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Abstract. Position uncertainty is one key feature of moving objects. Existing
uncertain moving objects indexing technology aims to improve the efficiency of
querying. However, when moving objects’ positions update frequently, the
existing methods encounter a high update cost. We purpose an index structure
for frequent position updates: HGTPU-tree, which decreases cost caused by
frequent position updates of moving objects. HGTPU-tree reduces the number
of disk I/Os and update costs by using bottom-up update strategy and reducing
same group moving objects updates. Furthermore we purpose moving object
group partition algorithm STSG (Spatial Trajectory of Similarity Group) and
uncertain moving object similar group update algorithm. Experiments show that
HGTPU-tree reduces memory cost and increases system stability compared to
existing bottom-up indexes. We compared HGTPU-tree with TPU-tree, GTPU-
tree and TPU2M-tree. Results prove that HGTPU-tree is superior to other three
state-of-the-art index structures in update cost.

Keywords: Position uncertainty � Moving objects � HGTPU-tree � Group
partition � Update cost

1 Introduction

In the era of mobile computing, effective management of moving objects is a guarantee
of high-quality location services. Due to the inaccurate data collection, the delayed
updating of moving objects and privacy protection, position uncertainty of moving
objects is widespread [1]. Since the position of moving object changes with time, the
specific position of the storage space object in the traditional spatial index structure
cannot adapt to the updating operation of a large number of spatial objects. Thus it is
not suitable for storage and retrieval of moving object [2].

In order to obtain more accurate query results, moving object position information
needs to be updated frequently [3]. The existing position update strategies are mainly
divided into the following two types: 1. Periodic update: updating the position
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information of the moving object every n cycles; 2. Speculative positioning update [4]:
the position information of the moving object is updated as long as the actual position
of the moving object and the position recorded in the database exceed a certain
threshold. However, the above strategies are focused on managing the position of a
single moving object, instead of the relationship of the moving objects.

The motion trajectories of some moving object sets in the real scene often have
certain similarity and regularity. If the trajectories of moving objects are similar, they
can be divided into a group. For the members in the same group, because the position
information of the moving objects is similar to each other, only one moving object’s
position needs to be updated. Real-time explicit updates of the position information of
each moving object are not required. Through this update strategy, the number of
updates of moving objects is reduced, thereby decreasing the update cost of moving
objects. The main contributions of our work are as follows:

1. We develop an index structure HGTRU-tree that supports moving object group
partition on the basis of the existing index TPU-tree supporting moving object
uncertainty;

2. We propose the moving object group partition algorithm STSG by comparing and
analyzing the historical trajectories of moving objects. STSG uses Spatial Trajec-
tory of Similarity (STS) to describe the similarity of moving objects trajectories;

3. We use hash table as the primary index to support the HGTPU-tree bottom-up
query. When the moving objects positions update, hash function is first used to
query hash table. The group number of moving object is used to find the leaf node
where the moving object is stored;

4. We propose a hybrid trajectory-dependent moving object position update strategy,
which combines the update strategy of periodic update and speculative positioning
update.

The remainder of the paper is organized as follows: Sect. 2 provides the related
work. Our proposed HGTPU-tree is presented in Sect. 3. Section 4 proposes experi-
mental results. Section 5 concludes the paper. Frequently used symbols are listed in
Table 1.

Table 1. Symbol description.

Symbol Explanation

th Threshold
Mi, Mj Moving objects
L Label of moving objects
RD Relative Direction
SR Speed Ratio
SD Spatial Distance
flag Leaf node mark
MBR Minimum Boundary Rectangles
ptr Pointers to the next layer

(continued)
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2 Related Work

2.1 Moving Object Index

In order to solve the problem of how to efficiently manage the precise position
information of moving objects in real time, a series of index structures were proposed.
For example, TPR* tree [5], STAR [6] tree, and REXP tree [7] are all parameterized
indexing methods that manage current and future position information. The top-down
update mode of TPR* tree leads to a large I/O cost. REXP tree improves the update
performance of the invalid data by adding data time valid attributes on the node. The
historical position, current position and future position information are combined to
propose index models such as PPFNx tree [8] and RPPF tree [9]. In [10], R-tree-based
bottom-up update idea is proposed. The update process starts from the leaf node of the
tree, which saves the query time. However, the disadvantage lies in the maintenance of
the index. [11] proposed the first SFC-based packing strategy that creates R-trees with a
worst-case optimal window query I/O cost. The above index models can’t deal with the
problem of the frequent position updates of the moving object.

Tao [12] et al. proposed a U-tree index model. U-tree has a good dynamic structure.
But U-tree is only suitable for static moving object uncertainty indexing. [13] proposed
a U-tree-based TPU-tree for efficient current and future uncertain position information
retrieval. TPU-tree adds a data structure for recording the uncertain state of moving
objects on the U-tree structure. In [14], based on TPU-tree, an update memo
(UM) memory structure for recording the state characteristics of uncertain moving
objects is added. An uncertain moving object indexing strategy TPU2M-tree supporting
frequent position updates and an improved memo (MMBU/I) based update/insert
algorithm are proposed. However, TPU2M-tree needs extra memory space to store the
information of the memo (UM).

Table 1. (continued)

Symbol Explanation

Gi Group
g_id Group mark
ptr_r Space layer leaf pointers
ptr_g Data layer pointers
time_update Next position update time
oid Mark of the moving object Mi
PCR(pi) Position recorded in the database
v Velocity
pdf_ptr Probability density distribution function
next_flag Token of whether there is a next leaf node
n Number of moving objects
m Number of moving object groups
H Height of index tree
L Number of leaf nodes in index tree
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The above index structures only consider one single moving object when the
position of moving objects changes. The motion trajectories between moving objects
are not considered. In addition, most of the uncertain moving object index structures
adopt the traditional top-down. It causes a large disk I/O cost. Even if partial index
structures have a bottom-up update idea, it needs to sacrifice a large amount of memory
resources, resulting in low system stability.

2.2 Trajectory Similarity Calculation

The trajectory data of moving object in the environment is usually discrete. In this
paper, the historical position and velocity are used to describe the moving parameters
of object, and moving objects are grouped by analyzing the trajectories of moving
objects by moving parameters.

The spatio-temporal coordinate of the moving object Mi is a quad (l, x, y, t). In the
case where the labels of two moving objects Mi and Mj are known, if Mi and Mj have
the same semantic label, they can be directly divided into one group. But in many
cases, the semantic label of the moving object Mi cannot be directly obtained. In this
situation, the trajectory data of the moving object needs to be analyzed. x, y, t means
that the spatial coordinate of the moving object Mi is (x, y) at time t.

The position information of the moving object Mi at time t0 is (l, x0, y0, t0), and
after DT the coordinate of the time t1 becomes (l, x1, y1, t1). Let Dx;Dy be the change
amount of motion in the direction of x, y, the moving speed be v, and the moving
direction be h:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p
DT

ð1Þ

h ¼
u:sgnðDyÞDx[ 0
p=2:sgnðDyÞDx ¼ 0

ðp� uÞ:sgnðDyÞDx\0

8<
: ð2Þ

Dx ¼ x1� x0;Dy ¼ y1� y0;DT ¼ t1� t0; tanðuÞ ¼ jDy=Dxj; h 2 ð�p; pÞ

For the moving characteristics of moving objects, some researches have focused on
Relative Direction (RD) [15] and Speed Ratio (SR) [16]. We propose Spatial Distance
(SD) and the Spatial Trajectory of Similarity (STS).

RDðMi;Mj; tÞ ¼ cos hMi tð Þ � hMj
tð Þ

� �
ð3Þ

The relative direction RD of the moving objects Mi and Mj at time t is calculated as
Eq. 3, which is defined as the cosine of the angle of the velocity.

SRðMi;Mj; tÞ ¼
min vMi tð Þ; vMj

tð Þ
� �

max vMi tð Þ; vMj
tð Þ

� � ð4Þ
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The calculation of the speed ratio SR of the moving objects Mi and Mj at time t is
shown in Eq. 4, which is defined as the ratio of the minimum speed to the maximum
speed. SR reflects the speed difference between Mi and Mj.

The SD of the moving objects Mi and Mj at time t is defined as the spatial distance
difference between the two moving objects, and is calculated by Euclidean Distance.
The calculation formula for SD is as follows:

SDðMi;Mj; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi:xðtÞ �Mj:xðtÞ
� �2 þ Mi:yðtÞ �Mj:yðtÞ

� �2q
ð5Þ

STS describes the spatial trajectory of similarity between moving objects, and the
value of STS depends on SR, RD, and SD. From the previous formula, the more
consistent the velocity and direction of moving objects, the larger the value of RD and
SR, and vice versa. The STS is positively correlated with SR and RD and is negatively
correlated with SD, and its calculation formula is as follows:

STSðMi;Mj; tÞ ¼ RDðMi;Mj; tÞ � SRðMi;Mj; tÞ
SDðMi;Mj; tÞ ð6Þ

3 HGTPU-Tree

3.1 Model

HGTPU-tree implements a bottom-up update with a zero-level index hash table and the
entire index structure is divided into three layers: a space layer, a group layer, and a
data layer.

Hash Table. HGTPU-tree implements bottom-up query with a hash table. When
moving object performs position update, it first queries hash table to find the address of
the group where moving object is stored, and then directly locates leaf node, and
determines whether the updated position exceeds the MBR range of leaf node. If the
range is not exceeded, the leaf node is updated directly.

The hash function takes the group number of the moving object as input. The
record in the hash table contains 2 parts, one part is the output value of the hash
function, and the remaining part is the address corresponding to the group number Gi.
The hash table in HGTPU-tree ensures that the address of group object is recorded in
real time by adopting a synchronous update with leaf node.

The Space Layer. The space layer describes the position of the space in which moving
object is stored. The record form of the node in the space layer is <flag, MBR, ptr>.
Since the position of the moving object changes at any time, the spatial position of the
group in which the moving object is stored also changes. When the spatial distance
between the moving object of the group Gi in the group layer and the position of the
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currently recorded leaf node is larger than the threshold th, a position update operation is
performed. The pointer of the group layer and the leaf node is disconnected, so that the
group layer points to the leaf node where the current moving object is actually located.

The Group Layer. The record form of the HGPTU-tree node in the group layer
is <g_id, ptr_r, ptr_g, MBR, th, time_update>. HGTPU-tree adopts a hybrid update
strategy combining periodic update and speculative positioning update. When the
position information MBR and the space layer node indicated by ptr_r in the group
layer exceeds the threshold th, the data is updated and ptr_r is reassigned. In order to
make the motion trajectory of moving object in the same group as consistent as pos-
sible, it is necessary to periodically update the grouping. Update strategy determines
whether the trajectory of the group members can still be divided into a group by ptr_g
in the past.

The Data Layer. The form of each HGTPU-tree leaf node in the data layer is <oid,
ptr, PCR(pi),MBR, v, pdf_ptr, next_flag>. The moving objects in the same group in the
HGTPU-tree are continuously stored with each other. When the moving objects in the
group are periodically detected, it is not only judged whether the spatial position and
the speed deviation of the moving object exceed the threshold, but also needs to update
the probability-restricted area of the moving object Mi.

3.2 Spatial Trajectory of Similarity Group

In the HGTPU-tree, moving objects with similar motion trajectories in a historical
period are divided into one group, and then the moving objects in the same group are
stored in the same leaf node in the HGTPU-tree. Regarding the group partition of
moving object, a Spatial Trajectory of Similarity Group (STSG) algorithm is proposed.
Some definitions in the STSG algorithm are as follows:

Definition 3 (directly reachable): The minimum spatial trajectory of similarity STSMin
is the judgment threshold of the direct reach of the node and it is a constant. When STS
(Mi, Mj, t)>STSMin, it is considered that Mi and Mj are directly reachable at time t,
which is recorded as Mi $ Mj, otherwise, Mi and Mj are not directly reachable, and are
recorded as Mi ↔ Mj.

Definition 4 (dependency reachable): For any two nodes Mi and Mj satisfy Mi ↔ Mj

but there is Mk, let Mi $ Mk and Mi $ Mk then Mi and Mj are dependency reachable,
denoted as Mi ’ Mj, otherwise Mi and Mj are not dependency reachable and is
recorded as  Mi  Mj.

Definition 5 (connection): For any two nodes Mi and Mj satisfy Mi ↔ Mj and  Mi Mj,
but there is a node set S(M1,…, Mn), n > 1, so that Mi and Mj can be reached by S
dependence, then Mi and Mj are connected, which is denoted as Mi � Mj, otherwise Mi
and Mj are not connected which is recorded as Mi ≈ Mj.
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Definition 6 (group): Divide moving objects with similar motion trajectories into a
group denoted as g, if and only if g satisfies the following two conditions:

(1) Any node Mi and Mj, if Mi 2 g and Mi $ Mj | Mi ’ Mj, then Mj 2 g;
(2) Any node Mi and Mj, if Mi 2 g and Mj 2 g, then Mi � Mj.

The goal of the STSG algorithm is to divide all moving objects that are dependency
reachable or directly reachable into the same group, and then store them in the same
leaf node in the HGTPU-tree.

As shown in Algorithm 1. First, the vertex array V and the adjacency matrix
E (lines 2–3) are initialized. And secondly, in the moving object array M, the spatial
trajectory of similarity relationships between any two moving objects are calculated,
and the results are recorded in V and E and an undirected graph (lines 4–10) is
constructed. Then find the moving objectMi of the group and initialize a group g forM.
Add these objects to g (rows 13–17) by traversing all objects that are dependency
reachable or directly reachable by Mi through breadth-first traverse. Objects and finally
return the group set G.

Algorithm 1 STSG
Input: Moving object set M, The minimum spatial trajectory of similarity STSMin
Output: Group set G (g1, g2, ... gn)
Sub-function description: The Judge (Mi, Mj, STSMin) function is to determine the spatial trajectory 
of similarity between the two object Mi and Mj. BFS (V, E, Mi) is to add all objects that are depend-
ency reachable or directly reachable to the object Mi to g
Variable description: M_num : number of moving objects, V : vertex array, E : adjacency matrix, g : 
a group
1.  STSG(M,STSMin)
2.  Init V; 
3.  Init E; 
4.  for i←0 to M_num
5.  for j←0 to M_num
6.      edgs←Judge(Mi,Mj,STSMin);   
// Calculate the spatial trajectory of similarity of Mi and Mj
7.      E.add(edgs);
8.  end for j
9.    V.add(Mi);
10. end for i
11.  Init G;
12.  for i←0 to M_num
13.    if iM G∈ then   // Find object Mi that are not yet grouped
14.    Init g;        // Initialize a group g for Mi
15.      g.sons←BFS(V,E,Mi);  
// Find all objects that are dependency reachable and directly reachable to Mi
16.      g.id←Get_Id();
17.      G.add(g);
18.   end if
19. end for i
20.  return G; 
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3.3 HGTPU-Tree Update Algorithm

When the moving object issues a position update request, the new record information is
inserted into the HGTPU-tree, and the old position information needs to be deleted.
HGTPU-tree synchronizes the update mechanism of the hash table and the space layer
to ensure that the latest group address information is stored in the hash table in real time
without saving old records.

At the space layer, update is performed by speculative positioning update. When
the positional deviation of actual and the recorded position of moving object in the
HGTPU-tree exceed the threshold th, an update operation is performed. As shown in
Algorithm 2, the algorithm is mainly divided into three steps: 1. Substitute the group
number of the moving object Mi into a hash function to obtain the address of the group
in the hash table (lines 1–3); 2. Determine whether the updated position exceeds the
MBR range of the leaf node. If the range is not exceeded, the leaf node is directly
updated. Otherwise, the update process is equivalent to deleting and inserting new
records in the HGTPU-tree (lines 4–16); 3. After the space layer data is updated, the
address of the group in which Mi is stored is synchronously written back to the hash
table (line 17).

Algorithm 2 UpdateTree
Input: Uncertain moving object Mi, HGTPU_tree
Output: updated HGTPU_tree’
Sub-function description: FindLeaf finds the leaf inserted by Mi in the space layer according to the 
address. CondenseTree deletes the leaf node and compresses the tree. AdjustTree performs structur-
al adjustment operation on the tree after the node is split.
1.  key Gi

2.  address hash_fun(key);
3.  L FindLeaf(address)
4.  if MBR(Mi) not beyond MBR(L)
5.    delete L
6.    CondenseTree(HGTPU_tree)
7. L‘ ChooseLeaf(HGTPU_tree,Mi) // Leaf node to be inserted
8.    if L’ have free space then
9.       L‘.add(Mi)           // If there is free space, insert directly
10.   else
11.      SplitNode L’ to L‘ and LL  
// The split node divides the L' node into L' and LL
12.      AdjustTree L’ and LL
13.    end if
14   else
15    update L  // Directly update the L node
16   end if
17   write address(Gi) back to hash table 
// Write the new group address back to the hash table
18.  return HGTPU_tree’

The moving trajectory of the moving object that was divided into the same group,
after the motion for a period of time, changes. And some moving objects deviate from
the group. At this time, the group needs to be re-divided. HGTPU-tree uses a periodic
detection strategy to detect moving objects in the data layer. As shown in Algorithm 3,
first, the current time t_now (line 1) of the system is obtained, and the next update time
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recorded in each group in the HGTPU-tree is compared with t_now. If a group needs to
be updated, all the objects of the group are stored in the set M. The STSG algorithm is
called to re-group M (lines 2–5), compare the new group G’ and the old group G. If a
change occurs, the new group G′ is added as the data layer to HGTPU-tree (lines 6–7).
Finally, update the time of the next update (line 9).

7.         HGTPU_tree’ Adjust_Group(HGTPU_tree,G’)
// Insert the regrouped group into the HGTPU-tree
8.      end if
9.      update_time update_time+T 
10.   end if
11. end for i 
12. return HGTPU_tree’

Algorithm 3 Update_Group
Input: HGTPU_tree before update
Output: updated HGTPU_tree’
Sub-function description: Adjust_Group adds a new group to the index tree when a group changes
Variable description: G_num : the number of groups, update_time : records the next update time, 
T : update cycle.
1.  t_now Get_localtime
2.  for i 0 to G_num
3.    if t_now=Gi.time_uodate then
// Get system time compared to update time recorded in the group 
4.      M Gi

5.      G’=STSG(M,STSMin)// Regrouping
6.      if G < > G’

3.4 Update Cost Analysis

The cost analysis of 3 different update strategies for one update of n moving objects is
given in turn: top-down update, bottom-up update, and disk I/O times required for
group-based update. As shown in Table 2, the top-down update cost consists of two
parts: (1) the cost of querying and deleting old records; and (2) the cost of inserting new
records. Since there is a possibility of overlapping of regions between the nodes of the
index, querying a record requires accessing H nodes in the best case, and in the worst
case, accessing L*(L-1)/4 nodes. The old record position is searched for deletion and
written back to the disk. At least one disk write operation is required in the absence of a
node overflow. Before inserting a new record, at least H nodes need to be accessed to
find a suitable leaf node for insertion. As a consequence, an update using the top-down
update strategy requires 2n*(H+1) disk reads and writes in the best case, and nL2/4+nH
+2n disk reads and writes in the worst case.

There are two cases for the bottom-up update strategy. When the new record can be
directly inserted into the original leaf node where the old record is stored, the best case
requires 3n disk I/O: read the secondary index (1) to locate the original leaf node, then
read the leaf node (1) and write back the node (1). When the new record conflicts with
the MBR of the old record, it is the worst case that H+6 disk I/O is needed: read the
secondary index (1) to locate the original leaf node, then read (1) and write back (1).
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Access H nodes to find the appropriate leaf node for insertion, then read (1) and write
back (1) the leaf node, and finally update the secondary index (1), a total of n* (H+6).

The bottom-up update strategy based on group partition is improved on the existing
bottom-up update strategy. By updating only one representative object for the moving
objects of the same group, the number of updates is reduced. Consequently, for the cost
of one update of n moving objects, the best case requires m*3 disk I/O, and the worst
case requires m*(H+6) disk I/O. Since n is generally much larger than m, the bottom-
up update strategy based on group partitioning has a minimal update cost.

4 Experimental Evaluation

Our experiments used Gist [17] to compare the algorithmic efficiency of index struc-
tures based on HGTPU-tree, GTPU-tree, TPU-tree and TPU2M-tree, and gave evalu-
ation and analysis. The experimental data set is a real-world large scale taxi trajectory
dataset from the T-drive project [18, 19]. It contains a total of 580,000 taxi trajectories
in the city of Beijing, 5 million kilometres of distance travelled, and 20 million GPS
data points. We randomly pick 100,000 taxi trajectories from this dataset to be the
query trajectories. Experimental hardware environment: CPU Intel Core i5 1.70 GHz,
memory 6 GB; operating system Windows7, development environment VS2010.

4.1 Impact of STSMin on Group Partitioning and Updating

The algorithm STSG utilizes the size of STS to measure the similarity of historical
trajectories of moving objects. In the STSG algorithm, the minimum spatial trajectory
of similarity STSMin size directly affects the effect of group partitioning. As STSMin
increases, the number of divided groups increases positively with STSMin. This is
because as STSMin increases, the number of directly reachable and dependency
reachable of moving objects is reduced, so that the number of groups in the dividing
result increases.

A good group partition should have the characteristic that the number of deviations
from the group is small for a long period of time in the future. As the STSMin
increases, the number of deviations from the group gradually decreases. As the number
of STSMins increases, the number of moving objects of the group increases, but the
closer the historical motion trajectory of the moving object of the group is. Therefore,

Table 2. Disk I/O times for 3 update policies.

Update strategy Number of disk I/Os updated by n moving
objects at one time
Best case Worst case Average situation

Top-down 2n(H+1) nL2/4+nH+2n nL2/8+1.5nH+2n
Bottom-up 3n n(H+6) nH/2+4.5n
Group partition 3m m(H+6) mH/2+4.5m

144 M. Zhang et al.



the probability that moving objects will remain similar increases, and the number of
moving objects that deviate from the group gradually decreases.

When STSMin is between [6, 8], the STSMin value in this interval reduces the
number of divided groups and the number of moving objects that deviate from the
group. Considering comprehensively, the minimum spatial trajectory of similarity
STSMin is set to 6 in subsequent experiments.

4.2 Effect of the Number of Moving Objects on Node Relocation

HGTPU-tree implements bottom-up update with zero-level index hash table. When the
number of moving objects increases, the number of moving objects that need to be
relocationed after position updating is gradually increased. Especially at 50 K, the rate
of increasing is the biggest. And finally it tends to be stable.

The space layer of HGTPU-tree is based on the R-tree. As the number of moving
objects increases, the number of nodes in the index tree increases. The number of child
nodes in each non-leaf node has a limit, so the MBR of each non-leaf node gradually
decreases. When the MBR of the node decreases, the probability that the newly
inserted node exceeds the MBR where the original record is stored increases, so the
probability that the updated node needs to be relocationed increases.

4.3 Query Performance

Range query is one of the most common queries in moving object data management.
We examine the query performance of HGTPU-tree through range query. The average
query time of HGTPU-tree is slightly higher than that of R-tree. This is because the
entire index structure of HGTPU-tree is divided into three layers. And the index tree of
HGTPU-tree has more levels, so the query performance will be reduced. However, the
query performance of HGTPU-tree is still roughly equivalent to R-tree on the basis of
reducing the update cost.

4.4 Insertion Performance

For the moving objects of different numbers, the insertion time of HGTPU-tree, GTPU-
tree, TPU-tree and TPU2M-tree is shown in Fig. 1. With the increase of the number of
moving objects, the required time for these four increases steadily. HGTPU-tree takes
less time than TPU-tree and TPU2M-tree, indicating that the insertion performance of
HGTPU-tree is better than TPU-tree and TPU2M-tree. This is because as the number of
moving objects increases, the space layer level in the HGTPU-tree gradually increases
and the free space in the index increases. Compared with the pre-grouping operation of
TPU-tree and TPU2M-tree, the moving objects of the same group in HGTPU-tree can
be directly inserted into the nodes of the group layer, avoiding the one by one-insertion
of TPU-tree and TPU2M-tree. HGTPU-tree not only needs to insert it into the index
tree but also needs to record it into the secondary index structure when inserting a new
node. As a result, the insertion performance of GTPU-tree is slightly better than that of
HGTPU-tree.
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4.5 Update Cost

In order to ensure the accuracy of query results, it is necessary to simultaneously update
the data in the database and the index. The update cost of moving objects with fre-
quently updated positions is huge. Disk I/O and CPU are two major concerns when
considering the update cost. The number of update times and the number of moving
objects are the main reasons that affect the update cost of uncertain moving objects.

As illustrated in a of Figs. 2 and 3, HGTPU-tree greatly reduces the number of
node access times compared to the other three index structures, regardless of whether it
is trajectory stability or frequent group deviation. And the number of node access times
directly affects disk I/O, which shows that HGTPU-tree has good performance in
reducing disk I/O for moving objects with frequent position updates. HGTPU-tree
improves the moving object grouping processing compared with TPU-tree and
TPU2M-tree, and saves the moving object of the same group in the same leaf node in
the data layer. When update positions, only one moving object needs to be updated for
the moving objects of the same group, reducing the number of update times. Moreover,
HGTPU-tree reduces the disk I/O required for the query compared with GTPU tree,
because the HGTPU tree implements bottom-up node access strategy by means of a
hash table, thereby improving the update efficiency.

Comparing b of Figs. 2 and 3, we can find that the CPU calculation cost of
HGTPU-tree is slightly higher than that of TPU-tree and GTPU-tree, and accounts for a
larger proportion of the overall update cost. But when the moving object group tra-
jectory is stable, the CPU calculation cost of HGTPU-tree is lower than that of TPU2M-
tree. This is because when the node update is performed, TPU2M-tree needs to query
the memo first. Furthermore, when the number of records in the memo increases,
additional space cleaning operations are required, which increases the CPU calculation
cost. In HGTPU-tree, the moving objects of same group maintain the same motion
trajectory before the next group update. However, for the moving object trajectory is
uncertain, periodic regroups are required in order to ensure the similarity of the moving
object trajectory of same group, which increases the CPU calculation cost. HGTPU-tree
has higher CPU cost than GTPU-tree. This is because HGTPU-tree needs to read and
query the hash table when performing position update, and needs to update to the hash
table synchronously, which increases CPU cost.

Fig. 1. Performance comparison of insert.
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As Figs. 4 and 5 show, the HGTPU-tree overall update cost is smaller than the
other three index structures whether it is in the scene where the moving object group
trajectory is stable or the group frequently deviates. With the increase in the number of
moving object pairs, the advantages of HGTPU-tree are more obvious.

For TPU2M-tree with bottom-up update, as the number of moving objects
increases, the number of nodes in the index tree increases and the MBR of each non-
leaf node gradually decreases. When the MBR of the node decreases, the probability
that the newly inserted node exceeds the MBR where the original record is stored
increases. If the new node exceeds the original recorded MBR, it is equivalent to
inserting a new record in the index tree, and the update efficiency is reduced. Compared
with GTPU-tree that is also based on group partition, HGTPU-tree reduce disk I/O and
the update cost by means of hash table.

For HGTPU-tree, when the number of moving objects increases, the number of
moving objects of each group increases correspondingly, which is more conducive to
the overall update. Especially in the case of stable group trajectory, the advantage of
HGTPU-tree is more obvious. Because the update period T of group re-partition can be
appropriately increased in the case where the trajectory of the moving object group is

a. Performance comparison of I/O cost             b. Performance comparison of cost

Fig. 3. Compare I/O+CPU cost with group frequent updates.

a. Performance comparison of I/O cost               b. Performance comparison of cost

Fig. 2. Compare I/O+CPU cost with group trajectories stable.
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stable compared to the frequent deviation of the group. Therefore, in the same time
period, the group trajectory is stable, which can reduce the CPU cost caused by group
re-partition, thereby reducing the overall update cost.

4.6 Memory Cost

Figure 6 shows the memory cost of HGTPU-tree and TPU2M-tree under the different
numbers of moving object. As the number of moving objects increases, the memory
cost of TPU2M-tree fluctuates periodically. TPU2M-tree is based on the UM structure.
The old records are retained when the moving object updates position. Meanwhile,
TPU2M-tree cleans up old records periodically. HGTPU-tree uses synchronize update
mechanism with the index tree to update the address content in the hash table every
time the moving object is updated, thus there is no need to save the old record.
Moreover, HGTPU-tree only records the address of one single object for the same
group of moving objects. Therefore, HGTPU-tree can greatly reduce the memory cost
and improve the system stability.

Fig. 4. Total cost with trajectories stability. Fig. 5. Total cost with trajectories deviation.

Fig. 6. The performance of memory cost.
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5 Conclusion

In this paper, we developed an index structure HGTPU-tree that supports moving
object group partition and bottom-up group update strategy. We proposed a group
partition algorithm STSG and a moving object group update algorithm. Experiments
based on real dataset analyzed the performance comparison of HGTPU-tree, GTPU-
tree, TPU-tree and TPU2M-tree in different situations. The results show that HGTPU-
tree is better than TPU-tree and TPU2M-tree in insertion performance. In terms of
update cost, the update cost of HGTPU-tree is lower than other three index structures,
especially when the moving object group trajectory is stable. HGTPU-tree increases the
complexity of the index structure in terms of query performance. However, the query
performance can still be approximately equivalent to the traditional index. HGTPU-tree
solves the problem of the high memory cost of existing bottom-up update indexes with
synchronous update mechanism.
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