
ADLER: Adaptive Sampling
for Precise Monitoring

Arnamoy Bhattacharyya(B) and Cristiana Amza

Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Canada

{arnamoyb,amza}@ece.utoronto.ca

Abstract. In this paper, we present ADLER, a tool for profiling appli-
cations using a sampling frequency that is tuned at program runtime.
ADLER can not only determine the adaptive sampling rate for any appli-
cation, but also can instrument the code for profiling so that different
parts of the application can be sampled at different frequencies. The
frequencies are selected to provide enough information without collect-
ing redundant data. ADLER uses performance models of program ker-
nels and prepare the kernels for sampling according to their complexity
classes. We also show an example use case of real-time anomaly detection,
where using ADLER’s execution models, the anomalies can be detected
23% quicker than static sampling.

1 Introduction

Application sampling is widely used for a number of scenarios: (1) applica-
tion phase detection [15], (2) anomaly detection [5] (3) improving energy effi-
ciency [13]. Choosing an appropriate sampling frequency to correctly capture
the behaviour of an application is quite important. Choosing a high frequency
may give rise to redundant data thus incurring unnecessary storage and analysis
overhead, while sampling at a low frequency may fail to capture enough infor-
mation. Moreover, different applications have parts of code that show different
execution behaviour. Therefore, setting a static sampling frequency is not the
right choice for correctly capturing the behaviour of an entire application.

Correctly capturing data though application profiling at an optimal sampling
frequency is also necessary for other use cases, for example, anomaly detection in
the cloud [5]. In large-scale cloud systems like Cassandra, HBase, stateful com-
ponents are expected to be many, and failures are expected to be the rule rather
than the exception; for example, one hardware failure per data center, per day
is commonly reported. Moreover, the necessary maintenance activities for moni-
toring, diagnosis, inspection or repair can no longer be handled through frequent
human intervention. New approaches that predict the resource consumption of
cloud applications [1] and provide automatic solutions for anomaly detection are
more applicable today. For fast and effective anomaly identification in real time,
an adaptive strategy for monitoring application execution and resource usage
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 86–100, 2019.
https://doi.org/10.1007/978-3-030-35225-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_7

ADLER: Adaptive Sampling for Precise Monitoring 87

is very important. Adaptive sampling provides a balance between the storage
overhead of the profiled data and the processing time of the profiled data to
detect anomalies.

In this paper we propose a compiler based tool called ADLER (ADaptive
sampLER) that instruments the application for adaptive sampling. ADLER
takes application bytecode and different input configurations. It then builds
performance models for program kernels and cluster them according to their
performance complexity classes. The output from ADLER is application code
that is instrumented to set the sampling frequency on the fly as the application
runs with a particular input. We show the effectiveness of ADLER in reducing
the storage overhead from a high static sampling frequency sampling while still
keeping enough information to correctly identify anomalies. We present results
for a wide range of database server applications written in multiple program-
ming languages. We show that ADLER is able to efficiently switch the sampling
frequency at minimum performance penalty. We also show the effectiveness of
adaptive sampling an example use case of real-time performance anomaly iden-
tification in database servers running in the cloud.

2 Motivational Experiment

In this section, we provide a motivational experiment to show that a proper
sampling frequency is necessary for correctly capturing a program’s runtime
behaviour. For this experiment, we set up an Hbase server. We monitor the CPU
utilization of the HBase process running the Yahoo! Cloud Serving Benchmark
(YCSB) [5] workload over time.

Figure 1 shows the CPU utilization of a HBase server when the YCSB work-
load is run on it. The sampling frequency for the CPU utilization is set at 300
HZ. There is a busy phase when the workload is run in the server. Also before
the beginning and at the end of the service, there are setup and cleanup phases
that the application uses to set up and clean up tables for running the workload.

In Figs. 1(c) and (d) we introduce a disk anomaly during the setup phase (at
around time 51 in Fig. 1(c)). This anomaly can be detected using a real-time
anomaly detection technique using sampled data about resources [5].

Figures 1(b) and (d) show the same scenario but with a lower frequency of
sampling (50 Hz). Here the CPU utilization patterns with and without the pres-
ence of an anomaly are not clearly distinguishable due to the sparse collection,
therefore, the anomaly is not detected.

The motivational experiment clearly shows the necessity of a good choice of
sampling frequency for understanding the behaviour of servers running in the
cloud. The sampled data can not only be used for resource anomaly detection,
but also for debugging the code, phase analysis, application optimization, VM
migration decisions [9].

The sampling frequency should not be very high as well, because that may
give rise to a lot of redundant data that incurs both storage and analysis complex-
ity overhead. Therefore, a technique of adaptive sampling, where the frequency

88 A. Bhattacharyya and C. Amza

Fig. 1. Motivational Experiment with different sampling frequencies for a HBase server
serving a YCSB workload. A higher sampling frequency captures more information,
helping in Anomaly detection (at around time 51), but a lower sampling frequency,
though can save space, fails to detect the same anomaly.

changes depending on the overall application structure is necessary. In the next
section, we provide our methodology for adaptive sampling that can correctly
capture the behavior of applications without incurring too much storage and
analysis overhead.

3 A New Method for Adaptive Sampling

In this section, we provide a detailed description of our adaptive sampling tech-
nique. Our methodology consists of two main steps:

– Estimate a sampling frequency based on the execution time models of pro-
gram kernels.

– Modify the sampling frequency on the fly according to the complexities of the
kernels during the program execution for a given input.

3.1 Execution Time Modeling

The first step of the adaptive sampling methodology is to build precise per-
formance models of kernels. An execution time model of a program kernel is
a function that can estimate the execution time of a kernel based on the pro-
gram inputs. We provide the definition of kernels and describe how we generate
execution time models of those kernels below.

ADLER: Adaptive Sampling for Precise Monitoring 89

Program Kernels. We identify loops and functions in the program as program
kernels. We represent the performance M of a program through the execution
time models m of n kernels:

M = {m1,m2, . . . ,mn} (1)

We define the execution time model m of each kernel as a linear regression
function of a set of predictors p = {p1, p2, . . . , pp}.

m =
|p|∑

i=1

αi · pi + β where pi ∈ p (2)

A predictor pi is a function of one or more program input parameters ι. If there
are r input parameters that influence the performance of a kernel, the predictor
set is formed by applying a set of transformations τ1, τ2, . . . τv on those input
parameters.

p = {
⋃

v

⋃

r

τv(ιr)} (3)

Values of Model Parameters. The first task is to assemble a list of all input
parameters that significantly influence the runtime of the application. We call
such parameters critical (input) parameters.

Critical parameters should be scalar values such as sizes of dimensions, num-
ber of iterations or the percentage of reads and writes during a workload. If the
execution time of the program is determined by an input file or a vector, then it
should be condensed into the smallest number of scalar critical parameters (e.g.,
if the input file is a sparse matrix, the critical parameter could be the number of
non-zero elements in the matrix). A domain expert has to determine the com-
plete set of parameters and supply them. We identify the set of parameters as
P = (p1, p2, . . . , pn).

Model Fitting. We use an empirical method to determine the execution time
model of the kernel in terms of its input parameters. In constructing models
to predict performance and put locations into clusters, we make use of “least-
squares linear regression and power law regression”. Regression selects model
parameters that minimize some measure of error. We use the LASSO statistical
method proposed by Bhattacharyya et al. [6] to determine the execution time
model of the kernel. Following this approach, the predictors are formed by apply-
ing powers and logarithm transformations on program inputs. The search space
of predictors is constructed from program input parameters using the following
normal form:

p = {ιki logl ιki , k, l ∈ R, ιi ∈ I} (4)

Here I represents the set of program input parameters. By assigning different
values to k and l, the predictor set is constructed from the input parameters.

90 A. Bhattacharyya and C. Amza

An example model from EPMNF for program input parameters ι1 and ι2 would
be c1 · ι21 + c2 · ι2 log ι2, where c1 and c2 are constants.

We generate execution time models for each calling context of a kernel. We
define a calling context of a kernel following the Loop Call Graph (LCG) [4] of
the program as following:

Definition 3.1 A context C of a kernel is defined as the set of nodes of the
LCG that are visited during a particular instance of execution.

Fig. 2. Sample code with corresponding LCG.

Figure 2 shows a sample code and its corresponding LCG. According to our
definition of context, the LCG will have the following contexts.

1. main → f1
2. main → f1 → f4
3. main → f1 → f5
4. main → f2
5. main → f2 → f5
6. main → f2 → f6
7. main → lp1

While profiling the kernels for the construction of execution time models, we
model each calling context separately. Therefore, at the end of the execution
time modeling step, we have one execution time model per kernel per calling
context. It is possible for a kernel to have multiple execution time models due
to execution from different calling contexts.

Measure of Fit. As our method for constructing execution time model is
based on empirical method, the constructed model sometimes does not reflect
the theoretical exact execution time model. Therefore, we need to measure the
goodness of fit of the constructed model so that it can be effective utilized to
tune the sampling rate in the following step. For measuring the goodness of

ADLER: Adaptive Sampling for Precise Monitoring 91

fit of the constructed model, we use the adjusted R2 (cite pemogen) statistic, a
measure of the model’s goodness-of-fit that quantifies the fraction of the variance
in execution time accounted for by a least-squares linear regression on the inputs:

The adjusted R-square (ARS) of the predictions by the model is calculated
on the test data:

R2 ≡ 1 −
∑x

i=1 (yi − fi)
2

∑x
i=1 (yi − ȳ)2

(5)

ARS = R2 − (1 − R2)
m

x − m − 1
(6)

Where x and m are the test data batch size and number of parameters respec-
tively.

3.2 Adaptive Sampling

After we generate the execution time models for all the kernels in the program,
we have to set execution points in the loop call graph of the program where we
want to switch the sampling frequency. If we switch the sampling frequency for
the execution of each kernel in each context, the overhead from sampling will be
too high, resulting in a high drop in application throughput. Therefore, in this
section we provide a novel approach for adaptive sampling based on complexity
classes of the kernels at various calling contexts.

Complexity Classes. We cluster the execution time models of kernels as the
following four main classes. This clustering of kernels helps to modify the sam-
pling frequency switching to keep the sampling frequency switching at a mini-
mum. Since the sampling frequency switching requires communication between
the program and the sampler, a frequency switch at the beginning of execution
of each kernel will produce too much runtime overhead.

1. Logarithmic Class: The kernels belonging to the logarithmic class have the
following normal form of the execution time model.

p = {
∑

logl ιi, l ∈ R, ιi ∈ I} (7)

2. Linear Class: The kernels belonging to the linear class has the following nor-
mal form of the execution time model.

p = {
∑

ιki , k ∈ {1} ιi ∈ I} (8)

3. Polynomial Class: The kernels in the polynomial class has the following nor-
mal form:

p = {ιki logl ιki , k ∈ {2, 3} , l ∈ R, ιi ∈ I} (9)

It is important to note that we consider two kernels with execution time
models O(n2) and O(n2 ∗ log n) to be in the same complexity class because
their asymptotic behaviour is roughly the same.

92 A. Bhattacharyya and C. Amza

4. Unknown Class: All kernels whose execution time models do not achieve a
good fit for the training data, belong to a Unknown complexity class. We
consider a value of 0.95 for the ARS a good fit.

Grouping of Kernels. Once we have identified all the different complexity
classes of the kernels, we instrument the code to prepare it for adaptive sampling.
The instrumentation prepares the code to communicate with the sampling tool
to modify the sampling frequency on the fly during application deployment. Our
goal in this grouping step is to minimize the communication between the appli-
cation and the sampling tool, while still collecting enough information through
sampling to capture the complete behaviour of the application.

To group the kernels, we use two information:

– The complexity class of the kernel.
– The calling context of the kernel in the LCG.

Our grouping algorithm starts from the leaves of the LCG. For each leaf of
the LCG, we also check the calling context of the kernel to determine its level.
The instrumentation adds codes for either setting the sampling for the respective
kernels. The result of the instrumentation is to produce a code that after adaptive
sampling, will generate the same number of data points for each kernel at each
calling context level. This means that a kernel with a higher execution time will
need a lower sampling frequency while a kernel with a smaller execution time
will be in need of a higher sampling frequency. The setting of sampling frequency
uses both the static structure and the runtime information about the kernels.

During static check, all the kernels belonging to the same complexity class is
sampled against the same frequency. Therefore, code for switching is added only
once for these kernels of the same group. But if two kernels belong to different
complexity classes (where the input parameters in the execution time model are
different), we take a look at the execution time trends of the kernels obtained
during the execution time model generation. If the trend shows that the kernels
do not differ from each other by more that 5% in their execution time for the
different input parameter values, we do not switch the sampling frequency during
the kernels switch. The number 5%, according to our experiments, provides the
sweet spot between the number of sampling switches and the quality of the
collected data.

The static analysis begins with kernels at the deepest calling context level
(the highest number of nodes in the calling context). It processes the leaf kernels
at the same level of the LCG. Once the leaves at the lowest level have been pro-
cessed, the analysis moves one level up and applies the same clustering strategy.
Once the processing of all the leaves at all calling context levels is done, our
instrumentation for the code necessary for frequency switching per context is
complete.

ADLER: Adaptive Sampling for Precise Monitoring 93

Setting the Sampling Frequency. Once the instrumentation of the switching
of sampling frequency is done, the setting of actual sampling frequency is done
during the program execution as this is input specific.

At runtime, the switching code first calculates the predicted execution time
of a kernel at a particular calling context based on the values of input parameters
during that particular run. After calculating the execution time, based on the
given number of data points necessary for capturing the program behaviour, the
frequency is set. The required number of samples per kernel per calling context
can be set by the analyst and that is a compromise between the resource one has
vs. the amount of information one wants to collect about the program behaviour.
For the kernels with Unknown execution time models, the execution time is
conservatively predicted to be the minimum of all the execution times of that
kernel during training and the sampling frequency is set according to that.

Example. In this section we give a complete example of sampling frequency
switching using our kernel grouping heuristics. Listing 1.1 shows a sample code
and Fig. 3 shows the corresponding LCG for the code. Figure 3 is also annotated
with the execution time models of the relevant of the LCG.

Listing 1.1. Example code for Adaptive Sampling.

main(){

f1();

//non -kernel code

for (...){

f6();

} //lp2

//non -kernel code

for (...) {} //lp3

}

f1(){

f4();

//non -kernel code

for (...) {} //lp1

//non -kernel code

f5();

}

We first start our instrumentation for all the leaves in the LCG of the pro-
gram. In the given LCG, there are five leaves: (1) f4() (2) loop1 (lp1) (3) f5()
(4) f6() and (5) loop3 (lp3). As a first step, we have to identify all the leaves
that belong to the same calling context. We can see from the graph that the
three leaves (f4(), lp1 and f5()) belong to the same calling context which is
main() → f1(). Therefore, first we process them. Here let us assume that during
the execution time model generation with different input parameter values, the
execution time trends of f4() and lp1 do not vary by more than 5%. Therefore,
according to our heuristics, even though they have different input parameter
values in their respective execution time models, they belong to the same linear

94 A. Bhattacharyya and C. Amza

Fig. 3. Loop Call Graph and their respective sampling groups for the code in Listing 1.

complexity class. As a result, we do not have to switch sampling frequency during
the kernel switch. But f5() belongs to a different (quadratic) complexity class.
When the code switches from the execution of kernel lp1 to f5() we perform a
sampling frequency switch.

Next we process the next leaf node of the graph that is f6(). This node
alone belongs to the calling context main() → lp2. Therefore, this kernel is
instrumented with its own sampling frequency code. As the kernel belongs to a
Unknown complexity class, the sampling frequency will be set according to the
smallest execution time of this kernel during the execution time model generation
phase.

Once we finish processing of all the leaf kernels at the deepest level, we
move one level up and process the leaf kernel lp3. lp3 has the calling context
main() and it is the only kernel belonging to this context. Therefore, it will be
instrumented with the sampling frequency according to the predicted execution
time for the given input at runtime. Listing 1.2 shows the instrumented code
with our adaptive sampling method.

Listing 1.2. Instrumented for Adaptive Sampling.

main(){

f1();

//non -kernel code

for (...){

predict_and_setfreq (f6);

f6();

} //lp2

//non -kernel code

predict_and_setfreq (lp3);

for (...) {} //lp3

}

f1(){

predict_and_setfreq (f4);

ADLER: Adaptive Sampling for Precise Monitoring 95

f4();

//non -kernel code

for (...) {} //lp1

//non -kernel code

predict_and_setfreq (f5);

f5();

}

4 Implementation

In this section we provide details about the implementation of our tool ADLER.
As seen in Fig. 4, the tool is composed of three components.

1. Execution time model Generator: The execution time model generation
engine of ADLER has all the capabilities built for generating the execution
time models of the kernels in the program.

2. Adaptive Sampler: The adaptive sampler engine of ADLER takes the exe-
cution time models generated by the execution time model generator engine
and then instruments the original code for adaptive sampling.

3. Compiler Analysis: The compiler component of ADLER has two compilers
that support intermediate languages: (1) LLVM for C/C++ and (2) Soot [16]
for Java. The execution time model generator and the adaptive sampler com-
ponents both are connected to this component.

ADLER takes as input source code files and produces an instrumented ver-
sion of the source code ready for adaptive sampling. If the source code is not
available, ADLER can work with intermediate representations of the code as
well. For the intermediate representation of C and C++ programs, we use the
LLVM’s intermediate language. The LLVM compiler is widely used by program-
ming language research these days the intermediate representation of the code
gives the flexibility to work across microarchitectures.

Similar to C/C++ applications, for Java ADLER supports both source code
files and class/ jar files that are essentially intermediate representation of source
code in the Java language.

The analyst supplies the source code files, the language of analysis and the
values and names of the input parameters for the given code. ADLER first
performs static analysis of the source code and instruments the source code for
execution time model construction. This produces an instrumented version of
the source code, which, when run by the user with different input parameter
values, produces profile files with timing information per run.

Next, the profile files are fed back into the execution time model generator
component of ADLER to learn the execution time models of the kernels inside
the code. The execution time models of the kernels are written to files by the
model generator engine.

96 A. Bhattacharyya and C. Amza

Fig. 4. Different components of ADLER and the complete workflow.

In the next step, the adaptive sampler engine of ADLER uses the execution
time models learned at the previous step to perform instrumentation for prepar-
ing the code for adaptive sampling. The instrumentation in this step does not
go on top of the previous instrumentation because our tool buffers the original
code.

5 Experimental Evaluation

In this section, we present the effectiveness of adaptive sampling using ADLER
for a number of popular cloud database servers written in both C/C+ and Java.
Though our method for adaptive sampling is versatile and can be used in any use
case where sampling needs to be performed, we focus our use case on real time
resource anomaly detection on the cloud. We choose the YCSB [1] workloads for
running on the cloud servers. The various parameters of the YCSB workloads
give us different input values to train the execution time models of kernels.
We first present the study on the kernel characteristics of the servers and how
adaptive sampling is effective in grouping the kernels based on their complexity
classes. Then we present a detailed study on an anomaly detection use case.

5.1 Execution Time Modeling

In this section, we present the results from the execution time modeling engine of
ADLER. We report the total number of kernels in each of the databases we use
for experiments and their complexity classes. We also report how many sampling
frequency switching points are created by ADLER to show the effectiveness of

ADLER: Adaptive Sampling for Precise Monitoring 97

Table 1. The total number of kernels and their complexity classes for the codebases
of our experiments.

Codebase Language# kernelsLogLinear PolynomialUnknown# Switching

Hbase-1.1.0 Java 488953 45 488529 279 100 2536

Cassandra-3.0 Java 133331 44 133141 89 57 4789

Elasticsearch-2.3.3Java 134581 10 134416 90 65 2987

MongoDB-3.0.14 C/C++ 298822 12 298735 45 30 546

ArangoDB-4.3.61 C++ 1539 30 1473 20 16 656

Memcached-1.4.37C 120 3 108 6 3 54

the grouping strategy. We run each database with 100 different input parameter
combinations, each for 10 times.

As seen from Table 1, most of the kernels can be correctly classified into
complexity classes, with a few unknowns. Also most kernels belong to a linear
complexity class for the databases. We see in the last column of Table 1, that the
number of switching points introduced by ADLER is relatively low, which shows
the effective clustering of the kernels in these applications. Grouping a large
number of kernels in a smaller number of clusters also indicate the existence of
recurrent phases in applications that have a significant number of kernels with
similar complexity classes.

5.2 Case Study: Anomaly Detection

In this section we show an example use case of ADLER in case of anomaly
detection. We use the execution time models to detect the anomaly during pro-
gram runtime. Our anomaly detection technique closely relates to the method
proposed by Bhattacharyya et a. [5] in the sense that we annotate raw resource
usage data with semantic information (with the kernels). But unlike them, we
use the predicted execution time from the execution time models and compare
against the actual execution time during a program run of kernels for detecting
anomalies.

For building the execution time models, we use 10 different configurations
of YCSB workload for a total of 1000 runs. Then for testing the accuracy of
anomaly detection, we use the systemtap tool to simulate a faulty disk anomaly.
During the execution of a YCSB workload on Cassandra, we inject a delay of
50 s each in 50% of the reads and 50% of the writes to disk coming from the
database. We keep injecting the delay for a period of 10 s.

Table 2 shows the methods from Cassandra that represent the workload pro-
cessing phase. The actual and predicted execution times for a normal run and
the actual execution time of an anomalous run are also shown. It is clearly seen
that by comparing the predicted execution time with the actual execution time
at runtime, the anomaly can be detected.

98 A. Bhattacharyya and C. Amza

Fig. 5. The CPU and Memory consumption by the kernel org.apache.cassandra.io.util.
ByteBufferOutputStream.write() for normal and anomalous runs for Cassandra.

Table 2. Predicted and actual execution times for Cassandra kernels for anomalous
runs. Pred is Predicted execution time and Anom is Anomalous run.

Kernel Normal Pred Anom

org.apache.cassandra.io.util.ByteBufferOutputStream.write() 150 ms 160 ms 300 ms

org.apache.cassandra.utils.PureJavaCrc32.update() 52 ms 60 ms 150 ms

org.apache.cassandra.io.util.ChecksummedOutputStream.write() 100 ms 95 ms 234 ms

Root-Cause Analysis. With our adaptive sampling methodology, we are able
to perform a root cause analysis of the anomaly by correlating the monitored
usage of different resources. Figure 5 shows the CPU and memory utilization of
one of the Cassandra kernels (org.apache.cassandra.io.util.
ByteBufferOutputStream.write()) during the normal and anomalous runs.

To learn the characteristics of normal runs, we use the method described by
Bhattacharyya et al. [5]. By looking at the figure, it can be seen that there is not
much change in the memory utilization for the disk fault anomaly but in CPU
utilization, there is a noticeable difference. By correlating the resource utilization
data with the execution time difference, we can identify this anomaly type. For a
different anomaly e.g. memory leak, the difference in the memory usage pattern
between a normal and anomalous run will become more significant.

Adaptive sampling can help in root cause analysis by reducing the analysis
complexity of the amount of collected data. In an online setting, this is crucial.
Using ADLER, we are able to perform the root cause analysis for the anomaly
23% faster after the end of the busy phase. Also, at a lower sampling frequency
(e.g. the default sampling frequency of gprof), due to the lack of enough data
points, the anomaly root cause analysis cannot be performed.

ADLER: Adaptive Sampling for Precise Monitoring 99

6 Related Work

Symantec i3 for J2EE [8] is a commercial tool that features the ability to adap-
tively instrument Java applications based on the application response time. Rish
et al. [14] describe a technique, called active probing. Kumar et al. [10] apply
transformations to the instrumentation code to reduce the number of instru-
mentation points executed as well the cost of instrumentation probes and pay-
load. A technique to switch between instrumented and non-instrumented code
is described by Arnold and Ryder [2]. Munawar and Ward [12] argue that a
monitoring system should continuously assess current conditions by observing
the most relevant data, it must promptly detect anomalies and it should help to
identify the root-causes of problems. The magpie [3] and the Pinpoint [7] are also
two well-known projects of the field. Magalhaes et al. [11] provides an approach
for adaptive profiling and probably the closest to our work. But in contrary to
them, our approach is not application and workload specific and it is not turned
on only when anomaly is detected.

7 Conclusion

In this paper we present a tool for adaptive sampling – ADLER. ADLER can
prepare applications that can self-adapt sampling frequencies on the fly based
on the application input. We show an use case of ADLER in anomaly detection
for web servers running on the cloud. Compared to a static sampling at high
frequency, ADLER can improve the delay in anomaly root-cause analysis by
23%, making it very effective in real-time anomaly detection. ADLER can be
used for any use case where sampling is necessary.

References

1. Yahoo Cloud Service Benchmarks. https://research.yahoo.com/news/yahoo-cloud-
serving-benchmark/

2. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
ACM SIGPLAN Not. 36(5), 168–179 (2001)

3. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-
tion and workload modelling. In: OSDI, vol. 4, p. 18 (2004)

4. Bhattacharyya, A., Hoefler, T.: Pemogen: automatic adaptive performance mod-
eling during program runtime. In: 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT), pp. 393–404. IEEE (2014)

5. Bhattacharyya, A., Jandaghi, S.A.J., Sotiriadis, S., Amza, C.: Semantic aware
online detection of resource anomalies on the cloud. In: 2016 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 134–
143. IEEE (2016)

6. Bhattacharyya, A., Kwasniewski, G., Hoefler, T.: Using compiler techniques to
improve automatic performance modeling. In: 2015 International Conference on
Parallel Architecture and Compilation (PACT), pp. 468–479. IEEE (2015)

7. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: Null, p. 595. IEEE (2002)

https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/

100 A. Bhattacharyya and C. Amza

8. Symantec Corporation: Symantec i3 for J2EE - performance management for the
J2EE platform

9. Jandaghi, S.J., Bhattacharyya, A., Sotiriadis, S., Amza, C.: Consolidation of under-
utilized virtual machines to reduce total power usage. In: Proceedings of the 26th
Annual International Conference on Computer Science and Software Engineering,
pp. 128–137. IBM Corp. (2016)

10. Kumar, N., Childers, B.R., Soffa, M.L.: Low overhead program monitoring and
profiling. ACM SIGSOFT Softw. Eng. Notes 31(1), 28–34 (2006)

11. Magalhaes, J.P., Silva, L.M.: Adaptive profiling for root-cause analysis of per-
formance anomalies in web-based applications. In: 2011 10th IEEE International
Symposium on Network Computing and Applications (NCA), pp. 171–178. IEEE
(2011)

12. Munawar, M.A., Ward, P.: Adaptive monitoring in enterprise software systems.
SysML, June 2006

13. Padmanabha, S., Lukefahr, A., Das, R., Mahlke, S.: Trace based phase predic-
tion for tightly-coupled heterogeneous cores. In: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 445–456. ACM
(2013)

14. Rish, I., et al.: Adaptive diagnosis in distributed systems. IEEE Trans. Neural
Netw. 16(5), 1088–1109 (2005)

15. Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro 23(6), 84–93 (2003)

16. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot:
a java bytecode optimization framework. In: CASCON First Decade High Impact
Papers, pp. 214–224. IBM Corp. (2010)

	ADLER: Adaptive Sampling for Precise Monitoring
	1 Introduction
	2 Motivational Experiment
	3 A New Method for Adaptive Sampling
	3.1 Execution Time Modeling
	3.2 Adaptive Sampling

	4 Implementation
	5 Experimental Evaluation
	5.1 Execution Time Modeling
	5.2 Case Study: Anomaly Detection

	6 Related Work
	7 Conclusion
	References

