
Efficient Inspected Critical Sections
in Data-Parallel GPU Codes

Thorsten Blaß(B), Michael Philippsen, and Ronald Veldema

Programming Systems Group, Friedrich-Alexander University, Erlangen, Germany
{Thorsten.Blass,Michael.Philippsen,Ronald.Veldema}@fau.de

Abstract. Optimistic concurrency control and STMs rely on the
assumption of sparse conflicts. For data-parallel GPU codes with many or
with dynamic data dependences, a pessimistic and lock-based approach
may be faster, if only GPUs would offer hardware support for GPU-wide
fine-grained synchronization. Instead, current GPUs inflict dead- and
livelocks on attempts to implement such synchronization in software.

The paper demonstrates how to build GPU-wide non-hanging criti-
cal sections that are as easy to use as STMs but also get close to the
performance of traditional fine-grained locks. Instead of sequentializing
all threads that enter a critical section, the novel programmer-guided
Inspected Critical Sections (ICS) keep the degree of parallelism up. As
in optimistic approaches threads that are known not to interfere, may
execute the body of the inspected critical section concurrently.

Keywords: GPGPU · CUDA · SIMT · Critical section · Mutual
exclusion

1 Introduction

Optimistic concurrency control – as it is implemented in Software Transactional
Memory (STM) – comes with some overhead for logging and rollback [5]. This
overhead grows with the number of threads that collide in their memory accesses.
On asynchronous multicores often only a few of the running threads are in an
atomic region at any time, whereas on a GPU with its data-parallel/lock-step
execution model, all threads must enter this critical section at exactly the same
time. Hence, optimistic approaches may cause significant overhead on GPUs.

1 while (atomicCAS(&lock , −1, TID) != −1); // s p i n
2 // c r i t i c a l s e c t i o n c o d e h e r e
3 atomicExch (lock , −1);

1 bool leaveLoop = f a l s e ; // t h r e a d l o c a l
2 while (! leaveLoop){
3 i f (atomicCAS(&lock , −1, TID) == TID){
4 // c r i t i c a l s e c t i o n c o d e h e r e
5 leaveLoop = true ;
6 atomicExch (lock , −1);
7 }
8 // p o i n t o f c o n v e r g e n c e
9 }

Fig. 1. Spin lock implementations, with and w/o a
SIMT-deadlock. TID is the global thread Id.

Assume you want to
study this hypothesis. You
pick benchmarks from the
GPU-STM community, you
take (or re-implement) an
STM prototype for GPUs [6,
12,16,20], and to gauge
the overhead, you re-work
the atomic regions of the
benchmark codes into pes-
simistic concurrency control,
c© Springer Nature Switzerland AG 2019
L. Rauchwerger (Ed.): LCPC 2017, LNCS 11403, pp. 223–239, 2019.
https://doi.org/10.1007/978-3-030-35225-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35225-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-35225-7_15

224 T. Blaß et al.

Table 1. Fraction of the runs affected by dead- or livelocks; see Appendix.

Hash table Bank Graph Labyrinth Genome Kmeans Vacation

Problem size 1,572,864 786,432 25,165,824 25% 75% (512,512,7) Configuration see Appendix

threads 1,572,864 25,165,824 10,280 512 811,008 3,014,656 4,194,304

FGL 43% 42% 45% 29% 42% 33% 49% 37% 53%

STM 39% 45% 49% 35% 43% 37% 50% 41% 55%

i.e., your threads simply acquire a fine-grained lock for each of the data items
that they may access concurrently at runtime. If threads need to acquire mul-
tiple locks, you use a global order to avoid deadlocks. Since you know that the
Single Instruction Multiple Thread (SIMT) execution model is prone to dead-
locks1 [9,11] you re-work your code as shown in Fig. 1, i.e., you pull the loop out
of the if-statement that holds the CAS. With the resulting convergence point
after the if-statement, regardless of the SIMT-scheduling, both sets of threads
make progress; the lock is eventually released.

At this point you will understand the first motivation of our work. In our
experiments and with a particular STM framework [20], our otherwise correct
benchmark code (see Appendix) often hangs in dead- or livelocks that are beyond
our control, see Table 1. Your mileage will vary. It depends on the size, configu-
ration, version and vendor of your GPU, the number of threads that your code
spawns, the unknown scheduling strategies that run on your GPU, . . . , and the
compiler version that you are using.2 Hence, either it works by coincidence or you
need to carefully fine-tune your setup to avoid similar dead- or livelocks – both
for the STM codes and for the codes with the fine-grained locks (FGL). While
the FGL-codes are straightforward to construct, unfortunately in general they
are incorrect. The STM codes hang on the GPU because the STM framework
internally uses such error prone synchronization.

In Sect. 2 we discuss that there are fundamental architectural reasons for
those dead- and livelocks on current GPUs. We also show how to construct a
non-hanging GPU-wide critical section.

This brings us to our second motivation: In all the successful, non-hanging
runs (and only those), the FGL-code has less overhead and clearly outperforms

1 Recall that the upper code in Fig. 1 can deadlock on a GPU. Generally speaking,
the while-condition splits the threads (of a warp/wavefront) into two sets. One set
has the thread that has acquired the lock, the other set holds all the other threads.
The SIMT instruction scheduler then runs the sets in turn, one after the other, and
up to a convergence point where the sets are combined again. The problem is that
there is no yield and that the instruction scheduler does not switch between sets. If
the scheduler chooses to issue instructions to the set of the spinning threads first,
the set with the winning thread never receives a single instruction, it does not make
any progress, and thus it never releases the lock.

2 For Table 1 we compiled with -O0. If we use -O3 all the runs hang. In our benchmark
environment the compiler seems to undo the manual anti-SIMT-deadlock transfor-
mation shown in Fig. 1.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 225

Fig. 2. Runtimes, normalized to ICS codes (-O3).

the optimistic concurrency control on the GPU, see the first and last bar of each
bundle in Fig. 2. With more collisions (smaller hash table and p = 75% for the
Graph benchmark) the STM versions get even slower.

Sections 3 and 4 then extend our GPU-wide critical section to so-called
Inspected Critical Sections (ICS) that get close to the FGL-performance (with-
out the hanging) and that also make the reasoning for the programmer as
straightforward as for the FGL-codes. See the ICS-columns in Fig. 2 that we
have used to normalize the other runtimes.3

2 Non-hanging GPU-wide Critical Sections

Fig. 3. GPU architecture and schedulers.

To explain where the dead-
and livelocks come from, we
sketch a GPU’s execution
model and its vendor-provided
schedulers. When a GPU pro-
grammer creates a grid of
threads s/he also organizes
them into b groups of t
threads each (NVIDIA: block,
AMD: workgroup). We call
t the group-size. The GPU
breaks up a group into warps
of typically 32 threads (AMD:
wavefront). To keep the discus-
sion simple, assume that the
grid size is exactly b·t and that

3 Since we can only show -O0 numbers for STM and FGL due to the compiler issue, we
show those numbers for ICS as well, even though the compiler issue did not prevent
-O3 for our approach.

226 T. Blaß et al.

t is a multiple of 32. Figure 3 shows a grid of threads in the work list of the GPU’s
group scheduler. It picks a group and assigns it to one of the GPU’s Streaming
Multiprocessors (SM). Groups are never preempted before they have com-
pleted execution. Since in general, there are unassigned groups (even if some
SMs can process more than a group), there cannot be a GPU-wide barrier for
all threads of the grid. Assume that all threads of all the SM-assigned groups
had reached such a barrier. As they all still have work to do beyond that barrier,
these groups are unfinished. This prevents pending groups from being assigned
to an SM; the SM-assigned threads wait forever.

When a group is assigned to an SM, its warp scheduler dispatches the threads
of the group’s warps to the SM’s many Stream Processors (SP). Multiple
SPs then execute all the threads of the warp in SIMT-mode. To achieve this,
the instruction scheduler spawns the same instruction to all threads at the same
time in a lock-step fashion.

GPU vendors do not disclose the strategies that their schedulers use and could
change them at will between hardware releases and compiler versions. As it is
unspecified for which of the branches of a condition the instruction dispatcher
spawns the instructions first, the upper spin lock of Fig. 1 was incorrect and prone
to SIMT-deadlocks. As there are no fairness guarantees for the warp scheduler
on when to replace unfinished warps with pending ones, the code in the lower
part of Fig. 1 is also incorrect. It can cause a livelock because in contrast to the
group scheduler, the warp scheduler can take back unfinished warps from the
SPs at any time. Assume that more warps are dispatched to an SM than it has
SPs. Some of these warps can be part of the same group, or they can belong to
other groups assigned to the same SM. Immediately after a winning thread has
entered the critical section (line 4), the warp scheduler can choose to replace the
winner’s warp by another warp. Afterwards all the SPs run warps whose threads
all wait for the critical section to become available again. From the viewpoint
of the warp scheduler all the scheduled warps perform useful work because they
all process the while loop. So there is no need to (ever) schedule back in the
winner; the other warps may hence spin forever. The code hangs in a livelock.4

1 i f (GID == 0) // 1 t h r e a d h a s Group− l e v e l ID 0
2 g l oba l . l ock () ; // e x c l u d e o t h e r g r o u p s
3 <thread−group−bar r i e r> //CUDA : s y n c t h r e a d s ()

4 // Run t h r e a d s i n t h e g r o u p one a f t e r t h e o t h e r
5 for (i=0 . . GROUP SIZE−1) {
6 i f (i == GID)
7 // c r i t i c a l s e c t i o n c o d e h e r e
8 <thread−group−bar r i e r>
9 }

10 i f (GID == 0) // 1 t h r e a d o f t h e s e t (= g r o u p)
11 g l oba l . unlock () ; // a l l o w o t h e r g r o u p s

Fig. 4. Non-hanging GPU-wide critical section.

Figure 4 shows our new
non-hanging GPU-wide crit-
ical section. It hoists the
lock-acquisition and the lock-
release out of the individual
threads of a group. Instead
of having each of the t
threads of a group compete
for the global lock, the lock is
acquired only once per group.

4 To circumvent this problem, many codes use the incorrect spin lock with a grid size
that stays below (warp size · # of SPs). With such an underutilization of the GPU
the warp scheduler does not have to re-schedule because there is no more than one
warp per SP.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 227

All the threads of an SP-assigned warp execute the code in Fig. 4 concurrently
in a lock-step fashion. In each of the SM-assigned groups the one thread with
the group-level ID 0 within that group acquires the GPU-wide lock global (of
the critical section) in line 2. (Release is in line 11.)

Fig. 5. Schematic execution of Fig. 4. (Color figure
online)

In Fig. 5 time flows
from top to bottom. The
thread with GID = 0 (red)
of a group acquires and
releases the lock. Let us
ignore the global lock-
ing (and unlocking) for
now – it only matters
that the locking is fol-
lowed by a <thread-group
-barrier> in line 3 of
the code (or the dot-
ted line in Fig. 5, resp.).
This is the SM-wide bar-
rier that interacts with
the warp scheduler. The
GID-condition in line 1
splits a warp into two sets.
The set with the single
thread acquires the lock
and runs into the barrier.
The threads in the other
set also run into the barrier. Which set of threads receive their SIMT-instructions
first is irrelevant as the convergence point for all threads is before the barrier.
Note that the warp scheduler replaces such warps (whose threads all are inac-
tive) with other (pending) warps that still have active threads. As more and
more warps find all their threads inactive in the barrier, eventually all warps of
a group will be assigned to SPs and will reach the barrier. Thus, regardless of
the scheduler’s internal strategy, the hanging-problem is gone.

Note that it is irrelevant whether and when other groups that are scheduled
to other SMs reach their barriers. It only matters that all the threads of the warp
with the winning thread eventually finish their work. Then other warps finish
because of the same reasoning. Then eventually an SM finishes and another
(pending) group can be assigned to this SM.

There are two issues left to explain. First, the global lock (lines 2 and 11) can
be implemented with any CPU-style lock, e.g., with the upper spin lock from
Fig. 1. As the group scheduler never takes back the group that acquired the lock
before completion, this group is still active when it eventually releases the lock.

The second question is, how the group’s threads actually perform the body
of the critical section sequentially. In line 3 there is an SM-wide barrier. After
that barrier all threads of the group are active again (not just the thread that

228 T. Blaß et al.

acquired the lock). However, the critical work needs to be performed sequentially
by one thread at a time. This is what the code in lines 4–9 achieves. In SIMT-
mode all threads execute the for loop. But in each iteration only one of them
finds the loop counter to be equal to its own GID. This thread executes the
body of the critical section, the others pause, before all threads meet again in
the SM-wide barrier in line 8 which is the point of convergence for all threads.
This barrier is needed to prevent other threads from prematurely starting with
their critical section work. After the barrier the next thread executes the body of
the critical section, as shown in the for-loop area of Fig. 5. When all threads are
done, the thread with GID = 0 releases the lock to let the next group proceed.

We will later reuse this idea for each of the architectural levels of a GPU
(and for more levels) to efficiently implement inspected critical sections.

3 Inspected Critical Sections

Now that we have non-hanging GPU-wide critical sections we can let the threads
execute the code sequentially. However, this is obviously overly restrictive as
threads that work on disjoint data should be able to do their work in parallel.

Thus, we introduce ics(list of items) { block }, an Inspected Critical
Section wherein the programmer declares all the items (data elements, mem-
ory addresses, fields, . . .) up front that each of the data-parallel threads needs
isolated access to (in the block). As for the FGL-codes, the programmer must
know what is thread-local data and what is shared between threads and thus
needs to be mentioned in the list of items. For the hash table with chaining,
the list holds the number of the bucket that a put uses. This number represents
the shared data that potentially causes a conflicting access. It is more straight-
forward than the memory address of the bucket.

The semantics of the inspected critical sections is inspired by the classic
inspector-executor paradigm [3]. Upon entry to the critical section, it is checked
whether the lists of items intersect between threads. If so, the code will run
sequentially, otherwise the threads run the body in parallel, as they would do for
an atomic region. For the inspection, the threads atomically register their items
in a bitmap. If a bit is already set when they try to set it, a conflict is detected.

There are three differences to the traditional inspector-executor. First, we
start from parallel code and the inspector downgrades to a sequential execution,
whereas originally the inspector is used to parallelize a loop if possible. Second,
we rely on the programmer to identify where conflicts may be. As there is no
automatic detection of all the accessed memory addresses, the programmer can
leave out irrelevant addresses. There is also no longer the problem that computed
memory addresses may fool the automatic detection (think of a[foo()] where
foo is impure). In general, there is not even the need to consider all memory
addresses. Instead, smaller data structures suffice. For the hash table a bitmap
with one bit per bucket is large enough. A traditional inspector works with the
full memory addresses of the buckets.

Therefore, in addition to the ics-statement, the developer has to specify an
upperBound() of the size of the shared data structure and hence the size of the

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 229

bitmap. The developer can also overwrite the mapping function idx() with an
application-specific one that maps a potentially conflicting item (data element,
memorylocation, . . .) to an index of the bitmap.5 For the hash table, the number
of available buckets is the upper bound; as the bucket number used by the put
is a good index, there is no need to use the memory address.

The third difference to the traditional inspector-executor is that we do better
than all-or-nothing. Instead of sequentializing as soon as there is a conflict, Sect. 4
introduces a gradual retrenchment of parallelism that keeps up the degree of
parallelism for those threads that do not interfere.

Some algorithms (like the Labyrinth benchmark) can find a detour if an
initially available resource can no longer be used because another thread has
taken it. Instead of sequentializing to deal with this conflict, there may be an
application-specific way around. For such situations the developer can provide a
method alternative(item) that exploits knowledge about which item causes
the conflict, finds a detour, and retries the conflict check with a new list of items.

1 void check4con f l (l e v e l , i tems []) {
2 // p r e c o n d i t i o n : h a s C o n f l i c t = f a l s e ;
3 r e s e tB i t s (bitmap) ;
4 b a r r i e r [l e v e l] () ;
5 i t e r = 0 ;
6 r e t r i e s = 0 ;
7 do {
8 item = items [i t e r] ;
9 i f (atomicCAS(&bitmap [i d x (item)] ,

)1==)1,001 {
11 i f (a l t e r n a t i v e != NULL) { // De t o u r ?

;)smeti,pamtib(stiByMteser21
=smeti31 a l t e r n a t i v e (item) ;

;0=reti41
;++seirter51

16 continue ;
17 }
18 hasCon f l i c t = true ;
19 }
20 i t e r++;
21 } while (items . s i z e ()> i t e r && r e t r i e s !=3) ;
22 }

Fig. 6. Check for conflicts, with “Detour” option.

The pseudo code in
Fig. 6 shows how the initial
inspection checks whether
there are conflicts between
the concurrent threads.
(For a better understand-
ing, ignore the level-
indices for now and assume
single values instead –
Sect. 4 will fill in the
details.) All threads run
the code in parallel. For
each potentially critical
item the threads use a
CAS operation to set the
corresponding bit (line 9) in the bitmap. The index of the bit is determined by
means of idx(). If there is a conflict and if there is a valid function pointer to
an application-specific alternative() callback function in line 11, then the
application gets the chance to modify the local results and to retry with a dif-
ferent set of potentially conflicting items (lines 11–17). There is an upper bound
on the number of retries. If the application cannot find a patch/an alternative
that avoids the conflicting item, the global conflict flag is set. We optimize this
if there is only a single item to inspect.

5 Note that if needed, the developer can trade time for space: Ideally idx() is an
injective projection of an item to [0.. upperBound()-1]. With a smaller co-domain
of idx(), the bitmap can be smaller, but the conflict detection may announce false
positives that then cause sequential execution and hence longer runtimes.

230 T. Blaß et al.

4 Gradual Retrenchment of Parallelism

Sequentializing all threads once a conflict is found is too slow to be practical. To
make inspected critical sections efficient, we use a divide-and-conquer approach
that instead of instantly switching to a fully sequential execution, splits the
threads into smaller sets [7]. We process these sets in order, set after set. Within
such a set, the threads could still modify the data without a conflict. Hence,
before the threads of a set perform their work sequentially, they again check for
conflicts, but this time only among themselves. If there is no conflict, this set of
threads can run in parallel. Otherwise we apply this idea recursively. Since all
the sets of the same level are always processed one after the other, the threads
that caused the initial conflict can never run at the same time.

The GPU architecture from Fig. 3 guides the hierarchical splitting into sets
of threads. If the conflict is on the first level of the recursion, between the threads
that run on all the SMs, then we split them into their groups. The SMs those
groups are assigned to process them sequentially. One level down it may be
possible that all the threads in a group can run without a conflict.

If there is still a conflict among all the threads on that SM, then the SM
needs to process its warps (i.e., the next level of sets) sequentially. One level
down, potentially all the threads in a warp can run without a conflict.

The next level down are pairs of threads. To keep it simple, we have left this
out in Fig. 4. Pairs are executed in order, but within a pair the two threads can
run concurrently unless they interfere.

The base level is a full sequentialization of the threads as shown in the figure.

1 stat ic bool hasCon f l i c t ;
2 void r e t r ench (l ev e l , items []) {
3 lock [l e v e l] . a cqu i r e () ; // i n c l u d e s ? ID==0 t e s t
4 hasCon f l i c t = f a l s e ;
5 b a r r i e r [l e v e l] () ;
6 i f (l e v e l < 4) {
7 check4con f l (l e v e l , i tems []) ;
8 b a r r i e r [l e v e l] () ;
9 }

10 i f (! ha sCon f l i c t) {
11 // c r i t i c a l s e c t i o n c o d e h e r e ; b o d y o f i c s
12 } else {
13 re t rench (l e v e l +1, items []) ;
14 }
15 ba r r i e r [l e v e l] () ;
16 lock [l e v e l] . r e l e a s e () ; // i n c l u d e ? ID==0 t e s t
17 }

Fig. 7. Hierarchical retrenchment of parallelism.

The recursive pseudo code
is shown in Fig. 7. This
code is a generalization of
the code shown in Fig. 4.
As discussed above, there
cannot be GPU-wide barri-
ers. Thus the recursion does
not start from the full grid
but from the SM level. To
implement the user’s ics-
statement, all active threads
execute retrench (which calls
the body of the ics). As
in Sect. 2 only one of them
acquires the lock of the current level (line 3). The acquire method comprises
the ?ID==0 test known from before (? stands for the level, e.g., G for group
level). The other sets of that hierarchy level wait; the lock acquisition serializes
them. All threads of the winning set leave the barrier in line 5. There are dif-
ferent barrier implementations for each level: a (home-grown spin-based) barrier
across the SMs, the hardware-supported SM-wide <thread-group-barrier>, a
(home-grown) warp-wide barrier, and conceptually even a barrier for a pair of
threads in a warp. The recursion level is used to pick the appropriate type of

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 231

barrier. In line 7 all those threads inspect the items that they intend to work
with for conflicts. If there is none, they can execute the critical section code
concurrently (line 11). Otherwise, we recursively split the set of threads into
smaller sets. Notice that on the lowest level 4, there is no checking for conflicts
as there is only one active thread. Thus the recursion always ends in line 11 as
soon as it reaches the level of a single thread. On the way out of the recursion,
one thread releases the level’s lock (line 16). This releases another set of threads
that is waiting for the lock.

Fig. 8. From group to warp level. (Color figure online)

Figure 8 shows what hap-
pens at the group level.
Initially the thread with
GID= 0 (red, on the left)
acquires the lock. Then all
the group’s threads check
whether there are conflicts
(c4c for check4confl). If
there is none, the threads
concurrently execute the
critical section code (bot-
tom left of the figure) and
the thread with GID = 0
releases the lock so that
another SM can proceed
with its group (not shown).
Otherwise the recursive invo-
cation of retrench splits
the t threads into warps.
Each of the warps has a
thread with WID= 0 that
tries to acquire the (orange) lock (line 3 of the code; conflict side of Fig. 8).
The warps are processed in sequence, one after the other. For each of the warps
there is again the concurrent checking for conflicts. A warp can either run in par-
allel or – if there is a conflict among the warp’s threads – the recursion proceeds
to pair level. This decision can vary from warp to warp.

The above recursive pseudo code is simplified to get the idea across. The
actual implementation not only unrolls the recursion, but it also cuts off the
recursive descent as soon as it reaches warp level (=2). Here the for-loop
known from the non-hanging GPU lock, see Fig. 4, suffices due to the SIMT-
execution. Moreover, for pairs of threads that execute in a lock-step fashion any-
way, check4confl can be optimized as no longer bitmaps with atomic operations
are needed. Due to space restrictions, we cannot get into details, but eventually
the lower two levels of the retrenchment are fused into a single efficient for-loop
that also saves on the number of synchronization barriers.

232 T. Blaß et al.

5 Evaluation

Recall that the quantitative results are the motivation of this work, see Sect. 1:
The STM versions (with mostly given atomic regions) and the FGL versions
(written by us) of the benchmark codes (see Appendix) frequently hang in dead-
or livelocks, see Table 1. The ICS versions never hang, they use straightforward
idx functions to indicate where the threads may be in conflict at runtime,6 and

they are much faster than the STM codes and often get close to the FGL-versions
(provided the latter do not hang), see Fig. 2.

Table 2. Level on which ICS executes the critical code.

Hash table Bank Graph Labyrinth Genome Kmeans Vacation

Problem size 1,572,864 786,432 25,165,824 25% 75% (512,512,7) Configuration see Appendix

threads 1,572,864 25,165,824 10,280 512 811,008 3,014,656 4,194,304

8·SM 215,040 23,040 5,360,640 0 0 0 122,880 872,448 906,240

group 1,282,560 416,128 11,438,336 3456 128 0 318,080 1,482,240 2,129,536

warp 72,608 799,648 8,233,856 6176 3392 160 351,904 639,936 1,085,856

pair 2642 333,980 132,844 648 6698 312 18,102 19,988 72,634

single 14 68 148 0 62 40 42 44 38

Let us now look into three more aspects of these general results. First, as the
key idea of our approach is to retrench parallelism gradually so that threads that
work on non-conflicting parts of the shared data can run concurrently instead of
being sequentialized, Table 2 shows on which level of the retrenchment cascade
the threads actually execute the critical code (average over 100 runs).

For the large hash table 215,040 (14%) of the threads execute the critical
section code in parallel on the first level of the retrenchment cascade. Since
the recursive decent stops on the first level only a few barriers cause overhead.
The majority of the threads (82%) can retain group-level parallelism, where 128
threads run in parallel. Only 14 threads need to run in isolation. For the smaller
hash table with more collisions the numbers shift towards the lower end of the
scale; still retaining a high degree of parallelism. Bank is similar. The other four
benchmarks have more collisions, but they also achieve a bell-shaped distribution
of levels.7

6 For Hash we use the number of the bucket, for Bank it is the account numbers.
Labyrinth uses the coordinates of the points in the mesh as idx. Genome uses a
common subsequence (string) to identify a hash bucket that holds common DNA-
segments. Kmeans uses the Id of a cluster. Vacation uses Ids of hotel rooms, flighs,
and cars. We never use memory addresses as items.

7 If we force ICS to always assume a conflict and to go down to the single thread level,
runtimes are much slower than the STM version (Hash table: 14x and 11x, Bank:
13x, Graph: 6x and 2x, Labyrinth: 2x, Genome: 12x, Kmeans: 10x, Vacation: 15x).

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 233

Fig. 9. Fraction of overhead of ICS and STM.

Second, let
us study the
overhead. STM
research sepa-
rates the run-
time spent in
the atomic reg-
ion from the
time spent for
logging, commit processing, and rollback. We mimic this and also isolate the
time spent in the retrenchment cascade and the barriers from the critical section
bodies. Figure 9 shows that the GPU-STMs overhead is 24%–84% (similar results
can be found in [20]), while the ICS codes only have an overhead of 2.7%–13%.

To understand where this small overhead comes from, Fig. 10 compares an
ICS with both an empty block and with no items to check for conflicts, to the
non-hanging GPU-wide critical section from Fig. 4 with its full sequentialization.
The first bar of each group depicts this base line (total runtime of all threads;
the overhead per thread is given in the table on the side of Fig. 10).8

Fig. 10. Overhead of the retrench cascade.

The bars that follow show
the runtimes of the recursive
retrenchment cascade. For a
certain retrenchment level (60 ·
SM, group, . . . , single), we let
check4confl on the surround-
ing levels (if any) always signal a
conflict. On the measured level
there is no conflict so that the
parallel threads perform their
(empty) critical section in par-
allel. Hence, on the 60 · SM
level, on each of the 60 SMs of
our GPU all the 128 threads of
the assigned group run in par-
allel (i.e., there is a total num-
ber of 60 · 128 = 7, 680 parallel
threads). On the group level, the SMs process their assigned groups sequentially,
while within a group all 128 threads run in parallel. The last bar shows that the
worst case overhead of the level-wise retrenchment adds about 7% to the base
line.

There are additional aspects to note. (a) The overhead per thread is better
with fewer retrenchment, see side table, since higher levels have fewer barriers
along the cascade. Hence, the fewer dynamic dependences an application has,
the smaller is the runtime fee that it pays. (b) The warp-level optimizations and
the pairing of threads pay off. (c) Doubling the number of threads approximately

8 All measurements with -O3; the compiler did not remove the empty block.

234 T. Blaß et al.

doubles the total runtime and leaves the overhead per thread fixed. (d) If the
body had not been empty, the inner four bars of each bundle would shrink in
relation to the fully sequential execution of both the first and the last bar.

Third, if there is a conflict in the Labyrinth benchmark, the STM has to
completely undo the transaction. The results in Fig. 2 show that due to the
enhanced expressiveness, the FGL-code and the ICS-code with the optional
alternative() can do much better. It also lowers the overhead in Fig. 9.

6 Limits

Inspected critical sections trade STM-comfort for runtime performance. When
using the inspected critical section, a programmer may miss items that can be
in conflict between threads. Failure to declare such items is likely to cause races.
Because of the lock-step execution it may be a bit easier to avoid such bugs than
in general MIMD codes. For collision detection, ICS expects that all accessed
memory addresses are known a-priori. If there are unforeseeable addresses, i.e.,
conflicting accesses to computed memory addresses it is much more difficult to
keep the degree of parallelism up.

The programmer can trick the inspected critical sections into a buggy behav-
ior with wrong auxiliary functions. Examples are a too narrow upperBound()
that does not match the co-domain of the mapping function idx(), or an
idx() that is stateful and yields different answers when invoked for a single

item (data element, memoryaddress, . . .) twice and/or by different threads.
The pseudo code that this paper uses to explain how an inspected criti-

cal section is implemented, assumes that (like in all the benchmark codes) all
data-parallel threads of the GPU kernel do enter the critical section, i.e., there
cannot be a surrounding condition that lets some threads avoid the critical
section. (The reasons are: (a) current GPUs require that all threads must reach
a thread-group-barrier, and (b) for correctness our pseudo code requires that
the thread with ?ID=0 has entered the critical section.) So far, we circumvent
this problem by (manually) hoisting the critical section out of the condition. In
general, there is a performance penalty for this as the critical sections get larger.

7 Related Work

Several authors study how to correctly and efficiently implement synchroniza-
tion, locking, and barriers on the GPU and on its architectural levels. A general
difference to our work is that most of the related work comes from MIMD-
parallelism and deals with threads that perform individual tasks. Our base line
is different because we assume that all threads follow the same instructions in
data-parallel code, but there are some code fragments that need synchronization.
So whenever a locking is needed, conceptually all threads are involved.

ElTantawy and Aamodt [9] work on the SIMT-induced deadlocks and build
their solution into a compiler transformation. Another published workaround
moves the convergence point to a statement that all threads can reach – no

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 235

matter if they have the lock [15]. At the lowest level of our recursive approach,
we use similar ideas, but we also guarantee progress.

Xiao et al. [17,18] also work on inter-group barriers for GPUs. Whereas our
threads also proceed after the ICS in parallel, there is also the block of code
that conceptually they execute in isolation – running in parallel if there are
no data dependences. Another difference is that on every level, our recursive
retrenchment of parallelism uses smaller barriers that wait for fewer threads.
The fewer and the more local the threads are that wait in a barrier, the more
efficient the barrier code gets. On some levels of the GPU architecture there is
even hardware support for barriers. Their group-level locking cannot use a similar
optimization. Xu et al. [19] build livelock-free lock stealing and lock virtualization
for GPUs. Their techniques only work on warp level, whereas our mechanisms
not only work across all levels of the GPU architecture, but we also present
optimizations on sub-warp level, e.g., for pairs of threads. Another difference is
that their lock stealing makes it necessary that the developer provides undo-
methods that reinstate functional correctness in case of a stolen lock. We do not
need to supply such code.

With respect to low-level locks and barriers there is orthogonal work that
we may be able to incorporate and benefit from. Whenever our system-level
implementation needed a barrier or lock, we used a basic CPU-style spin lock
(except where discussed in detail in the paper). Operating systems research has
targeted the efficiency of locking techniques. Some authors improve the time
delay, the memory traffic, and storages costs compared to locks based on atom-
ics [21]. Others optimize for situations in which many locks are acquired and
released often [13]. SmartLocks [8] is a library for spin lock implementations. Its
goal is that the scheduler always picks from the spinning threads the one that
probably contributes most to a certain goal, e.g., the overall runtime, the energy
consumption, etc. It is orthogonal research to port such ideas to the GPU and to
use the best types in our system-level implementation, especially as some ideas
require hardware support that is not (or not yet?) available on GPUs.

There are several Transactional Memory implementations in software (STM)
for GPUs [6,12,16,20]. Their common principle is to log all read and write
operations that happen in a critical section. Multiple threads execute the critical
section concurrently. If they detect a conflicting access in the logs at commit
time, then they undo the work. All of this causes storage costs and memory
traffic. In our approach we also execute critical sections concurrently, but only
if we can check beforehand that there will be no conflicts. We assume that the
developer knows the application well enough to be able to indicate those data
elements/memory locations that at runtime threads may access in a conflicting
way. This is less costly because there is no need to rollback. Moreover, instead
of logging all memory accesses, we use application-specific knowledge and only
check those memory accesses that the developer knows to be potentially critical.
This lowers the checking overhead even further. STMs are general-purpose. They
hence need to be conservative and check and log every single memory access to
achieve correctness.

236 T. Blaß et al.

Systems that rely on a static code analysis to find spots where concurrent
threads can have conflicting access to data usually face a similar type of draw-
back. Due to their conservative approach, these systems, like race detection tools,
in general produce many false positives. If these tools cannot prove the absence of
a dependence, then they must assume that there is one. They do not benefit from
application-specific knowledge. In contrast, we let the programmer specify the
potentially critical data elements – and in a converse reasoning – it is known that
other data does not cause any correctness problems. Synchronize via Scheduling
(SvS) by Best et al. [4] is such a static analysis that checks whether certain tasks
can run in parallel because they access disjoint variables. Because of the many
false positives, SvS instruments the tasks with runtime checks that compare the
working sets of the tasks. In a way, this is similar to our check4confl. However,
we only have to consider a few programmer-indicated data elements while SvS –
due to its general-purpose approach – has to process the whole state of a thread,
if not the reachable graph of objects on the heap. SvS also does not optimize for
GPUs whereas we carefully map the checking to the GPU architecture so that
we retain as much parallelism as possible, even for the checking itself.

CUDA 9 is announced to offer so-called Cooperative Groups [1] that can
bundle threads for collective operations. On current NVIDIA GPUs these bun-
dles stick to the GPU hardware hierarchy and are unlikely to impede the results
of this paper. On the announced Volta architecture [2] there will be a thread
scheduling that is independent of the GPU hardware hierarchy. Although that
will potentially make some dead- and livelocks go away, the programmer still
has to make sure by hand that all threads are active that need to synchronize.
We expect this to be as complicated as the mechanisms presented here. These
issues and performance comparisons are future work.

8 Conclusion

On current GPUs, thread synchronization often suffers from dead- and livelocks
(because of the SIMT execution and the schedulers). This makes porting of par-
allel applications to GPUs error-prone, especially when efficient fine-grain syn-
chronization is needed. Inspected Critical Sections that make use of application-
specific knowledge on which data items may cause dynamic data-dependences
among data-parallel threads, outperform optimistic STM approaches on GPUs
and get close to (unreliable) implementations with fine-grain locking. The key
to the efficiency of ICS is a divide-and-conquer approach that exploits the archi-
tectural levels of GPUs and that employs a dead- and livelock free GPU-wide
barrier with guaranteed progress.

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 237

Appendix

Benchmark Infrastructure

For all measurements we use a 1,5 GHz Desktop NVIDIA TITAN Xp GPU with
12 GBytes of global memory and 3.840 cores in 60 SMs (with 64 SPs each) that
runs CUDA (Version 8.0) code.

The group-size in all measurements is 128 threads. The reason is that on
our GPU the kernels can use up to 32.000 registers per group, i.e., 250 registers
per thread. Both the retrenchment cascade and the STM framework need 70 of
those registers. This leaves 180 registers for the local variables of the applications.
Since the benchmarks need that many, we could not use larger group-sizes. While
smaller group-sizes are possible, we only present measurements for a group-size of
128 threads because our experiments did not show qualitatively different results
for smaller group-sizes.

We repeated all measurements 100 times; all given numbers are averages. For
the code versions with fine-grained locks and the STM-based implementations
we only measured those runs that did not face a dead- or livelock.

Benchmark Set

We use seven benchmarks, some of which are taken from the STAMP benchmark
suite [14] with given atomic regions. We always use the largest possible shared
data structure and/or the maximal number of threads that fit onto our GPU.

Hash Table. We use 1.5M threads and a hash table with the same number
of buckets, each of which holds the linked lists of colliding entries. The threads
randomly put a single entry into the shared hash table. ICS uses the bucket
number as item to check for conflicts. The bucket operation is the atomic region
in the STM code. The fine-grained lock code (FGL) uses one lock per bucket.
To study the effect of the number of collisions, we also use half the buckets.

Bank. There are 24M accounts. 24M parallel threads withdraw an amount of
money from one randomly picked account and deposit it to another. The two
accounts are the items for conflict checking. There is a conflict if two threads use
an account in common. STM: the transfer happens in the atomic region. FGL:
there is one lock per account.

Graph. The G(n, p)-instance of the Erdős-Rényi Graph Model (ERGM) [10]
starts from an edgeless graph with n = 10K nodes. A thread per node adds
an undirected edge to any other node (= ICS item for conflict checking) with
probability p. To illustrate the effect of the number of collisions we study the
two probabilities p = 25% and p = 75%. STM: the atomic region is the insertion
of an edge. FGL: the code locks the adjacency lists of both the nodes that the
new edge connects.

Labyrinth. The largest 3D-mesh from the STAMP input files that fits into our
memory has size (512, 512, 7). Thus 512 threads plan non-intersecting routes in
parallel. All nodes of the route are the items for conflict checking. STM: a full

238 T. Blaß et al.

routing step is the atomic region. FGL: there is a lock per mesh point. FGL and
ICS: if a route hits a spot that is already part of another route, the thread tries
(three times) to find a detour around it. This avoids recalculating the full route.

Genome. 8M threads try to reconstruct a genome from DNA segments that
reside in a shared pool, that is a hash table. There may not be duplicates and only
one thread may check whether and where a segment from the pool matches the
given genome. ICS checks conflicts on the bucket number. We consider a genome
size of 65, 536, DNA segments have a size of 192, and there are 1, 677, 726 such
segments. STM and FGL: see Hash table.

Kmeans. 3M threads partition the same number of data items from a 32-
dimensional space into 1, 536 subsets (clusters). Until a fix point is reached, all
threads check the distance to the centers of all of the clusters and migrate a data
item to the closest cluster (= item for conflict checking). STM: the migration
is the atomic region. FGL: there is one lock per cluster; the code locks the two
clusters that are affected by a migration.

Vacation. The travel reservation system uses hash tables to store customers
and their reservations for a hotel, a flight, and a rental car, i.e., on three poten-
tially conflicting items. 4M parallel threads perform 4M (random) reservations,
cancellations, and updates for full trips. There may be conflicts. There are config-
uration parameters for the likelihood of such conflicts and the mix of operations
(for the STAMP expert: we use r = 629148, u = 93, q = 90). STM: one opera-
tion on all three components of a trip is in the atomic region. FGL: there is a
lock per hotel, flight, and car.

References

1. CUDA 9 Features Revealed: Volta, Cooperative Groups and More (2017).
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/. Accessed 03
July 2017

2. Inside Volta: The World’s Most Advanced Data Center GPU (2017). https://
devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/. Accessed 03 July
2017

3. Baxter, D., Mirchandaney, R., Saltz, J.H.: Run-time parallelization and scheduling
of loops. In: (SPAA 1989): Symposium on Parallel Algorithms and Architecture,
Santa Fe, NM, pp. 603–612, June 1989

4. Best, M.J., Mottishaw, S., Mustard, C., Roth, M., Fedorova, A., Brownsword, A.:
Synchronization via scheduling: techniques for efficiently managing shared state.
In: (PLDI 2011): International Conference on Programming Language Design and
Implementation, San Jose, CA, pp. 640–652, June 2011

5. Cascaval, C., et al.: Software transactional memory: why is it only a research toy?
Queue 6(5), 40:46–40:58 (2008)

6. Cederman, D., Tsigas, P., Chaudhry, M.T.: Towards a software transactional mem-
ory for graphics processors. In: (EG PGV 2010): Eurographics Conference on Par-
allel Graphics and Visualization, Norrköping, Sweden, pp. 121–129, May 2010

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Efficient Inspected Critical Sections in Data-Parallel GPU Codes 239

7. Dang, F.H., Rauchwerger, L.: Speculative parallelization of partially parallel loops.
In: (LCR 2000): International Workshop Languages, Compilers, and Run-Time
Systems for Scalable Computers, Rochester, NY, pp. 285–299, May 2000

8. Eastep, J., Wingate, D., Santambrogio, M.D., Agarwal, A.: Smartlocks: lock acqui-
sition scheduling for self-aware synchronization. In: (ICAC 2010): International
Conference on Autonomic Computing, Washington, DC, pp. 215–224, June 2010

9. ElTantawy, A., Aamodt, T.M.: MIMD synchronization on SIMT architectures. In:
(MICRO 2016): International Symposium on Microarchitecture, Taipei, Taiwan,
pp. 1–14, October 2016

10. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. (Debrecen) 6, 290–297
(1959)

11. Habermaier, A., Knapp, A.: On the correctness of the SIMT execution model of
GPUs. In: (ESOP 2012): European Symposium on Programming, Tallinn, Estonia,
pp. 316–335, March 2012

12. Holey, A., Zhai, A.: Lightweight software transactions on GPUs. In: (ICPP 2014):
International Conference on Parallel Processing, Minneapolis, MN, pp. 461–470,
September 2014

13. Li, A., van den Braak, G.J., Corporaal, H., Kumar, A.: Fine-grained synchroniza-
tions and dataflow programming on GPUs. In: (ICS 2015): International Confer-
ence on Supercomputing, Newport Beach, CA, pp. 109–118, June 2015

14. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: (IISWC 2008): International Sympo-
sium on Workload Characterization, Seattle, WA, pp. 35–46, September 2008

15. Ramamurthy, A.: Towards scalar synchronization in SIMT architectures. Master’s
thesis, University of British Columbia, September 2011

16. Shen, Q., Sharp, C., Blewitt, W., Ushaw, G., Morgan, G.: PR-STM: priority rule
based software transactions for the GPU. In: (Euro-Par 2015): International Con-
ference on Parallel and Distributed Systems, Vienna, Austria, pp. 361–372, August
2015

17. Xiao, S., Aji, A.M., Feng, W.C.: On the robust mapping of dynamic programming
onto a graphics processing unit. In: (ICPADS 2009): International Conference on
Parallel and Distributed Systems, Shenzhen, China, pp. 26–33, December 2009

18. Xiao, S., Feng, W.: Inter-Block GPU communication via fast barrier synchroniza-
tion. In: (IPDPS 2010): International Symposium on Parallel and Distributed Pro-
cessing, Atlanta, GA, pp. 1–12, April 2010

19. Xu, Y., Gao, L., Wang, R., Luan, Z., Wu, W., Qian, D.: Lock-based Synchroniza-
tion for GPU architectures. In: (CF 2016): International Conference on Computing
Frontiers, Como, Italy, pp. 205–213, May 2016

20. Xu, Y., Wang, R., Goswami, N., Li, T., Gao, L., Qian, D.: Software transactional
memory for GPU architectures. In: (CGO 2014): International Symposium on Code
Generation and Optimization, Orlando, FL, pp. 1:1–1:10, February 2014

21. Yilmazer, A., Kaeli, D.R.: HQL: a scalable synchronization mechanism for GPUs.
In: (IPDPS 2013): International Symposium on Parallel and Distributed Process-
ing, Cambridge, MA, pp. 475–486, May 2013

	Efficient Inspected Critical Sections in Data-Parallel GPU Codes
	1 Introduction
	2 Non-hanging GPU-wide Critical Sections
	3 Inspected Critical Sections
	4 Gradual Retrenchment of Parallelism
	5 Evaluation
	6 Limits
	7 Related Work
	8 Conclusion
	References

