
Software Cache Coherent Control
by Parallelizing Compiler

Boma A. Adhi(B), Masayoshi Mase, Yuhei Hosokawa, Yohei Kishimoto,
Taisuke Onishi, Hiroki Mikami, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering,
Waseda University, Tokyo, Japan

{boma, onishi, hiroki, kimura, kasahara}@kasahara.cs.waseda.ac.jp

Abstract. Recently multicore technology has enabled development of
hundreds or thousands core processor on a single chip. However, on such
multicore processor, cache coherence hardware will become very com-
plex, hot and expensive. This paper proposes a parallelizing compiler
directed software coherence scheme for shared memory multicore sys-
tems without hardware cache coherence control. The general idea of the
proposed method is that an automatic parallelizing compiler parallelize
coarse grain task, analyzes stale data and line sharing in the program,
then solves those problems by simple program restructuring and data
synchronization. The proposed method is a simple and efficient software
cache coherent control scheme built on OSCAR automatic parallelizing
compiler and evaluated on Renesas RP2 with 8 SH-4A cores processor.
The cache coherence hardware on the RP2 processor is only available
for up to 4 cores. The cache coherence hardware can also be turned off
for non-coherence cache mode. Performance evaluation was performed
using 10 benchmark programs from SPEC2000, SPEC2006, NAS Parallel
Benchmark (NPB) and MediaBench II. The proposed method performed
as good as or better than hardware cache coherence scheme while still
provided correct result as the hardware coherent mechanism. For exam-
ple, the proposed software cache coherent control (NCC) gave us 2.63
times speedup for SPEC 2000 equake with 4 cores against sequential
execution while got only 2.52 times speedup for 4 cores MESI hardware
coherent control. Also, the software coherence control gave us 4.37 speed
up for 8 cores with no hardware coherent mechanism available.

1 Introduction

For many years, cache coherent SMPs have been widely used as the core com-
ponent of all classes of machines, from smartphones, IoTs, PCs, and embedded
systems all the way to HPC systems. Typically, a hardware cache coherence
mechanism, either snoopy or directory based, is employed to ensure every change
made into a shared line in one processor’s private cache is always reflected in the
content of all private cahces so that coherency is maintained. Hardware cache
coherence mechanism scales well for current generation multicore processor [1],
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 17–25, 2019.
https://doi.org/10.1007/978-3-030-35225-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_2


18 B. A. Adhi et al.

e.g. Intel Xeon Phi [2], Tilera Tile64 [3]. However, despite its common usage
among current generation multicore processor, this kind of hardware will too
complex, hot and expensive for the upcoming hundreds to thousands core mas-
sively parallel multicore system to avoid the complexity of the hardware based
cache coherency.

Research on software controlled started in the late 80’s. One of the prominent
contributions is [4] which proposed fast selective invalidation scheme and version
control scheme for compiler directed cache coherence. More recent research [5]
proposes a compiler support for software based cache coherency. A practical and
ready to use solution for software based coherence is yet to be proposed.

This paper proposes a new software coherent control scheme to guarantee
coherency by avoiding stale data and false sharing. This method is novel, simple,
powerful and give us delivers the same performance as the hardware implementa-
tion of cache coherency. Next, we present an overview of OSCAR’s parallelization
strategy followed by a discussion of the techniques to handle sate data and false
sharing.

2 Software Cache Coherent Control by Parallelizing
Compiler

The proposed method is built into the OSCAR parallelizing compiler, which
analyzes and decomposes programs into tasks using control flow and data depen-
dence. Based on the data access range of each task, the compiler addresses stale
data and false sharing. Our proposed method may be applied to almost any
kind of interprocessor networking as our method uses the main shared memory
for synchronization and does not rely on communication between CPU cores.
Next, we present an overview of OSCAR’s parallelization strategy followed by a
discussion of the techniques to handle sate data and false sharing.

2.1 Coarse-Grain Task Parallelization

The OSCAR compiler is a multi-grain parallelizing compiler. The compiler gen-
erates C or Fortran program extended with invocations to OSCAR API [6] rou-
tines in this way, OSCAR compiler generated parallel multicore code that can
be compiled for any shared memory multicore available in the market using a
conventional compiler. The OSCAR compiler starts the compilation process by
dividing the source program into three types of coarse-grain tasks, or Macro
Tasks (MTs): Basic Blocks (BBs), Repetition Blocks (RBs), and Subroutine
Blocks (SBs). RBs and SBs are hierarchically decomposed into smaller MTs if
coarse-grain task parallelism still exists within the task. Then, as all MTs for
the input program are generated, they are analyzed to produce a Macro Flow
Graph (MFG). An MFG is a control flow graph among the MTs having the data
dependence edges. A Macro Task Graph (MTG) is generated by analyzing the
earliest executable condition of every MT and tracing the control dependencies
and data dependencies among MTs on the MFG. Based on this information, the
compiler generates appropriate cache coherence control code [7].



Software Cache Coherent Control by Parallelizing Compiler 19

2.2 Handling the Stale Data Problem

A hardware based cache coherence ensures information on changes made to
the data in one of the CPU cores cache line is propagated to other cores so
that each copy of this data in other cores can be invalidated. The process of
notifying the other processors in a snoopy based cache coherence may impact
the performance of the processor. With directory based mechanism, simultaneous
access to directory may become a performance bottleneck. Meanwhile, without
any hardware cache coherence, these bottlenecks do not exist, but access to stale
data should be manually managed by the compiler.

Fig. 1. Cache control code inserted by the compiler to prevent reference to stale data.

Based on the coarse grain scheduling result, to manage stale data problem,
the compiler generates explicit cache manipulation instructions to the processor,
i.e. writeback, self-invalidate, and purge. Writeback command tells the processor
to write the modified cache line to the main memory. The self-invalidate is a
command for invalidating the line of the cache memory. The purge command
executes the self-invalidate after the writing back (writeback) of the data stored
in the line of the cache memory.

Figure 1 is an example of the compiler generated code to prevent stale data
reference. Core 0 defines a new value for a shared variable, A. The compiler auto-
matically inserts a writeback instruction and an assignment to a synchronization
flag on core 0’s code. The compiler also inserts a self-invalidate instruction on
core 1 right after testing the synchronization flag. The compiler then schedules
the task in a way that minimize the delay caused by the synchronization. In
addition, if multiple cores retain the same data at the same time, the compiler
schedules all cores in way to prevent the data to be simultaneously updated.
These cache manipulation instructions are inserted only for Read-after-Write
data dependence. Meanwhile for Write-after-Read and Write-after-Write, only
synchronization instruction is inserted. By using this approach, stale data can be
avoided. Moreover, the overhead caused by the transmission of invalidate packets
associated with hardware based mechanism can be eliminated.



20 B. A. Adhi et al.

2.3 Handling the False Sharing Problem

False sharing is a condition in which two or more data items share a single cache
line. Whenever one of those data is updated, inconsistency may occur. This is
due to the granularity of the cache writeback mechanism usually works with line
instead of byte or word sized. To address this problem, OSCAR compiler uses
one of the following four mechanisms:

Variable Alignment and Array Expansion. To prevent unrelated variables
from sharing a single cache line, the compiler aligns each variable to the begin-
ning of a cache line. Not only for scalar variables, but this approach is also
applicable for small sized one-dimension array. The array can be expanded so
that each element is stored in a single cache line. While not very efficient due to
potentially wasting cache space, this approach effectively prevents false sharing.
Data alignment works best for one-dimension array whose size is smaller than
the number of cache line in all available processor cores. It also works well for
indirect access array where the compiler has no information regarding the access
pattern of the array.

Cache Aligned Loop Decomposition. OSCAR compiler applies loop decom-
position which consist in partitioning the iteration space of a loop to create sev-
eral tasks. Instead of assigning the same number of iterations to each partial
task, the compiler decomposes loops taking into account the cache line size as
seen in Fig. 2(A).

Array Padding. It is not always possible to partition a two-dimension array
cleanly along cache line boundaries. This happens when the lowest dimension of
the array is not an integer multiply of the cache line size. In this case, OSCAR
compiler inserts padding to the end of the array to match the cache line size.
This approach is depicted in Fig. 2(B). It should be noted that this approach
may also waste cache space.

Data Transfer Using Non-cacheable Buffer. When cache aligned loop
causes a significant load imbalance or array padding consumes too much cache
space or none of the former approaches cannot be applied, OSCAR compiler uses
a non-cacheable buffer. The compiler designates a an area in the main memory
that should not be copied to the cache and places the shared data in that area.
Figure 3 depicts the usage of non-cacheable buffer.



Software Cache Coherent Control by Parallelizing Compiler 21

Fig. 2. (A)Cache alligned loop decomposition is applied to a one-dimension matrix to
avoid false sharing. (B)Array padding is applied to a two-dimention matrix to avoid
false sharing.

Fig. 3. Non-cacheable buffer is used to avoid false sharing.

3 Performance of the Software Coherent Control
on Embedded Multicore

This section shows the performance of the proposed method on an embedded
multicore the Renesas RP2 for benchmark programs from SPEC, NAS Parallel
and MediaBench.

3.1 The RP2 Processor

The Renesas RP2 is an 8-core embedded processor configured as two 4-core SH-
4A SMP clusters, with each cluster having MESI protocol, jointly developed by
Renesas Electronics, Hitachi Ltd. and Waseda University under support from the
METI/NEDO Multicore Processors for Real-time Consumer Electronics Project
in 2007 [8]. Each processor core has its own private cache. However, there is no
hardware coherence controller between the cluster for hard real-time applica-
tions like automobile engine control; hence, to use more than 4 cores across the



22 B. A. Adhi et al.

cluster, a software based cache coherency must be used. The MESI hardware
coherence mechanism can be disabled completely. The RP2 board as configured
for this experiment has 16 kB of data cache with 32-byte line size and 128MB
shared memory. The local memory, which was provided for hard real-time control
application was not used in this evaluation. The RP2 processor supports sev-
eral native instructions in NCC mode: writeback operation (OCBWB instruction),
cache invalidate (OCBBI instruction), cache flush (OCBP instruction).

3.2 Benchmark Applications

To evaluate the performance of the proposed method, we used 10 benchmark
applications from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB) and
Mediabench II. While the selection of the benchmark program is somewhat lim-
ited due to the main memory size of the current board, the selected benchmark
represents several different types of scientific and multimedia application. These
benchmarks were written in C and converted to Parallelizable C [9] which is sim-
ilar to MISRA-C used in embedded field. Then these programs were compiled
by the OSCAR source-to-source automatic parallelizing compiler. The output C
program by the OSCAR compiler was compiled by the Renesas SuperH C Com-
piler (SH C) as the backend compiler as mentioned before. The SPEC benchmark
programs were run in their default configuration and datasets except lbm which
were run with 100 × 100 × 15 matrix. All NPB benchmarks were configured with
CLASS S data size considering small shared memory or main memory (128 MB)
of the RP2 processor.

3.3 Experimental Results and Analysis

Figure 4 is a graph showing the speedups by multiple cores of the proposed
method on RP2 Processor. The lighter bars show the baseline performance on
a Symmetric Multiprocessor (SMP) cluster with MESI hardware coherence con-
trol. The darker bars show the performance of the proposed software coher-
ence control method on NCC architecture. The single core performance on SMP
machine was selected as the baseline.

Fig. 4. The performance of the proposed method on RP2 Processor.



Software Cache Coherent Control by Parallelizing Compiler 23

Figure 5 depicts the performance impact of each proposed methods. Five
different plots are presented for four of the benchmark programs executing in
1, 2 and 4 cores: SMP is a normal shared memory architecture with native
hardware based coherence. This is selected as the baseline of the measurement.

Stale data handling: stale data handling method with hardware based coher-
ence control still turned on. We can see here that the performance is negatively
impacted. This is to be expected since stale data handling method wastes CPU
cycles since the hardware already handles this problem. But we can see here the
effect of the stale data handling negatively impacted the performance of lbm.

False sharing avoidance: false sharing handling which comprises data align-
ment, cache line aligned data decomposition, and other layout transformation
with hardware coherence control still turned on. We can see here that there
is almost no significant performance impact. The cache line wasting effect is
insignificant. In certain benchmarks, most notably lbm, this approach improves
the performance. This is to be expected since false sharing is also bad even
for hardware based cache coherence control. Removing false sharing problem
will improves the performance of a hardware based coherence control. NCC
(hardware coherence): this graph measures the overhead of both proposed
method for handling stale data and false sharing with hardware coherence still
active. NCC (software coherence): this graph shows the performance of the
proposed method with hardware coherence control completely turned off.

Fig. 5. The performance impact of software cache coherence.

The performance of the proposed software cache coherence method give us
roughly 4%–14% better performance compared to hardware based coherence.
With hardware based coherence, an overhead is imposed due to frequent trans-
mission of invalidation packet between processor cores via the interconnection
bus. On the other hand, the software does not require the transmission of such
packet as the compiler will insert self-invalidate instruction to the required pro-
cessor core. For art, quake and lbm benchmark, is positively affected by this
performance benefit of software based coherence. The data structure of “lbm” is



24 B. A. Adhi et al.

also unique that it has a lot of false sharing. We can see here that our proposed
false sharing avoidance method improves the performance significantly.

While not offering huge performance benefit, compared to hardware based
approach, the proposed method has enabled the usage of 8 cores in RP2 proces-
sor which does not have cache coherence mechanism. Before, using our proposed
method, it was impossible to run an application with 8 cores without very com-
plicated hand-tuned optimization.

4 Conclusions

This paper proposes a method to manage cache coherency by an automatic par-
allelizing compiler for non-coherent cache architecture. The proposed method
incorporates control dependence, data dependence analysis and automatic par-
allelization by the compiler. Based on the analyzed stale data, any possible false
sharing is identified and resolved. Then, software cache control code is automati-
cally inserted. The proposed method was evaluated using 10 benchmark applica-
tions from SPEC2000, SPEC2006, NAS Parallel Benchmark and MediaBench II
on Renesas RP2 8 core multicore processor. The performance of the NCC archi-
tecture with the proposed method was similar or better than the hardware based
c herenc mple, the hardware coherent mechanism using MESI protocol gave us
2.52 speedup on 4 core against one core SPEC2006 “equake”, 2.9 times speedup
on 4 cores for SPEC2006 “lbm”, 3.34 times speedup on 4 cores for NPB “cg”,
3.17 times speedup on 4 cores for MediaBench II “MPEG2 Encoder”. On the
otherhand, the proposed software cache coherence control method implemented
on OSCAR Multigrain Parallelizing Compiler gave us 2.63 times on 4 cores, 4.37
times on 8 cores speedup for “equake”, 3.28 times on 4 cores and 4.76 times on
“lbm”, 3.71 times on 4 cores and 5.66 times on 8 cores for “cg”, 3.02 times on
4 cores and 4.92 times on 8 cores for “MPEG2 Encoder”. Those result shows
the proposed software coherent control method allow us to obtain comparable
performance with the MESI hardware coherence control mechanism for the same
number of processor cores. Furthermore, it gives us good speedup automatically
and quickly for many processor cores without the hardware coherent control
mechanism although up until now application programmers had to spend huge
development time to use the non-coherent cache architecture.

Acknowledgement. Masayoshi Mase and Yohei Kishimoto are currently working for
Hitachi, Ltd. and Yahoo Japan Corp respectively. Their works contained in this paper
were part of their study at Waseda University. Boma Anantasatya Adhi is part of
Universitas Indonesia and currently a PhD student at Waseda University supported
by Hitachi Scholarship.

References

1. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to
stay. Commun. ACM 55(7), 78–89 (2012)



Software Cache Coherent Control by Parallelizing Compiler 25

2. Chrysos, G.: Intel & R©Xeon Phi Coprocessor-the Architecture. Intel Whitepaper
(2014)

3. Bell, S., et al.: TILE64 - processor: a 64-Core SoC with mesh interconnect. In: 2008
IEEE International Solid-State Circuits Conference - Digest of Technical Papers,
pp. 588–598, February 2008

4. Cheong, H., Veidenbaum, A.V.: Compiler-directed cache management in multipro-
cessors. Computer 23(6), 39–47 (1990)

5. Tavarageri, S., Kim, W., Torrellas, J., Sadayappan, P.: Compiler support for software
cache coherence. In: 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pp. 341–350, December 2016

6. Kimura, K., Hayashi, A., Mikami, H., Shimaoka, M., Shirako, J., Kasahara, H.:
OSCAR API v2. 1 : extensions for an advanced accelerator control scheme to a
low-power multicore API. In: 17th Workshop on Compilers for Parallel Computing
(2013)

7. Kasahara, H., Kimura, K., Adhi, B.A., Hosokawa, Y., Kishimoto, Y., Mase, M.:
Multicore cache coherence control by a parallelizing compiler. In: 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC), vol. 01, pp.
492–497, July 2017

8. Ito, M.: An 8640 mips soc with independent power-off control of 8 cpus and 8 rams
by an automatic parallelizing compiler. In: 2008 IEEE International Solid-State
Circuits Conference - Digest of Technical Papers, pp. 90–598, February 2008

9. Mase, M., Onozaki, Y., Kimura, K., Kasahara, H.: Parallelizable c and its perfor-
mance on low power high performance multicore processors (2010)


	Software Cache Coherent Control by Parallelizing Compiler
	1 Introduction
	2 Software Cache Coherent Control by Parallelizing Compiler
	2.1 Coarse-Grain Task Parallelization
	2.2 Handling the Stale Data Problem
	2.3 Handling the False Sharing Problem

	3 Performance of the Software Coherent Control on Embedded Multicore
	3.1 The RP2 Processor
	3.2 Benchmark Applications
	3.3 Experimental Results and Analysis

	4 Conclusions
	References




