
Efficient Cache Simulation
for Affine Computations

Wenlei Bao1(B), Prashant Singh Rawat1, Martin Kong2,
Sriram Krishnamoorthy3, Louis-Noel Pouchet4, and P. Sadayappan1

1 The Ohio State University, Columbus, USA
{bao.79,rawat.15,sadayappan.1}@osu.edu

2 Brookhaven National Laboratory, Upton, USA
mkong@bnl.gov

3 Pacific Northwest National Laboratory, Richland, USA
sriram@pnnl.gov

4 Colorado State University, Fort Collins, USA
pouchet@colostate.edu

Abstract. Trace based cache simulation are common techniques in
design space exploration. In this paper, we develop an efficient strategy to
simulate cache behavior for affine computations. Our framework exploits
the regularity of polyhedral programs to implement a cache set parti-
tion transformation to parallelize both trace generation and simulation.
We demonstrate that our framework accurately models the cache behav-
ior of polyhedral programs while achieving significant improvements in
simulation time. Extensive evaluations show that our proposed frame-
work systematically outperforms the time-partition based parallel cache
simulation.

1 Introduction

Modern computer architectures leverage memory hierarchies to bridge the speed
gap between fast processors and slow memories. At the top of this hierarchy sits
the fastest, smaller, and most expensive memory, i.e. registers; at the bottom
of the hierarchy, one can find much slower, larger, and cheaper memories (e.g.
DRAM, or other permanent media storage such as disks). The intermediate lev-
els of this hierarchy provide temporary storage between two or more levels. This
avoids making time-expensive trips to lower memory levels. These intermediate
levels are often known as caches, and their main characteristic is to store fre-
quently used data under some pre-determined storage and replacement policy
(e.g. LRU, FIFO, etc.).

The behavior of a cache is defined by a number of properties and policies,
the most obvious being its memory capacity, the possible locations where a
unit of data can be stored, as well as mechanisms for identifying and search-
ing data. Other intricacies of caches include determining when data should be
evicted or when it should be committed to a more permanent memory, so as to

c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 65–85, 2019.
https://doi.org/10.1007/978-3-030-35225-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_6


66 W. Bao et al.

keep all levels synchronized [17,27]. In system design, different cache architec-
tures and configurations are thoroughly evaluated to gauge the effectiveness of
their use. It is easy to see that the aforementioned cache characteristics increase
the complexity of this task. Furthermore, this evaluation is generally performed
by trace-driven simulation, which is more flexible and accurate compared to
execution-driven cache simulation [25] and modeling approaches [30]. The rele-
vance of cache simulation is also observed in the design of new compiler analyses
and transformations. In order for a simulation to be preferred, it must produce
the same output as the real program execution while simultaneously being faster
or more cost effective. Therefore, fast, reliable and accurate cache simulators are
an important tool for engineers and researchers.

Techniques to reduce the complexity of cache simulation have been widely
studied in the past. The stack processing algorithm [25] was introduced to reduce
the complexity of sequential cache simulation. It was later extended to simulate
several cache configurations in a single pass [39], and reduce space complexity
by compressing program traces [30].

Trace-driven cache simulation is one of the preferred methods primarily due
to the accuracy of its results. However, with the increase in complexity of the
cache architectures, trace-driven methods incurs longer simulation times and
requires storing large program traces (which store the referenced addresses) to
generate accurate results. Therefore, it is imperative to study and develop tech-
niques to overcome these shortcomings. One such technique is the parallel sim-
ulation approach [15,26] that exploits the parallelism of current processors to
reduce the simulation time.

Previous research efforts in the context of parallel simulation approaches
can be divided into two major classes – time-partitioning simulation [15], and
set-partitioning simulation [6]. Time-partitioning methods separate the program
trace into a number of sequential subtraces of equal length. All the subtraces are
used to concurrently simulate cache behavior with identical configuration, and
generate partial simulation results. In set-partitioning simulation, a program ref-
erence is mapped to a single cache set for a given cache configuration. Each cache
set can be simulated independently by a different processor. The parallelism of
the set-partitioning approach is therefore limited by the number of sets within
the cache configurations.

Time-partitioning parallel simulation can be more efficient than the set-
partitioning simulation under certain conditions [6]. However, the accuracy of
results for time-partitioning is often lower than set-partitioning because it ignores
the initial cache state of each program trace. Subtle algorithmic tweaks are
employed to correct/improve the accuracy of the simulation result by perform-
ing re-simulation. The added overhead and cost of re-simulation can potentially
overcome the benefits from parallelism. Moreover, the time-partitioning scheme
involves a preprocessing step that divides the entire program trace into sub-
traces in order to enable the concurrent simulation. Clearly, the entire trace of
the program has to be stored in memory, which may be problematic when the
trace size exceeds the system storage.



Efficient Cache Simulation for Affine Computations 67

In this work, we propose a novel parallel cache simulation framework based on
set-partitioning for affine programs (where cache set partition based on compile-
time analysis in the paper is possible), which achieves up to 100+× speedup
against sequential simulation on 64 nodes cluster among 60 evaluations of 10
benchmarks with 6 different cache configurations.

Unlike previous parallel simulation approaches that generate the trace in
sequential fashion, our approach also parallelizes the trace production. Moreover,
compared to previous set-partitioning approaches [6] that compute the cache set
number while performing the trace analysis, our approach organizes the trace by
cache set at the very beginning of its generation. It thus avoids costly operations
such as insertion and synchronization by maintaining the traces in lexicographic
order. To the best of our knowledge, our work is the first to adopt this approach.
Experimental evaluations validate the correctness and also demonstrates the
performance of our framework.

In summary, we make the following contributions:

– We introduce a novel compiler technique that classifies the program references
by their targeted cache set. This allows to parallelize the trace generation,
and accelerates the overall cache simulation.

– We propose a program transformation that exploits the inherent parallelism
exposed by classifying the program references by cache sets, and leverage
two standard parallel runtimes, OpenMP and MPI, to increase the cache
simulation speed.

– We provide a fully automated tool that, given a C source file containing a
polyhedral program region as input, performs the cache set partition transfor-
mation and generates code that could conduct the program cache simulation
in parallel.

– We perform an extensive evaluation to demonstrate the accuracy of the sim-
ulation in terms of cache miss and efficiency in terms of simulation time for
our proposed approach.

The rest of the paper is organized as follows: Sect. 2 describes the moti-
vation, Sects. 3 and 4 introduce the background and present the algorithm to
perform the cache set partition. Section 5 summarizes our parallel cache simula-
tion framework. Section 6 shows the evaluation results. We conclude the paper
with Sect. 7.

2 Motivation

The problem of cache simulation has been extensively studied in the past
decades [1,8,16,19,21,25,32,34,38]. Accurate and fast simulation techniques are
necessary in order to do extensive architectural space exploration as well as
devising new compiler optimization strategies. This problem will become even
more important in the current and next generation of computer systems, where



68 W. Bao et al.

(a) Performance Scaling

8 16 32 64
0

20

40

60

80

Si
m
.S

pe
ed
up

vs
Se
q. gemm

Time-Partition+Trace-Seq Time-Partition+Trace-Par Our Set-Partitioning(PCS)

(b) Time and Space cost of Program Trace
Problem Trace Time Set Trace Set Time
Size (GB) (sec) (GB) (sec)

1283 0.06 1.34 0.001 0.02
2563 0.5 10.57 0.008 0.17
5123 4.4 59.18 0.07 0.92
10243 36 511.36 0.56 7.99
20483 247 2425.18 3.9 37.89

Fig. 1. Motivation example of Gemm

massively parallel processors will effectively have hundreds and thousands of
cores. Therefore, good parallel hierarchical cache simulator will play a critical
role.

Previous research efforts have demonstrated the benefits of exposing and
exploiting parallelism in cache simulations [6,15,31,37]. In particular, paralleliza-
tion approaches for trace-driven techniques have taken two directions – time-
partitioning and set-partitioning. Time-partition approach suffers from inaccu-
racy and resimulation overhead as previously described. Set-partition approach
simulates each cache set independently, does not suffer from the re-simulation
problem, and obtains better accuracy. Nevertheless, the achievable speedup is
limited to the number of available cache sets. Additionally, most of the previously
proposed set-partitioning techniques suffer from the following limitations:

1. Inefficient sequential trace generation phase could dominate the simulation
time.

2. Long program runs produce large trace files (potentially in the order of hun-
dreds of GB), which could exceed the storage capacity of a single node.

We now demonstrate the problems in detail with the example of matrix mul-
tiplication, Gemm, on a real-world cache configuration: a 3-Level cache memory
hierarchy with 32 KB 4-way L1, 256 KB 4-way L2 and 8 MB 16-way L3 cache.

Space Complexity of Trace Generation. Table 1b in Fig. 1 lists the space needed
to store the trace file for different matrix sizes for Gemm. It is easy to observe
that even for a problem size of 20483, the storage required for the trace file is as
huge as 247 GB. Therefore, cache simulation on full-size problems will demand
significant storage space, which is impractical.

Time Complexity of Trace Generation. The plot in Fig. 1 illustrates the
speedup obtained over the sequential simulation across different number of
nodes for problem size of 2563. Time-partition+Trace-seq represents the speedup
with time-partition simulation and sequential trace generation, while Time-
partition+Trace-par shows the speedup of time-partition but with parallel trace



Efficient Cache Simulation for Affine Computations 69

1 for (t = 0; t <T; t++)
2 for (i = 1; i <N; i++)
3 for (j = 1; j <N; j++)
4 /* reference c */ /* reference a */ /* reference b */
5 S1: A[i][j] = A[i-1][j] + A[i][j-1];

Fig. 2. Simplified Seidel-2d benchmark (actual benchmark has 5 read references).

generation. The difference clearly demonstrates that the trace generation phase
can dominate the whole simulation time, making the parallel simulation ineffi-
cient. Columns set trace and set time indicate the storage space and time needed
if the trace generation phase get parallelized by set-partitioning with 64 nodes.
We can observe significant improvements in both space and time consumption.
Moreover, the parallelization of trace generation allows the subsequent simula-
tion process to be more efficient compared to previous approaches [6].

Therefore, we propose an efficient parallel cache simulation framework for a
class of computationally intensive programs known as affine programs, which
automatically transforms the program, and parallelizes the cache simulation
along with the trace generation process based on set-partitioning.

3 Program Representation

The compute-intensive kernels of many linear algebra methods, image processing
applications [41,43–45], and physics simulations [9,14,40,42] can be expressed
as an affine/polyhedral program [2,4,11,14]. Extracting a high performance for
such kernels often requires an effective utilization of cache hierarchies.

A property of polyhedral program is that the loop bounds, conditionals, and
array indices in the program must be affine functions. The mathematical struc-
tures used in this work to represent polyhedral program are: iteration domain,
data access relations, and schedule of iterations. The operations on these struc-
tures, such as composition and inverse, are the same as [3,5], and not listed here
because of the space limitations.

Iteration Domains. Iteration domains capture the set of runtime executions of
a statement, using integer sets where the loop bounds are used to constrain the
number of points in the set. Each statement S is associated with an iteration
vector iS with one component per surrounding loop, and the values iS are cap-
tured by defining its iteration space DS . For example the iteration domain of
S1 in Fig. 2 is:

DS1 = [T,N ] → {S1[t, i, j] : 0 ≤ t < T ∧ 1 ≤ i < N ∧ 1 ≤ j < N}

Data Access Functions. An essential part of our cache simulation framework
is the cache analysis based on representing the data accessed by each program
iteration. For polyhedral programs, the function that maps a statement instance
to the array element being accessed is by definition an affine relation, including



70 W. Bao et al.

surrounding loop iterators and parameters. The access relation maps an iteration
domain to the multidimensional array index being accessed. For example, the
function that relates the iterations of S1 with the location read in array A for
the reference A[i − 1][j] in Fig. 2 is:

ReadA
S1

= {S1[t, i, j] �→ A[i2, j2] : (i2 = i − 1) ∧ (j2 = j)}

We note Write for the write references. Furthermore, one can build the relation
that is restricted to the set of iterations of S1 by computing S = ReadA

S1 ∩ DS1,
that is embed the constraints on the possible values for S1[t, i, j] directly in the
relation.

Finally, we note ProgRefs the union of all access relations for the pro-
gram, ReadRefs the union of all read-only access relations for the program,
and WriteRefs the union of all write-access relations in the program. We have
ProgRefs = ReadRefs ∪ WriteRefs.

Program Execution Order. Schedule is used to specify the execution order of
statements in program by mapping statement instances in iteration domain to
timestamps of iteration space combed with values to indicate orders. As such,
statement instances in the iteration domain are executed following the lexico-
graphic ordering ≺ of their associated timestamp. ≺ is defined as (a1, . . . , an) ≺
(b1, . . . , bm) iff there exists an integer 1 ≤ i ≤ min(n,m) s.t. (a1, . . . , ai−1) =
(b1, . . . , bi−1) and ai < bi.

The program schedule can be denoted by 2d + 1 timestamps, where d is the
maximum depth of loop in program [14]. A schedule can be constrained by the
iteration domain of its statement, e.g., via SchedS1 ∩ DS1, and the set of all
distinct statement iterations in the program can be built by the union of all
schedules constrained by the respective statement iteration domain as Sched.

4 Cache Set Partition Analysis

4.1 Cache Access Modeling

The core polyhedral abstractions are obtained from the C code via the PET [36].
In order to model the events corresponding to accessing different cache lines, we
must first translate the underlying virtual memory address of each individual
array reference into the unique cache line, and the associated set in the cache.
For the moment, we will assume that the referenced variable has already been
translated to a virtual memory address. Definition 1 defines the steps of the
conversion from a given virtual memory address to the associated and accessed
cache set.

Definition 1 (Set-associative cache). A set-associative cache C with asso-
ciativity K, cache line (i.e., block) size of B bytes, and size n bytes contains S
sets, with S = n/B/K. A virtual memory address addr maps to a unique line
index Lid = floor(addr/B), and a line maps to a unique set SLid

= Lid%S.



Efficient Cache Simulation for Affine Computations 71

The previous definition essentially assumes that the cache size in bytes (n),
the number in bytes of a cache line (B), and associativity degree (K) are given.

We now explain how the translation from a particular array reference to its
virtual memory address is performed. The first step is to linearize the access
relation. Therefore, for each distinct variable (array or scalar) a vector of fixed
dimension sizes is provided at compile-time. The reason for requiring fixed sizes
is that the exact virtual memory address must be determined before computing
the associated cache set. To complete the linearization, we also require an offset
address for each program variable, which in this case, can be either a program
parameter or a fixed numerical integer value. If a fixed value is preferred, we can
simply estimate the address offsets by taking the declaration order, and com-
puting each array size with the dimension sizes and the floating point precision
used. For example, the linearization transformation from a 2D access relation
RA for array A, with sz the size of A and startA its starting address can be
written as:

Linearize = {[i, j] �→ [m] : m = startA + i ∗ sz1 + j}
Then the unique cache line index is given by applying the relation:

MemToLineId = {[m] �→ [lid] : lid = floor(m/B)}
Computing the set to which a cache line maps to is given by the relation:

LineIdToCacheSet = {[lid] �→ [cset] : cset = lid % S}
Definition 2 (Array to Cache set index). Given an access function RA

of an array reference A with sizes sz and starting address startA, for a cache
as defined in Definition 1. The associated cache line in cache C is identified by
AccessToLine as:

AccessToLine = RA ◦ Linearize(sz, startA) ◦ MemToLineId

The composition of the obtained relation with the LineIdToCacheSet relation
provides the corresponding cache set in C that is referenced by the array and
identified by AccessToSet as:

AccessToSet = AccessToLine ◦ LineIdToCacheSet

Thus, for every array access within the program, we can determine in a static
fashion which cache set it maps to given cache configuration based on above
relations.

4.2 Cache Set Partition

In order to distribute and parallelize the trace generation and program simula-
tion, we first need to construct a map from the time space (space of timestamps
assigned to each lexical statement) to the accessed cache set. This relation is



72 W. Bao et al.

easily built by composing the inverse of the program schedule with the compo-
sition of the union of access relations with the union of maps that translate the
access relation to a specific cache set instance:

TimeToCacheSet = Sched−1 ◦ (ProgRefs ◦ AccessToSet)

where the composition of ProgRefs and AccessToSet provides the relation
from program statements to the cache set index they are mapped to. In a nut-
shell, the complete equation essentially determines all the timestamps that affect
a particular cachet set. The composition is done via the statement instances
being accessed. The benefits of having in a closed form all the timestamps
mapped to a cache set, is that we can easily determine the subset of statement
instances that are associated to the timestamps, and that impact a specific cache
set. Obviously, this also allows us to use the schedule map (Sched) to generate
the necessary array references in the order required by the original program.
This step is vital to maintain the program semantics, thereby keeping the origi-
nal locality and avoiding to insert fake access patterns or remove real ones. Thus,
the expression TimeToCacheSet calculates the mapping between all assigned
timestamps to all different cache sets for affine programs, under the constraints
previously discussed.

Hierarchical Cache. To handle multi-level cache hierarchies, we remark that it
is easy to build the formulation with the expression above. It can be achieved by
editing the cache parameters in MemToLineId and LineIdToCacheSet, e.g.,
block size B in MemToLineId and number of sets S in LineIdToCacheSet.
Besides the changes of the formulation for set-partition, the trace analysis algo-
rithm also needs to support multi-level cache simulation, which is shown in the
later section. Therefore, an iterative algorithm for program reference behaviors,
specializing TimeToCacheSet for each cache set value Si ∈ [0, S] is built. It can
be easily parallelized using either OpenMP or MPI since there are no interactions
needed between different threads but a simple accumulation, which compulsory
to form the union of cache behaviors such as cache misses for all cache sets.

4.3 Code Generation

The code generation in our framework leverages the result from the previous
steps that (a) partition the program statement instances into distinct and indi-
vidual cache sets; and (b) generate the code that can be execute to conduct the
cache simulation in parallel.

There are two phases to achieve the goal of code generation. During the first
phase, the union of all statements within an iteration space is scanned using
the provided global lexicographic ordering specified by the program schedule,
and loop nests in the target program are generated that execute the statement
instances in the new lexicographic order. During the second phase, the primary
tasks of post-AST processing are (1) Adding parallel/distributed primitives such
as OpenMP or MPI for parallel execution; (2) Instrument code to construct



Efficient Cache Simulation for Affine Computations 73

and analyze the trace for cache simulation; (3) Place the reduction code to
accumulate the simulation result of each cache set.

Algorithms 1 and 2 detail the code generation steps. Algorithm 1 takes the
relation TimeToCacheSet together with iteration domains D, and access rela-
tions and the original program schedule as input. The overall idea here is that
the generated code must contain the original access sequence of the input code;
each lexical program statement is decomposed into as many array references as
it has; and the original loop nests must be surrounded by an outer parallel loop.
This outer loop effectively iterates over all cache sets. In terms of standard loop
transformations, this is akin to strip-mining all the original dimensions by the
cache set index being accessed.

Line 7 in Algorithm 1 deserves further explanation. The role of Compute-
NewProgramSchedule is to build the new program schedule from the Time-
ToCacheSet union map. It achieves this by creating a new union map, where
the domain is the TimeToCacheSet map, wrapped into a set, while the range
is a second wrapped map. The second wrapped map has in its domain the same
dimensions as the domain of TimeToCacheSet with an additional fixed dimen-
sion which represents the array reference ID of a specific statement, the i argu-
ment of the function. The range of the second wrapped map is almost identical
to its domain, but where the leading dimension (at position zero) is inserted,
and set to the cache set index (which is also the unique dimension in the image
of TimeToCacheSet). Furthermore, the domains of the second wrapped union
map are also properly renamed to prevent fusion among the same points of dif-
ferent statements. Finally, after this map of wrapped union maps to wrapped
union maps is computed, we apply a range operation to it and return this result.

Algorithm 2 details the post processing steps. It takes the previous generated
program as input, and traverse it to enable the instrumentation and proper calls
to the parallel runtime of choice. In summary, at this stage we: (1) enable the
parallel execution, (2) perform trace generation and analysis and (3) collect the
final simulation results by a reduction. Line 1 inserts the parallel primitives for
the outer most loop in the transformed program, where the outer most loop is
the one to iterate all different cache sets and thus can be easily parallelized. e.g.
using #pragma omp for. When using MPI, the described transformations equate
to adding a filter to handle the case where many cache sets are assigned to a
single process, i.e., we add a filter such as if (cache set % comm size ==
my rank). Lines 2 to 7 traverse the program to instrument the code for trace
production and analysis. Line 8 places the reduction code the collect the final
simulation results from parallel processes or distributed nodes. The AnalyzeTrace
function is responsible of performing the trace analysis and counting the number
of cache misses and hits, etc.

Example. Figure 3 presents an example generated by our parallel simulation
framework using Seidel as the sequential source program. Line 1 to 3 declare
the number of sets in the cache configuration and number of nodes available.
Line 4 is the loop that decides which cache sets to execute, and depends on the
set id and node id match. Line 7 to 10 perform the simulation by construct-



74 W. Bao et al.

Algorithm 1. Cache Set Partition Code Generation
Input: Program statement iteration domains: DS , s ∈ S

Program access relations: AS, s ∈ S
TimeToCacheSet relations
Program schedule with cache set dimension: θS, s ∈ S

Output: Cache set partitioned program: P
1: for all statements S do
2: Sort array references of S by lexicographic order and make the write reference

the last one
3: for all array references AS

i in the current lexical statement S do
4: // Create iteration domains, access relations and schedules for each reference

5: DS,A,i ← copy DS , rename set to S A i, append fixed dimension and fix to i
6: AS,A,i ← copy AS

i , rename the map’s domain to S A i, append fixed dimen-
sion to domain of map and fix it to i

7: θS,A,i ← ComputeNewProgramSchedule (TimeToCacheSet,i)
8: // Establish the order among array references of a single statement
9: Append to the image of θS,A,i a fixed dimension with value i

10: // Add computed abstractions to their respective unions
11: domain ← domain ∪ DS,A,i

12: access ← access ∪ AS,A,i

13: schedule ← schedule ∪ θS,A,i

14: end for
15: end for
16: P ← codegen(domain,access,schedule)
17: return Generated program P;

ing and analyzing the traces on different threads (if using OpenMP) or process
ranks (if MPI is preferred). Finally, line 11 is the reduction function to collect
the simulation results from all nodes.

Algorithm 2. Post AST processing
Input: Cache set partitioned program: P
Output: Parallel cache simulation program: PS

1: PS ← Add parallel primitives for outer most loop
2: for all Statements Si do
3: for all Array reference R do
4: TR ← Construct trace based on reference R
5: PS ← Instrument trace analysis code AnalyzeTrace(TR)
6: end for
7: end for
8: PS ← Add parallel reduction code ParReducation to collect results
9: return Parallel cache simulation program: PS ;



Efficient Cache Simulation for Affine Computations 75

Fig. 3. Example of generated code for Seidel by our framework

5 Parallel Cache Simulation Framework

The overall flow diagram of our set-partition based parallel cache simulation
framework is shown in Fig. 4. Our automatic simulation framework works as fol-
lows. The input source program is scanned and parsed, the affine computation
kernels are extracted and analyzed to construct the relations such as ProgRefs,
Sched, which is performed using ISL. Then the cache set partition analysis and
transformation, which is the critical part within the framework, is performed
as described in the previous sections. The partition is achieved by the relation
TimeToCacheSet, which is built upon the cache accessing model and cache
set partition formulation, together with the polyhedral analysis. We view this
step as cache set partition transformation, which reorganizes the programs state-
ments and execution order so that the references accessing the same cache set are
grouped together. Next, the code generation algorithm generates the code skele-
ton of the transformed program, where memory references are grouped based on
the calculated cache set number. After that, the post-AST processing algorithm
adds the necessary parallel primitives and trace analysis code to generate code
for simulation. This is denoted as the code generation part in the flow diagram.
Finally, during parallel cache simulation step, the generated code is compiled
and executed in parallel to conduct the trace-driven cache simulation. Thus, the
program traces are generated and analyzed in parallel with respect to cache set
to produce cache simulation results.

The parallelism of our cache simulation framework comes from set-partition.
However, it is better than previous set-partitioning simulation techniques in
mainly two aspects. One is the parallelization of trace generation, which exploits

Fig. 4. Parallel trace-driven cache simulation framework



76 W. Bao et al.

more parallelism within the simulation process and improves the overall perfor-
mance. The other is the trace analysis process. Previous approaches need to
calculate the set number for each trace that involves expensive operations such
as trace insertion and synchronization, making the simulation inefficient. In con-
trast, our approach avoids these operations via the proposed cache set partition
transformation, separating the trace based on cache set at source level, which
makes the trace analysis much more efficient.

6 Experimental Evaluation

6.1 Experiment Setup

Implementation Details. Our framework takes a sequential C program, cache
parameters, array sizes and starting addresses as input. Polyhedral Extraction
Tool [36] detects affine regions and extracts the polyhedral model from C source
code. ISL [35] is used to perform the cache partition transformation described
in previous sections. CLooG [7], a state-of-the-art polyhedral code generator, is
used to generate the code based on the algorithm described previously.

Benchmarks. We validate the accuracy and efficiency of our parallel cache simu-
lation framework via the PolyBench/C benchmark suite [29], which is a collection
of benchmarks with static control parts that meets our requirements. For the
experiments, We select 10 representative benchmarks that are listed in Table 1.

Tools and Setup. To conduct the comparison experiments to validate the perfor-
mance and correctness with our proposed parallel cache simulation framework,
we use DineroIV, a trace-based cache simulator that can handle hierarchical set
associative caches, to perform the sequential cache simulation. All experiments
are performed on a cluster with a maximum of 64 nodes, each with an Intel
Xeon E5640 processor at frequency 2.67 GHz. The programs are all compiled
using MPI with MVAPICH2 version 2.1 with -O3 optimization and using one
process for each node [18,22–24]. All reported results are the average of 5 runs
with single precision used for the benchmarks.

6.2 Experiments Results

We use single- and multi- level set associative caches to validate our framework
in both accuracy and efficiency. Note our experiments only show the simulations
of most commonly used LRU replacement policy and write allocate write back
policy in the evaluation process. However, other replacement policies (FIFO,
random, etc.) and write policies (non write-allocate, write through, etc.) are
seamlessly handled: their processing is independent from proposed parallel trace
generation and simulation.

Single Level Set Associative Cache. We first perform the validation on single
level cache with 4 different cache sizes ranging including 4 KB, 8 KB, 16 KB and
32 KB, with block size 64 bytes and 8-way associativity.



Efficient Cache Simulation for Affine Computations 77

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

5

10
Si
m
.S

pe
ed
up

vs
Se

q.
L1-4KB on 8 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

5

10

15

20 L1-8KB on 16 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

10

20

30

40 L1-16KB on 32 nodes

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

Si
m
.S

pe
ed
up

vs
Se

q.

L1-32KB on 64 nodes

Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

L1-4KB L1-8KB L1-16KB L1-32KB
0

20

40

60

80
Avg. Speedup for different cache size

Fig. 5. Summary of simulation speedup for single level cache

Accuracy. The number of cache misses is one of the most important metrics
that users want to obtain from the cache simulation to better understand a
program’s behavior. Table 1 compares the cache miss results for all sizes of single
level caches between the sequential simulation with DineroIV and our parallel
simulation framework (PCS).

We observe an exact match of the cache misses of the two simulations, which
results in an error rate of 0% for all benchmarks across different cache sizes. We
can also observe from the table that the cache miss count decreases along with
the increasing of cache size until all data can be hold by the cache.

Table 1. Cache misses for single level cache

Sim. Bench. Cache configurations Sim.

L1-4KB L1-8KB L1-16KB L1-32KB

Dinero 2mm 33,846,272 33,709,056 33,709,056 33,708,032 PCS

serial 3mm 50,769,408 50,563,584 50,563,584 50,562,048

bicg 3,146,240 3,146,240 3,146,240 3,146,240

doitgen 270,893,056 270,893,056 270,860,288 270,796,800

gemm 16,923,136 16,854,528 16,854,528 16,854,016

gemver 5,767,936 5,523,312 5,261,165 4,732,719

jacobi 12,558,336 12,558,336 8,408,992 8,376,320

seidel 6,279,168 6,279,168 2,097,152 2,097,152

symm 200,525,957 200,524,323 200,523,289 200,430,141

syrk 134,348,800 71,753,728 67,305,472 67,305,472

Sum. Error rate 0% 0% 0% 0%

Efficiency. To further
evaluate the performance
of our simulation frame-
work, we also compare
PCS with a nearly ideal
time-partitioning based
parallel simulation besi-
des the sequential sim-
ulation. The time-
partition cache simula-
tion divides the whole
program trace into mul-
tiple, roughly equal sized

subtraces, and simulates them in parallel. In our time-partitioning implemen-
tation we assume that only one partition requires re-simulation. So the real
performance gap between it and PCS could effectively be larger.



78 W. Bao et al.

Table 2. Summary of cache misses for hierarchical cache

Sim. Benchmark Cache configurations Sim.

L1 L2 L3-Conf1 L3-Conf2 L3-Conf3 L3-Conf4 L3-Conf5

Dinero

serial

2mm 33,708,032 707,844 20,480 20,480 20,480 28,399 285,897 PCS

3mm 50,562,048 1,061,766 28,672 28,672 28,672 32,784 49,104

bicg 3,146,240 1,049,600 1,049,600 1,049,600 1,049,600 1,049,600 1,049,600

doitgen 8,387,648 8,384,064 8,371,360 262,144 1,046,424 262,144 285,144

gemm 4,332,830 4,329,184 24,800 12,288 12,288 12,288 16,128

gemvel 4,732,719 4,722,357 4,721,994 4,722,186 4,722,282 4,323,120 4,722,351

jacobi 935,584 934,808 6,873 12,288 12,288 16,128 8,029,984

seidel 2,016,000 2,016,000 63,000 63,000 2,016,000 2,016,000 2,016,000

symm 200,429,973 192,265,358 49,090 49,090 3,175,278 70,699,265 164,684,202

syrk 67,305,472 67,305,472 261,960 1,043,743 67,305,472 67,305,472 67,305,472

Sum. Error rate 0% 0% 0% 0% 0% 0% 0%

Furthermore, normally in time-partitioning based simulation, the whole pro-
gram trace would need to be first generated and then split into subtraces. This
incurs in an inefficient sequential trace generation phase as we already demon-
strated in the previous section. It is for this reason that we also combine the time-
partitioning scheme with our parallel trace generation. This effectively removes
the big performance gap between both schemes. Moreover, here we assume a per-
fect accuracy of time-partition simulation results even it suffers accuracy problem
in reality because of the unknown cache initialization state at the beginning of
each subtrace.

Figure 5 illustrates the efficiency of simulation by comparing the speedup of
sequential simulation vs. parallel simulation on varying number of nodes. The 4
bar charts in Figure present the simulation speedup between time-partitioning
and our framework on different degree of parallelism for all benchmarks across
different cache sizes.

We observe that for all the cases, our set-partitioning simulation achieved
better speedup compared to time-partitioning. In fact, our set-partitioning simu-
lation constantly outperforms time-partitioning across all the benchmarks. There
are several reasons: First of all, the re-simulation phase of time-partitioning app-
roach takes extra cost. In practice, the time cost of the re-simulation phase to
correct the simulation results will often make the simulation time much longer
than the optimal case we considered here in the experiments. Besides, our set-
partitioning approach has better memory efficiency. The memory trace accessed
by the program has smaller footprint compared to time-partitioning. This effect
is more obvious in hierarchical cache shown later in this section. Line chart in
Fig. 5 shows average speedup of all benchmarks for different cache sizes. This
is because more parallelism can be achieved for large cache compared to small
ones.

Hierarchical Set Associative Cache. We perform similar experiments for
multi-level caches for further validation. We consider 5 real world scenario con-
figurations: a 3-Level cache hierarchy with 32 KB 4-way set-associative L1 and



Efficient Cache Simulation for Affine Computations 79

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150
Si
m
.S

pe
ed
up

vs
Se
q.

Cache Configuration 1

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150 Cache Configuration 2

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150
Cache Configuration 3

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150

200

Si
m
.S

pe
ed
up

vs
Se
q.

Cache Configuration 4

Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

2mm
3mm

bicg
doitgen

gemm
gemver

jacobi
seidel

symm
syrk

0

50

100

150

200 Cache Configuration 5

Fig. 6. Summary of simulation speedup for hierarchical cache

256 KB 4-way set-associative L2, and L3 cache with size and associativity reduce
by 2 for each configuration start from 8 MB 16-way for Conf1. The block size is
64 Bytes across all levels.

Accuracy. Table 2 compares cache miss count between DineroIV and our parallel
simulation framework (PCS) for all evaluated configurations.

Again we observation that for all cache configurations, our framework pro-
duces exactly the same results as DineroIV. For all benchmarks the cache miss
count decreases when moving from the L1 to the L3 cache as expected.

Efficiency. Figure 6 shows the results of performance speedup comparison
between time-partitioning and our approach against sequential simulation when
using 64 nodes and 1 process for each node (make sure each process has enough
computation resources such as cache and memory). We observe that our frame-
work outperforms the time-partitioning approach for all the benchmarks, and
across different cache hierarchies.

To illustrate the benefits of our parallel cache simulation framework, we ana-
lyze the results of benchmark symm in detail. As shown in the chart, symm
achieves the highest speedup compared to time-partitioning approach among
all benchmarks. The underlying reason is that, symm uses three matrices of
size 512 × 512, and among the array references, 5 out of 6 of them incur on
high-strides. Thus, the non-efficient memory access pattern leads to large cache
memory footprints when simulating the full cache. This phenomenon happens
again in time-partitioning simulation, as the order of the memory references and
cache footprint in trace file remains unaltered. Moreover, the cache set partition
transformation changes the memory access order (in simulation) and also the
simulation cache footprint. Because every memory reference within each trace is
mapping to the same cache set, which has a much smaller cache footprint when



80 W. Bao et al.

8 16 32 64
0

50

100

Si
m
.S

pe
ed
up

vs
Se
q.

3mm

Time-Partitioning+Trace-Seq Time-Partitioning+Trace-Par Our Set-Partitioning(PCS)

8 16 32 64
0

50

100 doitgen

8 16 32 64
0

50

100 jacobi-2d

8 16 32 64
0

50

100
seidel-2d

Fig. 7. Summary of performance scaling on cache Conf1

simulating the full cache. Furthermore, the benefits also come from the fact
that trace analysis algorithm does not need to spent time on calculating and
searching cache set and other related operations in our framework. Therefore,
our framework uses a smaller cache footprint during the full cache simulation,
and performs much better than the time-partitioning counterpart for bench-
mark symm. Opposing symm we have the gemm benchmark, which also uses
three matrices, but wherein 3 out of 4 matrix references within the innermost
loop have stride-1 access. This clearly leads to having rather smaller cache mem-
ory footprint compared to symm. Thus, the benefits over the time-partitioning
on gemm are not as large as with symm.

Performance Scaling. Figure 7 illustrates the performance scaling of our
framework, which is the simulation speedup across different number of nodes
(8, 16, 32, 64) with cache configuration Conf1. There are three different curves
in each subfigure. Time-partitioning+Trace-Seq represents time partition par-
allel simulation with sequential trace generation; Time-partitioning+Trace-Par
represents time partition parallel simulation with parallel trace generation; Set-
partitioning(PCS) represents our parallel cache simulation framework. Note we
only show 4 benchmarks here because of the space.

It is more than obvious that the simulation with sequential trace genera-
tion has limited performance scaling. This demonstrates again the necessity of
trace generation parallelization. We also observe that both approaches show
strong scaling when increasing the number of nodes. However, our simulation
framework outperforms the time-partitioning approach for all the benchmarks
by showing a stronger scaling of performance. At this point we also recall
that our implementation of the Time-partitioning+Trace-Par variant is a nearly
ideal and inaccurate simulation, unlike PCS which is as accurate as the serial
simulation.

Readers may also observe the super-linear scaling in some benchmarks (e.g.
doitgen). The reason behind is the cache effect resulting from the different mem-
ory hierarchies. With more nodes involved in the computation, the accumu-
lated cache memory (for simulation purposes) also becomes larger, and with
larger accumulated cache sizes, more or even all of the working sets can fit into
caches and the memory access time reduces dramatically, which causes the extra
speedup in addition to that from the actual computation.



Efficient Cache Simulation for Affine Computations 81

7 Related Work

Cache simulation is used to evaluate different cache architectures during new
system design. The seminal paper of [25] proposed to use simulation in vir-
tual memory. Their technique computed, in a single pass of the trace file, the
miss ratios for all memory capacities, and also introduced notions such as set-
refinement and inclusion. However, it was limited to a number of constraints,
among of which was a fixed page size. Their work had many applications, in
particular, simulation of hierarchical caches.

Due to the constant increase in complexity of cache architectures, a broad
range of techniques have been proposed along the years [12,15,28,30,33]. The
main difference among the techniques is their cost-efficiency ratio, that is, how
much accuracy one is willing to sacrifice in exchange for faster simulation speeds.
On one end of the spectrum, parametric analytical models that estimate the
number of cache misses are faster and more general available [1,12,13]. On
the other end, non-parameterized and less general models combined with trace-
driven techniques can be used to produce more accurate simulations, at expense
of longer simulation times [8,21,34]. These two classes of work are complemen-
tary, and can be used at different stages of the design process.

Compare to cache modeling analysis, simulation still provides a wider cover-
age of cache architectures and better accuracy. Among all simulation approaches,
trace-driven simulation [34], has better accuracy and flexibility. In this context,
two directions have been preferred: single pass optimization and trace paralleliza-
tion strategies. The former one attempts to optimize the simulation in a single
sequential pass. This is usually achieved by reducing the trace file size, either
by sampling or judicious address selection, and leveraging data structures such
as linked lists and trees [8,32] to represent the cache state. Within this research
branch, Dinero [10], which is a uniprocessor cache simulator that can handle
hierarchical set-associative caches as well as numerous replacement and write
policies, thereby characterizing program cache behavior with varying degrees of
fidelity.

The second direction aims at partitioning the simulation so that parti-
tions of traces can be executed in parallel [15,19,21,37]. There are two major
approaches to exploit the parallelism in cache simulation: time-partitioning and
set-partitioning. The idea behind time partitioning is to divide the input program
trace into chunks, which can then be simulated in parallel. However, an extra
step is necessary to assign the correct cache state between every pair of chunks.
Furthermore, depending on the cache configuration and the input program, a
number of re-simulation might be necessary and could potentially overcome all
parallel benefits, thereby making it even slower than the sequential version. The
approach of set partitioning does not require this re-simulation step, since it
divides the trace file by the sets addresses by each variable reference. However,
the degree of parallelism is limited by the number of sets of cache configuration.
Barriga et al. [6] presented a straightforward implementation of cache simula-
tion that exploited set-partitioning. However, their approach included expensive
operations such as insertion and synchronization during the trace generation.



82 W. Bao et al.

Works such as [37], use GPU to exploit the set-partitioning parallelism and sim-
ulate multiple cache configurations at one time. Despite utilizing GPUs, their
approach still suffers from the inefficiency of processing program traces, specifi-
cally, during the address sorting stage.

To the best of our knowledge, in context of trace-driven simulation, all previ-
ous works have assumed that the trace generation stage to be inherently sequen-
tial. This makes trace-driven cache simulation less efficient as the time spent on
generating traces could dominate the simulation time and overcome the benefits
achieved via parallelization. Thus, our approach also parallelizes this phase to
achieve better efficiency.

Finally, in the general field of simulation, approximate techniques have also
been devised. The idea behind this is that results accuracy can be sacrificed
in exchange for faster execution times [20]. These techniques have also been
adapted for time-parallel cache simulation [19].

8 Conclusion

Exploiting parallelism to accelerate trace-driven cache simulation is a well-
studied problem. Previous works have typically focused on two major aspects:
(a) the time-partitioning based parallel simulation; and (b) the set-partitioning
based approach. These approaches are inefficient when generating and processing
large program traces.

In this paper, we propose a novel parallel cache simulation framework for
polyhedral programs to perform accurate, and efficient cache simulation. Com-
pared to previous state-of-the-art works, our approach exploits not only the
parallelism in the trace analysis, but also improves the trace generation phase
based on cache set partition transformation. Our approach avoids inefficient
operations such as trace insertion and synchronization, which are necessary in
other set-partitioning methods. We demonstrate that for affine programs, we
can achieve better simulation speedup and better memory efficiency compared
to time-partition approach. Experimental evaluations validate the accuracy of
the proposed framework, showing significant simulation speedup on representa-
tive benchmarks against the time-partition parallel simulation.

Acknowledgments. We thank the anonymous referees for the feedback and many
suggestions that helped in improving the presentation. This work was supported in
part by the U.S. Department of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research under Awards 66905 and DE-SC0014135, program manager
Lucy Nowell, by the U.S. National Science Foundation through awards 1513120 and
1731612, and by computational resources from the Ohio Supercomputer Center. Pacific
Northwest National Laboratory is operated by Battelle for DOE under Contract DE-
AC05-76RL01830.

References

1. Agarwal, A., Hennessy, J., Horowitz, M.: An analytical cache model. ACM Trans.
Comput. Syst. (TOCS) 7(2), 184–215 (1989)



Efficient Cache Simulation for Affine Computations 83

2. Bao, W., Tavarageri, S., Ozguner, F., Sadayappan, P.: PWCET: power-aware worst
case execution time analysis. In: 2014 43rd International Conference on Parallel
Processing Workshops, pp. 439–447, September 2014

3. Bao, W.: Power aware WCET analysis (2014)
4. Bao, W., et al.: Static and dynamic frequency scaling on multicore CPUs. ACM

Trans. Arch. Code Optim. (TACO) 13(4), 51:1–51:26 (2016). https://doi.org/10.
1145/3011017

5. Bao, W., Krishnamoorthy, S., Pouchet, L.N., Rastello, F., Sadayappan, P.: Poly-
Check: dynamic verification of iteration space transformations on affine programs.
SIGPLAN Not. 51(1), 539–554 (2016). https://doi.org/10.1145/2914770.2837656

6. Barriga, L., Ayani, R.: Parallel cache simulation on multiprocessor workstattions.
In: 1993 International Conference on Parallel Processing, ICPP 1993, vol. 1, pp.
171–174. IEEE (1993)

7. Bastoul, C.: Generating loops for scanning polyhedra: CLooG users guide. Poly-
hedron 2, 10 (2004)

8. Conte, T.M., Hirsch, M.A., Hwu, W.M.: Combining trace sampling with single
pass methods for efficient cache simulation. IEEE Trans. Comput. 47(6), 714–720
(1998)

9. Dundar, M., Kou, Q., Zhang, B., He, Y., Rajwa, B.: Simplicity of kmeans versus
deepness of deep learning: a case of unsupervised feature learning with limited data.
In: 2015 IEEE 14th International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 883–888. IEEE (2015)

10. Edler, J., Hill, M.D.: Dinero IV trace-driven uniprocessor cache simulator (1999).
http://www.cs.wisc.edu/markhill

11. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Int. J. Parallel Prog. 21(6), 389–420 (1992)

12. Ghosh, S., Martonosi, M., Malik, S.: Precise miss analysis for program transfor-
mations with caches of arbitrary associativity. In: Proceedings of the Eighth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VIII, pp. 228–239. ACM, New York (1998). https://
doi.org/10.1145/291069.291051

13. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: a compiler framework
for analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst.
(TOPLAS) 21(4), 703–746 (1999)

14. Girbal, S., et al.: Semi-automatic composition of loop transformations. Int. J. Par-
allel Prog. 34(3), 261–317 (2006)

15. Heidelberger, P., Stone, H.S.: Parallel trace-driven cache simulation by time parti-
tioning. In: 1990 Proceedings of the Simulation Conference, Winter, pp. 734–737.
IEEE (1990)

16. Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. IEEE Trans. Com-
put. 38(12), 1612–1630 (1989)

17. Hong, C., et al.: Effective padding of multidimensional arrays to avoid cache conflict
misses. SIGPLAN Not. 51(6), 129–144 (2016). https://doi.org/10.1145/2980983.
2908123

18. Zhang, J., Lu, X., Panda, D.: High performance MPI library for container-based
HPC cloud on InfiniBand clusters, August 2016

19. Kiesling, T.: Approximate time-parallel cache simulation. In: Proceedings of the
36th Conference on Winter Simulation, pp. 345–354. Winter Simulation Conference
(2004)

https://doi.org/10.1145/3011017
https://doi.org/10.1145/3011017
https://doi.org/10.1145/2914770.2837656
http://www.cs.wisc.edu/markhill
https://doi.org/10.1145/291069.291051
https://doi.org/10.1145/291069.291051
https://doi.org/10.1145/2980983.2908123
https://doi.org/10.1145/2980983.2908123


84 W. Bao et al.

20. Kiesling, T., Pohl, S.: Time-parallel simulation with approximative state matching.
In: Proceedings of the Eighteenth Workshop on Parallel and Distributed Simula-
tion, pp. 195–202. ACM (2004)

21. Lauterbach, G.: Accelerating architectural simulation by parallel execution of trace
samples. In: 1994 Proceedings of the Twenty-Seventh Hawaii International Con-
ference on System Sciences, vol. 1, pp. 205–210. IEEE (1994)

22. Li, M., Lu, X., Hamidouche, K., Zhang, J., Panda, D.K.: Mizan-RMA: accelerating
Mizan graph processing framework with MPI RMA. In: 2016 IEEE 23rd Interna-
tional Conference on High Performance Computing (HiPC), pp. 42–51, December
2016

23. Li, M., Potluri, S., Hamidouche, K., Jose, J., Panda, D.K.: Efficient and truly pas-
sive MPI-3 RMA using InfiniBand atomics. In: Proceedings of the 20th European
MPI Users’ Group Meeting, EuroMPI 2013, pp. 91–96. ACM, New York (2013).
https://doi.org/10.1145/2488551.2488573

24. Li, M., Hamidouche, K., Lu, X., Subramoni, H., Zhang, J., Panda, D.K.: Designing
MPI library with on-demand paging (ODP) of InfiniBand: challenges and benefits.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, pp. 37:1–37:11. IEEE Press, Piscat-
away (2016). http://dl.acm.org/citation.cfm?id=3014904.3014954

25. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for
storage hierarchies. IBM Syst. J. 9(2), 78–117 (1970)

26. Nicol, D.M., Greenberg, A.G., Lubachevsky, B.D.: Massively parallel algorithms for
trace-driven cache simulations. IEEE Trans. Parallel Distrib. Syst. 5(8), 849–859
(1994)

27. Patterson, D.A.: Computer Architecture: A Quantitative Approach. Elsevier, Ams-
terdam (2011)

28. Pieper, J.J., Mellan, A., Paul, J.M., Thomas, D.E., Karim, F.: High level cache
simulation for heterogeneous multiprocessors. In: Proceedings of the 41st Annual
Design Automation Conference, pp. 287–292. ACM (2004)

29. Pouchet, L.N.: Polybench: the polyhedral benchmark suite (2012). http://www.cs.
ucla.edu/pouchet/software/polybench

30. Puzak, T.R.: Analysis of cache replacement-algorithms (1985)
31. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance anal-

ysis with sampling and parallelization. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2010,
pp. 53–64. ACM, New York (2010). https://doi.org/10.1145/1854273.1854286

32. Sugumar, R.A., Abraham, S.G.: Set-associative cache simulation using generalized
binomial trees. ACM Trans. Comput. Syst. (TOCS) 13(1), 32–56 (1995)

33. Sugumar, R.A.: Multi-configuration simulation algorithms for the evaluation of
computer architecture designs (1993)

34. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: a survey. ACM Com-
put. Surv. (CSUR) 29(2), 128–170 (1997)

35. Verdoolaege, S.: isl : an integer set library for the polyhedral model. In: Fukuda,
K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-
6 49

36. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Second International
Workshop on Polyhedral Compilation Techniques (IMPACT 2012), Paris, France
(2012)

https://doi.org/10.1145/2488551.2488573
http://dl.acm.org/citation.cfm?id=3014904.3014954
http://www.cs.ucla.edu/pouchet/software/polybench
http://www.cs.ucla.edu/pouchet/software/polybench
https://doi.org/10.1145/1854273.1854286
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49


Efficient Cache Simulation for Affine Computations 85

37. Wan, H., Gao, X., Long, X., Wang, Z.: GCSim: a GPU-based trace-driven simulator
for multi-level cache. In: Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009.
LNCS, vol. 5737, pp. 177–190. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03644-6 14

38. Wu, M.J., Yeung, D.: Efficient reuse distance analysis of multicore scaling for
loop-based parallel programs. ACM Trans. Comput. Syst. 31(1), 1:1–1:37 (2013).
https://doi.org/10.1145/2427631.2427632

39. Wu, Y., Muntz, R.: Stack evaluation of arbitrary set-associative multiprocessor
caches. IEEE Trans. Parallel Distrib. Syst. 6(9), 930–942 (1995)

40. Zhang, B., et al.: Trust from the past: Bayesian personalized ranking based link pre-
diction in knowledge graphs. In: SDM Workshop on Mining Networks and Graphs
(MNG 2016) (2016)

41. Zhang, B., Dundar, M., Hasan, M.A.: Bayesian non-exhaustive classification a
case study: online name disambiguation using temporal record streams. In: CIKM
2016 Proceedings of the 25th ACM International Conference on Information and
Knowledge Management, pp. 1341–1350. ACM (2016)

42. Zhang, B., Dundar, M., Hasan, M.A.: Bayesian non-exhaustive classification for
active online name disambiguation. arXiv preprint arXiv:1708.04531 (2017)

43. Zhang, B., Hasan, M.A.: Name disambiguation in anonymized graphs using net-
work embedding. In: The 26th ACM International Conference on Information and
Knowledge Management (CIKM 2017) (2017)

44. Zhang, B., Mohammed, N., Dave, V., Hasan, M.A.: Feature selection for classifi-
cation under anonymity constraint. Trans. Data Priv. 10, 1–25 (2017)

45. Zhang, B., Saha, T.K., Al Hasan, M.: Name disambiguation from link data in a
collaboration graph. In: 2014 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 81–84. IEEE (2014)

https://doi.org/10.1007/978-3-642-03644-6_14
https://doi.org/10.1007/978-3-642-03644-6_14
https://doi.org/10.1145/2427631.2427632
http://arxiv.org/abs/1708.04531

	Efficient Cache Simulation for Affine Computations
	1 Introduction
	2 Motivation
	3 Program Representation
	4 Cache Set Partition Analysis
	4.1 Cache Access Modeling
	4.2 Cache Set Partition
	4.3 Code Generation

	5 Parallel Cache Simulation Framework
	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Experiments Results

	7 Related Work
	8 Conclusion
	References




