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Abstract. Patients with similar conditions in the intensive care unit
(ICU) may have different reactions for a given treatment. An effective
personalised medicine can help save patient lives. The availability of
recorded ICU data provides a huge potential to train and develop the sys-
tems. However, there is no ground truth of best treatments. This makes
existing supervised learning based methods are not appropriate. In this
paper, we proposed clustering based Bayesian reinforcement learning.
Firstly, we transformed the multivariate time series patient record into
a real-time Patient Sequence Model (PSM). After that, we computed
the likelihood probability of treatments effect for all patients and clus-
ter them based on that. Finally, we computed Bayesian reinforcement
learning to derive personalised policies. We tested our proposed method
using 11,791 ICU patients records from MIMIC-III database. Results
show that we are able to cluster patient based on their treatment effects.
In addition, our method also provides better explainability and time-
critical recommendation that are very important in a real ICU setting.
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1 Introduction

Personalised treatment recommendation is one of the most desired applications
of intensive care unit (ICU) decision support systems. Research in sepsis related
patients shows that ICU patients in a similar condition had difference responses
to a set of Vasopressor treatments [10]. Some patients responded properly (get-
ting a better condition), other set of patients had complications (getting a worse
condition), and the remaining patients did not respond at all. Every four years,
ICU community updates their best practise guidelines to deal with sepsis based
on recent evidence based medicine research [12]. This process is expensive, time
consuming, and possibly has conflicting results.

The availability of ICU database has opened the opportunity to develop a
data driven approach for personalised medicine. We aim to develop a personalised
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Fig. 1. The interaction between ICU patient and medical staff modeled in reinforce-
ment learning. At a timestamp t, medical staff analyse the current state of patient
St and reward Rt (scalar value indicating how good the patient condition). Based on
a medical policy π, they perform action At. The patient response the treatment on
current state by revealing the next state St+1 and reward Rt+1.

treatment recommendation for sepsis related patients using existing ICU data.
We choose sepsis related patients because sepsis is the most frequent cause of
death in ICU [13]. In addition, both the definition of sepsis [15] and its effective
treatments are still subject of future medical research.

There are two main challenges to do precision medicine in ICU. Firstly, there
is no ground truth of best treatments. The current recorded treatments are sub-
ject to evaluation for future best practise guidelines. This makes existing super-
vised learning based recommendation systems [3] are not appropriate. Secondly,
the ICU record is a multivariate time series data with common missing values
and no proper alignment. Existing recommendation systems [11] were using a
fix interval to sequence these data. However, this approach is not applicable as
ICU demands a real-time decision making process.

In this paper we proposed personalised medicine based on Bayesian reinforce-
ment learning. Firstly, we developed a real-time multivariate time series sequenc-
ing technique called Patient Sequence Model (PSM). Figure 1 illustrates our
sequence model. After that, we calculated the likelihood of treatment responses
to generate a meaningful feature representation for each patient. Then, we clus-
tered the patient based on their treatment responses. Finally, we define a math-
ematical model to compute a personalised policy.

There are three main contributions of this paper.

– Explainable Sequence Model. We are able to visualise a meaningful state
transition diagram represented patient dynamics in ICU.

– Discovery of Patient Clusters. We are able to cluster the patients into
several groups based on patient responses to the treatments.

– Personalised Policy Computation. We define a framework to recommend
a personalised treatment as combination of policies from all clusters.

The rest of the paper is organised as follow. Section 2 describes related work.
The proposed methods is explained in Sect. 3. Evaluation is provided in Sect. 4.
Finally, Sect. 5 gives concluding remark and direction of future work.
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2 Related Work

The first set of attempts in treatment recommendation were based on expert
systems [1,5]. However, it is difficult and costly to get knowledge from domain
expert. As the availability of electronic health records (EHR), data driven
method became a reasonable direction. The first set of methods are supervised
learning based methods. Hu et al. [6] used similarity method, Cheerla et al.
[4] integrated genomics data, and Bajor et al. [3] proposed deep model. How-
ever, these methods are not suitable in ICU as ground truth of treatment is
unclear. A more reasonable data driven approach is using reinforcement learn-
ing. Tsoukalas et al. [16] modeled the treatment recommendation problem as
Partially Observable Markov Decision Process (POMDP) while Nemati et al. [9]
and Raghu et al. [11] modeled it as deep reinforcement learning. However, these
methods sequenced the ICU patients based on a fix length interval, e.g. 4 h. This
is not applicable in real ICU setting as it demands real-time decision making. In
addition, their models are not explainable to domain expert which is important
in this sensitive application.

3 Proposed Methods

Markov Decision Process (MDP) is defined by tuple (S, A, T , R) where:

– S : S1 × S2 × . . . × Sns, is the set of states of the system; S1, . . . , Sns corre-
spond to the domain of the ns state variables (features). We define qSOFA
variables (ns = 3) as state variables. So that, we have S1 = ABPSystolic,
S2 = RespiratoryRate, and S3 = Mentation. We added two terminal states
survived and dead to the state space.

– A : A1 × A2 × . . . Ana, is the set of actions that can be performed by the
agent. We define vasopressor treatments (na = 5) as the action set. Here,
we have A1 = Epinephrine, A2 = Dopamine, A3 = Phenylephrine, A4 =
Norepinephrine, and A5 = V asopression.

– T : S ×A×S → [0, 1] is the transition function, where T (s, a, s′) = P (s′|s, a)
represents the conditional probability of moving to state s′ ∈ S if the agent
executes action a ∈ A in state s ∈ S.

– R : S×A×S → R, the reward function, encodes a reward earned when state s′

is reached after executing action a in state s. We defined R(s, a, survival) =
+100, R(s, a, death) = −100, and R(s, a, s′) = −qSOFA(s′) for all non-
terminal states s′.

The goal of the MDP agent is to find an action selection strategy π∗, called
a policy, that maximises its long-term expected rewards. The optimal action to
take in a state s is defined via the optimal value function V ∗ representing the
return obtained by the optimal policy starting in state s:

V ∗(s) = max
a∈A

[
R(s, a, s′) +

∑
s′∈S

T (s, a, s′)V ∗(s′)

]
. (1)
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The optimal action in s is obtained by taking the argmax instead of the max in
the Eq. 1.

3.1 Sequence Model

We proposed a real-time multivariate time series sequencing called Patient
Sequence Model (PSM). Each ICU stay I(i) = [S1, A1, R2, S2, A2, . . . , RTi

, STi
] is

represented by a sequence of states, actions, and rewards. In this model, we did
not divide timestep based on a fix length interval, e.g. 4 h. Instead, we extract a
new timestep when there is a new observation. We believe that in the real ICU
settings, medical staff makes decision based on new observation. They will not
wait until a given fix interval to take action.

We discretised both state and action to have a better explainability. We dis-
cretised state variables into binary values normal and abnormal. We followed
medical literature to define thresholds for all variables. As we have 3 state vari-
ables and 2 values for each variables, we have 23 = 8 states. Since we added 2
terminal states, the total number of states in our state space is 10.

For action variables, we discretised into true (if the drug was administered)
and false (otherwise). As we have 5 action variables and 2 values for each
variables, the total number of actions in our action space is 25 = 32. Table 1a
and b shows the combination of variables in state and action space, respectively.
We left the definition of reward Rt the same.

3.2 Feature Engineering

We want to divide the whole patient cohort into several subgroups. Patients
within a same subgroup should have a common responses of a set of treatments.
On the other hand, patients from two different subgroups should have different
responses. By correctly identifying subgroups of patients, we will be able to
deliver a more personalised treatment for a new patient.

We designed a feature that reflects patient responses for all treatments at any
given state. For each ICU stay I(i), we calculated feature representation X(i) as

X(i) = T (St, At, St+1) = P (St+1|St, At). (2)

X(i) ∈ R|St|×|At|×|St+1| is a transition function of current state St, action
At, and next state St+1. We can unfold the first dimension into X(i) =
[X(i)

1 ,X
(i)
2 , . . . , X

(i)
8 ], where

Table 1. State definition (a) and action definition (b). The reward function is associ-
ated with the qSOFA values defined in table (a).

States ABP Systolic Respiratory Rate Mental Status qSOFA
s1 normal normal normal 0
s2 normal normal abnormal 1
s3 normal abnormal normal 1
s4 normal abnormal abnormal 2
s5 abnormal normal normal 1
s6 abnormal normal abnormal 2
s7 abnormal abnormal normal 2
s8 abnormal abnormal abnormal 3

(a) State space

Actions Epinephrine Dopamine Phenylephrine Norepinephrine Vasopressin
a0 false false false false false
a1 false false false false true
a2 false false false true false
a3 false false false true true
a4 false false true false false
a5 false false true false true
a6 false false true true false
a7 false false true true true
... ... ... ... ... ...

a31 true true true true true

(b) Action space
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X
(i)
j = P (St+1|St = sj , At). (3)

Here, X
(i)
j is the conditional probability of ith ICU stay in state sj . The index j

can take value from 1 to 8 because we have |St| = 8 non-terminal states in our
definition (see Table 1a).

For each ICU stay I(i), we calculated the likelihood of conditional probability
P̂ (St+1 = sl|St = sj , At = ak) as

P̂ (sl|sj , ak) =
1

N(St = sj , At = ak)

T∑
t=1

1(St, At, St+1 = sj , ak, sl). (4)

Figure 3 shows the conditional probability of ICU ID = 204176 in state s4 (abnor-
mal respiratory rate and abnormal mental status). We may see that the patient
had been given 7 different treatments when she/he was in this state.

3.3 Personalised Policy

We flattened three dimensional matrix X(i) into a single long vector X̂(i). Num-
ber of non-terminal states |St| = 8 (see Table 1a), number of action states
|At| = 32 (see Table 1b), and number of all possible states St+1 = 10 (8 non-
terminal states and 2 terminal states). So that, X̂(i) ∈ R2,560. To have a better
visualisation of all patients in the experimental data, we reduced the dimension
using PCA and projected in the first three dimensions in Fig. 5a.

The existing methods were calculated a single general policy π∗
g from the

whole training data. Then, they applied this policy to the all test data. We
believe that the patients can be segmented into some subgroups with a common
similarity. We applied k-means clustering to the extracted feature X̂(i) for all
patient in training data. The clustering result (c1, c2, . . . , cnc) will reflect sub-
groups of patient with similar responses of treatments.

Fig. 2. General policy versus personalised policy
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We computed a dedicated policy π∗
i for subgroup ci. We defined personalise

policy π∗
p as

π∗
p = P (c1|X) ∗ π∗

1 + P (c2|X) ∗ π∗
2 + . . . + P (cnc|X) ∗ π∗

nc. (5)

Here, P (ci|X) is the believe that a new patient X is belong to cluster ci. Figure 2
illustrates the different between general policy and personalised policy. Suppose
we cluster the training data into 3 clusters, then we will have 3 subgroup policies.
For nc number of clusters, we can write the personalised policy as

π∗ =
nc∑
i=1

P (ci|X) ∗ π∗
i . (6)

4 Evaluation

4.1 Dataset

We used real-world ICU dataset from MIMIC-III (Medical Information Mart
for Intensive Care) database [8]. We follow six exclusion criteria [7] in order to
extract experimental data for optimal treatment recommendation related to sep-
sis. Firstly, we only considered records of patient admitted from 2008. After that,
we excluded non-adults, non-primary admissions, cardiothoracic surgical ser-
vice admissions, and admissions with missing data. Finally, we removed patient
records with suspected of infection more than 24 h before and more than 24 h
after ICU admission. The final patient cohort contained 11,791 patients.

4.2 Experimental Design

We divided our experiments into two main parts. Each part serves a dedicated
purpose. In the first part, we want to test the explainability of our proposed
sequence model. This is the key feature to discuss with domain experts, further
our research in the right direction, and increase its applicability. We compute
the likelihood of state transition probability P̂ (St+1|St) using all dataset. After
that, we visualise the result and generate state transition diagram.

In the second part, we want to test the effectiveness of our proposed feature
representation. We need to see whether represent each patient based on their
response to treatment is useful. We compute pairwise distance of all patients
then group them into several number of clusters. We compare the clustering
results with existing concepts in medical domain knowledge such as sepsis.

4.3 Result and Analysis

We computed probability of state transition from a current state St to a next
state St+1. Figure 4a shows likelihood probability P̂ (St+1|St) computed from
all patient records in the experimental data. We can see that the diagonal of
the figure is mostly dark blue (P̂ (St+1 = si|St = si) is close to 1. It suggests
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Fig. 3. A conditional probability P̂ (St+1|St = s4, At) for a patient (ICU ID= 204176)
in current state St = s4 (abnormal respiratory rate and mental status).

Fig. 4. Patients dynamics in transition probability (a) and diagram (b). (Color figure
online)

that most of the time, patient will stay in the same state for several timestamps
before changing to another states. State s3 and s7 are the two states with greater
probability to move to other states. This means, intervention in these states will
more likely change patient conditions.

To justify personalised medicine idea, we need to compare the general state
transition probability with a particular patient. For that reason, we observed
a patient who received the most number of unique treatments as an extreme
case. In our experimental data, a patient with ICU ID = 204176 received 18
treatments which is the highest of all patients. Figure 3 shows the conditional
probability P̂ (St+1|St = s4, At) for the patient in the current state St = s4.

We analyse some key features in Fig. 3. The patient received 7 type of treat-
ments {a0, a3, a4, a5, a8, a12, a13} in state s4 (abnormal respiratory rate and men-
tal status). The Patient 100% went to a better state s2 (abnormal respiratory)
when given treatments {a3, a12, a13} and 100% went to a worse state s8 (abnor-
mal blood pressure, respiratory, and mental status) when given treatments {a5}.
On the other hand, the patient was most probably stay in the state s4 when give
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Fig. 5. Patients clustering (Color figure online)

treatments {a0, a4, a8} with some small probability moved to other states. These
unique features are significantly different with the overall case shown in Fig. 4a
where mostly patient in state s4 are stay in the same state. This suggests that
developing treatment recommendation systems using overall dynamics from all
patients will not be effective.

We visualise the likelihood of state transition probability into state transition
diagram in Fig. 4b. The vertices are eight non-terminal states (circle) and two
terminal states (rectangle). The lower the position of a state in the diagram, the
worse its condition with respect to qSOFA score. The directed edges represent
state transitions. The edge’s width is proportional to its conditional probability
P (St+1|St). We filtered the edges with P (St+1|St) < 0.1. We added three edges
with highest probability for each terminal states.

In this filtered diagram, we can see the dynamics such as common survival
and mortality models. Most of the survived patients had normal mental status
(no blue circle) in ICU discharge. We can also see that most of the patients we
getting better during ICU stays. Between non-terminal states, there are 7 edges
going up (better qSOFA score) and 4 edges going down (worse qSOFA score).
This kind of visualization can be useful for better explainability of proposed
method with medical practitioners.

We projected all patients into 3 dimensional space using PCA. Figure 5(a)
shows the results. Every single dot in the figure represents a single patient. We
color the patients based concepts in medical knowledge. In Fig. 5(b), we used the
definition of sepsis by Angus et al. [2]. In Fig. 5(c), we used the third definition of
sepsis or sepsis-3 [15] established in 2016. In both definitions, we may see that the
sepsis patients (red) are somehow well separated with non-sepsis patients (blue).
it means that our feature engineering method based one treatment responses is
aligned with medical concept.
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We want to compare both definitions of sepsis with our clustering results.
The latest definition of sepsis has more identified sepsis patients (more red dots)
and visually better separated in the figures. This may suggest that medical
knowledge with respect to sepsis definition has been improved. Now, lets compare
with the clustering results in Fig. 5(d) where they have the same number of
groups. Interestingly, they also have a similar clusters shape. The difference is
the clustering result have a lot more red cluster and even better separated.

As sepsis definition in critical care society is keep developing (the next is
sepsis-4), the clustering result can help to make a better definition. Our medical
collaborator is eager to investigate patients within the same group of majority
of sepsis patients using data driven method but not identified as sepsis in the
current definition, and vice versa. Furthermore, we can cluster the patients into
more than two clusters as in Fig. 5(e) and (f). In other diseases, such as cancer,
they are able to identify new subtype of disease [14] using clustering result. Fur-
ther analysis in our clustering results with domain expert is needed to investigate
potential new subtype of sepsis.

5 Conclusion

We proposed the Patient Sequence Model (PSM) to transform multivariate time
series patient data into explainable and computable representation. The PSM
model is able to generate a meaningful state transition diagram. We developed
a reasonable feature extraction method based on probability of treatment effect
and clustered all patients based on those high dimensional feature. The clustering
result aligns with current medical concept and potentially discovers novel sub-
types of sepsis. We proposed a novel Bayesian reinforcement learning method to
compute personalised policy based on combination of dedicated policies in each
cluster. The future work is discussion with medical collaborator with respect to
this clustering results. In addition, we will need to define a medically acceptable
performance evaluation criteria to compare our proposed personalised policy
with general policy and doctor policy.
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