed from a combination of elements of these three objects. The larger a win-
dow is, the more combinations are possible, thus increasing the number of rules.
Also, the rules discovered on a given window will, for the most part, be found
again on larger windows, which also contributes to the increase in the number of
rules. It is mentioned “for the most part” in the previous sentence, as some rules
can be invalidated from one window to another. The invalidation of these rules
does not come from their support, which can only increase from one window to
another, but rather from their interest.

1 CPU: Intel(R) Xeon(R) Gold 5118 @ 2.30 GHz, RAM: 128 GiB, Ubuntu 18.04.2
LTS.

TSRuleGrowth 131

Fig. 8. Number of rules and execution
time, TSRuleGrowth on O4H and A4H

Fig. 9. Number of rules for TRule-
Growth on O4H and A4H

Fig. 10. Histogram of the elements
grouped by their support in O4H

Fig. 11. Histogram of the elements
grouped by their support in A4H

Indeed, the interest of a rule R : Ec ⇒ Ep is calculated according to the
support of R, Ec and Ep. In some cases, the support of Ec or Ep may increase
more than R, reducing the interest enough to invalidate R. For example, the
rule {‘bathroom light 1: on, bathroom switch top left: off’} ⇒ {‘bathroom door:
closed’}, discovered on O4H, has been validated on a window of 5 s. The supports
are 38 for the rule, 42 for Ec and 91 for Ep. Its interest is therefore 0,904. By
passing over a window of 10 s, the supports are still at 38 for the rule and 91 for
Ep, but change to 44 for Ec. This is typically the case explained above, where
the support of the rule increases less than that of its components. As a result, its
interest drops to 0.863, invalidating the rule for this window. These invalidated
rules represent only a fraction of the total number of discovered rules. Indeed,
on O4H, by passing from a window of 10 to 15, 3 rules were invalidated, while
694 rules were observed on the window of 10 s, and 1170 on 15 s. In Fig. 8, we
have explained the overall results curve of TSRG. However, this figure shows
a very clear difference in results between O4H and A4H, although the physical
environment and most of the connected objects are the same between these two
databases. Two factors explain this. First, there is much less input data in A4H
than O4H, as seen in Table 1: 35634 vs 746745. The less input data there is, the
lower the probability of finding rules. Second, of all the elements in the database,
very few are frequent in A4H. It can be observed by comparing Fig. 10 and 11.
On A4H, there are 63 elements with an absolute support larger or equal to 20,
unlike 395 on O4H. That is why we lowered minsup to 7 on A4H, to have enough
frequent elements (here, 132). This is reflected in the results reported by TSRG:
even with minsup lowered to 7, far fewer rules are found on A4H than on O4H

132 B. Vuillemin et al.

(1 vs 3689 for a 20 s window), and the execution is also faster (1 s vs 14 min for
a 20 s window).

Let us now look at the rules themselves, first from the O4H database. On
small windows (less than 5 s), straightforward rules are discovered, mostly the
actions of switches in the environment. For example, {‘bedroom switch bot-
tom left: on’} ⇒ {‘bedroom shutter 1: closed’, ‘bedroom shutter 2: closed’} and
{‘bedroom switch top right: on’} ⇒ {‘bedroom light 1: off’, ‘bedroom light 2:
off’}, seen in a 1 s window, indicate the different functions of the connected
switches of the bedroom. Then, by increasing the window size, more complex
rules are observed, characterizing the user’s usual situations. {‘office door: open’,
‘office presence: on’, ‘office switch left: on’} ⇒ {‘office door: closed’}, seen in a
30 s window, indicates the user’s entry into his office, by considering several dif-
ferent objects. For the A4H database, many fewer rules are observed in general,
but some interesting rules are emerging. For example, {‘fridge door: open’} ⇒
{‘fridge door: closed’} describes that the fridge door will be closed within 40 s of
being opened. As users, this rule may seem trivial to us. However, it should be
remembered that the system has no preconceptions about the objects to which
it is connected. With TSRG, the system learns the rules that govern the envi-
ronment, and the habits of users. Thus, for O4H as for A4H, TSRG reports
interesting results. Let us now compare these results with those of TRG.

5.2 Comparison Between TRuleGrowth and TSRuleGrowth

In this section, we compare TSRG with TRG. To do this, we use the same input
databases, O4H and A4H. These data have been converted into transactions
through the process detailed in Sect. 3.4. Three sets of transactions were made,
with Δtr = 1 min, 1 h and 1 day. The same parameters were applied between
TRG and TSRG for minsup, minint, and window sizes. TRG uses netconf as
a measure of interest, and minsup is absolute instead of relative, but no other
changes are made to this algorithm: the window used is still a consecutive number
of itemsets, instead of a duration for TSRG. This difference implies that for TRG,
it is possible to find rules whose duration can go up to Δtr. This explains why
TRG can find more rules than TSRG in some cases. For example, on O4H, for
a window of 25 itemsets/seconds, and with Δtr = 1 h, TRG finds 267007 rules,
and TSRG only 5677. Figure 9 shows that, like TSRG, TRG finds more rules
exponentially as the window expands. However, this figure also shows the impact
that the size of Δtr has on the number of found rules. On O4H, and for a window
of 25 consecutive itemsets, TRG finds 8028 rules if Δtr = 1 min, 7052216 rules
if Δtr = 1 h, and 9851 rules if Δtr = 1 day. These results can be interpreted as
follows: when Δtr = 1 min, the number of rules is limited by the short duration of
the transactions. When Δtr = 1 day, fewer transactions are made. This reduces
the absolute support of the rules and thus limits the search of the latter. Figure 9
shows that the number of rules made with Δtr = 1 day catches up with that of
Δtr = 1 min as the window grows, until it exceeds it when window = 25. Many
identical rules are observed by both TRG and TSRG. For a 1 s window/itemset,
and a 1-h Δtr, 42 rules are common to these two algorithms. This represents

TSRuleGrowth 133

84% of the rules found by TRG and 98% of TSRG’s rules. For the same Δtr,
and a window of 10 itemsets/15 s, 1000 rules are common, i.e. 73% of the TRG
rules, and 85% of the TSRG rules. But Δtr can also limit the number of rules
common to TRG and TSRG. Of all the possible window combinations, only 194
common rules are found at most for Δtr = 1 day, 2061 for Δtr = 1 min, and 8806
for Δtr = 1 h.

Why does Δtr influence these results so much? The principles of Sect. 3.4
can explain this. The rules found with Δtr = 1 min are limited by the size of the
transactions, while those with Δtr = 1 day are limited by their absolute support.
Also, some rules can be validated by mistake. For example, {‘staircase switch
left: on’} ⇒ {‘walkway light: off’} is seen with Δtr of 1 h and 1 day, but not
on Δtr = 1 min nor TSRG. Instead, the rule {‘walkway switch 2 top right: on’}
⇒ {‘walkway light: off’}, discovered by TSRG, is more coherent, because the
two involved objects are in the same room. Δtr’s limitations are more visible on
A4H. With minsup = 7, and a Δtr of 1 h or 1 day, TRG does not find any rule,
for any window. If Δtr = 1 min, TRG finds a single rule, which is also observed
by TSRG. Thus, in the case of A4H, TRG finds much fewer rules than TSRG for
the same minsup. By lowering minsup to 6, TRG finds more rules: if Δtr = 1 day,
no rule is found, if Δtr = 1 min, only 1 rule, also found by TSRG. This number
can be up to 64 if Δtr = 1 h. It is higher than TSRG can find (maximum 40), but
few rules are common to both TRG and TSRG (maximum 16). This is explained
by the difference in the window concept between TRG and TSRG, giving unique
rules to TRG, and the decrease in absolute support caused by Δtr, giving unique
rules to TSRG.

We can therefore confirm that converting a time series into transactions can
severely limit the search for rules and can create rules validated by mistake.
TSRG, considering directly a time series, overcomes those shortcomings.

6 Conclusion

This paper described two contributions: a new notion of absolute and relative
support over a time series, and an algorithm for searching partially-ordered pre-
diction rules on a time series of discrete elements. The notion of support is freed
from the limitations expressed in the state of the art, and the algorithm also
distinguishes itself by its features: first, an incremental architecture, inspired
by TRuleGrowth, allowing to limit the search to certain elements if necessary,
as in the proposed use case; secondly, a sliding window, allowing to limit the
duration of the searched rules; finally, the use of multisets in the rule struc-
ture, instead of sets in TRuleGrowth. TSRuleGrowth was tested on real data,
from two databases of connected environments. The observed rules characterize
short-term predictions, such as the action of a switch, and mid-term predictions,
characterizing habits. These prediction rules make it possible to offer relevant
automation possibilities to users of an AmI system. A comparison with TRule-
Growth has been made, highlighting problems and limitations of transactional
rule mining algorithms on time series, which are not encountered on TSRule-
Growth. TSRuleGrowth finds prediction rules through connected objects data,

134 B. Vuillemin et al.

and can evolve to take into account spacial aspects of the objects for example.
But for an AmI system to be truly customized, it must consider the needs of
users. A future version of such a system could therefore take into account their
tastes to choose and classify the found rules, in order to display them in a way
that is useful to them. Combined together, the relevance and usefulness of the
rules will form a solid foundation for an AmI system.

References

1. Ahn, K.I., Kim, J.Y.: Efficient mining of frequent itemsets and a measure of inter-
est for association rule mining. J. Inf. Knowl. Manage. 03(03), 245–257 (2004).
https://doi.org/10.1142/S0219649204000869

2. Augusto, J.C., McCullagh, P.: Ambient intelligence: concepts and applications.
Comput. Sci. Inf. Syst. 4(1), 1–27 (2007)

3. Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association
rules. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D.,
Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 510–517. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5 47

4. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily
activities in an instrumented home. In: 11th International Conference on Ubiqui-
tous Computing and Ambient Intelligence (UCAm I), November 2017

5. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from
time series. In: Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, KDD 1998, pp. 16–22. AAAI Press (1998)

6. Deogun, J., Jiang, L.: Prediction mining – an approach to mining association rules
for prediction. In: Śl ↪ezak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.)
RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 98–108. Springer, Heidelberg (2005).
https://doi.org/10.1007/11548706 11

7. Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V.S.: ERMiner: sequential rule
mining using equivalence classes. In: Blockeel, H., van Leeuwen, M., Vinciotti, V.
(eds.) IDA 2014. LNCS, vol. 8819, pp. 108–119. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12571-8 10

8. Fournier-Viger, P., Wu, C.W., Tseng, V.S., Cao, L., Nkambou, R.: Mining partially-
ordered sequential rules common to multiple sequences. IEEE Trans. Knowl. Data
Eng. 27(8), 2203–2216 (2015). https://doi.org/10.1109/TKDE.2015.2405509

9. Lago, P., Lang, F., Roncancio, C., Jiménez-Guaŕın, C., Mateescu, R., Bonnefond,
N.: The ContextAct@A4H real-life dataset of daily-living activities. In: Brézillon,
P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp.
175–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57837-8 14

10. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov. 1(3), 259–289 (1997). https://doi.org/
10.1023/A:1009748302351

11. Schlüter, T., Conrad, S.: About the analysis of time series with temporal associ-
ation rule mining. In: 2011 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), pp. 325–332, April 2011. https://doi.org/10.1109/CIDM.
2011.5949303

https://doi.org/10.1142/S0219649204000869
https://doi.org/10.1007/978-3-540-74958-5_47
https://doi.org/10.1007/11548706_11
https://doi.org/10.1007/978-3-319-12571-8_10
https://doi.org/10.1007/978-3-319-12571-8_10
https://doi.org/10.1109/TKDE.2015.2405509
https://doi.org/10.1007/978-3-319-57837-8_14
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1023/A:1009748302351
https://doi.org/10.1109/CIDM.2011.5949303
https://doi.org/10.1109/CIDM.2011.5949303

	TSRuleGrowth: Mining Partially-Ordered Prediction Rules From a Time Series of Discrete Elements, Application to a Context of Ambient Intelligence
	1 Introduction
	2 Context and Definitions
	2.1 Input of Our Ambient Intelligence System
	2.2 Output of Our Ambient Intelligence System

	3 Related Work
	3.1 Rule Mining on Time Series
	3.2 Partially-Ordered Rule Mining
	3.3 Scientific Problems
	3.4 Adapting Time Series to TRuleGrowth

	4 TSRuleGrowth
	4.1 Inputs, Outputs
	4.2 Metrics
	4.3 Recording of Rule Occurrences
	4.4 Principles
	4.5 Algorithm

	5 Experiments and Results
	5.1 Results of TSRuleGrowth on Two Databases
	5.2 Comparison Between TRuleGrowth and TSRuleGrowth

	6 Conclusion
	References

