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Abstract. In a former paper [10] we simplified the proof of a theorem
on personalized random walk that is fundamental to graph nodes clus-
tering and generalized it to bipartite graphs for a specific case where the
probability of random jump was proportional to the number of links of
“personally preferred” nodes. In this paper, we turn to the more complex
issue of graphs in which the random jump follows a uniform distribution.
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1 Introduction

The PageRank is widely used as a (primary or supplementary) measure of the
importance of a web page since its publication in [15]. Subsequently, the idea was
explored with respect to methods of computation [3], application areas (web page
ranking, client and seller ranking, clustering, classification of web pages, word
sense disambiguation, spam detection, detection of dead pages etc.) and appli-
cation related variations (personalized PageRank, topical PageRank, Ranking
with Back-step, Query-Dependent PageRank, Lazy Walk Pagerank etc.), [11].

The traditional PageRank reflects the probability that a random walker
reaches a given webpage. The walker, upon entering a webpage, follows with
uniform probability one of the outgoing edges unless he gets bored or there are
no outgoing edges. If so, he jumps to any web page with uniform probability.

One of the application areas of PageRank is the creation of new clustering
methods especially for graphs, including undirected1 graphs in which we are
interested in this paper. One of the clues for clustering of graphs assumes that
a good cluster has low probability to be left by a random walker. Though the
concept seems to be plausible, it has been investigated theoretically only for

1 Unoriented graphs have multiple applications as a means to represent relationships
spanned by a network of friends, telecommunication infrastructure or street network.
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a very special case of a random walker (different from the traditional walker),
performing the “boring jump” with the probability being proportional to the
number of incident edges (and not uniformly) – see e.g. [4,10].

In this paper, we will make an attempt to extend this result to the case when
the “boring jump” is performed uniformly (as in case of traditional walker)
(Sect. 2 with some variants described in Sect. 3) and to generalize it to bipartite
graphs (Sect. 4).

PageRank computation for bipartite graphs was investigated already in the
past in the context of social networks, e.g. when concerning mutual evaluations
of students and lecturers [13], reviewers and movies in a movie recommender
systems, or authors and papers in scientific literature or queries and URLs in
query logs [7], recommendations [9], food chain analysis [1], species ranking [8],
economy [16], social net analysis [6], or performing image tagging [2]. Akin algo-
rithms like HITS were also generalized for bipartite graphs, [14]. As pointed at
in [10], the bipartite graphs have a periodic structure explicitly while PageRank
aims at graph aperiodicity. Therefore a suitable generalization of PageRank to a
bipartite structure is needed and we will follow here the proposals made in [10].

2 Traditional PageRank

One of the many interpretations of PageRank views it as the probability that a
knowledgeable (knowing addresses of all the web pages) but mindless (choosing
next page to visit without regard to any content hints) random walker will
encounter a given web page. So upon entering a particular web page, if it has no
outgoing links, the walker jumps to any web page with uniform probability. If
there are outgoing links, he chooses with uniform probability one of the outgoing
links and goes to the selected web page, unless he gets bored. If he gets bored
(which may happen with a fixed probability ζ on any page), he jumps to any
web page with uniform probability. One of the modifications of this behavior
(called personalized PageRank) was a mindless page-u-fan random walker who
is doing exactly the same, but in case of a jump out of boredom he does not
jump to any page, but to the page u. Also, there exist plenty of possibilities of
other mindless walkers between these two extremes. An unacquainted reader is
warmly referred to [12] for a detailed treatment of these topics.

Let us recall the formalization of these concepts. With r we will denote a
(column) vector of ranks: rj will mean the PageRank of page j. All elements of
r are non-negative and their sum equals 1.

Let P = [pij ] be a matrix such that if there is a link from page j to page
i, then pi,j = 1

outdeg(j) , where outdeg(j) is the out-degree of node j2. In other
words, P is column-stochastic matrix satisfying

∑
i pij = 1 for each column j.

If a node had an out-degree equal 0, then prior to construction of P the node is
replaced by one with edges outgoing to all other nodes of the network. Hence
2 For some versions of PageRank, like TrustRank pi,j would differ from 1

outdeg(j)

giving preferences to some outgoing links over the other. We are not interested in
such considerations here.
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r = (1 − ζ)·P·r + ζ·s (1)

where s is the so-called “initial” probability distribution (i.e. a column vector
with non-negative elements summing up to 1) that is also interpreted as a vector
of web page preferences.3 For a knowledgeable walker for each node j of the
network sj = 1

|N | , where |N | is the cardinality of the set of nodes N constituting
the network. For a page-u-fan we have su = 1, and sj = 0 for any other page
j �= u. For a uniform-set-U -fan4 we get

sj =

⎧
⎨

⎩

1
|U | if j ∈ U

0 otherwise
, j = 1, . . . |N | (2)

and for a hub-page-preferring-set-U -fan we obtain

sj =

⎧
⎨

⎩

outdeg(j)
∑

k∈U outdeg(k)
if j ∈ U

0 otherwise
, j = 1, . . . |N | (3)

The former case is the topic of this paper, the second was considered in our
former paper [10].

Instead of a random walker model, we can view a web as a pipe-net through
which the authority is flowing in discrete time steps. In single time step a frac-
tion ζ of the authority of a node j flows into so-called super-node, and the
fraction 1−ζ

outdeg(j) is sent from this node to each of its children in the graph.
After the super-node has received authorities from all the nodes, it redistributes
the authority to all the nodes in fractions defined in the vector s. Note that the
authority circulates lossless (we have a kind of a closed loop here). Besides this,
as was proven in many papers, we have to do here with a self-stabilizing process.
Starting with any stochastic vector r(0) and applying the operation

r(n+1) = (1 − ζ)·P·r(n) + ζ·s
the series {r(n)} will converge to r being the solution of the Eq. (1) (i.e. to the
main eigenvector corresponding to eigenvalue 1).

Subsequently let us consider only connected graphs (one-component graphs)
with symmetric links, i.e. unoriented graphs. Hence for each node j the rela-
tionships between in- and out-degrees are: indeg(j) = outdeg(j) = deg(j). In a
former paper we have proven [10].

Theorem 1. For the preferential personalized PageRank we have

poζ ≤ (1 − ζ)
|∂(U)|
V ol(U)

where ∂(U) is the set of edges leading from U to the nodes outside of U (the
so-called “edge boundary of U”), |∂(U)| is the its cardinality, and V ol(U), called
volume or capacity of U is the sum of out-degrees of all nodes from U .
3 We will denote the solution to the Eq. (1) with r(t)(P, s, ζ).
4 We will call the set U “fan-pages” or “fan-set” or “fan-nodes”.
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Let us discuss now a uniform-set-U -fan defined in Eq. (2). Consider the situation
where U is only a proper subset of N , and assume that

r
(t)
j =

⎧
⎨

⎩

1
|U | if j ∈ U

0 otherwise
, j = 1, . . . |N | (4)

in a moment t. To find the distribution r(t
′) for t′ > t we state that if in none of

the links the passing amount of authority will exceed γ = (1−ζ) 1
|U |mink∈U deg(k) ,

then at any later time point t′ > t the inequality r
(t′)
j ≤ deg(j) · γ + ζ

|U | holds
at any node j ∈ U , because if a node j �∈ U gets via links lj,1, ..., lj,deg(j) the
authority amounting to alj,1 ≤ γ, ..., alj,deg(j) ≤ γ then it accumulates

aj =
deg(j)∑

k=1

aj,k ≤ γ·deg(j)

of total authority, and in the next time step the following amount of authority
flows out through each of these links:

(1 − ζ)
aj

deg(j)
≤ γ(1 − ζ) ≤ γ

If a node j ∈ U gets via incoming links lj,1, ..., lj,deg(j) the authority amounting
to alj,1 ≤ γ, ..., alj,deg(j) ≤ γ then, due to the authority obtained from the super-
node equal to bj = ζ 1

|U | ≤ deg(j)γ ζ
1−ζ , in the next step through each link the

authority amounting to

(1 − ζ)
aj

deg(j)
+ (1 − ζ)

bj

deg(j)
≤ γ(1 − ζ) + γ

ζ

1 − ζ
(1 − ζ) = γ

flows out. So if already at time point t the authority flowing out through any
link from any node did not exceed γ, then this property will hold (by induction)
forever, especially for the equation solution r which is unique. Let us denote by
po the total mass of authority contained in all the nodes outside of U . We ask:
“How much authority from outside of U can flow into U via super-node at the
point of stability?” This question concerns the quantity poζ. We claim that

Theorem 2. For the uniform personalized PageRank we have

poζ ≤= (1 − ζ)
|∂(U)|

|U |mink∈U deg(k)

Proof. Let us notice first that, due to the closed loop of authority circulation,
the amount of authority flowing into U from the nodes belonging to the set
U = N\U must be identical with the amount flowing out of U to the nodes in U .
But from U only that portion of authority flows out that flows out through the
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boundary of U because no authority leaves U via super-node (it returns from
there immediately). As at most the amount γ|∂(U)| leaves U , then

poζ ≤ γ|∂(U)| = (1 − ζ)
1

|U |mink∈Udeg(k)
|∂(U)| = (1 − ζ)

|∂(U)|
|U |mink∈Udeg(k)

When you compare the above two Theorems 1 and 2, you will see immediately
that the bound in case of “preferential” Theorem 1 is lower than in case of
“uniform” Theorem 2. If we look more broadly at the s vector with sj > 0 ∀j∈U

and sj = 0 ∀j �∈U , we will derive immediately by analogy the relation.

Theorem 3. For the personalized PageRank with arbitrary s vector such that
sj > 0 ∀j∈U and sj = 0 ∀j �∈U we have

poζ ≤= (1 − ζ)
|∂(U)|

mink∈U
deg(k)

sk

3 Variants of the Theorems

In this section, our attention is concentrated on some versions of PageRank
related to a random walk with a distinct semantic connotation.

3.1 Lazy Random Walk PageRank

A variant of PageRank, so-called lazy-random-walk-PageRank was described e.g.
by [5]. It differs from the traditional PageRank in that the random walker before
choosing the next page to visit he first tosses a coin and upon heads he visits
the next page, and upon tails, he stays in the very same node of the network.
Recall that for the lazy walker PageRank we have:

r(l) = (1 − ζ)· (0.5I + 0.5P) ·r(l) + ζ·s (5)

where I is the identity matrix.5 Rewriting reveals relation to traditional one.

r(l) =
1 − ζ

1 + ζ
· (P) ·r(l) +

2ζ

1 + ζ
·s (6)

So r(l) for ζ is the same as r(t) for 2ζ
1+ζ (r(l)(P, s, ζ) = r(t)(P, s, 2ζ

1+ζ )) Hence

Theorem 4. For the preferential lazy personalized PageRank we have

poζ ≤ 1 − ζ

2
|∂(U)|
V ol(U)

Theorem 5. For the uniform lazy personalized PageRank we have

poζ ≤ 1 − ζ

2
|∂(U)|

|U |mink∈U deg(k)

5 We will denote the solution to the Eq. (5) with r(l)(P, s, ζ).
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3.2 Generalized Lazy Random Walk

Let us generalize this behavior to generalized-lazy-random-walk-PageRank by
introducing the laziness degree λ. It means that, upon tossing an unfair coin,
probability of tails is λ (and heads 1−λ). For the generalized lazy walker PageR-
ank we have:

r(g) = (1 − ζ)· (λI + (1 − λ)P) ·r(g) + ζ·s (7)

where I is the identity matrix.6 Rewrite it to relate to the traditional PageRank.

r(g) =
(1 − ζ)·(1 − λ)

1 − λ + ζλ
P·r(g) +

ζ

1 − λ + ζλ
·s (8)

So r(g) for ζ is the same as r(t) for ζ
1−λ+ζλ (r(g)(P, s, ζ, λ) = r(t)(P, s, ζ

1−λ+ζλ ))
Therefore

Theorem 6. For the preferential generalized lazy personalized PageRank we
have

poζ ≤ (1 − λ)(1 − ζ)
|∂(U)|
V ol(U)

Theorem 7. For the uniform generalized lazy personalized PageRank we have

poζ ≤ (1 − λ)(1 − ζ)
|∂(U)|

|U |mink∈U deg(k)

4 Bipartite PageRank

Some non-directed graphs occurring e.g., in social networks are in a natural way
bipartite graphs. That is there exist nodes of two modalities, and meaningful
links may occur only between nodes of distinct modalities (e.g., clients and items
purchased by them). Literature exists already for such networks attempting to
adapt PageRank to the specific nature of bipartite graphs, e.g., [7]. Regret-
tably, no generalization of Theorem 2 was formulated. The one seemingly obvi-
ous choice would be to use the traditional PageRank like it was done in papers
[2,13]. However, this would be conceptually wrong because the nature of the
super-node would cause authority flowing between nodes of the same modality,
which is prohibited by the definition of these networks. Therefore in this paper,
we intend to close this conceptual gap using Bipartite PageRank concept created
in our former paper [10] and will extend the Theorem 2 to this case.

So let us consider the flow of authority in a bipartite network with two
distinct super-nodes: one collecting the authority from items and passing them
to clients, and the other the authority from clients and passing them to items.

rp = (1 − ζkp)·Pkp·rk + ζkp·sp (9)

rk = (1 − ζpk)·Ppk·rp + ζpk·sk (10)

The following notation is used in these formulas
6 We will denote the solution to the Eq. (7) with r(g)(P, s, ζ, λ).
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– rp, rk, sp, and sk are stochastic vectors, i.e. the non-negative elements of
these vectors sum to 1;

– the elements of matrix Pkp are: if there is a link from page j in the set
of Clients to a page i in the set of Items, then pkp

ij = 1
outdeg(j) , otherwise

pkp
ij = 0;

– the elements of matrix Ppk are: if there is a link from page j in the set of
Items to page i in the set of Clients, then ppk

ij = 1
outdeg(j) , otherwise ppk

ij = 0;
– ζkp ∈ [0, 1] is the boring factor when jumping from Clients to Items;
– ζpk ∈ [0, 1] is the boring factor when jumping from Items to Clients.

Definition 1. The solutions rp and rk of the equation system (9) and (10) will
be called item-oriented and client-oriented bipartite PageRanks, resp.

Let us assume first that ζpk = ζkp = 0 i.e. that the super-nodes have no impact.
Let K =

∑
j∈Clients outdeg(j) =

∑
j∈Items outdeg(j) mean the number of edges

leaving one of the modalities. Then for any j ∈ Clients we have rk
j = outdeg(j)

K ,
and for any j ∈ Items we get rp

j = outdeg(j)
K . Because the same amount of

1
K authority is passed through each channel, within each bidirectional link the
amounts passed cancel out each other. So the r’s defined this way are a fix-
point (and solution) of the Eqs. (9) and (10). For the other extreme, when
ζkp = ζpk = 1 one obtains, that rp = sp, rk = sk.

In analogy to the traditional PageRank let us note at this point that for
ζkp, ζpk > 0 the “fan”-nodes of both the modalities (the sets of them being
denoted with Up for items and Uk for clients), will obtain in each time step from
the super-nodes the amount of authority equal to ζpk for clients and ζkp for items,
resp. Let us now think about a fan of the group of nodes Up, Uk who jumps
uniformly, Assume further that at the moment t we have the following state
of authority distribution: node j contains rk

j (t) = 1
|Uk| , r

p
j (t) = 1

|Up| (meaning
analogous formulas for rp and rk). Let us consider now the moment t+1. From
the item node j to the first super-node the authority ζpk 1

|Up| flows, and into each
outgoing link (1 − ζpk) 1

|Up|deg(j) is passed. On the other hand the client node
c obtains from the same super-node authority ζpk 1

|Uk| , while from link ingoing
from j (1 − ζpk) 1

|Up|deg(j) . The authority from clients to items passes in the very
same way.

We have a painful surprise this time. In general, we cannot define a useful
state of the authority of nodes, analogous to that of traditional PageRank from
Sect. 2, so that in both directions between Up and Uk nodes the same upper
limit of authority would apply. This is due to the fact that in general capacities
of Uk and Up may differ. Therefore a broader generalization is required.

To find such a generalization let us reconsider the way how we can limit the
flow of authority in a single channel. The amount of authority passed consists
of two parts: a variable one being a share of the authority at the feeding end
of the channel and a fixed one coming from a super-node. So, by increasing the
variable part, we come to the point that the receiving end gets less authority
that was there on the other end of the channel.
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Let us seek the amount of authority d such that multiplied by the number of
out-links of a sending node will be not lower than the authority of this node and
that after the time step its receiving node would have also amount of authority
equal or lower than d multiplied by the number of its in-links. That is we want
to have that:

d·(1 − ζpk) +
ζpk

∑
v∈Uk outdeg(v)

≤ d

The above relationship corresponds to the situation that on the one hand if a
node in Items has at most d amount of authority per link, then it sends to a
node in Clients at most d·(1 − ζpk) authority via the link. The receiving node j
on the other hand, if it belongs to Uk, then it gets additionally from the super-
node exactly ζpk

|Uk|deg(j)
authority per its link. We seek a d such that these two

components do not exceed d together.
If we look from the perspective of passing authority from Clients to Items,

then, for similar reasons at the same time we have

d·(1 − ζkp) +
ζkp

|Up|deg(j)
≤ d

This implies immediately, that

d ≥ 1
|Uk|minj∈Uk deg(j)

and d ≥ 1
|Up|minj∈Up deg(j)

so we come to a satisfactory d when

d = max(
1

|Uk|minj∈Uk deg(j)
,

1
|Up|minj∈Updeg(j)

)

=
1

min(|Uk|minj∈Uk deg(j), |Up|minj∈Updeg(j))

Now we are ready to formulate a theorem for bipartite PageRank analogous to
the preceding Theorem 2.

Theorem 8. For the uniform personalized bipartite PageRank we have

pk,oζ
kp ≤ (1 − ζpk)∂(Up

Uk )
min(|Uk|minj∈Ukdeg(j), |Up|minj∈Updeg(j))

and

pp,oζ
pk ≤ (1 − ζkp)∂(Uk

Up )
min(|Uk|minj∈Ukdeg(j), |Up|minj∈Updeg(j))
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where

– pk,o is the sum of authorities from the set Clients\Uk,
– pp,o is the sum of authorities from the set Items\Up,
– ∂(Uk

Up ) is the set of edges outgoing from Uk into nodes from Items − Up (that
is “fan’s border” of Uk),

– ∂(Up

Uk ) is the set of edges outgoing from Up into nodes from Clients\Uk (that
is “fan’s border” of Up),

��
The proof is analogous as in case of classical PageRank, using now the quantity
d we have just introduced.

Proof. Let us notice first that, due to the closed loop of authority circulation,
the amount of authority flowing into Uk from the nodes belonging to the set
Up = Items\Up must be identical with the amount flowing out of Up to the
nodes in Uk. The same holds when we exchange the indices p < − > k.

But from Up only that portion of authority flows out to Uk that flows out
through the boundary of Up because no authority leaves the tandem Up, Uk via
super-nodes (it returns from there immediately). As the amount d|∂(Up

Uk )| leaves
at most the Up not going into Uk, then

pk,oζ
kp ≤ d(1 − ζpk)∂(

Up

Uk
) =

(1 − ζpk)∂(Up

Uk )
min(|Uk|minj∈Ukdeg(j), |Up|minj∈Updeg(j))

The convergence can be verified in an analogous way as done for the HITS
(consult e.g., [12, Ch. 11]).

Fig. 1. Unoriented tree-like network Fig. 2. Unoriented complex network
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5 Experimental Exploration of the Limits

With the established limits, we can pose the question how tight the limits are or
rather whether we can construct networks for which the limits are approached
sufficiently close.

For this purpose we will use a family of networks depicted in Figs. 1 and 2.
Each network is divided into three zones of nodes. Zones d and e belong to the
set of fan-nodes.

Zones a, b, c are not fan-sets. There is only one node in zones c and d so that
the edge connecting d to c is the channel through which the authority flows out

Table 1. PageRanks for network Fig. 1. Boring factor = 0.1

Zone a Zone b Zone c Zone d Zone e

Traditional uniform 0.012479 0.055464 0.072565 0.370274 0.061892

Traditional preferential 0.013019 0.057864 0.075705 0.386296 0.057358

Outflow Limit Rel.left

Traditional uniform 0.025837 0.128571 0.799

Traditional preferential 0.026955 0.069230 0.610

Table 2. PageRanks for network Fig. 2. Boring factor = 0.1

Zone a Zone b Zone c Zone d Zone e

Traditional uniform 0.006094806 0.027088026 0.0354401 0.1808376 0.1154962

Traditional preferential 0.006306085 0.028027043 0.0366687 0.1871064 0.1137223

Outflow Limit Rel.left

Traditional uniform 0.0126185 0.032142 0.6074242

Traditional preferential 0.013055 0.029032 0.5502957

Table 3. PageRanks for enlarged network Fig. 2 by factor in the first column. Boring
factor = 0.1. Traditional PageRank with preferential authority re-distribution.

Factor Zone a Zone b Zone c Zone d Zone e

10 1.737833e−05 7.723703e−05 7.073624e−04 2.438616e−02 1.620532e−02

100 1.969998e−08 8.755548e−08 7.674967e−06 2.494130e−03 1.662448e−03

1000 1.995495e−11 8.868865e−11 7.739489e−08 2.499416e−04 1.666249e−04

10000 1.998069e−14 8.880307e−14 7.745988e−10 2.499942e−05 1.666625e−05

100000 1.998323e−17 8.881436e−17 7.746628e−12 2.499994e−06 1.666662e−06

Factor Outflow Limit Rel.left

10 0.0003294802 0.0003657049979 0.0990544634

100 3.700605208e−06 3.740632831e−06 0.01070076246

1000 3.745018664e−08 3.749062578e−08 0.0010786466

10000 3.749501576e−10 3.749906250e−10 0.000107915

100000 3.749943936e−12 3.749990625e−12 1.245027547e−05
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Table 4. PageRanks for enlarged network Fig. 2 by factor in the first column. Boring
factor = 0.1. Traditional PageRank with uniform authority re-distribution.

Factor Zone a Zone b Zone c Zone d Zone e

10 1.679439e−05 7.464174e−05 6.835939e−04 2.356675e−02 1.622082e−02

100 1.904272e−08 8.463432e−08 7.418903e−06 2.410918e−03 1.662589e−03

1000 1.928972e−11 8.573209e−11 7.481482e−08 2.416095e−04 1.666263e−04

10000 1.931466e−14 8.584294e−14 7.487786e−10 2.416610e−05 1.666626e−05

100000 1.931710e−17 8.585376e−17 7.488401e−12 2.416661e−06 1.666663e−06

1000000 1.931896e−20 8.586206e−20 7.488419e−14 2.416666e−07 1.666666e−07

Factor Outflow Limit Rel.left

10 0.0003184092239 0.0003688524590 0.1367572

100 3.577140044e−06 3.743760399e−06 0.04450614810

1000 3.620173279e−08 3.749375104e−08 0.03445956209

10000 3.624516929e−10 3.749937501e−10 0.03344604329

100000 3.624940904e−12 3.749993750e−12 0.033347481127

1000000 3.625220796e−14 3.74999937e−14 0.033274293139

Table 5. PageRanks for densified network from last line of previous table - the zone e
node degrees as in the first column

e node deg. Zone a Zone b Zone c Zone d Zone e

5000000 1.572210e−20 6.987602e−20 6.094048e−14 1.966666e−07 1.666666e−07

5500000 1.440820e−20 6.403644e−20 5.585813e−14 1.803030e−07 1.666666e−07

5900000 1.352272e−20 6.010099e−20 5.242307e−14 1.692090e−07 1.666666e−07

5990000 1.333886e−20 5.928383e−20 5.171155e−14 1.669171e−07 1.666666e−07

5999000 1.331915e−20 5.919623e−20 5.163832e−14 1.666916e−07 1.666666e−07

5999900 1.332161e−20 5.920716e−20 5.163986e−14 1.666691e−07 1.666666e−07

e node deg. Outflow Limit Rel.left

5000000 2.950251336e−14 2.999999500e−14 0.01658272402

5500000 2.703801851e−14 2.727272272e−14 0.0086058227330

5900000 2.537613978e−14 2.542372457e−14 0.00187166895

5990000 2.503123889e−14 2.504173205e−14 0.00041902692587

5999000 2.4994569e−14 2.500416319e−14 0.0003836900900

5999900 2.49983829e−14 2.500041250e−14 8.117929671e−05

of the fan-node set and we seek the upper limit of authority lost via this link.
The zones are symmetrically constructed. The number of nodes in a is a multiple
of the number of nodes in b. All nodes in e are connected to d, and otherwise,
they constitute a regular subgraph. In Fig. 1 this subgraph is of degree zero, and
in Fig. 2 it is of degree 3. Because of symmetry, the PageRanks in each of the
zones are identical.

Table 1 shows the PageRanks for the graph in Fig. 1. Table 2 shows the
PageRanks for the graph in Fig. 2. In each table the columns zone a,. . . ,zone
e show the PageRank attained by each node in the respective zone. outflow col-
umn shows the amount of authority flowing out from the fan-set of nodes to the
rest of the network. limit column is the upper limit derived theoretically in the



Traditional PageRank Versus Network Capacity Bound 247

Table 6. PageRanks for various network structures with the same upper limit of
authority passing - the preferential redistribution. Zone a and b both 60000 nodes
each.

e node deg./count Zone a Zone b Zone c Zone d Zone e

511/1024 6.092727e−11 1.353939e−10 5.370716e−06 1.953285e−03 9.746382e−04

255/2048 6.095403e−11 1.354534e−10 5.373075e−06 3.906379e−03 4.863655e−04

127/4096 6.096742e−11 1.354832e−10 5.374255e−06 7.812567e−03 2.422291e−04

63/8192 6.097412e−11 1.354980e−10 5.374845e−06 1.562494e−02 1.201609e−04

31/16384 6.097746e−11 1.355055e−10 5.375140e−06 3.124970e−02 5.912678e−05

15/32768 6.097914e−11 1.355092e−10 5.375287e−06 6.249920e−02 2.860973e−05

7/65536 6.097997e−11 1.355110e−10 5.375361e−06 1.249982e−01 1.335121e−05

3/131072 6.098038e−11 1.355119e−10 5.375397e−06 2.499961e−01 5.721944e−06

1/262144 6.098056e−11 1.355124e−10 5.375413e−06 4.999919e−01 1.907314e−06

e node deg./count Outflow Limit Rel.left

511/1024 1.714998913e−06 1.716610495e−06 0.0009388162095

255/2048 1.715752081e−06 1.716610495e−06 0.0005000635487

127/4096 1.716128933e−06 1.716610495e−06 0.0002805306660

63/8192 1.71631741e−06 1.716610495e−06 0.0001707321858

31/16384 1.716411644e−06 1.716610495e−06 0.0001158392913

15/32768 1.716458707e−06 1.716610495e−06 8.842327961e−05

7/65536 1.716482125e−06 1.716610495e−06 7.478124133e−05

3/131072 1.716493600e−06 1.716610495e−06 6.809630427e−05

1/262144 1.716498849e−06 1.716610495e−06 6.503878422e−05

previous sections for the respective case. rel.left is computed as 1-outflow/limit.
The lower the value, the closer the actual outflow to the theoretical limit.

The obvious tendency to keep authority is observed when the network of
connections is densified between fan nodes. Also, the outflow of authority gets
closer to the theoretical bound.

How close can it go? In Tables 3 and 4 we increase by the factor of 10,100
etc. the number of nodes in zones a, b and e and also the number of connections
between the nodes in zone e (enlarging the network of Fig. 2, results in Table 5).

We see that in case of preferential attachment, we quickly approach the
bounds. In case of uniform authority redistribution, we get a stabilization. The
situation changes for the uniform case, however, if we densify the connections in
zone e. For the network of the last line, we increase the density of connections
in zone e. Last not least, let us observe that the relationship between the upper
limit and the actual amount of authority passed is a function of the structure of
the network. In the Tables 6 (for preferential redistribution) and 7 (for uniform
redistribution) we see this effect. For preferential redistribution, we see that the
lower degrees the nodes are, the bigger part of the authority is flowing out. For
the uniform redistribution, the tendency is in the other direction.
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Table 7. PageRanks for various network structures with the same upper limit of
authority passing - the uniform redistribution Zone a and b both 60000 nodes each.

e node deg./count Zone a Zone b Zone c Zone d Zone e

4/131071 4.480253e−11 9.956117e−11 3.949326e−06 1.836718e−01 6.228041e−06

8/65535 4.933356e−11 1.096301e−10 4.348734e−06 1.011236e−01 1.371576e−05

16/32767 5.196287e−11 1.154730e−10 4.580507e−06 5.325655e−02 2.889275e−05

32/16383 5.339301e−11 1.186511e−10 4.706573e−06 2.736115e−02 5.936787e−05

64/8191 5.416866e−11 1.203748e−10 4.774947e−06 1.387931e−02 1.203889e−04

128/4095 5.468880e−11 1.215307e−10 4.820796e−06 7.006293e−03 2.424855e−04

256/2047 5.545008e−11 1.232224e−10 4.887903e−06 3.551911e−03 4.867770e−04

512/1023 5.783015e−11 1.285114e−10 5.097705e−06 1.852184e−03 9.756907e−04

e node deg./count Outflow Limit Rel.left

4/131071 1.261114759e−06 1.716613769e−06 0.2653474055

8/65535 1.388655573e−06 1.716613769e−06 0.1910494961

16/ 32767 1.462666077e−06 1.716613769e−06 0.147935252

32/16383 1.502922183e−06 1.716613769e−06 0.1244843712

64/8191 1.524755444e−06 1.716613769e−06 0.1117655749

128/4095 1.539396343e−06 1.716613769e−06 0.1032366329

256/2047 1.560825131e−06 1.716613769e−06 0.09075345911

512/1023 1.627819998e−06 1.716613769e−06 0.05172612086

6 Concluding Remarks

In this paper, we have proposed limits for the flow of authority in ordinary
unoriented and in the bipartite graph under uniform random jumps. We have
empirically demonstrated tightness of some of these limits.

The obtained limits can be used for example, when verifying the validity of
clusters in such graphs. It is quite common to assume that the better the cluster,
the less authority flows out of it when treating the cluster as the set on which a
fan concentrates while a personalized PageRank is computed. The theorem says
that the outgoing authority has a natural upper limit dropping with the growth
of the size of the sub-network so that the outgoing authority cluster validity
criterion cannot be used because it will generate meaningless large clusters. So
a proper validity criterion should make a correction related to the established
limits in order to be of practical use.

As a further research direction, it is obvious that finding tighter limits are
needed. This would improve the evaluation of e.g., cluster quality.
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