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Abstract. This paper reveals challenges in migrating C++ codes to
GPUs using polyhedral compiler technology. We point to instances where
reasoning about C++ constructs in a polyhedral model is feasible. We
describe a case study using CPPTRAJ, an analysis code for molecu-
lar dynamics trajectory data. An initial experiment applied the CUDA-
CHiLL compiler to key computations in CPPTRAJ to migrate them
to the GPUs of NCSA’s Blue Waters supercomputer. We found three
aspects of this code made program analysis difficult: (1) STL C++ vec-
tors; (2) structures of vectors; and, (3) iterators over these structures.
We show how we can rewrite the computation to affine form suitable for
CUDA-CHiLL, and also describe how to support the original C++ code
in a polyhedral framework. The result of this effort yielded speedups over
serial ranging from 3× to 278× on the six optimized kernels, and up to
100× over serial and 10× speedup over OpenMP.

1 Introduction

CPPTRAJ is a biomolecular analysis code that examines results of simulations
that are represented as time series of three-dimensional atomic positions (i.e.,
coordinate trajectories) [1]. CPPTRAJ is an MPI and OpenMP code distributed
as part of the AmberTools suite, a widely-used set of tools for complete molecular
dynamics simulations, with either explicit water or implicit solvent models [2],
and is also available on GitHub [3]. Historically, the analysis function is less
compute-intensive than the simulation, and less attention has been paid to its
parallelization. As Amber simulations scale to larger supercomputing systems, it
is desirable to perform analysis functions in situ during simulation to reduce data
movement and storage. Thus, analysis has become a more significant component
of simulation time, and worthy of renewed attention paid to its parallelization,
especially in light of new architectures.

Parallelization within the Action class computations offered an unexploited
opportunity for thread-level parallelism on GPUs. We adapted one of the more
time-consuming analyses in CPPTRAJ, the Action Closest, which determines
the N closest solvent molecules to M solute atoms where N and M are both user-
specified. This calculation can require millions of distance calculations for each
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trajectory frame, to use GPUs. To ease the programming challenges of migrating
CPPTRAJ to use GPUs, we employed CUDA-CHiLL, which generates CUDA
code from a sequential implementation [4,5]. CUDA-CHiLL is a lightweight
GPU-specific layer for CHiLL, a source-to-source code translator that takes as
input sequential loop nest computations written in C, performs transformations,
and generates optimized sequential or parallel C. A separate input called a trans-
formation recipe describes high-level code transformations to be applied to the
code; this recipe can either be automatically generated [5] or specified by the
programmer. The underlying compiler technology relies on a polyhedral abstrac-
tion of loop nest computations, where loop iteration spaces are represented as
polyhedra.

CUDA-CHiLL has a C++ frontend, but has primarily been applied to C
codes. We discovered that some of the C++ features are difficult to represent
in a polyhedral framework: (1) structures of arrays; (2) C++ iterators; and,
(3) a vector library. We initially modified the code so that CUDA-CHiLL could
analyze it and generate GPU code. The resulting code achieves high performance,
meeting the goals of the optimization exercise and providing a template to the
CPPTRAJ team for further parallelization. We then considered how to extend
CUDA-CHiLL to support these features. The contributions of this paper are: (1)
a description of a successful parallelization of CPPTRAJ for GPUs; (2) analysis
of barriers to automatic parallelization in CUDA-CHiLL; and, (3) extensions to
polyhedral compiler technology to support the C++ features of this code.

2 Background and Related Work

We describe the foundations of polyhedral transformation and code generation
technology, and tease out key concepts in extending its support.

2.1 Polyhedral Compiler Frameworks

Polyhedral frameworks describe the iteration space for each statement in a loop
nest as a set of lattice points of a polyhedron. Loop transformations can then
be viewed as mapping functions that convert the original iteration space to a
transformed iteration space, providing the compiler a powerful abstraction to
transform a loop nest without being restricted to the original loop structure [6].
To verify correctness of iteration space remappings, the compiler employs depen-
dence analysis, which detects possible accesses to the same memory location,
where one of the accesses is a write. Reordering a statement’s execution order is
valid as long as it preserves all data dependences [7]. Once transformations are
proven safe through dependence analysis, the code corresponding to the trans-
formed iteration space may then be generated by polyhedra scanning [8–12].

Let us consider for example, the loop permutation transformation applied to
the loop nest in Fig. 1(a), with the iteration space I represented as an integer
tuple set. The original statement is replaced by a statement macro as shown in
Fig. 1(b). The loop permutation transformation T in Fig. 1(c), which permutes
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Fig. 1. An example of a loop permutation transformation.

the order of the loops, takes I as input and returns an output integer tuple. The
code generator then employs polyhedra scanning of the resulting iteration space
to generate the output code shown. To determine safety of the transformation,
dependence relations are extracted from examining the iteration space and array
accesses, as in Fig. 1(d). In this case, while there is a dependence between reads
and writes of a, permutation is safe because it does not reverse the dependence
on a. The statement is not specified in the set representation, and therefore the
loop body contains statement macros. The transformed loop need only pass to
the statement macro the original iterators for the statement as functions of the
new loop iterators.

2.2 Support for C++ Code

Many polyhedral frameworks are embedded into C and C++ compilers and
leverage parsing of C++ code into an abstract syntax tree (e.g., PolyOpt,
PSSC [13], Polly [14]). Some polyhedral compilers generate CUDA code as in
this work [15,16]. Such compilers typically look for analyzable regions of code
amenable to polyhedral optimization, called Static Control Parts (SCoPs) such
that all loop bounds and conditionals are affine functions of enclosing loops.
Certain C++ code constructs may appear to be non-affine to a polyhedral com-
piler, and therefore these portions of the code would be ignored and not opti-
mized, even though they could be rewritten into an affine form. Notably, analysis
and transformation merely needs to extract dependence relations and statement
macros as functions of loop indices. We consider in this paper such examples
whereby we reason about C++ code and represent the code in statement macros,
extract iteration spaces to facilitate transformation and code generation, and
extract dependence relations to determine safety of transformations.
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3 Code Modifications and Extensions for CPPTRAJ

This section highlights the C++ features that we modified to pass the CPPTRAJ
code through CUDA-CHiLL, and discusses possible extensions.

1 void Act i on Clo s e s t : : Action NoImage Center (Frame&, double maxD)
2 {
3 double Dist ;
4 i n t smol ;
5 std : : vector<int > : : c o n s t i t e r a t o r satom ;
6

7 Vec3 maskCenter = frmIn . VGeometricCenter ( distanceMask ) ;
8 f o r ( smol=0; smol < Nsmols ; smol++) {
9 SolventMols [ smol ] .D = maxD;

10 f o r ( satom = SolventMols [ smol ] . solventAtoms . begin ( ) ;
11 satom != SolventMols [ smol ] . solventAtoms . end ( ) ;
12 ++satom )
13 {
14

15 double ∗a1 = maskCenter . Dptr ( ) ; // cente r o f s o l u t e molecule
16 double ∗a2 = frmIn .XYZ(∗ satom ) ;
17

18 double x = a1 [ 0 ] − a2 [ 0 ] ;
19 double y = a1 [ 1 ] − a2 [ 1 ] ;
20 double z = a1 [ 2 ] − a2 [ 2 ] ;
21

22 Dist = (x∗x + y∗y + z∗z ) ;
23

24 i f ( Dist < SolventMols [ smol ] .D)
25 SolventMols [ smol ] .D = Dist ;
26 }
27 }
28 }
29 \vspace ∗{−.1 in }

Listing 1.1. Original code for Action Closest.

3.1 Changes Irrelevant to a Polyhedral Framework

The original C++ code is shown in Listing 1.1. A few constructs not supported
by CUDA-CHiLL are not fundamental, and extensions to the implementation
are straightforward. The required changes, which will not be discussed further,
include (1) use of member functions of a class, and reference to member fields,
which should be replaced with C functions and parameters; (2) control flow sim-
plifications that would benefit from more sophisticated data-flow analysis; and,
(3) the min calculation over Dist, which should be recognized as a reduction.

3.2 Other Ways of Expressing Loops over Arrays in C++

Additional required changes show C++ constructs that are comparable to stan-
dard loop nests over dense arrays, but are expressed differently from C. The ref-
erence in line 15 to maskCenter returns a variable of type Vec3, which is a simple
datatype for representing 3D coordinates. The reference in line 16 to frmIn.XYZ
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returns a pointer to the position inside the Frame datatype’s internal 3D coor-
dinate array corresponding to atom n. Since these are read-only variables, it is
sufficient to ignore the references since they cannot carry a dependence. How-
ever, in the more general case where they may also be written, it is useful to
recognize that these types actually represent an array of three doubles.

The second kind of vector represented by SolventMols adds more complex-
ity to the analysis. It is declared as std::vector〈MolDist〉. That is, it uses the
vector data type from the C++ standard template library. The code loops over
the elements of this vector using a C++ iterator, satom.

A key observation is that these are implemented similarly to unit-stride access
to arrays, but the compiler must be extended to recognize this. For our exper-
iments, we have made these changes explicit. Referring back to Sect. 2.1, it is
realistic to support these because we only need to extract three things from the
code: (1) the iteration space of the loop nest; (2) the statement macro; and, (3)
the dependence relations.

First, the loop nest needs to be rewritten in the code representation leading
to an affine iteration space. The following rewrite is safe if you know that these
vectors are stored contiguously in memory and the meaning of the begin(),
end() and size() functions [17].

ub = SolventMols_[smol].solventAtoms.size();

I = {[smol,satom] | 0<=smol<Nsmols_ && 0<=satom<ub}

For the statement macros, we can leave line 15 as written in this case. But
for line 16, we would like to rewrite so that if we are to modify the iteration
space for the satom loop, we will be able to update the access in the context of
the loop indices. The same is true for the reduction statement at lines 24 and
25. Therefore, the statement macros are as follows:

#define S16(smol,satom)

double *a2 = SolventMols_[(smol)].solventAtoms[(satom)]

#define S24(smol,satom)

SolventMols_[(smol)].D = min(Dist,SolventMols_[(smol)].D)

Finally, we consider the dependence relations arising from the statements
that reference these vectors. As the statements at lines 15 and 16 are read-only
accesses to the maskCenter and the data associated with the solvent atom, there
are no dependence relations. For the access at lines 24 and 25, after the reduc-
tion transformation is performed as described above, the following dependence
relation arises between read and write of SolventMols [smol].D.

{[smol,satom]->[smol’,satom’] | 0<=smol,smol’<NSmols_ &&

0<satom,satom’<ub && smol=smol’}

This discussion assumes that the compiler can perform dependence analysis
on fields in structures. This is a straightforward extension, where indexed fields
are treated as arrays, and distinct fields are considered independent.
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3.3 CUDA Code Generation and Application Integration

CUDA-CHiLL was applied to manually modified code to arrive at the output
kernel code in Listing 1.2 and scaffolding code (not shown). The problem size
is fixed to the sample input used for the experiments in Sect. 5. The generated
code was derived using the CUDA-CHiLL script below.

1 g l o b a l void Action No image GPU ( double ∗D , double ∗maskCenter ,
double (∗ SolventMols ) [ 9 6 5 ] [ 3 ] )

2 {
3 i n t satom ;
4 i n t bx ;
5 i n t tx ;
6

7 double maxD;
8 double Dist ;
9 double newVariable0 ;

10

11 bx = blockIdx . x ;
12 tx = threadIdx . x ;
13 newVariable0 = D [ tx + 32 ∗ bx ] ;
14 newVariable0 = maxD;
15

16 f o r ( satom = 0 ; satom <= 15021; satom += 1) {
17 Dist = (pow(maskCenter [ 0 ] − SolventMols [ smol ] [ satom ] [ 0 ] , 2 ) +
18 pow(maskCenter [ 1 ] − SolventMols [ smol ] [ satom ] [ 1 ] , 2 ) +
19 pow(maskCenter [ 2 ] − SolventMols [ smol ] [ satom ] [ 2 ] , 2 ) ) ;
20 newVariable0 = (min ( Dist , newVariable0 ) ) ;
21 }
22 D [ tx + 32 ∗ bx ] = newVariable0 ;
23 }
24 \vspace ∗{−.1 in }

Listing 1.2. Kernel output of CUDA-CHiLL.

init("simple_action_noImage.c", "Action_NoImage_Center",0)

NA=15022

NM=965

TI=32

TJ=3*NM/TI

tile_by_index(0,{"smol"}, {TI}, {l1_control="ii"}, {"ii","smol"})

cudaize(0,"Action_No_image_GPU",

{D_=NM*3, SolventMols_=NA*3,maskCenter=3},

{block={"ii"}, thread={"smol"}},{})

copy_to_registers(0, "satom", "D_")

It is only safe to parallelize the outermost loop as the inner loop carries a depen-
dence on D [smol]. Therefore, this simple script creates two levels of paral-
lelism for the outermost loop using the tile by index command. Each thread
then computes one element of D . To avoid unnecessary memory accesses, the
copy to registers command is used to locally store D [smol] in newVariable0
during the majority of a thread’s execution. The cudaize command marks the
outermost two loops to serve as block and thread indices, whose sizes are con-
trolled by TI and TJ derived from tuning. Note that different transformation
recipes will lead to very different generated codes.
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Five more member functions were also replaced with CUDA kernels. These all
had similar structure and C++ features as compared to the code in Listing 1.1,
but some had more computation at each point. We used the generated CUDA
code as a template for the other kernels, and replaced the computation at the
innermost loop. The CUDA code was then integrated back into the application
with some additional functions calls from the Action Closest class. We also
inserted timing functions within a combined CUDA harness code for the kernels.
Therefore, the impact in terms of coding changes on the application was not
significant, but the performance gains were substantial, as shown in Sect. 5.

4 Incorporating Knowledge of Library or Class Properties

The previous section shows it is certainly feasible to represent the C++ con-
structs in this code as affine. However, the question arises as to how to embed
knowledge into the compiler of the C++ STL or even a user class. For something
as widely used as the STL, we could treat it as part of the C++ language and
integrate these transformations into the CHiLL compiler directly. However, this
approach would not apply to any user-defined class.

We propose to take advantage of CHiLL’s existing transformation recipe
interface to extend the compiler to convey this additional information. This
concept of programmability of transformation recipes has been used before in
adding CUDA support through a programming language interface [4], but in
that case it was composing and reinterpeting existing CHiLL commands and
modifying the output only. Here, we need a way of reinterpreting the input. We
propose a new command in a transformation recipe called scopInfo:

scopInfo(loop, IS={affine_relation}, SM={statement_macros},D={deps})

This is one way to convey information to the compiler, before it attempts to ana-
lyze the code, that this analysis should permit extensions to whatever is already
supported by CHiLL. This approach is similar to rewrite rules that are supported
in domain-specific compiler frameworks such as DeLite [18], but specifically pro-
vides the inputs of a polyhedral framework to facilitate dependence analysis,
iteration space reordering and code generation.

While such an extension could make it possible for a programmer to add
scopInfo commands to their recipes, it may be too low-level for the average
programmer. However, a custom preprocessing phase could be added to the
framework to derive specialized information such as this in a domain-specific
or library-specific way, particularly if the recipes are automatically generated as
in [5]. We foresee such an extension would make it possible to convey other infor-
mation to the compiler useful to loop nest optimization for HPC applications,
such as for example, how to interpret user-defined domain decompositions.

5 Experimental Results

The GPU-enabled version of CPPTRAJ was then executed on the NCSA Blue-
waters supercomputer, and compared against an MPI-only implementation and
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an MPI+OpenMP implementation. Bluewaters has two types of nodes, namely
XE or XK. XE nodes have 2 AMD 6276 Interlagos processors while XK nodes
have a single Interlagos processor and a GPU accelerator, an NVIDIA GK110
(K20X) Kepler GPU with 2688 CUDA cores. Both XE and XK nodes have 64
GBytes of memory. We used a molecular system for our experiment as a good
proxy for typical real world usage, consisting of 4143 solute atoms and 15022
solvent molecules, resulting in up to 62M distance calculations for each frame.

As described in Sect. 3, the CPPTRAJ code was extended to replace six
Action member functions with calls to CUDA kernels. The six kernels are
divided into two groups: one group calculates distance with respect to the sol-
vent molecule’s center as represented by the code in Listing 1.2; the other calcu-
lates distance with respect to each atom contained within the solvent molecule.
Figure 2(left) compares speedup over serial for each GPU kernel. Speedups range
from 3× to 278×, with the Non-center kernels exhibiting a higher speedup.
Each of the 3 kernels in each group is furthermore separated by the type of
imaging method they use during the distance calculation. The labels Ortho and
Non-Ortho refer to orthorhombic and nonorthorhombic, respectively, indicating
the unit cell shape. Non-orthorhombic distance calculations are more compute-
intensive as they check the “self” unit cell plus 26 images.

We now compare performance of the Non-Center, Non-Ortho kernel to the
original OpenMP code within the full CPPTRAJ MPI code in Fig. 2(right). On
a single node, the GPU version is rougly 10× faster than the OpenMP version.
The substantial parallelism exhibits strong scaling as we deploy the application
across multiple nodes, ranging from 1 to 32.

Fig. 2. Performance measurements on Blue Waters, showing speedup over serial of all
Action kernels (left); OpenMP comparison and strong scaling within MPI code (right).

6 Conclusion

This paper has explored using polyhedral compiler technology to parallelize for
GPUs key computations in CPPTRAJ, a real-world analysis code used for molec-
ular dynamics trajectory data written in C++. The primary goal of this work
was to derive high-performance GPU code for CPPTRAJ. At the same time,
we explored the gaps in the CUDA-CHiLL framework for supporting C++ code
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and proposed how to extend polyhedral compiler technology to support C++
features, including the vectors in the standard template library.

We believe interactions such as this between HPC tool researchers and appli-
cation developers on real applications lead to tools that better meet user needs
while aiding applications in their migration to the variety of current and future
architectures that require significant application changes.
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