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Abstract. This study introduces a connective model of routing- local path
planning for Autonomous Underwater Vehicle (AUV) time efficient maneuver
in long-range operations. Assuming the vehicle operating in a turbulent
underwater environment, the local path planner produces the water-current
resilient shortest paths along the existent nodes in the global route. A re-routing
procedure is defined to re-organize the order of nodes in a route and compensate
any lost time during the mission. The Firefly Optimization Algorithm (FOA) is
conducted by both of the planners to validate the model’s performance in
mission timing and its robustness against water current variations. Considering
the limitation over the battery lifetime, the model offers an accurate mission
timing and real-time performance. The routing system and the local path planner
operate cooperatively, and this is another reason for model’s real-time perfor-
mance. The simulation results confirms the model’s capability in fulfilment of
the expected criterion and proves its significant robustness against underwater
uncertainties and variations of the mission conditions.

Keywords: Autonomy � Firefly Optimization Algorithm � Local path
planning � Mission routing � Mission time management

1 Introduction

Autonomous Underwater Vehicles (AUVs) are designed to provide cost-effective
underwater missions and largely used for different purposes over the past decades [1].
The problem associated with most of the todays AUV’s autonomous operation is that
they operate with a pre-defined mission outline and require human supervision, in
which a set of pre-programmed instructions is fed to vehicle for any specific mission.
Considering this deficiency, obtaining a premier autonomy to manage the mission time
and autonomous adaption to the environmental changes is a substantial prerequisite in
this regard. A vast literature exists on AUVs’ routing and motion planning framework.
Different deterministic algorithms, such as D* [2], A* [3], and FM* [4], have been
used recently to address AUVs’ motion planning problem. Deterministic approaches
also have been investigated on vehicle’s task allocation and routing problems, in which
a multiple-target-multiple-agent framework based on graph matching algorithm has
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been studied by Kwok et al., in [5]. Both vehicle routing and path planning are
categorized as a non-deterministic polynomial-time problem in which computational
burden increases with enlargement of the problem search space. Hence, deterministic
and heuristic algorithms cannot be appropriate for real-time applications as these
methods are computationally expensive in large spaces [6]. Meta-heuristics are another
alternative group of algorithms for solving complex problems that offer near optimal
solutions in a very quick computation [7, 8] and is appropriate for the purpose of this
study.

There are various examples of evolution-based applications of path planning and
routing-scheduling approaches. A Non-Dominated Sorting Genetic Algorithm (NSGA-
II) is employed for AUV’s waypoint guidance and offline path planning [9]. Mah-
moudZadeh et al., designed an online Differential Evolution (DE) based path planner
for a single AUV’s operation in a dynamic ocean environment [10]. A routing-task-
assigning framework is also introduced recently for an AUV’s mission planning in a
large static operating network, in which the performance of genetic algorithm, impe-
rialist competitive algorithm, and Particle Swarm Optimization (PSO) methods are
tested and compared in solving the graph complexity of the routing problem [11].
Afterward, they extended their study by modelling a more complex environment where
a semi-dynamic operation network is encountered in contrast and subsequently effi-
ciency of the biogeography-based optimization and PSO algorithms are tested and
evaluated in solving the dynamic routing and task allocation approach [12, 13].

Indeed, attaining a superior optimization and computationally efficient approach for
addressing these complex problems is still an open area for further investigation.
Assuming a waypoint cluttered graph-like environment, the AUV must be able to
manage its battery lifetime to carry out a mission including specific set of waypoints;
hence, a general route planning over the operation network is primary requirement for
this purpose. The second essential objective is to adapt the ocean current deformations
and safely guide the AUV trough the network vertices. To do so, the system should be
computationally efficient to take a real-time trend over the subsea current deformations.
Current research constructs a general routing system with a mounted local path planner
to provide a reliable and energy efficient maneuver for the AUV. This system takes the
meta-heuristics advantages of Firefly Optimization Algorithm (FOA) to meet the
requirements of a long-range operation in a turbulent subsea environment. This
research conducts a two dimensional turbulent current map generated by a popular
predictive model based on superposition of multiple Lamb vortices [14–17].

2 Routing Problem in a Waypoint Cluttered Environment

The operation space is modelled as an undirected weighted graph (G) including a
specific number of nodes denoted by P and graph connections/edges (E). The vertices
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of the network pixyz 2 P are uniformly distributed in a three dimensional volume of
(x10000, y10000, z100) that represented as follows:

ð1Þ

Any edge between pi and pj in the graph (eij) has a corresponding length of (lij) and
approximated traversing time, given by (2). In the given operating graph, the AUV
should meet maximum possible nodes in a restricted battery lifetime. Accordingly, the
route planner tends to determine a best set of nodes in the graph to guide the AUV
toward the target node and to accommodate battery restriction. With respect to given
definitions, a route (ℜ) is mathematically indicated as follows:

8eij 9 lij; tij
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here, l is the length of the route which is subset of total number existent edges in the
graph (|E|). t denotes the vehicle’s water referenced velocity in the body frame. S is a
selection variable that represents selection of any arbitrary edge in the graph. T< is the
route time from start node of psxyz to target node of p

t
xyz . The battery lifetime denoted by

Ts and is started to counting inversely from the beginning of the operation. The T<
should approach the Ts but should not overstep that. The route should not include non-
existent edges, and should not traverse a specific edge for multiple times.

3 Environmental Dynamics and Local Path Planning

In order to deal with environmental impact on vehicles motion, a local path planner is
conducted in this study to operate in a smaller operating window between pairs of route
nodes. This space reduction leads reducing the computation burden as a smaller
window is required to be monitored. Water current is an important environmental factor
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that influences AUV’s motion. The local path planner aims to find a time efficient path
while accommodating the current deformations. The current map data in this research is
obtained from a popular numerical estimation model based of recursive Navier-Stokes
equations [14] as follows:

tc ¼ tc;x; tc;y
� � ) tc;x ¼ tcj j cos hc coswc

tc;y ¼ tcj j cos hc sinwc

	
ð4Þ

here, the tc is current velocity vector and the tc,x and tc,y are the x−y components of the
tc. The physical model used by the AUV to diagnose the current velocity field can be
found in [18, 19]. AUV’s motion in six degree of freedom is provided by state variables
of body and NED frames [20], as follows:

g : X; Y ; Z;/; h;wð Þ
t : tx; ty; tz; p; q; r

� � ð5Þ

where, the η and t denote vehicle’s dynamics and kinematic over the time. X, Y, Z
denote AUV’s position along the path. u, h, w are the Euler angles of roll, pitch, and
yaw, respectively. The t is AUV’s velocity vector in the body frame; tx, ty, tz are
directional velocities of surge, sway and heave; and p, q, r are the rotational velocities.
In this study, the local path ℘ is generated using B-Spline curves captured from number
of control points while the water current velocity is continuously taken into account.
The local path curve ℘ is calculated by:

ht ¼ tan�1 � DZi;t


 

= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DX2
i;t þDY2

i;t

q� �
wt ¼ tan�1 DYi;t



 

= DXi;t



 

� �
tx;t ¼ tj j cos ht coswt þ tcj j cos hc coswc
ty;t ¼ tj j cos ht sinwt þ tcj j cos hc sinwc
tz;t ¼ tj j sin ht
} ¼ X; Y ; Z;w; h; tx; ty; tz

� 
ð6Þ

The AUV is presumed with a constant thrust power; hence, the path time T℘ has a
linear relation to path length. The water current deviates the vehicle from its desired
trajectory; hence, the resultant path should meet the kinematic constraints of the vehicle
in dealing with current force. Therefore, AUV’s surge-sway velocities and its yaw-
pitch orientation should be constrained to tx,max, [ty,min, ty,max], hmax, and [wmin, wmax]
in all states along the path. Accordingly, the path cost is calculated by (7).
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The etx, ety, eh, ew denote the impact of each constraint violation in determination of
the local path cost C℘.

4 Mission Evaluation Criterion

The generated route (ℜ) is composed of distances between nodes (lij) and the path
planner generates time efficient trajectory along those distances (lij/℘ij); hence, the
path cost of C℘ directly impacts the route cost of Cℜ. As mentioned earlier in Sect. 2,
the rout time Tℜ should approach the total battery lifetime Ts, but should not overstep
that. Therefore, the Cℜ gets penalty when the Tℜ for a particular route exceeds the Ts.
The local path may take longer time in dealing with environmental dynamic changes.
In such a case, the lost time should be compensated by a proper re-routing process,
while its computation cost is considered in total mission cost calculation. Thus, the Cℜ

and total mission cost of Cs in the proceeding research is calculated by (8).
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Where, Tcompute is the re-routing computation time, and r is the number of re-
routing in a mission. d℘ij is the delayed time during the local path planning between
pixyz and p j

xyz.
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5 FOA on Mission Routing and Path Planning

Firefly Optimization Algorithm is a meta-heuristic algorithm inspired from the flashing
patterns of fireflies, in which the fireflies attract each other based on their brightness
[21]. The fireflies’ brightness decreases by distance and the brighter fireflies attract the
less bright ones; hence, their attraction is proportional to their brightness and their
relative distance. Attraction of a firefly i toward the brighter firefly j is calculated as
follows:

@ij ¼ vj � vi
�� ��

vi;tþ 1 ¼ vi;t þ b0e
�c @2ij vj;t � vi;t

� �þ at1
t
i

at ¼ a0j
t; j 2 0; 1ð Þ

ð9Þ

the ∂ij is the distance between fireflies i and j; b0 is the attraction factor at ∂ = 0, a0 and
at are the initial randomness scaling value and the randomization parameter, respec-
tively. at tunes the randomness of fireflies’ movement in each iteration. j is a damping
factor. The 1ti is a randomly generated vector at time t. The c light absorption factor. In
a case that b0 approaches zero the movement turns to a simple random walk, while
c = 0 turns the FOA to a variant of PSO; thus, a proper balance should be set between
the engaged parameters [21]. The FOA is efficient due to applying an automatic
subdivision approach that enhances convergence rate of the algorithm, and iteratively
prevents fireflies from trapping into local optima. This accommodates FOA to effi-
ciently deal with highly nonlinear continuous problems, and makes it flexible in dealing
with multimodality [22]. The control parameters in FOA can be tuned iteratively,
which is another reason for its fast convergence. Similar to other metaheuristic algo-
rithms, the FA also has two inner loops through the population imax and iteration tmax,
so at the extreme case the algorithms complexity is Oði2max � tmaxÞ ; hence, the
computation cost is respectively low as its complexity is linear to time. The cost
evaluation is the most computationally complex part of almost all optimization prob-
lems. To the purpose of AUV global routing, first step in using the FOA algorithm is to
provide the initial population in the format of feasible routes, which has a great impact
on algorithms performance. Fireflies in this context are defined as feasible routes in the
graph [23, 24].

The solutions take variable length limited to number of vertices in the graph that are
generated using graph adjacency information. Accordingly, the algorithm stars to
optimize the solutions based on defined cost function for routing problem. In the case
of local path planning, the fireflies in the initial population are assigned with candidate
local path solutions that are generated by a set of B-Spline control points. Then the
FOA tends to efficiently locate the control points of a candidate ℘ curve in the solution
space according to the defined cost function for the local path. The FOA process of
AUV routing, path planning and re-planning is provided by a pseudo-code in Fig. 1.
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The battery lifetime Ts should be managed adaptively. Accordingly, the local path
time Tij

} gets compared to expected path time of tij after visiting each node in the route
sequence and if it exceeds that, re-routing flag gets triggered. The Ts gets updated
simultaneously. The given process in the pseudo code of Fig. 1 continues until the
AUV reaches to the target node.

Fig. 1. Pseudocode of FOA-based routing, path planning, and re-planning
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6 Discussion on Simulation Results

First we turn to evaluate the performance of FOA-based local path planner according to
given cost function in (7). The vehicle is assumed to move with a standard thrust power
of maximum t = 5.5 (knots). The battery consumption for a path is a constant multiple
of the path time and path length due to proportional relation of current velocity to the
cube root of the thrust. A static current map data is used to evaluate the behaviour of
local path planner to water currents deformations. The current map is generated using a
Gaussian distribution of 11 vortices in 100 � 100 grid. The paths’ curvature is
acquirable by the AUV’s directional velocity components and radial acceleration.
Figure 2 represents the local path behavior with respect to water current flow.

As depicted in Fig. 2, it is noteworthy to hint the efficient capability of the FOA-
based planner in conforming current arrows either in using accordant current arrows or
in avoiding turbulent (vortices). According to path cost function, the path planner aims
to determine the shortest battery efficient path between nodes and adapting water
current deformations while the actuators boundary conditions and vehicular constraints
are considered.

With respect to (7), the path cost function gets penalty when the generated path is
violated the boundaries on vehicle’s surge, sway, theta rate, yaw rate constraints, which
here is defined as follows: tx,max = 5.25 (knots); [ty,min, ty,max] = [−0.97,0.97] (knots);
hmax= 20 (deg/s); and [wmin, wmax] = [−17,17] (deg/s). Figure 3 presents the local path

Fig. 2. The local path adaption to current arrows in a static map

Efficient Deployment and Mission Timing of Autonomous 799



planner’s performance in reducing the path cost and satisfying the above mentioned
constraints.

The generated path, as illustrated in plot Fig. 3, shows a great fitness regarding all
defined path constraints. The cost variation of path population experiences a moderate
convergence to the minimum cost and the variation range narrows down iteratively. It
is further outstanding from Fig. 3(b), the FOA-based path planner accurately manages
the path toward eliminating the violation factors as the violation of the path population
diminishes over the 100 iterations.

On the other hand, the routing model should select an efficient set of nodes
restricted to battery life time Ts to ensure on-time mission termination. A critical factor
for concurrency of the routing and path planning models is having a short computa-
tional time to keeps any of them from dropping behind the process of the other one.
Figure 4 presents the computational performance of the both FOA-based route planner
and path planner in 25 simultaneous runs. Moreover, compatibility of the expected time
tij and the path time T℘ for traversing lij is another significant performance metric
impacts the system synchronism. Hence, there should not be a huge difference between
variations of these two parameters. This concurrency also impacts on-time re-routing

Fig. 3. (a) Cost variations of path population over 100 iterations; (b) Path violation of tx, ty, h,
and w over 100 iterations;

Fig. 4. Computational time variation of route-path planning model over the 25 experiments
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procedure. The concurrency of tij and T℘ in 25 experiments is depicted by Fig. 5.
Routing and path planning computational time variations, as presented in Fig. 4, are
fairly drawn in a narrow range of seconds for all 25 experiments, which hint the real-
time performance of the proposed connective FOA-based model in handling the
environmental changes.

Analysis of the captured result from multiple experiences, indicates model’s con-
sistency in preserving the conformity between tij (depicted by gray transparent box
plot) and T℘ (depicted by blue compact box plot) as their average variations is rela-
tively close in each experiment. This confirms the accurate synchronization of the
routing and path planning system. The whole process of one experiment is illustrated
by Fig. 6 for better understanding, in which this single mission includes three re-
routing and 11 local path planning passing through the 12 nodes. The routing system
provides an initial efficient route. The remained time is initialized with battery life time
Ts and is counted inversely during the mission. The local path planner incorporates
local environmental changes and if the T℘ oversteps the tij the re-routing flag is trig-
gered and controller shifts to the routing system to compensate the lost time.

Fig. 5. Compatibility of the value of T℘ and tij in a quantitative manner over the 25 experiments

Fig. 6. Routing, path planning, and re-routing procedure by re-arrangement of edges’ order in a
single mission. (Color figure online)
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As presented in Fig. 6, the final optimum route (black line) is generated through the
three re-planning process, in which the first route (presented by dashed red line) is
discarded after passing two nodes; the second one (shown by pink dashed line) is
discarded after visiting 5 nodes from the starting point, and the third route (depicted by
green dashed line) is discarded in the node 6. These re-planning are carried out to
compensate the lost time in the local path planning process.

The most important performance metric in this study is model’s accuracy in mis-
sion timing and ensuring on-time completion of the mission. Thus, the best outcome of
the model is to take a maximum use of battery life time and to fulfill a mission with
minimum residual time. The model’s capability of mission timing is examined through
the 25 individual experiments (missions) presented by Fig. 7, in which the battery life
time is set on Ts = 7.2 � 103(s) and the terrain is modelled as a realistic underwater
environment encountering static ocean current map.

It is outstanding from Fig. 7, the Tremained is positive and it is approached to zero in
all 25 missions, which means all missions completed before vehicle runs out of battery.
Accordingly, the mission time (TRoute) maximized to approach upper bound of TTotal

(presented by pink horizontal line in Fig. 7), but it doesn’t overstep the line in any of
experiments. It is noted from analyzing the results, the model accurately satisfies
mission timing constraints along with other considerations. This is a significant
achievement toward having a successful and reliable operation through the excellent
mission time management.

7 Conclusion

In this study a connective model of AUV routing and local path planning based on
firefly optimization algorithm (FOA) is presented, in which the model is advantaged
with a reactive re-routing capability that manages the mission time by re-organizing the
order of nodes in a way to be fitted to the battery life time. The local path planner, at the
same time, tends to generate energy/time efficient paths along the selected nodes in a
route encountering desirable and adverse water current flow. To validate the proposed
connective model, the vehicle’s operation is simulated in large-scale three-dimensional

Fig. 7. Statistical analysis of the model’s timing performance in 25 missions.
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volume and the static water current map is added to consideration. The FOA perfor-
mance on the proposed model is tested through the 25 individual mission trials. It is
inferred from simulation results that the offered connective model proposes an efficient
computational performance (in range of seconds) for both vehicle routing and local
path planning that affirms the real-time performance of the model in long range mission
management. The local planner also shows a great current resilient efficiency that leads
remarkable energy saving in vehicle’s continuous deployments. As inferable from the
simulation results, the re-planning facilitates the vehicle to have a reliable and energy
efficient operation by having an excellent mission timing. The future research will
concentrate on expanding the proposed model in terms of upgrading the planners’
capabilities and environmental influences on small and long-range missions. It is
planned to expand the current study and to prepare a full version as a journal paper.
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