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Abstract. Memory distance analysis, the number of unique memory ref-
erences made between two accesses to the same memory location, is an
effective method to measure data locality and predict memory behavior.
Many existing methods on memory distance measurement and analysis
consider sequential programs only. With the trend towards concurrent
programming, it is necessary to study the impact of memory distance on
the performance of concurrent programs. Unfortunately, accurate mea-
surement of concurrent program memory distance is non-trivial. In fact,
due to non-determinism, the reuse distance of memory references may
differ with the same input set across multiple runs. Since memory dis-
tance measurement is fundamental to analysis, we propose a measur-
ing approach that is based on randomized executions. Our approach
provides a probabilistic guarantee of observing all possible interleavings
without repeated executions. In order to evaluate our approach, we pro-
pose a second symbolic execution based approach that is more rigorous
but much less scalable than the first approach. We have compared the
two approaches on small programs and evaluated the first one on Par-
sec benchmark suite and a large industrial-size benchmark MySQL. Our
experiments confirm that the randomized execution based approach is
effective and practical.

1 Introduction

Nowadays, widespread multicore hardware has put us at a fundamental turning
point in software development. Although we have seen incrementally more pro-
grammers writing multithreaded programs in the past decade, the vast majority
of applications today are still single-threaded and cannot benefit from the hard-
ware improvement without significant redesign. Applications will need to be
well-written concurrent software programs in order to benefit from the advances
in multicore processors.

The main reason to develop concurrent programs, which are much more
sophisticated than sequential programs, is to enhance the performance of an
application. To achieve the performance, developers usually make extra effort
to hand tune the programs. One aspect of performance enhancement is data
locality because of its significant effect on cache. In order to manage locality,
developers need to measure the memory distance of their programs.
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The memory distance of a reference is a dynamic quantifiable distance in
terms of the number of different memory references between two accesses to
the same memory location [1]. It is a widely accepted concept in analyzing pro-
gram cache performance. The speed gap between the processor and memory has
resulted in what is known as the memory wall. To overcome this wall and speed
up program performance, data locality is an important factor that developers
must consider. Memory distance analysis [1–4] is an effective method to measure
data locality and predict memory behavior.

Much existing work on memory distance measurement and analysis considers
sequential programs only. With the trend towards concurrency, we need to do
such measurement on concurrent programs. Unfortunately, adapting existing
approaches that were designed for sequential programs is not feasible. Due to the
inherent non-deterministic behavior under fixed inputs for concurrent programs,
measuring concurrent memory distance is fundamentally different from that of
sequential programs.

Table 1. Memory reference of a program execution

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reference accessed A B C A C C B A C B A C B B A C

Memory distance ∞ ∞ ∞ 2 1 0 2 2 2 2 2 2 2 0 2 2

Consider the example shown in Table 1. The first row lists the indices of the
events in a program execution under input vector v. The second row gives the
symbolic memory address being accessed and the third row computes the mem-
ory distance. In the following, we use an index as the superscript to differentiate
the instances of the same memory addresses in the execution trace. The memory
distance of A1, denoted as Δv(A1), is ∞ because it is the first appearance of A.
For the same reason we have Δv(B2) = Δv(C3) = ∞. Δv(A4) = 2 because there
are two accesses to other memory locations between the current access and the
previous access to A. Note that Δv(B7) = 2, because although there are four
accesses between B2 and B7, three out of the four access visit the same mem-
ory location. It can be easily observed that the minimal and maximal memory
distances under v are 0 and 2 (not considering ∞), respectively. All the existing
memory analysis approaches are in general based on such computation, with
minor variants 1.

However, the minimal and maximal memory distances under v may not be
0 and 2 if the program under analysis is concurrent. For example, the trace in
Table 1 may be from a concurrent program with two threads as shown in Table 2.
That is, the first eight memory accesses are from Thread 1 and the remaining
eight are from Thread 2. The execution trace in Table 1 corresponds to the case

1 For example, some approaches may report Δv(B
7) = 4 because there are four

accesses between B2 and B7 regardless same memory locations are accessed.
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Table 2. Motivating example

Index 1 2 3 4 5 6 7 8

Memory references in thread 1 A B C A C C B A

Memory references in thread 2 C B A C B B A C

where Thread 2 starts its execution after Thread 1 completes. However, this is
not the only possibility. Many other interleavings are possible, as illustrated in
Table 3.

Table 3. Memory distance results in different interleavings

idx Reference accessed Memory distance

1 {C2,B2,A2,C2,B2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1} {∞,∞,∞,2,2,0,2,2,1,2,2,2,1,0,2,2}
2 {C2,B2,A2,C2,A1,B1,C1,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,2,1,2,2,2,1,0,2,2,2,2,0,2}
3 {A1,B1,C1,C2,B2,A2,C2,A1,C1,C1,B1,A1,C2,B2,B2,A2} {∞,∞,∞,0,1,2,2,1,1,0,2,2,2,2,0,2}
4 {A1,C2,B2,B1,C1,A2,C2,A1,C1,C2,B2,C1,B1,A1,B2,A2} {∞,∞,∞,0,1,2,1,1,1,0,2,1,1,2,1,1}
5 {A1,C2,B1,B2,C1,A2,C2,A1,C1,C2,C1,B2,B1,B2,A1,A2} {∞,∞,∞,0,1,2,1,1,1,0,0,2,0,0,2,0}
6 {C2,B2,A1,B1,A2,C2,C1,A1,B2,B2,C1,C1,A2,C2,B1,A1} {∞,∞,∞,1,1,2,0,1,2,0,2,0,2,1,2,2}
7 {C2,A1,B2,B1,A2,C1,A1,C2,B2,B2,C1,A2,C1,C2,B1,A1} {∞,∞,∞,0,1,2,1,1,2,0,1,2,1,0,2,2}

This simple example illustrates the challenge in measuring memory distance
for concurrent programs. Multiple executions of a concurrent program with the
same input might exercise different sequences of synchronization events possibly
producing different results each time. To obtain accurate memory distances for a
given input, all execution traces permissible under that input must be examined.
However, in current execution environments a developer has no control over the
scheduling of threads. Furthermore, when executing a concurrent program by
running it repeatedly on a lightly-loaded machine, the same thread interleaving,
with minor variations, tend to be exercised since thread schedulers generally
switch among threads at the same program locations. The net effect of these
impediments is that only a few interleavings end up being examined. This leads
to an incomplete picture of memory distances.

In this paper, we present an approach to measure memory distance of con-
current programs. Given the fact that we cannot possibly explore all the thread
interleavings of a concurrent program, our approach introduces randomness in
repeated executions. By adapting a method called PCT [5], our approach pro-
vides a mathematical guarantee to detect memory distances of given triggering
depths. That is, if there exists a memory distance d between memory accesses
to m with triggering depth δd

m(definition to be given in Sect. 4), our approach
guarantees its detection with probability of 1/(n × kδd

m−1), where n and k are
the approximated number of threads and the approximated number of events,
respectively, of the given program. We have implemented our method in a tool
called DisConPro (Memory Distance measurement of Concurrent Programs with
Probabilistic Guarantee).
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In order to validate the effectiveness of DisConPro, we propose a more rig-
orous but much less scalable approach to measure memory distance based on
symbolic execution. The second approach utilizes the symbolic execution engine
that we developed to exhaustively explore all intra-thread paths and inter-thread
interleavings. We name this tool DisConSym (Memory Distance measurement
of Concurrent Programs based on Symbolic Execution Guarantee). DisConSym
can only handle small programs due to its inherent path explosion. By compar-
ing DisConPro against DisConSym on small programs, we are able to determine
if DisConPro covers a similar memory distance spectrum as DisConSym.

The contributions of this paper include the following:

1. To the best of our knowledge, we are the first to propose a feasible approach
to measure the memory distance of concurrent programs. Our approach is
based on randomized executions and provides probabilistic guarantees.

2. We propose a second approach that is more rigorous but less scalable than
the first approach. Although such a symbolic execution based approach can
only handle small benchmarks, it allows us to evaluate the effectiveness of
the first approach.

3. We have implemented two prototypes DisConPro and DisConSym and con-
ducted experiments on medium-sized Parsec [6] benchmarks and a large
industrial size benchmark MySQL with DisConPro.

The rest of the paper is organized as follows. The background knowledge of
concurrent program execution is described in Sect. 2, followed by the explanation
of our two approaches in Sects. 3 and 4, respectively. The experimental results
are given in Sect. 5. Section 6 discusses the related work. Finally Sect. 7 concludes
the paper.

2 Background: Execution of Concurrent Programs

Figure 1 gives a code snippet of a concurrent program with two threads. Depend-
ing on the values of a and b, different branches in the two threads can be
observed across executions. Depending on the synchronization and operating
system scheduling policies, different interleavings can also be observed. In order
to present intra-thread paths and inter-thread interleavings, we use the gen-
eralized interleaving graph(GIG) [7,8] to illustrate all possible executions of a
concurrent program.

Figure 1 depicts the GIG of the code snippet on its left, where black and
blue edges represent an execution step of Threads T1 and T2, respectively. The
dashed lines with the same source (defined as b-PP node) denote a branch within
a thread and the solid lines with the same source (defined as i-PP node) denote
a context switch between two threads. Note that a node can be both b-PP and i-
PP. In order to measure memory distance accurately, all the paths in a GIG must
be considered. This is what our symbolic execution based approach, described
in Sect. 7, attempts to accomplish. However, enumerating all possible executions
is obviously impractical. Thus, we present a practical approach in Sect. 4.
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T11:a=x;
T12:if(a > 0) Br1;

else Br1;
T13:if(a % 2==0) Br2;

else Br2;
T14:
---- [T1] ----

T21:b=y;
T22:if(b > 0) Br3;

else Br3;
T23:if(b % 2 == 1) B4;

else Br4;
T24:
---- [T2] ----

< T 11, T 21 >

< T12, T 21 > < T11, T 22 >

< T13, T 21 > < T 12, T 22 > < T 11, T 23 >

< T13, T 22 > < T 12, T 23 >

< T 13, T 23 >

Br1

Br1

< T 14, T21 >

< T 14, T 22 >

< T14, T 23 >

< T 14, T 24 >

< T 13, T 24 >
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< T11, T 24 >
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Fig. 1. Code snippet of a concurrent program and its generalized interleaving
graph(GIG).

3 Memory Distance Measurement Based on Symbolic
Execution

In this section, we present a symbolic execution based approach that is able to
systematically explore all the intra-thread branches and inter-thread interleav-
ings. The pseudo-code is shown in Algorithm 1, which is based on the symbolic
execution algorithm proposed in [8], and follows the Concolic [9] framework. The
algorithm uses a recursive procedure TrackState to explore paths. The first
path is randomly chosen. When a new b-PP node with condition c is encoun-
tered, TrackState checks whether the current path condition appended with c
if satisfiable. If so, it continues the execution along the branch while pushing the
other branch ¬c on the stack S. The satisfiability is checked by an SMT solver
such as Z3 [10]. If the SMT solver fails to find a solution, it indicates that no
inputs or interleavings can continue the execution along the branch. In this case,
the current execution backtracks by popping its stack S. If an i-PP node is first
encountered, TrackState randomly choose one interleaving while pushing the
other one on the stack. For a more detailed explanation, please refer to [8].

The measurement of memory distance occurs during backtrack. That is,
when the current execution reaches an end state normal end state or reaches an
infeasible branch. In GetMemDist, a path is treated as a sequence of member
accesses 〈acc1, . . . , accn〉. Each acci is a pair (addr, d) of memory address and
distance. All the global memory accesses are analyzed to calculate the memory
distance. Initially the memory distance of any memory access is set to -1. The
algorithm continuously checks the next access accj . If accj accesses a memory
address different from acci.addr, accj .addr is added to the set memorySet. Oth-
erwise, the size of memorySet is the memory distance between acci and accj .
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Algorithm 1. SymbolicExecution(P)
let Stack S ← ∅ be the path constraints of a path;

1: TrackState(s)
2: S.push(s);
3: if (s is an i-PP node or b-PP node)
4: while (∃t ∈ (s.enabled \ s.done \ s.branch))
5: s′ ← Next(s, t);
6: TrackState(s′);
7: s.done ← s.done ∪ {t};
8: else if (s is an local thread node)
9: t ← s.next;

10: s′ ← Next(s, t);
11: TrackState(s′);
12: path ← S.pop();
13: Next(s, t)
14: let s be 〈pcon, M〉;
15: if ( t instanceof halt )
16: s′ ← normal end state;
17: GetMemDist(path);
18: else if ( t instanceof branch(c) )
19: if ( s.pcon is unsatisfiable under M )
20: s′ ← infeasible state;
21: GetMemDist(path);
22: else
23: s′ ← 〈pcon ∧ c, M〉;
24: else if ( t instanceof X = Y op Z )
25: s′ ← 〈pcon, M[X]〉;
26: return s′;
27: GetMemDist(path)
28: let path be 〈acc1, . . . , accn〉;
29: for (int i ← 0, i < n − 1, i++ )
30: memorySet ← ∅;
31: for (int j ← 1, j < n, j++ )
32: if (acci.addr = acci.addr
33: acci.d ← memorySet.size();
34: break;
35: else
36: memorySet.insert(accj .addr);

4 Memory Distance Measurement with Random
Scheduling

In this section, we present our main approach that computes memory distances
with random scheduling. We begin with the concept of memory distance minimal
depth δd

m. Given a memory location m, δd
m is defined as the minimal number

of constraints for any pair of accesses to m that have a memory distance of d.
Consider the example given in Table 4. There are four threads with eight events
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e1, . . . , e8 that access four memory locations A,B,C and D. Among the total
2520 interleavings, the memory distances between a pair of accesses to A range
from 0 to 3. The memory distance of 3 occurs only if e1 ≺ e2 ∧ e1 ≺ e3 ∧ e1 ≺ e4,
where ≺ denotes the happens-before relation. That is, δ3A = 3 because there are
three constraints.

Table 4. Four threads with eight memory accesses.

Thread1 Thread2 Thread3 Thread4

< e1, A > < e2, B > < e3, C > < e4, D >

< e5, A > < e6, A > < e7, A > < e8, A >

4.1 PCT Algorithm

We adapt the PCT [5] algorithm that was proposed to detect concurrent bugs
with a probabilistic guarantee. The basic idea is to add a random scheduling
control mechanism to randomize scheduling to avoid redundant executions.

In [5], a concurrent bug depth is defined as the minimum number of order con-
straints that are sufficient to guarantee to find the bug. The algorithm attempts
to find the concurrent bug with depth of d by controlling the thread scheduling
as the following.

– The scheduling is controlled by giving each thread a priority. A thread exe-
cutes only if it has the highest priority or the threads with higher priorities
are waiting.

– It assigns n initial priorities d, d + 1, d + 2....d + n − 1 to the n threads.
– It randomly picks d − 1 change points from k instructions, where k is the

estimated number of instructions. The program is then executed with the
following rules.

• Each time only the enabled instruction from the thread with the high-
est priority can be executed. During execution all the instructions are
counted.

• If the instruction to be executed is counted as the number k-th and k is
equal to any of ki, change the priority value of the current thread to i.
This causes a context switch.

4.2 Measure Memory Distance with Random Scheduling

We propose an approach called DisConPro, which adapts the PCT [5] algo-
rithm to measure the memory distance in concurrent programs. As demonstrated
above, memory distances may be different with different interleavings.

The basic idea of DisConPro is to measure the memory distance in multi-
ple executions with the PCT scheduling control menchanism. At the begining,
DisConPro generates a random schedule following PCT [5]. Then it executes
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the program following the schedule. The memory distance is measured during
the execution. Each memory access is recorded in a memory access trace and
memory distances are calculated based on the memory access traces.

In practice, the statically computed scheduling is not always feasible. How-
ever, the infeasible cases only deviate from the planned interleavings but do not
lead to execution error. For example, DisConPro may attempt to execute an
instruction that is disabled by the operating system. In this case, the execution
will choose the next thread with highest priority until an enabled instruction is
found.

Algorithm 2. DisConPro(P,n,k,d,m)
Input: P is a program
Input: n is the number of threads
Input: k is the number of events
Input: d is memory distance minimum depth
Input: m is a memory address on which memory distance is measured

1: Var: Trace is a list that records every memory access events
2: Var: Distance is an array of memory distances

Distance[i] is the memory distance between i-th and (i+1)-th access to m
3: Trace = Empty List
4: Generate a random schedule S based on PCT algorithm
5: Schedule n threads based on S and execute those k events
6: for each memory access event e do
7: Trace.add(e)

8: end for
9: Calculate Distance based on Trace

4.3 Probabilistic Guarantee Inheritance

The PCT algorithm provides a probabilistic guarantee to find a concurrent bug.
By adapting it, our approach can provide a probabilistic guarantee to find a
particular memory distance d with a depth of δd

m. The probability is at least
1/(n × kδd

m−1). Now we now give the proof by adapting the proof for finding a
concurrent bug found in [5].

Definition 1. DisConPro(m,n, k, P ) is defined as a set of memory distances
of a memory object m. DisConPro finds memory distances during one execution
of program P , containing n threads and k instructions.

Theorem 1 (Probabilistic Guarantee Theorem). If there exists a memory
distance d with a minimum depth memory distance of δd

m, the probability of
DisConPro finding it in one execution is

Pr(d ∈ DisConPro(m,n, k, P )) > 1/(n × kδd
m−1) (1)
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Proof. We define an assert statement assert(m, d) as that d is not the memory
distance of memory object m in the execution. We define a bug B that can
be flagged if the assertion fails. If bug B is detected, d is found as the memory
distance of memory m. We define event E1 as DisConPro finds bug B and event
E2 as DisConPro finds d as the memory distance of m. Base on the definition
of E1 and E2, we can argue that E1 ≡ E2. Let Cons be a minimum set of
constraints that are sufficient for E1 to happen. We argue that Cons is one of
the minimum set of constraints that are sufficient for E2 to happen. This bug B
is not different from other concurrent bugs hidden in rare schedules. The depth
of B equals δd

m, which is the size of Cons. We defineE3 as PCT algorithm find
B in one execution. Since DisConPro adapts PCT algorithm, we can argue that
Pr(E2) = Pr(E3). By the definition, we have

Pr(E1 : d ∈ DisConPro(m,n, k, P )) = Pr(E2 : DisConPro finds B) (2)

Pr(E2 : DisConPro finds B) = Pr(E3 : PCT finds B) (3)

It has been proved that (see [5])

Pr(E3 : PCT finds B) > 1/(n × kδd
m−1) (4)

Then,
Pr(E1 : d ∈ DisConPro(m,n, k, P )) > 1/(n × kδd

m−1) (5)

5 Experiments

5.1 Implementation

We implement DisConPro using PIN [11], a dynamic binary instrumenta-
tion(DBI) framework that allows users to insert analysis routines to the original
program in binary form. DisConSym is based on Cloud9 [12], a symbolic execu-
tion engine built upon LLVM [13,14] and KLEE [15]. DisConSym has an exten-
sion for analyzing concurrent programs since Cloud9 only partially supports
concurrency. The extension of Cloud9 follows the algorithm and implemention
given in [16]. With the extension, DisConSym can analyze the interleavings not
only due to synchronization primitives, which is also supported by Cloud9, but
also due to global variables. The latter is essential and a prerequisite to analyze
the memory distance of a concurrent program.

5.2 Comparison Between DisConPro and DisConSym on Small
Programs

We compare DisConPro with DisConSym to answer the following questions.

– Can DisConPro discover the same memory reuse range as DisConSym does?
– Can DisConPro cover all valid tracks as DisConSym does?
– Is DisConPro more scalable than DisConSym?
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Table 5. Impact of the number of global variables comparing with DisConSym and
DisConPro

Thread number = 3 2 mem global 3 mem global 4 mem global 5 mem global

DisConSym mem global 1 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 2 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 3 N/A −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 4 N/A N/A −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 5 N/A N/A N/A −1, 0, 1, 2, 3, 4

DisConPro mem global 1 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 2 −1, 0, 1 −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 3 N/A −1, 0, 1, 2 −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 4 N/A N/A −1, 0, 1, 2, 3 −1, 0, 1, 2, 3, 4

mem global 5 N/A N/A N/A −1, 0, 1, 2, 3, 4

Since DisConSym is not scalable, we compare the two tools on several small
concurrent programs with an adjustable number of threads and global variables.
All the programs have less than 100 lines of code. Table 5 gives the experimental
results. In the experiments we set the number of threads to 3, as indicated by
the heading of Column 2, and the number of global variables to be 2–5. DisCon-
Sym is not able to handle a program with more threads and global variables.
Columns 3–6 indicate the number of global variables created in each group of
experiments. Each row in the table gives the memory distance observed for each
individual global variable. When a variable does not exist in an experiment, e.g.
mem global3 in an experiment with only two global variables in Column 3, N/A
is given. In the table, the top half of the rows give the results under DisConSym
and the bottom half show the results under DisConPro. For all the experiments
done by DisConPro, we set depth to be 5 and run each program 100 times. The
table indicates that memory distances can be affected by the number of global
variables. It can also be observed that for the small programs DisConPro can
find as many memory distances as DisConSym.

Although for small programs DisConSym and DisConPro generate the same
results in measuring memory distance, the cost is significantly different. Table 6
gives the number of paths and time usage of the seven groups of experiments
with various numbers of threads and global variables. It can be observed that
even for such small programs DisConPro is more than 1000 times faster. As
concurrent programs become larger, the gap will be wider. Although we cannot
guarantee DisConPro can detect as many memory distances as DisConSym does
for non-trivial programs, we believe DisConPro achieves a nice trade-off between
accuracy and efficiency.

5.3 DisConPro on Public Benchmarks

We evaluate DisConPro with 9 applications in the Parsec benchmark suite [6], as
well as the real-world application MySQL with more than 11 million lines of code.
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Table 6. Tracked paths and time cost result for DisConSym and DisConPro

Threads and mem global setting Approach # Paths Time (seconds)

3 threads, 2 mem global DisConSym 90 2

DisConPro 100 25

3 threads, 3 mem global DisConSym 1680 27

DisConPro 100 25

3 threads, 4 mem global DisConSym 34650 930

DisConPro 100 25

3 threads, 5 mem global DisConSym >200000 >6794

DisConPro 100 25

2 threads, 3 mem global DisConSym 20 1

DisConPro 100 25

4 threads, 3 mem global DisConSym >200000 >9609

DisConPro 100 25

5 threads, 3 mem global DisConSym >200000 >11473

DisConPro 100 25

(a) blackscholes (b) bodytrack (c) canneal

(d) raytrace (e) swaptions (f) vips

(g) dedup (h) ferret (i) freqmine

Fig. 2. Parsec results
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For each application, we conduct 6 groups of experiments. Group one measures
the memory distance by only running the test cases once without scheduling
control. Groups 2 to 6 measure the memory distances by running each test
case 30 times. Group 2 uses random scheduling. Groups 3–6 set the predefined
depth to 5, 10, 20 and 50, respectively. For each application, we perform memory
distance analysis on global variables only. For a large application with too many
global variables, we randomly choose several global variables to measure their
memory distances.

Parsec Benchmark. Figure 2 gives the results of the experiments on Par-
sec [6]. The data in the sub-tables and sub-figures present the range of memory
distances. Each column gives the minimum and maximum distances of all the
global variables we evaluate. The figures show that in most cases the ranges that
DisConPro finds are larger than those detected by Random Schedule, which in
turn are larger than the ranges discovered by Single Run. However, the range
gaps achieved by PCT are not comparable to those obtained by random algo-
rithm or even single runs. This is because the ranges reported in the figure are
for all the global variables that we have evaluated. Assume that there exists a
global variable that is accessed at the beginning of an execution and is re-accessed
before the program terminates, its memory distance span is large and does not
change much under all the possible interleavings. In this case, this variable hides
the differences of the ranges exhibited in other variables.

For the application vips, single and random executions without PCT detect
a larger memory distance span. Since PCT randomly generates change points
to enforce context switches, it may disturb program executions significantly.
For this reason, PCT may observe memory distances that are less diverse than
those without PCT. This phenomenon is further amplified by the facts that we
aggregate all variables in the same figure. To understand the performance of
PCT algorithms further, we choose to illustrate the data per variable in MySQL
experiments.

MySQL. Figure 3 gives the experimental results on MySQL. We randomly
choose 6 memory objects whose addresses are listed in the table. The figure
depicts the ranges of the minimum and maximum memory distances that we
have observed from each group of experiments. It can be observed that the
memory ranges in Groups 2 to 6 are larger than that in Group 1. By com-
paring the results of Group 2 to Groups 3–5, we can conclude that DisConPro
is more effective than the random scheduling algorithm. The best performance
algorithms for the six memory objects are PCT 5, PCT 50, PCT 5 or PCT 10
or PCT 50, PCT 10, PCT 5 or PCT 10, PCT 50, respectively. For measuring
the memory distances of individual variables, DisConPro can find a range that
is 30% larger than Random Schedule.
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Fig. 3. MySQL result

6 Related Work

Cache performance heavily depends on program locality. In the past there were
studies that indirectly measure program locality by simulating its execution on a
set of probable cache configurations. Such simulations are not only time consum-
ing but also inaccurate. In [17], Ding and Zhong proposed to measure program
locality directly by the distance between the reuses of its data because data reuse
is an inherent program property and does not depend on any cache parameters.
They designed two algorithms with one targeting efficiency and the other one
targeting accuracy. Their work inspired further improvements that exploits sam-
pling [16] and statistical methods [1]. These methods work well for sequential
programs. However, they do not consider that non-deterministic thread schedul-
ing and thus not applicable to concurrent programs.

In recent years there has been research on multicore reuse distance analy-
sis [18–21]. Schuff et al. [18] propose a sampled, parallelized method of measuring
reuse distance profiles for multithreaded programs. Whereas previous full reuse
distance analysis tracks every reference, sampling analysis randomly selects indi-
vidual references from the dynamic reference stream and yields a sample for each
by tracking unique addresses accessed until the reuse of that address. The sam-
pling analyzer can account for multicore characteristics in much the same way
as the full analyzer. The method allows the use of a fast-execution mode when
no samples are currently active and allows parallelization to reduce overhead in
analysis mode. These techniques result in a system with high accuracy that has
comparable performance to the best single-thread reuse distance analysis tools.
While our work also conducts reuse distance analysis of multithreaded programs,
there exists fundamental difference between their approach and ours. Schuff et
al. focus on the hardware while we focus on software. Their goal is to efficiently
measure the distance on a more sophisticated multicore. Thus efficiency is a
major concern of their research. With the help of the their findings a system
designer may design a better cache. We aim to provide a feasible approach that
measures the reuse distance of a particular multithreaded program. Therefore
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non-deterministic thread scheduling is the major concern of our work. With our
approach we hope to let programmers understand the behavior of their multi-
threaded programs regardless of the cache configurations. The two methods are
orthogonal and can potentially be integrated. While we strive to diversify the
executions of a multithreaded program, the approach proposed in [18] can be
used to monitor each execution.

The goal of the approaches in [19–21] are similar to that of [18]. They apply
reuse distance analysis to study the scalability of multicore cache hierarchies,
with the goal to help architects design better cache systems. In particular, Jiang
et al. [19] introduce the concept of concurrent reuse distance (CRD), a direct
extension of the traditional concept of reuse distance with data references by
all co-running threads (or jobs) considered. They reveal the special challenges
facing the collection and application of CRD on multicore platforms, and present
the solutions based on a probabilistic model that connects CRD with the data
locality of each individual thread. Wu et al. [20] present a framework based on
concurrent reuse distance and private reuse distance (PRD) profiles for reasoning
about the locality impact of core count. They find that interference-based locality
degradation is more significant than sharing-based locality degradation. Wu and
Yeung [21] extend [20] by using reuse distance analysis to efficiently analyze
multicore cache performance for loop-based parallel programs. They provide
an in-depth analysis on how CRD and PRD profiles change with core count
scaling, and develop techniques to predict CRD and PRD profile scaling. As
we mentioned, our focus is to examine program behavior rather than the cache
performance. Thus we measure memory distance from a completely different
perspective from [19–21].

There exists work that studies reuse distance from other perspectives.
Keramidas et al. [22] propose a direct way to predict reuse distance and apply
their method to cache optimization. Zhong et al. [23] focus on the effect of
input on reuse distance. They propose a statistical, pattern-matching method to
predict reuse distance of a program based on executions under limited number
of inputs. Shen et al. [24] introduce the time-efficiency model to analyze reuse
distance with time distance. Retaining the high accuracy of memory distance,
their approach significantly reduces the reuse-distance measurement cost. Niu
et al. [25] present the first parallel framework to analyze reuse distance effi-
ciently. They apply a cached size upper bound to restrict a maximum reuse
distance to get a faster analysis. Although these approaches are not optimized
for multithreaded programs, many of their ideas can potentially be adopted to
extend our work.

Our repeated executions of a multithreaded program relies on PCT [5,26], a
randomized algorithm originally designed for concurrent program testing. The
advantage of PCT over total randomized algorithms is that PCT provides a
probabilistic guarantee to detect bugs in a concurrent program. There has been
recent work that adopts PCT for various purposes. For example, Liu et al. [27]
introduce a pthread library replacement that applies PCT to support analyz-
ing data races and deadlocks in concurrent programs deterministically. Cai and
Yang [28] propose to add a radius to the PCT algorithm so the revised algorithm
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can efficiently detect deadlocks. However, to the best of our knowledge, we are
the first to apply PCT in applications that are not intended to detect concur-
rency bugs.

7 Conclusion

In this paper, we have presented an approach to measure the memory distance
of concurrent programs. Given the fact that we cannot possibly explore all the
thread interleavings of a concurrent program, our approach introduces random-
ness in repeated executions. By adapting the scheduling method PCT, our app-
roach provides a mathematical guarantee to detect memory distances of given
triggering depths.
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